"""
Self-supervised learning on EEG with relative positioning
=========================================================
This example shows how to train a neural network with self-supervision on sleep
EEG data. We follow the relative positioning approach of [1]_ on the openly
accessible Sleep Physionet dataset [2]_ [3]_.
.. topic:: Self-supervised learning
Self-supervised learning (SSL) is a learning paradigm that leverages
unlabelled data to train neural networks. First, neural networks are
trained on a "pretext task" which uses unlabelled data only. The pretext
task is designed based on a prior understanding of the data under study
(e.g., EEG has an underlying autocorrelation structure) and such that the
processing required to perform well on this pretext task is related to the
processing required to perform well on another task of interest.
Once trained, these neural networks can be reused as feature extractors or
weight initialization in a "downstream task", which is the task that we are
actually interested in (e.g., sleep staging). The pretext task step can
help reduce the quantity of labelled data needed to perform well on the
downstream task and/or improve downstream performance as compared to a
strictly supervised approach [1]_.
Here, we use relative positioning (RP) as our pretext task, and perform sleep
staging as our downstream task. RP is a simple SSL task, in which a neural
network is trained to predict whether two randomly sampled EEG windows are
close or far apart in time. This method was shown to yield physiologically- and
clinically-relevant features and to boost classification performance in
low-labels data regimes [1]_.
.. contents:: This example covers:
:local:
:depth: 2
"""
# Authors: Hubert Banville <hubert.jbanville@gmail.com>
#
# License: BSD (3-clause)
random_state = 87
n_jobs = 1
######################################################################
# Loading and preprocessing the dataset
# -------------------------------------
#
# Loading the raw recordings
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# First, we load a few recordings from the Sleep Physionet dataset. Running
# this example with more recordings should yield better representations and
# downstream classification performance.
from braindecode.datasets.sleep_physionet import SleepPhysionet
dataset = SleepPhysionet(subject_ids=[0, 1, 2], recording_ids=[1], crop_wake_mins=30)
######################################################################
# Preprocessing
# ~~~~~~~~~~~~~
#
# Next, we preprocess the raw data. We convert the data to microvolts and apply
# a lowpass filter. Since the Sleep Physionet data is already sampled at 100 Hz
# we don't need to apply resampling.
from braindecode.preprocessing.preprocess import preprocess, Preprocessor
from numpy import multiply
high_cut_hz = 30
# Factor to convert from V to uV
factor = 1e6
preprocessors = [
Preprocessor(lambda data: multiply(data, factor)), # Convert from V to uV
Preprocessor("filter", l_freq=None, h_freq=high_cut_hz, n_jobs=n_jobs),
]
# Transform the data
preprocess(dataset, preprocessors)
######################################################################
# Extracting windows
# ~~~~~~~~~~~~~~~~~~
#
# We extract 30-s windows to be used in both the pretext and downstream tasks.
# As RP (and SSL in general) don't require labelled data, the pretext task
# could be performed using unlabelled windows extracted with
# :func:`braindecode.datautil.windower.create_fixed_length_window`.
# Here however, purely for convenience, we directly extract labelled windows so
# that we can reuse them in the sleep staging downstream task later.
from braindecode.preprocessing.windowers import create_windows_from_events
window_size_s = 30
sfreq = 100
window_size_samples = window_size_s * sfreq
mapping = { # We merge stages 3 and 4 following AASM standards.
"Sleep stage W": 0,
"Sleep stage 1": 1,
"Sleep stage 2": 2,
"Sleep stage 3": 3,
"Sleep stage 4": 3,
"Sleep stage R": 4,
}
windows_dataset = create_windows_from_events(
dataset,
trial_start_offset_samples=0,
trial_stop_offset_samples=0,
window_size_samples=window_size_samples,
window_stride_samples=window_size_samples,
preload=True,
mapping=mapping,
)
######################################################################
# Preprocessing windows
# ~~~~~~~~~~~~~~~~~~~~~
#
# We also preprocess the windows by applying channel-wise z-score normalization.
from sklearn.preprocessing import scale as standard_scale
preprocess(windows_dataset, [Preprocessor(standard_scale, channel_wise=True)])
######################################################################
# Splitting dataset into train, valid and test sets
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# We randomly split the recordings by subject into train, validation and
# testing sets. We further define a new Dataset class which can receive a pair
# of indices and return the corresponding windows. This will be needed when
# training and evaluating on the pretext task.
import numpy as np
from sklearn.model_selection import train_test_split
from braindecode.datasets import BaseConcatDataset
subjects = np.unique(windows_dataset.description["subject"])
subj_train, subj_test = train_test_split(
subjects, test_size=0.4, random_state=random_state
)
subj_valid, subj_test = train_test_split(
subj_test, test_size=0.5, random_state=random_state
)
class RelativePositioningDataset(BaseConcatDataset):
"""BaseConcatDataset with __getitem__ that expects 2 indices and a target."""
def __init__(self, list_of_ds):
super().__init__(list_of_ds)
self.return_pair = True
def __getitem__(self, index):
if self.return_pair:
ind1, ind2, y = index
return (super().__getitem__(ind1)[0], super().__getitem__(ind2)[0]), y
else:
return super().__getitem__(index)
@property
def return_pair(self):
return self._return_pair
@return_pair.setter
def return_pair(self, value):
self._return_pair = value
split_ids = {"train": subj_train, "valid": subj_valid, "test": subj_test}
splitted = dict()
for name, values in split_ids.items():
splitted[name] = RelativePositioningDataset(
[ds for ds in windows_dataset.datasets if ds.description["subject"] in values]
)
######################################################################
# Creating samplers
# ~~~~~~~~~~~~~~~~~
#
# Next, we need to create samplers. These samplers will be used to randomly
# sample pairs of examples to train and validate our model with
# self-supervision.
#
# The RP samplers have two main hyperparameters. `tau_pos` and `tau_neg`
# control the size of the "positive" and "negative" contexts, respectively.
# Pairs of windows that are separated by less than `tau_pos` samples will be
# given a label of `1`, while pairs of windows that are separated by more than
# `tau_neg` samples will be given a label of `0`. Here, we use the same values
# as in [1]_, i.e., `tau_pos`= 1 min and `tau_neg`= 15 mins.
#
# The samplers also control the number of pairs to be sampled (defined with
# `n_examples`). This number can be large to help regularize the pretext task
# training, for instance 2,000 pairs per recording as in [1]_. Here, we use a
# lower number of 250 pairs per recording to reduce training time.
from braindecode.samplers import RelativePositioningSampler
tau_pos, tau_neg = int(sfreq * 60), int(sfreq * 15 * 60)
n_examples_train = 250 * len(splitted["train"].datasets)
n_examples_valid = 250 * len(splitted["valid"].datasets)
n_examples_test = 250 * len(splitted["test"].datasets)
train_sampler = RelativePositioningSampler(
splitted["train"].get_metadata(),
tau_pos=tau_pos,
tau_neg=tau_neg,
n_examples=n_examples_train,
same_rec_neg=True,
random_state=random_state,
)
valid_sampler = RelativePositioningSampler(
splitted["valid"].get_metadata(),
tau_pos=tau_pos,
tau_neg=tau_neg,
n_examples=n_examples_valid,
same_rec_neg=True,
random_state=random_state,
).presample()
test_sampler = RelativePositioningSampler(
splitted["test"].get_metadata(),
tau_pos=tau_pos,
tau_neg=tau_neg,
n_examples=n_examples_test,
same_rec_neg=True,
random_state=random_state,
).presample()
######################################################################
# Creating the model
# ------------------
#
# We can now create the deep learning model. In this tutorial, we use a
# modified version of the sleep staging architecture introduced in [4]_ -
# a four-layer convolutional neural network - as our embedder.
# We change the dimensionality of the last layer to obtain a 100-dimension
# embedding, use 16 convolutional channels instead of 8, and add batch
# normalization after both temporal convolution layers.
#
# We further wrap the model into a siamese architecture using the
# # :class:`ContrastiveNet` class defined below. This allows us to train the
# feature extractor end-to-end.
import torch
from torch import nn
from braindecode.util import set_random_seeds
from braindecode.models import SleepStagerChambon2018
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda":
torch.backends.cudnn.benchmark = True
# Set random seed to be able to roughly reproduce results
# Note that with cudnn benchmark set to True, GPU indeterminism
# may still make results substantially different between runs.
# To obtain more consistent results at the cost of increased computation time,
# you can set `cudnn_benchmark=False` in `set_random_seeds`
# or remove `torch.backends.cudnn.benchmark = True`
set_random_seeds(seed=random_state, cuda=device == "cuda")
# Extract number of channels and time steps from dataset
n_channels, input_size_samples = windows_dataset[0][0].shape
emb_size = 100
classes = list(range(5))
emb = SleepStagerChambon2018(
n_channels,
sfreq,
n_outputs=emb_size,
n_conv_chs=16,
n_times=input_size_samples,
drop_prob=0.0,
apply_batch_norm=True,
)
class ContrastiveNet(nn.Module):
"""Contrastive module with linear layer on top of siamese embedder.
Parameters
----------
emb : nn.Module
Embedder architecture.
emb_size : int
Output size of the embedder.
dropout : float
Dropout rate applied to the linear layer of the contrastive module.
"""
def __init__(self, emb, emb_size, dropout=0.5):
super().__init__()
self.emb = emb
self.clf = nn.Sequential(nn.Dropout(dropout), nn.Linear(emb_size, 1))
def forward(self, x):
x1, x2 = x
z1, z2 = self.emb(x1), self.emb(x2)
return self.clf(torch.abs(z1 - z2)).flatten()
model = ContrastiveNet(emb, emb_size).to(device)
######################################################################
# Training
# ---------
#
# We can now train our network on the pretext task. We use similar
# hyperparameters as in [1]_, but reduce the number of epochs and
# increase the learning rate to account for the smaller setting of
# this example.
import os
from skorch.helper import predefined_split
from skorch.callbacks import Checkpoint, EarlyStopping, EpochScoring
from braindecode import EEGClassifier
lr = 5e-3
batch_size = 128 # 512 if data large enough
n_epochs = 25
num_workers = 0 if n_jobs <= 1 else n_jobs
cp = Checkpoint(dirname="", f_criterion=None, f_optimizer=None, f_history=None)
early_stopping = EarlyStopping(patience=10)
train_acc = EpochScoring(
scoring="accuracy", on_train=True, name="train_acc", lower_is_better=False
)
callbacks = [
("cp", cp),
("patience", early_stopping),
("train_acc", train_acc),
]
clf = EEGClassifier(
model,
criterion=torch.nn.BCEWithLogitsLoss,
optimizer=torch.optim.Adam,
max_epochs=n_epochs,
iterator_train__shuffle=False,
iterator_train__sampler=train_sampler,
iterator_valid__sampler=valid_sampler,
iterator_train__num_workers=num_workers,
iterator_valid__num_workers=num_workers,
train_split=predefined_split(splitted["valid"]),
optimizer__lr=lr,
batch_size=batch_size,
callbacks=callbacks,
device=device,
classes=classes,
)
# Model training for a specified number of epochs. `y` is None as it is already
# supplied in the dataset.
clf.fit(splitted["train"], y=None)
clf.load_params(checkpoint=cp) # Load the model with the lowest valid_loss
os.remove("./params.pt") # Delete parameters file
######################################################################
# Visualizing the results
# -----------------------
#
# Inspecting pretext task performance
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# We plot the loss and pretext task performance for the training and validation
# sets.
import matplotlib.pyplot as plt
import pandas as pd
# Extract loss and balanced accuracy values for plotting from history object
df = pd.DataFrame(clf.history.to_list())
df["train_acc"] *= 100
df["valid_acc"] *= 100
ys1 = ["train_loss", "valid_loss"]
ys2 = ["train_acc", "valid_acc"]
styles = ["-", ":"]
markers = [".", "."]
fig, ax1 = plt.subplots(figsize=(8, 3))
ax2 = ax1.twinx()
for y1, y2, style, marker in zip(ys1, ys2, styles, markers):
ax1.plot(df["epoch"], df[y1], ls=style, marker=marker, ms=7, c="tab:blue", label=y1)
ax2.plot(
df["epoch"], df[y2], ls=style, marker=marker, ms=7, c="tab:orange", label=y2
)
ax1.tick_params(axis="y", labelcolor="tab:blue")
ax1.set_ylabel("Loss", color="tab:blue")
ax2.tick_params(axis="y", labelcolor="tab:orange")
ax2.set_ylabel("Accuracy [%]", color="tab:orange")
ax1.set_xlabel("Epoch")
lines1, labels1 = ax1.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax2.legend(lines1 + lines2, labels1 + labels2)
plt.tight_layout()
######################################################################
# We also display the confusion matrix and classification report for the
# pretext task:
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
# Switch to the test sampler
clf.iterator_valid__sampler = test_sampler
y_pred = clf.forward(splitted["test"], training=False) > 0
y_true = [y for _, _, y in test_sampler]
print(confusion_matrix(y_true, y_pred))
print(classification_report(y_true, y_pred))
######################################################################
# Using the learned representation for sleep staging
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# We can now use the trained convolutional neural network as a feature
# extractor. We perform sleep stage classification from the learned feature
# representation using a linear logistic regression classifier.
from torch.utils.data import DataLoader
from sklearn.metrics import balanced_accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
# Extract features with the trained embedder
data = dict()
for name, split in splitted.items():
split.return_pair = False # Return single windows
loader = DataLoader(split, batch_size=batch_size, num_workers=num_workers)
with torch.no_grad():
feats = [emb(batch_x.to(device)).cpu().numpy() for batch_x, _, _ in loader]
data[name] = (np.concatenate(feats), split.get_metadata()["target"].values)
# Initialize the logistic regression model
log_reg = LogisticRegression(
penalty="l2",
C=1.0,
class_weight="balanced",
solver="lbfgs",
multi_class="multinomial",
random_state=random_state,
)
clf_pipe = make_pipeline(StandardScaler(), log_reg)
# Fit and score the logistic regression
clf_pipe.fit(*data["train"])
train_y_pred = clf_pipe.predict(data["train"][0])
valid_y_pred = clf_pipe.predict(data["valid"][0])
test_y_pred = clf_pipe.predict(data["test"][0])
train_bal_acc = balanced_accuracy_score(data["train"][1], train_y_pred)
valid_bal_acc = balanced_accuracy_score(data["valid"][1], valid_y_pred)
test_bal_acc = balanced_accuracy_score(data["test"][1], test_y_pred)
print("Sleep staging performance with logistic regression:")
print(f"Train bal acc: {train_bal_acc:0.4f}")
print(f"Valid bal acc: {valid_bal_acc:0.4f}")
print(f"Test bal acc: {test_bal_acc:0.4f}")
print("Results on test set:")
print(confusion_matrix(data["test"][1], test_y_pred))
print(classification_report(data["test"][1], test_y_pred))
######################################################################
# The balanced accuracy is much higher than chance-level (i.e., 20% for our
# 5-class classification problem). Finally, we perform a quick 2D visualization
# of the feature space using a PCA:
from sklearn.decomposition import PCA
from matplotlib import colormaps
X = np.concatenate([v[0] for k, v in data.items()])
y = np.concatenate([v[1] for k, v in data.items()])
pca = PCA(n_components=2)
# tsne = TSNE(n_components=2)
components = pca.fit_transform(X)
fig, ax = plt.subplots()
colors = colormaps["viridis"](range(5))
for i, stage in enumerate(["W", "N1", "N2", "N3", "R"]):
mask = y == i
ax.scatter(
components[mask, 0],
components[mask, 1],
s=10,
alpha=0.7,
color=colors[i],
label=stage,
)
ax.legend()
######################################################################
# We see that there is sleep stage-related structure in the embedding. A
# nonlinear projection method (e.g., tSNE, UMAP) might yield more insightful
# visualizations. Using a similar approach, the embedding space could also be
# explored with respect to subject-level features, e.g., age and sex.
#
# Conclusion
# ----------
#
# In this example, we used self-supervised learning (SSL) as a way to learn
# representations from unlabelled raw EEG data. Specifically, we used the
# relative positioning (RP) pretext task to train a feature extractor on a
# subset of the Sleep Physionet dataset. We then reused these features in a
# downstream sleep staging task. We achieved reasonable downstream performance
# and further showed with a 2D projection that the learned embedding space
# contained sleep-related structure.
#
# Many avenues could be taken to improve on these results. For instance, using
# the entire Sleep Physionet dataset or training on larger datasets should help
# the feature extractor learn better representations during the pretext task.
# Other SSL tasks such as those described in [1]_ could further help discover
# more powerful features.
#
#
# References
# ----------
#
# .. [1] Banville, H., Chehab, O., Hyvärinen, A., Engemann, D. A., & Gramfort, A.
# (2020). Uncovering the structure of clinical EEG signals with
# self-supervised learning. arXiv preprint arXiv:2007.16104.
#
# .. [2] Kemp, B., Zwinderman, A. H., Tuk, B., Kamphuisen, H. A., & Oberye, J. J.
# (2000). Analysis of a sleep-dependent neuronal feedback loop: the
# slow-wave microcontinuity of the EEG. IEEE Transactions on Biomedical
# Engineering, 47(9), 1185-1194.
#
# .. [3] Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov,
# P. C., Mark, R. G., ... & Stanley, H. E. (2000). PhysioBank,
# PhysioToolkit, and PhysioNet: components of a new research resource for
# complex physiologic signals. circulation, 101(23), e215-e220.
#
# .. [4] Chambon, S., Galtier, M., Arnal, P., Wainrib, G. and Gramfort, A.
# (2018)A Deep Learning Architecture for Temporal Sleep Stage
# Classification Using Multivariate and Multimodal Time Series.
# IEEE Trans. on Neural Systems and Rehabilitation Engineering 26:
# (758-769)
#