"""
Extract beats from mitdb dataset with size = 2 * window_size
and compute temporal features from each beat
Author: Mondejar Guerra
VARPA
University of A Coruna
April 2017
"""
import numpy as np
import matplotlib.pyplot as plt
import os
import csv
import pickle
import numpy as np
import matplotlib.pyplot as plt
import os.path
import pywt
class temp_features:
def __init__(self):
# Instance atributes
self.pre_R = []
self.post_R = []
self.local_R = []
self.global_R = []
class mit_data:
def __init__(self):
# Instance atributes
self.filenames = []
self.patients = []
self.signals = []
self.classes = []
self.selected_R = []
self.temporal_features = []
self.window_size = []
# Function that given a list of patient extract the signals and
# perform the wavelet descomposition (optionally) and return
# the data and label prepaed for future classification tasks
def get_data_label_mitdb( list_patient, mit_db ):
labels = np.array([], dtype=np.int32)
data = np.array([], dtype=float)
for p in list_patient:
index = mit_db.patients.index(str(p))
for b in range(0, len(mit_db.classes[index]), 1):
RR = [mit_db.temporal_features[index].pre_R[b], mit_db.temporal_features[index].post_R[b], mit_db.temporal_features[index].local_R[b], mit_db.temporal_features[index].global_R[b]]
signal = mit_db.signals[index][b]
beat_type = mit_db.classes[index][b]
# Name class by numbers np.int32
#['N', 'L', 'R', 'e', 'j', 'A', 'a', 'J', 'S', 'V', 'E', 'F', 'P', '/', 'f', 'u']
for i in range(0,5,1):
if beat_type in superclass[i]:
class_n = i
break #exit loop
labels = np.append(labels, class_n)
#Display raw and wave signal
if not compute_wavelets:
features = signal
else: # db of order 8
db8 = pywt.Wavelet('db8')
coeffs = pywt.wavedec(signal, db8, level=4)
features = coeffs[1]
#TODO add RR interval
if compute_RR_interval_feature:
features = np.append(features, RR)
if len(data) == 0:
data = features
else:
data = np.vstack((data, features))
#plt.subplot(211)
#plt.plot(signal)
#plt.subplot(212)
#plt.plot(coeffs[1])
#plt.show()
return (data, labels)
dataset = '/home/mondejar/dataset/ECG/mitdb/'
output_path = dataset + 'm_learning/'
window_size = 160
compute_RR_interval_feature = True
compute_wavelets = True
list_classes = ['N', 'L', 'R', 'e', 'j', 'A', 'a', 'J', 'S', 'V', 'E', 'F', 'P', '/', 'f', 'u']
superclass = []
superclass.append(['N', 'L', 'R', 'e', 'j']) # N
superclass.append(['A', 'a', 'J', 'S']) # SVEB
superclass.append(['V', 'E']) # VEB
superclass.append(['F']) # F
superclass.append(['P', '/', 'f', 'u']) # Q
if not os.path.exists(output_path + 'mit_db_' + str(window_size) + '.p'):
# read files
filenames = next(os.walk(dataset + 'csv'))[2]
# .csv
num_recs = 0
num_annotations = 0
records = []
annotation_files = []
filenames.sort()
for f in filenames:
filename, file_extension = os.path.splitext(f)
if(file_extension == '.csv'):
records.insert(num_recs, dataset + 'csv/' + filename + file_extension)
num_recs = num_recs + 1
else:
annotation_files.insert(num_annotations, dataset + 'csv/' + filename + file_extension)
num_annotations = num_annotations +1
signal_II_w = [ np.array([np.array([])]) for i in range(len(records))]
classes = [[] for i in range(len(records))]
R_poses = [[] for i in range(len(records))]
selected_R = [np.array([]) for i in range(len(records))]
temporal_features = [temp_features() for i in range(len(records))]
mit_db = mit_data()
r_index = 0
files = []
patients = []
for r in range(0,len(records),1):
signal_II = []
print(r)
csvfile = open(records[r], 'rb')
spamreader = csv.reader(csvfile, delimiter=',', quotechar='|')
row_index = -1
for row in spamreader:
if(row_index >= 0):
signal_II.insert(row_index, int(row[1]))
row_index = row_index +1
# Display signal II
#plt.plot(signal_II)
#plt.show()
patients.append(records[r][-7:-4])
# read anotations: R position and class
fileID = open(annotation_files[r], 'r')
data = fileID.readlines()
beat = 0
# read anotations
fileID = open(annotation_files[r], 'r')
data = fileID.readlines()
for d in range(1, len(data), 1):
splitted = data[d].split(' ')
splitted = filter(None, splitted)
pos = int(splitted[1])
type = splitted[2]
if(type in list_classes):
if(pos > window_size and pos < (len(signal_II) - window_size)):
beat = signal_II[pos-window_size+1:pos+window_size]
if np.size(signal_II_w[r]) == 0:
signal_II_w[r] = beat
else:
signamit_pickle_namel_II_w[r] = np.vstack([signal_II_w[r], beat])
classes[r].append(type)
selected_R[r] = np.append(selected_R[r], 1)
else:
selected_R[r] = np.append(selected_R[r], 0)
R_poses[r].append(pos)
# Compute RR Interval, feature Time
if(compute_RR_interval_feature):
pre_R = np.array([0])
post_R = np.array([R_poses[r][1] - R_poses[r][0]])
local_R = np.array([]) # Average of the ten past R intervals
global_R = np.array([]) # Average of the last 5 minutes of the signal
for i in range(1,len(R_poses[r])-1, 1):
pre_R = np.insert(pre_R, i, R_poses[r][i] - R_poses[r][i-1])
post_R = np.insert(post_R, i, R_poses[r][i+1] - R_poses[r][i])
pre_R[0] = pre_R[1]
pre_R = np.append(pre_R, R_poses[r][-1] - R_poses[r][-2])
post_R = np.append(post_R, post_R[-1])
# Local R: AVG from past 10 RR intervals
for i in range(0,len(R_poses[r]), 1):
avg_val = 0
num_elems = 0
window = range(i-10,i,1)
for w in window:
if w >= 0:
avg_val = avg_val + pre_R[w]
num_elems = num_elems + 1
if num_elems == 0:
local_R = np.append(local_R, 0)
else:
avg_val = avg_val / num_elems
local_R = np.append(local_R, avg_val)
# Global R: AVG from past 5 minutes
# 360 Hz 5 minutes = 108000 samples;
for i in range(0, len(R_poses[r]), 1):
avg_val = 0
back = -1
back_length = 0
if R_poses[r][i] < 108000:
window = range(0,i,1)
else:
while (i + back) > 0 and back_length < 108000:
back_length = R_poses[r][i] - R_poses[r][i+back]
back = back -1
window = range(max(0,(back+i)), i, 1)
# Considerando distancia maxima hacia atras
for w in window:
avg_val = avg_val + pre_R[w]
if len(window) > 0:
avg_val = avg_val / len(window)
else:
avg_val = 0
global_R= np.append(global_R, avg_val)
# Only keep those features from beats that we save list_classes
# but for the computation of temporal features all the beats must be used
temporal_features[r].pre_R = pre_R[np.where(selected_R[r] == 1)[0]]
temporal_features[r].post_R = post_R[np.where(selected_R[r] == 1)[0]]
temporal_features[r].local_R = local_R[np.where(selected_R[r] == 1)[0]]
temporal_features[r].global_R = global_R[np.where(selected_R[r] == 1)[0]]
# EXPORT
mit_db.filenames = records
mit_db.patients = patients
mit_db.signals = signal_II_w
mit_db.classes = classes
mit_db.selected_R = selected_R
mit_db.temporal_features = temporal_features
mit_db.window_size = window_size
# Save data
# Protocol version 0 is the original ASCII protocol and is backwards compatible with earlier versions of Python.
# Protocol version 1 is the old binary format which is also compatible with earlier versions of Python.
# Protocol version 2 was introduced in Python 2.3. It provides much more efficient pickling of new-style classes.
pickle.dump(mit_db, open(output_path + 'mit_db_' + str(window_size) + '.p', 'wb'), 2)
else:
# Load data
mit_db = pickle.load(open(output_path + 'mit_db_' + str(window_size) + '.p', 'rb'))
# Select data for training
list_train_pat = [101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230]
list_test_pat = [100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233, 234]
#TODO export data and label directly like Tensorflow would require
train_data, train_labels = get_data_label_mitdb(list_train_pat, mit_db)
eval_data, eval_labels = get_data_label_mitdb(list_test_pat, mit_db)
extension = '_' + str(window_size)
if compute_wavelets:
extension = extension + '_' + 'wv'
if compute_RR_interval_feature:
extension = extension + '_' + 'RR'
extension = extension + '.csv'
# Export, save
np.savetxt(output_path + 'train_data' + extension, train_data, delimiter=",")
np.savetxt(output_path + 'train_label' + extension, train_labels, delimiter=",")
np.savetxt(output_path + 'eval_data' + extension, eval_data, delimiter=",")
np.savetxt(output_path + 'eval_label' + extension, eval_labels, delimiter=",")