Diff of /formulate_problem.py [000000] .. [a8f942]

Switch to unified view

a b/formulate_problem.py
1
import pandas as pd
2
import numpy as np
3
4
5
def get_splits(age_at_exam, patient_ids, exam_ids, splits, min_age_valid=16, max_age_valid=85, seed=0):
6
    rng = np.random.RandomState(seed)
7
    if sum(splits) > 1.0:
8
        raise ValueError('splits should be sum to a number smaller than one.')
9
    n_exams = len(exam_ids)
10
    # Get patients
11
    patients = np.unique(patient_ids)
12
    n_patients = len(patients)
13
    # Create correspondence
14
    hash_exams = dict(zip(exam_ids, range(n_exams)))
15
    hash_patients = dict(zip(patients, range(n_patients)))
16
    inverse_hash_patients = dict(zip(range(n_patients), patients))
17
    # Get all exams for each patient
18
    patient_exams = [[] for _ in range(n_patients)]
19
    for exam_idx in range(n_exams):
20
        exam_id = exam_ids[exam_idx]
21
        patient_id = patient_ids[exam_idx]
22
        patient_idx = hash_patients[patient_id]
23
        patient_exams[patient_idx].append(exam_id)
24
25
    # Get the age at one of the exams for each patient
26
    ages, _, _ = np.unique(age_at_exam, return_inverse=True, return_counts=True)
27
    patient_idx_per_age = {a: [] for a in ages}
28
    patient_single_exam = np.zeros(n_patients, dtype=int)
29
    for patient_idx in range(n_patients):
30
        # Pick random exam id for the given patient
31
        # OBS:Another formulation that could make sense could be to always pick the first exam....
32
        id_exam = rng.choice(patient_exams[patient_idx])
33
        patient_single_exam[patient_idx] = id_exam
34
        exam_idx = hash_exams[id_exam]
35
        a = age_at_exam[exam_idx]
36
        patient_idx_per_age[a].append(patient_idx)
37
38
    # Get number of patient in each split
39
    n_splits = [int(np.floor(s * n_patients)) for s in splits]
40
    n_splits += [n_patients - sum(n_splits)]
41
    # Shuffle
42
    rng.shuffle(ages)  # Shuffle ages
43
    for a, patient_idx in patient_idx_per_age.items():  # Shuffle within the same age
44
        rng.shuffle(patient_idx)
45
    # Pick one id per age and build a list from that
46
    all_patient_idx = []
47
    stop = False
48
    # Pick ids within the given range first (which will probably be used for training, validation and test)
49
    while not stop:
50
        stop = True
51
        for a in ages[(ages >= min_age_valid) & (ages <= max_age_valid)]:
52
            if patient_idx_per_age[a]:
53
                patient_idx = patient_idx_per_age[a].pop()
54
                all_patient_idx.append(patient_idx)
55
                stop = False
56
    # Pick remaining ids last (which will probably be used only for training)
57
    stop = False
58
    while not stop:
59
        stop = True
60
        for a in ages[(ages < min_age_valid) | (ages > max_age_valid)]:
61
            if patient_idx_per_age[a]:
62
                patient_idx = patient_idx_per_age[a].pop()
63
                all_patient_idx.append(patient_idx)
64
                stop = False
65
    # Save ids
66
    patients_in_splits = [[] for n in n_splits]
67
    single_exam_in_split = [[] for n in n_splits]
68
    exams_in_splits = [[] for n in n_splits]
69
    for i, patient_idx in enumerate(all_patient_idx):
70
        last_n = 0
71
        for s, n in enumerate(np.cumsum(n_splits)):
72
            if last_n <= i < n:
73
                patients_in_splits[s].append(inverse_hash_patients[patient_idx])
74
                single_exam_in_split[s].append(patient_single_exam[patient_idx])
75
                exams_in_splits[s] += patient_exams[patient_idx]
76
                last_n = n
77
78
    return patients_in_splits, single_exam_in_split, exams_in_splits
79
80
81
if __name__ == "__main__":
82
    import argparse
83
    import warnings
84
85
    parser = argparse.ArgumentParser(description='Generate data summary for the age prediction problem')
86
    parser.add_argument('file',
87
                        help='csv file to read data from.')
88
    parser.add_argument('--exam_id_col', default='N_exame',
89
                        help='column in csv containing exam id')
90
    parser.add_argument('--age_col', default='Idade',
91
                        help='column in csv containing age')
92
    parser.add_argument('--patient_id_col', default='N_paciente_univoco',
93
                        help='column in csv containing patient id')
94
    parser.add_argument('--splits', default=[0.15, 0.05], nargs='*', type=float,
95
                        help='percentage of data in each split')
96
    parser.add_argument('--splits_names', default=['test', 'val', 'train'], nargs='*', type=str,
97
                        help='split names')
98
    parser.add_argument('--no_plot', action='store_true',
99
                        help='dont show plots')
100
    args, unk = parser.parse_known_args()
101
    if unk:
102
        warnings.warn("Unknown arguments:" + str(unk) + ".")
103
104
    # Open csv file
105
    df = pd.read_csv(args.file, low_memory=False)
106
    # Remove duplicated rows
107
    df.drop_duplicates(args.exam_id_col, inplace=True)
108
    # Get ids from csv file
109
    exam_ids = np.array(df[args.exam_id_col], dtype=int)
110
    age_at_exam = np.array(df[args.age_col])
111
    patient_ids = np.array(df[args.patient_id_col], dtype=int)
112
    # define splits
113
    patients_in_splits, single_exam_in_split, exams_in_splits = get_splits(age_at_exam, patient_ids, exam_ids, args.splits)
114
115
    if not args.no_plot:
116
        import seaborn as sns
117
        import matplotlib.pyplot as plt
118
        n = len(args.splits) + 1
119
        fig, ax = plt.subplots(nrows=n)
120
        for i in range(n):
121
            age_single_exam = age_at_exam[np.isin(exam_ids, single_exam_in_split[i])]
122
            age = age_at_exam[np.isin(exam_ids, exams_in_splits[i])]
123
            sns.histplot(age, ax=ax[i], kde=False, bins=range(0, 130, 1))
124
            sns.histplot(age_single_exam, ax=ax[i], kde=False, bins=range(0, 130, 1))
125
        plt.show()
126