|
a |
|
b/brainDecode/deprecated/1 - Two-Classes Classification (BNCI).ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 25, |
|
|
6 |
"metadata": { |
|
|
7 |
"scrolled": true |
|
|
8 |
}, |
|
|
9 |
"outputs": [ |
|
|
10 |
{ |
|
|
11 |
"name": "stdout", |
|
|
12 |
"output_type": "stream", |
|
|
13 |
"text": [ |
|
|
14 |
"(160, 15, 2560)\n", |
|
|
15 |
"(160,)\n" |
|
|
16 |
] |
|
|
17 |
} |
|
|
18 |
], |
|
|
19 |
"source": [ |
|
|
20 |
"\"\"\"\n", |
|
|
21 |
"Format dataset, we read the file for the desired subject, and parse the data to extract:\n", |
|
|
22 |
"- samplingRate\n", |
|
|
23 |
"- trialLength\n", |
|
|
24 |
"- X, a M x N x K matrix, which stands for trial x chan x samples\n", |
|
|
25 |
" the actual values are 160 x 15 x 2560\n", |
|
|
26 |
"- y, a M vector containing the labels {0,1}\n", |
|
|
27 |
"\n", |
|
|
28 |
"ref:\n", |
|
|
29 |
"Dataset description: https://lampx.tugraz.at/~bci/database/002-2014/description.pdf\n", |
|
|
30 |
"\"\"\"\n", |
|
|
31 |
"\n", |
|
|
32 |
"import scipy.io as sio\n", |
|
|
33 |
"import numpy as np\n", |
|
|
34 |
"\n", |
|
|
35 |
"\n", |
|
|
36 |
"# prepare data containers\n", |
|
|
37 |
"y = []\n", |
|
|
38 |
"X = []\n", |
|
|
39 |
"\n", |
|
|
40 |
"\"\"\"\n", |
|
|
41 |
"trainingFileList = [#'BBCIData/S14T.mat', \n", |
|
|
42 |
" #'BBCIData/S13T.mat', \n", |
|
|
43 |
" #'BBCIData/S12T.mat', \n", |
|
|
44 |
" #'BBCIData/S11T.mat', \n", |
|
|
45 |
" #'BBCIData/S10T.mat', \n", |
|
|
46 |
" #'BBCIData/S09T.mat', \n", |
|
|
47 |
" #'BBCIData/S08T.mat', \n", |
|
|
48 |
" #'BBCIData/S07T.mat', \n", |
|
|
49 |
" #'BBCIData/S06T.mat', \n", |
|
|
50 |
" #'BBCIData/S05T.mat', \n", |
|
|
51 |
" #'BBCIData/S04T.mat', \n", |
|
|
52 |
" #'BBCIData/S03T.mat', \n", |
|
|
53 |
" #'BBCIData/S02T.mat', \n", |
|
|
54 |
" 'BBCIData/S01T.mat']\n", |
|
|
55 |
"\n", |
|
|
56 |
"validationFileList = [#'BBCIData/S14E.mat', \n", |
|
|
57 |
" #'BBCIData/S13E.mat', \n", |
|
|
58 |
" #'BBCIData/S12E.mat', \n", |
|
|
59 |
" #'BBCIData/S11E.mat', \n", |
|
|
60 |
" #'BBCIData/S10E.mat', \n", |
|
|
61 |
" #'BBCIData/S09E.mat', \n", |
|
|
62 |
" #'BBCIData/S08E.mat', \n", |
|
|
63 |
" #'BBCIData/S07E.mat', \n", |
|
|
64 |
" #'BBCIData/S06E.mat', \n", |
|
|
65 |
" #'BBCIData/S05E.mat', \n", |
|
|
66 |
" #'BBCIData/S04E.mat', \n", |
|
|
67 |
" #'BBCIData/S03E.mat', \n", |
|
|
68 |
" #'BBCIData/S02E.mat', \n", |
|
|
69 |
" 'BBCIData/S01E.mat']\n", |
|
|
70 |
"\"\"\"\n", |
|
|
71 |
"\n", |
|
|
72 |
"trainingFileList = ['BBCIData/S08T.mat']\n", |
|
|
73 |
"\n", |
|
|
74 |
"validationFileList = ['BBCIData/S08E.mat']\n", |
|
|
75 |
"\n", |
|
|
76 |
"for i in range(len(trainingFileList)):\n", |
|
|
77 |
" # read file\n", |
|
|
78 |
" d1T = sio.loadmat(trainingFileList[i])\n", |
|
|
79 |
" d1E = sio.loadmat(validationFileList[i])\n", |
|
|
80 |
" \n", |
|
|
81 |
" samplingRate = d1T['data'][0][0][0][0][3][0][0]\n", |
|
|
82 |
" trialLength = 5*samplingRate\n", |
|
|
83 |
"\n", |
|
|
84 |
"\n", |
|
|
85 |
" # run through all training runs\n", |
|
|
86 |
" for run in range(5):\n", |
|
|
87 |
" y.append(d1T['data'][0][run][0][0][2][0]) # labels\n", |
|
|
88 |
" timestamps = d1T['data'][0][run][0][0][1][0] # timestamps\n", |
|
|
89 |
" rawData = d1T['data'][0][run][0][0][0].transpose() # chan x data\n", |
|
|
90 |
"\n", |
|
|
91 |
" # parse out data based on timestamps\n", |
|
|
92 |
" for start in timestamps:\n", |
|
|
93 |
" end = start + trialLength\n", |
|
|
94 |
" X.append(rawData[:,start:end]) #15 x 2560\n", |
|
|
95 |
"\n", |
|
|
96 |
"\n", |
|
|
97 |
" # run through all validation runs (we do not discriminate at this point)\n", |
|
|
98 |
" for run in range(3):\n", |
|
|
99 |
" y.append(d1E['data'][0][run][0][0][2][0]) # labels\n", |
|
|
100 |
" timestamps = d1E['data'][0][run][0][0][1][0] # timestamps\n", |
|
|
101 |
" rawData = d1E['data'][0][run][0][0][0].transpose() # chan x data\n", |
|
|
102 |
"\n", |
|
|
103 |
" # parse out data based on timestamps\n", |
|
|
104 |
" for start in timestamps:\n", |
|
|
105 |
" end = start + trialLength\n", |
|
|
106 |
" X.append(rawData[:,start:end]) #15 x 2560\n", |
|
|
107 |
"\n", |
|
|
108 |
" del rawData\n", |
|
|
109 |
" del d1T\n", |
|
|
110 |
" del d1E\n", |
|
|
111 |
"\n", |
|
|
112 |
"# arrange data into numpy arrays\n", |
|
|
113 |
"# also torch expect float32 for samples\n", |
|
|
114 |
"# and int64 for labels {0,1}\n", |
|
|
115 |
"X = np.array(X).astype(np.float32)\n", |
|
|
116 |
"y = (np.array(y).flatten()-1).astype(np.int64)\n", |
|
|
117 |
"print(X.shape)\n", |
|
|
118 |
"print(y.shape)\n", |
|
|
119 |
"\n", |
|
|
120 |
"# erase unused references\n", |
|
|
121 |
"d1T = []\n", |
|
|
122 |
"d1E = []\n", |
|
|
123 |
"\n" |
|
|
124 |
] |
|
|
125 |
}, |
|
|
126 |
{ |
|
|
127 |
"cell_type": "code", |
|
|
128 |
"execution_count": 26, |
|
|
129 |
"metadata": {}, |
|
|
130 |
"outputs": [], |
|
|
131 |
"source": [ |
|
|
132 |
"from braindecode.datautil.signal_target import SignalAndTarget\n", |
|
|
133 |
"from braindecode.models.shallow_fbcsp import ShallowFBCSPNet\n", |
|
|
134 |
"from torch import nn\n", |
|
|
135 |
"from braindecode.torch_ext.util import set_random_seeds \n", |
|
|
136 |
"from torch import optim\n", |
|
|
137 |
"import torch\n", |
|
|
138 |
"\n", |
|
|
139 |
"idx = np.random.permutation(X.shape[0])\n", |
|
|
140 |
"\n", |
|
|
141 |
"X = X[idx,:,:]\n", |
|
|
142 |
"y = y[idx]\n", |
|
|
143 |
"\n", |
|
|
144 |
"#print(X.shape)\n", |
|
|
145 |
"#print(y.shape)\n", |
|
|
146 |
"\n", |
|
|
147 |
"nb_train_trials = int(np.floor(5/8*X.shape[0]))\n", |
|
|
148 |
"\n", |
|
|
149 |
"\n", |
|
|
150 |
"train_set = SignalAndTarget(X[:nb_train_trials], y=y[:nb_train_trials])\n", |
|
|
151 |
"test_set = SignalAndTarget(X[nb_train_trials:], y=y[nb_train_trials:])\n", |
|
|
152 |
"\n", |
|
|
153 |
"#train_set = SignalAndTarget(X[:nb_train_trials], y=y[:nb_train_trials])\n", |
|
|
154 |
"#test_set = SignalAndTarget(X[nb_train_trials:nb_test_trials], y=y[nb_train_trials:nb_test_trials])\n", |
|
|
155 |
"\n", |
|
|
156 |
"# Set if you want to use GPU\n", |
|
|
157 |
"# You can also use torch.cuda.is_available() to determine if cuda is available on your machine.\n", |
|
|
158 |
"cuda = torch.cuda.is_available()\n", |
|
|
159 |
"set_random_seeds(seed=20170629, cuda=cuda)\n", |
|
|
160 |
"n_classes = 2\n", |
|
|
161 |
"in_chans = train_set.X.shape[1]\n", |
|
|
162 |
"# final_conv_length = auto ensures we only get a single output in the time dimension\n", |
|
|
163 |
"model = ShallowFBCSPNet(in_chans=in_chans, n_classes=n_classes,\n", |
|
|
164 |
" input_time_length=train_set.X.shape[2],\n", |
|
|
165 |
" final_conv_length='auto').create_network()\n", |
|
|
166 |
"if cuda:\n", |
|
|
167 |
" model.cuda()\n", |
|
|
168 |
"\n", |
|
|
169 |
"optimizer = optim.Adam(model.parameters())\n" |
|
|
170 |
] |
|
|
171 |
}, |
|
|
172 |
{ |
|
|
173 |
"cell_type": "code", |
|
|
174 |
"execution_count": 27, |
|
|
175 |
"metadata": { |
|
|
176 |
"scrolled": false |
|
|
177 |
}, |
|
|
178 |
"outputs": [ |
|
|
179 |
{ |
|
|
180 |
"name": "stdout", |
|
|
181 |
"output_type": "stream", |
|
|
182 |
"text": [ |
|
|
183 |
"Epoch 0\n", |
|
|
184 |
"Train Loss: 23.12267\n", |
|
|
185 |
"Train Accuracy: 51.0%\n", |
|
|
186 |
"Test Loss: 23.45116\n", |
|
|
187 |
"Test Accuracy: 46.7%\n", |
|
|
188 |
"Epoch 1\n", |
|
|
189 |
"Train Loss: 11.42247\n", |
|
|
190 |
"Train Accuracy: 50.0%\n", |
|
|
191 |
"Test Loss: 11.18545\n", |
|
|
192 |
"Test Accuracy: 51.7%\n", |
|
|
193 |
"Epoch 2\n", |
|
|
194 |
"Train Loss: 6.14801\n", |
|
|
195 |
"Train Accuracy: 49.0%\n", |
|
|
196 |
"Test Loss: 5.97394\n", |
|
|
197 |
"Test Accuracy: 50.0%\n", |
|
|
198 |
"Epoch 3\n", |
|
|
199 |
"Train Loss: 7.08030\n", |
|
|
200 |
"Train Accuracy: 51.0%\n", |
|
|
201 |
"Test Loss: 7.17894\n", |
|
|
202 |
"Test Accuracy: 46.7%\n", |
|
|
203 |
"Epoch 4\n", |
|
|
204 |
"Train Loss: 2.78045\n", |
|
|
205 |
"Train Accuracy: 51.0%\n", |
|
|
206 |
"Test Loss: 2.80417\n", |
|
|
207 |
"Test Accuracy: 48.3%\n", |
|
|
208 |
"Epoch 5\n", |
|
|
209 |
"Train Loss: 3.10231\n", |
|
|
210 |
"Train Accuracy: 49.0%\n", |
|
|
211 |
"Test Loss: 3.01706\n", |
|
|
212 |
"Test Accuracy: 51.7%\n", |
|
|
213 |
"Epoch 6\n", |
|
|
214 |
"Train Loss: 0.77492\n", |
|
|
215 |
"Train Accuracy: 59.0%\n", |
|
|
216 |
"Test Loss: 0.73021\n", |
|
|
217 |
"Test Accuracy: 55.0%\n", |
|
|
218 |
"Epoch 7\n", |
|
|
219 |
"Train Loss: 2.08993\n", |
|
|
220 |
"Train Accuracy: 53.0%\n", |
|
|
221 |
"Test Loss: 2.06789\n", |
|
|
222 |
"Test Accuracy: 48.3%\n", |
|
|
223 |
"Epoch 8\n", |
|
|
224 |
"Train Loss: 0.78730\n", |
|
|
225 |
"Train Accuracy: 64.0%\n", |
|
|
226 |
"Test Loss: 0.69451\n", |
|
|
227 |
"Test Accuracy: 58.3%\n", |
|
|
228 |
"Epoch 9\n", |
|
|
229 |
"Train Loss: 0.72214\n", |
|
|
230 |
"Train Accuracy: 65.0%\n", |
|
|
231 |
"Test Loss: 0.62667\n", |
|
|
232 |
"Test Accuracy: 58.3%\n", |
|
|
233 |
"Epoch 10\n", |
|
|
234 |
"Train Loss: 1.04905\n", |
|
|
235 |
"Train Accuracy: 57.0%\n", |
|
|
236 |
"Test Loss: 0.94240\n", |
|
|
237 |
"Test Accuracy: 43.3%\n", |
|
|
238 |
"Epoch 11\n", |
|
|
239 |
"Train Loss: 1.06353\n", |
|
|
240 |
"Train Accuracy: 62.0%\n", |
|
|
241 |
"Test Loss: 0.92665\n", |
|
|
242 |
"Test Accuracy: 63.3%\n", |
|
|
243 |
"Epoch 12\n", |
|
|
244 |
"Train Loss: 0.73815\n", |
|
|
245 |
"Train Accuracy: 67.0%\n", |
|
|
246 |
"Test Loss: 0.61124\n", |
|
|
247 |
"Test Accuracy: 60.0%\n", |
|
|
248 |
"Epoch 13\n", |
|
|
249 |
"Train Loss: 1.21130\n", |
|
|
250 |
"Train Accuracy: 56.0%\n", |
|
|
251 |
"Test Loss: 1.06474\n", |
|
|
252 |
"Test Accuracy: 46.7%\n", |
|
|
253 |
"Epoch 14\n", |
|
|
254 |
"Train Loss: 0.57069\n", |
|
|
255 |
"Train Accuracy: 73.0%\n", |
|
|
256 |
"Test Loss: 0.44313\n", |
|
|
257 |
"Test Accuracy: 56.7%\n", |
|
|
258 |
"Epoch 15\n", |
|
|
259 |
"Train Loss: 0.95924\n", |
|
|
260 |
"Train Accuracy: 62.0%\n", |
|
|
261 |
"Test Loss: 0.83465\n", |
|
|
262 |
"Test Accuracy: 58.3%\n", |
|
|
263 |
"Epoch 16\n", |
|
|
264 |
"Train Loss: 0.61197\n", |
|
|
265 |
"Train Accuracy: 68.0%\n", |
|
|
266 |
"Test Loss: 0.45661\n", |
|
|
267 |
"Test Accuracy: 45.0%\n", |
|
|
268 |
"Epoch 17\n", |
|
|
269 |
"Train Loss: 0.68676\n", |
|
|
270 |
"Train Accuracy: 67.0%\n", |
|
|
271 |
"Test Loss: 0.52255\n", |
|
|
272 |
"Test Accuracy: 51.7%\n", |
|
|
273 |
"Epoch 18\n", |
|
|
274 |
"Train Loss: 0.59275\n", |
|
|
275 |
"Train Accuracy: 71.0%\n", |
|
|
276 |
"Test Loss: 0.49090\n", |
|
|
277 |
"Test Accuracy: 61.7%\n", |
|
|
278 |
"Epoch 19\n", |
|
|
279 |
"Train Loss: 0.46892\n", |
|
|
280 |
"Train Accuracy: 78.0%\n", |
|
|
281 |
"Test Loss: 0.37154\n", |
|
|
282 |
"Test Accuracy: 51.7%\n", |
|
|
283 |
"Epoch 20\n", |
|
|
284 |
"Train Loss: 0.87564\n", |
|
|
285 |
"Train Accuracy: 63.0%\n", |
|
|
286 |
"Test Loss: 0.72043\n", |
|
|
287 |
"Test Accuracy: 51.7%\n", |
|
|
288 |
"Epoch 21\n", |
|
|
289 |
"Train Loss: 0.54479\n", |
|
|
290 |
"Train Accuracy: 73.0%\n", |
|
|
291 |
"Test Loss: 0.42003\n", |
|
|
292 |
"Test Accuracy: 51.7%\n", |
|
|
293 |
"Epoch 22\n", |
|
|
294 |
"Train Loss: 0.47825\n", |
|
|
295 |
"Train Accuracy: 80.0%\n", |
|
|
296 |
"Test Loss: 0.40232\n", |
|
|
297 |
"Test Accuracy: 53.3%\n", |
|
|
298 |
"Epoch 23\n", |
|
|
299 |
"Train Loss: 0.47127\n", |
|
|
300 |
"Train Accuracy: 80.0%\n", |
|
|
301 |
"Test Loss: 0.39606\n", |
|
|
302 |
"Test Accuracy: 55.0%\n", |
|
|
303 |
"Epoch 24\n", |
|
|
304 |
"Train Loss: 0.39154\n", |
|
|
305 |
"Train Accuracy: 83.0%\n", |
|
|
306 |
"Test Loss: 0.29514\n", |
|
|
307 |
"Test Accuracy: 48.3%\n", |
|
|
308 |
"Epoch 25\n", |
|
|
309 |
"Train Loss: 0.42451\n", |
|
|
310 |
"Train Accuracy: 80.0%\n", |
|
|
311 |
"Test Loss: 0.29410\n", |
|
|
312 |
"Test Accuracy: 53.3%\n", |
|
|
313 |
"Epoch 26\n", |
|
|
314 |
"Train Loss: 0.37418\n", |
|
|
315 |
"Train Accuracy: 85.0%\n", |
|
|
316 |
"Test Loss: 0.26566\n", |
|
|
317 |
"Test Accuracy: 53.3%\n", |
|
|
318 |
"Epoch 27\n", |
|
|
319 |
"Train Loss: 0.35942\n", |
|
|
320 |
"Train Accuracy: 84.0%\n", |
|
|
321 |
"Test Loss: 0.27371\n", |
|
|
322 |
"Test Accuracy: 53.3%\n", |
|
|
323 |
"Epoch 28\n", |
|
|
324 |
"Train Loss: 0.37682\n", |
|
|
325 |
"Train Accuracy: 83.0%\n", |
|
|
326 |
"Test Loss: 0.31713\n", |
|
|
327 |
"Test Accuracy: 55.0%\n", |
|
|
328 |
"Epoch 29\n", |
|
|
329 |
"Train Loss: 0.34180\n", |
|
|
330 |
"Train Accuracy: 83.0%\n", |
|
|
331 |
"Test Loss: 0.25558\n", |
|
|
332 |
"Test Accuracy: 55.0%\n", |
|
|
333 |
"Epoch 30\n", |
|
|
334 |
"Train Loss: 0.33804\n", |
|
|
335 |
"Train Accuracy: 87.0%\n", |
|
|
336 |
"Test Loss: 0.23607\n", |
|
|
337 |
"Test Accuracy: 53.3%\n", |
|
|
338 |
"Epoch 31\n", |
|
|
339 |
"Train Loss: 0.31833\n", |
|
|
340 |
"Train Accuracy: 86.0%\n", |
|
|
341 |
"Test Loss: 0.22466\n", |
|
|
342 |
"Test Accuracy: 51.7%\n", |
|
|
343 |
"Epoch 32\n", |
|
|
344 |
"Train Loss: 0.29819\n", |
|
|
345 |
"Train Accuracy: 87.0%\n", |
|
|
346 |
"Test Loss: 0.22489\n", |
|
|
347 |
"Test Accuracy: 50.0%\n", |
|
|
348 |
"Epoch 33\n", |
|
|
349 |
"Train Loss: 0.31271\n", |
|
|
350 |
"Train Accuracy: 89.0%\n", |
|
|
351 |
"Test Loss: 0.25959\n", |
|
|
352 |
"Test Accuracy: 55.0%\n", |
|
|
353 |
"Epoch 34\n", |
|
|
354 |
"Train Loss: 0.29346\n", |
|
|
355 |
"Train Accuracy: 88.0%\n", |
|
|
356 |
"Test Loss: 0.23652\n", |
|
|
357 |
"Test Accuracy: 53.3%\n", |
|
|
358 |
"Epoch 35\n", |
|
|
359 |
"Train Loss: 0.28696\n", |
|
|
360 |
"Train Accuracy: 86.0%\n", |
|
|
361 |
"Test Loss: 0.21594\n", |
|
|
362 |
"Test Accuracy: 51.7%\n", |
|
|
363 |
"Epoch 36\n", |
|
|
364 |
"Train Loss: 0.28489\n", |
|
|
365 |
"Train Accuracy: 87.0%\n", |
|
|
366 |
"Test Loss: 0.20726\n", |
|
|
367 |
"Test Accuracy: 53.3%\n", |
|
|
368 |
"Epoch 37\n", |
|
|
369 |
"Train Loss: 0.25652\n", |
|
|
370 |
"Train Accuracy: 90.0%\n", |
|
|
371 |
"Test Loss: 0.18759\n", |
|
|
372 |
"Test Accuracy: 48.3%\n", |
|
|
373 |
"Epoch 38\n", |
|
|
374 |
"Train Loss: 0.28203\n", |
|
|
375 |
"Train Accuracy: 89.0%\n", |
|
|
376 |
"Test Loss: 0.22545\n", |
|
|
377 |
"Test Accuracy: 51.7%\n", |
|
|
378 |
"Epoch 39\n", |
|
|
379 |
"Train Loss: 0.24893\n", |
|
|
380 |
"Train Accuracy: 93.0%\n", |
|
|
381 |
"Test Loss: 0.18108\n", |
|
|
382 |
"Test Accuracy: 50.0%\n", |
|
|
383 |
"Epoch 40\n", |
|
|
384 |
"Train Loss: 0.26061\n", |
|
|
385 |
"Train Accuracy: 90.0%\n", |
|
|
386 |
"Test Loss: 0.17375\n", |
|
|
387 |
"Test Accuracy: 50.0%\n", |
|
|
388 |
"Epoch 41\n", |
|
|
389 |
"Train Loss: 0.24927\n", |
|
|
390 |
"Train Accuracy: 92.0%\n", |
|
|
391 |
"Test Loss: 0.16775\n", |
|
|
392 |
"Test Accuracy: 51.7%\n", |
|
|
393 |
"Epoch 42\n", |
|
|
394 |
"Train Loss: 0.23456\n", |
|
|
395 |
"Train Accuracy: 92.0%\n", |
|
|
396 |
"Test Loss: 0.16739\n", |
|
|
397 |
"Test Accuracy: 51.7%\n", |
|
|
398 |
"Epoch 43\n", |
|
|
399 |
"Train Loss: 0.23747\n", |
|
|
400 |
"Train Accuracy: 92.0%\n", |
|
|
401 |
"Test Loss: 0.18819\n", |
|
|
402 |
"Test Accuracy: 51.7%\n", |
|
|
403 |
"Epoch 44\n", |
|
|
404 |
"Train Loss: 0.22980\n", |
|
|
405 |
"Train Accuracy: 92.0%\n", |
|
|
406 |
"Test Loss: 0.18161\n", |
|
|
407 |
"Test Accuracy: 51.7%\n", |
|
|
408 |
"Epoch 45\n", |
|
|
409 |
"Train Loss: 0.22144\n", |
|
|
410 |
"Train Accuracy: 94.0%\n", |
|
|
411 |
"Test Loss: 0.16714\n", |
|
|
412 |
"Test Accuracy: 50.0%\n", |
|
|
413 |
"Epoch 46\n", |
|
|
414 |
"Train Loss: 0.23376\n", |
|
|
415 |
"Train Accuracy: 92.0%\n", |
|
|
416 |
"Test Loss: 0.16477\n", |
|
|
417 |
"Test Accuracy: 51.7%\n", |
|
|
418 |
"Epoch 47\n", |
|
|
419 |
"Train Loss: 0.20786\n", |
|
|
420 |
"Train Accuracy: 95.0%\n", |
|
|
421 |
"Test Loss: 0.15308\n", |
|
|
422 |
"Test Accuracy: 50.0%\n", |
|
|
423 |
"Epoch 48\n", |
|
|
424 |
"Train Loss: 0.20483\n", |
|
|
425 |
"Train Accuracy: 94.0%\n", |
|
|
426 |
"Test Loss: 0.16679\n", |
|
|
427 |
"Test Accuracy: 50.0%\n", |
|
|
428 |
"Epoch 49\n", |
|
|
429 |
"Train Loss: 0.19644\n", |
|
|
430 |
"Train Accuracy: 95.0%\n", |
|
|
431 |
"Test Loss: 0.15150\n", |
|
|
432 |
"Test Accuracy: 50.0%\n" |
|
|
433 |
] |
|
|
434 |
} |
|
|
435 |
], |
|
|
436 |
"source": [ |
|
|
437 |
"\n", |
|
|
438 |
"from braindecode.torch_ext.util import np_to_var, var_to_np\n", |
|
|
439 |
"from braindecode.datautil.iterators import get_balanced_batches\n", |
|
|
440 |
"import torch.nn.functional as F\n", |
|
|
441 |
"from numpy.random import RandomState\n", |
|
|
442 |
"rng = RandomState(None)\n", |
|
|
443 |
"#rng = RandomState((2017,6,30))\n", |
|
|
444 |
"for i_epoch in range(50):\n", |
|
|
445 |
" i_trials_in_batch = get_balanced_batches(len(train_set.X), rng, shuffle=True,\n", |
|
|
446 |
" batch_size=32)\n", |
|
|
447 |
" # Set model to training mode\n", |
|
|
448 |
" model.train()\n", |
|
|
449 |
" for i_trials in i_trials_in_batch:\n", |
|
|
450 |
" # Have to add empty fourth dimension to X\n", |
|
|
451 |
" batch_X = train_set.X[i_trials][:,:,:,None]\n", |
|
|
452 |
" batch_y = train_set.y[i_trials]\n", |
|
|
453 |
" net_in = np_to_var(batch_X)\n", |
|
|
454 |
" if cuda:\n", |
|
|
455 |
" net_in = net_in.cuda()\n", |
|
|
456 |
" net_target = np_to_var(batch_y)\n", |
|
|
457 |
" if cuda:\n", |
|
|
458 |
" net_target = net_target.cuda()\n", |
|
|
459 |
" # Remove gradients of last backward pass from all parameters\n", |
|
|
460 |
" optimizer.zero_grad()\n", |
|
|
461 |
" # Compute outputs of the network\n", |
|
|
462 |
" outputs = model(net_in)\n", |
|
|
463 |
" # Compute the loss\n", |
|
|
464 |
" loss = F.nll_loss(outputs, net_target)\n", |
|
|
465 |
" # Do the backpropagation\n", |
|
|
466 |
" loss.backward()\n", |
|
|
467 |
" # Update parameters with the optimizer\n", |
|
|
468 |
" optimizer.step()\n", |
|
|
469 |
"\n", |
|
|
470 |
" # Print some statistics each epoch\n", |
|
|
471 |
" model.eval()\n", |
|
|
472 |
" print(\"Epoch {:d}\".format(i_epoch))\n", |
|
|
473 |
" for setname, dataset in (('Train', train_set), ('Test', test_set)):\n", |
|
|
474 |
" i_trials_in_batch = get_balanced_batches(len(dataset.X), rng, batch_size=32, shuffle=False)\n", |
|
|
475 |
" outputs = []\n", |
|
|
476 |
" net_targets = []\n", |
|
|
477 |
" for i_trials in i_trials_in_batch:\n", |
|
|
478 |
" batch_X = train_set.X[i_trials][:,:,:,None]\n", |
|
|
479 |
" batch_y = train_set.y[i_trials]\n", |
|
|
480 |
" \n", |
|
|
481 |
" net_in = np_to_var(batch_X)\n", |
|
|
482 |
" if cuda:\n", |
|
|
483 |
" net_in = net_in.cuda()\n", |
|
|
484 |
" net_target = np_to_var(batch_y)\n", |
|
|
485 |
" if cuda:\n", |
|
|
486 |
" net_target = net_target.cuda()\n", |
|
|
487 |
" net_target = var_to_np(net_target)\n", |
|
|
488 |
" output = var_to_np(model(net_in))\n", |
|
|
489 |
" outputs.append(output)\n", |
|
|
490 |
" net_targets.append(net_target)\n", |
|
|
491 |
" net_targets = np_to_var(np.concatenate(net_targets))\n", |
|
|
492 |
" outputs = np_to_var(np.concatenate(outputs))\n", |
|
|
493 |
" loss = F.nll_loss(outputs, net_targets)\n", |
|
|
494 |
" print(\"{:6s} Loss: {:.5f}\".format(\n", |
|
|
495 |
" setname, float(var_to_np(loss))))\n", |
|
|
496 |
" predicted_labels = np.argmax(var_to_np(outputs), axis=1)\n", |
|
|
497 |
" accuracy = np.mean(dataset.y == predicted_labels)\n", |
|
|
498 |
" print(\"{:6s} Accuracy: {:.1f}%\".format(\n", |
|
|
499 |
" setname, accuracy * 100))" |
|
|
500 |
] |
|
|
501 |
}, |
|
|
502 |
{ |
|
|
503 |
"cell_type": "code", |
|
|
504 |
"execution_count": 6, |
|
|
505 |
"metadata": {}, |
|
|
506 |
"outputs": [], |
|
|
507 |
"source": [ |
|
|
508 |
"# Problem: RAM not big enough\n", |
|
|
509 |
"# next session, manage batches through the hard drive\n", |
|
|
510 |
"# add analytics on training performance\n", |
|
|
511 |
"\n", |
|
|
512 |
"# rough results\n", |
|
|
513 |
"# Subject 1:--------------------------------------------\n", |
|
|
514 |
"# Epoch 49\n", |
|
|
515 |
"# Train Loss: 0.00253\n", |
|
|
516 |
"# Train Accuracy: 100.0%\n", |
|
|
517 |
"# Test Loss: 0.00272\n", |
|
|
518 |
"# Test Accuracy: 60.0%\n", |
|
|
519 |
"\n", |
|
|
520 |
"\n", |
|
|
521 |
"# Subject 2:--------------------------------------------\n", |
|
|
522 |
"# Epoch 49\n", |
|
|
523 |
"# Train Loss: 0.00132\n", |
|
|
524 |
"# Train Accuracy: 100.0%\n", |
|
|
525 |
"# Test Loss: 0.00145\n", |
|
|
526 |
"# Test Accuracy: 45.0%\n", |
|
|
527 |
"\n", |
|
|
528 |
"\n", |
|
|
529 |
"# Subject 3:--------------------------------------------\n", |
|
|
530 |
"# Epoch 27\n", |
|
|
531 |
"# Train Loss: 0.00212\n", |
|
|
532 |
"# Train Accuracy: 100.0%\n", |
|
|
533 |
"# Test Loss: 0.00209\n", |
|
|
534 |
"# Test Accuracy: 43.3%\n", |
|
|
535 |
"\n", |
|
|
536 |
"\n", |
|
|
537 |
"# Subject 4:--------------------------------------------\n", |
|
|
538 |
"# Epoch 34\n", |
|
|
539 |
"# Train Loss: 0.00524\n", |
|
|
540 |
"# Train Accuracy: 100.0%\n", |
|
|
541 |
"# Test Loss: 0.00559\n", |
|
|
542 |
"# Test Accuracy: 46.7%\n", |
|
|
543 |
"\n", |
|
|
544 |
"# Subject 5:--------------------------------------------\n", |
|
|
545 |
"# Epoch 33\n", |
|
|
546 |
"# Train Loss: 0.01777\n", |
|
|
547 |
"# Train Accuracy: 100.0%\n", |
|
|
548 |
"# Test Loss: 0.00994\n", |
|
|
549 |
"# Test Accuracy: 55.0%\n", |
|
|
550 |
"\n", |
|
|
551 |
"# Subject 6:\n", |
|
|
552 |
"# Epoch 49\n", |
|
|
553 |
"# Train Loss: 0.00556\n", |
|
|
554 |
"# Train Accuracy: 100.0%\n", |
|
|
555 |
"# Test Loss: 0.00560\n", |
|
|
556 |
"# Test Accuracy: 56.7%\n", |
|
|
557 |
"\n", |
|
|
558 |
"# Subject 7:\n", |
|
|
559 |
"# Epoch 49\n", |
|
|
560 |
"# Train Loss: 0.00129\n", |
|
|
561 |
"# Train Accuracy: 100.0%\n", |
|
|
562 |
"# Test Loss: 0.00143\n", |
|
|
563 |
"# Test Accuracy: 51.7%\n", |
|
|
564 |
"\n", |
|
|
565 |
"\n", |
|
|
566 |
"# Subject 8:\n", |
|
|
567 |
"# Epoch 49\n", |
|
|
568 |
"# Train Loss: 0.19644\n", |
|
|
569 |
"# Train Accuracy: 95.0%\n", |
|
|
570 |
"# Test Loss: 0.15150\n", |
|
|
571 |
"# Test Accuracy: 50.0%" |
|
|
572 |
] |
|
|
573 |
}, |
|
|
574 |
{ |
|
|
575 |
"cell_type": "code", |
|
|
576 |
"execution_count": null, |
|
|
577 |
"metadata": {}, |
|
|
578 |
"outputs": [], |
|
|
579 |
"source": [] |
|
|
580 |
} |
|
|
581 |
], |
|
|
582 |
"metadata": { |
|
|
583 |
"kernelspec": { |
|
|
584 |
"display_name": "Python 3", |
|
|
585 |
"language": "python", |
|
|
586 |
"name": "python3" |
|
|
587 |
}, |
|
|
588 |
"language_info": { |
|
|
589 |
"codemirror_mode": { |
|
|
590 |
"name": "ipython", |
|
|
591 |
"version": 3 |
|
|
592 |
}, |
|
|
593 |
"file_extension": ".py", |
|
|
594 |
"mimetype": "text/x-python", |
|
|
595 |
"name": "python", |
|
|
596 |
"nbconvert_exporter": "python", |
|
|
597 |
"pygments_lexer": "ipython3", |
|
|
598 |
"version": "3.6.5" |
|
|
599 |
} |
|
|
600 |
}, |
|
|
601 |
"nbformat": 4, |
|
|
602 |
"nbformat_minor": 2 |
|
|
603 |
} |