"""
Utilities for making literature review figures.
TODO:
- Make sure the data will be loaded correctly wherever the code is run from.
- Write function that makes sure the DataFrame is fine.
"""
import re
import warnings
import os
from collections import OrderedDict
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import mannwhitneyu, kruskal, pearsonr, spearmanr
from mne.io import concatenate_raws, read_raw_edf
from mne.datasets import eegbci
dirname = os.path.dirname(__file__)
repo_root = os.path.join(dirname, '../')
def lstrip(list_of_strs, lower=True):
"""Remove left space and make lowercase."""
return [a.lstrip().lower() if lower else a.lstrip() for a in list_of_strs]
def replace_nans_in_column(df, column_name, replace_by=' '):
nan_ind = df[column_name].apply(lambda x:
np.isnan(x) if isinstance(x, float) else False)
df.loc[nan_ind, column_name] = replace_by
return df
def tex_escape(text):
"""Add escape character in front of LaTeX special characters in string.
:param text: a plain text message
:return: the message escaped to appear correctly in LaTeX
From https://stackoverflow.com/a/25875504
"""
conv = {
'&': r'\&',
'%': r'\%',
'$': r'\$',
'#': r'\#',
'_': r'\_',
'{': r'\{',
'}': r'\}',
'~': r'\textasciitilde{}',
'^': r'\^{}',
'\\': r'\textbackslash{}',
'<': r'\textless{}',
'>': r'\textgreater{}',
}
regex = re.compile('|'.join(re.escape(str(key))
for key in sorted(conv.keys(), key = lambda item: - len(item))))
return regex.sub(lambda match: conv[match.group()], text)
def split_column_with_multiple_entries(df, col, ref_col='Citation', sep=';\n',
lower=True, mismatch='drop'):
"""Split the content of a column that contains more than one value per cell.
Split the content of cells that contain more than one value. Some cells
contain two or more values for a single data item, e.g.,
Number of subjects: '15, 203, 23'
A DataFrame where each row contains a single value per cell is returned.
Args:
df (pd.DataFrame)
col (str or list of str): name of the column(s) to split.
Keyword Args:
ref_col (str or list of str): identifier column(s) to use to identify
the row of origin of a splitted value.
sep (str): separator between multiple values
lower (bool): if True, make all values lowercase
mismatch (str): [NOT IMPLEMENTED YET]
only applies if `col` is a list and the cells of the
different columns do not contain the same number of elements.
If `drop`, remove rows for which there is a missing value.
If `fill`, fill missing values with NaNs.
Returns:
(pd.DataFrame)
"""
if not isinstance(ref_col, list):
ref_col = [ref_col]
if isinstance(col, list):
# Find rows for which there is a mismatch
cell_counts = list()
for c in col:
cell_counts.append(df[c].str.split(sep).apply(len))
cell_counts_df = pd.concat(cell_counts, axis=1)
inds_to_remove = cell_counts_df.loc[
cell_counts_df.apply(lambda x: min(x) != max(x), 1)].index
warnings.warn('{} rows had incompatible numbers of elements in the '
'columns of interest and were dropped:'.format(len(inds_to_remove)))
if 'Citation' in ref_col:
for i in inds_to_remove:
warnings.warn('\t{}'.format(df.iloc[i].loc['Citation']))
df = df.drop(inds_to_remove)
# Aggregate split columns
temp_df = list()
for i, c in enumerate(col):
inds = [c] + ref_col if i != 0 else c
temp_df.append(
split_column_with_multiple_entries(
df, c, ref_col=ref_col, sep=sep, lower=lower)[inds])
return pd.concat(temp_df, axis=1)
else:
df['temp'] = df[col].str.split(sep).apply(lstrip, lower=lower)
value_per_row = list()
for i, items in df[[*ref_col, 'temp']].iterrows():
for m in items['temp']:
value_per_row.append([i, *items[ref_col].tolist(), m])
df = df.drop(['temp'], axis=1)
return pd.DataFrame(value_per_row, columns=['paper nb', *ref_col, col])
def extract_main_domains(df):
"""Create column with the main domains.
The main domains were picked by looking at the data and going with what made
sense (there is no clear rule for defining them).
"""
main_domains = ['Epilepsy', 'Sleep', 'BCI', 'Affective', 'Cognitive',
'Improvement of processing tools', 'Generation of data']
domains_df = df[['Domain 1', 'Domain 2', 'Domain 3', 'Domain 4']]
df['Main domain'] = [row[row.isin(main_domains)].values[0]
if any(row.isin(main_domains)) else 'Others'
for ind, row in domains_df.iterrows()]
return df
def extract_ref_numbers_from_bbl(df, filename=None):
"""Extract reference numbers from .bbl file and add them to df.
Args:
df (pd.DataFrame): dataframe containing the data items
spreadsheet.
Keyword Args:
filename (str): path to the .bbl file (created when compiling
the main tex file).
Returns:
(pd.DataFrame): dataframe with new column 'ref_nb'.
"""
filename = '../data/output.bbl'
with open(filename, 'r', encoding = 'ISO-8859-1') as f:
text = ''.join(f.readlines())
ref_nbs = re.findall(r'\\bibitem\{(.*)\}', text)
ref_dict = {ref: i + 1 for i, ref in enumerate(ref_nbs)}
df['ref_nb'] = df['Citation'].apply(lambda x: '[{}]'.format(ref_dict[x]))
return df
def load_data_items(start_year=2010):
"""Load data items table.
TODO:
- Normalize column names?
- Double check all the required columns are there?
"""
fname = repo_root + '/data/data_items.csv'
df = pd.read_csv(fname, header=1)
# A little cleaning up
df = df.dropna(axis=0, how='all')
df = df.dropna(axis=1, how='all', thresh=int(df.shape[0] * 0.1))
df = df[df['Year'] >= start_year]
# Remove retracted paper and Supplement
df = df[df['Citation'] != 'Pramod2015']
df = df[df['Type of paper'] != 'Supplement']
df = extract_main_domains(df)
# df = extract_ref_numbers_from_bbl(df)
return df
def load_reported_results_data():
"""Load table of reported results (second tab on spreadsheet).
"""
fname = repo_root + '/data/reporting_results.csv'
df = pd.read_csv(fname, header=0)
df = df.drop(columns=['Unnamed: 0', 'Title', 'Comment'])
df['Result'] = pd.to_numeric(df['Result'], errors='coerce')
df['Architecture'] = df['Architecture'].fillna('-')
df = df.dropna()
def extract_model_type(x):
if 'arch' in x:
out = 'Proposed'
elif 'trad' in x:
out = 'Baseline (traditional)'
elif 'dl' in x:
out = 'Baseline (deep learning)'
else:
raise ValueError('Model type {} not supported.'.format(x))
return out
df['model_type'] = df['Model'].apply(extract_model_type)
return df
def check_data_items(df):
"""Check data items to make sure it contains the right stuff.
- Years
- Number of layers
- Domains
- Checked by 2 people
- Invasive
TODO:
- Should this be some kind of unit test?
"""
pass
def wrap_text(string, max_char=25):
"""Wrap string at `max_char` per line.
Args:
string (str): string to be wrapped.
Keyword Args:
max_char (int): maximum number of characters per line.
Returns:
(str): wrapped string.
"""
string_parts = string.split()
if len(string) > max_char and len(string_parts) > 1:
out_string = string_parts[0]
line_len = len(out_string)
for i in string_parts[1:]:
if line_len + 1 + len(i) > max_char:
out_string += '\n'
line_len = len(i)
else:
out_string += ' '
line_len += len(i) + 1
out_string += i
else:
out_string = string
return out_string
def plot_multiple_proportions(data, height=0.3, print_count=True,
respect_order=None, figsize=None, xlabel=None,
ylabel=None, title=None):
"""Horizontal stacked bar plot for multiple proportions.
Horizontal stacked bar plot used to display many simple proportions with
potentially different categories.
Args:
data (dict): dictionary containing the different items, categories
and counts per item. E.g.,
data = {'item1': {'cat1': 100, 'cat2': 56},
'item2': {'cat3': 60, 'cat4': 46, 'cat5': 50},
'item3': {'cat6': 50, 'cat7': 53, 'cat8': 53}}
Keyword Args:
height (float): height of bars
print_count (bool or int): if True, print the count (number of elements)
of each category in the middle of the bars. If False, don't print
the counts. If provided as an int, it defines the smaller number
that will be printed on a bar (that way small numbers that wouldn't
fit in a bar because it's too small won't be printed).
respect_order (list or None): if provided, the categories of each item
should respect the given order. E.g., `['Yes', 'No', 'N/M']` means
that whenever the categories 'Yes', 'No' or 'N/M' are found for an
item, they should appear in that order in the bar.
figisize (tuple or None): size of the figure.
xlabel (str or None): x-axis label.
ylabel (str of None): y-axis label.
Returns:
(fig)
(ax)
"""
df = pd.DataFrame(data=list(data.keys()), columns=['items'])
df['counts'] = np.zeros(len(data))
df['items'] = df['items'].apply(wrap_text, max_char=20)
fig, ax = plt.subplots(figsize=figsize)
sns.barplot(x='counts', y='items', data=df, ax=ax)
ax.set_ylabel('' if ylabel is None else ylabel)
ylabels = ax.get_yticklabels()
ax.set_yticklabels(ylabels, ha='right')
ax.set_xlabel('Percentage (%)' if xlabel is None else xlabel)
ax.set_xlim([0, 100])
if title is not None:
ax.set_title(title)
for ind, (item, values) in enumerate(data.items()):
bottom = 0
n_values = sum(list(values.values()))
ax.set_prop_cycle(None) # reset color cycle
bars = list()
if respect_order is not None:
ordered_values = OrderedDict()
for ordered_cat in respect_order:
if ordered_cat in values:
ordered_values[ordered_cat] = values.pop(ordered_cat)
ordered_values.update(values)
values = ordered_values
for cat, val in values.items():
width = val / n_values * 100
bar = ax.barh(
ind, width=width, height=height, left=bottom, label=cat)
bars.append(bar)
if (print_count is True) or (isinstance(print_count, int) and
val >= print_count):
w = bar[0].get_width()
ax.text(bottom + w / 2, ind, str(val), ha='center', va='center')
bottom += width
legend = plt.legend(handles=bars, bbox_to_anchor=(105, ind),
bbox_transform=ax.transData, loc='center left',
frameon=False)
ax.add_artist(legend)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.spines['left'].set_visible(False)
plt.tight_layout()
return fig, ax
def run_mannwhitneyu(df, condition_col, conditions, value_col='acc_diff',
min_n_obs=10, plot=False):
"""Run Mann-Whitney rank-sum test.
Args:
df (pd.DataFrame): dataframe where each row is a paper.
condition_col (str): name of column to use as condition.
conditions (list): list of two strings containing the values of the
condition to compare.
Keyword Args:
value_col (str): name of column to use as the numerical value to run the
test on.
min_n_obs (int): minimum number of observations in each sample in order
to run the test.
Returns:
(float): U statistic
(float): p-value
"""
assert len(conditions) == 2, '`conditions` must be of length 2, got {}'.format(
len(conditions))
data1 = df[df[condition_col] == conditions[0]][value_col]
data2 = df[df[condition_col] == conditions[1]][value_col]
if len(data1) >= min_n_obs and len(data2) >= min_n_obs:
stat, p = mannwhitneyu(data1, data2)
else:
stat, p = np.nan, np.nan
print('Not enough observations in each sample ({} and {}).'.format(
len(data1), len(data2)))
if plot:
fig, ax = plt.subplots()
sns.violinplot(
data=df[df[condition_col].isin(conditions)], x=condition_col,
y=value_col, ax=ax)
ax.set_title('Mann-Whitney for {} vs. {}\n(pvalue={:0.4f})'.format(
condition_col, value_col, p))
else:
fig = None
return {'test': 'mannwhitneyu', 'pvalue': p, 'stat': stat, 'fig': fig}
def run_kruskal(df, condition_col, value_col='acc_diff', min_n_obs=6,
plot=False):
"""Run Kruskal-Wallis analysis of variance test.
Args:
df (pd.DataFrame): dataframe where each row is a paper.
condition_col (str): name of column to use as condition.
Keyword Args:
value_col (str): name of column to use as the numerical value to run the
test on.
min_n_obs (int): minimum number of observations in each sample in order
to run the test.
Returns:
(float): U statistic
(float): p-value
"""
data = [i for name, i in df.groupby(condition_col)[value_col]
if len(i) >= min_n_obs]
if len(data) > 2:
stat, p = kruskal(*data)
else:
stat, p = np.nan, np.nan
print('Not enough samples with more than {} observations.'.format(min_n_obs))
if plot:
enough_samples = df[condition_col].value_counts() >= min_n_obs
enough_samples = enough_samples.index[enough_samples].tolist()
fig, ax = plt.subplots()
sns.violinplot(
data=df[df[condition_col].isin(enough_samples)], x=condition_col,
y=value_col, ax=ax)
ax.set_title('Kruskal-Wallis for {} vs. {}\n(pvalue={:0.4f})'.format(
condition_col, value_col, p))
else:
fig = None
return {'test': 'kruskal', 'pvalue': p, 'stat': stat, 'fig': fig}
def run_spearmanr(df, condition_col, value_col='acc_diff', log=False,
plot=False):
"""Run Spearman's rank correlation analysis.
Args:
df (pd.DataFrame): dataframe where each row is a paper.
condition_col (str): name of column to use as condition.
Keyword Args:
value_col (str): name of column to use as the numerical value to run the
test on.
log (bool): if True, use log of `condition_col` before computing the
correlation.
Returns:
(float): U statistic
(float): p-value
"""
data1 = np.log10(df[condition_col]) if log else df[condition_col]
data2 = df[value_col]
corr, p = spearmanr(data1, data2)
if plot:
log_condition_col = 'log_' + condition_col
df[log_condition_col] = np.log10(df[condition_col])
fig, ax = plt.subplots()
sns.regplot(data=df, x=log_condition_col, y=value_col, robust=True, ax=ax)
ax.set_title('Spearman Rho for {} vs. {}\n(pvalue={:0.4f}, ρ={:0.4f})'.format(
log_condition_col, value_col, p, corr))
else:
fig = None
return {'test': 'spearmanr', 'pvalue': p, 'stat': corr, 'fig': fig}
def keep_single_valued_rows(df, condition_col, mult_str='\n', id_col='Citation'):
"""Keep rows for which a single value exist.
This function filters a dataframe to keep only rows where the column
`condition_col` does not contain the string `mult_str` (which would indicate
multiple values).
Args:
df (pd.DataFrame): dataframe.
Keyword Args:
mult_str (str): string that indicates multiple values in a row.
id_col (str): name of column to use to identify different rows.
True
Returns:
(pd.DataFrame): filtered dataframe
"""
rows_with_multiple = df[df[condition_col].str.contains(mult_str)][id_col]
return df[~df[id_col].isin(rows_with_multiple)]
def get_saturation(level, min_s, max_s, n_levels):
return (min_s - max_s) / (n_levels - 1) * level + max_s
def get_font_size(n_papers, min_font, max_font, max_n_papers):
return (max_font - min_font) / (max_n_papers - 1) * n_papers + min_font
def make_box(dot, text, max_char, n_instances, max_n_instances, level, n_levels,
min_sat, max_sat, min_font_size, max_font_size, parent_name,
counter=None, n_categories=None, hue=None, node_name=None):
"""Make graphviz box for tree graph.
Args:
dot (): graphviz Digraph object
text (str): text to put in the box
max_char (int): maximum number of characters on a line
n_instances (int): number of instances (to be written under `text`)
max_n_instances (int): maximum number of instances a box can have
level (int): value from 0 to `n_levels`-1
n_levels (int): number of levels in graph
min_sat (float): minimum saturation value between [0, 1]
max_sat (float): maximum saturation value between [0, 1]
min_font_size (float): minimum font size
max_font_size (float): maximum font size
parent_name (str): name of parent node
Keyword Args:
counter (None or int): counter from 0 to `n_categories`-1. If None, use
the provided `hue`.
n_categories (None or int): number of categories on that level. If None,
use the provided `hue`.
hue (None or str): hue of the box. If None, compute it using `counter`
and `n_categories`.
node_name (None or str): internal name of the node. If None, use `text`
as the internal node name.
Returns:
(str): node name
(float): hue of the box
"""
node_text = wrap_text(text, max_char=max_char)
if node_name is None:
node_name = text
if hue is None:
assert counter is not None
assert n_categories is not None
hue = (counter + 1) / n_categories
fillcolor = '{} {} 1'.format(
hue, get_saturation(level, min_sat, max_sat, n_levels))
fontsize = str(get_font_size(
n_instances, min_font_size, max_font_size, max_n_instances))
dot.node(node_name, '{}\n({})'.format(node_text, n_instances),
fillcolor=fillcolor, fontsize=fontsize)
dot.edge(parent_name, node_name)
return node_name, hue
def get_real_eeg_data(start=0, stop=4, chans=4):
"""Get real EEG data for plotting.
Keyword Args:
start (float): start of the EEG segment, in seconds.
stop (float): end of the EEG segment, in seconds.
chans (int or list): number of channels to extract, or list of channel
indices to be interpreted by MNE's get_data() function.
"""
raw_fnames = eegbci.load_data(1, 2)
raws = [read_raw_edf(f, preload=True) for f in raw_fnames]
raw = concatenate_raws(raws)
fs = raw.info['sfreq']
start = int(fs * start)
stop = int(fs * stop)
if not isinstance(chans, list):
chans = np.arange(chans)
data, t = raw.get_data(picks=chans, start=start, stop=stop, return_times=True)
data = data.T
return data, t, fs
def create_fake_eeg(fs=256, signal_len=4, n_channels=4):
"""Create fake EEG data.
"""
n_points = fs * signal_len
t = np.arange(n_points) / fs
data = np.random.rand(n_points, n_channels)
return data, t
def draw_brace(ax, xspan, text, beta_factor=300, y_offset=None):
"""Draws an annotated brace on the axes.
Adapted from https://stackoverflow.com/a/53383764"""
xmin, xmax = xspan
xspan = xmax - xmin
ax_xmin, ax_xmax = ax.get_xlim()
xax_span = ax_xmax - ax_xmin
ymin, ymax = ax.get_ylim()
yspan = ymax - ymin
resolution = int(xspan/xax_span*100)*2 + 1 # guaranteed uneven
beta = beta_factor / xax_span # the higher this is, the smaller the radius
x = np.linspace(xmin, xmax, resolution)
x_half = x[:int(np.ceil(resolution/2))]
y_half_brace = (1/(1.+np.exp(-beta*(x_half-x_half[0])))
+ 1/(1.+np.exp(-beta*(x_half-x_half[-1]))))
y = np.concatenate((y_half_brace, y_half_brace[-2::-1]))
if y_offset is not None:
ymin = y_offset
y = ymin + (.035*y - .01) * yspan # adjust vertical position
# ax.autoscale(False)
ax.plot(x, y, color='black', lw=1)
ax.text((xmax+xmin)/2., ymin+.05*yspan, text, ha='center', va='bottom')