[74ff45]: / tensorflow_impl / fetch_data.py

Download this file

164 lines (137 with data), 6.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/env python
import os, sys, errno
import csv
import random
import subprocess
import argparse
par = argparse.ArgumentParser(description="Download and process Physionet Datasets")
par.add_argument("-dl", nargs="+",
dest="dataset_list",
default=[],
choices=["nsrdb", "apnea-ecg", "mitdb", "afdb", "svdb"],
help="The list of datasets to download")
args = par.parse_args()
dataset_list = args.dataset_list
def fetch_data():
"""
nsrdb normal sinus rhythm
apnea
mitdb arrhythmia
afdb atrial fibrillation
svdb supraventricular arrhythmia
"""
physionet = {
"nsrdb": ["16265", "16272", "16273", "16420", "16483", "16539", "16773",
"16786", "16795", "17052", "17453", "18177", "18184", "19088",
"19090", "19093", "19140", "19830"],
"apnea-ecg": ["a01", "a01er", "a01r", "a02", "a02er", "a02r", "a03",
"a03er", "a03r", "a04", "a04er", "a04r", "a05", "a06",
"a07", "a08", "a09", "a10", "a11", "a12", "a13", "a14",
"a15", "a16", "a17", "a18", "a19", "a20", "b01", "b01er",
"b01r", "b02", "b03", "b04", "b05", "c01", "c01er", "c01r",
"c02", "c02er", "c02r", "c03", "c03er", "c03r", "c04",
"c05", "c06", "c07", "c08", "c09", "c10", "x01", "x02",
"x03", "x04", "x05", "x06", "x07", "x08", "x09", "x10",
"x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18",
"x19", "x20", "x21", "x22", "x23", "x24", "x25", "x26",
"x27", "x28", "x29", "x30", "x31", "x32", "x33", "x34", "x35"],
"mitdb": ["100", "101", "102", "103", "104", "105", "106", "107", "108",
"109", "111", "112", "113", "114", "115", "116", "117", "118",
"119", "121", "122", "123", "124", "200", "201", "202", "203",
"205", "207", "208", "209", "210", "212", "213", "214", "215",
"217", "219", "220", "221", "222", "223", "228", "230", "231",
"232", "233", "234"],
"afdb": ["04015", "04043", "04048", "04126", "04746", "04908", "04936",
"05091", "05121", "05261", "06426", "06453", "06995", "07162",
"07859", "07879", "07910", "08215", "08219", "08378", "08405",
"08434", "08455"],
"svdb": ["800", "801", "802", "803", "804", "805", "806", "807", "808",
"809", "810", "811", "812", "820", "821", "822", "823", "824",
"825", "826", "827", "828", "829", "840", "841", "842", "843",
"844", "845", "846", "847", "848", "849", "850", "851", "852",
"853", "854", "855", "856", "857", "858", "859", "860", "861",
"862", "863", "864", "865", "866", "867", "868", "869", "870",
"871", "872", "873", "874", "875", "876", "877", "878", "879",
"880", "881", "882", "883", "884", "885", "886", "887", "888",
"889", "890", "891", "892", "893", "894"]
}
dataset_dir = "datasets/raws"
def check_folder_existance():
if not os.path.isdir(dataset_dir):
print("Directory {} not found".format(dataset_dir))
print("Creating now...")
os.makedirs(dataset_dir)
for database in physionet:
folder = os.path.join(dataset_dir, database)
if not os.path.isdir(folder):
print("Directory {} not found".format(folder))
print("Creating now...")
os.makedirs(folder)
def rdsamp_installed():
try:
subprocess.call(["rdsamp", "-h"], stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL)
return True
except OSError as e:
if e.errno == errno.ENOENT:
print("rdsamp not installed, link to the installation guide in the README")
return False
print("rdsamp installed check failed")
return False
def remove_unwanted_datasets():
if dataset_list:
unwanted_ds = physionet.keys() - dataset_list
for ds in unwanted_ds:
physionet.pop(ds, None)
remove_unwanted_datasets()
check_folder_existance()
if not rdsamp_installed():
sys.exit(1)
for database, samples in physionet.items():
print("Downloading {}".format(database))
database_dir = os.path.join(dataset_dir, database)
for sample in samples:
csv_file_path = os.path.join(database_dir, sample) + ".csv"
if os.path.exists(csv_file_path):
print("File {} exists. Skipping download...".format(csv_file_path))
continue
sample_path = os.path.join(database, sample)
cmd = ("rdsamp -r {} -c -H -f 0" +
" -t 60 -v -pe > {}").format(sample_path, csv_file_path)
try:
print("Downloading with command {}...".format(cmd))
subprocess.check_call(cmd, shell=True)
except Exception as e:
print("Failed to execute command: {} with exception: {}".format(cmd, e))
if os.path.exists(csv_file_path):
os.remove(csv_file_path)
if os.path.isdir(database_dir) and not os.listdir(database_dir):
cmd = "rm -rf {}".format(database_dir)
subprocess.check_call(cmd, shell=True)
print("Done")
def process_data():
print("Processing data...")
raw_dir = "datasets/raws"
processed_dir = "datasets/processed"
ecg_dirs = os.listdir(raw_dir)
if not os.path.exists(processed_dir):
os.makedirs(processed_dir)
for ecg_name in ecg_dirs:
print("Processing {}".format(ecg_name))
processed_csv = os.path.join(processed_dir, ecg_name) + ".csv"
with open(processed_csv, 'w') as write_processed_file:
csvwriter = csv.writer(write_processed_file, delimiter=',')
record_dir = os.path.join(raw_dir, ecg_name)
for record in os.listdir(record_dir):
if record.endswith('.csv'):
record_path = os.path.join(record_dir, record)
with open(record_path) as read_raw_file:
reader = csv.reader(read_raw_file)
# skip headers
reader.__next__()
reader.__next__()
for row in reader:
csvwriter.writerow([row[1]])
print("Done")
fetch_data()
process_data()