[4d064f]: / python / basic_fusion.py

Download this file

197 lines (152 with data), 8.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#!/usr/bin/env python
"""
basic_fusion.py
VARPA, University of Coruna
Mondejar Guerra, Victor M.
30 Oct 2017
"""
from train_SVM import *
# Compute the basic rule from the list of probs
# selected by rule index:
# 0 = product
# 1 = sum
# 2 = minimum
# 3 = minimum
# 4 = majority
# and return the predictions
def basic_rules(probs_ensemble, rule_index):
n_ensembles, n_instances, n_classes = probs_ensemble.shape
predictions_rule = np.zeros(n_instances)
# Product rule
if rule_index == 0:
probs_rule = np.ones([n_instances, n_classes])
for p in range(n_instances):
for e in range(n_ensembles):
probs_rule[p] = probs_rule[p] * probs_ensemble[e,p]
predictions_rule[p] = np.argmax(probs_rule[p])
# Sum rule
elif rule_index == 1:
probs_rule = np.zeros([n_instances, n_classes])
for p in range(n_instances):
for e in range(n_ensembles):
probs_rule[p] = probs_rule[p] + probs_ensemble[e,p]
predictions_rule[p] = np.argmax(probs_rule[p])
# Minimum rule
elif rule_index == 2:
probs_rule = np.ones([n_instances, n_classes])
for p in range(n_instances):
for e in range(n_ensembles):
probs_rule[p] = np.minimum(probs_rule[p], probs_ensemble[e,p])
predictions_rule[p] = np.argmax(probs_rule[p])
# Maximum rule
elif rule_index == 3:
probs_rule = np.zeros([n_instances, n_classes])
for p in range(n_instances):
for e in range(n_ensembles):
probs_rule[p] = np.maximum(probs_rule[p], probs_ensemble[e,p])
predictions_rule[p] = np.argmax(probs_rule[p])
# Majority rule
elif rule_index == 4:
rank_rule = np.zeros([n_instances, n_classes])
# Just simply adds the position of the ranking
for p in range(n_instances):
for e in range(n_ensembles):
rank = np.argsort(probs_ensemble[e,p])
for j in range(n_classes):
rank_rule[p,rank[j]] = rank_rule[p,rank[j]] + j
predictions_rule[p] = np.argmax(rank_rule[p])
return predictions_rule
def main():
DS = 'DS2'
print("Runing basic_fusion.py!" + DS)
oversamp = '' #'', 'SMOTEENN/', 'SMOTE/', 'SMOTETomek/', 'ADASYN/'
# Load gt labelso
eval_labels = np.loadtxt('/home/mondejar/Dropbox/ECG/code/ecg_classification/python/mit_db/' + DS + '_labels.csv')
# Configuration
results_path = '/home/mondejar/Dropbox/ECG/code/ecg_classification/python/results/ovo/MLII/'
if DS == 'DS2':
model_RR = results_path + oversamp + 'rm_bsln/' + 'maxRR/' + 'RR/' + 'norm_RR/' + 'weighted/' + 'C_0.001' + '_decision_ovo.csv'
model_wvl = results_path + oversamp + 'rm_bsln/' + 'maxRR/' + 'wvlt/' + 'weighted/' + 'C_0.001' + '_decision_ovo.csv'
model_LBP = results_path + oversamp + 'rm_bsln/' + 'maxRR/' + 'lbp/' + 'weighted/' + 'C_0.001' + '_decision_ovo.csv'
model_HOS = results_path + oversamp + 'rm_bsln/' + 'maxRR/' + 'HOS/' + 'weighted/' + 'C_0.001' + '_decision_ovo.csv'
model_myDesc = results_path + oversamp + 'rm_bsln/' + 'maxRR/' + 'myMorph/' + 'weighted/' + 'C_0.001' + '_decision_ovo.csv'
# Load Predictions!
prob_ovo_RR = np.loadtxt(model_RR)
prob_ovo_wvl = np.loadtxt(model_wvl)
prob_ovo_LBP = np.loadtxt(model_LBP)
prob_ovo_HOS = np.loadtxt(model_HOS)
prob_ovo_MyDescp = np.loadtxt(model_myDesc)
prob_ovo_HBF = np.loadtxt(model_HBF)
predict, prob_ovo_RR_sig = ovo_voting_exp(prob_ovo_RR, 4) #voting_ovo_w(prob_ovo_RR) #voting_ovo_raw(prob_ovo_RR)
predict, prob_ovo_wvl_sig = ovo_voting_exp(prob_ovo_wvl, 4) #voting_ovo_w(prob_ovo_wvl) #voting_ovo_raw(prob_ovo_wvl)
predict, prob_ovo_LBP_sig = ovo_voting_exp(prob_ovo_LBP, 4) #voting_ovo_w(prob_ovo_HOS_myDesc) #voting_ovo_raw(prob_ovo_HOS_myDesc)
predict, prob_ovo_HOS_sig = ovo_voting_exp(prob_ovo_HOS, 4) #voting_ovo_w(prob_ovo_HOS_myDesc) #voting_ovo_raw(prob_ovo_HOS_myDesc)
predict, prob_ovo_MyDescp_sig = ovo_voting_exp(prob_ovo_MyDescp, 4) #voting_ovo_w(prob_ovo_HOS_myDesc) #voting_ovo_raw(prob_ovo_HOS_myDesc)
predict, prob_ovo_HBF_sig = ovo_voting_exp(prob_ovo_HBF, 4)
##########################################################
# Combine the predictions!
##########################################################
# 2
#probs_ensemble = np.stack((prob_ovo_RR_sig, prob_ovo_wvl_sig))
#probs_ensemble = np.stack((prob_ovo_RR_sig, prob_ovo_HOS_sig))
#probs_ensemble = np.stack((prob_ovo_RR_sig, prob_ovo_LBP_sig))
#probs_ensemble = np.stack((prob_ovo_RR_sig, prob_ovo_MyDescp_sig))
#probs_ensemble = np.stack((prob_ovo_wvl_sig, prob_ovo_HOS_sig))
#probs_ensemble = np.stack((prob_ovo_wvl_sig, prob_ovo_LBP_sig))
#probs_ensemble = np.stack((prob_ovo_wvl_sig, prob_ovo_MyDescp_sig))
#probs_ensemble = np.stack((prob_ovo_HOS_sig, prob_ovo_LBP_sig))
#probs_ensemble = np.stack((prob_ovo_HOS_sig, prob_ovo_MyDescp_sig))
#probs_ensemble = np.stack((prob_ovo_LBP_sig, prob_ovo_MyDescp_sig))
# 3
#probs_ensemble = np.stack((prob_ovo_RR_sig, prob_ovo_wvl_sig, prob_ovo_HOS_sig))
#probs_ensemble = np.stack((prob_ovo_RR_sig, prob_ovo_wvl_sig, prob_ovo_LBP_sig))
#probs_ensemble = np.stack((prob_ovo_RR_sig, prob_ovo_wvl_sig, prob_ovo_MyDescp_sig))
#probs_ensemble = np.stack((prob_ovo_RR_sig, prob_ovo_HOS_sig, prob_ovo_LBP_sig))
#probs_ensemble = np.stack((prob_ovo_RR_sig, prob_ovo_HOS_sig, prob_ovo_MyDescp_sig))
#probs_ensemble = np.stack((prob_ovo_RR_sig, prob_ovo_LBP_sig, prob_ovo_MyDescp_sig))
#probs_ensemble = np.stack((prob_ovo_wvl_sig, prob_ovo_HOS_sig, prob_ovo_LBP_sig))
#probs_ensemble = np.stack((prob_ovo_wvl_sig, prob_ovo_HOS_sig, prob_ovo_MyDescp_sig))
#probs_ensemble = np.stack((prob_ovo_wvl_sig, prob_ovo_LBP_sig, prob_ovo_MyDescp_sig))
#probs_ensemble = np.stack((prob_ovo_HOS_sig, prob_ovo_LBP_sig, prob_ovo_MyDescp_sig))
# 4
#probs_ensemble = np.stack((prob_ovo_RR_sig, prob_ovo_wvl_sig, prob_ovo_HOS_sig, prob_ovo_LBP_sig))
#probs_ensemble = np.stack((prob_ovo_RR_sig, prob_ovo_wvl_sig, prob_ovo_HOS_sig, prob_ovo_MyDescp_sig))
#probs_ensemble = np.stack((prob_ovo_RR_sig, prob_ovo_wvl_sig, prob_ovo_LBP_sig, prob_ovo_MyDescp_sig))
#probs_ensemble = np.stack((prob_ovo_RR_sig, prob_ovo_HOS_sig, prob_ovo_LBP_sig, prob_ovo_MyDescp_sig))
#probs_ensemble = np.stack((prob_ovo_wvl_sig, prob_ovo_HOS_sig, prob_ovo_LBP_sig, prob_ovo_MyDescp_sig))
# 5
probs_ensemble = np.stack((prob_ovo_RR_sig, prob_ovo_wvl_sig, prob_ovo_HOS_sig, prob_ovo_LBP_sig, prob_ovo_MyDescp_sig))
n_ensembles, n_instances, n_classes = probs_ensemble.shape
###########################################
# product rule!
predictions_prob_rule = basic_rules(probs_ensemble, 0)
perf_measures = compute_AAMI_performance_measures(predictions_prob_rule.astype(int), eval_labels)
write_AAMI_results( perf_measures, results_path + 'fusion/prod_rule_score_Ijk_' + str(format(perf_measures.Ijk, '.2f')) + '_' + DS + '.txt')
###########################################
# Sum rule!
"""
predictions_sum_rule = basic_rules(probs_ensemble, 1)
perf_measures = compute_AAMI_performance_measures(predictions_sum_rule.astype(int), eval_labels)
write_AAMI_results( perf_measures, results_path + 'fusion/sum_rule_score_Ijk_' + str(format(perf_measures.Ijk, '.2f')) + '_' + DS + '.txt')
"""
# min rule!
"""
predictions_min_rule = basic_rules(probs_ensemble, 2)
perf_measures = compute_AAMI_performance_measures(predictions_min_rule.astype(int), eval_labels)
write_AAMI_results( perf_measures, results_path + 'fusion/min_rule_score_Ijk_' + str(format(perf_measures.Ijk, '.2f')) + '_' + DS + '.txt')
"""
# max rule!
"""
predictions_max_rule = basic_rules(probs_ensemble, 3)
perf_measures = compute_AAMI_performance_measures(predictions_max_rule.astype(int), eval_labels)
write_AAMI_results( perf_measures, results_path + 'fusion/max_rule_score_Ijk_' + str(format(perf_measures.Ijk, '.2f')) + '_' + DS + '.txt')
"""
# Mayority rule / Ranking
"""
predictions_rank_rule = basic_rules(probs_ensemble, 4)
perf_measures = compute_AAMI_performance_measures(predictions_rank_rule.astype(int), eval_labels)
write_AAMI_results( perf_measures, results_path + 'fusion/rank_rule_score_Ijk_' + str(format(perf_measures.Ijk, '.2f')) + '_' + DS + '.txt')
"""
if __name__ == '__main__':
import sys
main()