--- a +++ b/train.py @@ -0,0 +1,55 @@ +from tensorflow.keras.optimizers import Adam +from tensorflow.keras.callbacks import (ModelCheckpoint, TensorBoard, ReduceLROnPlateau, + CSVLogger, EarlyStopping) +from model import get_model +import argparse +from datasets import ECGSequence + +if __name__ == "__main__": + # Get data and train + parser = argparse.ArgumentParser(description='Train neural network.') + parser.add_argument('path_to_hdf5', type=str, + help='path to hdf5 file containing tracings') + parser.add_argument('path_to_csv', type=str, + help='path to csv file containing annotations') + parser.add_argument('--val_split', type=float, default=0.02, + help='number between 0 and 1 determining how much of' + ' the data is to be used for validation. The remaining ' + 'is used for validation. Default: 0.02') + parser.add_argument('--dataset_name', type=str, default='tracings', + help='name of the hdf5 dataset containing tracings') + args = parser.parse_args() + # Optimization settings + loss = 'binary_crossentropy' + lr = 0.001 + batch_size = 64 + opt = Adam(lr) + callbacks = [ReduceLROnPlateau(monitor='val_loss', + factor=0.1, + patience=7, + min_lr=lr / 100), + EarlyStopping(patience=9, # Patience should be larger than the one in ReduceLROnPlateau + min_delta=0.00001)] + + train_seq, valid_seq = ECGSequence.get_train_and_val( + args.path_to_hdf5, args.dataset_name, args.path_to_csv, batch_size, args.val_split) + + # If you are continuing an interrupted section, uncomment line bellow: + # model = keras.models.load_model(PATH_TO_PREV_MODEL, compile=False) + model = get_model(train_seq.n_classes) + model.compile(loss=loss, optimizer=opt) + # Create log + callbacks += [TensorBoard(log_dir='./logs', write_graph=False), + CSVLogger('training.log', append=False)] # Change append to true if continuing training + # Save the BEST and LAST model + callbacks += [ModelCheckpoint('./backup_model_last.hdf5'), + ModelCheckpoint('./backup_model_best.hdf5', save_best_only=True)] + # Train neural network + history = model.fit(train_seq, + epochs=70, + initial_epoch=0, # If you are continuing a interrupted section change here + callbacks=callbacks, + validation_data=valid_seq, + verbose=1) + # Save final result + model.save("./final_model.hdf5")