import os
import os.path as osp
from datetime import datetime
import numpy as np
import torch
from torch import nn, optim
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from utils.network_utils import load_checkpoint, save_checkpoint
class BaseTrainer:
def __init__(self, config):
self.config = config
self.exp_name = self.config.get("exp_name", None)
if self.exp_name is None:
self.exp_name = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
self.log_dir = osp.join(self.config["exp_dir"], self.exp_name, "logs")
self.pth_dir = osp.join(self.config["exp_dir"], self.exp_name, "checkpoints")
os.makedirs(self.log_dir, exist_ok=True)
os.makedirs(self.pth_dir, exist_ok=True)
self.writer = SummaryWriter(log_dir=self.log_dir)
self.model = self._init_net()
self.optimizer = self._init_optimizer()
self.criterion = nn.CrossEntropyLoss().to(self.config["device"])
self.train_loader, self.val_loader = self._init_dataloaders()
pretrained_path = self.config.get("model_path", False)
if pretrained_path:
self.training_epoch, self.total_iter = load_checkpoint(
pretrained_path, self.model, optimizer=self.optimizer,
)
else:
self.training_epoch = 0
self.total_iter = 0
self.epochs = self.config.get("epochs", int(1e5))
def _init_net(self):
raise NotImplemented
def _init_dataloaders(self):
raise NotImplemented
def _init_optimizer(self):
optimizer = getattr(optim, self.config["optim"])(
self.model.parameters(), **self.config["optim_params"]
)
return optimizer
def train_epoch(self):
self.model.train()
total_loss = 0
gt_class = np.empty(0)
pd_class = np.empty(0)
for i, batch in enumerate(self.train_loader):
inputs = batch["image"].to(self.config["device"])
targets = batch["class"].to(self.config["device"])
predictions = self.model(inputs)
loss = self.criterion(predictions, targets)
classes = predictions.topk(k=1)[1].view(-1).cpu().numpy()
gt_class = np.concatenate((gt_class, batch["class"].numpy()))
pd_class = np.concatenate((pd_class, classes))
total_loss += loss.item()
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
if (i + 1) % 10 == 0:
print(
"\tIter [%d/%d] Loss: %.4f"
% (i + 1, len(self.train_loader), loss.item()),
)
self.writer.add_scalar(
"Train loss (iterations)", loss.item(), self.total_iter,
)
self.total_iter += 1
total_loss /= len(self.train_loader)
class_accuracy = sum(pd_class == gt_class) / pd_class.shape[0]
print("Train loss - {:4f}".format(total_loss))
print("Train CLASS accuracy - {:4f}".format(class_accuracy))
self.writer.add_scalar("Train loss (epochs)", total_loss, self.training_epoch)
self.writer.add_scalar(
"Train CLASS accuracy", class_accuracy, self.training_epoch,
)
def val(self):
self.model.eval()
total_loss = 0
gt_class = np.empty(0)
pd_class = np.empty(0)
with torch.no_grad():
for i, batch in tqdm(enumerate(self.val_loader)):
inputs = batch["image"].to(self.config["device"])
targets = batch["class"].to(self.config["device"])
predictions = self.model(inputs)
loss = self.criterion(predictions, targets)
classes = predictions.topk(k=1)[1].view(-1).cpu().numpy()
gt_class = np.concatenate((gt_class, batch["class"].numpy()))
pd_class = np.concatenate((pd_class, classes))
total_loss += loss.item()
total_loss /= len(self.val_loader)
class_accuracy = sum(pd_class == gt_class) / pd_class.shape[0]
print("Validation loss - {:4f}".format(total_loss))
print("Validation CLASS accuracy - {:4f}".format(class_accuracy))
self.writer.add_scalar("Validation loss", total_loss, self.training_epoch)
self.writer.add_scalar(
"Validation CLASS accuracy", class_accuracy, self.training_epoch,
)
def loop(self):
for epoch in range(self.training_epoch, self.epochs):
print("Epoch - {}".format(self.training_epoch + 1))
self.train_epoch()
save_checkpoint(
{
"state_dict": self.model.state_dict(),
"optimizer": self.optimizer.state_dict(),
"epoch": epoch,
"total_iter": self.total_iter,
},
osp.join(self.pth_dir, "{:0>8}.pth".format(epoch)),
)
self.val()
self.training_epoch += 1