[85e54f]: / code / generate_results.py

Download this file

60 lines (45 with data), 1.5 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""Script to generate the results for the literature review.
"""
import utils as ut
import analysis as anl
POSTPROCESS = True
if __name__ == '__main__':
df = ut.load_data_items()
results_df = ut.load_reported_results_data()
ut.check_data_items(df)
# Introduction
anl.plot_eeg_intro()
# Rationale
anl.plot_prisma_diagram()
anl.make_domain_table(df)
anl.plot_domain_tree(df, postprocess=POSTPROCESS)
# Origin
anl.plot_type_of_paper(df)
anl.plot_country(df)
anl.plot_countrymap(df, postprocess=POSTPROCESS)
anl.plot_domains_per_year(df)
# Data
anl.plot_number_subjects_by_domain(df)
anl.plot_hardware(df)
anl.plot_number_channels(df)
anl.plot_data_quantity(df)
# anl.compute_stats_sampling_rate(df)
# EEG methodology
anl.plot_preprocessing_proportions(df)
# DL methodology
anl.plot_architectures(df)
anl.plot_architectures_per_year(df)
anl.plot_architectures_vs_input(df)
anl.plot_number_layers(df)
anl.plot_hyperparams_proportions(df)
anl.plot_model_inspection_and_table(df)
# Reporting of results
anl.plot_performance_metrics(df)
anl.plot_cross_validation(df)
anl.plot_intra_inter_per_year(df)
anl.plot_model_comparison(df)
anl.compute_prct_statistical_tests(df)
anl.plot_reported_results(results_df, data_items_df=df)
# Reproducibility
anl.plot_reproducibility_proportions(df)
anl.make_dataset_table(df)