[818e31]: / data / reporting_results.csv

Download this file

# Title Citation Task Metric Model Description Architecture Result Comment
1 EEG-signals based cognitive workload detection of vehicle driver using deep learning Almogbel2018 mental workload classification accuracy arch1 CNN 30 s CNN 0.8725
2 Almogbel2018 mental workload classification accuracy arch2 CNN 60 s CNN 0.9202
3 Almogbel2018 mental workload classification accuracy arch3 CNN 90 s CNN 0.8838
4 Almogbel2018 mental workload classification accuracy arch4 CNN 120 CNN 0.8224
5 Almogbel2018 mental workload classification accuracy arch5 CNN 150 CNN 0.9531
6 Almogbel2018 mental workload classification accuracy arch6 CNN 180 CNN 0.8469
7 Automatic ocular artifacts removal in EEG using deep learning Yang2018 artifact correction rmse arch1 MLP FC 1.2838 Also report accuracy, but on surrogate task
8 Yang2018 artifact correction rmse dl1 SAE 1.2602
9 Yang2018 artifact correction rmse trad1 ICA 1.4934
10 Yang2018 artifact correction rmse trad2 K-ICA 1.426
11 Yang2018 artifact correction rmse trad3 SOBI 1.371
12 An end-to-end framework for real-time automatic sleep stage classification Patanaik2018 sleep staging accuracy arch1 CNN + MLP CNN 0.898
13 Patanaik2018 sleep staging cohen's kappa arch1 CNN + MLP CNN 0.862
14 Patanaik2018 sleep staging (DS3 subset) cohen's kappa arch1 CNN + MLP CNN 0.711
15 Patanaik2018 sleep staging (DS3 subset) cohen's kappa trad1 Expert rescoring 0.673
16 Patanaik2018 sleep staging (DS4 subset) cohen's kappa arch1 CNN + MLP CNN 0.588
17 Patanaik2018 sleep staging (DS4 subset) cohen's kappa trad1 Expert rescoring 0.576
18 Epileptic Seizure Detection: A Deep Learning Approach Hussein2018 seizure detection (2-class, hold-out) accuracy arch1 LSTM RNN 1
19 Hussein2018 seizure detection (2-class, hold-out) sensitivity arch1 LSTM RNN 1
20 Hussein2018 seizure detection (2-class, hold-out) accuracy trad1 SVM 0.9725
21 Hussein2018 seizure detection (2-class, hold-out) sensitivity trad1 SVM 0.945
22 Hussein2018 seizure detection (2-class, hold-out) accuracy trad2 SVM 0.975
23 Hussein2018 seizure detection (2-class, hold-out) sensitivity trad2 SVM 0.98
24 Hussein2018 seizure detection (2-class, hold-out) accuracy trad3 BLDA 0.9667
25 Hussein2018 seizure detection (2-class, hold-out) sensitivity trad3 BLDA 0.9625
26 Hussein2018 seizure detection (2-class, LOSO) accuracy arch1 LSTM RNN 1
27 Hussein2018 seizure detection (2-class, LOSO) sensitivity arch1 LSTM RNN 1
28 Hussein2018 seizure detection (2-class, LOSO) accuracy trad4 ELM N/M
29 Hussein2018 seizure detection (2-class, LOSO) sensitivity trad4 ELM 0.9948
30 Hussein2018 seizure detection (2-class, 10-CV) accuracy arch1 LSTM RNN 1
31 Hussein2018 seizure detection (2-class, 10-CV) sensitivity arch1 LSTM RNN 1
32 Hussein2018 seizure detection (2-class, 10-CV) accuracy trad5 DT 0.9869
33 Hussein2018 seizure detection (2-class, 10-CV) sensitivity trad5 DT 0.9887
34 Hussein2018 seizure detection (2-class B, hold-out) accuracy arch1 LSTM RNN 1
35 Hussein2018 seizure detection (2-class B, hold-out) sensitivity arch1 LSTM RNN 1
36 Hussein2018 seizure detection (2-class B, hold-out) accuracy trad6 CVANN 0.9933
37 Hussein2018 seizure detection (2-class B, hold-out) sensitivity trad6 CVANN 1
38 Hussein2018 seizure detection (2-class B, hold-out) accuracy trad7 KNN 0.984
39 Hussein2018 seizure detection (2-class B, hold-out) sensitivity trad7 KNN N/M
40 Hussein2018 seizure detection (2-class B, hold-out) accuracy trad8 ANN 0.9827
41 Hussein2018 seizure detection (2-class B, hold-out) sensitivity trad8 ANN 0.955
42 Hussein2018 seizure detection (2-class B, 10-CV) accuracy arch1 LSTM RNN 1
43 Hussein2018 seizure detection (2-class B, 10-CV) sensitivity arch1 LSTM RNN 1
44 Hussein2018 seizure detection (2-class B, 10-CV) accuracy trad9 SVM 0.9925
45 Hussein2018 seizure detection (2-class B, 10-CV) sensitivity trad9 SVM 0.9798
46 Hussein2018 seizure detection (2-class B, 10-CV) accuracy trad10 ANN 0.9872
47 Hussein2018 seizure detection (2-class B, 10-CV) sensitivity trad10 ANN 0.983
48 Hussein2018 seizure detection (3-class, hold-out) accuracy arch1 LSTM RNN 1
49 Hussein2018 seizure detection (3-class, hold-out) sensitivity arch1 LSTM RNN 1
50 Hussein2018 seizure detection (3-class, hold-out) accuracy trad11 MLPNN 0.991
51 Hussein2018 seizure detection (3-class, hold-out) sensitivity trad11 MLPNN 0.992
52 Hussein2018 seizure detection (3-class, hold-out) accuracy trad12 ECOC 0.9867
53 Hussein2018 seizure detection (3-class, hold-out) sensitivity trad12 ECOC 0.9855
54 Hussein2018 seizure detection (3-class, LOSO) accuracy arch1 LSTM RNN 1
55 Hussein2018 seizure detection (3-class, LOSO) sensitivity arch1 LSTM RNN 1
56 Hussein2018 seizure detection (3-class, LOSO) accuracy trad13 SVM 0.95
57 Hussein2018 seizure detection (3-class, LOSO) sensitivity trad13 SVM 0.96
58 Hussein2018 seizure detection (3-class, 10-CV) accuracy arch1 LSTM RNN 1
59 Hussein2018 seizure detection (3-class, 10-CV) sensitivity arch1 LSTM RNN 1
60 Hussein2018 seizure detection (3-class, 10-CV) accuracy trad14 LSSVM 0.9719
61 Hussein2018 seizure detection (3-class, 10-CV) sensitivity trad14 LSSVM 0.9696
62 Hussein2018 seizure detection (3-class, 10-CV) accuracy trad15 GMM 0.99
63 Hussein2018 seizure detection (3-class, 10-CV) sensitivity trad15 GMM 0.99
64 Hussein2018 seizure detection (5-class, hold-out) accuracy arch1 LSTM RNN 1
65 Hussein2018 seizure detection (5-class, hold-out) sensitivity arch1 LSTM RNN 1
66 Hussein2018 seizure detection (5-class, hold-out) accuracy trad16 MSVM 0.9999
67 Hussein2018 seizure detection (5-class, hold-out) sensitivity trad16 MSVM 0.9999
68 Hussein2018 seizure detection (5-class, hold-out) accuracy trad17 SVM 0.9997
69 Hussein2018 seizure detection (5-class, hold-out) sensitivity trad17 SVM 0.9837
70 Hussein2018 seizure detection (5-class, 10-CV) accuracy arch1 LSTM RNN 1
71 Hussein2018 seizure detection (5-class, 10-CV) sensitivity arch1 LSTM RNN 1
72 Hussein2018 seizure detection (5-class, 10-CV) accuracy trad18 MSVM 0.96
73 Hussein2018 seizure detection (5-class, 10-CV) sensitivity trad18 MSVM N/M
74 Development of a brain computer interface interface using multi-frequency visual stimulation and deep neural networks Perez-Benitez2018 SSVEP (normalized spectrum) accuracy arch1 MLP FC 0.9533
75 Perez-Benitez2018 SSVEP (normalized spectrum) accuracy trad1 MC-SVM 0.9621
76 Perez-Benitez2018 SSVEP (normalized spectrum) accuracy trad2 Rule induction 0.7117
77 Perez-Benitez2018 SSVEP (normalized spectrum) accuracy trad3 kNN 0.9912
78 Perez-Benitez2018 SSVEP (normalized spectrum) accuracy trad4 GBT 0.9387
79 Deep Semantic Architecture with discriminative feature visualization for neuroimage analysis Ghosh2018 exercise vs. control group classification accuracy arch1 CNN CNN 0.987
80 Cascade and Parallel Convolutional Recurrent Neural Networks on EEG-based Intention Recognition for Brain Computer Interface Zhang2018c motor imagery accuracy arch1 CNN-cascade CNN 0.9831
81 Zhang2018c motor imagery accuracy arch2 CNN-parallel CNN 0.9828
82 Zhang2018c motor imagery accuracy dl1 RNN 0.7468
83 Zhang2018c motor imagery accuracy dl2 RNN 0.8493
84 Zhang2018c motor imagery accuracy dl3 3D-CNN 0.9238
85 Zhang2018c motor imagery accuracy dl4 2D-CNN 0.8841
86 Zhang2018c motor imagery accuracy dl5 1D-CNN 0.8622
87 Zhang2018c motor imagery accuracy trad1 SVM 0.8505
88 Zhang2018c motor imagery accuracy trad2 SR-FBCSP 0.8206
89 Zhang2018c motor imagery accuracy trad3 CSP + RF 0.805
90 A hierarchical LSTM model with attention for modeling EEG non-stationarity for human decision prediction Hasib2018 guard decision classification auc trad1 SVM 0.652
91 Hasib2018 guard decision classification auc dl1 CNN 0.694
92 Hasib2018 guard decision classification auc dl2 LSTM 0.553
93 Hasib2018 guard decision classification auc dl3 LSTM (0.5-s) 0.702
94 Hasib2018 guard decision classification auc dl4 LSTM (2.5-s) 0.613
95 Hasib2018 guard decision classification auc dl5 LSTM (5-s) 0.606
96 Hasib2018 guard decision classification auc arch1 H-LSTM (0.5-s) RNN 0.826
97 Hasib2018 guard decision classification auc arch2 H-LSTM (2.5-s) RNN 0.81
98 Hasib2018 guard decision classification auc arch3 H-LSTM (5-s) RNN 0.816
99 Deep EEG super-resolution: Upsampling EEG spatial resolution with Generative Adversarial Networks Corley2018 EEG upsampling (2x) mse arch1 WGAN GAN 2060 Use a surrogate classification task to see how useful the superresolution was
100 Corley2018 EEG upsampling (4x) mse arch1 WGAN GAN 8680