[134fd7]: / clinical_ts / simclr_dataset_wrapper.py

Download this file

299 lines (252 with data), 13.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
from .create_logger import create_logger
import numpy as np
from torch.utils.data import DataLoader
# from .customDataLoader import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
import torchvision.transforms as transforms
from torch.utils.data import ConcatDataset
from torchvision import datasets
from functools import partial
from pathlib import Path
import pandas as pd
import pdb
try:
import pickle5 as pickle
except ImportError as e:
import pickle
from .timeseries_utils import TimeseriesDatasetCrops, reformat_as_memmap, load_dataset
from .ecg_utils import *
from .timeseries_transformations import GaussianNoise, RandomResizedCrop, ChannelResize, Negation, DynamicTimeWarp, DownSample, TimeWarp, TimeOut, ToTensor, BaselineWander, PowerlineNoise, EMNoise, BaselineShift, TGaussianNoise, TRandomResizedCrop, TChannelResize, TNegation, TDynamicTimeWarp, TDownSample, TTimeOut, TBaselineWander, TPowerlineNoise, TEMNoise, TBaselineShift, TGaussianBlur1d, TNormalize, Transpose
logger = create_logger(__name__)
def transformations_from_strings(transformations, t_params):
if transformations is None:
return [ToTensor()]
def str_to_trafo(trafo):
if trafo == "RandomResizedCrop":
return TRandomResizedCrop(crop_ratio_range=t_params["rr_crop_ratio_range"], output_size=t_params["output_size"])
elif trafo == "ChannelResize":
return TChannelResize(magnitude_range=t_params["magnitude_range"])
elif trafo == "Negation":
return TNegation()
elif trafo == "DynamicTimeWarp":
return TDynamicTimeWarp(warps=t_params["warps"], radius=t_params["radius"])
elif trafo == "DownSample":
return TDownSample(downsample_ratio=t_params["downsample_ratio"])
elif trafo == "TimeWarp":
return TimeWarp(epsilon=t_params["epsilon"])
elif trafo == "TimeOut":
return TTimeOut(crop_ratio_range=t_params["to_crop_ratio_range"])
elif trafo == "GaussianNoise":
return TGaussianNoise(scale=t_params["gaussian_scale"])
elif trafo == "BaselineWander":
return TBaselineWander(Cmax=t_params["bw_cmax"])
elif trafo == "PowerlineNoise":
return TPowerlineNoise(Cmax=t_params["pl_cmax"])
elif trafo == "EMNoise":
return TEMNoise(Cmax=t_params["em_cmax"])
elif trafo == "BaselineShift":
return TBaselineShift(Cmax=t_params["bs_cmax"])
elif trafo == "GaussianBlur":
return TGaussianBlur1d()
elif trafo == "Normalize":
return TNormalize()
else:
raise Exception(str(trafo) + " is not a valid transformation")
# for numpy transformations
# trafo_list = [str_to_trafo(trafo)
# for trafo in transformations] + [ToTensor()]
# for torch transformations
trafo_list = [ToTensor(transpose_data=False)] + [str_to_trafo(trafo)
for trafo in transformations] + [Transpose()]
return trafo_list
class SimCLRDataSetWrapper(object):
def __init__(self, batch_size, num_workers, valid_size, input_shape, s, data_folder, target_folders, target_fs, recreate_data_ptb_xl,
mode="pretraining", transformations=None, t_params=None, ptb_xl_label="label_diag_superclass", filter_cinc=False,
percentage=1.0, swav=False, nmb_crops=7, folds=8, test=False):
self.batch_size = batch_size
self.num_workers = num_workers
self.valid_size = valid_size
self.s = s
self.input_shape = eval(input_shape)
self.data_folder = Path(data_folder)
# Path(target_folder+str(target_fs))
self.target_folders = [Path(target_folder)
for target_folder in target_folders]
self.target_fs = target_fs
self.recreate_data_ptb_xl = recreate_data_ptb_xl
self.val_ds_idmap = None
self.lbl_itos = None
self.transformations = transformations_from_strings(
transformations, t_params)
self.train_ds_size = 0
self.val_ds_size = 0
self.ptb_xl_label = ptb_xl_label
self.filter_cinc = filter_cinc
self.percentage = percentage
self.swav = swav
self.nmb_crops = nmb_crops
self.folds = folds
self.test = test
if mode in ["linear_evaluation", "pretraining"]:
self.mode = mode
else:
raise("mode unkown")
def get_data_loaders(self):
data_augment = self._get_simclr_pipeline_transform()
# train_dataset = datasets.STL10('./data', split='train+unlabeled', download=True,
# transform=SimCLRDataTransform(data_augment))
if self.mode == "linear_evaluation":
# transformations = transforms.Compose([RandomResizedCrop(crop_ratio_range=[0.5, 1.0]),
# ToTensor()])
# transformations = data_augment
# transformations = ToTensor()
train_ds, val_ds = self._get_datasets(
self.target_folders[0], transforms=data_augment)
self.val_ds_idmap = val_ds.get_id_mapping()
else:
wrapper_transform = SwAVDataTransform(data_augment, num_crops=self.nmb_crops) if self.swav else SimCLRDataTransform(data_augment)
datasets = [self._get_datasets(target_folder, transforms=wrapper_transform) for target_folder in self.target_folders]
train_datasets, valid_datasets = list(zip(*datasets))
train_ds = ConcatDataset(list(train_datasets))
val_ds = ConcatDataset(list(valid_datasets))
train_loader, valid_loader = self.get_train_validation_data_loaders(
train_ds, val_ds)
self.train_ds_size = len(train_ds)
self.val_ds_size = len(val_ds)
return train_loader, valid_loader
def _get_datasets(self, target_folder, transforms=None):
logger.info("get dataset from " + str(target_folder))
# Dataset parameters
input_channels = 12
target_fs = 100
# Training setting
input_size = 250 # originally 600
chunkify_train = False
chunkify_valid = self.mode != "pretraining"
chunk_length_train = input_size # target_fs*6
chunk_length_valid = input_size
min_chunk_length = input_size # chunk_length
stride_length_train = chunk_length_train//4 # chunk_length_train//8
stride_length_valid = input_size//2 # chunk_length_valid
copies_valid = 0 # >0 should only be used with chunkify_valid=False
if self.test:
valid_fold=10
test_fold=9
else:
valid_fold=9
test_fold=10
train_folds = []
train_folds = list(range(1, 11))
train_folds.remove(test_fold)
train_folds.remove(valid_fold)
train_folds = np.array(train_folds)
df_memmap_filename = "df_memmap.pkl"
memmap_filename = "memmap.npy"
# df, lbl_itos, mean, std = prepare_data_ptb_xl(self.data_folder, min_cnt=50, target_fs=self.target_fs,
# channels=input_channels, channel_stoi=channel_stoi_default, target_folder=self.target_folder, recreate_data=self.recreate_data_ptb_xl)
df_mapped, lbl_itos, mean, std = load_dataset(target_folder)
if(self.recreate_data_ptb_xl):
df_mapped = reformat_as_memmap(
df, target_folder/(memmap_filename), data_folder=target_folder)
else:
# df_mapped = pd.read_pickle(
# target_folder/(df_memmap_filename))
df_mapped = pickle.load(open(target_folder/(df_memmap_filename), "rb"))
#self.lbl_itos = np.array(lbl_itos[label])
self.lbl_itos = lbl_itos
self.num_classes = len(lbl_itos)
# print("num classes:", self.num_classes)
if "ptb" in str(target_folder):
label = self.ptb_xl_label # just possible for ptb xl
self.lbl_itos = np.array(lbl_itos[label])
label = label + "_filtered_numeric"
else:
label = "label"
self.lbl_itos = lbl_itos
df_mapped["diag_label"] = df_mapped[label].copy()
if "ptb" in str(target_folder) or self.mode == "linear_evaluation":
logger.debug("get labels for linear evaluation on ptb")
df_mapped["label"] = df_mapped[label].apply(
lambda x: multihot_encode(x, len(self.lbl_itos)))
else:
logger.debug("insert artifical labels to non-ptb dataset")
df_mapped["label"] = df_mapped[label].apply(
lambda x: np.array([1, 0, 0, 0, 0]))
# logger.info("labels: " + str(self.lbl_itos))
# df_mapped["label"] = df_mapped["label"].apply(lambda x: onehot_encode(x, len(self.lbl_itos)))
if self.mode == "pretraining":
valid_fold = test_fold = 9
if self.percentage < 1.0:
logger.info("reduce dataset to {}%".format(self.percentage*100))
total_samples = len(df_mapped)
num_samples = int(self.percentage*total_samples)
sample_indices = np.sort(np.random.choice(np.arange(total_samples), size=num_samples, replace=False))
df_mapped = df_mapped.loc[sample_indices]
df_train = df_mapped[(df_mapped.strat_fold != test_fold) & (
df_mapped.strat_fold != valid_fold) & (df_mapped.label.apply(lambda x: np.sum(x) > 0))]
else:
assert(self.folds < 9)
df_train = df_mapped[(df_mapped.strat_fold.apply(lambda x: x in train_folds[range(self.folds)]) & (df_mapped.label.apply(lambda x: np.sum(x) > 0)))]
df_valid = df_mapped[(df_mapped.strat_fold == valid_fold) & (
df_mapped.label.apply(lambda x: np.sum(x) > 0))]
df_test = df_mapped[(df_mapped.strat_fold == test_fold) & (
df_mapped.label.apply(lambda x: np.sum(x) > 0))]
if self.filter_cinc and "cinc" in str(target_folder):
df_train = filter_out_datasets(df_train)
df_valid = filter_out_datasets(df_valid)
df_test = filter_out_datasets(df_test)
train_ds = TimeseriesDatasetCrops(df_train, input_size, num_classes=len(self.lbl_itos), data_folder=target_folder, chunk_length=chunk_length_train if chunkify_train else 0,
min_chunk_length=min_chunk_length, stride=stride_length_train, transforms=transforms, annotation=False, col_lbl="label", memmap_filename=target_folder/(memmap_filename))
val_ds = TimeseriesDatasetCrops(df_valid, input_size, num_classes=len(self.lbl_itos), data_folder=target_folder, chunk_length=chunk_length_valid if chunkify_valid else 0,
min_chunk_length=min_chunk_length, stride=stride_length_valid, transforms=transforms, annotation=False, col_lbl="label", memmap_filename=target_folder/(memmap_filename))
self.df_train = df_train
self.df_valid = df_valid
self.df_test = df_test
return train_ds, val_ds
def _get_simclr_pipeline_transform(self):
# get a set of data augmentation transformations as described in the SimCLR paper.
# find transformations in ecg_transformations.py file
# data_transforms = transforms.Compose([RandomResizedCrop(crop_ratio_range=[0.5, 1.0]),
# ChannelResize(magnitude_range=[0.33, 3]),
# DynamicTimeWarp(),
# ToTensor()])
# data_transforms = [RandomResizedCrop(), ChannelResize(), ToTensor()]
data_transforms = transforms.Compose(self.transformations)
return data_transforms
def get_train_validation_data_loaders(self, train_ds, val_ds):
train_loader = DataLoader(train_ds, batch_size=self.batch_size,
num_workers=self.num_workers, pin_memory=True, shuffle=True, drop_last=True)
val_loader = DataLoader(val_ds, batch_size=self.batch_size,
shuffle=False, num_workers=self.num_workers, pin_memory=True)
return train_loader, val_loader
class SimCLRDataTransform(object):
def __init__(self, transform):
if transform is None:
self.transform = lambda x: x
self.transform = transform
def __call__(self, sample):
xi = self.transform(sample)
xj = self.transform(sample)
return xi, xj
class SwAVDataTransform(object):
def __init__(self, transform, num_crops=7):
if transform is None:
self.transform = lambda x: x
self.transform = transform
self.num_crops=num_crops
def __call__(self, sample):
transformed = []
for _ in range(self.num_crops):
transformed.append(self.transform(sample)[0])
return transformed, sample[1]
def multihot_encode(x, num_classes):
res = np.zeros(num_classes, dtype=np.float32)
res[x] = 1
return res
def filter_out_datasets(df, negative_datasets={"PTB", "PTB-XL"}):
datasets = set(df["dataset"])
positive_datasets = [
dataset for dataset in datasets if dataset not in negative_datasets]
positive_df_ids = [row in positive_datasets for row in df["dataset"]]
filtered_df = df.loc[positive_df_ids]
return filtered_df