[134fd7]: / clinical_ts / ecg_utils.py

Download this file

367 lines (309 with data), 19.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
__all__ = ['get_available_channels', 'channel_stoi_default', 'resample_data', 'get_filename_out', 'prepare_data_ptb_xl',
'filter_ptb_xl','prepare_data_cinc', 'prepare_data_zheng', 'prepare_data_ribeiro_test']
# Cell
import wfdb
import scipy.io
import numpy as np
import pandas as pd
from skimage import transform
from scipy.ndimage import zoom
from tqdm.auto import tqdm
from pathlib import Path
from .stratify import stratify# ,stratify_batched
#ribeiro
import h5py
import datetime
from .timeseries_utils import *
channel_stoi_default = {"i": 0, "ii": 1, "v1":2, "v2":3, "v3":4, "v4":5, "v5":6, "v6":7, "iii":8, "avr":9, "avl":10, "avf":11, "vx":12, "vy":13, "vz":14}
def get_available_channels(channel_labels, channel_stoi):
if(channel_stoi is None):
return range(len(channel_labels))
else:
return sorted([channel_stoi[c] for c in channel_labels if c in channel_stoi.keys()])
def resample_data(sigbufs, channel_labels, fs, target_fs, channels=8, channel_stoi=None,skimage_transform=True,interpolation_order=3):
channel_labels = [c.lower() for c in channel_labels]
#https://github.com/scipy/scipy/issues/7324 zoom issues
factor = target_fs/fs
timesteps_new = int(len(sigbufs)*factor)
if(channel_stoi is not None):
data = np.zeros((timesteps_new, channels), dtype=np.float32)
for i,cl in enumerate(channel_labels):
if(cl in channel_stoi.keys() and channel_stoi[cl]<channels):
if(skimage_transform):
data[:,channel_stoi[cl]]=transform.resize(sigbufs[:,i],(timesteps_new,),order=interpolation_order).astype(np.float32)
else:
data[:,channel_stoi[cl]]=zoom(sigbufs[:,i],timesteps_new/len(sigbufs),order=interpolation_order).astype(np.float32)
else:
if(skimage_transform):
data=transform.resize(sigbufs,(timesteps_new,channels),order=interpolation_order).astype(np.float32)
else:
data=zoom(sigbufs,(timesteps_new/len(sigbufs),1),order=interpolation_order).astype(np.float32)
return data
def get_filename_out(filename_in, target_folder=None, suffix=""):
if target_folder is None:
#absolute path here
filename_out = filename_in.parent/(filename_in.stem+suffix+".npy")
filename_out_relative = filename_out
else:
if("train" in filename_in.parts):
target_folder_train = target_folder/"train"
# relative path here
filename_out = target_folder_train/(filename_in.stem+suffix+".npy")
filename_out_relative = filename_out.relative_to(target_folder)
target_folder_train.mkdir(parents=True, exist_ok=True)
elif("eval" in filename_in.parts or "dev_test" in filename_in.parts or "valid" in filename_in.parts or "valtest" in filename_in.parts):
target_folder_valid = target_folder/"valid"
filename_out = target_folder_valid/(filename_in.stem+suffix+".npy")
filename_out_relative = filename_out.relative_to(target_folder)
target_folder_valid.mkdir(parents=True, exist_ok=True)
else:
filename_out = target_folder/(filename_in.stem+suffix+".npy")
filename_out_relative = filename_out.relative_to(target_folder)
target_folder.mkdir(parents=True, exist_ok=True)
return filename_out, filename_out_relative
def prepare_data_ptb_xl(data_path, min_cnt=50, target_fs=100, channels=8, channel_stoi=channel_stoi_default, target_folder=None, skimage_transform=True, recreate_data=True):
target_root_ptb_xl = Path(".") if target_folder is None else target_folder
#print(target_root_ptb_xl)
target_root_ptb_xl.mkdir(parents=True, exist_ok=True)
if(recreate_data is True):
# reading df
ptb_xl_csv = data_path/"ptbxl_database.csv"
df_ptb_xl=pd.read_csv(ptb_xl_csv,index_col="ecg_id")
#print(df_ptb_xl.columns)
df_ptb_xl.scp_codes=df_ptb_xl.scp_codes.apply(lambda x: eval(x.replace("nan","np.nan")))
# preparing labels
ptb_xl_label_df = pd.read_csv(data_path/"scp_statements.csv")
ptb_xl_label_df=ptb_xl_label_df.set_index(ptb_xl_label_df.columns[0])
ptb_xl_label_diag= ptb_xl_label_df[ptb_xl_label_df.diagnostic >0]
ptb_xl_label_form= ptb_xl_label_df[ptb_xl_label_df.form >0]
ptb_xl_label_rhythm= ptb_xl_label_df[ptb_xl_label_df.rhythm >0]
diag_class_mapping={}
diag_subclass_mapping={}
for id,row in ptb_xl_label_diag.iterrows():
if(isinstance(row["diagnostic_class"],str)):
diag_class_mapping[id]=row["diagnostic_class"]
if(isinstance(row["diagnostic_subclass"],str)):
diag_subclass_mapping[id]=row["diagnostic_subclass"]
df_ptb_xl["label_all"]= df_ptb_xl.scp_codes.apply(lambda x: [y for y in x.keys()])
df_ptb_xl["label_diag"]= df_ptb_xl.scp_codes.apply(lambda x: [y for y in x.keys() if y in ptb_xl_label_diag.index])
df_ptb_xl["label_form"]= df_ptb_xl.scp_codes.apply(lambda x: [y for y in x.keys() if y in ptb_xl_label_form.index])
df_ptb_xl["label_rhythm"]= df_ptb_xl.scp_codes.apply(lambda x: [y for y in x.keys() if y in ptb_xl_label_rhythm.index])
df_ptb_xl["label_diag_subclass"]= df_ptb_xl.label_diag.apply(lambda x: [diag_subclass_mapping[y] for y in x if y in diag_subclass_mapping])
df_ptb_xl["label_diag_superclass"]= df_ptb_xl.label_diag.apply(lambda x: [diag_class_mapping[y] for y in x if y in diag_class_mapping])
df_ptb_xl["dataset"]="ptb_xl"
#filter (can be reapplied at any time)
df_ptb_xl, lbl_itos_ptb_xl =filter_ptb_xl(df_ptb_xl,min_cnt=min_cnt)
filenames = []
for id, row in tqdm(list(df_ptb_xl.iterrows())):
filename = data_path/row["filename_lr"] if target_fs<=100 else data_path/row["filename_hr"]
sigbufs, header = wfdb.rdsamp(str(filename))
data = resample_data(sigbufs=sigbufs,channel_stoi=channel_stoi,channel_labels=header['sig_name'],fs=header['fs'],target_fs=target_fs,channels=channels,skimage_transform=skimage_transform)
assert(target_fs<=header['fs'])
np.save(target_root_ptb_xl/(filename.stem+".npy"),data)
filenames.append(Path(filename.stem+".npy"))
df_ptb_xl["data"] = filenames
#add means and std
dataset_add_mean_col(df_ptb_xl,data_folder=target_root_ptb_xl)
dataset_add_std_col(df_ptb_xl,data_folder=target_root_ptb_xl)
dataset_add_length_col(df_ptb_xl,data_folder=target_root_ptb_xl)
#dataset_add_median_col(df_ptb_xl,data_folder=target_root_ptb_xl)
#dataset_add_iqr_col(df_ptb_xl,data_folder=target_root_ptb_xl)
#save means and stds
mean_ptb_xl, std_ptb_xl = dataset_get_stats(df_ptb_xl)
#save
save_dataset(df_ptb_xl,lbl_itos_ptb_xl,mean_ptb_xl,std_ptb_xl,target_root_ptb_xl)
else:
df_ptb_xl, lbl_itos_ptb_xl, mean_ptb_xl, std_ptb_xl = load_dataset(target_root_ptb_xl,df_mapped=False)
return df_ptb_xl, lbl_itos_ptb_xl, mean_ptb_xl, std_ptb_xl
def filter_ptb_xl(df,min_cnt=10,categories=["label_all","label_diag","label_form","label_rhythm","label_diag_subclass","label_diag_superclass"]):
#filter labels
def select_labels(labels, min_cnt=10):
lbl, cnt = np.unique([item for sublist in list(labels) for item in sublist], return_counts=True)
return list(lbl[np.where(cnt>=min_cnt)[0]])
df_ptb_xl = df.copy()
lbl_itos_ptb_xl = {}
for selection in categories:
label_selected = select_labels(df_ptb_xl[selection],min_cnt=min_cnt)
df_ptb_xl[selection+"_filtered"]=df_ptb_xl[selection].apply(lambda x:[y for y in x if y in label_selected])
lbl_itos_ptb_xl[selection] = np.array(list(set([x for sublist in df_ptb_xl[selection+"_filtered"] for x in sublist])))
lbl_stoi = {s:i for i,s in enumerate(lbl_itos_ptb_xl[selection])}
df_ptb_xl[selection+"_filtered_numeric"]=df_ptb_xl[selection+"_filtered"].apply(lambda x:[lbl_stoi[y] for y in x])
return df_ptb_xl, lbl_itos_ptb_xl
def prepare_data_cinc(data_path, datasets=["ICBEB2018","ICBEB2018_2","INCART","PTB","PTB-XL","Georgia"], target_fs=100, strat_folds=10, channels=8, channel_stoi=channel_stoi_default, target_folder=None, skimage_transform=True, recreate_data=True):
'''unzip archives into separate folders with dataset names from above'''
target_root = Path(".") if target_folder is None else target_folder
target_root.mkdir(parents=True, exist_ok=True)
if(recreate_data is True):
dx_meta = pd.concat([pd.read_csv(data_path/"dx_mapping_scored.csv"),pd.read_csv(data_path/"dx_mapping_unscored.csv")],sort=True)
dx_mapping_snomed_abbrev = {a:b for [a,b] in list(dx_meta.apply(lambda row: [row["SNOMED CT Code"],row["Abbreviation"]],axis=1))}
metadata = []
for filename in tqdm(list(data_path.glob('**/*.hea'))):
if(not(filename.parts[-2] in datasets)):
continue
sigbufs, header = wfdb.rdsamp(str(filename)[:-4])
#print(filename,sigbufs.shape,np.min(sigbufs,axis=0),np.any(np.isnan(sigbufs)))
if(np.any(np.isnan(sigbufs))):
print("Warning:",str(filename),"is corrupt. Skipping.")
continue
data = resample_data(sigbufs=sigbufs,channel_stoi=channel_stoi,channel_labels=header['sig_name'],fs=header['fs'],target_fs=target_fs,channels=channels,skimage_transform=skimage_transform)
assert(target_fs<=header['fs'])
np.save(target_root/(filename.stem+".npy"),data)
labels=[]
age=np.nan
sex="nan"
for l in header["comments"]:
arrs = l.strip().split(' ')
if l.startswith('Dx:'):
labels = [dx_mapping_snomed_abbrev[int(x)] for x in arrs[1].split(',')]
elif l.startswith('Age:'):
try:
age = int(arrs[1])
except:
age= np.nan
elif l.startswith('Sex:'):
sex = arrs[1].strip().lower()
if(sex=="m"):
sex="male"
elif(sex=="f"):
sex="female"
metadata.append({"data":Path(filename.stem+".npy"),"label":labels,"sex":sex,"age":age,"dataset":"cinc_"+filename.parts[-2]})
df =pd.DataFrame(metadata)
lbl_itos = np.unique([item for sublist in list(df.label) for item in sublist])
lbl_stoi = {s:i for i,s in enumerate(lbl_itos)}
df["label"] = df["label"].apply(lambda x: [lbl_stoi[y] for y in x])
#does not incorporate patient-level split
df["strat_fold"]=-1
for ds in np.unique(df["dataset"]):
print("Creating CV folds:",ds)
dfx = df[df.dataset==ds]
idxs = np.array(dfx.index.values)
lbl_itosx = np.unique([item for sublist in list(dfx.label) for item in sublist])
stratified_ids = stratify(list(dfx["label"]), lbl_itosx, [1./strat_folds]*strat_folds)
for i,split in enumerate(stratified_ids):
df.loc[idxs[split],"strat_fold"]=i
#add means and std
dataset_add_mean_col(df,data_folder=target_root)
dataset_add_std_col(df,data_folder=target_root)
dataset_add_length_col(df,data_folder=target_root)
#save means and stds
mean, std = dataset_get_stats(df)
#save
save_dataset(df, lbl_itos, mean, std, target_root)
else:
df, lbl_itos, mean, std = load_dataset(target_root,df_mapped=False)
return df, lbl_itos, mean, std
def prepare_data_zheng(data_path, denoised=False, target_fs=100, strat_folds=10, channels=8, channel_stoi=channel_stoi_default, target_folder=None, skimage_transform=True, recreate_data=True):
'''prepares the Zheng et al 2020 dataset'''
target_root = Path(".") if target_folder is None else target_folder
target_root.mkdir(parents=True, exist_ok=True)
if(recreate_data is True):
#df_attributes = pd.read_excel("./AttributesDictionary.xlsx")
#df_conditions = pd.read_excel("./ConditionNames.xlsx")
#df_rhythm = pd.read_excel("./RhythmNames.xlsx")
df = pd.read_excel(data_path/"Diagnostics.xlsx")
df["id"]=df.FileName
df["data"]=df.FileName.apply(lambda x: x+".npy")
df["label_condition_txt"]=df.Beat.apply(lambda x: [y for y in x.split(" ") if x!="NONE"])
df["label_rhythm_txt"]=df.Rhythm.apply(lambda x: x.split(" "))
df["label_txt"]=df.apply(lambda row: row["label_condition_txt"]+row["label_rhythm_txt"],axis=1)
df["sex"]=df.Gender.apply(lambda x:x.lower())
df["age"]=df.PatientAge
df.drop(["Gender","PatientAge","Rhythm","Beat","FileName"],inplace=True,axis=1)
#map to numerical indices
lbl_itos={}
lbl_stoi={}
lbl_itos["all"] = np.unique([item for sublist in list(df.label_txt) for item in sublist])
lbl_stoi["all"] = {s:i for i,s in enumerate(lbl_itos["all"])}
df["label"] = df["label_txt"].apply(lambda x: [lbl_stoi["all"][y] for y in x])
lbl_itos["condition"] = np.unique([item for sublist in list(df.label_condition_txt) for item in sublist])
lbl_stoi["condition"] = {s:i for i,s in enumerate(lbl_itos["condition"])}
df["label_condition"] = df["label_condition_txt"].apply(lambda x: [lbl_stoi["condition"][y] for y in x])
lbl_itos["rhythm"] = np.unique([item for sublist in list(df.label_rhythm_txt) for item in sublist])
lbl_stoi["rhythm"] = {s:i for i,s in enumerate(lbl_itos["rhythm"])}
df["label_rhythm"] = df["label_rhythm_txt"].apply(lambda x: [lbl_stoi["rhythm"][y] for y in x])
df["dataset"]="Zheng2020"
for id,row in tqdm(list(df.iterrows())):
fs = 500.
df_tmp = pd.read_csv(data_path/("ECGDataDenoised" if denoised else "ECGData")/(row["id"]+".csv"))
channel_labels = list(df_tmp.columns)
sigbufs = np.array(df_tmp)*0.001 #assuming data is given in muV
data = resample_data(sigbufs=sigbufs,channel_stoi=channel_stoi,channel_labels=channel_labels,fs=fs,target_fs=target_fs,channels=channels,skimage_transform=skimage_transform)
assert(target_fs<=fs)
np.save(target_root/(row["id"]+".npy"),data)
stratified_ids = stratify(list(df["label_txt"]), lbl_itos["all"], [1./strat_folds]*strat_folds)
df["strat_fold"]=-1
idxs = np.array(df.index.values)
for i,split in enumerate(stratified_ids):
df.loc[idxs[split],"strat_fold"]=i
#add means and std
dataset_add_mean_col(df,data_folder=target_root)
dataset_add_std_col(df,data_folder=target_root)
dataset_add_length_col(df,data_folder=target_root)
#save means and stds
mean, std = dataset_get_stats(df)
#save
save_dataset(df, lbl_itos, mean, std, target_root)
else:
df, lbl_itos, mean, std = load_dataset(target_root,df_mapped=False)
return df, lbl_itos, mean, std
def prepare_data_ribeiro_test(data_path, denoised=False, target_fs=100, strat_folds=10, channels=8, channel_stoi=channel_stoi_default, target_folder=None, skimage_transform=True, recreate_data=True):
'''prepares test set of Ribeiro et al Nat Comm 2020'''
data_path = Path(data_path)
target_root = Path(".") if target_folder is None else target_folder
target_root.mkdir(parents=True, exist_ok=True)
if(recreate_data is True):
lbl_itos = ["1AVB","RBBB","LBBB","SBRAD","AFIB","STACH"]
channel_labels = ["i","ii","iii","avr","avl","avf","v1","v2","v3","v4","v5","v6"]
fs= 400.
#prepare df
df_cardiologist1 = pd.read_csv(data_path/"annotations"/"cardiologist1.csv")
df_cardiologist2 = pd.read_csv(data_path/"annotations"/"cardiologist2.csv")
df_gold = pd.read_csv(data_path/"annotations"/"gold_standard.csv")
df_cardiology_residents = pd.read_csv(data_path/"annotations"/"cardiology_residents.csv")
df_dnn = pd.read_csv(data_path/"annotations"/"dnn.csv")
df_emergency_residents = pd.read_csv(data_path/"annotations"/"emergency_residents.csv")
df_medical_students = pd.read_csv(data_path/"annotations"/"medical_students.csv")
df_attributes = pd.read_csv(data_path/"attributes.csv")
sex_map = {"M":"male", "F":"female"}
df_attributes.sex = df_attributes.sex.apply(lambda x: sex_map[x])
def reformat_predictions(df, colname_txt="label_txt", colname_num="label", lbl_itos=["1AVB","RBBB","LBBB","SBRAD","AFIB","STACH"]):
lbl_stoi = {s:i for i,s in enumerate(lbl_itos)}
df[colname_txt]=df.apply(lambda row: ("1AVB " if row["1dAVb"] else "")+("RBBB " if row["RBBB"] else "")+("LBBB " if row["LBBB"] else "")+("SBRAD " if row["SB"] else "")+("AFIB " if row["AF"] else "")+("STACH " if row["ST"] else ""),axis=1)
df[colname_txt]=df[colname_txt].apply(lambda x: [y for y in x.strip().split(" ") if y!=""])
df[colname_num]=df[colname_txt].apply(lambda x: [lbl_stoi[y] for y in x if y in lbl_stoi.keys()])
df.drop(["1dAVb","RBBB","LBBB","SB","AF","ST"],axis=1,inplace=True)
reformat_predictions(df_cardiologist1,"label_cardiologist1_txt","label_cardiologist1")
reformat_predictions(df_cardiologist2,"label_cardiologist2_txt","label_cardiologist2")
reformat_predictions(df_gold,"label_txt","label")
reformat_predictions(df_cardiology_residents,"label_cardiology_residents_txt","label_cardiology_residents")
reformat_predictions(df_emergency_residents,"label_emergency_residents_txt","label_emergency_residents")
reformat_predictions(df_medical_students,"label_medical_students_txt","label_medical_students")
reformat_predictions(df_dnn,"label_dnn_txt","label_dnn")
df=df_gold.join([df_cardiologist1,df_cardiologist2,df_cardiology_residents,df_emergency_residents,df_medical_students,df_dnn,df_attributes])
df["data"]=[Path("Ribeiro_test_"+str(i)+".npy") for i in range(len(df))]
df["dataset"]="Ribeiro_test"
#prepare raw data
with h5py.File(data_path/"ecg_tracings.hdf5", "r") as f:
sigbufs = np.array(f['tracings'])
start_idxs=[ np.where(np.sum(np.abs(sigbufs[i]),axis=1)==0.)[0] for i in range(len(sigbufs))] #discard zeros at beginning/end
start_idxs = [len(a)//2 for a in start_idxs]
for id,row in tqdm(list(df.iterrows())):
data = resample_data(sigbufs=sigbufs[id][start_idxs[id]:-start_idxs[id] or None],channel_stoi=channel_stoi,channel_labels=channel_labels,fs=fs,target_fs=target_fs,channels=channels,skimage_transform=skimage_transform)
assert(target_fs<=fs)
np.save(target_root/(row["data"]),data)
stratified_ids = stratify(list(df.apply(lambda row: row["label_txt"]+[row["sex"]],axis=1)), lbl_itos+["male","female"], [1./strat_folds]*strat_folds)
df["strat_fold"]=-1
idxs = np.array(df.index.values)
for i,split in enumerate(stratified_ids):
df.loc[idxs[split],"strat_fold"]=i
#add means and std
dataset_add_mean_col(df,data_folder=target_root)
dataset_add_std_col(df,data_folder=target_root)
dataset_add_length_col(df,data_folder=target_root)
#save means and stds
mean, std = dataset_get_stats(df)
#save
save_dataset(df, lbl_itos, mean, std, target_root)
else:
df, lbl_itos, mean, std = load_dataset(target_root,df_mapped=False)
return df, lbl_itos, mean, std