229 lines (228 with data), 5.9 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from clinical_ts.timeseries_utils import *\n",
"from clinical_ts.ecg_utils import *"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# prepare data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"target_fs=100\n",
"data_root=Path(\"./ecg_data/\")\n",
"target_root=Path(\"./ecg_data_processed\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ribeiro 2020"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Download the test set from Ribeiro et al 2020 (https://www.nature.com/articles/s41467-020-15432-4) https://doi.org/10.5281/zenodo.3625006 and place it in data_folder_ribeiro_test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_folder_ribeiro_test = data_root/\"ribeiro2020_test\"\n",
"target_folder_ribeiro_test = target_root/(\"ribeiro_fs\"+str(target_fs))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"df_ribeiro_test, lbl_itos_ribeiro_test, mean_ribeiro_test, std_ribeiro_test = prepare_data_ribeiro_test(data_folder_ribeiro_test, target_fs=target_fs, channels=12, channel_stoi=channel_stoi_default, target_folder=target_folder_ribeiro_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#reformat everything as memmap for efficiency\n",
"reformat_as_memmap(df_ribeiro_test, target_folder_ribeiro_test/(\"memmap.npy\"),data_folder=target_folder_ribeiro_test,delete_npys=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Zheng 2020"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Download the dataset from Zheng et al 2020 (https://www.nature.com/articles/s41597-020-0386-x) https://figshare.com/collections/ChapmanECG/4560497/2 and place it in data_folder_zheng"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_folder_zheng = data_root/\"zheng2020/\"\n",
"target_folder_zheng = target_root/(\"zheng_fs\"+str(target_fs))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"df_zheng, lbl_itos_zheng, mean_zheng, std_zheng = prepare_data_zheng(data_folder_zheng, denoised=False, target_fs=target_fs, channels=12, channel_stoi=channel_stoi_default, target_folder=target_folder_zheng)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#reformat everything as memmap for efficiency\n",
"reformat_as_memmap(df_zheng, target_folder_zheng/(\"memmap.npy\"),data_folder=target_folder_zheng,delete_npys=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## CinC2020 Challenge"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Download the training set of the CinC Challenge 2020 https://physionetchallenges.org/2020/ and place it in data_folder_cinc"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_folder_cinc = data_root/\"cinc2020/\"\n",
"target_folder_cinc = target_root/(\"cinc_fs\"+str(target_fs))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"df_cinc, lbl_itos_cinc, mean_cinc, std_cinc = prepare_data_cinc(data_folder_cinc, target_fs=target_fs, channels=12, channel_stoi=channel_stoi_default, target_folder=target_folder_cinc)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#reformat everything as memmap for efficiency\n",
"reformat_as_memmap(df_cinc, target_folder_cinc/(\"memmap.npy\"),data_folder=target_folder_cinc,delete_npys=True)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## PTB-XL"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Download the PTB-XL dataset (https://www.nature.com/articles/s41597-020-0495-6) https://physionet.org/content/ptb-xl/1.0.1/ and place it in data_folder_ptb_xl"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_folder_ptb_xl = data_root/\"ptb_xl/\"\n",
"target_folder_ptb_xl = target_root/(\"ptb_xl_fs\"+str(target_fs))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df_ptb_xl, lbl_itos_ptb_xl, mean_ptb_xl, std_ptb_xl = prepare_data_ptb_xl(data_folder_ptb_xl, min_cnt=0, target_fs=target_fs, channels=input_channels, channel_stoi=channel_stoi_default, target_folder=target_folder_ptb_xl)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#reformat everything as memmap for efficiency\n",
"reformat_as_memmap(df_ptb_xl, target_folder_ptb_xl/(\"memmap.npy\"),data_folder=target_folder_ptb_xl,delete_npys=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}