|
a |
|
b/braindecode/preprocessing/preprocess.py |
|
|
1 |
"""Preprocessors that work on Raw or Epochs objects.""" |
|
|
2 |
|
|
|
3 |
# Authors: Hubert Banville <hubert.jbanville@gmail.com> |
|
|
4 |
# Lukas Gemein <l.gemein@gmail.com> |
|
|
5 |
# Simon Brandt <simonbrandt@protonmail.com> |
|
|
6 |
# David Sabbagh <dav.sabbagh@gmail.com> |
|
|
7 |
# Bruno Aristimunha <b.aristimunha@gmail.com> |
|
|
8 |
# |
|
|
9 |
# License: BSD (3-clause) |
|
|
10 |
|
|
|
11 |
from __future__ import annotations |
|
|
12 |
from warnings import warn |
|
|
13 |
from functools import partial |
|
|
14 |
from collections.abc import Iterable |
|
|
15 |
import sys |
|
|
16 |
import platform |
|
|
17 |
|
|
|
18 |
if sys.version_info < (3, 9): |
|
|
19 |
from typing import Callable |
|
|
20 |
else: |
|
|
21 |
from collections.abc import Callable |
|
|
22 |
|
|
|
23 |
import numpy as np |
|
|
24 |
from numpy.typing import NDArray |
|
|
25 |
import pandas as pd |
|
|
26 |
from mne import create_info, BaseEpochs |
|
|
27 |
from mne.io import BaseRaw |
|
|
28 |
from joblib import Parallel, delayed |
|
|
29 |
|
|
|
30 |
from braindecode.datasets.base import ( |
|
|
31 |
BaseConcatDataset, |
|
|
32 |
BaseDataset, |
|
|
33 |
WindowsDataset, |
|
|
34 |
EEGWindowsDataset, |
|
|
35 |
) |
|
|
36 |
from braindecode.datautil.serialization import ( |
|
|
37 |
load_concat_dataset, |
|
|
38 |
_check_save_dir_empty, |
|
|
39 |
) |
|
|
40 |
|
|
|
41 |
|
|
|
42 |
class Preprocessor(object): |
|
|
43 |
"""Preprocessor for an MNE Raw or Epochs object. |
|
|
44 |
|
|
|
45 |
Applies the provided preprocessing function to the data of a Raw or Epochs |
|
|
46 |
object. |
|
|
47 |
If the function is provided as a string, the method with that name will be |
|
|
48 |
used (e.g., 'pick_channels', 'filter', etc.). |
|
|
49 |
If it is provided as a callable and `apply_on_array` is True, the |
|
|
50 |
`apply_function` method of Raw and Epochs object will be used to apply the |
|
|
51 |
function on the internal arrays of Raw and Epochs. |
|
|
52 |
If `apply_on_array` is False, the callable must directly modify the Raw or |
|
|
53 |
Epochs object (e.g., by calling its method(s) or modifying its attributes). |
|
|
54 |
|
|
|
55 |
Parameters |
|
|
56 |
---------- |
|
|
57 |
fn: str or callable |
|
|
58 |
If str, the Raw/Epochs object must have a method with that name. |
|
|
59 |
If callable, directly apply the callable to the object. |
|
|
60 |
apply_on_array : bool |
|
|
61 |
Ignored if `fn` is not a callable. If True, the `apply_function` of Raw |
|
|
62 |
and Epochs object will be used to run `fn` on the underlying arrays |
|
|
63 |
directly. If False, `fn` must directly modify the Raw or Epochs object. |
|
|
64 |
kwargs: |
|
|
65 |
Keyword arguments to be forwarded to the MNE function. |
|
|
66 |
""" |
|
|
67 |
|
|
|
68 |
def __init__(self, fn: Callable | str, *, apply_on_array: bool = True, **kwargs): |
|
|
69 |
if hasattr(fn, "__name__") and fn.__name__ == "<lambda>": |
|
|
70 |
warn("Preprocessing choices with lambda functions cannot be saved.") |
|
|
71 |
if callable(fn) and apply_on_array: |
|
|
72 |
channel_wise = kwargs.pop("channel_wise", False) |
|
|
73 |
picks = kwargs.pop("picks", None) |
|
|
74 |
n_jobs = kwargs.pop("n_jobs", 1) |
|
|
75 |
kwargs = dict( |
|
|
76 |
fun=partial(fn, **kwargs), |
|
|
77 |
channel_wise=channel_wise, |
|
|
78 |
picks=picks, |
|
|
79 |
n_jobs=n_jobs, |
|
|
80 |
) |
|
|
81 |
fn = "apply_function" |
|
|
82 |
self.fn = fn |
|
|
83 |
self.kwargs = kwargs |
|
|
84 |
|
|
|
85 |
def apply(self, raw_or_epochs: BaseRaw | BaseEpochs): |
|
|
86 |
try: |
|
|
87 |
self._try_apply(raw_or_epochs) |
|
|
88 |
except RuntimeError: |
|
|
89 |
# Maybe the function needs the data to be loaded and the data was |
|
|
90 |
# not loaded yet. Not all MNE functions need data to be loaded, |
|
|
91 |
# most importantly the 'crop' function can be lazily applied |
|
|
92 |
# without preloading data which can make the overall preprocessing |
|
|
93 |
# pipeline substantially faster. |
|
|
94 |
raw_or_epochs.load_data() |
|
|
95 |
self._try_apply(raw_or_epochs) |
|
|
96 |
|
|
|
97 |
def _try_apply(self, raw_or_epochs): |
|
|
98 |
if callable(self.fn): |
|
|
99 |
self.fn(raw_or_epochs, **self.kwargs) |
|
|
100 |
else: |
|
|
101 |
if not hasattr(raw_or_epochs, self.fn): |
|
|
102 |
raise AttributeError(f"MNE object does not have a {self.fn} method.") |
|
|
103 |
getattr(raw_or_epochs, self.fn)(**self.kwargs) |
|
|
104 |
|
|
|
105 |
|
|
|
106 |
def preprocess( |
|
|
107 |
concat_ds: BaseConcatDataset, |
|
|
108 |
preprocessors: list[Preprocessor], |
|
|
109 |
save_dir: str | None = None, |
|
|
110 |
overwrite: bool = False, |
|
|
111 |
n_jobs: int | None = None, |
|
|
112 |
offset: int = 0, |
|
|
113 |
): |
|
|
114 |
"""Apply preprocessors to a concat dataset. |
|
|
115 |
|
|
|
116 |
Parameters |
|
|
117 |
---------- |
|
|
118 |
concat_ds: BaseConcatDataset |
|
|
119 |
A concat of BaseDataset or WindowsDataset datasets to be preprocessed. |
|
|
120 |
preprocessors: list(Preprocessor) |
|
|
121 |
List of Preprocessor objects to apply to the dataset. |
|
|
122 |
save_dir : str | None |
|
|
123 |
If a string, the preprocessed data will be saved under the specified |
|
|
124 |
directory and the datasets in ``concat_ds`` will be reloaded with |
|
|
125 |
`preload=False`. |
|
|
126 |
overwrite : bool |
|
|
127 |
When `save_dir` is provided, controls whether to delete the old |
|
|
128 |
subdirectories that will be written to under `save_dir`. If False and |
|
|
129 |
the corresponding subdirectories already exist, a ``FileExistsError`` |
|
|
130 |
will be raised. |
|
|
131 |
n_jobs : int | None |
|
|
132 |
Number of jobs for parallel execution. See `joblib.Parallel` for |
|
|
133 |
a more detailed explanation. |
|
|
134 |
offset : int |
|
|
135 |
If provided, the integer is added to the id of the dataset in the |
|
|
136 |
concat. This is useful in the setting of very large datasets, where |
|
|
137 |
one dataset has to be processed and saved at a time to account for |
|
|
138 |
its original position. |
|
|
139 |
|
|
|
140 |
Returns |
|
|
141 |
------- |
|
|
142 |
BaseConcatDataset: |
|
|
143 |
Preprocessed dataset. |
|
|
144 |
""" |
|
|
145 |
# In case of serialization, make sure directory is available before |
|
|
146 |
# preprocessing |
|
|
147 |
if save_dir is not None and not overwrite: |
|
|
148 |
_check_save_dir_empty(save_dir) |
|
|
149 |
|
|
|
150 |
if not isinstance(preprocessors, Iterable): |
|
|
151 |
raise ValueError("preprocessors must be a list of Preprocessor objects.") |
|
|
152 |
for elem in preprocessors: |
|
|
153 |
assert hasattr(elem, "apply"), "Preprocessor object needs an `apply` method." |
|
|
154 |
|
|
|
155 |
parallel_processing = (n_jobs is not None) and (n_jobs != 1) |
|
|
156 |
|
|
|
157 |
job_prefer = "threads" if platform.system() == "Windows" else None |
|
|
158 |
list_of_ds = Parallel(n_jobs=n_jobs, prefer=job_prefer)( |
|
|
159 |
delayed(_preprocess)( |
|
|
160 |
ds, |
|
|
161 |
i + offset, |
|
|
162 |
preprocessors, |
|
|
163 |
save_dir, |
|
|
164 |
overwrite, |
|
|
165 |
copy_data=(parallel_processing and (save_dir is None)), |
|
|
166 |
) |
|
|
167 |
for i, ds in enumerate(concat_ds.datasets) |
|
|
168 |
) |
|
|
169 |
|
|
|
170 |
if save_dir is not None: # Reload datasets and replace in concat_ds |
|
|
171 |
ids_to_load = [i + offset for i in range(len(concat_ds.datasets))] |
|
|
172 |
concat_ds_reloaded = load_concat_dataset( |
|
|
173 |
save_dir, |
|
|
174 |
preload=False, |
|
|
175 |
target_name=None, |
|
|
176 |
ids_to_load=ids_to_load, |
|
|
177 |
) |
|
|
178 |
_replace_inplace(concat_ds, concat_ds_reloaded) |
|
|
179 |
else: |
|
|
180 |
if parallel_processing: # joblib made copies |
|
|
181 |
_replace_inplace(concat_ds, BaseConcatDataset(list_of_ds)) |
|
|
182 |
else: # joblib did not make copies, the |
|
|
183 |
# preprocessing happened in-place |
|
|
184 |
# Recompute cumulative sizes as transforms might have changed them |
|
|
185 |
concat_ds.cumulative_sizes = concat_ds.cumsum(concat_ds.datasets) |
|
|
186 |
|
|
|
187 |
return concat_ds |
|
|
188 |
|
|
|
189 |
|
|
|
190 |
def _replace_inplace(concat_ds, new_concat_ds): |
|
|
191 |
"""Replace subdatasets and preproc_kwargs of a BaseConcatDataset inplace. |
|
|
192 |
|
|
|
193 |
Parameters |
|
|
194 |
---------- |
|
|
195 |
concat_ds : BaseConcatDataset |
|
|
196 |
Dataset to modify inplace. |
|
|
197 |
new_concat_ds : BaseConcatDataset |
|
|
198 |
Dataset to use to modify ``concat_ds``. |
|
|
199 |
""" |
|
|
200 |
if len(concat_ds.datasets) != len(new_concat_ds.datasets): |
|
|
201 |
raise ValueError("Both inputs must have the same length.") |
|
|
202 |
for i in range(len(new_concat_ds.datasets)): |
|
|
203 |
concat_ds.datasets[i] = new_concat_ds.datasets[i] |
|
|
204 |
|
|
|
205 |
concat_kind = "raw" if hasattr(concat_ds.datasets[0], "raw") else "window" |
|
|
206 |
preproc_kwargs_attr = concat_kind + "_preproc_kwargs" |
|
|
207 |
if hasattr(new_concat_ds, preproc_kwargs_attr): |
|
|
208 |
setattr( |
|
|
209 |
concat_ds, preproc_kwargs_attr, getattr(new_concat_ds, preproc_kwargs_attr) |
|
|
210 |
) |
|
|
211 |
|
|
|
212 |
|
|
|
213 |
def _preprocess( |
|
|
214 |
ds, ds_index, preprocessors, save_dir=None, overwrite=False, copy_data=False |
|
|
215 |
): |
|
|
216 |
"""Apply preprocessor(s) to Raw or Epochs object. |
|
|
217 |
|
|
|
218 |
Parameters |
|
|
219 |
---------- |
|
|
220 |
ds: BaseDataset | WindowsDataset |
|
|
221 |
Dataset object to preprocess. |
|
|
222 |
ds_index : int |
|
|
223 |
Index of the BaseDataset in its BaseConcatDataset. Ignored if save_dir |
|
|
224 |
is None. |
|
|
225 |
preprocessors: list(Preprocessor) |
|
|
226 |
List of preprocessors to apply to the dataset. |
|
|
227 |
save_dir : str | None |
|
|
228 |
If provided, save the preprocessed BaseDataset in the |
|
|
229 |
specified directory. |
|
|
230 |
overwrite : bool |
|
|
231 |
If True, overwrite existing file with the same name. |
|
|
232 |
copy_data : bool |
|
|
233 |
First copy the data in case it is preloaded. Necessary for parallel processing to work. |
|
|
234 |
""" |
|
|
235 |
|
|
|
236 |
def _preprocess_raw_or_epochs(raw_or_epochs, preprocessors): |
|
|
237 |
# Copying the data necessary in some scenarios for parallel processing |
|
|
238 |
# to work when data is in memory (else error about _data not being writeable) |
|
|
239 |
if raw_or_epochs.preload and copy_data: |
|
|
240 |
raw_or_epochs._data = raw_or_epochs._data.copy() |
|
|
241 |
for preproc in preprocessors: |
|
|
242 |
preproc.apply(raw_or_epochs) |
|
|
243 |
|
|
|
244 |
if hasattr(ds, "raw"): |
|
|
245 |
if isinstance(ds, EEGWindowsDataset): |
|
|
246 |
warn( |
|
|
247 |
f"Applying preprocessors {preprocessors} to the mne.io.Raw of an EEGWindowsDataset." |
|
|
248 |
) |
|
|
249 |
_preprocess_raw_or_epochs(ds.raw, preprocessors) |
|
|
250 |
elif hasattr(ds, "windows"): |
|
|
251 |
_preprocess_raw_or_epochs(ds.windows, preprocessors) |
|
|
252 |
else: |
|
|
253 |
raise ValueError( |
|
|
254 |
"Can only preprocess concatenation of BaseDataset or " |
|
|
255 |
"WindowsDataset, with either a `raw` or `windows` attribute." |
|
|
256 |
) |
|
|
257 |
|
|
|
258 |
# Store preprocessing keyword arguments in the dataset |
|
|
259 |
_set_preproc_kwargs(ds, preprocessors) |
|
|
260 |
|
|
|
261 |
if save_dir is not None: |
|
|
262 |
concat_ds = BaseConcatDataset([ds]) |
|
|
263 |
concat_ds.save(save_dir, overwrite=overwrite, offset=ds_index) |
|
|
264 |
else: |
|
|
265 |
return ds |
|
|
266 |
|
|
|
267 |
|
|
|
268 |
def _get_preproc_kwargs(preprocessors): |
|
|
269 |
preproc_kwargs = [] |
|
|
270 |
for p in preprocessors: |
|
|
271 |
# in case of a mne function, fn is a str, kwargs is a dict |
|
|
272 |
func_name = p.fn |
|
|
273 |
func_kwargs = p.kwargs |
|
|
274 |
# in case of another function |
|
|
275 |
# if apply_on_array=False |
|
|
276 |
if callable(p.fn): |
|
|
277 |
func_name = p.fn.__name__ |
|
|
278 |
# if apply_on_array=True |
|
|
279 |
else: |
|
|
280 |
if "fun" in p.fn: |
|
|
281 |
func_name = p.kwargs["fun"].func.__name__ |
|
|
282 |
func_kwargs = p.kwargs["fun"].keywords |
|
|
283 |
preproc_kwargs.append((func_name, func_kwargs)) |
|
|
284 |
return preproc_kwargs |
|
|
285 |
|
|
|
286 |
|
|
|
287 |
def _set_preproc_kwargs(ds, preprocessors): |
|
|
288 |
"""Record preprocessing keyword arguments in BaseDataset or WindowsDataset. |
|
|
289 |
|
|
|
290 |
Parameters |
|
|
291 |
---------- |
|
|
292 |
ds : BaseDataset | WindowsDataset |
|
|
293 |
Dataset in which to record preprocessing keyword arguments. |
|
|
294 |
preprocessors : list |
|
|
295 |
List of preprocessors. |
|
|
296 |
""" |
|
|
297 |
preproc_kwargs = _get_preproc_kwargs(preprocessors) |
|
|
298 |
if isinstance(ds, WindowsDataset): |
|
|
299 |
kind = "window" |
|
|
300 |
if isinstance(ds, EEGWindowsDataset): |
|
|
301 |
kind = "raw" |
|
|
302 |
elif isinstance(ds, BaseDataset): |
|
|
303 |
kind = "raw" |
|
|
304 |
else: |
|
|
305 |
raise TypeError(f"ds must be a BaseDataset or a WindowsDataset, got {type(ds)}") |
|
|
306 |
setattr(ds, kind + "_preproc_kwargs", preproc_kwargs) |
|
|
307 |
|
|
|
308 |
|
|
|
309 |
def exponential_moving_standardize( |
|
|
310 |
data: NDArray, |
|
|
311 |
factor_new: float = 0.001, |
|
|
312 |
init_block_size: int | None = None, |
|
|
313 |
eps: float = 1e-4, |
|
|
314 |
): |
|
|
315 |
r"""Perform exponential moving standardization. |
|
|
316 |
|
|
|
317 |
Compute the exponental moving mean :math:`m_t` at time `t` as |
|
|
318 |
:math:`m_t=\mathrm{factornew} \cdot mean(x_t) + (1 - \mathrm{factornew}) \cdot m_{t-1}`. |
|
|
319 |
|
|
|
320 |
Then, compute exponential moving variance :math:`v_t` at time `t` as |
|
|
321 |
:math:`v_t=\mathrm{factornew} \cdot (m_t - x_t)^2 + (1 - \mathrm{factornew}) \cdot v_{t-1}`. |
|
|
322 |
|
|
|
323 |
Finally, standardize the data point :math:`x_t` at time `t` as: |
|
|
324 |
:math:`x'_t=(x_t - m_t) / max(\sqrt{->v_t}, eps)`. |
|
|
325 |
|
|
|
326 |
|
|
|
327 |
Parameters |
|
|
328 |
---------- |
|
|
329 |
data: np.ndarray (n_channels, n_times) |
|
|
330 |
factor_new: float |
|
|
331 |
init_block_size: int |
|
|
332 |
Standardize data before to this index with regular standardization. |
|
|
333 |
eps: float |
|
|
334 |
Stabilizer for division by zero variance. |
|
|
335 |
|
|
|
336 |
Returns |
|
|
337 |
------- |
|
|
338 |
standardized: np.ndarray (n_channels, n_times) |
|
|
339 |
Standardized data. |
|
|
340 |
""" |
|
|
341 |
data = data.T |
|
|
342 |
df = pd.DataFrame(data) |
|
|
343 |
meaned = df.ewm(alpha=factor_new).mean() |
|
|
344 |
demeaned = df - meaned |
|
|
345 |
squared = demeaned * demeaned |
|
|
346 |
square_ewmed = squared.ewm(alpha=factor_new).mean() |
|
|
347 |
standardized = demeaned / np.maximum(eps, np.sqrt(np.array(square_ewmed))) |
|
|
348 |
standardized = np.array(standardized) |
|
|
349 |
if init_block_size is not None: |
|
|
350 |
i_time_axis = 0 |
|
|
351 |
init_mean = np.mean(data[0:init_block_size], axis=i_time_axis, keepdims=True) |
|
|
352 |
init_std = np.std(data[0:init_block_size], axis=i_time_axis, keepdims=True) |
|
|
353 |
init_block_standardized = (data[0:init_block_size] - init_mean) / np.maximum( |
|
|
354 |
eps, init_std |
|
|
355 |
) |
|
|
356 |
standardized[0:init_block_size] = init_block_standardized |
|
|
357 |
return standardized.T |
|
|
358 |
|
|
|
359 |
|
|
|
360 |
def exponential_moving_demean( |
|
|
361 |
data: NDArray, factor_new: float = 0.001, init_block_size: int | None = None |
|
|
362 |
): |
|
|
363 |
r"""Perform exponential moving demeanining. |
|
|
364 |
|
|
|
365 |
Compute the exponental moving mean :math:`m_t` at time `t` as |
|
|
366 |
:math:`m_t=\mathrm{factornew} \cdot mean(x_t) + (1 - \mathrm{factornew}) \cdot m_{t-1}`. |
|
|
367 |
|
|
|
368 |
Deman the data point :math:`x_t` at time `t` as: |
|
|
369 |
:math:`x'_t=(x_t - m_t)`. |
|
|
370 |
|
|
|
371 |
Parameters |
|
|
372 |
---------- |
|
|
373 |
data: np.ndarray (n_channels, n_times) |
|
|
374 |
factor_new: float |
|
|
375 |
init_block_size: int |
|
|
376 |
Demean data before to this index with regular demeaning. |
|
|
377 |
|
|
|
378 |
Returns |
|
|
379 |
------- |
|
|
380 |
demeaned: np.ndarray (n_channels, n_times) |
|
|
381 |
Demeaned data. |
|
|
382 |
""" |
|
|
383 |
data = data.T |
|
|
384 |
df = pd.DataFrame(data) |
|
|
385 |
meaned = df.ewm(alpha=factor_new).mean() |
|
|
386 |
demeaned = df - meaned |
|
|
387 |
demeaned = np.array(demeaned) |
|
|
388 |
if init_block_size is not None: |
|
|
389 |
i_time_axis = 0 |
|
|
390 |
init_mean = np.mean(data[0:init_block_size], axis=i_time_axis, keepdims=True) |
|
|
391 |
demeaned[0:init_block_size] = data[0:init_block_size] - init_mean |
|
|
392 |
return demeaned.T |
|
|
393 |
|
|
|
394 |
|
|
|
395 |
def filterbank( |
|
|
396 |
raw: BaseRaw, |
|
|
397 |
frequency_bands: list[tuple[float, float]], |
|
|
398 |
drop_original_signals: bool = True, |
|
|
399 |
order_by_frequency_band: bool = False, |
|
|
400 |
**mne_filter_kwargs, |
|
|
401 |
): |
|
|
402 |
"""Applies multiple bandpass filters to the signals in raw. The raw will be |
|
|
403 |
modified in-place and number of channels in raw will be updated to |
|
|
404 |
len(frequency_bands) * len(raw.ch_names) (-len(raw.ch_names) if |
|
|
405 |
drop_original_signals). |
|
|
406 |
|
|
|
407 |
Parameters |
|
|
408 |
---------- |
|
|
409 |
raw: mne.io.Raw |
|
|
410 |
The raw signals to be filtered. |
|
|
411 |
frequency_bands: list(tuple) |
|
|
412 |
The frequency bands to be filtered for (e.g. [(4, 8), (8, 13)]). |
|
|
413 |
drop_original_signals: bool |
|
|
414 |
Whether to drop the original unfiltered signals |
|
|
415 |
order_by_frequency_band: bool |
|
|
416 |
If True will return channels ordered by frequency bands, so if there |
|
|
417 |
are channels Cz, O1 and filterbank ranges [(4,8), (8,13)], returned |
|
|
418 |
channels will be [Cz_4-8, O1_4-8, Cz_8-13, O1_8-13]. If False, order |
|
|
419 |
will be [Cz_4-8, Cz_8-13, O1_4-8, O1_8-13]. |
|
|
420 |
mne_filter_kwargs: dict |
|
|
421 |
Keyword arguments for filtering supported by mne.io.Raw.filter(). |
|
|
422 |
Please refer to mne for a detailed explanation. |
|
|
423 |
""" |
|
|
424 |
if not frequency_bands: |
|
|
425 |
raise ValueError(f"Expected at least one frequency band, got {frequency_bands}") |
|
|
426 |
if not all([len(ch_name) < 8 for ch_name in raw.ch_names]): |
|
|
427 |
warn( |
|
|
428 |
"Try to use shorter channel names, since frequency band " |
|
|
429 |
"annotation requires an estimated 4-8 chars depending on the " |
|
|
430 |
"frequency ranges. Will truncate to 15 chars (mne max)." |
|
|
431 |
) |
|
|
432 |
original_ch_names = raw.ch_names |
|
|
433 |
all_filtered = [] |
|
|
434 |
for l_freq, h_freq in frequency_bands: |
|
|
435 |
filtered = raw.copy() |
|
|
436 |
filtered.filter(l_freq=l_freq, h_freq=h_freq, **mne_filter_kwargs) |
|
|
437 |
# mne automatically changes the highpass/lowpass info values |
|
|
438 |
# when applying filters and channels can't be added if they have |
|
|
439 |
# different such parameters. Not needed when making picks as |
|
|
440 |
# high pass is not modified by filter if pick is specified |
|
|
441 |
|
|
|
442 |
ch_names = filtered.info.ch_names |
|
|
443 |
ch_types = filtered.info.get_channel_types() |
|
|
444 |
sampling_freq = filtered.info["sfreq"] |
|
|
445 |
|
|
|
446 |
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=sampling_freq) |
|
|
447 |
|
|
|
448 |
filtered.info = info |
|
|
449 |
|
|
|
450 |
# add frequency band annotation to channel names |
|
|
451 |
# truncate to a max of 15 characters, since mne does not allow for more |
|
|
452 |
filtered.rename_channels( |
|
|
453 |
{ |
|
|
454 |
old_name: (old_name + f"_{l_freq}-{h_freq}")[-15:] |
|
|
455 |
for old_name in filtered.ch_names |
|
|
456 |
} |
|
|
457 |
) |
|
|
458 |
all_filtered.append(filtered) |
|
|
459 |
raw.add_channels(all_filtered) |
|
|
460 |
if not order_by_frequency_band: |
|
|
461 |
# order channels by name and not by frequency band: |
|
|
462 |
# index the list with a stepsize of the number of channels for each of |
|
|
463 |
# the original channels |
|
|
464 |
chs_by_freq_band = [] |
|
|
465 |
for i in range(len(original_ch_names)): |
|
|
466 |
chs_by_freq_band.extend(raw.ch_names[i :: len(original_ch_names)]) |
|
|
467 |
raw.reorder_channels(chs_by_freq_band) |
|
|
468 |
if drop_original_signals: |
|
|
469 |
raw.drop_channels(original_ch_names) |