[92ce40]: / SGCN / SGCN.py

Download this file

184 lines (148 with data), 6.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import argparse
import sys
import torch
import time
import scipy.io as sio
import numpy as np
from torch.utils.data import TensorDataset, DataLoader
def readfile(path):
print('reading file ...')
data = sio.loadmat(path)
x_train = []
x_label = []
val_data = []
val_label = []
x_train = data['train_data']
x_label = data['train_label']
val_data = data['test_data']
val_label = data['test_label']
x_train = np.array(x_train, dtype=float)
val_data = np.array(val_data, dtype=float)
x_label = np.array(x_label, dtype=int)
val_label = np.array(val_label, dtype=int)
x_train = torch.FloatTensor(x_train)
val_data = torch.FloatTensor(val_data)
x_label = torch.LongTensor(x_label)
val_label = torch.LongTensor(val_label)
return x_train, x_label, val_data, val_label
class CNNnet(torch.nn.Module):
def __init__(self, node_number, batch_size, k_hop):
super(CNNnet,self).__init__()
self.node_number = node_number
self.batch_size = batch_size
self.k_hop = k_hop
self.aggregate_weight = torch.nn.Parameter(torch.rand(1, 1, node_number))
self.conv1 = torch.nn.Sequential(
torch.nn.Conv1d(in_channels=1,
out_channels=8,
kernel_size=3,
stride=1,
padding=1),
torch.nn.BatchNorm1d(8),
torch.nn.ReLU(),
torch.nn.MaxPool1d(kernel_size=2),
#torch.nn.AvgPool1d(kernel_size=2),
torch.nn.Dropout(0.2),
)
self.conv2 = torch.nn.Sequential(
torch.nn.Conv1d(8,16,3,1,1),
torch.nn.BatchNorm1d(16),
torch.nn.ReLU(),
torch.nn.MaxPool1d(kernel_size=2),
#torch.nn.AvgPool1d(kernel_size=2),
torch.nn.Dropout(0.2),
)
self.mlp1 = torch.nn.Sequential(
torch.nn.Linear(64*16,50),
torch.nn.Dropout(0.5),
)
self.mlp2 = torch.nn.Linear(50,2)
def forward(self, x):
tmp_x = x
for _ in range(self.k_hop):
tmp_x = torch.matmul(tmp_x, x)
x = torch.matmul(self.aggregate_weight, tmp_x)
x = self.conv1(x)
x = self.conv2(x)
x = self.mlp1(x.view(x.size(0),-1))
x = self.mlp2(x)
return x
def main():
parser = argparse.ArgumentParser(description='PyTorch graph convolutional neural net for whole-graph classification')
parser.add_argument('--dataset', type=str, default="dataset/AEF_V_0.mat", help='path of the dataset (default: data/data.mat)')
parser.add_argument('--node_number', type=int, default=256, help='node number of graph (default: 256)')
parser.add_argument('--batch_size', type=int, default=32, help='number of input size (default: 128)')
parser.add_argument('--k_hop', type=int, default=4, help='times of aggregate (default: 1)')
args = parser.parse_args()
x_train, x_label, val_data, val_label = readfile(args.dataset) # 'train.csv'
x_train = x_train.permute(2, 0, 1)
x_label = torch.squeeze(x_label, dim=1).long()
val_data = val_data.permute(2, 0, 1)
val_label = torch.squeeze(val_label, dim=1).long()
train_set = TensorDataset(x_train, x_label)
val_set = TensorDataset(val_data, val_label)
#batch_size = 128
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=0)
val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=True, num_workers=0)
model = CNNnet(args.node_number, args.batch_size, args.k_hop)
#print(model)
model
loss = torch.nn.CrossEntropyLoss()
#para = list(model.parameters())
#print(para)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # optimize all cnn parameters
loss_func = torch.nn.CrossEntropyLoss()
best_acc = 0.0
num_epoch = 100
for epoch in range(num_epoch):
epoch_start_time = time.time()
train_acc = 0.0
train_loss = 0.0
val_acc = 0.0
val_loss = 0.0
model.train()
for i, data in enumerate(train_loader):
optimizer.zero_grad()
train_pred = model(data[0])
#print(train_pred.size())
#print(data[1].size())
batch_loss = loss(train_pred, data[1])
batch_loss.backward()
optimizer.step()
train_acc += np.sum(np.argmax(train_pred.cpu().data.numpy(), axis=1) == data[1].numpy())
train_loss += batch_loss.item()
model.eval()
val_TP = 1.0
val_TN = 1.0
val_FN = 1.0
val_FP = 1.0
predict_total = []
label_total = []
for i, data in enumerate(val_loader):
val_pred = model(data[0])
batch_loss = loss(val_pred, data[1])
predict_val = np.argmax(val_pred.cpu().data.numpy(), axis=1)
predict_total = np.append(predict_total, predict_val)
label_val = data[1].numpy()
label_total = np.append(label_total, label_val)
val_acc += np.sum(np.argmax(val_pred.cpu().data.numpy(), axis=1) == data[1].numpy())
val_loss += batch_loss.item()
val_TP = ((predict_total == 1) & (label_total == 1)).sum().item()
val_TN = ((predict_total == 0) & (label_total == 0)).sum().item()
val_FN = ((predict_total == 0) & (label_total == 1)).sum().item()
val_FP = ((predict_total == 1) & (label_total == 0)).sum().item()
val_spe = val_TN/(val_FP + val_TN + 0.001)
val_rec = val_TP/(val_TP + val_FN + 0.001)
test_acc = (val_TP+val_TN)/(val_FP + val_TN + val_TP + val_FN + 0.001)
val_acc = val_acc / val_set.__len__()
print('%3.6f %3.6f %3.6f %3.6f' % (train_acc / train_set.__len__(), train_loss, val_acc, val_loss))
if (val_acc > best_acc):
with open('save/AET_V_0.txt', 'w') as f:
f.write(str(epoch) + '\t' + str(val_acc) + '\t' + str(val_spe) + '\t' + str(val_rec) + '\n')
torch.save(model.state_dict(), 'save/model.pth')
best_acc = val_acc
for name, param in model.named_parameters():
if param.requires_grad:
print(param[0])
if __name__ == '__main__':
main()