|
a |
|
b/featurebased-approach/subfunctions/morphofeatures.m |
|
|
1 |
function feats = morphofeatures(signal,fs,qrs,recordName) |
|
|
2 |
% This function obtains morphological features from raw ECG data. |
|
|
3 |
% |
|
|
4 |
% -- |
|
|
5 |
% ECG classification from single-lead segments using Deep Convolutional Neural |
|
|
6 |
% Networks and Feature-Based Approaches - December 2017 |
|
|
7 |
% |
|
|
8 |
% Released under the GNU General Public License |
|
|
9 |
% |
|
|
10 |
% Copyright (C) 2017 Fernando Andreotti, Oliver Carr |
|
|
11 |
% University of Oxford, Insitute of Biomedical Engineering, CIBIM Lab - Oxford 2017 |
|
|
12 |
% fernando.andreotti@eng.ox.ac.uk |
|
|
13 |
% |
|
|
14 |
% |
|
|
15 |
% For more information visit: https://github.com/fernandoandreotti/cinc-challenge2017 |
|
|
16 |
% |
|
|
17 |
% Referencing this work |
|
|
18 |
% |
|
|
19 |
% Andreotti, F., Carr, O., Pimentel, M.A.F., Mahdi, A., & De Vos, M. (2017). |
|
|
20 |
% Comparing Feature Based Classifiers and Convolutional Neural Networks to Detect |
|
|
21 |
% Arrhythmia from Short Segments of ECG. In Computing in Cardiology. Rennes (France). |
|
|
22 |
% |
|
|
23 |
% Last updated : December 2017 |
|
|
24 |
% |
|
|
25 |
% This program is free software: you can redistribute it and/or modify |
|
|
26 |
% it under the terms of the GNU General Public License as published by |
|
|
27 |
% the Free Software Foundation, either version 3 of the License, or |
|
|
28 |
% (at your option) any later version. |
|
|
29 |
% |
|
|
30 |
% This program is distributed in the hope that it will be useful, |
|
|
31 |
% but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
|
32 |
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
|
33 |
% GNU General Public License for more details. |
|
|
34 |
% |
|
|
35 |
% You should have received a copy of the GNU General Public License |
|
|
36 |
% along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
|
37 |
fsnew = 250; |
|
|
38 |
gain = 3000; |
|
|
39 |
T_LENGTH = 200; % about a second |
|
|
40 |
NB_BINS = 250; |
|
|
41 |
Nfeats = 17; |
|
|
42 |
% Bandpass filter for morphological analysis |
|
|
43 |
Fhigh = 1; % highpass frequency [Hz] |
|
|
44 |
Flow = 100; % low pass frequency [Hz] |
|
|
45 |
Nbut = 12; % order of Butterworth filter |
|
|
46 |
d_bp= design(fdesign.bandpass('N,F3dB1,F3dB2',Nbut,Fhigh,Flow,fs),'butter'); |
|
|
47 |
[b_bp2,a_bp2] = tf(d_bp); |
|
|
48 |
clear Fhigh Flow Nbut d_bp |
|
|
49 |
signal = filtfilt(b_bp2,a_bp2,signal); % filtering |
|
|
50 |
signal = detrend(signal); |
|
|
51 |
|
|
|
52 |
recordName = ['pu' recordName]; |
|
|
53 |
% Resampling for ECGPUWAVE |
|
|
54 |
sigres=resample(signal,fsnew,fs); |
|
|
55 |
qrsfinal = round(qrs{end}*fsnew/fs); |
|
|
56 |
|
|
|
57 |
|
|
|
58 |
% Morphological features |
|
|
59 |
%% Running ECGPUWAVE for normal beats |
|
|
60 |
% == Using average normal beat |
|
|
61 |
try |
|
|
62 |
[M,RES] = stackbeats(sigres,qrsfinal,T_LENGTH,NB_BINS); |
|
|
63 |
template = mean(M,2); |
|
|
64 |
template = resample(template,RES,NB_BINS); |
|
|
65 |
template = detrend(template); |
|
|
66 |
fake_sig = repmat(template,1,20); |
|
|
67 |
smoothvec = [0:0.1:0.9, ones(1,size(fake_sig,1)-20),0.9:-0.1:0]'; |
|
|
68 |
fake_sig = bsxfun(@times,fake_sig,smoothvec); % smoothing edges |
|
|
69 |
fake_sig = reshape(fake_sig,[],1); |
|
|
70 |
fake_sig = detrend(fake_sig); |
|
|
71 |
tm = 1/fsnew:1/fsnew:length(fake_sig)/fsnew; |
|
|
72 |
tm = tm'-1/fsnew; |
|
|
73 |
[~,I] = max(abs(fake_sig)); |
|
|
74 |
wsign = sign(fake_sig(I)); % looking for signal sign |
|
|
75 |
qrsfake = cumsum([0 repmat(RES,1,19)]) + floor(RES/2); |
|
|
76 |
fake_sig = 2*gain*wsign(1)*fake_sig/max(abs(fake_sig)); |
|
|
77 |
wrsamp(tm,fake_sig,recordName,fsnew,gain,'') |
|
|
78 |
wrann(recordName,'qrs',qrsfake-1,repmat('N',length(qrsfake),1)); |
|
|
79 |
if isunix |
|
|
80 |
system(['ecgpuwave -r ' recordName '.hea' ' -a ecgpu -i qrs']); |
|
|
81 |
else |
|
|
82 |
ecgpuwave(recordName,'ecgpu',[],[],'qrs'); % important to specify the QRS because it seems that ecgpuwave is crashing sometimes otherwise |
|
|
83 |
end |
|
|
84 |
[allref,alltypes_r] = rdann(recordName,'ecgpu'); |
|
|
85 |
fake_sig = fake_sig./gain; |
|
|
86 |
featavgnorm = FECGSYN_QTcalc(alltypes_r,allref,fake_sig,fsnew); |
|
|
87 |
feats = struct2array(featavgnorm); |
|
|
88 |
feats(isnan(feats)) = 0; |
|
|
89 |
catch |
|
|
90 |
warning('ecgpuwave NORMAL average has failed.') |
|
|
91 |
feats = zeros(1,Nfeats); |
|
|
92 |
end |
|
|
93 |
|
|
|
94 |
delete([recordName '.*']) |
|
|
95 |
|
|
|
96 |
end |
|
|
97 |
|
|
|
98 |
function feats = FECGSYN_QTcalc(ann_types,ann_stamp,signal,fs) |
|
|
99 |
|
|
|
100 |
temp_types = ann_types; % allows exclusion of unsuitable annotations |
|
|
101 |
temp_stamp = ann_stamp;zeros(1,10); |
|
|
102 |
feats = struct('QRSheight',0,'QRSwidth',0,'QRSpow',0,... |
|
|
103 |
'noPwave',0,'Pheight',0,'Pwidth',0,'Ppow',0,... |
|
|
104 |
'Theight',0,'Twidth',0,'Tpow',0,... |
|
|
105 |
'Theightnorm',0,'Pheightnorm',0,'Prelpow',0,... |
|
|
106 |
'PTrelpow',0,'Trelpow',0,'QTlen',0,'PRlen',0); |
|
|
107 |
|
|
|
108 |
%== Treat biphasic T-waves |
|
|
109 |
annstr = strcat({temp_types'}); |
|
|
110 |
idxbi=cell2mat(regexp(annstr,'tt')); % biphasic |
|
|
111 |
nonbi2= cell2mat(regexp(annstr,'\)t\(')) +1; % weird t |
|
|
112 |
nonbi3= cell2mat(regexp(annstr,'\)t\)')) +1; % weird t2 |
|
|
113 |
if sum(idxbi) > 0 % case biphasic waves occured |
|
|
114 |
posmax = [idxbi' idxbi'+1]; |
|
|
115 |
[~,bindx]=max(abs(signal(ann_stamp(posmax))),[],2); % max abs value between tt |
|
|
116 |
clearidx = [idxbi+double(bindx'==1) nonbi2 nonbi3]; |
|
|
117 |
%idxbi = idxbi + bindx -1; % new index to consider |
|
|
118 |
temp_types(clearidx) = []; % clearing biphasic cases |
|
|
119 |
temp_stamp(clearidx) = []; |
|
|
120 |
end |
|
|
121 |
|
|
|
122 |
clear biphasic teesfollowed nonbi1 nonbi2 nonbi3 bindx clearidx posmax idxbi |
|
|
123 |
|
|
|
124 |
%== Remove incomplete beats |
|
|
125 |
comp=cell2mat(regexp(cellstr(temp_types'),'\(p\)\(N\)\(t\)')); % regular |
|
|
126 |
beats = temp_stamp(cell2mat(arrayfun(@(x) x:x+8,comp','uniformoutput',0))); |
|
|
127 |
skipP = false; |
|
|
128 |
if isempty(beats) |
|
|
129 |
comp=cell2mat(regexp(cellstr(temp_types'),'\(t\)\(N\)\(t\)')); % missing P-wave |
|
|
130 |
if isempty(comp), return, end % if ECGPUWAVE does not really work then output zeros |
|
|
131 |
beats = temp_stamp(cell2mat(arrayfun(@(x) x:x+8,comp','uniformoutput',0))); |
|
|
132 |
skipP = true; |
|
|
133 |
feats.noPwave = 1; |
|
|
134 |
else |
|
|
135 |
feats.noPwave = 0; |
|
|
136 |
end |
|
|
137 |
|
|
|
138 |
if size(beats,2)==1; beats = beats';end % case single beat is available |
|
|
139 |
Pstart = beats(:,1); |
|
|
140 |
validP = beats(:,2); |
|
|
141 |
Pend = beats(:,3); |
|
|
142 |
Rstart = beats(:,4); |
|
|
143 |
validR = beats(:,5); |
|
|
144 |
Rend = beats(:,6); |
|
|
145 |
Tstart = beats(:,7); |
|
|
146 |
validT = beats(:,8); |
|
|
147 |
Tend = beats(:,9); |
|
|
148 |
|
|
|
149 |
%% Calculating features |
|
|
150 |
feats.QRSheight = abs(median(min([signal(Rstart) signal(Rend)],[],2) - signal(validR))); % T-wave height |
|
|
151 |
feats.QRSwidth = median(Rend - Rstart)/fs; % T-wave width |
|
|
152 |
feats.QRSpow = sum(signal(Rstart:Rend).^2); |
|
|
153 |
|
|
|
154 |
if ~skipP |
|
|
155 |
feats.Pheight = abs(median(median([signal(Pstart) signal(Pend)],2) - signal(validP))); % P-wave height |
|
|
156 |
feats.Pwidth = median(Pend - Pstart)/fs; % P-wave width |
|
|
157 |
feats.Ppow = sum(signal(Pstart:Pend).^2); |
|
|
158 |
end |
|
|
159 |
|
|
|
160 |
feats.Theight = abs(median(median([signal(Tstart) signal(Tend)],2) - signal(validT))); % T-wave height |
|
|
161 |
feats.Twidth = median(Tend - Tstart)/fs; % T-wave width |
|
|
162 |
feats.Tpow = sum(signal(Tstart:Tend).^2); |
|
|
163 |
|
|
|
164 |
feats.Theightnorm = feats.Theight/feats.QRSheight; |
|
|
165 |
feats.Trelpow = feats.Tpow/feats.QRSpow; |
|
|
166 |
|
|
|
167 |
if ~skipP |
|
|
168 |
feats.Pheightnorm = feats.Pheight/feats.QRSheight; |
|
|
169 |
feats.Prelpow = feats.Ppow/feats.QRSpow; |
|
|
170 |
feats.PTrelpow = feats.Ppow/feats.Tpow; |
|
|
171 |
end |
|
|
172 |
|
|
|
173 |
QT_MAX = 0.5*fs; % Maximal QT length (in s) MAY VARY DEPENDING ON APPLICATION! |
|
|
174 |
QT_MIN = 0.1*fs; % Minimal QT length (in s) MAY VARY DEPENDING ON APPLICATION! |
|
|
175 |
[~,dist] = dsearchn(Rstart,Tend); % closest ref for each point in test qrs |
|
|
176 |
feats.QTlen = median(dist(dist<QT_MAX&dist>QT_MIN))/fs; |
|
|
177 |
|
|
|
178 |
if ~skipP |
|
|
179 |
PR_MAX = 0.3*fs; % Maximal QT length (in s) MAY VARY DEPENDING ON APPLICATION! |
|
|
180 |
PR_MIN = 0.05*fs; % Minimal QT length (in s) MAY VARY DEPENDING ON APPLICATION! |
|
|
181 |
[~,dist] = dsearchn(validP,validR); % closest ref for each point in test qrs |
|
|
182 |
feats.PRlen = median(dist(dist<PR_MAX&dist>PR_MIN))/fs; |
|
|
183 |
end |
|
|
184 |
|
|
|
185 |
end |