Diff of /train.py [000000] .. [c1a411]

Switch to side-by-side view

--- a
+++ b/train.py
@@ -0,0 +1,55 @@
+from tensorflow.keras.optimizers import Adam
+from tensorflow.keras.callbacks import (ModelCheckpoint, TensorBoard, ReduceLROnPlateau,
+                                        CSVLogger, EarlyStopping)
+from model import get_model
+import argparse
+from datasets import ECGSequence
+
+if __name__ == "__main__":
+    # Get data and train
+    parser = argparse.ArgumentParser(description='Train neural network.')
+    parser.add_argument('path_to_hdf5', type=str,
+                        help='path to hdf5 file containing tracings')
+    parser.add_argument('path_to_csv', type=str,
+                        help='path to csv file containing annotations')
+    parser.add_argument('--val_split', type=float, default=0.02,
+                        help='number between 0 and 1 determining how much of'
+                             ' the data is to be used for validation. The remaining '
+                             'is used for validation. Default: 0.02')
+    parser.add_argument('--dataset_name', type=str, default='tracings',
+                        help='name of the hdf5 dataset containing tracings')
+    args = parser.parse_args()
+    # Optimization settings
+    loss = 'binary_crossentropy'
+    lr = 0.001
+    batch_size = 64
+    opt = Adam(lr)
+    callbacks = [ReduceLROnPlateau(monitor='val_loss',
+                                   factor=0.1,
+                                   patience=7,
+                                   min_lr=lr / 100),
+                 EarlyStopping(patience=9,  # Patience should be larger than the one in ReduceLROnPlateau
+                               min_delta=0.00001)]
+
+    train_seq, valid_seq = ECGSequence.get_train_and_val(
+        args.path_to_hdf5, args.dataset_name, args.path_to_csv, batch_size, args.val_split)
+
+    # If you are continuing an interrupted section, uncomment line bellow:
+    #   model = keras.models.load_model(PATH_TO_PREV_MODEL, compile=False)
+    model = get_model(train_seq.n_classes)
+    model.compile(loss=loss, optimizer=opt)
+    # Create log
+    callbacks += [TensorBoard(log_dir='./logs', write_graph=False),
+                  CSVLogger('training.log', append=False)]  # Change append to true if continuing training
+    # Save the BEST and LAST model
+    callbacks += [ModelCheckpoint('./backup_model_last.hdf5'),
+                  ModelCheckpoint('./backup_model_best.hdf5', save_best_only=True)]
+    # Train neural network
+    history = model.fit(train_seq,
+                        epochs=70,
+                        initial_epoch=0,  # If you are continuing a interrupted section change here
+                        callbacks=callbacks,
+                        validation_data=valid_seq,
+                        verbose=1)
+    # Save final result
+    model.save("./final_model.hdf5")