[429ff9]: / trainers / base_trainer.py

Download this file

154 lines (114 with data), 5.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import os.path as osp
from datetime import datetime
import numpy as np
import torch
from torch import nn, optim
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from utils.network_utils import load_checkpoint, save_checkpoint
class BaseTrainer:
def __init__(self, config):
self.config = config
self.exp_name = self.config.get("exp_name", None)
if self.exp_name is None:
self.exp_name = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
self.log_dir = osp.join(self.config["exp_dir"], self.exp_name, "logs")
self.pth_dir = osp.join(self.config["exp_dir"], self.exp_name, "checkpoints")
os.makedirs(self.log_dir, exist_ok=True)
os.makedirs(self.pth_dir, exist_ok=True)
self.writer = SummaryWriter(log_dir=self.log_dir)
self.model = self._init_net()
self.optimizer = self._init_optimizer()
self.criterion = nn.CrossEntropyLoss().to(self.config["device"])
self.train_loader, self.val_loader = self._init_dataloaders()
pretrained_path = self.config.get("model_path", False)
if pretrained_path:
self.training_epoch, self.total_iter = load_checkpoint(
pretrained_path, self.model, optimizer=self.optimizer,
)
else:
self.training_epoch = 0
self.total_iter = 0
self.epochs = self.config.get("epochs", int(1e5))
def _init_net(self):
raise NotImplemented
def _init_dataloaders(self):
raise NotImplemented
def _init_optimizer(self):
optimizer = getattr(optim, self.config["optim"])(
self.model.parameters(), **self.config["optim_params"]
)
return optimizer
def train_epoch(self):
self.model.train()
total_loss = 0
gt_class = np.empty(0)
pd_class = np.empty(0)
for i, batch in enumerate(self.train_loader):
inputs = batch["image"].to(self.config["device"])
targets = batch["class"].to(self.config["device"])
predictions = self.model(inputs)
loss = self.criterion(predictions, targets)
classes = predictions.topk(k=1)[1].view(-1).cpu().numpy()
gt_class = np.concatenate((gt_class, batch["class"].numpy()))
pd_class = np.concatenate((pd_class, classes))
total_loss += loss.item()
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
if (i + 1) % 10 == 0:
print(
"\tIter [%d/%d] Loss: %.4f"
% (i + 1, len(self.train_loader), loss.item()),
)
self.writer.add_scalar(
"Train loss (iterations)", loss.item(), self.total_iter,
)
self.total_iter += 1
total_loss /= len(self.train_loader)
class_accuracy = sum(pd_class == gt_class) / pd_class.shape[0]
print("Train loss - {:4f}".format(total_loss))
print("Train CLASS accuracy - {:4f}".format(class_accuracy))
self.writer.add_scalar("Train loss (epochs)", total_loss, self.training_epoch)
self.writer.add_scalar(
"Train CLASS accuracy", class_accuracy, self.training_epoch,
)
def val(self):
self.model.eval()
total_loss = 0
gt_class = np.empty(0)
pd_class = np.empty(0)
with torch.no_grad():
for i, batch in tqdm(enumerate(self.val_loader)):
inputs = batch["image"].to(self.config["device"])
targets = batch["class"].to(self.config["device"])
predictions = self.model(inputs)
loss = self.criterion(predictions, targets)
classes = predictions.topk(k=1)[1].view(-1).cpu().numpy()
gt_class = np.concatenate((gt_class, batch["class"].numpy()))
pd_class = np.concatenate((pd_class, classes))
total_loss += loss.item()
total_loss /= len(self.val_loader)
class_accuracy = sum(pd_class == gt_class) / pd_class.shape[0]
print("Validation loss - {:4f}".format(total_loss))
print("Validation CLASS accuracy - {:4f}".format(class_accuracy))
self.writer.add_scalar("Validation loss", total_loss, self.training_epoch)
self.writer.add_scalar(
"Validation CLASS accuracy", class_accuracy, self.training_epoch,
)
def loop(self):
for epoch in range(self.training_epoch, self.epochs):
print("Epoch - {}".format(self.training_epoch + 1))
self.train_epoch()
save_checkpoint(
{
"state_dict": self.model.state_dict(),
"optimizer": self.optimizer.state_dict(),
"epoch": epoch,
"total_iter": self.total_iter,
},
osp.join(self.pth_dir, "{:0>8}.pth".format(epoch)),
)
self.val()
self.training_epoch += 1