#!/usr/bin/env python
"""
train_SVM.py
VARPA, University of Coruna
Mondejar Guerra, Victor M.
26 Oct 2017
"""
from sklearn import metrics
import numpy as np
class performance_measures:
def __init__(self, n):
self.n_classes = n
self.confusion_matrix = np.empty([])
self.Recall = np.empty(n)
self.Precision = np.empty(n)
self.Specificity = np.empty(n)
self.Acc = np.empty(n)
self.F_measure = np.empty(n)
self.gmean_se = 0.0
self.gmean_p = 0.0
self.Overall_Acc = 0.0
self.kappa = 0.0
self.Ij = 0.0
self.Ijk = 0.0
# Compute Cohen' kappa from a confussion matrix
# Kappa value:
# < 0.20 Poor
# 0.21-0.40 Fair
# 0.41-0.60 Moderate
# 0.61-0.80 Good
# 0.81-1.00 Very good
def compute_cohen_kappa(confusion_matrix):
prob_expectedA = np.empty(len(confusion_matrix))
prob_expectedB = np.empty(len(confusion_matrix))
prob_observed = 0
for n in range(0, len(confusion_matrix)):
prob_expectedA[n] = sum(confusion_matrix[n,:]) / sum(sum(confusion_matrix))
prob_expectedB[n] = sum(confusion_matrix[:,n]) / sum(sum(confusion_matrix))
prob_observed = prob_observed + confusion_matrix[n][n]
prob_expected = np.dot(prob_expectedA, prob_expectedB)
prob_observed = prob_observed / sum(sum(confusion_matrix))
kappa = (prob_observed - prob_expected) / (1 - prob_expected)
return kappa, prob_observed, prob_expected
# Compute the performance measures following the AAMI recommendations.
# Using sensivity (recall), specificity (precision) and accuracy
# for each class: (N, SVEB, VEB, F)
def compute_AAMI_performance_measures(predictions, gt_labels):
n_classes = 4 #5
pf_ms = performance_measures(n_classes)
# TODO If conf_mat no llega a clases 4 por gt_labels o predictions...
# hacer algo para que no falle el codigo...
# NOTE: added labels=[0,1,2,3])...
# Confussion matrix
conf_mat = metrics.confusion_matrix(gt_labels, predictions, labels=[0,1,2,3])
conf_mat = conf_mat.astype(float)
pf_ms.confusion_matrix = conf_mat
# Overall Acc
pf_ms.Overall_Acc = metrics.accuracy_score(gt_labels, predictions)
# AAMI: Sens, Spec, Acc
# N: 0, S: 1, V: 2, F: 3 # (Q: 4) not used
for i in range(0, n_classes):
TP = conf_mat[i,i]
FP = sum(conf_mat[:,i]) - conf_mat[i,i]
TN = sum(sum(conf_mat)) - sum(conf_mat[i,:]) - sum(conf_mat[:,i]) + conf_mat[i,i]
FN = sum(conf_mat[i,:]) - conf_mat[i,i]
if i == 2: # V
# Exceptions for AAMI recomendations:
# 1 do not reward or penalize a classifier for the classification of (F) as (V)
FP = FP - conf_mat[i][3]
pf_ms.Recall[i] = TP / (TP + FN)
pf_ms.Precision[i] = TP / (TP + FP)
pf_ms.Specificity[i] = TN / (TN + FP); # 1-FPR
pf_ms.Acc[i] = (TP + TN) / (TP + TN + FP + FN)
if TP == 0:
pf_ms.F_measure[i] = 0.0
else:
pf_ms.F_measure[i] = 2 * (pf_ms.Precision[i] * pf_ms.Recall[i] )/ (pf_ms.Precision[i] + pf_ms.Recall[i])
# Compute Cohen's Kappa
pf_ms.kappa, prob_obsv, prob_expect = compute_cohen_kappa(conf_mat)
# Compute Index-j recall_S + recall_V + precision_S + precision_V
pf_ms.Ij = pf_ms.Recall[1] + pf_ms.Recall[2] + pf_ms.Precision[1] + pf_ms.Precision[2]
# Compute Index-jk
w1 = 0.5
w2 = 0.125
pf_ms.Ijk = w1 * pf_ms.kappa + w2 * pf_ms.Ij
return pf_ms
# Export to filename.txt file the performance measure score
def write_AAMI_results(performance_measures, filename):
f = open(filename, "w")
f.write("Ijk: " + str(format(performance_measures.Ijk, '.4f')) + "\n")
f.write("Ij: " + str(format(performance_measures.Ij, '.4f'))+ "\n")
f.write("Cohen's Kappa: " + str(format(performance_measures.kappa, '.4f'))+ "\n\n")
# Conf matrix
f.write("Confusion Matrix:"+ "\n\n")
f.write("\n".join(str(elem) for elem in performance_measures.confusion_matrix.astype(int))+ "\n\n")
f.write("Overall ACC: " + str(format(performance_measures.Overall_Acc, '.4f'))+ "\n\n")
f.write("mean Acc: " + str(format(np.average(performance_measures.Acc[:]), '.4f'))+ "\n")
f.write("mean Recall: " + str(format(np.average(performance_measures.Recall[:]), '.4f'))+ "\n")
f.write("mean Precision: " + str(format(np.average(performance_measures.Precision[:]), '.4f'))+ "\n")
f.write("N:"+ "\n\n")
f.write("Sens: " + str(format(performance_measures.Recall[0], '.4f'))+ "\n")
f.write("Prec: " + str(format(performance_measures.Precision[0], '.4f'))+ "\n")
f.write("Acc: " + str(format(performance_measures.Acc[0], '.4f'))+ "\n")
f.write("SVEB:"+ "\n\n")
f.write("Sens: " + str(format(performance_measures.Recall[1], '.4f'))+ "\n")
f.write("Prec: " + str(format(performance_measures.Precision[1], '.4f'))+ "\n")
f.write("Acc: " + str(format(performance_measures.Acc[1], '.4f'))+ "\n")
f.write("VEB:"+ "\n\n")
f.write("Sens: " + str(format(performance_measures.Recall[2], '.4f'))+ "\n")
f.write("Prec: " + str(format(performance_measures.Precision[2], '.4f'))+ "\n")
f.write("Acc: " + str(format(performance_measures.Acc[2], '.4f'))+ "\n")
f.write("F:"+ "\n\n")
f.write("Sens: " + str(format(performance_measures.Recall[3], '.4f'))+ "\n")
f.write("Prec: " + str(format(performance_measures.Precision[3], '.4f'))+ "\n")
f.write("Acc: " + str(format(performance_measures.Acc[3], '.4f'))+ "\n")
f.close()