|
a |
|
b/data_preprocessing.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": null, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"from clinical_ts.timeseries_utils import *\n", |
|
|
10 |
"from clinical_ts.ecg_utils import *" |
|
|
11 |
] |
|
|
12 |
}, |
|
|
13 |
{ |
|
|
14 |
"cell_type": "markdown", |
|
|
15 |
"metadata": {}, |
|
|
16 |
"source": [ |
|
|
17 |
"# prepare data" |
|
|
18 |
] |
|
|
19 |
}, |
|
|
20 |
{ |
|
|
21 |
"cell_type": "code", |
|
|
22 |
"execution_count": null, |
|
|
23 |
"metadata": {}, |
|
|
24 |
"outputs": [], |
|
|
25 |
"source": [ |
|
|
26 |
"target_fs=100\n", |
|
|
27 |
"data_root=Path(\"./ecg_data/\")\n", |
|
|
28 |
"target_root=Path(\"./ecg_data_processed\")" |
|
|
29 |
] |
|
|
30 |
}, |
|
|
31 |
{ |
|
|
32 |
"cell_type": "markdown", |
|
|
33 |
"metadata": {}, |
|
|
34 |
"source": [ |
|
|
35 |
"## Ribeiro 2020" |
|
|
36 |
] |
|
|
37 |
}, |
|
|
38 |
{ |
|
|
39 |
"cell_type": "markdown", |
|
|
40 |
"metadata": {}, |
|
|
41 |
"source": [ |
|
|
42 |
"Download the test set from Ribeiro et al 2020 (https://www.nature.com/articles/s41467-020-15432-4) https://doi.org/10.5281/zenodo.3625006 and place it in data_folder_ribeiro_test" |
|
|
43 |
] |
|
|
44 |
}, |
|
|
45 |
{ |
|
|
46 |
"cell_type": "code", |
|
|
47 |
"execution_count": null, |
|
|
48 |
"metadata": {}, |
|
|
49 |
"outputs": [], |
|
|
50 |
"source": [ |
|
|
51 |
"data_folder_ribeiro_test = data_root/\"ribeiro2020_test\"\n", |
|
|
52 |
"target_folder_ribeiro_test = target_root/(\"ribeiro_fs\"+str(target_fs))" |
|
|
53 |
] |
|
|
54 |
}, |
|
|
55 |
{ |
|
|
56 |
"cell_type": "code", |
|
|
57 |
"execution_count": null, |
|
|
58 |
"metadata": {}, |
|
|
59 |
"outputs": [], |
|
|
60 |
"source": [ |
|
|
61 |
"\n", |
|
|
62 |
"df_ribeiro_test, lbl_itos_ribeiro_test, mean_ribeiro_test, std_ribeiro_test = prepare_data_ribeiro_test(data_folder_ribeiro_test, target_fs=target_fs, channels=12, channel_stoi=channel_stoi_default, target_folder=target_folder_ribeiro_test)" |
|
|
63 |
] |
|
|
64 |
}, |
|
|
65 |
{ |
|
|
66 |
"cell_type": "code", |
|
|
67 |
"execution_count": null, |
|
|
68 |
"metadata": {}, |
|
|
69 |
"outputs": [], |
|
|
70 |
"source": [ |
|
|
71 |
"#reformat everything as memmap for efficiency\n", |
|
|
72 |
"reformat_as_memmap(df_ribeiro_test, target_folder_ribeiro_test/(\"memmap.npy\"),data_folder=target_folder_ribeiro_test,delete_npys=True)" |
|
|
73 |
] |
|
|
74 |
}, |
|
|
75 |
{ |
|
|
76 |
"cell_type": "markdown", |
|
|
77 |
"metadata": {}, |
|
|
78 |
"source": [ |
|
|
79 |
"## Zheng 2020" |
|
|
80 |
] |
|
|
81 |
}, |
|
|
82 |
{ |
|
|
83 |
"cell_type": "markdown", |
|
|
84 |
"metadata": {}, |
|
|
85 |
"source": [ |
|
|
86 |
"Download the dataset from Zheng et al 2020 (https://www.nature.com/articles/s41597-020-0386-x) https://figshare.com/collections/ChapmanECG/4560497/2 and place it in data_folder_zheng" |
|
|
87 |
] |
|
|
88 |
}, |
|
|
89 |
{ |
|
|
90 |
"cell_type": "code", |
|
|
91 |
"execution_count": null, |
|
|
92 |
"metadata": {}, |
|
|
93 |
"outputs": [], |
|
|
94 |
"source": [ |
|
|
95 |
"data_folder_zheng = data_root/\"zheng2020/\"\n", |
|
|
96 |
"target_folder_zheng = target_root/(\"zheng_fs\"+str(target_fs))" |
|
|
97 |
] |
|
|
98 |
}, |
|
|
99 |
{ |
|
|
100 |
"cell_type": "code", |
|
|
101 |
"execution_count": null, |
|
|
102 |
"metadata": {}, |
|
|
103 |
"outputs": [], |
|
|
104 |
"source": [ |
|
|
105 |
"\n", |
|
|
106 |
"df_zheng, lbl_itos_zheng, mean_zheng, std_zheng = prepare_data_zheng(data_folder_zheng, denoised=False, target_fs=target_fs, channels=12, channel_stoi=channel_stoi_default, target_folder=target_folder_zheng)" |
|
|
107 |
] |
|
|
108 |
}, |
|
|
109 |
{ |
|
|
110 |
"cell_type": "code", |
|
|
111 |
"execution_count": null, |
|
|
112 |
"metadata": {}, |
|
|
113 |
"outputs": [], |
|
|
114 |
"source": [ |
|
|
115 |
"#reformat everything as memmap for efficiency\n", |
|
|
116 |
"reformat_as_memmap(df_zheng, target_folder_zheng/(\"memmap.npy\"),data_folder=target_folder_zheng,delete_npys=True)" |
|
|
117 |
] |
|
|
118 |
}, |
|
|
119 |
{ |
|
|
120 |
"cell_type": "markdown", |
|
|
121 |
"metadata": {}, |
|
|
122 |
"source": [ |
|
|
123 |
"## CinC2020 Challenge" |
|
|
124 |
] |
|
|
125 |
}, |
|
|
126 |
{ |
|
|
127 |
"cell_type": "markdown", |
|
|
128 |
"metadata": {}, |
|
|
129 |
"source": [ |
|
|
130 |
"Download the training set of the CinC Challenge 2020 https://physionetchallenges.org/2020/ and place it in data_folder_cinc" |
|
|
131 |
] |
|
|
132 |
}, |
|
|
133 |
{ |
|
|
134 |
"cell_type": "code", |
|
|
135 |
"execution_count": null, |
|
|
136 |
"metadata": {}, |
|
|
137 |
"outputs": [], |
|
|
138 |
"source": [ |
|
|
139 |
"data_folder_cinc = data_root/\"cinc2020/\"\n", |
|
|
140 |
"target_folder_cinc = target_root/(\"cinc_fs\"+str(target_fs))" |
|
|
141 |
] |
|
|
142 |
}, |
|
|
143 |
{ |
|
|
144 |
"cell_type": "code", |
|
|
145 |
"execution_count": null, |
|
|
146 |
"metadata": {}, |
|
|
147 |
"outputs": [], |
|
|
148 |
"source": [ |
|
|
149 |
"\n", |
|
|
150 |
"df_cinc, lbl_itos_cinc, mean_cinc, std_cinc = prepare_data_cinc(data_folder_cinc, target_fs=target_fs, channels=12, channel_stoi=channel_stoi_default, target_folder=target_folder_cinc)" |
|
|
151 |
] |
|
|
152 |
}, |
|
|
153 |
{ |
|
|
154 |
"cell_type": "code", |
|
|
155 |
"execution_count": null, |
|
|
156 |
"metadata": {}, |
|
|
157 |
"outputs": [], |
|
|
158 |
"source": [ |
|
|
159 |
"#reformat everything as memmap for efficiency\n", |
|
|
160 |
"reformat_as_memmap(df_cinc, target_folder_cinc/(\"memmap.npy\"),data_folder=target_folder_cinc,delete_npys=True)\n" |
|
|
161 |
] |
|
|
162 |
}, |
|
|
163 |
{ |
|
|
164 |
"cell_type": "markdown", |
|
|
165 |
"metadata": {}, |
|
|
166 |
"source": [ |
|
|
167 |
"## PTB-XL" |
|
|
168 |
] |
|
|
169 |
}, |
|
|
170 |
{ |
|
|
171 |
"cell_type": "markdown", |
|
|
172 |
"metadata": {}, |
|
|
173 |
"source": [ |
|
|
174 |
"Download the PTB-XL dataset (https://www.nature.com/articles/s41597-020-0495-6) https://physionet.org/content/ptb-xl/1.0.1/ and place it in data_folder_ptb_xl" |
|
|
175 |
] |
|
|
176 |
}, |
|
|
177 |
{ |
|
|
178 |
"cell_type": "code", |
|
|
179 |
"execution_count": null, |
|
|
180 |
"metadata": {}, |
|
|
181 |
"outputs": [], |
|
|
182 |
"source": [ |
|
|
183 |
"data_folder_ptb_xl = data_root/\"ptb_xl/\"\n", |
|
|
184 |
"target_folder_ptb_xl = target_root/(\"ptb_xl_fs\"+str(target_fs))" |
|
|
185 |
] |
|
|
186 |
}, |
|
|
187 |
{ |
|
|
188 |
"cell_type": "code", |
|
|
189 |
"execution_count": null, |
|
|
190 |
"metadata": {}, |
|
|
191 |
"outputs": [], |
|
|
192 |
"source": [ |
|
|
193 |
"df_ptb_xl, lbl_itos_ptb_xl, mean_ptb_xl, std_ptb_xl = prepare_data_ptb_xl(data_folder_ptb_xl, min_cnt=0, target_fs=target_fs, channels=input_channels, channel_stoi=channel_stoi_default, target_folder=target_folder_ptb_xl)" |
|
|
194 |
] |
|
|
195 |
}, |
|
|
196 |
{ |
|
|
197 |
"cell_type": "code", |
|
|
198 |
"execution_count": null, |
|
|
199 |
"metadata": {}, |
|
|
200 |
"outputs": [], |
|
|
201 |
"source": [ |
|
|
202 |
"#reformat everything as memmap for efficiency\n", |
|
|
203 |
"reformat_as_memmap(df_ptb_xl, target_folder_ptb_xl/(\"memmap.npy\"),data_folder=target_folder_ptb_xl,delete_npys=True)" |
|
|
204 |
] |
|
|
205 |
} |
|
|
206 |
], |
|
|
207 |
"metadata": { |
|
|
208 |
"kernelspec": { |
|
|
209 |
"display_name": "Python 3", |
|
|
210 |
"language": "python", |
|
|
211 |
"name": "python3" |
|
|
212 |
}, |
|
|
213 |
"language_info": { |
|
|
214 |
"codemirror_mode": { |
|
|
215 |
"name": "ipython", |
|
|
216 |
"version": 3 |
|
|
217 |
}, |
|
|
218 |
"file_extension": ".py", |
|
|
219 |
"mimetype": "text/x-python", |
|
|
220 |
"name": "python", |
|
|
221 |
"nbconvert_exporter": "python", |
|
|
222 |
"pygments_lexer": "ipython3", |
|
|
223 |
"version": "3.8.3" |
|
|
224 |
} |
|
|
225 |
}, |
|
|
226 |
"nbformat": 4, |
|
|
227 |
"nbformat_minor": 2 |
|
|
228 |
} |