Diff of /train.py [000000] .. [c1a411]

Switch to unified view

a b/train.py
1
from tensorflow.keras.optimizers import Adam
2
from tensorflow.keras.callbacks import (ModelCheckpoint, TensorBoard, ReduceLROnPlateau,
3
                                        CSVLogger, EarlyStopping)
4
from model import get_model
5
import argparse
6
from datasets import ECGSequence
7
8
if __name__ == "__main__":
9
    # Get data and train
10
    parser = argparse.ArgumentParser(description='Train neural network.')
11
    parser.add_argument('path_to_hdf5', type=str,
12
                        help='path to hdf5 file containing tracings')
13
    parser.add_argument('path_to_csv', type=str,
14
                        help='path to csv file containing annotations')
15
    parser.add_argument('--val_split', type=float, default=0.02,
16
                        help='number between 0 and 1 determining how much of'
17
                             ' the data is to be used for validation. The remaining '
18
                             'is used for validation. Default: 0.02')
19
    parser.add_argument('--dataset_name', type=str, default='tracings',
20
                        help='name of the hdf5 dataset containing tracings')
21
    args = parser.parse_args()
22
    # Optimization settings
23
    loss = 'binary_crossentropy'
24
    lr = 0.001
25
    batch_size = 64
26
    opt = Adam(lr)
27
    callbacks = [ReduceLROnPlateau(monitor='val_loss',
28
                                   factor=0.1,
29
                                   patience=7,
30
                                   min_lr=lr / 100),
31
                 EarlyStopping(patience=9,  # Patience should be larger than the one in ReduceLROnPlateau
32
                               min_delta=0.00001)]
33
34
    train_seq, valid_seq = ECGSequence.get_train_and_val(
35
        args.path_to_hdf5, args.dataset_name, args.path_to_csv, batch_size, args.val_split)
36
37
    # If you are continuing an interrupted section, uncomment line bellow:
38
    #   model = keras.models.load_model(PATH_TO_PREV_MODEL, compile=False)
39
    model = get_model(train_seq.n_classes)
40
    model.compile(loss=loss, optimizer=opt)
41
    # Create log
42
    callbacks += [TensorBoard(log_dir='./logs', write_graph=False),
43
                  CSVLogger('training.log', append=False)]  # Change append to true if continuing training
44
    # Save the BEST and LAST model
45
    callbacks += [ModelCheckpoint('./backup_model_last.hdf5'),
46
                  ModelCheckpoint('./backup_model_best.hdf5', save_best_only=True)]
47
    # Train neural network
48
    history = model.fit(train_seq,
49
                        epochs=70,
50
                        initial_epoch=0,  # If you are continuing a interrupted section change here
51
                        callbacks=callbacks,
52
                        validation_data=valid_seq,
53
                        verbose=1)
54
    # Save final result
55
    model.save("./final_model.hdf5")