|
a |
|
b/deeplearn-approach/predict.py |
|
|
1 |
''' |
|
|
2 |
This function loads one random recording from CinC Challenge and use pre-trained model in predicting what it is using Residual Networks |
|
|
3 |
|
|
|
4 |
For more information visit: https://github.com/fernandoandreotti/cinc-challenge2017 |
|
|
5 |
|
|
|
6 |
Referencing this work |
|
|
7 |
Andreotti, F., Carr, O., Pimentel, M.A.F., Mahdi, A., & De Vos, M. (2017). Comparing Feature Based |
|
|
8 |
Classifiers and Convolutional Neural Networks to Detect Arrhythmia from Short Segments of ECG. In |
|
|
9 |
Computing in Cardiology. Rennes (France). |
|
|
10 |
|
|
|
11 |
-- |
|
|
12 |
cinc-challenge2017, version 1.0, Sept 2017 |
|
|
13 |
Last updated : 27-09-2017 |
|
|
14 |
Released under the GNU General Public License |
|
|
15 |
|
|
|
16 |
Copyright (C) 2017 Fernando Andreotti, Oliver Carr, Marco A.F. Pimentel, Adam Mahdi, Maarten De Vos |
|
|
17 |
University of Oxford, Department of Engineering Science, Institute of Biomedical Engineering |
|
|
18 |
fernando.andreotti@eng.ox.ac.uk |
|
|
19 |
|
|
|
20 |
This program is free software: you can redistribute it and/or modify |
|
|
21 |
it under the terms of the GNU General Public License as published by |
|
|
22 |
the Free Software Foundation, either version 3 of the License, or |
|
|
23 |
(at your option) any later version. |
|
|
24 |
|
|
|
25 |
This program is distributed in the hope that it will be useful, |
|
|
26 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
|
27 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
|
28 |
GNU General Public License for more details. |
|
|
29 |
|
|
|
30 |
You should have received a copy of the GNU General Public License |
|
|
31 |
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
|
32 |
''' |
|
|
33 |
|
|
|
34 |
|
|
|
35 |
# Download some random waveform from challenge database |
|
|
36 |
from random import randint |
|
|
37 |
import urllib.request |
|
|
38 |
record = "A{:05d}".format(randint(0, 999)) |
|
|
39 |
urlfile = "https://www.physionet.org/physiobank/database/challenge/2017/training/A00/{}.mat".format(record) |
|
|
40 |
local_filename, headers = urllib.request.urlretrieve(urlfile) |
|
|
41 |
html = open(local_filename) |
|
|
42 |
print('Downloading record {} ..'.format(record)) |
|
|
43 |
|
|
|
44 |
# Load data |
|
|
45 |
import scipy.io |
|
|
46 |
mat_data = scipy.io.loadmat(local_filename) |
|
|
47 |
data = mat_data['val'] |
|
|
48 |
|
|
|
49 |
# Parameters |
|
|
50 |
FS = 300 |
|
|
51 |
maxlen = 30*FS |
|
|
52 |
classes = ['A', 'N', 'O','~'] |
|
|
53 |
|
|
|
54 |
# Preprocessing data |
|
|
55 |
print("Preprocessing recording ..") |
|
|
56 |
import numpy as np |
|
|
57 |
X = np.zeros((1,maxlen)) |
|
|
58 |
data = np.nan_to_num(data) # removing NaNs and Infs |
|
|
59 |
data = data[0,0:maxlen] |
|
|
60 |
data = data - np.mean(data) |
|
|
61 |
data = data/np.std(data) |
|
|
62 |
X[0,:len(data)] = data.T # padding sequence |
|
|
63 |
data = X |
|
|
64 |
data = np.expand_dims(data, axis=2) # required by Keras |
|
|
65 |
del X |
|
|
66 |
|
|
|
67 |
|
|
|
68 |
# Load and apply model |
|
|
69 |
print("Loading model") |
|
|
70 |
from keras.models import load_model |
|
|
71 |
model = load_model('ResNet_30s_34lay_16conv.hdf5') |
|
|
72 |
|
|
|
73 |
print("Applying model ..") |
|
|
74 |
prob = model.predict(data) |
|
|
75 |
ann = np.argmax(prob) |
|
|
76 |
print("Record {} classified as {} with {:3.1f}% certainty".format(record,classes[ann],100*prob[0,ann])) |
|
|
77 |
|
|
|
78 |
# Visualising output of first 16 convolutions for some layers |
|
|
79 |
from keras import backend as K |
|
|
80 |
import matplotlib.pyplot as plt |
|
|
81 |
plt.plot(data[0,0:1000,0],) |
|
|
82 |
plt.title('Input signal') |
|
|
83 |
#plt.savefig('layinput.eps', format='eps', dpi=1000) # saving? |
|
|
84 |
|
|
|
85 |
for l in range(1,34):#range(1,34): |
|
|
86 |
Np = 1000 |
|
|
87 |
## Example of plotting first layer output |
|
|
88 |
layer_name = 'conv1d_{}'.format(l) |
|
|
89 |
layer_dict = dict([(layer.name, layer) for layer in model.layers]) |
|
|
90 |
layer_output = layer_dict[layer_name].output |
|
|
91 |
|
|
|
92 |
# K.learning_phase() is a flag that indicates if the network is in training or |
|
|
93 |
# predict phase. It allow layer (e.g. Dropout) to only be applied during training |
|
|
94 |
get_layer_output = K.function([model.layers[0].input, K.learning_phase()], |
|
|
95 |
[layer_output]) |
|
|
96 |
filtout = get_layer_output([data,0])[0] |
|
|
97 |
Npnew = int(Np*filtout.shape[1]/data.shape[1]) |
|
|
98 |
fig, ax = plt.subplots(nrows=4, ncols=4, sharex='col', sharey='row') |
|
|
99 |
count = 0 |
|
|
100 |
for row in ax: |
|
|
101 |
for col in row: |
|
|
102 |
col.plot(range(Npnew), filtout[0,0:Npnew,count],linewidth=1.0,color='olive') |
|
|
103 |
count += 1 |
|
|
104 |
plt.suptitle('Layer {}'.format(l)) |
|
|
105 |
#plt.savefig('layoutput{}.eps'.format(l), format='eps', dpi=1000) # saving? |
|
|
106 |
|
|
|
107 |
|
|
|
108 |
|