--- a +++ b/ecg_datamodule.py @@ -0,0 +1,86 @@ +import os +from typing import Optional, Sequence +from warnings import warn + +import torch +from pytorch_lightning import LightningDataModule +from torch.utils.data import DataLoader, random_split + +from clinical_ts.simclr_dataset_wrapper import SimCLRDataSetWrapper + + +class ECGDataModule(LightningDataModule): + + name = 'ecg_dataset' + extra_args = {} + + def __init__( + self, + config, + transformations_str, + t_params, + data_dir: str = None, + val_split: int = 5000, + num_workers: int = 16, + batch_size: int = 32, + seed: int = 42, + *args, + **kwargs, + ): + super().__init__(*args, **kwargs) + + self.dims = (12, 250) + # self.val_split = val_split + self.num_workers = num_workers + self.batch_size = batch_size + self.seed = seed + self.data_dir = data_dir if data_dir is not None else os.getcwd() + # self.num_samples = 60000 - val_split + + # self.DATASET = SimCLRDataSetWrapper( + # config['eval_batch_size'], **config['eval_dataset']) + # self.train_loader, self.valid_loader = self.DATASET.get_data_loaders() + self.config = config + self.transformations_str = transformations_str + self.t_params = t_params + self.set_params() + + def set_params(self): + dataset = SimCLRDataSetWrapper( + self.config['batch_size'], **self.config['dataset'], transformations=self.transformations_str, t_params=self.t_params) + train_loader, valid_loader = dataset.get_data_loaders() + self.num_samples = dataset.train_ds_size + self.transformations = dataset.transformations + @property + def num_classes(self): + """ + Return: + 10 + """ + return 5 + + def prepare_data(self): + pass + + def train_dataloader(self): + dataset = SimCLRDataSetWrapper( + self.config['batch_size'], **self.config['dataset'], transformations=self.transformations_str, t_params=self.t_params) + train_loader, _ = dataset.get_data_loaders() + return train_loader + + def val_dataloader(self): + dataset = SimCLRDataSetWrapper( + self.config['eval_batch_size'], **self.config['eval_dataset'], transformations=self.transformations_str, t_params=self.t_params) + _, valid_loader_self = dataset.get_data_loaders() + dataset = SimCLRDataSetWrapper( + self.config['eval_batch_size'], **self.config['eval_dataset'], transformations=self.transformations_str, t_params=self.t_params, mode="linear_evaluation") + valid_loader_sup, test_loader_sup = dataset.get_data_loaders() + # return valid_loader + return [valid_loader_self, valid_loader_sup, test_loader_sup] + + + def test_dataloader(self): + return self.valid_loader + + def default_transforms(self): + pass