[c36663]: / test / unit_tests / preprocessing / test_windowers.py

Download this file

948 lines (839 with data), 32.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
# Authors: Lukas Gemein <l.gemein@gmail.com>
# Robin Tibor Schirrmeister <robintibor@gmail.com>
# Maciej Sliwowski <maciek.sliwowski@gmail.com>
# Hubert Banville <hubert.jbanville@gmail.com>
#
# License: BSD-3
import copy
import platform
import warnings
import mne
import numpy as np
import pandas as pd
import pytest
from braindecode.datasets.base import BaseDataset, BaseConcatDataset, EEGWindowsDataset
from braindecode.datasets.moabb import fetch_data_with_moabb
from braindecode.preprocessing import (
create_windows_from_events,
create_fixed_length_windows,
)
from braindecode.preprocessing.preprocess import Preprocessor, preprocess
from braindecode.preprocessing.windowers import create_windows_from_target_channels, _LazyDataFrame
from braindecode.util import create_mne_dummy_raw
def _get_raw(tmpdir_factory, description=None):
_, fnames = create_mne_dummy_raw(
n_channels=2,
n_times=20000,
sfreq=100,
description=description,
savedir=tmpdir_factory.mktemp("data"),
save_format="fif",
random_state=87,
)
raw = mne.io.read_raw_fif(fnames["fif"], preload=False, verbose=None)
return raw
@pytest.fixture(scope="module")
def concat_ds_targets():
raws, description = fetch_data_with_moabb(dataset_name="BNCI2014001", subject_ids=4)
events, _ = mne.events_from_annotations(raws[0])
targets = events[:, -1] - 1
ds = BaseDataset(raws[0], description.iloc[0])
concat_ds = BaseConcatDataset([ds])
return concat_ds, targets
@pytest.fixture(scope="session")
def lazy_loadable_dataset(tmpdir_factory):
"""Make a dataset of fif files that can be loaded lazily."""
raw = _get_raw(tmpdir_factory)
base_ds = BaseDataset(raw, description=pd.Series({"file_id": 1}))
concat_ds = BaseConcatDataset([base_ds])
return concat_ds
def test_windows_from_events_preload_false(lazy_loadable_dataset):
windows = create_windows_from_events(
concat_ds=lazy_loadable_dataset,
trial_start_offset_samples=0,
trial_stop_offset_samples=0,
window_size_samples=100,
window_stride_samples=100,
drop_last_window=False,
)
assert all([not ds.raw.preload for ds in windows.datasets])
# Skip if OS is Windows
@pytest.mark.skipif(
platform.system() == "Windows", reason="Not supported on Windows"
) # TODO: Fix this
def test_windows_from_events_n_jobs(lazy_loadable_dataset):
longer_dataset = BaseConcatDataset([lazy_loadable_dataset.datasets[0]] * 8)
windows = [
create_windows_from_events(
concat_ds=longer_dataset,
trial_start_offset_samples=0,
trial_stop_offset_samples=0,
window_size_samples=100,
window_stride_samples=100,
drop_last_window=False,
preload=True,
n_jobs=n_jobs,
)
for n_jobs in [1, 2]
]
assert windows[0].description.equals(windows[1].description)
for ds1, ds2 in zip(windows[0].datasets, windows[1].datasets):
assert len(ds1) == len(ds2)
for (x1, y1, i1), (x2, y2, i2) in zip(ds1, ds2):
assert np.allclose(x1, x2)
assert y1 == y2
assert i1 == i2
assert ds1.description.equals(ds2.description)
def test_windows_from_events_mapping_filter(tmpdir_factory):
raw = _get_raw(tmpdir_factory, 5 * ["T0", "T1"])
base_ds = BaseDataset(raw, description=pd.Series({"file_id": 1}))
concat_ds = BaseConcatDataset([base_ds])
windows = create_windows_from_events(
concat_ds=concat_ds,
trial_start_offset_samples=0,
trial_stop_offset_samples=0,
window_size_samples=100,
window_stride_samples=100,
drop_last_window=False,
mapping={"T1": 0},
)
ys = [y for X, y, i in windows]
crop_start_inds = [i[1] for X, y, i in windows]
assert len(ys) == 5
np.testing.assert_array_equal(ys, np.zeros(5))
# dataset should contain only 'T1' events
np.testing.assert_array_equal(
(raw.time_as_index(raw.annotations.onset[1::2], use_rounding=True)),
crop_start_inds,
)
def test_windows_from_events_different_events(tmpdir_factory):
description_expected = 5 * ["T0", "T1"] + 4 * ["T2", "T3"] + 2 * ["T1"]
raw = _get_raw(tmpdir_factory, description_expected[:10])
base_ds = BaseDataset(raw, description=pd.Series({"file_id": 1}))
raw_1 = _get_raw(tmpdir_factory, description_expected[10:])
base_ds_1 = BaseDataset(raw_1, description=pd.Series({"file_id": 2}))
concat_ds = BaseConcatDataset([base_ds, base_ds_1])
windows = create_windows_from_events(
concat_ds=concat_ds,
trial_start_offset_samples=0,
trial_stop_offset_samples=0,
window_size_samples=100,
window_stride_samples=100,
drop_last_window=False,
)
ys = [y for X, y, i in windows]
crop_start_inds = [i[1] for X, y, i in windows]
assert len(ys) == 20
np.testing.assert_array_equal(ys, 5 * [0, 1] + 4 * [2, 3] + 2 * [1])
np.testing.assert_array_equal(
np.concatenate(
[
raw.time_as_index(raw.annotations.onset, use_rounding=True),
raw_1.time_as_index(raw.annotations.onset, use_rounding=True),
]
),
crop_start_inds,
)
def test_fixed_length_windows_preload_false(lazy_loadable_dataset):
windows = create_fixed_length_windows(
concat_ds=lazy_loadable_dataset,
start_offset_samples=0,
stop_offset_samples=100,
window_size_samples=100,
window_stride_samples=100,
drop_last_window=False,
preload=False,
)
assert all([not ds.raw.preload for ds in windows.datasets])
def test_one_window_per_original_trial(concat_ds_targets):
concat_ds, targets = concat_ds_targets
windows = create_windows_from_events(
concat_ds=concat_ds,
trial_start_offset_samples=0,
trial_stop_offset_samples=0,
window_size_samples=1000,
window_stride_samples=1,
drop_last_window=False,
)
ys = [y for X, y, i in windows]
assert len(ys) == len(targets)
np.testing.assert_array_equal(ys, targets)
def test_stride_has_no_effect(concat_ds_targets):
concat_ds, targets = concat_ds_targets
windows = create_windows_from_events(
concat_ds=concat_ds,
trial_start_offset_samples=0,
trial_stop_offset_samples=0,
window_size_samples=1000,
window_stride_samples=1000,
drop_last_window=False,
)
ys = [y for X, y, i in windows]
assert len(ys) == len(targets)
np.testing.assert_array_equal(ys, targets)
def test_trial_start_offset(concat_ds_targets):
concat_ds, targets = concat_ds_targets
windows = create_windows_from_events(
concat_ds=concat_ds,
trial_start_offset_samples=-250,
trial_stop_offset_samples=-750,
window_size_samples=250,
window_stride_samples=250,
drop_last_window=False,
)
ys = [y for X, y, i in windows]
assert len(ys) == len(targets) * 2
np.testing.assert_array_equal(ys[0::2], targets)
np.testing.assert_array_equal(ys[1::2], targets)
def test_shifting_last_window_back_in(concat_ds_targets):
concat_ds, targets = concat_ds_targets
windows = create_windows_from_events(
concat_ds=concat_ds,
trial_start_offset_samples=-250,
trial_stop_offset_samples=-750,
window_size_samples=250,
window_stride_samples=300,
drop_last_window=False,
)
ys = [y for X, y, i in windows]
assert len(ys) == len(targets) * 2
np.testing.assert_array_equal(ys[0::2], targets)
np.testing.assert_array_equal(ys[1::2], targets)
def test_dropping_last_incomplete_window(concat_ds_targets):
concat_ds, targets = concat_ds_targets
windows = create_windows_from_events(
concat_ds=concat_ds,
trial_start_offset_samples=-250,
trial_stop_offset_samples=-750,
window_size_samples=250,
window_stride_samples=300,
drop_last_window=True,
)
ys = [y for X, y, i in windows]
assert len(ys) == len(targets)
np.testing.assert_array_equal(ys, targets)
def test_maximally_overlapping_windows(concat_ds_targets):
concat_ds, targets = concat_ds_targets
windows = create_windows_from_events(
concat_ds=concat_ds,
trial_start_offset_samples=-2,
trial_stop_offset_samples=0,
window_size_samples=1000,
window_stride_samples=1,
drop_last_window=False,
)
ys = [y for X, y, i in windows]
assert len(ys) == len(targets) * 3
np.testing.assert_array_equal(ys[0::3], targets)
np.testing.assert_array_equal(ys[1::3], targets)
np.testing.assert_array_equal(ys[2::3], targets)
def test_single_sample_size_windows(concat_ds_targets):
concat_ds, targets = concat_ds_targets
# reduce dataset for faster test, only first 3 events
targets = targets[:3]
underlying_raw = concat_ds.datasets[0].raw
annotations = underlying_raw.annotations
underlying_raw.set_annotations(annotations[:3])
# have to supply explicit mapping as only two classes appear in first 3
# targets
windows = create_windows_from_events(
concat_ds=concat_ds,
trial_start_offset_samples=0,
trial_stop_offset_samples=0,
window_size_samples=1,
window_stride_samples=1,
drop_last_window=False,
mapping=dict(tongue=3, left_hand=1, right_hand=2, feet=4),
)
ys = [y for X, y, i in windows]
assert len(ys) == len(targets) * 1000
np.testing.assert_array_equal(ys[::1000], targets)
np.testing.assert_array_equal(ys[999::1000], targets)
def test_overlapping_trial_offsets(concat_ds_targets):
concat_ds, _ = concat_ds_targets
with pytest.raises(NotImplementedError, match="Trial overlap not implemented."):
create_windows_from_events(
concat_ds=concat_ds,
trial_start_offset_samples=-2000,
trial_stop_offset_samples=0,
window_size_samples=1000,
window_stride_samples=1000,
drop_last_window=False,
)
@pytest.mark.parametrize("preload", [(True, False)])
def test_drop_bad_windows(concat_ds_targets, preload):
concat_ds, _ = concat_ds_targets
windows_from_events = create_windows_from_events(
concat_ds=concat_ds,
trial_start_offset_samples=0,
trial_stop_offset_samples=0,
window_size_samples=100,
window_stride_samples=100,
drop_last_window=False,
preload=preload,
drop_bad_windows=True,
)
assert windows_from_events.datasets[0].windows._bad_dropped
def test_windows_from_events_(lazy_loadable_dataset):
msg = (
'"trial_stop_offset_samples" too large\\. Stop of last trial '
'\\(19900\\) \\+ "trial_stop_offset_samples" \\(250\\) must be '
"smaller than length of recording \\(20000\\)\\."
)
with pytest.raises(ValueError, match=msg):
create_windows_from_events(
concat_ds=lazy_loadable_dataset,
trial_start_offset_samples=0,
trial_stop_offset_samples=250,
window_size_samples=100,
window_stride_samples=100,
drop_last_window=False,
)
@pytest.mark.parametrize(
"start_offset_samples,window_size_samples,window_stride_samples,drop_last_window,mapping",
[
(0, 100, 90, True, None),
(0, 100, 50, True, {48: 0}),
(0, 50, 50, True, None),
(0, 50, 50, False, None),
(0, None, 50, True, None),
(5, 10, 20, True, None),
(5, 10, 39, False, None),
],
)
def test_fixed_length_windower(
start_offset_samples,
window_size_samples,
window_stride_samples,
drop_last_window,
mapping,
):
rng = np.random.RandomState(42)
info = mne.create_info(ch_names=["0", "1"], sfreq=50, ch_types="eeg")
data = rng.randn(2, 1000)
raw = mne.io.RawArray(data=data, info=info)
desc = pd.Series({"pathological": True, "gender": "M", "age": 48})
base_ds = BaseDataset(raw, desc, target_name="age")
concat_ds = BaseConcatDataset([base_ds])
if window_size_samples is None:
window_size_samples = base_ds.raw.n_times
stop_offset_samples = data.shape[1] - start_offset_samples
epochs_ds = create_fixed_length_windows(
concat_ds,
start_offset_samples=start_offset_samples,
stop_offset_samples=stop_offset_samples,
window_size_samples=window_size_samples,
window_stride_samples=window_stride_samples,
drop_last_window=drop_last_window,
mapping=mapping,
)
if mapping is not None:
assert base_ds.description[base_ds.target_name] == 48
ys = [y for X, y, i in epochs_ds]
assert all([y == 0 for y in ys])
epochs_data = np.stack([X for X, y, i in epochs_ds])
idxs = np.arange(
start_offset_samples,
stop_offset_samples - window_size_samples + 1,
window_stride_samples,
)
if not drop_last_window and idxs[-1] != stop_offset_samples - window_size_samples:
idxs = np.append(idxs, stop_offset_samples - window_size_samples)
assert len(idxs) == epochs_data.shape[0], "Number of epochs different than expected"
assert (
window_size_samples == epochs_data.shape[2]
), "Window size different than expected"
for j, idx in enumerate(idxs):
np.testing.assert_allclose(
base_ds.raw.get_data()[:, idx: idx + window_size_samples],
epochs_data[j, :],
err_msg=f"Epochs different for epoch {j}",
)
@pytest.mark.parametrize(
"start_offset_samples,window_size_samples,window_stride_samples,drop_last_window,mapping",
[
(0, 100, 90, True, None),
(0, 100, 50, True, {48: 0}),
(0, 50, 50, True, None),
(0, None, 50, True, None),
(5, 10, 20, True, None),
],
)
def test_fixed_length_windower_lazy(
start_offset_samples,
window_size_samples,
window_stride_samples,
drop_last_window,
mapping,
):
rng = np.random.RandomState(42)
info = mne.create_info(ch_names=["0", "1"], sfreq=50, ch_types="eeg")
data = rng.randn(2, 1000)
raw = mne.io.RawArray(data=data, info=info)
desc = pd.Series({"pathological": True, "gender": "M", "age": 48})
base_ds = BaseDataset(raw, desc, target_name="age")
concat_ds = BaseConcatDataset([base_ds])
if window_size_samples is None:
window_size_samples = base_ds.raw.n_times
stop_offset_samples = data.shape[1] - start_offset_samples
epochs_ds = create_fixed_length_windows(
concat_ds,
start_offset_samples=start_offset_samples,
stop_offset_samples=stop_offset_samples,
window_size_samples=window_size_samples,
window_stride_samples=window_stride_samples,
drop_last_window=drop_last_window,
mapping=mapping,
)
epochs_ds_lazy = create_fixed_length_windows(
concat_ds,
start_offset_samples=start_offset_samples,
stop_offset_samples=stop_offset_samples,
window_size_samples=window_size_samples,
window_stride_samples=window_stride_samples,
drop_last_window=drop_last_window,
mapping=mapping,
lazy_metadata=True,
)
assert len(epochs_ds) == len(epochs_ds_lazy)
for (X, y, i), (Xl, yl, il) in zip(epochs_ds, epochs_ds_lazy):
assert (X == Xl).all()
assert y == yl
assert i == il
# not supported yet:
# metadata = epochs_ds.get_metadata()
# metadata_lazy = epochs_ds_lazy.get_metadata()
for d, d_lazy in zip(epochs_ds.datasets, epochs_ds_lazy.datasets):
crop_inds = d.metadata.loc[
:, ["i_window_in_trial", "i_start_in_trial", "i_stop_in_trial"]
].to_numpy()
crop_inds_lazy = d_lazy.metadata.loc[
:, ["i_window_in_trial", "i_start_in_trial", "i_stop_in_trial"]
].to_numpy()
y = d.metadata.loc[:, "target"].to_list()
y_lazy = d_lazy.metadata.loc[:, "target"].to_list()
n = len(d.metadata)
assert n == len(d_lazy.metadata)
assert len(crop_inds) == len(crop_inds_lazy)
assert len(y) == len(y_lazy)
assert all(crop_inds[i].tolist() == crop_inds_lazy[i].tolist() for i in range(n))
assert all(y[i] == y_lazy[i] for i in range(n))
def test_lazy_dataframe():
with pytest.raises(ValueError, match="Length must be a positive integer."):
_ = _LazyDataFrame(length=-1, functions=dict(a=lambda i: 2 * i), columns=["a"])
with pytest.raises(ValueError, match="All columns must have a corresponding function."):
_ = _LazyDataFrame(length=10, columns=['a'], functions=dict())
with pytest.raises(ValueError, match="Series must have exactly one column."):
_ = _LazyDataFrame(length=10, columns=['a', 'b'],
functions=dict(a=lambda i: 2 * i, b=lambda i: 2 + i), series=True)
df = _LazyDataFrame(length=10, functions=dict(a=lambda i: 2 * i), columns=["a"])
assert len(df) == 10
assert all(df[i, "a"] == 2 * i for i in range(10))
assert all((df[i] == pd.Series(dict(a=2 * i))).all() for i in range(10))
assert all((df[i, :] == pd.Series(dict(a=2 * i))).all() for i in range(10))
with pytest.raises(IndexError, match="index must be either \\[row\\] or"):
_ = df[0, 0, 0]
with pytest.raises(IndexError, match="All columns must be present in the dataframe"):
_ = df[0, "b"]
with pytest.raises(NotImplementedError, match="Row indexing only supports either a single"):
_ = df[0:2]
with pytest.raises(IndexError, match="out of bounds"):
_ = df[10]
@pytest.mark.parametrize(
"drop_bad_windows,picks,flat,reject",
[
(True, None, None, None),
(False, ['ch0'], None, None),
(False, None, {}, None),
(False, None, None, {}),
]
)
def test_not_use_mne_epochs_fail(
drop_bad_windows,
picks,
flat,
reject,
lazy_loadable_dataset,
):
with pytest.raises(ValueError, match="Cannot set use_mne_epochs=False"):
_ = create_windows_from_events(
lazy_loadable_dataset,
drop_bad_windows=drop_bad_windows,
picks=picks,
flat=flat,
reject=reject,
use_mne_epochs=False,
)
@pytest.mark.parametrize(
"drop_bad_windows,picks,flat,reject",
[
(True, None, None, None),
(False, ['ch0'], None, None),
(False, None, {}, None),
(False, None, None, {}),
]
)
def test_auto_use_mne_epochs(
drop_bad_windows,
picks,
flat,
reject,
lazy_loadable_dataset
):
with pytest.warns(UserWarning,
match='mne Epochs are created, which will be substantially slower'):
windows = create_windows_from_events(
lazy_loadable_dataset,
drop_bad_windows=drop_bad_windows,
picks=picks,
flat=flat,
reject=reject,
use_mne_epochs=None,
)
assert all(isinstance(w.windows, mne.Epochs) for w in windows.datasets)
@pytest.mark.parametrize('use_mne_epochs', [False, None])
def test_not_use_mne_epochs(use_mne_epochs, lazy_loadable_dataset):
message = (
"Using reject or picks or flat or dropping bad windows means "
"mne Epochs are created, "
"which will be substantially slower and may be deprecated in the future."
)
with warnings.catch_warnings():
warnings.filterwarnings('error', message=message)
windows = create_windows_from_events(
lazy_loadable_dataset,
drop_bad_windows=False,
picks=None,
flat=None,
reject=None,
use_mne_epochs=use_mne_epochs,
)
assert all(isinstance(w, EEGWindowsDataset) for w in windows.datasets)
# Skip if OS is Windows
@pytest.mark.skipif(
platform.system() == "Windows", reason="Not supported on Windows"
) # TODO: Fix this
def test_fixed_length_windower_n_jobs(lazy_loadable_dataset):
longer_dataset = BaseConcatDataset([lazy_loadable_dataset.datasets[0]] * 8)
windows = [
create_fixed_length_windows(
concat_ds=longer_dataset,
start_offset_samples=0,
stop_offset_samples=None,
window_size_samples=100,
window_stride_samples=100,
drop_last_window=True,
preload=True,
n_jobs=n_jobs,
)
for n_jobs in [1, 2]
]
assert windows[0].description.equals(windows[1].description)
for ds1, ds2 in zip(windows[0].datasets, windows[1].datasets):
assert len(ds1) == len(ds2)
for (x1, y1, i1), (x2, y2, i2) in zip(ds1, ds2):
assert np.allclose(x1, x2)
assert y1 == y2
assert i1 == i2
assert ds1.description.equals(ds2.description)
def test_windows_from_events_cropped(lazy_loadable_dataset):
"""Test windowing from events on cropped data.
Cropping raw data changes the `first_samp` attribute of the Raw object, and
so it is important to test this is taken into account by the windowers.
"""
tmin, tmax = 100, 120
ds = copy.deepcopy(lazy_loadable_dataset)
ds.datasets[0].raw.annotations.crop(tmin, tmax)
crop_ds = copy.deepcopy(lazy_loadable_dataset)
crop_transform = Preprocessor("crop", tmin=tmin, tmax=tmax)
preprocess(crop_ds, [crop_transform])
# Extract windows
windows1 = create_windows_from_events(
concat_ds=ds,
trial_start_offset_samples=0,
trial_stop_offset_samples=0,
window_size_samples=100,
window_stride_samples=100,
drop_last_window=False,
)
windows2 = create_windows_from_events(
concat_ds=crop_ds,
trial_start_offset_samples=0,
trial_stop_offset_samples=0,
window_size_samples=100,
window_stride_samples=100,
drop_last_window=False,
)
assert (windows1[0][0] == windows2[0][0]).all()
# Make sure events that fall outside of recording will trigger an error
with pytest.raises(ValueError, match='"trial_stop_offset_samples" too large'):
create_windows_from_events(
concat_ds=ds,
trial_start_offset_samples=0,
trial_stop_offset_samples=10000,
window_size_samples=100,
window_stride_samples=100,
drop_last_window=False,
)
with pytest.raises(ValueError, match='"trial_stop_offset_samples" too large'):
create_windows_from_events(
concat_ds=crop_ds,
trial_start_offset_samples=0,
trial_stop_offset_samples=2001,
window_size_samples=100,
window_stride_samples=100,
drop_last_window=False,
)
def test_windows_fixed_length_cropped(lazy_loadable_dataset):
"""Test fixed length windowing on cropped data.
Cropping raw data changes the `first_samp` attribute of the Raw object, and
so it is important to test this is taken into account by the windowers.
"""
tmin, tmax = 100, 120
ds = copy.deepcopy(lazy_loadable_dataset)
ds.datasets[0].raw.annotations.crop(tmin, tmax)
crop_ds = copy.deepcopy(lazy_loadable_dataset)
crop_transform = Preprocessor("crop", tmin=tmin, tmax=tmax)
preprocess(crop_ds, [crop_transform])
# Extract windows
sfreq = ds.datasets[0].raw.info["sfreq"]
tmin_samples, tmax_samples = int(tmin * sfreq), int(tmax * sfreq)
windows1 = create_fixed_length_windows(
concat_ds=ds,
start_offset_samples=tmin_samples,
stop_offset_samples=tmax_samples,
window_size_samples=100,
window_stride_samples=100,
drop_last_window=True,
)
windows2 = create_fixed_length_windows(
concat_ds=crop_ds,
start_offset_samples=0,
stop_offset_samples=None,
window_size_samples=100,
window_stride_samples=100,
drop_last_window=True,
)
assert (windows1[0][0] == windows2[0][0]).all()
def test_epochs_kwargs(lazy_loadable_dataset):
picks = ["ch0"]
on_missing = "warning"
flat = {"eeg": 3e-6}
reject = {"eeg": 43e-6}
windows = create_windows_from_events(
concat_ds=lazy_loadable_dataset,
trial_start_offset_samples=0,
trial_stop_offset_samples=0,
window_size_samples=100,
window_stride_samples=100,
drop_last_window=False,
picks=picks,
on_missing=on_missing,
flat=flat,
reject=reject,
)
epochs = windows.datasets[0].windows
assert epochs.ch_names == picks
assert epochs.reject == reject
assert epochs.flat == flat
for ds in windows.datasets:
assert ds.window_kwargs == [
(
"create_windows_from_events",
{
"infer_mapping": True,
"infer_window_size_stride": False,
"trial_start_offset_samples": 0,
"trial_stop_offset_samples": 0,
"window_size_samples": 100,
"window_stride_samples": 100,
"drop_last_window": False,
"mapping": {"test": 0},
"preload": False,
"drop_bad_windows": True,
"picks": picks,
"reject": reject,
"flat": flat,
"on_missing": on_missing,
"accepted_bads_ratio": 0.0,
"verbose": "error",
"use_mne_epochs": True,
},
)
]
def test_window_sizes_from_events(concat_ds_targets):
# no fixed window size, no offsets
expected_n_samples = 1000
concat_ds, targets = concat_ds_targets
windows = create_windows_from_events(
concat_ds=concat_ds,
trial_start_offset_samples=0,
trial_stop_offset_samples=0,
drop_last_window=False,
)
x, y, ind = windows[0]
assert x.shape[-1] == ind[-1] - ind[-2]
assert x.shape[-1] == expected_n_samples
# no fixed window size, positive trial start offset
expected_n_samples = 999
concat_ds, targets = concat_ds_targets
windows = create_windows_from_events(
concat_ds=concat_ds,
trial_start_offset_samples=1,
trial_stop_offset_samples=0,
drop_last_window=False,
)
x, y, ind = windows[0]
assert x.shape[-1] == ind[-1] - ind[-2]
assert x.shape[-1] == expected_n_samples
# no fixed window size, negative trial start offset
expected_n_samples = 1001
concat_ds, targets = concat_ds_targets
windows = create_windows_from_events(
concat_ds=concat_ds,
trial_start_offset_samples=-1,
trial_stop_offset_samples=0,
drop_last_window=False,
)
x, y, ind = windows[0]
assert x.shape[-1] == ind[-1] - ind[-2]
assert x.shape[-1] == expected_n_samples
# no fixed window size, positive trial stop offset
expected_n_samples = 1001
concat_ds, targets = concat_ds_targets
windows = create_windows_from_events(
concat_ds=concat_ds,
trial_start_offset_samples=0,
trial_stop_offset_samples=1,
drop_last_window=False,
)
x, y, ind = windows[0]
assert x.shape[-1] == ind[-1] - ind[-2]
assert x.shape[-1] == expected_n_samples
# no fixed window size, negative trial stop offset
expected_n_samples = 999
concat_ds, targets = concat_ds_targets
windows = create_windows_from_events(
concat_ds=concat_ds,
trial_start_offset_samples=0,
trial_stop_offset_samples=-1,
drop_last_window=False,
)
x, y, ind = windows[0]
assert x.shape[-1] == ind[-1] - ind[-2]
assert x.shape[-1] == expected_n_samples
# fixed window size, trial offsets should not change window size
expected_n_samples = 250
concat_ds, targets = concat_ds_targets
windows = create_windows_from_events(
concat_ds=concat_ds,
trial_start_offset_samples=3,
trial_stop_offset_samples=8,
window_size_samples=250,
window_stride_samples=250,
drop_last_window=False,
)
x, y, ind = windows[0]
assert x.shape[-1] == ind[-1] - ind[-2]
assert x.shape[-1] == expected_n_samples
def test_window_sizes_too_large(concat_ds_targets):
concat_ds, targets = concat_ds_targets
# Window size larger than all trials
window_size = len(concat_ds.datasets[0]) + 1
with pytest.raises(
ValueError, match=f"Window size {window_size} exceeds trial durat"
):
create_windows_from_events(
concat_ds=concat_ds,
window_size_samples=window_size,
window_stride_samples=window_size,
trial_start_offset_samples=0,
trial_stop_offset_samples=0,
drop_last_window=False,
)
with pytest.raises(
ValueError, match=f"Window size {window_size} exceeds trial durat"
):
create_fixed_length_windows(
concat_ds=concat_ds,
window_size_samples=window_size,
window_stride_samples=window_size,
drop_last_window=False,
)
# Window size larger than one single trial
annots = concat_ds.datasets[0].raw.annotations
annot_0 = annots[0]
# Window equal original trials size
window_size = int(annot_0["duration"] * concat_ds.datasets[0].raw.info["sfreq"])
# Make first trial 1 second shorter
annot_0["duration"] -= 1
# Replace first trial by a new shorter one
annots.delete(0)
del annot_0["orig_time"]
annots.append(**annot_0)
concat_ds.datasets[0].raw.set_annotations(annots)
with pytest.warns(UserWarning, match=".* are being dropped as the window size .*"):
create_windows_from_events(
concat_ds=concat_ds,
window_size_samples=window_size,
window_stride_samples=window_size,
trial_start_offset_samples=0,
trial_stop_offset_samples=0,
drop_last_window=False,
accepted_bads_ratio=0.5,
on_missing="ignore",
)
@pytest.fixture(scope="module")
def dataset_target_time_series():
rng = np.random.RandomState(42)
signal_sfreq = 50
info = mne.create_info(
ch_names=["0", "1", "target_0", "target_1"],
sfreq=signal_sfreq,
ch_types=["eeg", "eeg", "misc", "misc"],
)
signal = rng.randn(2, 1000)
targets = np.full((2, 1000), np.nan)
targets_sfreq = 10
targets_stride = int(signal_sfreq / targets_sfreq)
targets[:, ::targets_stride] = rng.randn(2, int(targets.shape[1] / targets_stride))
raw = mne.io.RawArray(np.concatenate([signal, targets]), info=info)
desc = pd.Series({"pathological": True, "gender": "M", "age": 48})
base_dataset = BaseDataset(raw, desc, target_name=None)
concat_ds = BaseConcatDataset([base_dataset])
windows_dataset = create_windows_from_target_channels(
concat_ds,
window_size_samples=100,
)
return concat_ds, windows_dataset, targets, signal
def test_windower_from_target_channels(dataset_target_time_series):
_, windows_dataset, targets, signal = dataset_target_time_series
assert len(windows_dataset) == 180
for i in range(180):
epoch, y, window_inds = windows_dataset[i]
target_idx = i * 5 + 100
np.testing.assert_array_almost_equal(targets[:, target_idx], y)
np.testing.assert_array_almost_equal(
signal[:, target_idx - 99: target_idx + 1], epoch
)
np.testing.assert_array_almost_equal(
np.array([i, i * 5 + 1, target_idx + 1]), window_inds
)
def test_windower_from_target_channels_all_targets(dataset_target_time_series):
concat_ds, _, targets, signal = dataset_target_time_series
windows_dataset = create_windows_from_target_channels(
concat_ds, window_size_samples=100, last_target_only=False
)
assert len(windows_dataset) == 180
for i in range(180):
epoch, y, window_inds = windows_dataset[i]
target_idx = i * 5 + 100
np.testing.assert_array_almost_equal(
targets[:, target_idx - 99: target_idx + 1], y
)
np.testing.assert_array_almost_equal(
signal[:, target_idx - 99: target_idx + 1], epoch
)
np.testing.assert_array_almost_equal(
np.array([i, i * 5 + 1, target_idx + 1]), window_inds
)