|
a |
|
b/resnet.py |
|
|
1 |
import torch.nn as nn |
|
|
2 |
import numpy as np |
|
|
3 |
|
|
|
4 |
|
|
|
5 |
def _padding(downsample, kernel_size): |
|
|
6 |
"""Compute required padding""" |
|
|
7 |
padding = max(0, int(np.floor((kernel_size - downsample + 1) / 2))) |
|
|
8 |
return padding |
|
|
9 |
|
|
|
10 |
|
|
|
11 |
def _downsample(n_samples_in, n_samples_out): |
|
|
12 |
"""Compute downsample rate""" |
|
|
13 |
downsample = int(n_samples_in // n_samples_out) |
|
|
14 |
if downsample < 1: |
|
|
15 |
raise ValueError("Number of samples should always decrease") |
|
|
16 |
if n_samples_in % n_samples_out != 0: |
|
|
17 |
raise ValueError("Number of samples for two consecutive blocks " |
|
|
18 |
"should always decrease by an integer factor.") |
|
|
19 |
return downsample |
|
|
20 |
|
|
|
21 |
|
|
|
22 |
class ResBlock1d(nn.Module): |
|
|
23 |
"""Residual network unit for unidimensional signals.""" |
|
|
24 |
|
|
|
25 |
def __init__(self, n_filters_in, n_filters_out, downsample, kernel_size, dropout_rate): |
|
|
26 |
if kernel_size % 2 == 0: |
|
|
27 |
raise ValueError("The current implementation only support odd values for `kernel_size`.") |
|
|
28 |
super(ResBlock1d, self).__init__() |
|
|
29 |
# Forward path |
|
|
30 |
padding = _padding(1, kernel_size) |
|
|
31 |
self.conv1 = nn.Conv1d(n_filters_in, n_filters_out, kernel_size, padding=padding, bias=False) |
|
|
32 |
self.bn1 = nn.BatchNorm1d(n_filters_out) |
|
|
33 |
self.relu = nn.ReLU() |
|
|
34 |
self.dropout1 = nn.Dropout(dropout_rate) |
|
|
35 |
padding = _padding(downsample, kernel_size) |
|
|
36 |
self.conv2 = nn.Conv1d(n_filters_out, n_filters_out, kernel_size, |
|
|
37 |
stride=downsample, padding=padding, bias=False) |
|
|
38 |
self.bn2 = nn.BatchNorm1d(n_filters_out) |
|
|
39 |
self.dropout2 = nn.Dropout(dropout_rate) |
|
|
40 |
|
|
|
41 |
# Skip connection |
|
|
42 |
skip_connection_layers = [] |
|
|
43 |
# Deal with downsampling |
|
|
44 |
if downsample > 1: |
|
|
45 |
maxpool = nn.MaxPool1d(downsample, stride=downsample) |
|
|
46 |
skip_connection_layers += [maxpool] |
|
|
47 |
# Deal with n_filters dimension increase |
|
|
48 |
if n_filters_in != n_filters_out: |
|
|
49 |
conv1x1 = nn.Conv1d(n_filters_in, n_filters_out, 1, bias=False) |
|
|
50 |
skip_connection_layers += [conv1x1] |
|
|
51 |
# Build skip conection layer |
|
|
52 |
if skip_connection_layers: |
|
|
53 |
self.skip_connection = nn.Sequential(*skip_connection_layers) |
|
|
54 |
else: |
|
|
55 |
self.skip_connection = None |
|
|
56 |
|
|
|
57 |
def forward(self, x, y): |
|
|
58 |
"""Residual unit.""" |
|
|
59 |
if self.skip_connection is not None: |
|
|
60 |
y = self.skip_connection(y) |
|
|
61 |
else: |
|
|
62 |
y = y |
|
|
63 |
# 1st layer |
|
|
64 |
x = self.conv1(x) |
|
|
65 |
x = self.bn1(x) |
|
|
66 |
x = self.relu(x) |
|
|
67 |
x = self.dropout1(x) |
|
|
68 |
|
|
|
69 |
# 2nd layer |
|
|
70 |
x = self.conv2(x) |
|
|
71 |
x += y # Sum skip connection and main connection |
|
|
72 |
y = x |
|
|
73 |
x = self.bn2(x) |
|
|
74 |
x = self.relu(x) |
|
|
75 |
x = self.dropout2(x) |
|
|
76 |
return x, y |
|
|
77 |
|
|
|
78 |
|
|
|
79 |
class ResNet1d(nn.Module): |
|
|
80 |
"""Residual network for unidimensional signals. |
|
|
81 |
Parameters |
|
|
82 |
---------- |
|
|
83 |
input_dim : tuple |
|
|
84 |
Input dimensions. Tuple containing dimensions for the neural network |
|
|
85 |
input tensor. Should be like: ``(n_filters, n_samples)``. |
|
|
86 |
blocks_dim : list of tuples |
|
|
87 |
Dimensions of residual blocks. The i-th tuple should contain the dimensions |
|
|
88 |
of the output (i-1)-th residual block and the input to the i-th residual |
|
|
89 |
block. Each tuple shoud be like: ``(n_filters, n_samples)``. `n_samples` |
|
|
90 |
for two consecutive samples should always decrease by an integer factor. |
|
|
91 |
dropout_rate: float [0, 1), optional |
|
|
92 |
Dropout rate used in all Dropout layers. Default is 0.8 |
|
|
93 |
kernel_size: int, optional |
|
|
94 |
Kernel size for convolutional layers. The current implementation |
|
|
95 |
only supports odd kernel sizes. Default is 17. |
|
|
96 |
References |
|
|
97 |
---------- |
|
|
98 |
.. [1] K. He, X. Zhang, S. Ren, and J. Sun, "Identity Mappings in Deep Residual Networks," |
|
|
99 |
arXiv:1603.05027, Mar. 2016. https://arxiv.org/pdf/1603.05027.pdf. |
|
|
100 |
.. [2] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," in 2016 IEEE Conference |
|
|
101 |
on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778. https://arxiv.org/pdf/1512.03385.pdf |
|
|
102 |
""" |
|
|
103 |
|
|
|
104 |
def __init__(self, input_dim, blocks_dim, n_classes, kernel_size=17, dropout_rate=0.8): |
|
|
105 |
super(ResNet1d, self).__init__() |
|
|
106 |
# First layers |
|
|
107 |
n_filters_in, n_filters_out = input_dim[0], blocks_dim[0][0] |
|
|
108 |
n_samples_in, n_samples_out = input_dim[1], blocks_dim[0][1] |
|
|
109 |
downsample = _downsample(n_samples_in, n_samples_out) |
|
|
110 |
padding = _padding(downsample, kernel_size) |
|
|
111 |
self.conv1 = nn.Conv1d(n_filters_in, n_filters_out, kernel_size, bias=False, |
|
|
112 |
stride=downsample, padding=padding) |
|
|
113 |
self.bn1 = nn.BatchNorm1d(n_filters_out) |
|
|
114 |
|
|
|
115 |
# Residual block layers |
|
|
116 |
self.res_blocks = [] |
|
|
117 |
for i, (n_filters, n_samples) in enumerate(blocks_dim): |
|
|
118 |
n_filters_in, n_filters_out = n_filters_out, n_filters |
|
|
119 |
n_samples_in, n_samples_out = n_samples_out, n_samples |
|
|
120 |
downsample = _downsample(n_samples_in, n_samples_out) |
|
|
121 |
resblk1d = ResBlock1d(n_filters_in, n_filters_out, downsample, kernel_size, dropout_rate) |
|
|
122 |
self.add_module('resblock1d_{0}'.format(i), resblk1d) |
|
|
123 |
self.res_blocks += [resblk1d] |
|
|
124 |
|
|
|
125 |
# Linear layer |
|
|
126 |
n_filters_last, n_samples_last = blocks_dim[-1] |
|
|
127 |
last_layer_dim = n_filters_last * n_samples_last |
|
|
128 |
self.lin = nn.Linear(last_layer_dim, n_classes) |
|
|
129 |
self.n_blk = len(blocks_dim) |
|
|
130 |
|
|
|
131 |
def forward(self, x): |
|
|
132 |
"""Implement ResNet1d forward propagation""" |
|
|
133 |
# First layers |
|
|
134 |
x = self.conv1(x) |
|
|
135 |
x = self.bn1(x) |
|
|
136 |
|
|
|
137 |
# Residual blocks |
|
|
138 |
y = x |
|
|
139 |
for blk in self.res_blocks: |
|
|
140 |
x, y = blk(x, y) |
|
|
141 |
|
|
|
142 |
# Flatten array |
|
|
143 |
x = x.view(x.size(0), -1) |
|
|
144 |
|
|
|
145 |
# Fully conected layer |
|
|
146 |
x = self.lin(x) |
|
|
147 |
return x |
|
|
148 |
|