[c36663]: / test / unit_tests / test_eegneuralnet.py

Download this file

560 lines (482 with data), 16.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
# Authors: Maciej Sliwowski <maciek.sliwowski@gmail.com>
# Lukas Gemein <l.gemein@gmail.com>
#
# License: BSD-3
import logging
import mne
import numpy as np
import pandas as pd
import pytest
import torch
from scipy.special import softmax
from sklearn.base import clone
from skorch.callbacks import LRScheduler
from skorch.utils import to_tensor
from skorch.helper import SliceDataset
from torch import optim
from torch.nn.functional import nll_loss
from braindecode import EEGClassifier, EEGRegressor
from braindecode.datasets import BaseConcatDataset, WindowsDataset
from braindecode.models.base import EEGModuleMixin
# from braindecode.models.util import models_dict
from braindecode.models.shallow_fbcsp import ShallowFBCSPNet
from braindecode.training import CroppedLoss
from braindecode.eegneuralnet import _EEGNeuralNet
class MockDataset(torch.utils.data.Dataset):
def __len__(self):
return 5
def __getitem__(self, item):
return torch.rand(3, 10), item % 4
class MockModuleReturnMockedPreds(EEGModuleMixin, torch.nn.Module):
def __init__(
self,
preds,
n_outputs=None,
n_chans=None,
chs_info=None,
n_times=None,
input_window_seconds=None,
sfreq=None,
):
super().__init__(
n_outputs=n_outputs,
n_chans=n_chans,
chs_info=chs_info,
n_times=n_times,
input_window_seconds=input_window_seconds,
sfreq=sfreq,
)
self.preds = to_tensor(preds, device="cpu")
self.final_layer = torch.nn.Conv1d(self.n_chans, self.n_outputs, self.n_times)
def forward(self, x):
return self.preds
class MockModuleFinalLayer(MockModuleReturnMockedPreds):
def forward(self, x):
return self.final_layer(x).reshape(x.shape[0], self.n_outputs)
@pytest.fixture(params=[EEGClassifier, EEGRegressor])
def eegneuralnet_cls(request):
return request.param
@pytest.fixture
def preds():
return np.array(
[
[[0.2, 0.1, 0.1, 0.1], [0.8, 0.9, 0.9, 0.9]],
[[0.2, 0.1, 0.1, 0.1], [0.8, 0.9, 0.9, 0.9]],
[[1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]],
[[1.0, 1.0, 1.0, 0.2], [0.0, 0.0, 0.0, 0.8]],
[[0.9, 0.8, 0.9, 1.0], [0.1, 0.2, 0.1, 0.0]],
]
)
@pytest.fixture
def Xy():
dataset = MockDataset()
X, y = zip(*[dataset[i] for i in range(len(dataset))])
return np.stack(X), np.stack(y)
@pytest.fixture
def epochs(Xy):
X, y = Xy
metadata = [(yi, 0, 0, 9) for yi in y]
metadata = pd.DataFrame(
metadata,
columns=["target", "i_window_in_trial", "i_start_in_trial", "i_stop_in_trial"],
)
return mne.EpochsArray(
X,
info=mne.create_info(
ch_names=[
"ch1",
"ch2",
"ch3",
],
sfreq=10,
ch_types="eeg",
),
metadata=metadata,
)
@pytest.fixture
def windows_dataset_metadata(epochs):
return WindowsDataset(
windows=epochs,
targets_from="metadata",
description={},
)
@pytest.fixture
def windows_dataset_channels(epochs):
return WindowsDataset(
windows=epochs,
targets_from="channels",
description={},
)
@pytest.fixture
def slice_dataset(windows_dataset_channels):
X = SliceDataset(windows_dataset_channels)
return X
@pytest.fixture
def concat_dataset_metadata(windows_dataset_metadata):
return BaseConcatDataset([windows_dataset_metadata, windows_dataset_metadata])
@pytest.fixture
def concat_dataset_channels(
windows_dataset_metadata,
windows_dataset_channels,
):
return BaseConcatDataset([windows_dataset_metadata, windows_dataset_channels])
def test_trialwise_predict_and_predict_proba(eegneuralnet_cls):
preds = np.array(
[
[0.125, 0.875],
[1.0, 0.0],
[0.8, 0.2],
[0.8, 0.2],
[0.9, 0.1],
]
)
eegneuralnet = eegneuralnet_cls(
MockModuleReturnMockedPreds,
module__preds=preds,
module__n_outputs=2,
module__n_chans=3,
module__n_times=10,
optimizer=optim.Adam,
batch_size=32,
)
eegneuralnet.initialize()
target_predict = preds if isinstance(eegneuralnet, EEGRegressor) else preds.argmax(1)
preds = preds if isinstance(eegneuralnet, EEGRegressor) else softmax(preds, axis=1)
np.testing.assert_array_equal(target_predict, eegneuralnet.predict(MockDataset()))
np.testing.assert_allclose(preds, eegneuralnet.predict_proba(MockDataset()))
def test_cropped_predict_and_predict_proba(eegneuralnet_cls, preds):
eegneuralnet = eegneuralnet_cls(
MockModuleReturnMockedPreds,
module__preds=preds,
module__n_outputs=4,
module__n_chans=3,
module__n_times=3,
cropped=True,
criterion=CroppedLoss,
criterion__loss_function=nll_loss,
optimizer=optim.Adam,
batch_size=32,
)
eegneuralnet.initialize()
target_predict = (
preds.mean(-1)
if isinstance(eegneuralnet, EEGRegressor)
else preds.mean(-1).argmax(1)
)
# for cropped decoding classifier returns one label for each trial (averaged over all crops)
np.testing.assert_array_equal(target_predict, eegneuralnet.predict(MockDataset()))
# for cropped decoding classifier returns values for each trial (average over all crops)
np.testing.assert_array_equal(
preds.mean(-1), eegneuralnet.predict_proba(MockDataset())
)
def test_cropped_predict_and_predict_proba_not_aggregate_predictions(
eegneuralnet_cls, preds
):
eegneuralnet = eegneuralnet_cls(
MockModuleReturnMockedPreds,
module__preds=preds,
module__n_outputs=4,
module__n_chans=3,
module__n_times=3,
cropped=True,
criterion=CroppedLoss,
criterion__loss_function=nll_loss,
optimizer=optim.Adam,
batch_size=32,
aggregate_predictions=False,
)
eegneuralnet.initialize()
target_predict = preds if isinstance(eegneuralnet, EEGRegressor) else preds.argmax(1)
np.testing.assert_array_equal(target_predict, eegneuralnet.predict(MockDataset()))
np.testing.assert_array_equal(preds, eegneuralnet.predict_proba(MockDataset()))
def test_predict_trials(eegneuralnet_cls, preds):
eegneuralnet = eegneuralnet_cls(
MockModuleReturnMockedPreds,
module__preds=preds,
module__n_outputs=4,
module__n_chans=3,
module__n_times=3,
cropped=False,
criterion=CroppedLoss,
criterion__loss_function=nll_loss,
optimizer=optim.Adam,
batch_size=32,
)
eegneuralnet.initialize()
with pytest.warns(
UserWarning,
match="This method was designed to predict " "trials in cropped mode.",
):
eegneuralnet.predict_trials(MockDataset(), return_targets=False)
def test_clonable(eegneuralnet_cls, preds):
eegneuralnet = eegneuralnet_cls(
MockModuleReturnMockedPreds,
module__preds=preds,
module__n_outputs=4,
module__n_chans=3,
module__n_times=3,
cropped=False,
callbacks=[
"accuracy",
("lr_scheduler", LRScheduler("CosineAnnealingLR", T_max=1)),
],
criterion=CroppedLoss,
criterion__loss_function=nll_loss,
optimizer=optim.Adam,
batch_size=32,
)
clone(eegneuralnet)
eegneuralnet.initialize()
clone(eegneuralnet)
def test_set_signal_params_numpy(eegneuralnet_cls, preds, Xy):
X, y = Xy
net = eegneuralnet_cls(
MockModuleFinalLayer,
module__preds=preds,
cropped=False,
optimizer=optim.Adam,
batch_size=32,
train_split=None,
max_epochs=1,
)
net.fit(X, y=y)
assert net.module_.n_times == 10
assert net.module_.n_chans == 3
assert net.module_.n_outputs == (1 if isinstance(net, EEGRegressor) else 4)
def test_set_signal_params_epochs(eegneuralnet_cls, preds, epochs):
y = epochs.metadata.target.values
net = eegneuralnet_cls(
MockModuleFinalLayer,
module__preds=preds,
cropped=False,
optimizer=optim.Adam,
batch_size=32,
train_split=None,
max_epochs=1,
)
net.fit(epochs, y=y)
assert net.module_.n_times == 10
assert net.module_.n_chans == 3
assert net.module_.n_outputs == (1 if isinstance(net, EEGRegressor) else 4)
assert net.module_.chs_info == epochs.info["chs"]
assert net.module_.input_window_seconds == 10 / 10
assert net.module_.sfreq == 10
def test_set_signal_params_torch_ds(eegneuralnet_cls, preds):
n_outputs = 1 if eegneuralnet_cls == EEGRegressor else 4
net = eegneuralnet_cls(
MockModuleFinalLayer,
module__preds=preds,
module__n_outputs=n_outputs,
cropped=False,
optimizer=optim.Adam,
batch_size=32,
train_split=None,
max_epochs=1,
)
net.fit(MockDataset(), y=None)
assert net.module_.n_times == 10
assert net.module_.n_chans == 3
assert net.module_.n_outputs == n_outputs
def test_set_signal_params_windows_ds_metadata(
eegneuralnet_cls, preds, windows_dataset_metadata
):
n_outputs = 1 if eegneuralnet_cls == EEGRegressor else 4
net = eegneuralnet_cls(
MockModuleFinalLayer,
module__preds=preds,
cropped=False,
optimizer=optim.Adam,
batch_size=32,
train_split=None,
max_epochs=1,
)
net.fit(windows_dataset_metadata, y=None)
assert net.module_.n_times == 10
assert net.module_.n_chans == 3
assert net.module_.n_outputs == n_outputs
def test_set_signal_params_windows_ds_channels(
eegneuralnet_cls, preds, windows_dataset_channels
):
n_outputs = 1 if eegneuralnet_cls == EEGRegressor else 4
net = eegneuralnet_cls(
MockModuleFinalLayer,
module__preds=preds,
module__n_outputs=n_outputs,
cropped=False,
optimizer=optim.Adam,
batch_size=32,
train_split=None,
max_epochs=1,
)
net.fit(windows_dataset_channels, y=None)
assert net.module_.n_times == 10
assert net.module_.n_chans == 3
assert net.module_.n_outputs == n_outputs
def test_set_signal_params_concat_ds_metadata(
eegneuralnet_cls, preds, concat_dataset_metadata
):
n_outputs = 1 if eegneuralnet_cls == EEGRegressor else 4
net = eegneuralnet_cls(
MockModuleFinalLayer,
module__preds=preds,
cropped=False,
optimizer=optim.Adam,
batch_size=32,
train_split=None,
max_epochs=1,
)
net.fit(concat_dataset_metadata, y=None)
assert net.module_.n_times == 10
assert net.module_.n_chans == 3
assert net.module_.n_outputs == n_outputs
def test_set_signal_params_concat_ds_channels(
eegneuralnet_cls, preds, concat_dataset_channels
):
n_outputs = 1 if eegneuralnet_cls == EEGRegressor else 4
net = eegneuralnet_cls(
MockModuleFinalLayer,
module__preds=preds,
module__n_outputs=n_outputs,
cropped=False,
optimizer=optim.Adam,
batch_size=32,
train_split=None,
max_epochs=1,
)
net.fit(concat_dataset_channels, y=None)
assert net.module_.n_times == 10
assert net.module_.n_chans == 3
assert net.module_.n_outputs == n_outputs
def test_initialized_module(eegneuralnet_cls, preds, caplog, Xy):
X, y = Xy
module = MockModuleReturnMockedPreds(
preds=preds,
n_outputs=12,
n_chans=12,
n_times=12,
)
net = eegneuralnet_cls(
module,
cropped=False,
max_epochs=1,
train_split=None,
)
with caplog.at_level(logging.INFO):
net.fit(X, y)
assert "The module passed is already initialized" in caplog.text
assert net.module_.n_outputs == 12
assert net.module_.n_chans == 12
assert net.module_.n_times == 12
# @pytest.mark.parametrize("model_name,model_cls", models_dict.items())
def test_module_name(eegneuralnet_cls):
net = eegneuralnet_cls(
"ShallowFBCSPNet",
module__n_outputs=4,
module__n_chans=3,
module__n_times=100,
cropped=False,
)
net.initialize()
assert isinstance(net.module_, ShallowFBCSPNet)
def test_unknown_module_name(eegneuralnet_cls):
net = eegneuralnet_cls(
"InexistentModel",
)
with pytest.raises(ValueError) as excinfo:
net.initialize()
assert "Unknown model name" in str(excinfo.value)
def test_EEGRegressor_drop_index(Xy):
# Initialize EEGRegressor with drop_index=False
X, y = Xy
net = EEGRegressor(
MockModuleFinalLayer,
module__preds=preds,
cropped=False,
optimizer=optim.Adam,
batch_size=32,
train_split=None,
max_epochs=1,
)
# Test if the iterator is returned when drop_index is False
iterator = net.get_iterator(X, training=False, drop_index=False)
assert isinstance(iterator, torch.utils.data.DataLoader)
def test_EEGRegressor_get_n_outputs(preds):
# Initialize EEGRegressor
eeg_regressor = EEGRegressor(
MockModuleFinalLayer,
module__preds=preds,
cropped=False,
optimizer=optim.Adam,
batch_size=2,
train_split=None,
max_epochs=1,
)
# Test _get_n_outputs method
assert eeg_regressor._get_n_outputs(y=None,
classes=None) is None
assert eeg_regressor._get_n_outputs(y=np.array([0, 1, 2, 3, 4]),
classes=None) == 1
assert eeg_regressor._get_n_outputs(y=np.array(
[[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]),
classes=None) == 5
def test_EEGRegressor_predict_trials(Xy, preds):
X, y = Xy
# Initialize EEGRegressor
eeg_regressor = EEGRegressor(
MockModuleFinalLayer,
module__preds=preds,
cropped=False,
optimizer=optim.Adam,
batch_size=2,
train_split=None,
max_epochs=1,
)
eeg_regressor.fit(X, y=y)
preds, targets = eeg_regressor.predict_trials(X,
return_targets=True)
assert preds.shape[0] == len(X)
assert np.array_equal(targets, np.concatenate([X[i][1]
for i in range(len(X))]))
from braindecode.eegneuralnet import CroppedTrialEpochScoring
class ConcreteEEGNeuralNet(_EEGNeuralNet):
def _get_n_outputs(self, y, classes):
# provide your implementation here
pass
@pytest.fixture()
def net():
net = ConcreteEEGNeuralNet(module="EEGNetv4", criterion=CroppedTrialEpochScoring,
cropped=False, max_epochs=1, train_split=None,
n_times=5)
return net
def test_cropped_trial_epoch_scoring(net):
train_scoring = net._parse_str_callback('accuracy')[0][1]
valid_scoring = net._parse_str_callback('accuracy')[1][1]
assert train_scoring.on_train is True
assert train_scoring.name == 'train_accuracy'
assert valid_scoring.on_train is False
assert valid_scoring.name == 'valid_accuracy'
def test_get_n_outputs():
with pytest.raises(TypeError):
_EEGNeuralNet()._get_n_outputs(None, None)
def test_set_signal_params_slice_dataset(
eegneuralnet_cls, preds, slice_dataset
):
if eegneuralnet_cls != EEGClassifier:
n_outputs = 1
y_train = np.array([0, 1, 2, 3, 4])
else:
n_outputs = 5
y_train = np.array([0, 1, 2, 3, 4]) # dummy values for y_train
net = eegneuralnet_cls(
MockModuleFinalLayer,
module__preds=preds,
cropped=False,
optimizer=optim.Adam,
batch_size=32,
train_split=None,
max_epochs=1,
)
net.fit(slice_dataset, y=y_train)
assert net.module_.n_times == 10
assert net.module_.n_chans == 3
assert net.module_.n_outputs == n_outputs