--- a +++ b/predict.py @@ -0,0 +1,37 @@ +import numpy as np +import warnings +import argparse +warnings.filterwarnings("ignore") +from tensorflow.keras.models import load_model +from tensorflow.keras.optimizers import Adam +from datasets import ECGSequence + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='Get performance on test set from hdf5') + parser.add_argument('path_to_hdf5', type=str, + help='path to hdf5 file containing tracings') + parser.add_argument('path_to_model', # or model_date_order.hdf5 + help='file containing training model.') + parser.add_argument('--dataset_name', type=str, default='tracings', + help='name of the hdf5 dataset containing tracings') + parser.add_argument('--output_file', default="./dnn_output.npy", # or predictions_date_order.csv + help='output csv file.') + parser.add_argument('-bs', type=int, default=32, + help='Batch size.') + + args, unk = parser.parse_known_args() + if unk: + warnings.warn("Unknown arguments:" + str(unk) + ".") + + # Import data + seq = ECGSequence(args.path_to_hdf5, args.dataset_name, batch_size=args.bs) + # Import model + model = load_model(args.path_to_model, compile=False) + model.compile(loss='binary_crossentropy', optimizer=Adam()) + y_score = model.predict(seq, verbose=1) + + # Generate dataframe + np.save(args.output_file, y_score) + + print("Output predictions saved")