import time
import argparse
import tensorflow as tf
import numpy as np
from tensorflow.keras.layers import Dense, Flatten, Conv1D, BatchNormalization, MaxPool1D, Dropout
from tensorflow.keras.metrics import CategoricalAccuracy
from sklearn.model_selection import train_test_split
from sklearn.metrics import precision_score, recall_score, confusion_matrix
from utils import get_labels, get_datasets, check_processed_dir_existance
par = argparse.ArgumentParser(description="ECG Convolutional " +
"Neural Network implementation with Tensorflow 2.0")
par.add_argument("-lr", dest="learning_rate",
type=float, default=0.001,
help="Learning rate used by the model")
par.add_argument("-e", dest="epochs",
type=int, default=50,
help="The number of epochs the model will train for")
par.add_argument("-bs", dest="batch_size",
type=int, default=32,
help="The batch size of the model")
par.add_argument("--display-step", dest="display_step",
type=int, default=10,
help="The display step")
par.add_argument("--dropout", type=float, default=0.5,
help="Dropout probability")
par.add_argument("--restore", dest="restore_model",
action="store_true", default=False,
help="Restore the model previously saved")
par.add_argument("--freeze", dest="freeze",
action="store_true", default=False,
help="Freezes the model")
par.add_argument("--heart-diseases", nargs="+",
dest="heart_diseases",
default=["apnea-ecg", "svdb", "afdb"],
choices=["apnea-ecg", "mitdb", "nsrdb", "svdb", "afdb"],
help="Select the ECG diseases for the model")
par.add_argument("--verbose", dest="verbose",
action="store_true", default=False,
help="Display information about minibatches")
args = par.parse_args()
# Parameters
learning_rate = args.learning_rate
epochs = args.epochs
batch_size = args.batch_size
display_step = args.display_step
dropout = args.dropout
restore_model = args.restore_model
freeze = args.freeze
heart_diseases = args.heart_diseases
verbose = args.verbose
# Network Parameters
n_inputs = 350
n_classes = len(heart_diseases)
check_processed_dir_existance()
class CNN:
def __init__(self):
self.datasets = get_datasets(heart_diseases, n_inputs)
self.label_data = get_labels(self.datasets)
self.callbacks = []
# Initialize callbacks
tensorboard_logs_path = "tensorboard_data/cnn/"
tb_callback = tf.keras.callbacks.TensorBoard(log_dir=tensorboard_logs_path,
histogram_freq=1, write_graph=True,
embeddings_freq=1)
# load_weights_on_restart will read the filepath of the weights if it exists and it will
# load the weights into the model
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath="saved_models/cnn/model.hdf5",
save_best_only=True,
save_weights_only=True,
load_weights_on_restart=restore_model)
self.callbacks.extend([tb_callback, cp_callback])
self.set_data()
self.define_model()
def set_data(self):
dataset_len = []
for dataset in self.datasets:
dataset_len.append(len(dataset))
# validation on 10% of the training data
validation_size = 0.1
print("Validation percentage: {}%".format(validation_size*100))
print("Total samples: {}".format(sum(dataset_len)))
print("Heart diseases: {}".format(', '.join(heart_diseases)))
concat_dataset = np.concatenate(self.datasets)
self.split_data(concat_dataset, validation_size)
# Reshape input so that we can feed it to the conv layer
self.X_train = tf.reshape(self.X_train, shape=[-1, n_inputs, 1])
self.X_test = tf.reshape(self.X_test, shape=[-1, n_inputs, 1])
self.X_val = tf.reshape(self.X_val, shape=[-1, n_inputs, 1])
if verbose:
print("X_train shape: {}".format(self.X_train.shape))
print("Y_train shape: {}".format(self.Y_train.shape))
print("X_test shape: {}".format(self.X_test.shape))
print("Y_test shape: {}".format(self.Y_test.shape))
print("X_val shape: {}".format(self.X_val.shape))
print("Y_val shape: {}".format(self.Y_val.shape))
def define_model(self):
inputs = tf.keras.Input(shape=(n_inputs, 1), name='input')
# 64 filters, 10 kernel size
x = Conv1D(64, 10, activation='relu')(inputs)
x = MaxPool1D()(x)
x = BatchNormalization()(x)
x = Conv1D(128, 10, activation='relu')(x)
x = MaxPool1D()(x)
x = BatchNormalization()(x)
x = Conv1D(128, 10, activation='relu')(x)
x = MaxPool1D()(x)
x = BatchNormalization()(x)
x = Conv1D(256, 10, activation='relu')(x)
x = MaxPool1D()(x)
x = BatchNormalization()(x)
x = Flatten()(x)
x = Dense(1024, activation='relu', name='dense_1')(x)
x = BatchNormalization()(x)
x = Dropout(dropout)(x)
x = Dense(2048, activation='relu', name='dense_2')(x)
x = BatchNormalization()(x)
x = Dropout(dropout)(x)
outputs = Dense(n_classes, activation='softmax', name='predictions')(x)
self.cnn_model = tf.keras.Model(inputs=inputs, outputs=outputs)
optimizer = tf.keras.optimizers.Adam(lr=learning_rate)
accuracy = CategoricalAccuracy()
self.cnn_model.compile(optimizer=optimizer, loss='categorical_crossentropy',
metrics=[accuracy])
def split_data(self, dataset, validation_size):
"""
Suffle then split training, testing and validation sets
"""
# In order to use statify in train_test_split we can't use one hot encodings,
# so we convert to array of labels
label_data = np.argmax(self.label_data, axis=1)
# Splitting the dataset into train and test datasets
res = train_test_split(dataset, label_data,
test_size=validation_size, shuffle=True,
stratify=label_data)
self.X_train, self.X_test, self.Y_train, self.Y_test = res
# From the training dataset we further split it to obtain the validation dataset
res = train_test_split(self.X_train, self.Y_train,
test_size=validation_size, stratify=self.Y_train)
self.X_train, self.X_val, self.Y_train, self.Y_val = res
# Convert the array of labels back into one hot encodings to be able to do training
self.Y_train = tf.keras.utils.to_categorical(self.Y_train)
self.Y_test = tf.keras.utils.to_categorical(self.Y_test)
self.Y_val = tf.keras.utils.to_categorical(self.Y_val)
def get_data(self):
return (self.X_train, self.X_test, self.X_val,
self.Y_train, self.Y_test, self.Y_val)
def main():
# Construct model
model = CNN()
X_train, X_test, X_val, Y_train, Y_test, Y_val = model.get_data()
# Set start time
total_time = time.time()
print("-"*50)
if restore_model:
print("Restoring model: {}".format('saved_models/cnn/model.hdf5'))
# Train
model.cnn_model.fit(X_train, Y_train, batch_size=batch_size,
epochs=epochs, validation_data=(X_val, Y_val),
callbacks=model.callbacks)
print("-"*50)
# Total training time
print("Total training time: {0:.2f}s".format(time.time() - total_time))
# Test
model.cnn_model.evaluate(X_test, Y_test, batch_size=batch_size)
print("-"*50)
print("Testing results:")
y_pred = model.cnn_model.predict(X_test, batch_size=batch_size)
# The following scikit-learn methods only accept array of labels, not one hot encodings
y_pred = np.argmax(y_pred, axis=1)
y_true = np.argmax(Y_test, axis=1)
# Precision and recall could also be done as callbacks in the evaluate or fit function
print("Precision: {}".format(precision_score(y_true, y_pred, average='micro')))
print("Recall: {}".format(recall_score(y_true, y_pred, average='micro')))
print("Confusion matrix: \n{}".format(confusion_matrix(y_true, y_pred, labels=[0,1,2])))
disease_indexes = list(range(len(heart_diseases)))
print("Indexes {} correspond to labels {}".format(disease_indexes, [x for x in heart_diseases]))
print("-"*50)
if __name__ == "__main__":
main()