[24c4a6]: / 6-The ValveNet Publication / ValveNet_JACC_Revisions_Final.html

Download this file

34507 lines (29566 with data), 4.0 MB

<!DOCTYPE html>
<html>
<head><meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>ValveNet_JACC_Revisions_Final</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script>




<style type="text/css">
    pre { line-height: 125%; margin: 0; }
td.linenos pre { color: #000000; background-color: #f0f0f0; padding-left: 5px; padding-right: 5px; }
span.linenos { color: #000000; background-color: #f0f0f0; padding-left: 5px; padding-right: 5px; }
td.linenos pre.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
.highlight .hll { background-color: var(--jp-cell-editor-active-background) }
.highlight { background: var(--jp-cell-editor-background); color: var(--jp-mirror-editor-variable-color) }
.highlight .c { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment */
.highlight .err { color: var(--jp-mirror-editor-error-color) } /* Error */
.highlight .k { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword */
.highlight .o { color: var(--jp-mirror-editor-operator-color); font-weight: bold } /* Operator */
.highlight .p { color: var(--jp-mirror-editor-punctuation-color) } /* Punctuation */
.highlight .ch { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Hashbang */
.highlight .cm { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Multiline */
.highlight .cp { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Preproc */
.highlight .cpf { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.PreprocFile */
.highlight .c1 { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Single */
.highlight .cs { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Special */
.highlight .kc { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Pseudo */
.highlight .kr { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Type */
.highlight .m { color: var(--jp-mirror-editor-number-color) } /* Literal.Number */
.highlight .s { color: var(--jp-mirror-editor-string-color) } /* Literal.String */
.highlight .ow { color: var(--jp-mirror-editor-operator-color); font-weight: bold } /* Operator.Word */
.highlight .w { color: var(--jp-mirror-editor-variable-color) } /* Text.Whitespace */
.highlight .mb { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Bin */
.highlight .mf { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Float */
.highlight .mh { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Hex */
.highlight .mi { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Integer */
.highlight .mo { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Oct */
.highlight .sa { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Affix */
.highlight .sb { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Backtick */
.highlight .sc { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Char */
.highlight .dl { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Delimiter */
.highlight .sd { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Doc */
.highlight .s2 { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Double */
.highlight .se { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Escape */
.highlight .sh { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Heredoc */
.highlight .si { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Interpol */
.highlight .sx { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Other */
.highlight .sr { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Regex */
.highlight .s1 { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Single */
.highlight .ss { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Symbol */
.highlight .il { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Integer.Long */
  </style>
<style type="text/css">
    @font-face {
 font-family: "Fira Mono";
 font-weight: normal;
 font-style: normal;
 src: local('"Fira Mono"'), url('fonts/fira.ttf') format('truetype');
}
@font-face {
 font-family: "PT Sans";
 font-weight: normal;
 font-style: normal;
 src: local('"PT Sans"'), url('fonts/pt-sans-regular.ttf') format('truetype');
}
div#notebook {
 font-family: "PT Sans", sans-serif;
 font-size: 11pt;
 line-height: 170%;
 color: #f8f8f0;
 -webkit-font-smoothing: antialiased !important;
 padding-top: 25px !important;
}
body,
div.body {
 font-family: "PT Sans", sans-serif;
 font-size: 11pt;
 color: #f8f8f0;
 background-color: #1e1e1e;
 background: #1e1e1e;
 -webkit-font-smoothing: antialiased !important;
}
body.notebook_app {
 padding: 0;
 background-color: #1e1e1e;
 background: #1e1e1e;
 padding-right: 0px !important;
 overflow-y: hidden;
}
a {
 font-family: "PT Sans", sans-serif;
 color: #f8f8f0;
 -webkit-font-smoothing: antialiased !important;
}
a:hover,
a:focus {
 color: #f8f8f0;
 -webkit-font-smoothing: antialiased !important;
}
div#maintoolbar {
 position: absolute;
 width: 90%;
 margin-left: -10%;
 padding-right: 8%;
 float: left;
 background: transparent !important;
}
#maintoolbar {
 margin-bottom: -3px;
 margin-top: 0px;
 border: 0px;
 min-height: 27px;
 padding-top: 2px;
 padding-bottom: 0px;
}
#maintoolbar .container {
 width: 75%;
 margin-right: auto;
 margin-left: auto;
}
.list_header,
div#notebook_list_header.row.list_header {
 font-size: 14pt;
 color: #f8f8f0;
 background-color: transparent;
 height: 35px;
}
i.fa.fa-folder {
 display: inline-block;
 font: normal normal normal 14px "FontAwesome";
 font-family: "FontAwesome" !important;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 font-size: 18px;
 -moz-osx-font-smoothing: grayscale;
}
#running .panel-group .panel .panel-heading {
 font-size: 14pt;
 color: #f8f8f0;
 padding: 8px 8px;
 background: #2f2f2f;
 background-color: #2f2f2f;
}
#running .panel-group .panel .panel-heading a {
 font-size: 14pt;
 color: #f8f8f0;
}
#running .panel-group .panel .panel-heading a:focus,
#running .panel-group .panel .panel-heading a:hover {
 font-size: 14pt;
 color: #f8f8f0;
}
#running .panel-group .panel .panel-body .list_container .list_item {
 background: #232323;
 background-color: #232323;
 padding: 2px;
 border-bottom: 2px solid rgba(93,92,82,.25);
}
#running .panel-group .panel .panel-body .list_container .list_item:hover {
 background: #232323;
 background-color: #232323;
}
#running .panel-group .panel .panel-body {
 padding: 2px;
}
button#refresh_running_list {
 border: none !important;
}
button#refresh_cluster_list {
 border: none !important;
}
div.running_list_info.toolbar_info {
 font-size: 15px;
 padding: 4px 0 4px 0;
 margin-top: 5px;
 margin-bottom: 8px;
 height: 24px;
 line-height: 24px;
 text-shadow: none;
}
.list_placeholder {
 font-weight: normal;
}
#tree-selector {
 padding: 0px;
 border-color: transparent;
}
#project_name > ul > li > a > i.fa.fa-home {
 color: #a6e22e;
 font-size: 17pt;
 display: inline-block;
 position: static;
 padding: 0px 0px;
 font-weight: normal;
 text-align: center;
 vertical-align: text-top;
}
.fa-folder:before {
 color: #ae81ff;
}
.fa-arrow-up:before {
 font-size: 14px;
}
.fa-arrow-down:before {
 font-size: 14px;
}
span#last-modified.btn.btn-xs.btn-default.sort-action:hover .fa,
span#sort-name.btn.btn-xs.btn-default.sort-action:hover .fa {
 color: #a6e22e;
}
.folder_icon:before {
 display: inline-block;
 font: normal normal normal 14px/1 FontAwesome;
 font-size: inherit;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 content: "\f07b";
 color: #ae81ff;
}
.notebook_icon:before {
 display: inline-block;
 font: normal normal normal 14px/1 FontAwesome;
 font-size: inherit;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 content: "\f02d";
 position: relative;
 color: #a6e22e !important;
 top: 0px;
}
.file_icon:before {
 display: inline-block;
 font: normal normal normal 14px/1 FontAwesome;
 font-size: inherit;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 content: "\f15b";
 position: relative;
 top: 0px;
 color: #888888 !important;
}
#project_name a {
 display: inline-flex;
 padding-left: 7px;
 margin-left: -2px;
 text-align: -webkit-auto;
 vertical-align: baseline;
 font-size: 18px;
}
div#notebook_toolbar div.dynamic-instructions {
 font-family: "PT Sans", sans-serif;
 font-size: 17px;
 color: #75715e;
}
span#login_widget > .button,
#logout {
 font-family: "Proxima Nova", sans-serif;
 color: #f8f8f0;
 background: transparent;
 background-color: transparent;
 border: 2px solid #2f2f2f;
 font-weight: normal;
 box-shadow: none;
 text-shadow: none;
 border-radius: 3px;
 margin-right: 10px;
 padding: 2px 7px;
}
span#login_widget > .button:hover,
#logout:hover {
 color: #a6e22e;
 background-color: transparent;
 background: transparent;
 border: 2px solid #a6e22e;
 background-image: none;
 box-shadow: none !important;
 border-radius: 3px;
}
span#login_widget > .button:focus,
#logout:focus,
span#login_widget > .button.focus,
#logout.focus,
span#login_widget > .button:active,
#logout:active,
span#login_widget > .button.active,
#logout.active,
.open > .dropdown-togglespan#login_widget > .button,
.open > .dropdown-toggle#logout {
 color: #f8f8f2;
 background-color: #f8f8f0;
 background: #f8f8f0;
 border-color: #f8f8f0;
 background-image: none;
 box-shadow: none !important;
 border-radius: 2px;
}
body > #header #header-container {
 padding-bottom: 0px;
 padding-top: 4px;
 box-sizing: border-box;
 -moz-box-sizing: border-box;
 -webkit-box-sizing: border-box;
}
body > #header {
 background: #1e1e1e;
 background-color: #1e1e1e;
 position: relative;
 z-index: 100;
}
.list_container {
 font-size: 11pt;
 color: #f8f8f0;
 border: none;
 text-shadow: none !important;
}
.list_container > div {
 border-bottom: 1px solid rgba(93,92,82,.25);
 font-size: 11pt;
}
.list_header > div,
.list_item > div {
 padding-top: 6px;
 padding-bottom: 2px;
 padding-left: 0px;
}
.list_header > div .item_link,
.list_item > div .item_link {
 margin-left: -1px;
 vertical-align: middle;
 line-height: 22px;
 font-size: 11pt;
}
.item_icon {
 color: #ae81ff;
 font-size: 13pt;
 vertical-align: middle;
}
.list_item input:not([type="checkbox"]) {
 padding-right: 0px;
 height: 1.75em;
 width: 25%;
 margin: 0px 0 0;
 margin-top: 0px;
}
.list_header > div .item_link,
.list_item > div .item_link {
 margin-left: -1px;
 vertical-align: middle;
 line-height: 1.5em;
 font-size: 12pt;
 display: inline-table;
 position: static;
}
#button-select-all {
 height: 34px;
 min-width: 55px;
 z-index: 0;
 border: none !important;
 padding-top: 0px;
 padding-bottom: 0px;
 margin-bottom: 0px;
 margin-top: 0px;
 left: -3px;
 border-radius: 0px !important;
}
#button-select-all:focus,
#button-select-all:active:focus,
#button-select-all.active:focus,
#button-select-all.focus,
#button-select-all:active.focus,
#button-select-all.active.focus {
 background-color: #2f2f2f !important;
 background: #2f2f2f !important;
}
button#tree-selector-btn {
 height: 34px;
 font-size: 10.0pt;
 border: none;
 left: 0px;
 border-radius: 0px !important;
}
input#select-all.pull-left.tree-selector {
 margin-left: 7px;
 margin-right: 2px;
 margin-top: 2px;
 top: 4px;
}
input[type="radio"],
input[type="checkbox"] {
 margin-top: 1px;
 line-height: normal;
}
.delete-button {
 border: none !important;
}
i.fa.fa-trash {
 font-size: 13.5pt;
}
.list_container a {
 font-size: 16px;
 color: #f8f8f0;
 border: none;
 text-shadow: none !important;
 font-weight: normal;
 font-style: normal;
}
div.list_container a:hover {
 color: #f8f8f0;
}
.list_header > div input,
.list_item > div input {
 margin-right: 7px;
 margin-left: 12px;
 vertical-align: baseline;
 line-height: 22px;
 position: relative;
 top: -1px;
}
div.list_item:hover {
 background-color: rgba(93,92,82,.1);
}
.breadcrumb > li {
 font-size: 10.0pt;
 color: #f8f8f0;
 border: none;
 text-shadow: none !important;
}
.breadcrumb > li + li:before {
 content: "/\00a0";
 padding: 0px;
 color: #f8f8f0;
 font-size: 18px;
}
#project_name > .breadcrumb {
 padding: 0px;
 margin-bottom: 0px;
 background-color: transparent;
 font-weight: normal;
 margin-top: -2px;
}
ul#tabs a {
 font-family: "PT Sans", sans-serif;
 font-size: 13.5pt;
 font-weight: normal;
 font-style: normal;
 text-shadow: none !important;
}
.nav-tabs {
 font-family: "PT Sans", sans-serif;
 font-size: 13.5pt;
 font-weight: normal;
 font-style: normal;
 background-color: transparent;
 border-color: transparent;
 text-shadow: none !important;
 border: 2px solid transparent;
}
.nav-tabs > li > a:active,
.nav-tabs > li > a:focus,
.nav-tabs > li > a:hover,
.nav-tabs > li.active > a,
.nav-tabs > li.active > a:focus,
.nav-tabs > li.active > a:hover,
.nav-tabs > li.active > a,
.nav-tabs > li.active > a:hover,
.nav-tabs > li.active > a:focus {
 color: #a6e22e;
 background-color: transparent;
 border-color: transparent;
 border-bottom: 2px solid transparent;
}
.nav > li.disabled > a,
.nav > li.disabled > a:hover {
 color: #75715e;
}
.nav-tabs > li > a:before {
 content: "";
 position: absolute;
 width: 100%;
 height: 2px;
 bottom: -2px;
 left: 0;
 background-color: #a6e22e;
 visibility: hidden;
 -webkit-transform: perspective(0)scaleX(0);
 transform: perspective(0)scaleX(0);
 -webkit-transition: ease 220ms;
 transition: ease 220ms;
 -webkit-font-smoothing: antialiased !important;
}
.nav-tabs > li > a:hover:before {
 visibility: visible;
 -webkit-transform: perspective(1)scaleX(1);
 transform: perspective(1)scaleX(1);
}
.nav-tabs > li.active > a:before {
 content: "";
 position: absolute;
 width: 100%;
 height: 2px;
 bottom: -2px;
 left: 0;
 background-color: #a6e22e;
 visibility: visible;
 -webkit-transform: perspective(1)scaleX(1);
 transform: perspective(1)scaleX(1);
 -webkit-font-smoothing: subpixel-antialiased !important;
}
div#notebook {
 font-family: "PT Sans", sans-serif;
 font-size: 11pt;
 padding-top: 4px;
}
.notebook_app {
 background-color: #1e1e1e;
}
#notebook-container {
 padding: 13px 2px;
 background-color: #1e1e1e;
 min-height: 0px;
 box-shadow: none;
 width: 85%;
 margin-right: auto;
 margin-left: auto;
}
div#ipython-main-app.container {
 width: 85%;
 margin-right: auto;
 margin-left: auto;
 margin-right: auto;
 margin-left: auto;
}
.container {
 width: 85%;
 margin-right: auto;
 margin-left: auto;
}
div#menubar-container {
 width: 100%;
 width: 85%;
}
div#header-container {
 width: 85%;
}
.notebook_app #header,
.edit_app #header {
 box-shadow: none !important;
 background-color: #1e1e1e;
 border-bottom: 2px solid rgba(93,92,82,.25);
}
#header,
.edit_app #header {
 font-family: "PT Sans", sans-serif;
 font-size: 11pt;
 box-shadow: none;
 background-color: #1e1e1e;
}
#header .header-bar,
.edit_app #header .header-bar {
 background: #1e1e1e;
 background-color: #1e1e1e;
}
body > #header .header-bar {
 width: 100%;
 background: #1e1e1e;
}
span.checkpoint_status,
span.autosave_status {
 font-size: small;
 display: none;
}
#menubar,
div#menubar {
 background-color: #1e1e1e;
 padding-top: 0px !important;
}
#menubar .navbar,
.navbar-default {
 background-color: #1e1e1e;
 margin-bottom: 0px;
 margin-top: 0px;
}
.navbar {
 border: none;
}
div.navbar-text,
.navbar-text,
.navbar-text.indicator_area,
p.navbar-text.indicator_area {
 margin-top: 8px !important;
 margin-bottom: 0px;
 color: #a6e22e;
}
.navbar-default {
 font-family: "PT Sans", sans-serif;
 font-size: 11pt;
 background-color: #1e1e1e;
 border-color: rgba(93,92,82,.25);
 line-height: 1.5em;
 padding-bottom: 0px;
}
.navbar-default .navbar-nav > li > a {
 font-family: "PT Sans", sans-serif;
 font-size: 11pt;
 color: #f8f8f0;
 display: block;
 line-height: 1.5em;
 padding-top: 14px;
 padding-bottom: 11px;
}
.navbar-default .navbar-nav > li > a:hover,
.navbar-default .navbar-nav > li > a:focus {
 color: #f8f8f0 !important;
 background-color: rgba(93,92,82,.25) !important;
 border-color: rgba(93,92,82,.25) !important;
 line-height: 1.5em;
 transition: 80ms ease;
}
.navbar-default .navbar-nav > .open > a,
.navbar-default .navbar-nav > .open > a:hover,
.navbar-default .navbar-nav > .open > a:focus {
 color: #f8f8f2;
 background-color: #383838;
 border-color: #383838;
 line-height: 1.5em;
}
.navbar-nav > li > .dropdown-menu {
 margin-top: 0px;
}
.navbar-nav {
 margin: 0;
}
div.notification_widget.info,
.notification_widget.info,
.notification_widget:active:hover,
.notification_widget.active:hover,
.open > .dropdown-toggle.notification_widget:hover,
.notification_widget:active:focus,
.notification_widget.active:focus,
.open > .dropdown-toggle.notification_widget:focus,
.notification_widget:active.focus,
.notification_widget.active.focus,
.open > .dropdown-toggle.notification_widget.focus,
div#notification_notebook.notification_widget.btn.btn-xs.navbar-btn,
div#notification_notebook.notification_widget.btn.btn-xs.navbar-btn:hover,
div#notification_notebook.notification_widget.btn.btn-xs.navbar-btn:focus {
 color: #f8f8f0 !important;
 background-color: transparent !important;
 border-color: transparent !important;
 padding-bottom: 0px !important;
 margin-bottom: 0px !important;
 font-size: 9pt !important;
 z-index: 0;
}
div#notification_notebook.notification_widget.btn.btn-xs.navbar-btn {
 font-size: 9pt !important;
 z-index: 0;
}
.notification_widget {
 color: #ae81ff;
 z-index: -500;
 font-size: 9pt;
 background: transparent;
 background-color: transparent;
 margin-right: 3px;
 border: none;
}
.notification_widget,
div.notification_widget {
 margin-right: 0px;
 margin-left: 0px;
 padding-right: 0px;
 vertical-align: text-top !important;
 margin-top: 6px !important;
 background: transparent !important;
 background-color: transparent !important;
 font-size: 9pt !important;
 border: none;
}
.navbar-btn.btn-xs:hover {
 border: none !important;
 background: transparent !important;
 background-color: transparent !important;
 color: #f8f8f0 !important;
}
div.notification_widget.info,
.notification_widget.info {
 display: none !important;
}
.edit_mode .modal_indicator:before {
 display: none;
}
.command_mode .modal_indicator:before {
 display: none;
}
.item_icon {
 color: #ae81ff;
}
.item_buttons .kernel-name {
 font-size: 11pt;
 color: #ae81ff;
}
.running_notebook_icon:before {
 color: #a6e22e !important;
 font: normal normal normal 15px/1 FontAwesome;
 font-size: 15px;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 content: "\f10c";
 vertical-align: middle;
 position: static;
 display: inherit;
}
.item_buttons .running-indicator {
 padding-top: 4px;
 color: #a6e22e;
 font-family: "PT Sans", sans-serif;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
}
#notification_trusted {
 font-family: "PT Sans", sans-serif;
 border: none;
 background: transparent;
 background-color: transparent;
 margin-bottom: 0px !important;
 vertical-align: bottom !important;
 color: #75715e !important;
 cursor: default !important;
}
#notification_area,
div.notification_area {
 float: right !important;
 position: static;
 cursor: pointer;
 padding-top: 6px;
 padding-right: 4px;
}
div#notification_notebook.notification_widget.btn.btn-xs.navbar-btn {
 font-size: 9pt !important;
 z-index: 0;
 margin-top: -5px !important;
}
#modal_indicator {
 float: right !important;
 color: #4c8be2;
 background: #1e1e1e;
 background-color: #1e1e1e;
 margin-top: 8px !important;
 margin-left: 0px;
}
#kernel_indicator {
 float: right !important;
 color: #a6e22e;
 background: #1e1e1e;
 background-color: #1e1e1e;
 border-left: 2px solid #a6e22e;
 padding-top: 0px;
 padding-bottom: 4px;
 margin-top: 10px !important;
 margin-left: -2px;
 padding-left: 5px !important;
}
#kernel_indicator .kernel_indicator_name {
 font-size: 17px;
 color: #a6e22e;
 background: #1e1e1e;
 background-color: #1e1e1e;
 padding-left: 5px;
 padding-right: 5px;
 margin-top: 4px;
 vertical-align: text-top;
 padding-bottom: 0px;
}
.kernel_idle_icon:before {
 display: inline-block;
 font: normal normal normal 22px/1 FontAwesome;
 font-size: 22px;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 cursor: pointer;
 margin-left: 0px !important;
 opacity: 0.7;
 vertical-align: bottom;
 margin-top: 1px;
 content: "\f1db";
}
.kernel_busy_icon:before {
 display: inline-block;
 font: normal normal normal 22px/1 FontAwesome;
 font-size: 22px;
 -webkit-animation: pulsate 2s infinite ease-out;
 animation: pulsate 2s infinite ease-out;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 cursor: pointer;
 margin-left: 0px !important;
 vertical-align: bottom;
 margin-top: 1px;
 content: "\f111";
}
@-webkit-keyframes pulsate {
 0% {
  -webkit-transform: scale(1.0,1.0);
  opacity: 0.8;
 }
 8% {
  -webkit-transform: scale(1.0,1.0);
  opacity: 0.8;
 }
 50% {
  -webkit-transform: scale(0.75,0.75);
  opacity: 0.3;
 }
 92% {
  -webkit-transform: scale(1.0,1.0);
  opacity: 0.8;
 }
 100% {
  -webkit-transform: scale(1.0,1.0);
  opacity: 0.8;
 }
}
div.notification_widget.info,
.notification_widget.info,
.notification_widget:active:hover,
.notification_widget.active:hover,
.open > .dropdown-toggle.notification_widget:hover,
.notification_widget:active:focus,
.notification_widget.active:focus,
.open > .dropdown-toggle.notification_widget:focus,
.notification_widget:active.focus,
.notification_widget.active.focus,
.open > .dropdown-toggle.notification_widget.focus,
div#notification_notebook.notification_widget.btn.btn-xs.navbar-btn,
div#notification_notebook.notification_widget.btn.btn-xs.navbar-btn:hover,
div#notification_notebook.notification_widget.btn.btn-xs.navbar-btn:focus {
 color: #f8f8f0;
 background-color: #1e1e1e;
 border-color: #1e1e1e;
}
#notification_area,
div.notification_area {
 float: right !important;
 position: static;
}
.notification_widget,
div.notification_widget {
 margin-right: 0px;
 margin-left: 0px;
 padding-right: 0px;
 vertical-align: text-top !important;
 margin-top: 6px !important;
 z-index: 1000;
}
#kernel_logo_widget,
#kernel_logo_widget .current_kernel_logo {
 display: block;
}
div#ipython_notebook {
 display: none;
}
i.fa.fa-icon {
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
 text-rendering: auto;
}
.fa {
 display: inline-block;
 font: normal normal normal 10pt/1 "FontAwesome", "PT Sans", sans-serif;
 text-rendering: auto;
 -webkit-font-smoothing: antialiased;
 -moz-osx-font-smoothing: grayscale;
}
.dropdown-menu {
 font-family: "PT Sans", sans-serif;
 font-size: 11pt;
 box-shadow: none;
 padding: 0px;
 text-align: left;
 border: none;
 background-color: #383838;
 background: #383838;
 line-height: 1;
}
.dropdown-menu:hover {
 font-family: "PT Sans", sans-serif;
 font-size: 11pt;
 box-shadow: none;
 padding: 0px;
 text-align: left;
 border: none;
 background-color: #383838;
 box-shadow: none;
 line-height: 1;
}
.dropdown-menu > li > a {
 font-family: "PT Sans", sans-serif;
 font-size: 10.0pt;
 display: block;
 padding: 10px 20px 9px 10px;
 color: #f8f8f0;
 background-color: #383838;
 background: #383838;
}
.dropdown-menu > li > a:hover,
.dropdown-menu > li > a:focus {
 color: #f8f8f0;
 background-color: rgba(93,92,82,.25);
 background: rgba(93,92,82,.25);
 border-color: rgba(93,92,82,.25);
 transition: 200ms ease;
}
.dropdown-menu .divider {
 height: 1px;
 margin: 0px 0px;
 overflow: hidden;
 background-color: rgba(93,92,82,.5);
}
.dropdown-submenu > .dropdown-menu {
 display: none;
 top: 2px !important;
 left: 100%;
 margin-top: -2px;
 margin-left: 0px;
 padding-top: 0px;
 transition: 200ms ease;
}
.dropdown-menu > .disabled > a,
.dropdown-menu > .disabled > a:hover,
.dropdown-menu > .disabled > a:focus {
 font-family: "PT Sans", sans-serif;
 font-size: 10.0pt;
 font-weight: normal;
 color: #75715e;
 padding: none;
 display: block;
 clear: both;
 white-space: nowrap;
}
.dropdown-submenu > a:after {
 color: #f8f8f0;
 margin-right: -16px;
 margin-top: 0px;
 display: inline-block;
}
.dropdown-submenu:hover > a:after,
.dropdown-submenu:active > a:after,
.dropdown-submenu:focus > a:after,
.dropdown-submenu:visited > a:after {
 color: #a6e22e;
 margin-right: -16px;
 display: inline-block !important;
}
div.kse-dropdown > .dropdown-menu,
.kse-dropdown > .dropdown-menu {
 min-width: 0;
 top: 94%;
}
.btn,
.btn-default {
 font-family: "PT Sans", sans-serif;
 color: #f8f8f0;
 background: #2f2f2f;
 background-color: #2f2f2f;
 border: 2px solid #2f2f2f;
 font-weight: normal;
 box-shadow: none;
 text-shadow: none;
 border-radius: 3px;
 font-size: initial;
}
.btn:hover,
.btn:active:hover,
.btn.active:hover,
.btn-default:hover,
.open > .dropdown-toggle.btn-default:hover,
.open > .dropdown-toggle.btn:hover {
 color: #a6e22e;
 border: 2px solid #2a2a2a;
 background-color: #2a2a2a;
 background: #2a2a2a;
 background-image: none;
 box-shadow: none !important;
 border-radius: 3px;
}
.btn:active,
.btn.active,
.btn:active:focus,
.btn.active:focus,
.btn:active.focus,
.btn.active.focus,
.btn-default:focus,
.btn-default.focus,
.btn-default:active,
.btn-default.active,
.btn-default:active:hover,
.btn-default.active:hover,
.btn-default:active:focus,
.btn-default.active:focus,
.btn-default:active.focus,
.btn-default.active.focus,
.open > .dropdown-toggle.btn:focus,
.open > .dropdown-toggle.btn.focus,
.open > .dropdown-toggle.btn-default:hover,
.open > .dropdown-toggle.btn-default:focus,
.open > .dropdown-toggle.btn-default.hover,
.open > .dropdown-toggle.btn-default.focus {
 color: #a6e22e;
 border: 2px solid #2a2a2a;
 background-color: #2a2a2a !important;
 background: #2a2a2a !important;
 background-image: none;
 box-shadow: none !important;
 border-radius: 3px;
}
.btn-default:active:hover,
.btn-default.active:hover,
.btn-default:active:focus,
.btn-default.active:focus,
.btn-default:active.focus,
.btn-default.active.focus {
 color: #a6e22e !important;
 background-color: #2f2f2f;
 border-color: #546745 !important;
 transition: 2000ms ease;
}
.btn:focus,
.btn.focus,
.btn:active:focus,
.btn.active:focus,
.btn:active,
.btn.active,
.btn:active.focus,
.btn.active.focus {
 color: #a6e22e !important;
 outline: none !important;
 outline-width: 0px !important;
 background: #546745 !important;
 background-color: #546745 !important;
 border-color: #546745 !important;
 transition: 200ms ease !important;
}
.item_buttons > .btn,
.item_buttons > .btn-group,
.item_buttons > .input-group {
 font-size: 11pt;
 background: transparent;
 background-color: transparent;
 border: 0px solid #2f2f2f;
 border-bottom: 2px solid transparent;
 margin-left: 5px;
 padding-top: 4px !important;
}
.item_buttons > .btn:hover,
.item_buttons > .btn-group:hover,
.item_buttons > .input-group:hover,
.item_buttons > .btn.active,
.item_buttons > .btn-group.active,
.item_buttons > .input-group.active,
.item_buttons > .btn.focus {
 margin-left: 5px;
 background: #2a2a2a;
 padding-top: 4px !important;
 background-color: transparent;
 border: 0px solid transparent;
 border-bottom: 2px solid #a6e22e;
 border-radius: 0px;
 transition: none;
}
.item_buttons {
 line-height: 1.5em !important;
}
.item_buttons .btn {
 min-width: 11ex;
}
.btn-group > .btn:first-child {
 margin-left: 3px;
}
.btn-group > .btn-mini,
.btn-sm,
.btn-group-sm > .btn,
.btn-xs,
.btn-group-xs > .btn,
.alternate_upload .btn-upload,
.btn-group,
.btn-group-vertical {
 font-size: inherit;
 font-weight: normal;
 height: inherit;
 line-height: inherit;
}
.btn-xs,
.btn-group-xs > .btn {
 font-size: initial !important;
 background-image: none;
 font-weight: normal;
 text-shadow: none;
 display: inline-table;
 padding: 2px 5px;
 line-height: 1.45;
}
.btn-group > .btn:first-child {
 margin-left: 3px;
}
div#new-buttons > button,
#new-buttons > button,
div#refresh_notebook_list,
#refresh_notebook_list {
 background: transparent;
 background-color: transparent;
 border: none;
}
div#new-buttons > button:hover,
#new-buttons > button:hover,
div#refresh_notebook_list,
#refresh_notebook_list,
div.alternate_upload .btn-upload,
.alternate_upload .btn-upload,
div.dynamic-buttons > button,
.dynamic-buttons > button,
.dynamic-buttons > button:focus,
.dynamic-buttons > button:active:focus,
.dynamic-buttons > button.active:focus,
.dynamic-buttons > button.focus,
.dynamic-buttons > button:active.focus,
.dynamic-buttons > button.active.focus,
#new-buttons > button:focus,
#new-buttons > button:active:focus,
#new-buttons > button.active:focus,
#new-buttons > button.focus,
#new-buttons > button:active.focus,
#new-buttons > button.active.focus,
.alternate_upload .btn-upload:focus,
.alternate_upload .btn-upload:active:focus,
.alternate_upload .btn-upload.active:focus,
.alternate_upload .btn-upload.focus,
.alternate_upload .btn-upload:active.focus,
.alternate_upload .btn-upload.active.focus {
 background: transparent !important;
 background-color: transparent !important;
 border: none !important;
}
.alternate_upload input.fileinput {
 text-align: center;
 vertical-align: bottom;
 margin-left: -.5ex;
 display: inline-table;
 border: solid 0px #2f2f2f;
 margin-bottom: -1ex;
}
.alternate_upload .btn-upload {
 display: inline-table;
 background: transparent;
 border: none;
}
.btn-group .btn + .btn,
.btn-group .btn + .btn-group,
.btn-group .btn-group + .btn,
.btn-group .btn-group + .btn-group {
 margin-left: -2px;
}
.btn-group > .btn:first-child:not(:last-child):not(.dropdown-toggle) {
 border-bottom-right-radius: 0;
 border-top-right-radius: 0;
 z-index: 2;
}
.dropdown-header {
 font-family: "PT Sans", sans-serif !important;
 font-size: 11pt !important;
 color: #a6e22e !important;
 border-bottom: none !important;
 padding: 0px !important;
 margin: 6px 6px 0px !important;
}
span#last-modified.btn.btn-xs.btn-default.sort-action,
span#sort-name.btn.btn-xs.btn-default.sort-action,
span#file-size.btn.btn-xs.btn-default.sort-action {
 font-family: "PT Sans", sans-serif;
 font-size: 16px;
 background-color: transparent;
 background: transparent;
 border: none;
 color: #f8f8f0;
 padding-bottom: 0px;
 margin-bottom: 0px;
 vertical-align: sub;
}
span#last-modified.btn.btn-xs.btn-default.sort-action {
 margin-left: 19px;
}
button.close {
 border: 0px none;
 font-family: sans-serif;
 font-size: 20pt;
 font-weight: normal;
}
.dynamic-buttons {
 padding-top: 0px;
 display: inline-block;
}
.close {
 color: #f92672;
 opacity: .5;
 text-shadow: none;
 font-weight: normal;
}
.close:hover {
 color: #f92672;
 opacity: 1;
 font-weight: normal;
}
div.nbext-enable-btns .btn[disabled],
div.nbext-enable-btns .btn[disabled]:hover,
.btn-default.disabled,
.btn-default[disabled],
.btn-default.disabled:hover,
.btn-default[disabled]:hover,
fieldset[disabled] .btn-default:hover,
.btn-default.disabled:focus,
.btn-default[disabled]:focus,
fieldset[disabled] .btn-default:focus,
.btn-default.disabled.focus,
.btn-default[disabled].focus,
fieldset[disabled] .btn-default.focus {
 color: #888888;
 background: #2c2c2c;
 background-color: #2c2c2c;
 border-color: #2c2c2c;
 transition: 200ms ease;
}
.input-group-addon {
 padding: 2px 5px;
 font-size: 11pt;
 font-weight: normal;
 height: auto;
 color: #f8f8f0;
 text-align: center;
 background-color: transparent;
 border: 2px solid transparent !important;
 text-transform: capitalize;
}
a.btn.btn-default.input-group-addon:hover {
 background: transparent !important;
 background-color: transparent !important;
}
.btn-group > .btn + .dropdown-toggle {
 padding-left: 8px;
 padding-right: 8px;
 height: 100%;
}
.btn-group > .btn + .dropdown-toggle:hover {
 background: #2a2a2a !important;
}
.input-group-btn {
 position: relative;
 font-size: inherit;
 white-space: nowrap;
 background: #2f2f2f;
 background-color: #2f2f2f;
 border: none;
}
.input-group-btn:hover {
 background: #2a2a2a;
 background-color: #2a2a2a;
 border: none;
}
.input-group-btn:first-child > .btn,
.input-group-btn:first-child > .btn-group {
 background: #2f2f2f;
 background-color: #2f2f2f;
 border: none;
 margin-left: 2px;
 margin-right: -1px;
 font-size: inherit;
}
.input-group-btn:first-child > .btn:hover,
.input-group-btn:first-child > .btn-group:hover {
 background: #2a2a2a;
 background-color: #2a2a2a;
 border: none;
 font-size: inherit;
 transition: 200ms ease;
}
div.modal .btn-group > .btn:first-child {
 background: #2f2f2f;
 background-color: #2f2f2f;
 border: 1px solid #2c2c2c;
 margin-top: 0px !important;
 margin-left: 0px;
 margin-bottom: 2px;
}
div.modal .btn-group > .btn:first-child:hover {
 background: #2a2a2a;
 background-color: #2a2a2a;
 border: 1px solid #2a2a2a;
 transition: 200ms ease;
}
div.modal > button,
div.modal-footer > button {
 background: #2f2f2f;
 background-color: #2f2f2f;
 border-color: #2f2f2f;
}
div.modal > button:hover,
div.modal-footer > button:hover {
 background: #2a2a2a;
 background-color: #2a2a2a;
 border-color: #2a2a2a;
 transition: 200ms ease;
}
.modal-content {
 font-family: "PT Sans", sans-serif;
 font-size: 10.0pt;
 position: relative;
 background: #2f2f2f;
 background-color: #2f2f2f;
 border: none;
 border-radius: 1px;
 background-clip: padding-box;
 outline: none;
}
.modal-header {
 font-family: "PT Sans", sans-serif;
 font-size: 11pt;
 color: #f8f8f0;
 background: #2f2f2f;
 background-color: #2f2f2f;
 border-color: rgba(93,92,82,.25);
 padding: 12px;
 min-height: 16.4286px;
}
.modal-content h4 {
 font-family: "PT Sans", sans-serif;
 font-size: 16pt;
 color: #f8f8f0;
 padding: 5px;
}
.modal-body {
 background-color: #232323;
 position: relative;
 padding: 15px;
}
.modal-footer {
 padding: 8px;
 text-align: right;
 background-color: #232323;
 border-top: none;
}
.alert-info {
 background-color: #2f2f2f;
 border-color: rgba(93,92,82,.25);
 color: #f8f8f0;
}
.modal-header .close {
 margin-top: -5px;
 font-size: 25pt;
}
.modal-backdrop,
.modal-backdrop.in {
 opacity: 0.85;
 background-color: notebook-bg;
}
div.panel,
div.panel-default,
.panel,
.panel-default {
 font-family: "PT Sans", sans-serif;
 font-size: 11pt;
 background-color: #232323;
 color: #f8f8f0;
 margin-bottom: 14px;
 border: 0;
 box-shadow: none;
}
div.panel > .panel-heading,
div.panel-default > .panel-heading {
 font-size: 14pt;
 color: #f8f8f0;
 background: #2f2f2f;
 background-color: #2f2f2f;
 border: 0;
}
.modal .modal-dialog {
 min-width: 950px;
 margin: 50px auto;
}
div.container-fluid {
 margin-right: auto;
 margin-left: auto;
 padding-left: 0px;
 padding-right: 5px;
}
div.form-control,
.form-control {
 font-family: "PT Sans", sans-serif;
 font-size: initial;
 color: #f8f8f0;
 background-color: #282828;
 border: 1px solid #282828 !important;
 margin-left: 2px;
 box-shadow: none;
 transition: border-color 0.15s ease-in-out 0s, box-shadow 0.15s ease-in-out 0s;
}
.form-control-static {
 min-height: inherit;
 height: inherit;
}
.form-group.list-group-item {
 color: #f8f8f0;
 background-color: #232323;
 border-color: rgba(93,92,82,.25);
 margin-bottom: 0px;
}
.form-group .input-group {
 float: left;
}
input,
button,
select,
textarea {
 background-color: #282828;
 font-weight: normal;
 border: 1px solid rgba(93,92,82,.25);
}
select.form-control.select-xs {
 height: 33px;
 font-size: 11pt;
}
.toolbar select,
.toolbar label {
 width: auto;
 vertical-align: middle;
 margin-right: 0px;
 margin-bottom: 0px;
 display: inline;
 font-size: 92%;
 margin-left: 10px;
 padding: 0px;
 background: #2f2f2f !important;
 background-color: #2f2f2f !important;
 border: 2px solid #2f2f2f !important;
}
.form-control:focus {
 border-color: #a6e22e;
 outline: 2px solid #49483e;
 -webkit-box-shadow: none;
}
::-webkit-input-placeholder {
 color: #75715e;
}
::-moz-placeholder {
 color: #75715e;
}
:-ms-input-placeholder {
 color: #75715e;
}
:-moz-placeholder {
 color: #75715e;
}
[dir="ltr"] #find-and-replace .input-group-btn + .form-control {
 border: 2px solid rgba(93,92,82,.25) !important;
}
[dir="ltr"] #find-and-replace .input-group-btn + .form-control:focus {
 border-color: #a6e22e;
 outline: 2px solid #49483e;
 -webkit-box-shadow: none;
 box-shadow: none;
}
div.output.output_scroll {
 box-shadow: none;
}
::-webkit-scrollbar {
 width: 11px;
 max-height: 9px;
 background-color: #2d2d2d;
 border-radius: 3px;
 border: none;
}
::-webkit-scrollbar-track {
 background: #2d2d2d;
 border: none;
 width: 11px;
 max-height: 9px;
}
::-webkit-scrollbar-thumb {
 border-radius: 2px;
 border: none;
 background: #49483e;
 background-clip: content-box;
 width: 11px;
}
HTML,
body,
div,
dl,
dt,
dd,
ul,
ol,
li,
h1,
h2,
h3,
h4,
h5,
h6,
pre,
code,
form,
fieldset,
legend,
input,
button,
textarea,
p,
blockquote,
th,
td,
span,
a {
 text-rendering: geometricPrecision;
 -webkit-font-smoothing: subpixel-antialiased;
 font-weight: 400;
}
div.input_area {
 background-color: #282828;
 background: #282828;
 padding-right: 1.2em;
 border: 0px;
 border-radius: 0px;
 border-top-right-radius: 4px;
 border-bottom-right-radius: 4px;
}
div.cell {
 padding: 0px;
 background: #282828;
 background-color: #282828;
 border: medium solid #1e1e1e;
 border-radius: 4px;
 top: 0;
}
div.cell.selected {
 background: #282828;
 background-color: #282828;
 border: medium solid #1e1e1e;
 padding: 0px;
 border-radius: 5px;
}
.edit_mode div.cell.selected {
 padding: 0px;
 background: #282828;
 background-color: #282828;
 border: medium solid #1e1e1e;
 border-radius: 5px;
}
div.cell.edit_mode {
 padding: 0px;
 background: #282828;
 background-color: #282828;
}
div.CodeMirror-sizer {
 margin-left: 0px;
 margin-bottom: -21px;
 border-right-width: 16px;
 min-height: 37px;
 padding-right: 0px;
 padding-bottom: 0px;
 margin-top: 0px;
}
div.cell.selected:before,
.edit_mode div.cell.selected:before,
div.cell.selected:before,
div.cell.selected.jupyter-soft-selected:before {
 background: #282828 !important;
 border: none;
 border-radius: 3px;
 position: absolute;
 display: block;
 top: 0px;
 left: 0px;
 width: 0px;
 height: 100%;
}
div.cell.text_cell.selected::before,
.edit_mode div.cell.text_cell.selected:before,
div.cell.text_cell.selected:before,
div.cell.text_cell.selected.jupyter-soft-selected:before {
 background: #282828 !important;
 background-color: #282828 !important;
 border-color: #57564b !important;
}
div.cell.code_cell .input {
 border-left: 5px solid #282828 !important;
 border-radius: 3px;
 border-bottom-left-radius: 3px;
 border-top-left-radius: 3px;
}
div.cell.code_cell.selected .input {
 border-left: 5px solid #57564b !important;
 border-radius: 3px;
}
.edit_mode div.cell.code_cell.selected .input {
 border-left: 5px solid #33322b !important;
 border-radius: 3px;
}
.edit_mode div.cell.selected:before {
 height: 100%;
 border-left: 5px solid #33322b !important;
 border-radius: 3px;
}
div.cell.jupyter-soft-selected,
div.cell.selected.jupyter-soft-selected {
 border-left-color: #33322b !important;
 border-left-width: 0px !important;
 padding-left: 7px !important;
 border-right-color: #33322b !important;
 border-right-width: 0px !important;
 background: #33322b !important;
 border-radius: 6px !important;
}
div.cell.selected.jupyter-soft-selected .input {
 border-left: 5px solid #282828 !important;
}
div.cell.selected.jupyter-soft-selected {
 border-left-color: #57564b;
 border-color: #1e1e1e;
 padding-left: 7px;
 border-radius: 6px;
}
div.cell.code_cell.selected .input {
 border-left: none;
 border-radius: 3px;
}
div.cell.selected.jupyter-soft-selected .prompt,
div.cell.text_cell.selected.jupyter-soft-selected .prompt {
 top: 0;
 border-left: #282828 !important;
 border-radius: 2px;
}
div.cell.text_cell.selected.jupyter-soft-selected .input_prompt {
 border-left: none !important;
}
div.cell.text_cell.jupyter-soft-selected,
div.cell.text_cell.selected.jupyter-soft-selected {
 border-left-color: #33322b !important;
 border-left-width: 0px !important;
 padding-left: 26px !important;
 border-right-color: #33322b !important;
 border-right-width: 0px !important;
 background: #33322b !important;
 border-radius: 5px !important;
}
div.cell.jupyter-soft-selected .input,
div.cell.selected.jupyter-soft-selected .input {
 border-left-color: #33322b !important;
}
div.prompt,
.prompt {
 font-family: "Fira Mono", monospace, monospace;
 font-size: 9pt !important;
 font-weight: normal;
 color: #75715e;
 line-height: 170%;
 padding: 0px;
 padding-top: 4px;
 padding-left: 0px;
 padding-right: 1px;
 text-align: right !important;
 min-width: 11.5ex !important;
 width: 11.5ex !important;
}
div.prompt.input_prompt {
 font-size: 9pt !important;
 background-color: #282828;
 border-top: 0px;
 border-top-right-radius: 0px;
 border-bottom-left-radius: 0px;
 border-bottom-right-radius: 0px;
 padding-right: 3px;
 min-width: 11.5ex;
 width: 11.5ex !important;
}
div.cell.code_cell .input_prompt {
 border-right: 2px solid #49483e;
}
div.cell.selected .prompt {
 top: 0;
}
.edit_mode div.cell.selected .prompt {
 top: 0;
}
.edit_mode div.cell.selected .prompt {
 top: 0;
}
.run_this_cell {
 visibility: hidden;
 color: transparent;
 padding-top: 0px;
 padding-bottom: 0px;
 padding-left: 3px;
 padding-right: 12px;
 width: 1.5ex;
 width: 0ex;
 background: transparent;
 background-color: transparent;
}
div.code_cell:hover div.input .run_this_cell {
 visibility: visible;
}
div.cell.code_cell.rendered.selected .run_this_cell:hover {
 background-color: #1e1e1e;
 background: #1e1e1e;
 color: #57564b !important;
}
div.cell.code_cell.rendered.unselected .run_this_cell:hover {
 background-color: #1e1e1e;
 background: #1e1e1e;
 color: #57564b !important;
}
i.fa-step-forward.fa {
 display: inline-block;
 font: normal normal normal 9px "FontAwesome";
}
.fa-step-forward:before {
 content: "\f04b";
}
div.cell.selected.jupyter-soft-selected .run_this_cell,
div.cell.selected.jupyter-soft-selected .run_this_cell:hover,
div.cell.unselected.jupyter-soft-selected .run_this_cell:hover,
div.cell.code_cell.rendered.selected.jupyter-soft-selected .run_this_cell:hover,
div.cell.code_cell.rendered.unselected.jupyter-soft-selected .run_this_cell:hover {
 background-color: #33322b !important;
 background: #33322b !important;
 color: #33322b !important;
}
div.output_wrapper {
 background-color: #232323;
 border: 0px;
 left: 0px;
 margin-bottom: 0em;
 margin-top: 0em;
 border-top-right-radius: 0px;
 border-top-left-radius: 0px;
}
div.output_subarea.output_text.output_stream.output_stdout,
div.output_subarea.output_text {
 font-family: "Fira Mono", monospace, monospace;
 font-size: 8.5pt !important;
 line-height: 150% !important;
 background-color: #232323;
 color: #cccccc;
 border-top-right-radius: 0px;
 border-top-left-radius: 0px;
 margin-left: 11.5px;
}
div.output_area pre {
 font-family: "Fira Mono", monospace, monospace;
 font-size: 8.5pt !important;
 line-height: 151% !important;
 color: #cccccc;
 border-top-right-radius: 0px;
 border-top-left-radius: 0px;
}
div.output_area {
 display: -webkit-box;
}
div.output_html {
 font-family: "Fira Mono", monospace, monospace;
 font-size: 8.5pt;
 color: #cccccc;
 background-color: #232323;
 background: #232323;
}
div.output_subarea {
 overflow-x: auto;
 padding: 1.2em !important;
 -webkit-box-flex: 1;
 -moz-box-flex: 1;
 box-flex: 1;
 flex: 1;
}
div.btn.btn-default.output_collapsed {
 background: #222222;
 background-color: #222222;
 border-color: #222222;
}
div.btn.btn-default.output_collapsed:hover {
 background: #1d1d1d;
 background-color: #1d1d1d;
 border-color: #1d1d1d;
}
div.prompt.output_prompt {
 font-family: "Fira Mono", monospace, monospace;
 font-weight: bold !important;
 background-color: #232323;
 color: transparent;
 border-bottom-left-radius: 4px;
 border-top-right-radius: 0px;
 border-top-left-radius: 0px;
 border-bottom-right-radius: 0px;
 min-width: 11.5ex !important;
 width: 11.5ex !important;
 border-right: 2px solid transparent;
}
div.out_prompt_overlay.prompt {
 font-family: "Fira Mono", monospace, monospace;
 font-weight: bold !important;
 background-color: #232323;
 border-bottom-left-radius: 2px;
 border-top-right-radius: 0px;
 border-top-left-radius: 0px;
 border-bottom-right-radius: 0px;
 min-width: 11.5ex !important;
 width: 11.5ex !important;
 border-right: 2px solid transparent;
 color: transparent;
}
div.out_prompt_overlay.prompt:hover {
 background-color: #49483e;
 box-shadow: none !important;
 border: none;
 border-bottom-left-radius: 2px;
 -webkit-border-: 2px;
 -moz-border-radius: 2px;
 border-top-right-radius: 0px;
 border-top-left-radius: 0px;
 min-width: 11.5ex !important;
 width: 11.5ex !important;
 border-right: 2px solid #49483e !important;
}
div.cell.code_cell .output_prompt {
 border-right: 2px solid transparent;
 color: transparent;
}
div.cell.selected .output_prompt,
div.cell.selected .out_prompt_overlay.prompt {
 border-left: 5px solid #33322b;
 border-right: 2px solid #232323;
 border-radius: 0px !important;
}
.edit_mode div.cell.selected .output_prompt,
.edit_mode div.cell.selected .out_prompt_overlay.prompt {
 border-left: 5px solid #33322b;
 border-right: 2px solid #232323;
 border-radius: 0px !important;
}
div.text_cell,
div.text_cell_render pre,
div.text_cell_render {
 font-family: sans-serif;
 font-size: 13pt;
 line-height: 130% !important;
 color: #f8f8f0;
 background: #282828;
 background-color: #282828;
 border-radius: 0px;
}
div .text_cell_render {
 padding: 0.4em 0.4em 0.4em 0.4em;
}
div.cell.text_cell .CodeMirror-lines {
 padding-top: .7em !important;
 padding-bottom: .4em !important;
 padding-left: .5em !important;
 padding-right: .5em !important;
 margin-top: .4em;
 margin-bottom: .3em;
}
div.cell.text_cell.unrendered div.input_area,
div.cell.text_cell.rendered div.input_area {
 background-color: #282828;
 background: #282828;
 border: 0px;
 border-radius: 2px;
}
div.cell.text_cell .CodeMirror,
div.cell.text_cell .CodeMirror pre {
 line-height: 170% !important;
}
div.cell.text_cell.rendered.selected {
 font-family: sans-serif;
 line-height: 170% !important;
 background: #282828;
 background-color: #282828;
 border-radius: 0px;
}
div.cell.text_cell.unrendered.selected {
 font-family: sans-serif;
 line-height: 170% !important;
 background: #282828;
 background-color: #282828;
 border-radius: 0px;
}
div.cell.text_cell.selected {
 font-family: sans-serif;
 line-height: 170% !important;
 background: #282828;
 background-color: #282828;
 border-radius: 0px;
}
.edit_mode div.cell.text_cell.selected {
 font-family: sans-serif;
 line-height: 170% !important;
 background: #282828;
 background-color: #282828;
 border-radius: 0px;
}
div.text_cell.unrendered,
div.text_cell.unrendered.selected,
div.edit_mode div.text_cell.unrendered {
 font-family: sans-serif;
 line-height: 170% !important;
 background: #282828;
 background-color: #282828;
 border-radius: 0px;
}
div.cell.text_cell .prompt {
 border-right: 0;
 min-width: 11.5ex !important;
 width: 11.5ex !important;
}
div.cell.text_cell.rendered .prompt {
 font-family: "Fira Mono", monospace, monospace;
 font-size: 9.5pt !important;
 font-weight: normal;
 color: #75715e !important;
 text-align: right !important;
 min-width: 14.5ex !important;
 width: 14.5ex !important;
 background-color: #282828;
 border-right: 2px solid #49483e;
 border-left: 4px solid #282828;
}
div.cell.text_cell.unrendered .prompt {
 font-family: "Fira Mono", monospace, monospace;
 font-size: 9.5pt !important;
 font-weight: normal;
 color: #75715e !important;
 text-align: right !important;
 min-width: 14.5ex !important;
 width: 14.5ex !important;
 border-right: 2px solid #49483e;
 border-left: 4px solid #282828;
 background-color: #282828;
}
div.cell.text_cell.rendered .prompt {
 border-right: 2px solid #49483e;
}
div.cell.text_cell.rendered.selected .prompt {
 top: 0;
 border-left: 4px solid #57564b;
 border-right: 2px solid #49483e;
}
div.text_cell.unrendered.selected .prompt,
div.text_cell.rendered.selected .prompt {
 top: 0;
 background: #282828;
 border-left: 4px solid #33322b;
 border-right: 2px solid #49483e;
}
div.rendered_html code {
 font-family: "Fira Mono", monospace, monospace;
 font-size: 12pt;
 padding-top: 3px;
 padding-left: 2px;
 color: #f8f8f0;
 background: #282828;
 background-color: #282828;
}
pre,
code,
kbd,
samp {
 white-space: pre-wrap;
}
.well code,
code {
 font-family: "Fira Mono", monospace, monospace;
 font-size: 12pt !important;
 line-height: 170% !important;
 color: #f8f8f0;
 background: #282828;
 background-color: #282828;
 border-color: #282828;
}
kbd {
 padding: 1px;
 font-size: 12pt;
 font-weight: 800;
 color: #f8f8f0;
 background-color: transparent !important;
 border: 0;
 box-shadow: none;
}
pre {
 display: block;
 padding: 8.5px;
 margin: 0 0 9px;
 font-size: 10.0pt;
 line-height: 1.42857143;
 color: #f8f8f0;
 background-color: #282828;
 border: 1px solid #282828;
 border-radius: 2px;
}
div.rendered_html {
 color: #f8f8f0;
}
.rendered_html * + ul {
 margin-top: .4em;
 margin-bottom: .3em;
}
.rendered_html * + p {
 margin-top: .5em;
 margin-bottom: .5em;
}
div.rendered_html pre {
 font-family: "Fira Mono", monospace, monospace;
 font-size: 12pt !important;
 line-height: 170% !important;
 color: #f8f8f0 !important;
 background: #282828;
 background-color: #282828;
 max-width: 80%;
 border-radius: 0px;
 border-left: 3px solid #282828;
 max-width: 80%;
 border-radius: 0px;
 padding-left: 5px;
 margin-left: 6px;
}
div.text_cell_render pre,
div.text_cell_render code {
 font-family: "Fira Mono", monospace, monospace;
 font-size: 12pt !important;
 line-height: 170% !important;
 color: #f8f8f0;
 background: #1e1e1e;
 background-color: #1e1e1e;
 max-width: 80%;
 border-radius: 0px;
 border-left: none;
}
div.text_cell_render pre {
 border-left: 3px solid #49483e !important;
 max-width: 80%;
 border-radius: 0px;
 padding-left: 5px;
 margin-left: 6px;
}
div.text_cell_render h1,
div.rendered_html h1,
div.text_cell_render h2,
div.rendered_html h2,
div.text_cell_render h3,
div.rendered_html h3,
div.text_cell_render h4,
div.rendered_html h4,
div.text_cell_render h5,
div.rendered_html h5 {
 font-family: "PT Sans", sans-serif;
 margin: 0.4em .2em .3em .2em !important;
}
.rendered_html h1:first-child,
.rendered_html h2:first-child,
.rendered_html h3:first-child,
.rendered_html h4:first-child,
.rendered_html h5:first-child,
.rendered_html h6:first-child {
 margin-top: 0.2em !important;
 margin-bottom: 0.2em !important;
}
.rendered_html h1,
.text_cell_render h1 {
 color: #a6e22e !important;
 font-size: 200%;
 text-align: left;
 font-style: normal;
 font-weight: normal;
}
.rendered_html h2,
.text_cell_render h2 {
 color: #a6e22e !important;
 font-size: 170%;
 font-style: normal;
 font-weight: normal;
}
.rendered_html h3,
.text_cell_render h3 {
 color: #a6e22e !important;
 font-size: 140%;
 font-style: normal;
 font-weight: normal;
}
.rendered_html h4,
.text_cell_render h4 {
 color: #a6e22e !important;
 font-size: 110%;
 font-style: normal;
 font-weight: normal;
}
.rendered_html h5,
.text_cell_render h5 {
 color: #a6e22e !important;
 font-size: 100%;
 font-style: normal;
 font-weight: normal;
}
hr {
 margin-top: 8px;
 margin-bottom: 10px;
 border: 0;
 border-top: 1px solid #a6e22e;
}
.rendered_html hr {
 color: #a6e22e;
 background-color: #a6e22e;
 margin-right: 2em;
}
#complete > select > option:hover {
 background: rgba(93,92,82,.25);
 background-color: rgba(93,92,82,.25);
}
div#_vivaldi-spatnav-focus-indicator._vivaldi-spatnav-focus-indicator {
 position: absolute;
 z-index: 9999999999;
 top: 0px;
 left: 0px;
 box-shadow: none;
 pointer-events: none;
 border-radius: 2px;
}
.rendered_html tr,
.rendered_html th,
.rendered_html td {
 text-align: left;
 vertical-align: middle;
 padding: 0.42em 0.47em;
 line-height: normal;
 white-space: normal;
 max-width: none;
 border: none;
}
.rendered_html td {
 font-family: "PT Sans", sans-serif !important;
 font-size: 9.3pt;
}
.rendered_html table {
 font-family: "PT Sans", sans-serif !important;
 margin-left: 8px;
 margin-right: auto;
 border: none;
 border-collapse: collapse;
 border-spacing: 0;
 color: #cccccc;
 table-layout: fixed;
}
.rendered_html thead {
 font-family: "PT Sans", sans-serif !important;
 font-size: 10.3pt !important;
 background: #1e1e1e;
 color: #cccccc;
 border-bottom: 1px solid #1e1e1e;
 vertical-align: bottom;
}
.rendered_html tbody tr:nth-child(odd) {
 background: #282828;
}
.rendered_html tbody tr {
 background: #202020;
}
.rendered_html tbody tr:hover:nth-child(odd) {
 background: #252525;
}
.rendered_html tbody tr:hover {
 background: #1e1e1e;
}
.rendered_html * + table {
 margin-top: .05em;
}
div.widget-area {
 background-color: #232323;
 background: #232323;
 color: #cccccc;
}
div.widget-area a {
 font-family: "PT Sans", sans-serif;
 font-size: 10.0pt;
 font-weight: normal;
 font-style: normal;
 color: #f8f8f0;
 text-shadow: none !important;
}
div.widget-area a:hover,
div.widget-area a:focus {
 font-family: "PT Sans", sans-serif;
 font-size: 10.0pt;
 font-weight: normal;
 font-style: normal;
 color: #f8f8f0;
 background: rgba(93,92,82,.25);
 background-color: rgba(93,92,82,.25);
 border-color: transparent;
 background-image: none;
 text-shadow: none !important;
}
div.widget_item.btn-group > button.btn.btn-default.widget-combo-btn,
div.widget_item.btn-group > button.btn.btn-default.widget-combo-btn:hover {
 background: #2c2c2c;
 background-color: #2c2c2c;
 border: 2px solid #2c2c2c !important;
 font-size: inherit;
 z-index: 0;
}
div.jupyter-widgets.widget-hprogress.widget-hbox {
 display: inline-table !important;
 width: 38% !important;
 margin-left: 10px;
}
div.jupyter-widgets.widget-hprogress.widget-hbox .widget-label,
div.widget-hbox .widget-label,
.widget-hbox .widget-label,
.widget-inline-hbox .widget-label,
div.widget-label {
 text-align: -webkit-auto !important;
 margin-left: 15px !important;
 max-width: 240px !important;
 min-width: 100px !important;
 vertical-align: text-top !important;
 color: #cccccc !important;
 font-size: 14px !important;
}
.widget-hprogress .progress {
 flex-grow: 1;
 height: 20px;
 margin-top: auto;
 margin-left: 12px;
 margin-bottom: auto;
 width: 300px;
}
.progress {
 overflow: hidden;
 height: 22px;
 margin-bottom: 10px;
 padding-left: 10px;
 background-color: #49483e !important;
 border-radius: 2px;
 -webkit-box-shadow: none;
 box-shadow: none;
 z-index: 10;
}
.progress-bar-danger {
 background-color: #e74c3c !important;
}
.progress-bar-info {
 background-color: #3498db !important;
}
.progress-bar-warning {
 background-color: #ff914d !important;
}
.progress-bar-success {
 background-color: #83a83b !important;
}
.widget-select select {
 margin-left: 12px;
}
.rendered_html :link {
 font-family: "PT Sans", sans-serif;
 font-size: 100%;
 color: #a6e22e;
 text-decoration: underline;
}
.rendered_html :visited,
.rendered_html :visited:active,
.rendered_html :visited:focus {
 color: #acdf45;
}
.rendered_html :visited:hover,
.rendered_html :link:hover {
 font-family: "PT Sans", sans-serif;
 font-size: 100%;
 color: #97dc0b;
}
div.cell.text_cell a.anchor-link:link {
 font-size: inherit;
 text-decoration: none;
 padding: 0px 20px;
 visibility: none;
 color: rgba(0,0,0,.32);
}
div.cell.text_cell a.anchor-link:link:hover {
 font-size: inherit;
 color: #a6e22e;
}
.navbar-text {
 margin-top: 4px;
 margin-bottom: 0px;
}
#clusters > a {
 color: #a6e22e;
 text-decoration: underline;
 cursor: auto;
}
#clusters > a:hover {
 color: #ae81ff;
 text-decoration: underline;
 cursor: auto;
}
#nbextensions-configurator-container > div.row.container-fluid.nbext-selector > h3 {
 font-size: 17px;
 margin-top: 5px;
 margin-bottom: 8px;
 height: 24px;
 padding: 4px 0 4px 0;
}
div#nbextensions-configurator-container.container,
#nbextensions-configurator-container.container {
 width: 100%;
 margin-right: auto;
 margin-left: auto;
}
div.nbext-selector > nav > .nav > li > a {
 font-family: "PT Sans", sans-serif;
 font-size: 10.5pt;
 padding: 2px 5px;
}
div.nbext-selector > nav > .nav > li > a:hover {
 background: transparent;
}
div.nbext-selector > nav > .nav > li:hover {
 background-color: rgba(93,92,82,.25) !important;
 background: rgba(93,92,82,.25) !important;
}
div.nbext-selector > nav > .nav > li.active:hover {
 background: transparent !important;
 background-color: transparent !important;
}
.nav-pills > li.active > a,
.nav-pills > li.active > a:active,
.nav-pills > li.active > a:hover,
.nav-pills > li.active > a:focus {
 color: #f8f8f2;
 background-color: rgba(93,92,82,.25) !important;
 background: rgba(93,92,82,.25) !important;
 -webkit-backface-visibility: hidden;
 -webkit-font-smoothing: subpixel-antialiased !important;
}
div.nbext-readme > .nbext-readme-contents > .rendered_html {
 font-family: "PT Sans", sans-serif;
 font-size: 11.5pt;
 line-height: 145%;
 padding: 1em 1em;
 color: #f8f8f0;
 background-color: #282828;
 -webkit-box-shadow: none;
 -moz-box-shadow: none;
 box-shadow: none;
}
.nbext-icon,
.nbext-desc,
.nbext-compat-div,
.nbext-enable-btns,
.nbext-params {
 margin-bottom: 8px;
 font-size: 11.5pt;
}
div.nbext-readme > .nbext-readme-contents {
 padding: 0;
 overflow-y: hidden;
}
div.nbext-readme > .nbext-readme-contents:not(:empty) {
 margin-top: 0.5em;
 margin-bottom: 2em;
 border: none;
 border-top-color: rgba(148,204,114,.2);
}
.nbext-showhide-incompat {
 padding-bottom: 0.5em;
 color: #888888;
 font-size: 10.5pt;
}
.nbext-filter-menu.dropdown-menu > li > a:hover,
.nbext-filter-menu.dropdown-menu > li > a:focus,
.nbext-filter-menu.dropdown-menu > li > a.ui-state-focus {
 color: #f8f8f0 !important;
 background-color: rgba(93,92,82,.25) !important;
 background: rgba(93,92,82,.25) !important;
 border-color: rgba(93,92,82,.25) !important;
}
.nbext-filter-input-wrap > .nbext-filter-input-subwrap,
.nbext-filter-input-wrap > .nbext-filter-input-subwrap > input {
 border: none;
 outline: none;
 background-color: transparent;
 padding: 0;
 vertical-align: middle;
 margin-top: -2px;
}
span.rendered_html code {
 background-color: transparent;
 color: #f8f8f0;
}
#nbextensions-configurator-container > div.row.container-fluid.nbext-selector {
 padding-left: 0px;
 padding-right: 0px;
}
.nbext-filter-menu {
 max-height: 55vh !important;
 overflow-y: auto;
 outline: none;
 border: none;
}
.nbext-filter-menu:hover {
 border: none;
}
.alert-warning {
 background-color: #232323;
 border-color: #232323;
 color: #f8f8f0;
}
.notification_widget.danger {
 color: #ffffff;
 background-color: #e74c3c;
 border-color: #e74c3c;
 padding-right: 5px;
}
#nbextensions-configurator-container > div.nbext-buttons.tree-buttons.no-padding.pull-right > span > button {
 border: none !important;
}
button#refresh_running_list {
 border: none !important;
}
mark,
.mark {
 background-color: #282828;
 color: #f8f8f0;
 padding: .15em;
}
a.text-warning,
a.text-warning:hover {
 color: #75715e;
}
a.text-warning.bg-warning {
 background-color: #1e1e1e;
}
span.bg-success.text-success {
 background-color: transparent;
 color: #a6e22e;
}
span.bg-danger.text-danger {
 background-color: #1e1e1e;
 color: #f92672;
}
.has-success .input-group-addon {
 color: #a6e22e;
 border-color: transparent;
 background: inherit;
 background-color: rgba(83,180,115,.10);
}
.has-success .form-control {
 border-color: #a6e22e;
 -webkit-box-shadow: inset 0 1px 1px rgba(0,0,0,0.025);
 box-shadow: inset 0 1px 1px rgba(0,0,0,0.025);
}
.has-error .input-group-addon {
 color: #f92672;
 border-color: transparent;
 background: inherit;
 background-color: rgba(192,57,67,.10);
}
.has-error .form-control {
 border-color: #f92672;
 -webkit-box-shadow: inset 0 1px 1px rgba(0,0,0,0.025);
 box-shadow: inset 0 1px 1px rgba(0,0,0,0.025);
}
.kse-input-group-pretty > kbd {
 font-family: "Fira Mono", monospace, monospace;
 color: #f8f8f0;
 font-weight: normal;
 background: transparent;
}
.kse-input-group-pretty > kbd {
 font-family: "Fira Mono", monospace, monospace;
 color: #f8f8f0;
 font-weight: normal;
 background: transparent;
}
div.nbext-enable-btns .btn[disabled],
div.nbext-enable-btns .btn[disabled]:hover,
.btn-default.disabled,
.btn-default[disabled] {
 background: #2c2c2c;
 background-color: #2c2c2c;
 color: #f3f3e6;
}
label#Keyword-Filter {
 display: none;
}
.input-group .nbext-list-btn-add,
.input-group-btn:last-child > .btn-group > .btn {
 background: #2f2f2f;
 background-color: #2f2f2f;
 border-color: #2f2f2f;
 border: 2px solid #2f2f2f;
}
.input-group .nbext-list-btn-add:hover,
.input-group-btn:last-child > .btn-group > .btn:hover {
 background: #2a2a2a;
 background-color: #2a2a2a;
 border-color: #2a2a2a;
 border: 2px solid #2a2a2a;
}
#notebook-container > div.cell.code_cell.rendered.selected > div.widget-area > div.widget-subarea > div > div.widget_item.btn-group > button.btn.btn-default.dropdown-toggle.widget-combo-carrot-btn {
 background: #2f2f2f;
 background-color: #2f2f2f;
 border-color: #2f2f2f;
}
#notebook-container > div.cell.code_cell.rendered.selected > div.widget-area > div.widget-subarea > div > div.widget_item.btn-group > button.btn.btn-default.dropdown-toggle.widget-combo-carrot-btn:hover {
 background: #2a2a2a;
 background-color: #2a2a2a;
 border-color: #2a2a2a;
}
.ui-widget-content {
 background: #2f2f2f;
 background-color: #2f2f2f;
 border: 2px solid #2f2f2f;
 color: #f8f8f0;
}
div.collapsible_headings_toggle {
 color: rgba(93,92,82,.5) !important;
}
div.collapsible_headings_toggle:hover {
 color: #a6e22e !important;
}
.collapsible_headings_toggle .h1,
.collapsible_headings_toggle .h2,
.collapsible_headings_toggle .h3,
.collapsible_headings_toggle .h4,
.collapsible_headings_toggle .h5,
.collapsible_headings_toggle .h6 {
 margin: 0.3em .4em 0em 0em !important;
 line-height: 1.2 !important;
}
div.collapsible_headings_toggle .fa-caret-down:before,
div.collapsible_headings_toggle .fa-caret-right:before {
 font-size: xx-large;
 transition: transform 1000ms;
 transform: none !important;
}
.collapsible_headings_collapsed.collapsible_headings_ellipsis .rendered_html h1:after,
.collapsible_headings_collapsed.collapsible_headings_ellipsis .rendered_html h2:after,
.collapsible_headings_collapsed.collapsible_headings_ellipsis .rendered_html h3:after,
.collapsible_headings_collapsed.collapsible_headings_ellipsis .rendered_html h4:after,
.collapsible_headings_collapsed.collapsible_headings_ellipsis .rendered_html h5:after,
.collapsible_headings_collapsed.collapsible_headings_ellipsis .rendered_html h6:after {
 position: absolute;
 right: 0;
 bottom: 20% !important;
 content: "[\002026]";
 color: rgba(93,92,82,.5) !important;
 padding: 0.5em 0em 0em 0em !important;
}
.collapsible_headings_ellipsis .rendered_html h1,
.collapsible_headings_ellipsis .rendered_html h2,
.collapsible_headings_ellipsis .rendered_html h3,
.collapsible_headings_ellipsis .rendered_html h4,
.collapsible_headings_ellipsis .rendered_html h5,
.collapsible_headings_ellipsis .rendered_html h6,
.collapsible_headings_toggle .fa {
 transition: transform 1000ms !important;
 -webkit-transform: inherit !important;
 -moz-transform: inherit !important;
 -ms-transform: inherit !important;
 -o-transform: inherit !important;
 transform: inherit !important;
 padding-right: 0px !important;
}
#toc-wrapper {
 z-index: 90;
 position: fixed !important;
 display: flex;
 flex-direction: column;
 overflow: hidden;
 padding: 10px;
 border-style: solid;
 border-width: thin;
 border-right-width: medium !important;
 background-color: #1e1e1e !important;
}
#toc-wrapper.ui-draggable.ui-resizable.sidebar-wrapper {
 border-color: rgba(93,92,82,.25) !important;
}
#toc a,
#navigate_menu a,
.toc {
 color: #f8f8f0 !important;
 font-size: 12pt !important;
}
#toc li > span:hover {
 background-color: rgba(93,92,82,.25) !important;
}
#toc a:hover,
#navigate_menu a:hover,
.toc {
 color: #f8f8f2 !important;
 font-size: 12pt !important;
}
#toc-wrapper .toc-item-num {
 color: #a6e22e !important;
 font-size: 12pt !important;
}
input.raw_input {
 font-family: "Fira Mono", monospace, monospace;
 font-size: 12pt !important;
 color: #f8f8f0;
 background-color: #282828;
 border-color: #252525;
 background: #252525;
 width: auto;
 vertical-align: baseline;
 padding: 0em 0.25em;
 margin: 0em 0.25em;
 -webkit-box-shadow: none;
 box-shadow: none;
}
audio,
video {
 display: inline;
 vertical-align: middle;
 align-content: center;
 margin-left: 20%;
}
.cmd-palette .modal-body {
 padding: 0px;
 margin: 0px;
}
.cmd-palette form {
 background: #293547;
 background-color: #293547;
}
.typeahead-field input:last-child,
.typeahead-hint {
 background: #293547;
 background-color: #293547;
 z-index: 1;
}
.typeahead-field input {
 font-family: "PT Sans", sans-serif;
 color: #f8f8f0;
 border: none;
 font-size: 28pt;
 display: inline-block;
 line-height: inherit;
 padding: 3px 10px;
 height: 70px;
}
.typeahead-select {
 background-color: #293547;
}
body > div.modal.cmd-palette.typeahead-field {
 display: table;
 border-collapse: separate;
 background-color: #2b3850;
}
.typeahead-container button {
 font-family: "PT Sans", sans-serif;
 font-size: 28pt;
 background-color: #2f2f2f;
 border: none;
 display: inline-block;
 line-height: inherit;
 padding: 3px 10px;
 height: 70px;
}
.typeahead-search-icon {
 min-width: 40px;
 min-height: 55px;
 display: block;
 vertical-align: middle;
 text-align: center;
}
.typeahead-container button:focus,
.typeahead-container button:hover {
 color: #f8f8f0;
 background-color: #2a2a2a;
 border-color: #2a2a2a;
}
.typeahead-list > li.typeahead-group.active > a,
.typeahead-list > li.typeahead-group > a,
.typeahead-list > li.typeahead-group > a:focus,
.typeahead-list > li.typeahead-group > a:hover {
 display: none;
}
.typeahead-dropdown > li > a,
.typeahead-list > li > a {
 color: #f8f8f0;
 text-decoration: none;
}
.typeahead-dropdown,
.typeahead-list {
 font-family: "PT Sans", sans-serif;
 font-size: 11pt;
 color: #f8f8f0;
 background-color: #202937;
 border: none;
 background-clip: padding-box;
 margin-top: 0px;
 padding: 3px 2px 3px 0px;
 line-height: 1.7;
}
.typeahead-dropdown > li.active > a,
.typeahead-dropdown > li > a:focus,
.typeahead-dropdown > li > a:hover,
.typeahead-list > li.active > a,
.typeahead-list > li > a:focus,
.typeahead-list > li > a:hover {
 color: #f8f8f0;
 background-color: #2b3850;
 border-color: #2b3850;
}
.command-shortcut:before {
 content: "(command)";
 padding-right: 3px;
 color: #75715e;
}
.edit-shortcut:before {
 content: "(edit)";
 padding-right: 3px;
 color: #75715e;
}
ul.typeahead-list i {
 margin-left: 1px;
 width: 18px;
 margin-right: 10px;
}
ul.typeahead-list {
 max-height: 50vh;
 overflow: auto;
}
.typeahead-list > li {
 position: relative;
 border: none;
}
div.input.typeahead-hint,
input.typeahead-hint,
body > div.modal.cmd-palette.in > div > div > div > form > div > div.typeahead-field > span.typeahead-query > input.typeahead-hint {
 color: #75715e !important;
 background-color: transparent;
 padding: 3px 10px;
}
.typeahead-dropdown > li > a,
.typeahead-list > li > a {
 display: block;
 padding: 5px;
 clear: both;
 font-weight: 400;
 line-height: 1.7;
 border: 1px solid #202937;
 border-bottom-color: rgba(93,92,82,.5);
}
body > div.modal.cmd-palette.in > div {
 min-width: 750px;
 margin: 150px auto;
}
.typeahead-container strong {
 font-weight: bolder;
 color: #a6e22e;
}
#find-and-replace #replace-preview .match,
#find-and-replace #replace-preview .insert {
 color: #ffffff;
 background-color: #57564b;
 border-color: #57564b;
 border-style: solid;
 border-width: 1px;
 border-radius: 0px;
}
#find-and-replace #replace-preview .replace .match {
 background-color: #f92672;
 border-color: #f92672;
 border-radius: 0px;
}
#find-and-replace #replace-preview .replace .insert {
 background-color: #a6e22e;
 border-color: #a6e22e;
 border-radius: 0px;
}
.jupyter-dashboard-menu-item.selected::before {
 font-family: 'FontAwesome' !important;
 content: '\f00c' !important;
 position: absolute !important;
 color: #a6e22e !important;
 left: 0px !important;
 top: 13px !important;
 font-size: 12px !important;
}
.shortcut_key,
span.shortcut_key {
 display: inline-block;
 width: 16ex;
 text-align: right;
 font-family: monospace;
}
.jupyter-keybindings {
 padding: 1px;
 line-height: 24px;
 border-bottom: 1px solid rgba(93,92,82,.25);
}
.jupyter-keybindings i {
 background: #282828;
 font-size: small;
 padding: 5px;
 margin-left: 7px;
}
div#short-key-bindings-intro.well,
.well {
 background-color: #2f2f2f;
 border: 1px solid #2f2f2f;
 color: #f8f8f0;
 border-radius: 2px;
 -webkit-box-shadow: none;
 box-shadow: none;
}
#texteditor-backdrop {
 background: #1e1e1e;
 background-color: #1e1e1e;
}
#texteditor-backdrop #texteditor-container .CodeMirror-gutter,
#texteditor-backdrop #texteditor-container .CodeMirror-gutters {
 background: #49483e;
 background-color: #49483e;
 color: #75715e;
}
.edit_app #menubar .navbar {
 margin-bottom: 0px;
}
#texteditor-backdrop #texteditor-container {
 padding: 0px;
 background-color: #282828;
 box-shadow: none;
}
.terminal-app {
 background: #1e1e1e;
}
.terminal-app > #header {
 background: #1e1e1e;
}
.terminal-app .terminal {
 font-family: "Fira Mono", monospace, monospace;
 font-size: 12pt;
 line-height: 170%;
 color: #f8f8f0;
 background: #282828;
 padding: 0.4em;
 border-radius: 2px;
 -webkit-box-shadow: none;
 box-shadow: none;
}
.terminal .xterm-viewport {
 background-color: #282828;
 color: #f8f8f0;
 overflow-y: auto;
}
.terminal .xterm-color-0 {
 color: #a6e22e;
}
.terminal .xterm-color-1 {
 color: #a6e22e;
}
.terminal .xterm-color-2 {
 color: #f92672;
}
.terminal .xterm-color-3 {
 color: #a6e22e;
}
.terminal .xterm-color-4 {
 color: #ae81ff;
}
.terminal .xterm-color-5 {
 color: #e6db74;
}
.terminal .xterm-color-6 {
 color: #a6e22e;
}
.terminal .xterm-color-7 {
 color: #a6e22e;
}
.terminal .xterm-color-8 {
 color: #a6e22e;
}
.terminal .xterm-color-9 {
 color: #e6db74;
}
.terminal .xterm-color-10 {
 color: #a6e22e;
}
.terminal .xterm-color-14 {
 color: #a6e22e;
}
.terminal .xterm-bg-color-15 {
 background-color: #282828;
}
.terminal:not(.xterm-cursor-style-underline):not(.xterm-cursor-style-bar) .terminal-cursor {
 background-color: #a6e22e;
 color: #282828;
}
.terminal:not(.focus) .terminal-cursor {
 outline: 1px solid #a6e22e;
 outline-offset: -1px;
}
.celltoolbar {
 font-size: 100%;
 padding-top: 3px;
 border-color: transparent;
 border-bottom: thin solid rgba(148,204,114,.2);
 background: transparent;
}
.cell-tag,
.tags-input input,
.tags-input button {
 color: #f8f8f0;
 background-color: #1e1e1e;
 background-image: none;
 border: 1px solid #f8f8f0;
 border-radius: 1px;
 box-shadow: none;
 width: inherit;
 font-size: inherit;
 height: 22px;
 line-height: 22px;
}
#notebook-container > div.cell.code_cell.rendered.selected > div.input > div.inner_cell > div.ctb_hideshow.ctb_show > div > div > button,
#notebook-container > div.input > div.inner_cell > div.ctb_hideshow.ctb_show > div > div > button {
 font-size: 10pt;
 color: #f8f8f0;
 background-color: #1e1e1e;
 background-image: none;
 border: 1px solid #f8f8f0;
 border-radius: 1px;
 box-shadow: none;
 width: inherit;
 font-size: inherit;
 height: 22px;
 line-height: 22px;
}
div#pager #pager-contents {
 background: #1e1e1e !important;
 background-color: #1e1e1e !important;
}
div#pager pre {
 color: #f8f8f0 !important;
 background: #282828 !important;
 background-color: #282828 !important;
 padding: 0.4em;
}
div#pager .ui-resizable-handle {
 top: 0px;
 height: 8px;
 background: #a6e22e !important;
 border-top: 1px solid #a6e22e;
 border-bottom: 1px solid #a6e22e;
}
div.CodeMirror,
div.CodeMirror pre {
 font-family: "Fira Mono", monospace, monospace;
 font-size: 12pt;
 line-height: 170%;
 color: #f8f8f0;
}
div.CodeMirror-lines {
 padding-bottom: .9em;
 padding-left: .5em;
 padding-right: 1.5em;
 padding-top: .7em;
}
span.ansiblack,
.ansi-black-fg {
 color: #282828;
}
span.ansiblue,
.ansi-blue-fg,
.ansi-blue-intense-fg {
 color: #66d9ef;
}
span.ansigray,
.ansi-gray-fg,
.ansi-gray-intense-fg {
 color: #888888;
}
span.ansigreen,
.ansi-green-fg {
 color: #a6e22e;
}
.ansi-green-intense-fg {
 color: #888888;
}
span.ansipurple,
.ansi-purple-fg,
.ansi-purple-intense-fg {
 color: #ae81ff;
}
span.ansicyan,
.ansi-cyan-fg,
.ansi-cyan-intense-fg {
 color: #ae81ff;
}
span.ansiyellow,
.ansi-yellow-fg,
.ansi-yellow-intense-fg {
 color: #e6db74;
}
span.ansired,
.ansi-red-fg,
.ansi-red-intense-fg {
 color: #f92672;
}
div.output-stderr {
 background-color: #f92672;
}
div.output-stderr pre {
 color: #f8f8f2;
}
div.js-error {
 color: #f92672;
}
.ipython_tooltip {
 font-family: "Fira Mono", monospace, monospace;
 font-size: 12pt;
 line-height: 170%;
 border: 2px solid #141414;
 background: #282828;
 background-color: #282828;
 border-radius: 2px;
 overflow-x: visible;
 overflow-y: visible;
 box-shadow: none;
 position: absolute;
 z-index: 1000;
}
.ipython_tooltip .tooltiptext pre {
 font-family: "Fira Mono", monospace, monospace;
 font-size: 12pt;
 line-height: 170%;
 background: #282828;
 background-color: #282828;
 color: #f8f8f0;
 overflow-x: visible;
 overflow-y: visible;
 max-width: 900px;
}
div#tooltip.ipython_tooltip {
 overflow-x: wrap;
 overflow-y: visible;
 max-width: 800px;
}
div.tooltiptext.bigtooltip {
 overflow-x: visible;
 overflow-y: scroll;
 height: 400px;
 max-width: 800px;
}
.cm-s-ipython.CodeMirror {
 font-family: "Fira Mono", monospace, monospace;
 font-size: 12pt;
 background: #282828;
 color: #f8f8f0;
 border-radius: 2px;
 font-style: normal;
 font-weight: normal;
}
.cm-s-ipython div.CodeMirror-selected {
 background: #49483e;
}
.CodeMirror-gutters {
 border: none;
 border-right: 1px solid #49483e !important;
 background-color: #49483e !important;
 background: #49483e !important;
 border-radius: 0px;
 white-space: nowrap;
}
.cm-s-ipython .CodeMirror-gutters {
 background: #49483e;
 border: none;
 border-radius: 0px;
 width: 36px;
}
.cm-s-ipython .CodeMirror-linenumber {
 color: #75715e;
}
.CodeMirror-sizer {
 margin-left: 40px;
}
.CodeMirror-linenumber,
div.CodeMirror-linenumber,
.CodeMirror-gutter.CodeMirror-linenumberdiv.CodeMirror-gutter.CodeMirror-linenumber {
 padding-right: 1px;
 margin-left: 0px;
 margin: 0px;
 width: 26px !important;
 padding: 0px;
 text-align: right;
}
.CodeMirror-linenumber {
 color: #75715e;
}
.cm-s-ipython .CodeMirror-cursor {
 border-left: 5px solid #db797c !important;
}
.cm-s-ipython span.cm-comment {
 color: #75715e;
 font-style: italic;
}
.cm-s-ipython span.cm-atom {
 color: #ae81ff;
}
.cm-s-ipython span.cm-number {
 color: #ae81ff;
}
.cm-s-ipython span.cm-property {
 color: #f8f8f0;
}
.cm-s-ipython span.cm-attribute {
 color: #f8f8f0;
}
.cm-s-ipython span.cm-keyword {
 color: #f92672;
 font-weight: normal;
}
.cm-s-ipython span.cm-string {
 color: #e6db74;
}
.cm-s-ipython span.cm-meta {
 color: #fd971f;
}
.cm-s-ipython span.cm-operator {
 color: #a6e22e;
}
.cm-s-ipython span.cm-builtin {
 color: #a6e22e;
}
.cm-s-ipython span.cm-variable {
 color: #f8f8f0;
}
.cm-s-ipython span.cm-variable-2 {
 color: #a6e22e;
}
.cm-s-ipython span.cm-variable-3 {
 color: #fd971f;
}
.cm-s-ipython span.cm-def {
 color: #a6e22e;
 font-weight: normal;
}
.cm-s-ipython span.cm-error {
 background: rgba(249,38,114,.4);
}
.cm-s-ipython span.cm-tag {
 color: #ae81ff;
}
.cm-s-ipython span.cm-link {
 color: #a6e22e;
}
.cm-s-ipython span.cm-storage {
 color: #ae81ff;
}
.cm-s-ipython span.cm-entity {
 color: #a6e22e;
}
.cm-s-ipython span.cm-quote {
 color: #e6db74;
}
div.CodeMirror span.CodeMirror-matchingbracket {
 color: #ffffff;
 font-weight: bold;
 background-color: #49483e;
}
div.CodeMirror span.CodeMirror-nonmatchingbracket {
 color: #ffffff;
 font-weight: bold;
 background: rgba(249,38,114,.4) !important;
}
.cm-header-1 {
 font-size: 215%;
}
.cm-header-2 {
 font-size: 180%;
}
.cm-header-3 {
 font-size: 150%;
}
.cm-header-4 {
 font-size: 120%;
}
.cm-header-5 {
 font-size: 100%;
}
.cm-s-default .cm-hr {
 color: #a6e22e;
}
div.cell.text_cell .cm-s-default .cm-header {
 font-family: "PT Sans", sans-serif;
 font-weight: normal;
 color: #a6e22e !important;
 margin-top: 0.3em !important;
 margin-bottom: 0.3em !important;
}
div.cell.text_cell .cm-s-default span.cm-variable-2 {
 color: #f8f8f0 !important;
}
div.cell.text_cell .cm-s-default span.cm-variable-3 {
 color: #fd971f !important;
}
.cm-s-default span.cm-comment {
 color: #75715e !important;
}
.cm-s-default .cm-tag {
 color: #529b2f;
}
.cm-s-default .cm-builtin {
 color: #a6e22e;
}
.cm-s-default .cm-string {
 color: #e6db74;
}
.cm-s-default .cm-keyword {
 color: #f92672;
}
.cm-s-default .cm-number {
 color: #ae81ff;
}
.cm-s-default .cm-error {
 color: #ae81ff;
}
.cm-s-default .cm-link {
 color: #a6e22e;
}
.cm-s-default .cm-atom {
 color: #ae81ff;
}
.cm-s-default .cm-def {
 color: #a6e22e;
}
.CodeMirror-cursor {
 border-left: 5px solid #db797c !important;
 border-right: none;
 width: 0;
}
.cm-s-default div.CodeMirror-selected {
 background: #49483e;
}
.cm-s-default .cm-selected {
 background: #49483e;
}
.MathJax_Display,
.MathJax {
 border: 0 !important;
 font-size: 100% !important;
 text-align: center !important;
 margin: 0em !important;
 line-height: 2.25 !important;
}
.MathJax:focus,
body :focus .MathJax {
 display: inline-block !important;
}
.MathJax:focus,
body :focus .MathJax {
 display: inline-block !important;
}
.completions {
 position: absolute;
 z-index: 110;
 overflow: hidden;
 border: medium solid #49483e;
 box-shadow: none;
 line-height: 1;
}
.completions select {
 background: #282828;
 background-color: #282828;
 outline: none;
 border: none;
 padding: 0px;
 margin: 0px;
 margin-left: 2px;
 overflow: auto;
 font-family: "Fira Mono", monospace, monospace;
 font-size: 12pt;
 color: #f8f8f0;
 width: auto;
}
div#maintoolbar {
 margin-left: 8px !important;
}
.toolbar.container {
 width: 100% !important;
}
span.save_widget span.filename {
 margin-left: 8px;
 height: initial;
 font-size: 100%;
 color: #a6e22e;
 background-color: #282828;
}
span.save_widget span.filename:hover {
 color: #a6e22e;
 background-color: #282828;
}
#menubar {
 padding-top: 4px;
 background-color: #1e1e1e;
}

<script>
    MathJax.Hub.Config({
        "HTML-CSS": {
            /*preferredFont: "TeX",*/
            /*availableFonts: ["TeX", "STIX"],*/
            styles: {
                scale: 100,
                ".MathJax_Display": {
                    "font-size": "100%",
                }
            }
        }
    });
</script>
    
  </style>



<style type="text/css">
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/*
 * Mozilla scrollbar styling
 */

/* use standard opaque scrollbars for most nodes */
[data-jp-theme-scrollbars='true'] {
  scrollbar-color: rgb(var(--jp-scrollbar-thumb-color))
    var(--jp-scrollbar-background-color);
}

/* for code nodes, use a transparent style of scrollbar. These selectors
 * will match lower in the tree, and so will override the above */
[data-jp-theme-scrollbars='true'] .CodeMirror-hscrollbar,
[data-jp-theme-scrollbars='true'] .CodeMirror-vscrollbar {
  scrollbar-color: rgba(var(--jp-scrollbar-thumb-color), 0.5) transparent;
}

/*
 * Webkit scrollbar styling
 */

/* use standard opaque scrollbars for most nodes */

[data-jp-theme-scrollbars='true'] ::-webkit-scrollbar,
[data-jp-theme-scrollbars='true'] ::-webkit-scrollbar-corner {
  background: var(--jp-scrollbar-background-color);
}

[data-jp-theme-scrollbars='true'] ::-webkit-scrollbar-thumb {
  background: rgb(var(--jp-scrollbar-thumb-color));
  border: var(--jp-scrollbar-thumb-margin) solid transparent;
  background-clip: content-box;
  border-radius: var(--jp-scrollbar-thumb-radius);
}

[data-jp-theme-scrollbars='true'] ::-webkit-scrollbar-track:horizontal {
  border-left: var(--jp-scrollbar-endpad) solid
    var(--jp-scrollbar-background-color);
  border-right: var(--jp-scrollbar-endpad) solid
    var(--jp-scrollbar-background-color);
}

[data-jp-theme-scrollbars='true'] ::-webkit-scrollbar-track:vertical {
  border-top: var(--jp-scrollbar-endpad) solid
    var(--jp-scrollbar-background-color);
  border-bottom: var(--jp-scrollbar-endpad) solid
    var(--jp-scrollbar-background-color);
}

/* for code nodes, use a transparent style of scrollbar */

[data-jp-theme-scrollbars='true'] .CodeMirror-hscrollbar::-webkit-scrollbar,
[data-jp-theme-scrollbars='true'] .CodeMirror-vscrollbar::-webkit-scrollbar,
[data-jp-theme-scrollbars='true']
  .CodeMirror-hscrollbar::-webkit-scrollbar-corner,
[data-jp-theme-scrollbars='true']
  .CodeMirror-vscrollbar::-webkit-scrollbar-corner {
  background-color: transparent;
}

[data-jp-theme-scrollbars='true']
  .CodeMirror-hscrollbar::-webkit-scrollbar-thumb,
[data-jp-theme-scrollbars='true']
  .CodeMirror-vscrollbar::-webkit-scrollbar-thumb {
  background: rgba(var(--jp-scrollbar-thumb-color), 0.5);
  border: var(--jp-scrollbar-thumb-margin) solid transparent;
  background-clip: content-box;
  border-radius: var(--jp-scrollbar-thumb-radius);
}

[data-jp-theme-scrollbars='true']
  .CodeMirror-hscrollbar::-webkit-scrollbar-track:horizontal {
  border-left: var(--jp-scrollbar-endpad) solid transparent;
  border-right: var(--jp-scrollbar-endpad) solid transparent;
}

[data-jp-theme-scrollbars='true']
  .CodeMirror-vscrollbar::-webkit-scrollbar-track:vertical {
  border-top: var(--jp-scrollbar-endpad) solid transparent;
  border-bottom: var(--jp-scrollbar-endpad) solid transparent;
}

/*
 * Phosphor
 */

.lm-ScrollBar[data-orientation='horizontal'] {
  min-height: 16px;
  max-height: 16px;
  min-width: 45px;
  border-top: 1px solid #a0a0a0;
}

.lm-ScrollBar[data-orientation='vertical'] {
  min-width: 16px;
  max-width: 16px;
  min-height: 45px;
  border-left: 1px solid #a0a0a0;
}

.lm-ScrollBar-button {
  background-color: #f0f0f0;
  background-position: center center;
  min-height: 15px;
  max-height: 15px;
  min-width: 15px;
  max-width: 15px;
}

.lm-ScrollBar-button:hover {
  background-color: #dadada;
}

.lm-ScrollBar-button.lm-mod-active {
  background-color: #cdcdcd;
}

.lm-ScrollBar-track {
  background: #f0f0f0;
}

.lm-ScrollBar-thumb {
  background: #cdcdcd;
}

.lm-ScrollBar-thumb:hover {
  background: #bababa;
}

.lm-ScrollBar-thumb.lm-mod-active {
  background: #a0a0a0;
}

.lm-ScrollBar[data-orientation='horizontal'] .lm-ScrollBar-thumb {
  height: 100%;
  min-width: 15px;
  border-left: 1px solid #a0a0a0;
  border-right: 1px solid #a0a0a0;
}

.lm-ScrollBar[data-orientation='vertical'] .lm-ScrollBar-thumb {
  width: 100%;
  min-height: 15px;
  border-top: 1px solid #a0a0a0;
  border-bottom: 1px solid #a0a0a0;
}

.lm-ScrollBar[data-orientation='horizontal']
  .lm-ScrollBar-button[data-action='decrement'] {
  background-image: var(--jp-icon-caret-left);
  background-size: 17px;
}

.lm-ScrollBar[data-orientation='horizontal']
  .lm-ScrollBar-button[data-action='increment'] {
  background-image: var(--jp-icon-caret-right);
  background-size: 17px;
}

.lm-ScrollBar[data-orientation='vertical']
  .lm-ScrollBar-button[data-action='decrement'] {
  background-image: var(--jp-icon-caret-up);
  background-size: 17px;
}

.lm-ScrollBar[data-orientation='vertical']
  .lm-ScrollBar-button[data-action='increment'] {
  background-image: var(--jp-icon-caret-down);
  background-size: 17px;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/


/* <DEPRECATED> */ .p-Widget, /* </DEPRECATED> */
.lm-Widget {
  box-sizing: border-box;
  position: relative;
  overflow: hidden;
  cursor: default;
}


/* <DEPRECATED> */ .p-Widget.p-mod-hidden, /* </DEPRECATED> */
.lm-Widget.lm-mod-hidden {
  display: none !important;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/


/* <DEPRECATED> */ .p-CommandPalette, /* </DEPRECATED> */
.lm-CommandPalette {
  display: flex;
  flex-direction: column;
  -webkit-user-select: none;
  -moz-user-select: none;
  -ms-user-select: none;
  user-select: none;
}


/* <DEPRECATED> */ .p-CommandPalette-search, /* </DEPRECATED> */
.lm-CommandPalette-search {
  flex: 0 0 auto;
}


/* <DEPRECATED> */ .p-CommandPalette-content, /* </DEPRECATED> */
.lm-CommandPalette-content {
  flex: 1 1 auto;
  margin: 0;
  padding: 0;
  min-height: 0;
  overflow: auto;
  list-style-type: none;
}


/* <DEPRECATED> */ .p-CommandPalette-header, /* </DEPRECATED> */
.lm-CommandPalette-header {
  overflow: hidden;
  white-space: nowrap;
  text-overflow: ellipsis;
}


/* <DEPRECATED> */ .p-CommandPalette-item, /* </DEPRECATED> */
.lm-CommandPalette-item {
  display: flex;
  flex-direction: row;
}


/* <DEPRECATED> */ .p-CommandPalette-itemIcon, /* </DEPRECATED> */
.lm-CommandPalette-itemIcon {
  flex: 0 0 auto;
}


/* <DEPRECATED> */ .p-CommandPalette-itemContent, /* </DEPRECATED> */
.lm-CommandPalette-itemContent {
  flex: 1 1 auto;
  overflow: hidden;
}


/* <DEPRECATED> */ .p-CommandPalette-itemShortcut, /* </DEPRECATED> */
.lm-CommandPalette-itemShortcut {
  flex: 0 0 auto;
}


/* <DEPRECATED> */ .p-CommandPalette-itemLabel, /* </DEPRECATED> */
.lm-CommandPalette-itemLabel {
  overflow: hidden;
  white-space: nowrap;
  text-overflow: ellipsis;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/


/* <DEPRECATED> */ .p-DockPanel, /* </DEPRECATED> */
.lm-DockPanel {
  z-index: 0;
}


/* <DEPRECATED> */ .p-DockPanel-widget, /* </DEPRECATED> */
.lm-DockPanel-widget {
  z-index: 0;
}


/* <DEPRECATED> */ .p-DockPanel-tabBar, /* </DEPRECATED> */
.lm-DockPanel-tabBar {
  z-index: 1;
}


/* <DEPRECATED> */ .p-DockPanel-handle, /* </DEPRECATED> */
.lm-DockPanel-handle {
  z-index: 2;
}


/* <DEPRECATED> */ .p-DockPanel-handle.p-mod-hidden, /* </DEPRECATED> */
.lm-DockPanel-handle.lm-mod-hidden {
  display: none !important;
}


/* <DEPRECATED> */ .p-DockPanel-handle:after, /* </DEPRECATED> */
.lm-DockPanel-handle:after {
  position: absolute;
  top: 0;
  left: 0;
  width: 100%;
  height: 100%;
  content: '';
}


/* <DEPRECATED> */
.p-DockPanel-handle[data-orientation='horizontal'],
/* </DEPRECATED> */
.lm-DockPanel-handle[data-orientation='horizontal'] {
  cursor: ew-resize;
}


/* <DEPRECATED> */
.p-DockPanel-handle[data-orientation='vertical'],
/* </DEPRECATED> */
.lm-DockPanel-handle[data-orientation='vertical'] {
  cursor: ns-resize;
}


/* <DEPRECATED> */
.p-DockPanel-handle[data-orientation='horizontal']:after,
/* </DEPRECATED> */
.lm-DockPanel-handle[data-orientation='horizontal']:after {
  left: 50%;
  min-width: 8px;
  transform: translateX(-50%);
}


/* <DEPRECATED> */
.p-DockPanel-handle[data-orientation='vertical']:after,
/* </DEPRECATED> */
.lm-DockPanel-handle[data-orientation='vertical']:after {
  top: 50%;
  min-height: 8px;
  transform: translateY(-50%);
}


/* <DEPRECATED> */ .p-DockPanel-overlay, /* </DEPRECATED> */
.lm-DockPanel-overlay {
  z-index: 3;
  box-sizing: border-box;
  pointer-events: none;
}


/* <DEPRECATED> */ .p-DockPanel-overlay.p-mod-hidden, /* </DEPRECATED> */
.lm-DockPanel-overlay.lm-mod-hidden {
  display: none !important;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/


/* <DEPRECATED> */ .p-Menu, /* </DEPRECATED> */
.lm-Menu {
  z-index: 10000;
  position: absolute;
  white-space: nowrap;
  overflow-x: hidden;
  overflow-y: auto;
  outline: none;
  -webkit-user-select: none;
  -moz-user-select: none;
  -ms-user-select: none;
  user-select: none;
}


/* <DEPRECATED> */ .p-Menu-content, /* </DEPRECATED> */
.lm-Menu-content {
  margin: 0;
  padding: 0;
  display: table;
  list-style-type: none;
}


/* <DEPRECATED> */ .p-Menu-item, /* </DEPRECATED> */
.lm-Menu-item {
  display: table-row;
}


/* <DEPRECATED> */
.p-Menu-item.p-mod-hidden,
.p-Menu-item.p-mod-collapsed,
/* </DEPRECATED> */
.lm-Menu-item.lm-mod-hidden,
.lm-Menu-item.lm-mod-collapsed {
  display: none !important;
}


/* <DEPRECATED> */
.p-Menu-itemIcon,
.p-Menu-itemSubmenuIcon,
/* </DEPRECATED> */
.lm-Menu-itemIcon,
.lm-Menu-itemSubmenuIcon {
  display: table-cell;
  text-align: center;
}


/* <DEPRECATED> */ .p-Menu-itemLabel, /* </DEPRECATED> */
.lm-Menu-itemLabel {
  display: table-cell;
  text-align: left;
}


/* <DEPRECATED> */ .p-Menu-itemShortcut, /* </DEPRECATED> */
.lm-Menu-itemShortcut {
  display: table-cell;
  text-align: right;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/


/* <DEPRECATED> */ .p-MenuBar, /* </DEPRECATED> */
.lm-MenuBar {
  outline: none;
  -webkit-user-select: none;
  -moz-user-select: none;
  -ms-user-select: none;
  user-select: none;
}


/* <DEPRECATED> */ .p-MenuBar-content, /* </DEPRECATED> */
.lm-MenuBar-content {
  margin: 0;
  padding: 0;
  display: flex;
  flex-direction: row;
  list-style-type: none;
}


/* <DEPRECATED> */ .p--MenuBar-item, /* </DEPRECATED> */
.lm-MenuBar-item {
  box-sizing: border-box;
}


/* <DEPRECATED> */
.p-MenuBar-itemIcon,
.p-MenuBar-itemLabel,
/* </DEPRECATED> */
.lm-MenuBar-itemIcon,
.lm-MenuBar-itemLabel {
  display: inline-block;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/


/* <DEPRECATED> */ .p-ScrollBar, /* </DEPRECATED> */
.lm-ScrollBar {
  display: flex;
  -webkit-user-select: none;
  -moz-user-select: none;
  -ms-user-select: none;
  user-select: none;
}


/* <DEPRECATED> */
.p-ScrollBar[data-orientation='horizontal'],
/* </DEPRECATED> */
.lm-ScrollBar[data-orientation='horizontal'] {
  flex-direction: row;
}


/* <DEPRECATED> */
.p-ScrollBar[data-orientation='vertical'],
/* </DEPRECATED> */
.lm-ScrollBar[data-orientation='vertical'] {
  flex-direction: column;
}


/* <DEPRECATED> */ .p-ScrollBar-button, /* </DEPRECATED> */
.lm-ScrollBar-button {
  box-sizing: border-box;
  flex: 0 0 auto;
}


/* <DEPRECATED> */ .p-ScrollBar-track, /* </DEPRECATED> */
.lm-ScrollBar-track {
  box-sizing: border-box;
  position: relative;
  overflow: hidden;
  flex: 1 1 auto;
}


/* <DEPRECATED> */ .p-ScrollBar-thumb, /* </DEPRECATED> */
.lm-ScrollBar-thumb {
  box-sizing: border-box;
  position: absolute;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/


/* <DEPRECATED> */ .p-SplitPanel-child, /* </DEPRECATED> */
.lm-SplitPanel-child {
  z-index: 0;
}


/* <DEPRECATED> */ .p-SplitPanel-handle, /* </DEPRECATED> */
.lm-SplitPanel-handle {
  z-index: 1;
}


/* <DEPRECATED> */ .p-SplitPanel-handle.p-mod-hidden, /* </DEPRECATED> */
.lm-SplitPanel-handle.lm-mod-hidden {
  display: none !important;
}


/* <DEPRECATED> */ .p-SplitPanel-handle:after, /* </DEPRECATED> */
.lm-SplitPanel-handle:after {
  position: absolute;
  top: 0;
  left: 0;
  width: 100%;
  height: 100%;
  content: '';
}


/* <DEPRECATED> */
.p-SplitPanel[data-orientation='horizontal'] > .p-SplitPanel-handle,
/* </DEPRECATED> */
.lm-SplitPanel[data-orientation='horizontal'] > .lm-SplitPanel-handle {
  cursor: ew-resize;
}


/* <DEPRECATED> */
.p-SplitPanel[data-orientation='vertical'] > .p-SplitPanel-handle,
/* </DEPRECATED> */
.lm-SplitPanel[data-orientation='vertical'] > .lm-SplitPanel-handle {
  cursor: ns-resize;
}


/* <DEPRECATED> */
.p-SplitPanel[data-orientation='horizontal'] > .p-SplitPanel-handle:after,
/* </DEPRECATED> */
.lm-SplitPanel[data-orientation='horizontal'] > .lm-SplitPanel-handle:after {
  left: 50%;
  min-width: 8px;
  transform: translateX(-50%);
}


/* <DEPRECATED> */
.p-SplitPanel[data-orientation='vertical'] > .p-SplitPanel-handle:after,
/* </DEPRECATED> */
.lm-SplitPanel[data-orientation='vertical'] > .lm-SplitPanel-handle:after {
  top: 50%;
  min-height: 8px;
  transform: translateY(-50%);
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/


/* <DEPRECATED> */ .p-TabBar, /* </DEPRECATED> */
.lm-TabBar {
  display: flex;
  -webkit-user-select: none;
  -moz-user-select: none;
  -ms-user-select: none;
  user-select: none;
}


/* <DEPRECATED> */ .p-TabBar[data-orientation='horizontal'], /* </DEPRECATED> */
.lm-TabBar[data-orientation='horizontal'] {
  flex-direction: row;
}


/* <DEPRECATED> */ .p-TabBar[data-orientation='vertical'], /* </DEPRECATED> */
.lm-TabBar[data-orientation='vertical'] {
  flex-direction: column;
}


/* <DEPRECATED> */ .p-TabBar-content, /* </DEPRECATED> */
.lm-TabBar-content {
  margin: 0;
  padding: 0;
  display: flex;
  flex: 1 1 auto;
  list-style-type: none;
}


/* <DEPRECATED> */
.p-TabBar[data-orientation='horizontal'] > .p-TabBar-content,
/* </DEPRECATED> */
.lm-TabBar[data-orientation='horizontal'] > .lm-TabBar-content {
  flex-direction: row;
}


/* <DEPRECATED> */
.p-TabBar[data-orientation='vertical'] > .p-TabBar-content,
/* </DEPRECATED> */
.lm-TabBar[data-orientation='vertical'] > .lm-TabBar-content {
  flex-direction: column;
}


/* <DEPRECATED> */ .p-TabBar-tab, /* </DEPRECATED> */
.lm-TabBar-tab {
  display: flex;
  flex-direction: row;
  box-sizing: border-box;
  overflow: hidden;
}


/* <DEPRECATED> */
.p-TabBar-tabIcon,
.p-TabBar-tabCloseIcon,
/* </DEPRECATED> */
.lm-TabBar-tabIcon,
.lm-TabBar-tabCloseIcon {
  flex: 0 0 auto;
}


/* <DEPRECATED> */ .p-TabBar-tabLabel, /* </DEPRECATED> */
.lm-TabBar-tabLabel {
  flex: 1 1 auto;
  overflow: hidden;
  white-space: nowrap;
}


/* <DEPRECATED> */ .p-TabBar-tab.p-mod-hidden, /* </DEPRECATED> */
.lm-TabBar-tab.lm-mod-hidden {
  display: none !important;
}


/* <DEPRECATED> */ .p-TabBar.p-mod-dragging .p-TabBar-tab, /* </DEPRECATED> */
.lm-TabBar.lm-mod-dragging .lm-TabBar-tab {
  position: relative;
}


/* <DEPRECATED> */
.p-TabBar.p-mod-dragging[data-orientation='horizontal'] .p-TabBar-tab,
/* </DEPRECATED> */
.lm-TabBar.lm-mod-dragging[data-orientation='horizontal'] .lm-TabBar-tab {
  left: 0;
  transition: left 150ms ease;
}


/* <DEPRECATED> */
.p-TabBar.p-mod-dragging[data-orientation='vertical'] .p-TabBar-tab,
/* </DEPRECATED> */
.lm-TabBar.lm-mod-dragging[data-orientation='vertical'] .lm-TabBar-tab {
  top: 0;
  transition: top 150ms ease;
}


/* <DEPRECATED> */
.p-TabBar.p-mod-dragging .p-TabBar-tab.p-mod-dragging
/* </DEPRECATED> */
.lm-TabBar.lm-mod-dragging .lm-TabBar-tab.lm-mod-dragging {
  transition: none;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/


/* <DEPRECATED> */ .p-TabPanel-tabBar, /* </DEPRECATED> */
.lm-TabPanel-tabBar {
  z-index: 1;
}


/* <DEPRECATED> */ .p-TabPanel-stackedPanel, /* </DEPRECATED> */
.lm-TabPanel-stackedPanel {
  z-index: 0;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/

@charset "UTF-8";
/*!

Copyright 2015-present Palantir Technologies, Inc. All rights reserved.
Licensed under the Apache License, Version 2.0.

*/
html{
  -webkit-box-sizing:border-box;
          box-sizing:border-box; }

*,
*::before,
*::after{
  -webkit-box-sizing:inherit;
          box-sizing:inherit; }

body{
  text-transform:none;
  line-height:1.28581;
  letter-spacing:0;
  font-size:14px;
  font-weight:400;
  color:#182026;
  font-family:-apple-system, "BlinkMacSystemFont", "Segoe UI", "Roboto", "Oxygen", "Ubuntu", "Cantarell", "Open Sans", "Helvetica Neue", "Icons16", sans-serif; }

p{
  margin-top:0;
  margin-bottom:10px; }

small{
  font-size:12px; }

strong{
  font-weight:600; }

::-moz-selection{
  background:rgba(125, 188, 255, 0.6); }

::selection{
  background:rgba(125, 188, 255, 0.6); }
.bp3-heading{
  color:#182026;
  font-weight:600;
  margin:0 0 10px;
  padding:0; }
  .bp3-dark .bp3-heading{
    color:#f5f8fa; }

h1.bp3-heading, .bp3-running-text h1{
  line-height:40px;
  font-size:36px; }

h2.bp3-heading, .bp3-running-text h2{
  line-height:32px;
  font-size:28px; }

h3.bp3-heading, .bp3-running-text h3{
  line-height:25px;
  font-size:22px; }

h4.bp3-heading, .bp3-running-text h4{
  line-height:21px;
  font-size:18px; }

h5.bp3-heading, .bp3-running-text h5{
  line-height:19px;
  font-size:16px; }

h6.bp3-heading, .bp3-running-text h6{
  line-height:16px;
  font-size:14px; }
.bp3-ui-text{
  text-transform:none;
  line-height:1.28581;
  letter-spacing:0;
  font-size:14px;
  font-weight:400; }

.bp3-monospace-text{
  text-transform:none;
  font-family:monospace; }

.bp3-text-muted{
  color:#5c7080; }
  .bp3-dark .bp3-text-muted{
    color:#a7b6c2; }

.bp3-text-disabled{
  color:rgba(92, 112, 128, 0.6); }
  .bp3-dark .bp3-text-disabled{
    color:rgba(167, 182, 194, 0.6); }

.bp3-text-overflow-ellipsis{
  overflow:hidden;
  text-overflow:ellipsis;
  white-space:nowrap;
  word-wrap:normal; }
.bp3-running-text{
  line-height:1.5;
  font-size:14px; }
  .bp3-running-text h1{
    color:#182026;
    font-weight:600;
    margin-top:40px;
    margin-bottom:20px; }
    .bp3-dark .bp3-running-text h1{
      color:#f5f8fa; }
  .bp3-running-text h2{
    color:#182026;
    font-weight:600;
    margin-top:40px;
    margin-bottom:20px; }
    .bp3-dark .bp3-running-text h2{
      color:#f5f8fa; }
  .bp3-running-text h3{
    color:#182026;
    font-weight:600;
    margin-top:40px;
    margin-bottom:20px; }
    .bp3-dark .bp3-running-text h3{
      color:#f5f8fa; }
  .bp3-running-text h4{
    color:#182026;
    font-weight:600;
    margin-top:40px;
    margin-bottom:20px; }
    .bp3-dark .bp3-running-text h4{
      color:#f5f8fa; }
  .bp3-running-text h5{
    color:#182026;
    font-weight:600;
    margin-top:40px;
    margin-bottom:20px; }
    .bp3-dark .bp3-running-text h5{
      color:#f5f8fa; }
  .bp3-running-text h6{
    color:#182026;
    font-weight:600;
    margin-top:40px;
    margin-bottom:20px; }
    .bp3-dark .bp3-running-text h6{
      color:#f5f8fa; }
  .bp3-running-text hr{
    margin:20px 0;
    border:none;
    border-bottom:1px solid rgba(16, 22, 26, 0.15); }
    .bp3-dark .bp3-running-text hr{
      border-color:rgba(255, 255, 255, 0.15); }
  .bp3-running-text p{
    margin:0 0 10px;
    padding:0; }

.bp3-text-large{
  font-size:16px; }

.bp3-text-small{
  font-size:12px; }
a{
  text-decoration:none;
  color:#106ba3; }
  a:hover{
    cursor:pointer;
    text-decoration:underline;
    color:#106ba3; }
  a .bp3-icon, a .bp3-icon-standard, a .bp3-icon-large{
    color:inherit; }
  a code,
  .bp3-dark a code{
    color:inherit; }
  .bp3-dark a,
  .bp3-dark a:hover{
    color:#48aff0; }
    .bp3-dark a .bp3-icon, .bp3-dark a .bp3-icon-standard, .bp3-dark a .bp3-icon-large,
    .bp3-dark a:hover .bp3-icon,
    .bp3-dark a:hover .bp3-icon-standard,
    .bp3-dark a:hover .bp3-icon-large{
      color:inherit; }
.bp3-running-text code, .bp3-code{
  text-transform:none;
  font-family:monospace;
  border-radius:3px;
  -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2);
          box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2);
  background:rgba(255, 255, 255, 0.7);
  padding:2px 5px;
  color:#5c7080;
  font-size:smaller; }
  .bp3-dark .bp3-running-text code, .bp3-running-text .bp3-dark code, .bp3-dark .bp3-code{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4);
    background:rgba(16, 22, 26, 0.3);
    color:#a7b6c2; }
  .bp3-running-text a > code, a > .bp3-code{
    color:#137cbd; }
    .bp3-dark .bp3-running-text a > code, .bp3-running-text .bp3-dark a > code, .bp3-dark a > .bp3-code{
      color:inherit; }

.bp3-running-text pre, .bp3-code-block{
  text-transform:none;
  font-family:monospace;
  display:block;
  margin:10px 0;
  border-radius:3px;
  -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.15);
          box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.15);
  background:rgba(255, 255, 255, 0.7);
  padding:13px 15px 12px;
  line-height:1.4;
  color:#182026;
  font-size:13px;
  word-break:break-all;
  word-wrap:break-word; }
  .bp3-dark .bp3-running-text pre, .bp3-running-text .bp3-dark pre, .bp3-dark .bp3-code-block{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4);
    background:rgba(16, 22, 26, 0.3);
    color:#f5f8fa; }
  .bp3-running-text pre > code, .bp3-code-block > code{
    -webkit-box-shadow:none;
            box-shadow:none;
    background:none;
    padding:0;
    color:inherit;
    font-size:inherit; }

.bp3-running-text kbd, .bp3-key{
  display:-webkit-inline-box;
  display:-ms-inline-flexbox;
  display:inline-flex;
  -webkit-box-align:center;
      -ms-flex-align:center;
          align-items:center;
  -webkit-box-pack:center;
      -ms-flex-pack:center;
          justify-content:center;
  border-radius:3px;
  -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.2);
          box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.2);
  background:#ffffff;
  min-width:24px;
  height:24px;
  padding:3px 6px;
  vertical-align:middle;
  line-height:24px;
  color:#5c7080;
  font-family:inherit;
  font-size:12px; }
  .bp3-running-text kbd .bp3-icon, .bp3-key .bp3-icon, .bp3-running-text kbd .bp3-icon-standard, .bp3-key .bp3-icon-standard, .bp3-running-text kbd .bp3-icon-large, .bp3-key .bp3-icon-large{
    margin-right:5px; }
  .bp3-dark .bp3-running-text kbd, .bp3-running-text .bp3-dark kbd, .bp3-dark .bp3-key{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.4);
    background:#394b59;
    color:#a7b6c2; }
.bp3-running-text blockquote, .bp3-blockquote{
  margin:0 0 10px;
  border-left:solid 4px rgba(167, 182, 194, 0.5);
  padding:0 20px; }
  .bp3-dark .bp3-running-text blockquote, .bp3-running-text .bp3-dark blockquote, .bp3-dark .bp3-blockquote{
    border-color:rgba(115, 134, 148, 0.5); }
.bp3-running-text ul,
.bp3-running-text ol, .bp3-list{
  margin:10px 0;
  padding-left:30px; }
  .bp3-running-text ul li:not(:last-child), .bp3-running-text ol li:not(:last-child), .bp3-list li:not(:last-child){
    margin-bottom:5px; }
  .bp3-running-text ul ol, .bp3-running-text ol ol, .bp3-list ol,
  .bp3-running-text ul ul,
  .bp3-running-text ol ul,
  .bp3-list ul{
    margin-top:5px; }

.bp3-list-unstyled{
  margin:0;
  padding:0;
  list-style:none; }
  .bp3-list-unstyled li{
    padding:0; }
.bp3-rtl{
  text-align:right; }

.bp3-dark{
  color:#f5f8fa; }

:focus{
  outline:rgba(19, 124, 189, 0.6) auto 2px;
  outline-offset:2px;
  -moz-outline-radius:6px; }

.bp3-focus-disabled :focus{
  outline:none !important; }
  .bp3-focus-disabled :focus ~ .bp3-control-indicator{
    outline:none !important; }

.bp3-alert{
  max-width:400px;
  padding:20px; }

.bp3-alert-body{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex; }
  .bp3-alert-body .bp3-icon{
    margin-top:0;
    margin-right:20px;
    font-size:40px; }

.bp3-alert-footer{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -webkit-box-orient:horizontal;
  -webkit-box-direction:reverse;
      -ms-flex-direction:row-reverse;
          flex-direction:row-reverse;
  margin-top:10px; }
  .bp3-alert-footer .bp3-button{
    margin-left:10px; }
.bp3-breadcrumbs{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -ms-flex-wrap:wrap;
      flex-wrap:wrap;
  -webkit-box-align:center;
      -ms-flex-align:center;
          align-items:center;
  margin:0;
  cursor:default;
  height:30px;
  padding:0;
  list-style:none; }
  .bp3-breadcrumbs > li{
    display:-webkit-box;
    display:-ms-flexbox;
    display:flex;
    -webkit-box-align:center;
        -ms-flex-align:center;
            align-items:center; }
    .bp3-breadcrumbs > li::after{
      display:block;
      margin:0 5px;
      background:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill-rule='evenodd' clip-rule='evenodd' d='M10.71 7.29l-4-4a1.003 1.003 0 0 0-1.42 1.42L8.59 8 5.3 11.29c-.19.18-.3.43-.3.71a1.003 1.003 0 0 0 1.71.71l4-4c.18-.18.29-.43.29-.71 0-.28-.11-.53-.29-.71z' fill='%235C7080'/%3e%3c/svg%3e");
      width:16px;
      height:16px;
      content:""; }
    .bp3-breadcrumbs > li:last-of-type::after{
      display:none; }

.bp3-breadcrumb,
.bp3-breadcrumb-current,
.bp3-breadcrumbs-collapsed{
  display:-webkit-inline-box;
  display:-ms-inline-flexbox;
  display:inline-flex;
  -webkit-box-align:center;
      -ms-flex-align:center;
          align-items:center;
  font-size:16px; }

.bp3-breadcrumb,
.bp3-breadcrumbs-collapsed{
  color:#5c7080; }

.bp3-breadcrumb:hover{
  text-decoration:none; }

.bp3-breadcrumb.bp3-disabled{
  cursor:not-allowed;
  color:rgba(92, 112, 128, 0.6); }

.bp3-breadcrumb .bp3-icon{
  margin-right:5px; }

.bp3-breadcrumb-current{
  color:inherit;
  font-weight:600; }
  .bp3-breadcrumb-current .bp3-input{
    vertical-align:baseline;
    font-size:inherit;
    font-weight:inherit; }

.bp3-breadcrumbs-collapsed{
  margin-right:2px;
  border:none;
  border-radius:3px;
  background:#ced9e0;
  cursor:pointer;
  padding:1px 5px;
  vertical-align:text-bottom; }
  .bp3-breadcrumbs-collapsed::before{
    display:block;
    background:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cg fill='%235C7080'%3e%3ccircle cx='2' cy='8.03' r='2'/%3e%3ccircle cx='14' cy='8.03' r='2'/%3e%3ccircle cx='8' cy='8.03' r='2'/%3e%3c/g%3e%3c/svg%3e") center no-repeat;
    width:16px;
    height:16px;
    content:""; }
  .bp3-breadcrumbs-collapsed:hover{
    background:#bfccd6;
    text-decoration:none;
    color:#182026; }

.bp3-dark .bp3-breadcrumb,
.bp3-dark .bp3-breadcrumbs-collapsed{
  color:#a7b6c2; }

.bp3-dark .bp3-breadcrumbs > li::after{
  color:#a7b6c2; }

.bp3-dark .bp3-breadcrumb.bp3-disabled{
  color:rgba(167, 182, 194, 0.6); }

.bp3-dark .bp3-breadcrumb-current{
  color:#f5f8fa; }

.bp3-dark .bp3-breadcrumbs-collapsed{
  background:rgba(16, 22, 26, 0.4); }
  .bp3-dark .bp3-breadcrumbs-collapsed:hover{
    background:rgba(16, 22, 26, 0.6);
    color:#f5f8fa; }
.bp3-button{
  display:-webkit-inline-box;
  display:-ms-inline-flexbox;
  display:inline-flex;
  -webkit-box-orient:horizontal;
  -webkit-box-direction:normal;
      -ms-flex-direction:row;
          flex-direction:row;
  -webkit-box-align:center;
      -ms-flex-align:center;
          align-items:center;
  -webkit-box-pack:center;
      -ms-flex-pack:center;
          justify-content:center;
  border:none;
  border-radius:3px;
  cursor:pointer;
  padding:5px 10px;
  vertical-align:middle;
  text-align:left;
  font-size:14px;
  min-width:30px;
  min-height:30px; }
  .bp3-button > *{
    -webkit-box-flex:0;
        -ms-flex-positive:0;
            flex-grow:0;
    -ms-flex-negative:0;
        flex-shrink:0; }
  .bp3-button > .bp3-fill{
    -webkit-box-flex:1;
        -ms-flex-positive:1;
            flex-grow:1;
    -ms-flex-negative:1;
        flex-shrink:1; }
  .bp3-button::before,
  .bp3-button > *{
    margin-right:7px; }
  .bp3-button:empty::before,
  .bp3-button > :last-child{
    margin-right:0; }
  .bp3-button:empty{
    padding:0 !important; }
  .bp3-button:disabled, .bp3-button.bp3-disabled{
    cursor:not-allowed; }
  .bp3-button.bp3-fill{
    display:-webkit-box;
    display:-ms-flexbox;
    display:flex;
    width:100%; }
  .bp3-button.bp3-align-right,
  .bp3-align-right .bp3-button{
    text-align:right; }
  .bp3-button.bp3-align-left,
  .bp3-align-left .bp3-button{
    text-align:left; }
  .bp3-button:not([class*="bp3-intent-"]){
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
    background-color:#f5f8fa;
    background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.8)), to(rgba(255, 255, 255, 0)));
    background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.8), rgba(255, 255, 255, 0));
    color:#182026; }
    .bp3-button:not([class*="bp3-intent-"]):hover{
      -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
              box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
      background-clip:padding-box;
      background-color:#ebf1f5; }
    .bp3-button:not([class*="bp3-intent-"]):active, .bp3-button:not([class*="bp3-intent-"]).bp3-active{
      -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2);
              box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2);
      background-color:#d8e1e8;
      background-image:none; }
    .bp3-button:not([class*="bp3-intent-"]):disabled, .bp3-button:not([class*="bp3-intent-"]).bp3-disabled{
      outline:none;
      -webkit-box-shadow:none;
              box-shadow:none;
      background-color:rgba(206, 217, 224, 0.5);
      background-image:none;
      cursor:not-allowed;
      color:rgba(92, 112, 128, 0.6); }
      .bp3-button:not([class*="bp3-intent-"]):disabled.bp3-active, .bp3-button:not([class*="bp3-intent-"]):disabled.bp3-active:hover, .bp3-button:not([class*="bp3-intent-"]).bp3-disabled.bp3-active, .bp3-button:not([class*="bp3-intent-"]).bp3-disabled.bp3-active:hover{
        background:rgba(206, 217, 224, 0.7); }
  .bp3-button.bp3-intent-primary{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
    background-color:#137cbd;
    background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.1)), to(rgba(255, 255, 255, 0)));
    background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.1), rgba(255, 255, 255, 0));
    color:#ffffff; }
    .bp3-button.bp3-intent-primary:hover, .bp3-button.bp3-intent-primary:active, .bp3-button.bp3-intent-primary.bp3-active{
      color:#ffffff; }
    .bp3-button.bp3-intent-primary:hover{
      -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
              box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
      background-color:#106ba3; }
    .bp3-button.bp3-intent-primary:active, .bp3-button.bp3-intent-primary.bp3-active{
      -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2);
              box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2);
      background-color:#0e5a8a;
      background-image:none; }
    .bp3-button.bp3-intent-primary:disabled, .bp3-button.bp3-intent-primary.bp3-disabled{
      border-color:transparent;
      -webkit-box-shadow:none;
              box-shadow:none;
      background-color:rgba(19, 124, 189, 0.5);
      background-image:none;
      color:rgba(255, 255, 255, 0.6); }
  .bp3-button.bp3-intent-success{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
    background-color:#0f9960;
    background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.1)), to(rgba(255, 255, 255, 0)));
    background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.1), rgba(255, 255, 255, 0));
    color:#ffffff; }
    .bp3-button.bp3-intent-success:hover, .bp3-button.bp3-intent-success:active, .bp3-button.bp3-intent-success.bp3-active{
      color:#ffffff; }
    .bp3-button.bp3-intent-success:hover{
      -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
              box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
      background-color:#0d8050; }
    .bp3-button.bp3-intent-success:active, .bp3-button.bp3-intent-success.bp3-active{
      -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2);
              box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2);
      background-color:#0a6640;
      background-image:none; }
    .bp3-button.bp3-intent-success:disabled, .bp3-button.bp3-intent-success.bp3-disabled{
      border-color:transparent;
      -webkit-box-shadow:none;
              box-shadow:none;
      background-color:rgba(15, 153, 96, 0.5);
      background-image:none;
      color:rgba(255, 255, 255, 0.6); }
  .bp3-button.bp3-intent-warning{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
    background-color:#d9822b;
    background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.1)), to(rgba(255, 255, 255, 0)));
    background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.1), rgba(255, 255, 255, 0));
    color:#ffffff; }
    .bp3-button.bp3-intent-warning:hover, .bp3-button.bp3-intent-warning:active, .bp3-button.bp3-intent-warning.bp3-active{
      color:#ffffff; }
    .bp3-button.bp3-intent-warning:hover{
      -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
              box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
      background-color:#bf7326; }
    .bp3-button.bp3-intent-warning:active, .bp3-button.bp3-intent-warning.bp3-active{
      -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2);
              box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2);
      background-color:#a66321;
      background-image:none; }
    .bp3-button.bp3-intent-warning:disabled, .bp3-button.bp3-intent-warning.bp3-disabled{
      border-color:transparent;
      -webkit-box-shadow:none;
              box-shadow:none;
      background-color:rgba(217, 130, 43, 0.5);
      background-image:none;
      color:rgba(255, 255, 255, 0.6); }
  .bp3-button.bp3-intent-danger{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
    background-color:#db3737;
    background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.1)), to(rgba(255, 255, 255, 0)));
    background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.1), rgba(255, 255, 255, 0));
    color:#ffffff; }
    .bp3-button.bp3-intent-danger:hover, .bp3-button.bp3-intent-danger:active, .bp3-button.bp3-intent-danger.bp3-active{
      color:#ffffff; }
    .bp3-button.bp3-intent-danger:hover{
      -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
              box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
      background-color:#c23030; }
    .bp3-button.bp3-intent-danger:active, .bp3-button.bp3-intent-danger.bp3-active{
      -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2);
              box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2);
      background-color:#a82a2a;
      background-image:none; }
    .bp3-button.bp3-intent-danger:disabled, .bp3-button.bp3-intent-danger.bp3-disabled{
      border-color:transparent;
      -webkit-box-shadow:none;
              box-shadow:none;
      background-color:rgba(219, 55, 55, 0.5);
      background-image:none;
      color:rgba(255, 255, 255, 0.6); }
  .bp3-button[class*="bp3-intent-"] .bp3-button-spinner .bp3-spinner-head{
    stroke:#ffffff; }
  .bp3-button.bp3-large,
  .bp3-large .bp3-button{
    min-width:40px;
    min-height:40px;
    padding:5px 15px;
    font-size:16px; }
    .bp3-button.bp3-large::before,
    .bp3-button.bp3-large > *,
    .bp3-large .bp3-button::before,
    .bp3-large .bp3-button > *{
      margin-right:10px; }
    .bp3-button.bp3-large:empty::before,
    .bp3-button.bp3-large > :last-child,
    .bp3-large .bp3-button:empty::before,
    .bp3-large .bp3-button > :last-child{
      margin-right:0; }
  .bp3-button.bp3-small,
  .bp3-small .bp3-button{
    min-width:24px;
    min-height:24px;
    padding:0 7px; }
  .bp3-button.bp3-loading{
    position:relative; }
    .bp3-button.bp3-loading[class*="bp3-icon-"]::before{
      visibility:hidden; }
    .bp3-button.bp3-loading .bp3-button-spinner{
      position:absolute;
      margin:0; }
    .bp3-button.bp3-loading > :not(.bp3-button-spinner){
      visibility:hidden; }
  .bp3-button[class*="bp3-icon-"]::before{
    line-height:1;
    font-family:"Icons16", sans-serif;
    font-size:16px;
    font-weight:400;
    font-style:normal;
    -moz-osx-font-smoothing:grayscale;
    -webkit-font-smoothing:antialiased;
    color:#5c7080; }
  .bp3-button .bp3-icon, .bp3-button .bp3-icon-standard, .bp3-button .bp3-icon-large{
    color:#5c7080; }
    .bp3-button .bp3-icon.bp3-align-right, .bp3-button .bp3-icon-standard.bp3-align-right, .bp3-button .bp3-icon-large.bp3-align-right{
      margin-left:7px; }
  .bp3-button .bp3-icon:first-child:last-child,
  .bp3-button .bp3-spinner + .bp3-icon:last-child{
    margin:0 -7px; }
  .bp3-dark .bp3-button:not([class*="bp3-intent-"]){
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
    background-color:#394b59;
    background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.05)), to(rgba(255, 255, 255, 0)));
    background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.05), rgba(255, 255, 255, 0));
    color:#f5f8fa; }
    .bp3-dark .bp3-button:not([class*="bp3-intent-"]):hover, .bp3-dark .bp3-button:not([class*="bp3-intent-"]):active, .bp3-dark .bp3-button:not([class*="bp3-intent-"]).bp3-active{
      color:#f5f8fa; }
    .bp3-dark .bp3-button:not([class*="bp3-intent-"]):hover{
      -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
              box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
      background-color:#30404d; }
    .bp3-dark .bp3-button:not([class*="bp3-intent-"]):active, .bp3-dark .bp3-button:not([class*="bp3-intent-"]).bp3-active{
      -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2);
              box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2);
      background-color:#202b33;
      background-image:none; }
    .bp3-dark .bp3-button:not([class*="bp3-intent-"]):disabled, .bp3-dark .bp3-button:not([class*="bp3-intent-"]).bp3-disabled{
      -webkit-box-shadow:none;
              box-shadow:none;
      background-color:rgba(57, 75, 89, 0.5);
      background-image:none;
      color:rgba(167, 182, 194, 0.6); }
      .bp3-dark .bp3-button:not([class*="bp3-intent-"]):disabled.bp3-active, .bp3-dark .bp3-button:not([class*="bp3-intent-"]).bp3-disabled.bp3-active{
        background:rgba(57, 75, 89, 0.7); }
    .bp3-dark .bp3-button:not([class*="bp3-intent-"]) .bp3-button-spinner .bp3-spinner-head{
      background:rgba(16, 22, 26, 0.5);
      stroke:#8a9ba8; }
    .bp3-dark .bp3-button:not([class*="bp3-intent-"])[class*="bp3-icon-"]::before{
      color:#a7b6c2; }
    .bp3-dark .bp3-button:not([class*="bp3-intent-"]) .bp3-icon, .bp3-dark .bp3-button:not([class*="bp3-intent-"]) .bp3-icon-standard, .bp3-dark .bp3-button:not([class*="bp3-intent-"]) .bp3-icon-large{
      color:#a7b6c2; }
  .bp3-dark .bp3-button[class*="bp3-intent-"]{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); }
    .bp3-dark .bp3-button[class*="bp3-intent-"]:hover{
      -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
              box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); }
    .bp3-dark .bp3-button[class*="bp3-intent-"]:active, .bp3-dark .bp3-button[class*="bp3-intent-"].bp3-active{
      -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2);
              box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2); }
    .bp3-dark .bp3-button[class*="bp3-intent-"]:disabled, .bp3-dark .bp3-button[class*="bp3-intent-"].bp3-disabled{
      -webkit-box-shadow:none;
              box-shadow:none;
      background-image:none;
      color:rgba(255, 255, 255, 0.3); }
    .bp3-dark .bp3-button[class*="bp3-intent-"] .bp3-button-spinner .bp3-spinner-head{
      stroke:#8a9ba8; }
  .bp3-button:disabled::before,
  .bp3-button:disabled .bp3-icon, .bp3-button:disabled .bp3-icon-standard, .bp3-button:disabled .bp3-icon-large, .bp3-button.bp3-disabled::before,
  .bp3-button.bp3-disabled .bp3-icon, .bp3-button.bp3-disabled .bp3-icon-standard, .bp3-button.bp3-disabled .bp3-icon-large, .bp3-button[class*="bp3-intent-"]::before,
  .bp3-button[class*="bp3-intent-"] .bp3-icon, .bp3-button[class*="bp3-intent-"] .bp3-icon-standard, .bp3-button[class*="bp3-intent-"] .bp3-icon-large{
    color:inherit !important; }
  .bp3-button.bp3-minimal{
    -webkit-box-shadow:none;
            box-shadow:none;
    background:none; }
    .bp3-button.bp3-minimal:hover{
      -webkit-box-shadow:none;
              box-shadow:none;
      background:rgba(167, 182, 194, 0.3);
      text-decoration:none;
      color:#182026; }
    .bp3-button.bp3-minimal:active, .bp3-button.bp3-minimal.bp3-active{
      -webkit-box-shadow:none;
              box-shadow:none;
      background:rgba(115, 134, 148, 0.3);
      color:#182026; }
    .bp3-button.bp3-minimal:disabled, .bp3-button.bp3-minimal:disabled:hover, .bp3-button.bp3-minimal.bp3-disabled, .bp3-button.bp3-minimal.bp3-disabled:hover{
      background:none;
      cursor:not-allowed;
      color:rgba(92, 112, 128, 0.6); }
      .bp3-button.bp3-minimal:disabled.bp3-active, .bp3-button.bp3-minimal:disabled:hover.bp3-active, .bp3-button.bp3-minimal.bp3-disabled.bp3-active, .bp3-button.bp3-minimal.bp3-disabled:hover.bp3-active{
        background:rgba(115, 134, 148, 0.3); }
    .bp3-dark .bp3-button.bp3-minimal{
      -webkit-box-shadow:none;
              box-shadow:none;
      background:none;
      color:inherit; }
      .bp3-dark .bp3-button.bp3-minimal:hover, .bp3-dark .bp3-button.bp3-minimal:active, .bp3-dark .bp3-button.bp3-minimal.bp3-active{
        -webkit-box-shadow:none;
                box-shadow:none;
        background:none; }
      .bp3-dark .bp3-button.bp3-minimal:hover{
        background:rgba(138, 155, 168, 0.15); }
      .bp3-dark .bp3-button.bp3-minimal:active, .bp3-dark .bp3-button.bp3-minimal.bp3-active{
        background:rgba(138, 155, 168, 0.3);
        color:#f5f8fa; }
      .bp3-dark .bp3-button.bp3-minimal:disabled, .bp3-dark .bp3-button.bp3-minimal:disabled:hover, .bp3-dark .bp3-button.bp3-minimal.bp3-disabled, .bp3-dark .bp3-button.bp3-minimal.bp3-disabled:hover{
        background:none;
        cursor:not-allowed;
        color:rgba(167, 182, 194, 0.6); }
        .bp3-dark .bp3-button.bp3-minimal:disabled.bp3-active, .bp3-dark .bp3-button.bp3-minimal:disabled:hover.bp3-active, .bp3-dark .bp3-button.bp3-minimal.bp3-disabled.bp3-active, .bp3-dark .bp3-button.bp3-minimal.bp3-disabled:hover.bp3-active{
          background:rgba(138, 155, 168, 0.3); }
    .bp3-button.bp3-minimal.bp3-intent-primary{
      color:#106ba3; }
      .bp3-button.bp3-minimal.bp3-intent-primary:hover, .bp3-button.bp3-minimal.bp3-intent-primary:active, .bp3-button.bp3-minimal.bp3-intent-primary.bp3-active{
        -webkit-box-shadow:none;
                box-shadow:none;
        background:none;
        color:#106ba3; }
      .bp3-button.bp3-minimal.bp3-intent-primary:hover{
        background:rgba(19, 124, 189, 0.15);
        color:#106ba3; }
      .bp3-button.bp3-minimal.bp3-intent-primary:active, .bp3-button.bp3-minimal.bp3-intent-primary.bp3-active{
        background:rgba(19, 124, 189, 0.3);
        color:#106ba3; }
      .bp3-button.bp3-minimal.bp3-intent-primary:disabled, .bp3-button.bp3-minimal.bp3-intent-primary.bp3-disabled{
        background:none;
        color:rgba(16, 107, 163, 0.5); }
        .bp3-button.bp3-minimal.bp3-intent-primary:disabled.bp3-active, .bp3-button.bp3-minimal.bp3-intent-primary.bp3-disabled.bp3-active{
          background:rgba(19, 124, 189, 0.3); }
      .bp3-button.bp3-minimal.bp3-intent-primary .bp3-button-spinner .bp3-spinner-head{
        stroke:#106ba3; }
      .bp3-dark .bp3-button.bp3-minimal.bp3-intent-primary{
        color:#48aff0; }
        .bp3-dark .bp3-button.bp3-minimal.bp3-intent-primary:hover{
          background:rgba(19, 124, 189, 0.2);
          color:#48aff0; }
        .bp3-dark .bp3-button.bp3-minimal.bp3-intent-primary:active, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-primary.bp3-active{
          background:rgba(19, 124, 189, 0.3);
          color:#48aff0; }
        .bp3-dark .bp3-button.bp3-minimal.bp3-intent-primary:disabled, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-primary.bp3-disabled{
          background:none;
          color:rgba(72, 175, 240, 0.5); }
          .bp3-dark .bp3-button.bp3-minimal.bp3-intent-primary:disabled.bp3-active, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-primary.bp3-disabled.bp3-active{
            background:rgba(19, 124, 189, 0.3); }
    .bp3-button.bp3-minimal.bp3-intent-success{
      color:#0d8050; }
      .bp3-button.bp3-minimal.bp3-intent-success:hover, .bp3-button.bp3-minimal.bp3-intent-success:active, .bp3-button.bp3-minimal.bp3-intent-success.bp3-active{
        -webkit-box-shadow:none;
                box-shadow:none;
        background:none;
        color:#0d8050; }
      .bp3-button.bp3-minimal.bp3-intent-success:hover{
        background:rgba(15, 153, 96, 0.15);
        color:#0d8050; }
      .bp3-button.bp3-minimal.bp3-intent-success:active, .bp3-button.bp3-minimal.bp3-intent-success.bp3-active{
        background:rgba(15, 153, 96, 0.3);
        color:#0d8050; }
      .bp3-button.bp3-minimal.bp3-intent-success:disabled, .bp3-button.bp3-minimal.bp3-intent-success.bp3-disabled{
        background:none;
        color:rgba(13, 128, 80, 0.5); }
        .bp3-button.bp3-minimal.bp3-intent-success:disabled.bp3-active, .bp3-button.bp3-minimal.bp3-intent-success.bp3-disabled.bp3-active{
          background:rgba(15, 153, 96, 0.3); }
      .bp3-button.bp3-minimal.bp3-intent-success .bp3-button-spinner .bp3-spinner-head{
        stroke:#0d8050; }
      .bp3-dark .bp3-button.bp3-minimal.bp3-intent-success{
        color:#3dcc91; }
        .bp3-dark .bp3-button.bp3-minimal.bp3-intent-success:hover{
          background:rgba(15, 153, 96, 0.2);
          color:#3dcc91; }
        .bp3-dark .bp3-button.bp3-minimal.bp3-intent-success:active, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-success.bp3-active{
          background:rgba(15, 153, 96, 0.3);
          color:#3dcc91; }
        .bp3-dark .bp3-button.bp3-minimal.bp3-intent-success:disabled, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-success.bp3-disabled{
          background:none;
          color:rgba(61, 204, 145, 0.5); }
          .bp3-dark .bp3-button.bp3-minimal.bp3-intent-success:disabled.bp3-active, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-success.bp3-disabled.bp3-active{
            background:rgba(15, 153, 96, 0.3); }
    .bp3-button.bp3-minimal.bp3-intent-warning{
      color:#bf7326; }
      .bp3-button.bp3-minimal.bp3-intent-warning:hover, .bp3-button.bp3-minimal.bp3-intent-warning:active, .bp3-button.bp3-minimal.bp3-intent-warning.bp3-active{
        -webkit-box-shadow:none;
                box-shadow:none;
        background:none;
        color:#bf7326; }
      .bp3-button.bp3-minimal.bp3-intent-warning:hover{
        background:rgba(217, 130, 43, 0.15);
        color:#bf7326; }
      .bp3-button.bp3-minimal.bp3-intent-warning:active, .bp3-button.bp3-minimal.bp3-intent-warning.bp3-active{
        background:rgba(217, 130, 43, 0.3);
        color:#bf7326; }
      .bp3-button.bp3-minimal.bp3-intent-warning:disabled, .bp3-button.bp3-minimal.bp3-intent-warning.bp3-disabled{
        background:none;
        color:rgba(191, 115, 38, 0.5); }
        .bp3-button.bp3-minimal.bp3-intent-warning:disabled.bp3-active, .bp3-button.bp3-minimal.bp3-intent-warning.bp3-disabled.bp3-active{
          background:rgba(217, 130, 43, 0.3); }
      .bp3-button.bp3-minimal.bp3-intent-warning .bp3-button-spinner .bp3-spinner-head{
        stroke:#bf7326; }
      .bp3-dark .bp3-button.bp3-minimal.bp3-intent-warning{
        color:#ffb366; }
        .bp3-dark .bp3-button.bp3-minimal.bp3-intent-warning:hover{
          background:rgba(217, 130, 43, 0.2);
          color:#ffb366; }
        .bp3-dark .bp3-button.bp3-minimal.bp3-intent-warning:active, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-warning.bp3-active{
          background:rgba(217, 130, 43, 0.3);
          color:#ffb366; }
        .bp3-dark .bp3-button.bp3-minimal.bp3-intent-warning:disabled, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-warning.bp3-disabled{
          background:none;
          color:rgba(255, 179, 102, 0.5); }
          .bp3-dark .bp3-button.bp3-minimal.bp3-intent-warning:disabled.bp3-active, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-warning.bp3-disabled.bp3-active{
            background:rgba(217, 130, 43, 0.3); }
    .bp3-button.bp3-minimal.bp3-intent-danger{
      color:#c23030; }
      .bp3-button.bp3-minimal.bp3-intent-danger:hover, .bp3-button.bp3-minimal.bp3-intent-danger:active, .bp3-button.bp3-minimal.bp3-intent-danger.bp3-active{
        -webkit-box-shadow:none;
                box-shadow:none;
        background:none;
        color:#c23030; }
      .bp3-button.bp3-minimal.bp3-intent-danger:hover{
        background:rgba(219, 55, 55, 0.15);
        color:#c23030; }
      .bp3-button.bp3-minimal.bp3-intent-danger:active, .bp3-button.bp3-minimal.bp3-intent-danger.bp3-active{
        background:rgba(219, 55, 55, 0.3);
        color:#c23030; }
      .bp3-button.bp3-minimal.bp3-intent-danger:disabled, .bp3-button.bp3-minimal.bp3-intent-danger.bp3-disabled{
        background:none;
        color:rgba(194, 48, 48, 0.5); }
        .bp3-button.bp3-minimal.bp3-intent-danger:disabled.bp3-active, .bp3-button.bp3-minimal.bp3-intent-danger.bp3-disabled.bp3-active{
          background:rgba(219, 55, 55, 0.3); }
      .bp3-button.bp3-minimal.bp3-intent-danger .bp3-button-spinner .bp3-spinner-head{
        stroke:#c23030; }
      .bp3-dark .bp3-button.bp3-minimal.bp3-intent-danger{
        color:#ff7373; }
        .bp3-dark .bp3-button.bp3-minimal.bp3-intent-danger:hover{
          background:rgba(219, 55, 55, 0.2);
          color:#ff7373; }
        .bp3-dark .bp3-button.bp3-minimal.bp3-intent-danger:active, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-danger.bp3-active{
          background:rgba(219, 55, 55, 0.3);
          color:#ff7373; }
        .bp3-dark .bp3-button.bp3-minimal.bp3-intent-danger:disabled, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-danger.bp3-disabled{
          background:none;
          color:rgba(255, 115, 115, 0.5); }
          .bp3-dark .bp3-button.bp3-minimal.bp3-intent-danger:disabled.bp3-active, .bp3-dark .bp3-button.bp3-minimal.bp3-intent-danger.bp3-disabled.bp3-active{
            background:rgba(219, 55, 55, 0.3); }

a.bp3-button{
  text-align:center;
  text-decoration:none;
  -webkit-transition:none;
  transition:none; }
  a.bp3-button, a.bp3-button:hover, a.bp3-button:active{
    color:#182026; }
  a.bp3-button.bp3-disabled{
    color:rgba(92, 112, 128, 0.6); }

.bp3-button-text{
  -webkit-box-flex:0;
      -ms-flex:0 1 auto;
          flex:0 1 auto; }

.bp3-button.bp3-align-left .bp3-button-text, .bp3-button.bp3-align-right .bp3-button-text,
.bp3-button-group.bp3-align-left .bp3-button-text,
.bp3-button-group.bp3-align-right .bp3-button-text{
  -webkit-box-flex:1;
      -ms-flex:1 1 auto;
          flex:1 1 auto; }
.bp3-button-group{
  display:-webkit-inline-box;
  display:-ms-inline-flexbox;
  display:inline-flex; }
  .bp3-button-group .bp3-button{
    -webkit-box-flex:0;
        -ms-flex:0 0 auto;
            flex:0 0 auto;
    position:relative;
    z-index:4; }
    .bp3-button-group .bp3-button:focus{
      z-index:5; }
    .bp3-button-group .bp3-button:hover{
      z-index:6; }
    .bp3-button-group .bp3-button:active, .bp3-button-group .bp3-button.bp3-active{
      z-index:7; }
    .bp3-button-group .bp3-button:disabled, .bp3-button-group .bp3-button.bp3-disabled{
      z-index:3; }
    .bp3-button-group .bp3-button[class*="bp3-intent-"]{
      z-index:9; }
      .bp3-button-group .bp3-button[class*="bp3-intent-"]:focus{
        z-index:10; }
      .bp3-button-group .bp3-button[class*="bp3-intent-"]:hover{
        z-index:11; }
      .bp3-button-group .bp3-button[class*="bp3-intent-"]:active, .bp3-button-group .bp3-button[class*="bp3-intent-"].bp3-active{
        z-index:12; }
      .bp3-button-group .bp3-button[class*="bp3-intent-"]:disabled, .bp3-button-group .bp3-button[class*="bp3-intent-"].bp3-disabled{
        z-index:8; }
  .bp3-button-group:not(.bp3-minimal) > .bp3-popover-wrapper:not(:first-child) .bp3-button,
  .bp3-button-group:not(.bp3-minimal) > .bp3-button:not(:first-child){
    border-top-left-radius:0;
    border-bottom-left-radius:0; }
  .bp3-button-group:not(.bp3-minimal) > .bp3-popover-wrapper:not(:last-child) .bp3-button,
  .bp3-button-group:not(.bp3-minimal) > .bp3-button:not(:last-child){
    margin-right:-1px;
    border-top-right-radius:0;
    border-bottom-right-radius:0; }
  .bp3-button-group.bp3-minimal .bp3-button{
    -webkit-box-shadow:none;
            box-shadow:none;
    background:none; }
    .bp3-button-group.bp3-minimal .bp3-button:hover{
      -webkit-box-shadow:none;
              box-shadow:none;
      background:rgba(167, 182, 194, 0.3);
      text-decoration:none;
      color:#182026; }
    .bp3-button-group.bp3-minimal .bp3-button:active, .bp3-button-group.bp3-minimal .bp3-button.bp3-active{
      -webkit-box-shadow:none;
              box-shadow:none;
      background:rgba(115, 134, 148, 0.3);
      color:#182026; }
    .bp3-button-group.bp3-minimal .bp3-button:disabled, .bp3-button-group.bp3-minimal .bp3-button:disabled:hover, .bp3-button-group.bp3-minimal .bp3-button.bp3-disabled, .bp3-button-group.bp3-minimal .bp3-button.bp3-disabled:hover{
      background:none;
      cursor:not-allowed;
      color:rgba(92, 112, 128, 0.6); }
      .bp3-button-group.bp3-minimal .bp3-button:disabled.bp3-active, .bp3-button-group.bp3-minimal .bp3-button:disabled:hover.bp3-active, .bp3-button-group.bp3-minimal .bp3-button.bp3-disabled.bp3-active, .bp3-button-group.bp3-minimal .bp3-button.bp3-disabled:hover.bp3-active{
        background:rgba(115, 134, 148, 0.3); }
    .bp3-dark .bp3-button-group.bp3-minimal .bp3-button{
      -webkit-box-shadow:none;
              box-shadow:none;
      background:none;
      color:inherit; }
      .bp3-dark .bp3-button-group.bp3-minimal .bp3-button:hover, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button:active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-active{
        -webkit-box-shadow:none;
                box-shadow:none;
        background:none; }
      .bp3-dark .bp3-button-group.bp3-minimal .bp3-button:hover{
        background:rgba(138, 155, 168, 0.15); }
      .bp3-dark .bp3-button-group.bp3-minimal .bp3-button:active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-active{
        background:rgba(138, 155, 168, 0.3);
        color:#f5f8fa; }
      .bp3-dark .bp3-button-group.bp3-minimal .bp3-button:disabled, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button:disabled:hover, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-disabled, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-disabled:hover{
        background:none;
        cursor:not-allowed;
        color:rgba(167, 182, 194, 0.6); }
        .bp3-dark .bp3-button-group.bp3-minimal .bp3-button:disabled.bp3-active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button:disabled:hover.bp3-active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-disabled.bp3-active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-disabled:hover.bp3-active{
          background:rgba(138, 155, 168, 0.3); }
    .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary{
      color:#106ba3; }
      .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary:hover, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary:active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary.bp3-active{
        -webkit-box-shadow:none;
                box-shadow:none;
        background:none;
        color:#106ba3; }
      .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary:hover{
        background:rgba(19, 124, 189, 0.15);
        color:#106ba3; }
      .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary:active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary.bp3-active{
        background:rgba(19, 124, 189, 0.3);
        color:#106ba3; }
      .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary:disabled, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary.bp3-disabled{
        background:none;
        color:rgba(16, 107, 163, 0.5); }
        .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary:disabled.bp3-active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary.bp3-disabled.bp3-active{
          background:rgba(19, 124, 189, 0.3); }
      .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary .bp3-button-spinner .bp3-spinner-head{
        stroke:#106ba3; }
      .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary{
        color:#48aff0; }
        .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary:hover{
          background:rgba(19, 124, 189, 0.2);
          color:#48aff0; }
        .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary:active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary.bp3-active{
          background:rgba(19, 124, 189, 0.3);
          color:#48aff0; }
        .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary:disabled, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary.bp3-disabled{
          background:none;
          color:rgba(72, 175, 240, 0.5); }
          .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary:disabled.bp3-active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-primary.bp3-disabled.bp3-active{
            background:rgba(19, 124, 189, 0.3); }
    .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success{
      color:#0d8050; }
      .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success:hover, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success:active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success.bp3-active{
        -webkit-box-shadow:none;
                box-shadow:none;
        background:none;
        color:#0d8050; }
      .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success:hover{
        background:rgba(15, 153, 96, 0.15);
        color:#0d8050; }
      .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success:active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success.bp3-active{
        background:rgba(15, 153, 96, 0.3);
        color:#0d8050; }
      .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success:disabled, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success.bp3-disabled{
        background:none;
        color:rgba(13, 128, 80, 0.5); }
        .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success:disabled.bp3-active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success.bp3-disabled.bp3-active{
          background:rgba(15, 153, 96, 0.3); }
      .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success .bp3-button-spinner .bp3-spinner-head{
        stroke:#0d8050; }
      .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success{
        color:#3dcc91; }
        .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success:hover{
          background:rgba(15, 153, 96, 0.2);
          color:#3dcc91; }
        .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success:active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success.bp3-active{
          background:rgba(15, 153, 96, 0.3);
          color:#3dcc91; }
        .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success:disabled, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success.bp3-disabled{
          background:none;
          color:rgba(61, 204, 145, 0.5); }
          .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success:disabled.bp3-active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-success.bp3-disabled.bp3-active{
            background:rgba(15, 153, 96, 0.3); }
    .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning{
      color:#bf7326; }
      .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning:hover, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning:active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning.bp3-active{
        -webkit-box-shadow:none;
                box-shadow:none;
        background:none;
        color:#bf7326; }
      .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning:hover{
        background:rgba(217, 130, 43, 0.15);
        color:#bf7326; }
      .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning:active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning.bp3-active{
        background:rgba(217, 130, 43, 0.3);
        color:#bf7326; }
      .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning:disabled, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning.bp3-disabled{
        background:none;
        color:rgba(191, 115, 38, 0.5); }
        .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning:disabled.bp3-active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning.bp3-disabled.bp3-active{
          background:rgba(217, 130, 43, 0.3); }
      .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning .bp3-button-spinner .bp3-spinner-head{
        stroke:#bf7326; }
      .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning{
        color:#ffb366; }
        .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning:hover{
          background:rgba(217, 130, 43, 0.2);
          color:#ffb366; }
        .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning:active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning.bp3-active{
          background:rgba(217, 130, 43, 0.3);
          color:#ffb366; }
        .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning:disabled, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning.bp3-disabled{
          background:none;
          color:rgba(255, 179, 102, 0.5); }
          .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning:disabled.bp3-active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-warning.bp3-disabled.bp3-active{
            background:rgba(217, 130, 43, 0.3); }
    .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger{
      color:#c23030; }
      .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger:hover, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger:active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger.bp3-active{
        -webkit-box-shadow:none;
                box-shadow:none;
        background:none;
        color:#c23030; }
      .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger:hover{
        background:rgba(219, 55, 55, 0.15);
        color:#c23030; }
      .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger:active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger.bp3-active{
        background:rgba(219, 55, 55, 0.3);
        color:#c23030; }
      .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger:disabled, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger.bp3-disabled{
        background:none;
        color:rgba(194, 48, 48, 0.5); }
        .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger:disabled.bp3-active, .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger.bp3-disabled.bp3-active{
          background:rgba(219, 55, 55, 0.3); }
      .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger .bp3-button-spinner .bp3-spinner-head{
        stroke:#c23030; }
      .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger{
        color:#ff7373; }
        .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger:hover{
          background:rgba(219, 55, 55, 0.2);
          color:#ff7373; }
        .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger:active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger.bp3-active{
          background:rgba(219, 55, 55, 0.3);
          color:#ff7373; }
        .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger:disabled, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger.bp3-disabled{
          background:none;
          color:rgba(255, 115, 115, 0.5); }
          .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger:disabled.bp3-active, .bp3-dark .bp3-button-group.bp3-minimal .bp3-button.bp3-intent-danger.bp3-disabled.bp3-active{
            background:rgba(219, 55, 55, 0.3); }
  .bp3-button-group .bp3-popover-wrapper,
  .bp3-button-group .bp3-popover-target{
    display:-webkit-box;
    display:-ms-flexbox;
    display:flex;
    -webkit-box-flex:1;
        -ms-flex:1 1 auto;
            flex:1 1 auto; }
  .bp3-button-group.bp3-fill{
    display:-webkit-box;
    display:-ms-flexbox;
    display:flex;
    width:100%; }
  .bp3-button-group .bp3-button.bp3-fill,
  .bp3-button-group.bp3-fill .bp3-button:not(.bp3-fixed){
    -webkit-box-flex:1;
        -ms-flex:1 1 auto;
            flex:1 1 auto; }
  .bp3-button-group.bp3-vertical{
    -webkit-box-orient:vertical;
    -webkit-box-direction:normal;
        -ms-flex-direction:column;
            flex-direction:column;
    -webkit-box-align:stretch;
        -ms-flex-align:stretch;
            align-items:stretch;
    vertical-align:top; }
    .bp3-button-group.bp3-vertical.bp3-fill{
      width:unset;
      height:100%; }
    .bp3-button-group.bp3-vertical .bp3-button{
      margin-right:0 !important;
      width:100%; }
    .bp3-button-group.bp3-vertical:not(.bp3-minimal) > .bp3-popover-wrapper:first-child .bp3-button,
    .bp3-button-group.bp3-vertical:not(.bp3-minimal) > .bp3-button:first-child{
      border-radius:3px 3px 0 0; }
    .bp3-button-group.bp3-vertical:not(.bp3-minimal) > .bp3-popover-wrapper:last-child .bp3-button,
    .bp3-button-group.bp3-vertical:not(.bp3-minimal) > .bp3-button:last-child{
      border-radius:0 0 3px 3px; }
    .bp3-button-group.bp3-vertical:not(.bp3-minimal) > .bp3-popover-wrapper:not(:last-child) .bp3-button,
    .bp3-button-group.bp3-vertical:not(.bp3-minimal) > .bp3-button:not(:last-child){
      margin-bottom:-1px; }
  .bp3-button-group.bp3-align-left .bp3-button{
    text-align:left; }
  .bp3-dark .bp3-button-group:not(.bp3-minimal) > .bp3-popover-wrapper:not(:last-child) .bp3-button,
  .bp3-dark .bp3-button-group:not(.bp3-minimal) > .bp3-button:not(:last-child){
    margin-right:1px; }
  .bp3-dark .bp3-button-group.bp3-vertical > .bp3-popover-wrapper:not(:last-child) .bp3-button,
  .bp3-dark .bp3-button-group.bp3-vertical > .bp3-button:not(:last-child){
    margin-bottom:1px; }
.bp3-callout{
  line-height:1.5;
  font-size:14px;
  position:relative;
  border-radius:3px;
  background-color:rgba(138, 155, 168, 0.15);
  width:100%;
  padding:10px 12px 9px; }
  .bp3-callout[class*="bp3-icon-"]{
    padding-left:40px; }
    .bp3-callout[class*="bp3-icon-"]::before{
      line-height:1;
      font-family:"Icons20", sans-serif;
      font-size:20px;
      font-weight:400;
      font-style:normal;
      -moz-osx-font-smoothing:grayscale;
      -webkit-font-smoothing:antialiased;
      position:absolute;
      top:10px;
      left:10px;
      color:#5c7080; }
  .bp3-callout.bp3-callout-icon{
    padding-left:40px; }
    .bp3-callout.bp3-callout-icon > .bp3-icon:first-child{
      position:absolute;
      top:10px;
      left:10px;
      color:#5c7080; }
  .bp3-callout .bp3-heading{
    margin-top:0;
    margin-bottom:5px;
    line-height:20px; }
    .bp3-callout .bp3-heading:last-child{
      margin-bottom:0; }
  .bp3-dark .bp3-callout{
    background-color:rgba(138, 155, 168, 0.2); }
    .bp3-dark .bp3-callout[class*="bp3-icon-"]::before{
      color:#a7b6c2; }
  .bp3-callout.bp3-intent-primary{
    background-color:rgba(19, 124, 189, 0.15); }
    .bp3-callout.bp3-intent-primary[class*="bp3-icon-"]::before,
    .bp3-callout.bp3-intent-primary > .bp3-icon:first-child,
    .bp3-callout.bp3-intent-primary .bp3-heading{
      color:#106ba3; }
    .bp3-dark .bp3-callout.bp3-intent-primary{
      background-color:rgba(19, 124, 189, 0.25); }
      .bp3-dark .bp3-callout.bp3-intent-primary[class*="bp3-icon-"]::before,
      .bp3-dark .bp3-callout.bp3-intent-primary > .bp3-icon:first-child,
      .bp3-dark .bp3-callout.bp3-intent-primary .bp3-heading{
        color:#48aff0; }
  .bp3-callout.bp3-intent-success{
    background-color:rgba(15, 153, 96, 0.15); }
    .bp3-callout.bp3-intent-success[class*="bp3-icon-"]::before,
    .bp3-callout.bp3-intent-success > .bp3-icon:first-child,
    .bp3-callout.bp3-intent-success .bp3-heading{
      color:#0d8050; }
    .bp3-dark .bp3-callout.bp3-intent-success{
      background-color:rgba(15, 153, 96, 0.25); }
      .bp3-dark .bp3-callout.bp3-intent-success[class*="bp3-icon-"]::before,
      .bp3-dark .bp3-callout.bp3-intent-success > .bp3-icon:first-child,
      .bp3-dark .bp3-callout.bp3-intent-success .bp3-heading{
        color:#3dcc91; }
  .bp3-callout.bp3-intent-warning{
    background-color:rgba(217, 130, 43, 0.15); }
    .bp3-callout.bp3-intent-warning[class*="bp3-icon-"]::before,
    .bp3-callout.bp3-intent-warning > .bp3-icon:first-child,
    .bp3-callout.bp3-intent-warning .bp3-heading{
      color:#bf7326; }
    .bp3-dark .bp3-callout.bp3-intent-warning{
      background-color:rgba(217, 130, 43, 0.25); }
      .bp3-dark .bp3-callout.bp3-intent-warning[class*="bp3-icon-"]::before,
      .bp3-dark .bp3-callout.bp3-intent-warning > .bp3-icon:first-child,
      .bp3-dark .bp3-callout.bp3-intent-warning .bp3-heading{
        color:#ffb366; }
  .bp3-callout.bp3-intent-danger{
    background-color:rgba(219, 55, 55, 0.15); }
    .bp3-callout.bp3-intent-danger[class*="bp3-icon-"]::before,
    .bp3-callout.bp3-intent-danger > .bp3-icon:first-child,
    .bp3-callout.bp3-intent-danger .bp3-heading{
      color:#c23030; }
    .bp3-dark .bp3-callout.bp3-intent-danger{
      background-color:rgba(219, 55, 55, 0.25); }
      .bp3-dark .bp3-callout.bp3-intent-danger[class*="bp3-icon-"]::before,
      .bp3-dark .bp3-callout.bp3-intent-danger > .bp3-icon:first-child,
      .bp3-dark .bp3-callout.bp3-intent-danger .bp3-heading{
        color:#ff7373; }
  .bp3-running-text .bp3-callout{
    margin:20px 0; }
.bp3-card{
  border-radius:3px;
  -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.15), 0 0 0 rgba(16, 22, 26, 0), 0 0 0 rgba(16, 22, 26, 0);
          box-shadow:0 0 0 1px rgba(16, 22, 26, 0.15), 0 0 0 rgba(16, 22, 26, 0), 0 0 0 rgba(16, 22, 26, 0);
  background-color:#ffffff;
  padding:20px;
  -webkit-transition:-webkit-transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-box-shadow 200ms cubic-bezier(0.4, 1, 0.75, 0.9);
  transition:-webkit-transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-box-shadow 200ms cubic-bezier(0.4, 1, 0.75, 0.9);
  transition:transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9), box-shadow 200ms cubic-bezier(0.4, 1, 0.75, 0.9);
  transition:transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9), box-shadow 200ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-box-shadow 200ms cubic-bezier(0.4, 1, 0.75, 0.9); }
  .bp3-card.bp3-dark,
  .bp3-dark .bp3-card{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4), 0 0 0 rgba(16, 22, 26, 0), 0 0 0 rgba(16, 22, 26, 0);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4), 0 0 0 rgba(16, 22, 26, 0), 0 0 0 rgba(16, 22, 26, 0);
    background-color:#30404d; }

.bp3-elevation-0{
  -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.15), 0 0 0 rgba(16, 22, 26, 0), 0 0 0 rgba(16, 22, 26, 0);
          box-shadow:0 0 0 1px rgba(16, 22, 26, 0.15), 0 0 0 rgba(16, 22, 26, 0), 0 0 0 rgba(16, 22, 26, 0); }
  .bp3-elevation-0.bp3-dark,
  .bp3-dark .bp3-elevation-0{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4), 0 0 0 rgba(16, 22, 26, 0), 0 0 0 rgba(16, 22, 26, 0);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4), 0 0 0 rgba(16, 22, 26, 0), 0 0 0 rgba(16, 22, 26, 0); }

.bp3-elevation-1{
  -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.2);
          box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.2); }
  .bp3-elevation-1.bp3-dark,
  .bp3-dark .bp3-elevation-1{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.4); }

.bp3-elevation-2{
  -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 1px 1px rgba(16, 22, 26, 0.2), 0 2px 6px rgba(16, 22, 26, 0.2);
          box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 1px 1px rgba(16, 22, 26, 0.2), 0 2px 6px rgba(16, 22, 26, 0.2); }
  .bp3-elevation-2.bp3-dark,
  .bp3-dark .bp3-elevation-2{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 1px 1px rgba(16, 22, 26, 0.4), 0 2px 6px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 1px 1px rgba(16, 22, 26, 0.4), 0 2px 6px rgba(16, 22, 26, 0.4); }

.bp3-elevation-3{
  -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2);
          box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2); }
  .bp3-elevation-3.bp3-dark,
  .bp3-dark .bp3-elevation-3{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4); }

.bp3-elevation-4{
  -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 4px 8px rgba(16, 22, 26, 0.2), 0 18px 46px 6px rgba(16, 22, 26, 0.2);
          box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 4px 8px rgba(16, 22, 26, 0.2), 0 18px 46px 6px rgba(16, 22, 26, 0.2); }
  .bp3-elevation-4.bp3-dark,
  .bp3-dark .bp3-elevation-4{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 4px 8px rgba(16, 22, 26, 0.4), 0 18px 46px 6px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 4px 8px rgba(16, 22, 26, 0.4), 0 18px 46px 6px rgba(16, 22, 26, 0.4); }

.bp3-card.bp3-interactive:hover{
  -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2);
          box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2);
  cursor:pointer; }
  .bp3-card.bp3-interactive:hover.bp3-dark,
  .bp3-dark .bp3-card.bp3-interactive:hover{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4); }

.bp3-card.bp3-interactive:active{
  opacity:0.9;
  -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.2);
          box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.2);
  -webkit-transition-duration:0;
          transition-duration:0; }
  .bp3-card.bp3-interactive:active.bp3-dark,
  .bp3-dark .bp3-card.bp3-interactive:active{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.4); }

.bp3-collapse{
  height:0;
  overflow-y:hidden;
  -webkit-transition:height 200ms cubic-bezier(0.4, 1, 0.75, 0.9);
  transition:height 200ms cubic-bezier(0.4, 1, 0.75, 0.9); }
  .bp3-collapse .bp3-collapse-body{
    -webkit-transition:-webkit-transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9);
    transition:-webkit-transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9);
    transition:transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9);
    transition:transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9); }
    .bp3-collapse .bp3-collapse-body[aria-hidden="true"]{
      display:none; }

.bp3-context-menu .bp3-popover-target{
  display:block; }

.bp3-context-menu-popover-target{
  position:fixed; }

.bp3-divider{
  margin:5px;
  border-right:1px solid rgba(16, 22, 26, 0.15);
  border-bottom:1px solid rgba(16, 22, 26, 0.15); }
  .bp3-dark .bp3-divider{
    border-color:rgba(16, 22, 26, 0.4); }
.bp3-dialog-container{
  opacity:1;
  -webkit-transform:scale(1);
          transform:scale(1);
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -webkit-box-align:center;
      -ms-flex-align:center;
          align-items:center;
  -webkit-box-pack:center;
      -ms-flex-pack:center;
          justify-content:center;
  width:100%;
  min-height:100%;
  pointer-events:none;
  -webkit-user-select:none;
     -moz-user-select:none;
      -ms-user-select:none;
          user-select:none; }
  .bp3-dialog-container.bp3-overlay-enter > .bp3-dialog, .bp3-dialog-container.bp3-overlay-appear > .bp3-dialog{
    opacity:0;
    -webkit-transform:scale(0.5);
            transform:scale(0.5); }
  .bp3-dialog-container.bp3-overlay-enter-active > .bp3-dialog, .bp3-dialog-container.bp3-overlay-appear-active > .bp3-dialog{
    opacity:1;
    -webkit-transform:scale(1);
            transform:scale(1);
    -webkit-transition-property:opacity, -webkit-transform;
    transition-property:opacity, -webkit-transform;
    transition-property:opacity, transform;
    transition-property:opacity, transform, -webkit-transform;
    -webkit-transition-duration:300ms;
            transition-duration:300ms;
    -webkit-transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11);
            transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11);
    -webkit-transition-delay:0;
            transition-delay:0; }
  .bp3-dialog-container.bp3-overlay-exit > .bp3-dialog{
    opacity:1;
    -webkit-transform:scale(1);
            transform:scale(1); }
  .bp3-dialog-container.bp3-overlay-exit-active > .bp3-dialog{
    opacity:0;
    -webkit-transform:scale(0.5);
            transform:scale(0.5);
    -webkit-transition-property:opacity, -webkit-transform;
    transition-property:opacity, -webkit-transform;
    transition-property:opacity, transform;
    transition-property:opacity, transform, -webkit-transform;
    -webkit-transition-duration:300ms;
            transition-duration:300ms;
    -webkit-transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11);
            transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11);
    -webkit-transition-delay:0;
            transition-delay:0; }

.bp3-dialog{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -webkit-box-orient:vertical;
  -webkit-box-direction:normal;
      -ms-flex-direction:column;
          flex-direction:column;
  margin:30px 0;
  border-radius:6px;
  -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 4px 8px rgba(16, 22, 26, 0.2), 0 18px 46px 6px rgba(16, 22, 26, 0.2);
          box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 4px 8px rgba(16, 22, 26, 0.2), 0 18px 46px 6px rgba(16, 22, 26, 0.2);
  background:#ebf1f5;
  width:500px;
  padding-bottom:20px;
  pointer-events:all;
  -webkit-user-select:text;
     -moz-user-select:text;
      -ms-user-select:text;
          user-select:text; }
  .bp3-dialog:focus{
    outline:0; }
  .bp3-dialog.bp3-dark,
  .bp3-dark .bp3-dialog{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 4px 8px rgba(16, 22, 26, 0.4), 0 18px 46px 6px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 4px 8px rgba(16, 22, 26, 0.4), 0 18px 46px 6px rgba(16, 22, 26, 0.4);
    background:#293742;
    color:#f5f8fa; }

.bp3-dialog-header{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -webkit-box-flex:0;
      -ms-flex:0 0 auto;
          flex:0 0 auto;
  -webkit-box-align:center;
      -ms-flex-align:center;
          align-items:center;
  border-radius:6px 6px 0 0;
  -webkit-box-shadow:0 1px 0 rgba(16, 22, 26, 0.15);
          box-shadow:0 1px 0 rgba(16, 22, 26, 0.15);
  background:#ffffff;
  min-height:40px;
  padding-right:5px;
  padding-left:20px; }
  .bp3-dialog-header .bp3-icon-large,
  .bp3-dialog-header .bp3-icon{
    -webkit-box-flex:0;
        -ms-flex:0 0 auto;
            flex:0 0 auto;
    margin-right:10px;
    color:#5c7080; }
  .bp3-dialog-header .bp3-heading{
    overflow:hidden;
    text-overflow:ellipsis;
    white-space:nowrap;
    word-wrap:normal;
    -webkit-box-flex:1;
        -ms-flex:1 1 auto;
            flex:1 1 auto;
    margin:0;
    line-height:inherit; }
    .bp3-dialog-header .bp3-heading:last-child{
      margin-right:20px; }
  .bp3-dark .bp3-dialog-header{
    -webkit-box-shadow:0 1px 0 rgba(16, 22, 26, 0.4);
            box-shadow:0 1px 0 rgba(16, 22, 26, 0.4);
    background:#30404d; }
    .bp3-dark .bp3-dialog-header .bp3-icon-large,
    .bp3-dark .bp3-dialog-header .bp3-icon{
      color:#a7b6c2; }

.bp3-dialog-body{
  -webkit-box-flex:1;
      -ms-flex:1 1 auto;
          flex:1 1 auto;
  margin:20px;
  line-height:18px; }

.bp3-dialog-footer{
  -webkit-box-flex:0;
      -ms-flex:0 0 auto;
          flex:0 0 auto;
  margin:0 20px; }

.bp3-dialog-footer-actions{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -webkit-box-pack:end;
      -ms-flex-pack:end;
          justify-content:flex-end; }
  .bp3-dialog-footer-actions .bp3-button{
    margin-left:10px; }
.bp3-drawer{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -webkit-box-orient:vertical;
  -webkit-box-direction:normal;
      -ms-flex-direction:column;
          flex-direction:column;
  margin:0;
  -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 4px 8px rgba(16, 22, 26, 0.2), 0 18px 46px 6px rgba(16, 22, 26, 0.2);
          box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 4px 8px rgba(16, 22, 26, 0.2), 0 18px 46px 6px rgba(16, 22, 26, 0.2);
  background:#ffffff;
  padding:0; }
  .bp3-drawer:focus{
    outline:0; }
  .bp3-drawer.bp3-position-top{
    top:0;
    right:0;
    left:0;
    height:50%; }
    .bp3-drawer.bp3-position-top.bp3-overlay-enter, .bp3-drawer.bp3-position-top.bp3-overlay-appear{
      -webkit-transform:translateY(-100%);
              transform:translateY(-100%); }
    .bp3-drawer.bp3-position-top.bp3-overlay-enter-active, .bp3-drawer.bp3-position-top.bp3-overlay-appear-active{
      -webkit-transform:translateY(0);
              transform:translateY(0);
      -webkit-transition-property:-webkit-transform;
      transition-property:-webkit-transform;
      transition-property:transform;
      transition-property:transform, -webkit-transform;
      -webkit-transition-duration:200ms;
              transition-duration:200ms;
      -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
              transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
      -webkit-transition-delay:0;
              transition-delay:0; }
    .bp3-drawer.bp3-position-top.bp3-overlay-exit{
      -webkit-transform:translateY(0);
              transform:translateY(0); }
    .bp3-drawer.bp3-position-top.bp3-overlay-exit-active{
      -webkit-transform:translateY(-100%);
              transform:translateY(-100%);
      -webkit-transition-property:-webkit-transform;
      transition-property:-webkit-transform;
      transition-property:transform;
      transition-property:transform, -webkit-transform;
      -webkit-transition-duration:100ms;
              transition-duration:100ms;
      -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
              transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
      -webkit-transition-delay:0;
              transition-delay:0; }
  .bp3-drawer.bp3-position-bottom{
    right:0;
    bottom:0;
    left:0;
    height:50%; }
    .bp3-drawer.bp3-position-bottom.bp3-overlay-enter, .bp3-drawer.bp3-position-bottom.bp3-overlay-appear{
      -webkit-transform:translateY(100%);
              transform:translateY(100%); }
    .bp3-drawer.bp3-position-bottom.bp3-overlay-enter-active, .bp3-drawer.bp3-position-bottom.bp3-overlay-appear-active{
      -webkit-transform:translateY(0);
              transform:translateY(0);
      -webkit-transition-property:-webkit-transform;
      transition-property:-webkit-transform;
      transition-property:transform;
      transition-property:transform, -webkit-transform;
      -webkit-transition-duration:200ms;
              transition-duration:200ms;
      -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
              transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
      -webkit-transition-delay:0;
              transition-delay:0; }
    .bp3-drawer.bp3-position-bottom.bp3-overlay-exit{
      -webkit-transform:translateY(0);
              transform:translateY(0); }
    .bp3-drawer.bp3-position-bottom.bp3-overlay-exit-active{
      -webkit-transform:translateY(100%);
              transform:translateY(100%);
      -webkit-transition-property:-webkit-transform;
      transition-property:-webkit-transform;
      transition-property:transform;
      transition-property:transform, -webkit-transform;
      -webkit-transition-duration:100ms;
              transition-duration:100ms;
      -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
              transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
      -webkit-transition-delay:0;
              transition-delay:0; }
  .bp3-drawer.bp3-position-left{
    top:0;
    bottom:0;
    left:0;
    width:50%; }
    .bp3-drawer.bp3-position-left.bp3-overlay-enter, .bp3-drawer.bp3-position-left.bp3-overlay-appear{
      -webkit-transform:translateX(-100%);
              transform:translateX(-100%); }
    .bp3-drawer.bp3-position-left.bp3-overlay-enter-active, .bp3-drawer.bp3-position-left.bp3-overlay-appear-active{
      -webkit-transform:translateX(0);
              transform:translateX(0);
      -webkit-transition-property:-webkit-transform;
      transition-property:-webkit-transform;
      transition-property:transform;
      transition-property:transform, -webkit-transform;
      -webkit-transition-duration:200ms;
              transition-duration:200ms;
      -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
              transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
      -webkit-transition-delay:0;
              transition-delay:0; }
    .bp3-drawer.bp3-position-left.bp3-overlay-exit{
      -webkit-transform:translateX(0);
              transform:translateX(0); }
    .bp3-drawer.bp3-position-left.bp3-overlay-exit-active{
      -webkit-transform:translateX(-100%);
              transform:translateX(-100%);
      -webkit-transition-property:-webkit-transform;
      transition-property:-webkit-transform;
      transition-property:transform;
      transition-property:transform, -webkit-transform;
      -webkit-transition-duration:100ms;
              transition-duration:100ms;
      -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
              transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
      -webkit-transition-delay:0;
              transition-delay:0; }
  .bp3-drawer.bp3-position-right{
    top:0;
    right:0;
    bottom:0;
    width:50%; }
    .bp3-drawer.bp3-position-right.bp3-overlay-enter, .bp3-drawer.bp3-position-right.bp3-overlay-appear{
      -webkit-transform:translateX(100%);
              transform:translateX(100%); }
    .bp3-drawer.bp3-position-right.bp3-overlay-enter-active, .bp3-drawer.bp3-position-right.bp3-overlay-appear-active{
      -webkit-transform:translateX(0);
              transform:translateX(0);
      -webkit-transition-property:-webkit-transform;
      transition-property:-webkit-transform;
      transition-property:transform;
      transition-property:transform, -webkit-transform;
      -webkit-transition-duration:200ms;
              transition-duration:200ms;
      -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
              transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
      -webkit-transition-delay:0;
              transition-delay:0; }
    .bp3-drawer.bp3-position-right.bp3-overlay-exit{
      -webkit-transform:translateX(0);
              transform:translateX(0); }
    .bp3-drawer.bp3-position-right.bp3-overlay-exit-active{
      -webkit-transform:translateX(100%);
              transform:translateX(100%);
      -webkit-transition-property:-webkit-transform;
      transition-property:-webkit-transform;
      transition-property:transform;
      transition-property:transform, -webkit-transform;
      -webkit-transition-duration:100ms;
              transition-duration:100ms;
      -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
              transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
      -webkit-transition-delay:0;
              transition-delay:0; }
  .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not(
  .bp3-position-right):not(.bp3-vertical){
    top:0;
    right:0;
    bottom:0;
    width:50%; }
    .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not(
    .bp3-position-right):not(.bp3-vertical).bp3-overlay-enter, .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not(
    .bp3-position-right):not(.bp3-vertical).bp3-overlay-appear{
      -webkit-transform:translateX(100%);
              transform:translateX(100%); }
    .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not(
    .bp3-position-right):not(.bp3-vertical).bp3-overlay-enter-active, .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not(
    .bp3-position-right):not(.bp3-vertical).bp3-overlay-appear-active{
      -webkit-transform:translateX(0);
              transform:translateX(0);
      -webkit-transition-property:-webkit-transform;
      transition-property:-webkit-transform;
      transition-property:transform;
      transition-property:transform, -webkit-transform;
      -webkit-transition-duration:200ms;
              transition-duration:200ms;
      -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
              transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
      -webkit-transition-delay:0;
              transition-delay:0; }
    .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not(
    .bp3-position-right):not(.bp3-vertical).bp3-overlay-exit{
      -webkit-transform:translateX(0);
              transform:translateX(0); }
    .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not(
    .bp3-position-right):not(.bp3-vertical).bp3-overlay-exit-active{
      -webkit-transform:translateX(100%);
              transform:translateX(100%);
      -webkit-transition-property:-webkit-transform;
      transition-property:-webkit-transform;
      transition-property:transform;
      transition-property:transform, -webkit-transform;
      -webkit-transition-duration:100ms;
              transition-duration:100ms;
      -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
              transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
      -webkit-transition-delay:0;
              transition-delay:0; }
  .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not(
  .bp3-position-right).bp3-vertical{
    right:0;
    bottom:0;
    left:0;
    height:50%; }
    .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not(
    .bp3-position-right).bp3-vertical.bp3-overlay-enter, .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not(
    .bp3-position-right).bp3-vertical.bp3-overlay-appear{
      -webkit-transform:translateY(100%);
              transform:translateY(100%); }
    .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not(
    .bp3-position-right).bp3-vertical.bp3-overlay-enter-active, .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not(
    .bp3-position-right).bp3-vertical.bp3-overlay-appear-active{
      -webkit-transform:translateY(0);
              transform:translateY(0);
      -webkit-transition-property:-webkit-transform;
      transition-property:-webkit-transform;
      transition-property:transform;
      transition-property:transform, -webkit-transform;
      -webkit-transition-duration:200ms;
              transition-duration:200ms;
      -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
              transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
      -webkit-transition-delay:0;
              transition-delay:0; }
    .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not(
    .bp3-position-right).bp3-vertical.bp3-overlay-exit{
      -webkit-transform:translateY(0);
              transform:translateY(0); }
    .bp3-drawer:not(.bp3-position-top):not(.bp3-position-bottom):not(.bp3-position-left):not(
    .bp3-position-right).bp3-vertical.bp3-overlay-exit-active{
      -webkit-transform:translateY(100%);
              transform:translateY(100%);
      -webkit-transition-property:-webkit-transform;
      transition-property:-webkit-transform;
      transition-property:transform;
      transition-property:transform, -webkit-transform;
      -webkit-transition-duration:100ms;
              transition-duration:100ms;
      -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
              transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
      -webkit-transition-delay:0;
              transition-delay:0; }
  .bp3-drawer.bp3-dark,
  .bp3-dark .bp3-drawer{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 4px 8px rgba(16, 22, 26, 0.4), 0 18px 46px 6px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 4px 8px rgba(16, 22, 26, 0.4), 0 18px 46px 6px rgba(16, 22, 26, 0.4);
    background:#30404d;
    color:#f5f8fa; }

.bp3-drawer-header{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -webkit-box-flex:0;
      -ms-flex:0 0 auto;
          flex:0 0 auto;
  -webkit-box-align:center;
      -ms-flex-align:center;
          align-items:center;
  position:relative;
  border-radius:0;
  -webkit-box-shadow:0 1px 0 rgba(16, 22, 26, 0.15);
          box-shadow:0 1px 0 rgba(16, 22, 26, 0.15);
  min-height:40px;
  padding:5px;
  padding-left:20px; }
  .bp3-drawer-header .bp3-icon-large,
  .bp3-drawer-header .bp3-icon{
    -webkit-box-flex:0;
        -ms-flex:0 0 auto;
            flex:0 0 auto;
    margin-right:10px;
    color:#5c7080; }
  .bp3-drawer-header .bp3-heading{
    overflow:hidden;
    text-overflow:ellipsis;
    white-space:nowrap;
    word-wrap:normal;
    -webkit-box-flex:1;
        -ms-flex:1 1 auto;
            flex:1 1 auto;
    margin:0;
    line-height:inherit; }
    .bp3-drawer-header .bp3-heading:last-child{
      margin-right:20px; }
  .bp3-dark .bp3-drawer-header{
    -webkit-box-shadow:0 1px 0 rgba(16, 22, 26, 0.4);
            box-shadow:0 1px 0 rgba(16, 22, 26, 0.4); }
    .bp3-dark .bp3-drawer-header .bp3-icon-large,
    .bp3-dark .bp3-drawer-header .bp3-icon{
      color:#a7b6c2; }

.bp3-drawer-body{
  -webkit-box-flex:1;
      -ms-flex:1 1 auto;
          flex:1 1 auto;
  overflow:auto;
  line-height:18px; }

.bp3-drawer-footer{
  -webkit-box-flex:0;
      -ms-flex:0 0 auto;
          flex:0 0 auto;
  position:relative;
  -webkit-box-shadow:inset 0 1px 0 rgba(16, 22, 26, 0.15);
          box-shadow:inset 0 1px 0 rgba(16, 22, 26, 0.15);
  padding:10px 20px; }
  .bp3-dark .bp3-drawer-footer{
    -webkit-box-shadow:inset 0 1px 0 rgba(16, 22, 26, 0.4);
            box-shadow:inset 0 1px 0 rgba(16, 22, 26, 0.4); }
.bp3-editable-text{
  display:inline-block;
  position:relative;
  cursor:text;
  max-width:100%;
  vertical-align:top;
  white-space:nowrap; }
  .bp3-editable-text::before{
    position:absolute;
    top:-3px;
    right:-3px;
    bottom:-3px;
    left:-3px;
    border-radius:3px;
    content:"";
    -webkit-transition:background-color 100ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9);
    transition:background-color 100ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9);
    transition:background-color 100ms cubic-bezier(0.4, 1, 0.75, 0.9), box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9);
    transition:background-color 100ms cubic-bezier(0.4, 1, 0.75, 0.9), box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9); }
  .bp3-editable-text:hover::before{
    -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.15);
            box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.15); }
  .bp3-editable-text.bp3-editable-text-editing::before{
    -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
    background-color:#ffffff; }
  .bp3-editable-text.bp3-disabled::before{
    -webkit-box-shadow:none;
            box-shadow:none; }
  .bp3-editable-text.bp3-intent-primary .bp3-editable-text-input,
  .bp3-editable-text.bp3-intent-primary .bp3-editable-text-content{
    color:#137cbd; }
  .bp3-editable-text.bp3-intent-primary:hover::before{
    -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(19, 124, 189, 0.4);
            box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(19, 124, 189, 0.4); }
  .bp3-editable-text.bp3-intent-primary.bp3-editable-text-editing::before{
    -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
  .bp3-editable-text.bp3-intent-success .bp3-editable-text-input,
  .bp3-editable-text.bp3-intent-success .bp3-editable-text-content{
    color:#0f9960; }
  .bp3-editable-text.bp3-intent-success:hover::before{
    -webkit-box-shadow:0 0 0 0 rgba(15, 153, 96, 0), 0 0 0 0 rgba(15, 153, 96, 0), inset 0 0 0 1px rgba(15, 153, 96, 0.4);
            box-shadow:0 0 0 0 rgba(15, 153, 96, 0), 0 0 0 0 rgba(15, 153, 96, 0), inset 0 0 0 1px rgba(15, 153, 96, 0.4); }
  .bp3-editable-text.bp3-intent-success.bp3-editable-text-editing::before{
    -webkit-box-shadow:0 0 0 1px #0f9960, 0 0 0 3px rgba(15, 153, 96, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 1px #0f9960, 0 0 0 3px rgba(15, 153, 96, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
  .bp3-editable-text.bp3-intent-warning .bp3-editable-text-input,
  .bp3-editable-text.bp3-intent-warning .bp3-editable-text-content{
    color:#d9822b; }
  .bp3-editable-text.bp3-intent-warning:hover::before{
    -webkit-box-shadow:0 0 0 0 rgba(217, 130, 43, 0), 0 0 0 0 rgba(217, 130, 43, 0), inset 0 0 0 1px rgba(217, 130, 43, 0.4);
            box-shadow:0 0 0 0 rgba(217, 130, 43, 0), 0 0 0 0 rgba(217, 130, 43, 0), inset 0 0 0 1px rgba(217, 130, 43, 0.4); }
  .bp3-editable-text.bp3-intent-warning.bp3-editable-text-editing::before{
    -webkit-box-shadow:0 0 0 1px #d9822b, 0 0 0 3px rgba(217, 130, 43, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 1px #d9822b, 0 0 0 3px rgba(217, 130, 43, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
  .bp3-editable-text.bp3-intent-danger .bp3-editable-text-input,
  .bp3-editable-text.bp3-intent-danger .bp3-editable-text-content{
    color:#db3737; }
  .bp3-editable-text.bp3-intent-danger:hover::before{
    -webkit-box-shadow:0 0 0 0 rgba(219, 55, 55, 0), 0 0 0 0 rgba(219, 55, 55, 0), inset 0 0 0 1px rgba(219, 55, 55, 0.4);
            box-shadow:0 0 0 0 rgba(219, 55, 55, 0), 0 0 0 0 rgba(219, 55, 55, 0), inset 0 0 0 1px rgba(219, 55, 55, 0.4); }
  .bp3-editable-text.bp3-intent-danger.bp3-editable-text-editing::before{
    -webkit-box-shadow:0 0 0 1px #db3737, 0 0 0 3px rgba(219, 55, 55, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 1px #db3737, 0 0 0 3px rgba(219, 55, 55, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
  .bp3-dark .bp3-editable-text:hover::before{
    -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(255, 255, 255, 0.15);
            box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(255, 255, 255, 0.15); }
  .bp3-dark .bp3-editable-text.bp3-editable-text-editing::before{
    -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
    background-color:rgba(16, 22, 26, 0.3); }
  .bp3-dark .bp3-editable-text.bp3-disabled::before{
    -webkit-box-shadow:none;
            box-shadow:none; }
  .bp3-dark .bp3-editable-text.bp3-intent-primary .bp3-editable-text-content{
    color:#48aff0; }
  .bp3-dark .bp3-editable-text.bp3-intent-primary:hover::before{
    -webkit-box-shadow:0 0 0 0 rgba(72, 175, 240, 0), 0 0 0 0 rgba(72, 175, 240, 0), inset 0 0 0 1px rgba(72, 175, 240, 0.4);
            box-shadow:0 0 0 0 rgba(72, 175, 240, 0), 0 0 0 0 rgba(72, 175, 240, 0), inset 0 0 0 1px rgba(72, 175, 240, 0.4); }
  .bp3-dark .bp3-editable-text.bp3-intent-primary.bp3-editable-text-editing::before{
    -webkit-box-shadow:0 0 0 1px #48aff0, 0 0 0 3px rgba(72, 175, 240, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px #48aff0, 0 0 0 3px rgba(72, 175, 240, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); }
  .bp3-dark .bp3-editable-text.bp3-intent-success .bp3-editable-text-content{
    color:#3dcc91; }
  .bp3-dark .bp3-editable-text.bp3-intent-success:hover::before{
    -webkit-box-shadow:0 0 0 0 rgba(61, 204, 145, 0), 0 0 0 0 rgba(61, 204, 145, 0), inset 0 0 0 1px rgba(61, 204, 145, 0.4);
            box-shadow:0 0 0 0 rgba(61, 204, 145, 0), 0 0 0 0 rgba(61, 204, 145, 0), inset 0 0 0 1px rgba(61, 204, 145, 0.4); }
  .bp3-dark .bp3-editable-text.bp3-intent-success.bp3-editable-text-editing::before{
    -webkit-box-shadow:0 0 0 1px #3dcc91, 0 0 0 3px rgba(61, 204, 145, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px #3dcc91, 0 0 0 3px rgba(61, 204, 145, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); }
  .bp3-dark .bp3-editable-text.bp3-intent-warning .bp3-editable-text-content{
    color:#ffb366; }
  .bp3-dark .bp3-editable-text.bp3-intent-warning:hover::before{
    -webkit-box-shadow:0 0 0 0 rgba(255, 179, 102, 0), 0 0 0 0 rgba(255, 179, 102, 0), inset 0 0 0 1px rgba(255, 179, 102, 0.4);
            box-shadow:0 0 0 0 rgba(255, 179, 102, 0), 0 0 0 0 rgba(255, 179, 102, 0), inset 0 0 0 1px rgba(255, 179, 102, 0.4); }
  .bp3-dark .bp3-editable-text.bp3-intent-warning.bp3-editable-text-editing::before{
    -webkit-box-shadow:0 0 0 1px #ffb366, 0 0 0 3px rgba(255, 179, 102, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px #ffb366, 0 0 0 3px rgba(255, 179, 102, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); }
  .bp3-dark .bp3-editable-text.bp3-intent-danger .bp3-editable-text-content{
    color:#ff7373; }
  .bp3-dark .bp3-editable-text.bp3-intent-danger:hover::before{
    -webkit-box-shadow:0 0 0 0 rgba(255, 115, 115, 0), 0 0 0 0 rgba(255, 115, 115, 0), inset 0 0 0 1px rgba(255, 115, 115, 0.4);
            box-shadow:0 0 0 0 rgba(255, 115, 115, 0), 0 0 0 0 rgba(255, 115, 115, 0), inset 0 0 0 1px rgba(255, 115, 115, 0.4); }
  .bp3-dark .bp3-editable-text.bp3-intent-danger.bp3-editable-text-editing::before{
    -webkit-box-shadow:0 0 0 1px #ff7373, 0 0 0 3px rgba(255, 115, 115, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px #ff7373, 0 0 0 3px rgba(255, 115, 115, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); }

.bp3-editable-text-input,
.bp3-editable-text-content{
  display:inherit;
  position:relative;
  min-width:inherit;
  max-width:inherit;
  vertical-align:top;
  text-transform:inherit;
  letter-spacing:inherit;
  color:inherit;
  font:inherit;
  resize:none; }

.bp3-editable-text-input{
  border:none;
  -webkit-box-shadow:none;
          box-shadow:none;
  background:none;
  width:100%;
  padding:0;
  white-space:pre-wrap; }
  .bp3-editable-text-input::-webkit-input-placeholder{
    opacity:1;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-editable-text-input::-moz-placeholder{
    opacity:1;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-editable-text-input:-ms-input-placeholder{
    opacity:1;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-editable-text-input::-ms-input-placeholder{
    opacity:1;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-editable-text-input::placeholder{
    opacity:1;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-editable-text-input:focus{
    outline:none; }
  .bp3-editable-text-input::-ms-clear{
    display:none; }

.bp3-editable-text-content{
  overflow:hidden;
  padding-right:2px;
  text-overflow:ellipsis;
  white-space:pre; }
  .bp3-editable-text-editing > .bp3-editable-text-content{
    position:absolute;
    left:0;
    visibility:hidden; }
  .bp3-editable-text-placeholder > .bp3-editable-text-content{
    color:rgba(92, 112, 128, 0.6); }
    .bp3-dark .bp3-editable-text-placeholder > .bp3-editable-text-content{
      color:rgba(167, 182, 194, 0.6); }

.bp3-editable-text.bp3-multiline{
  display:block; }
  .bp3-editable-text.bp3-multiline .bp3-editable-text-content{
    overflow:auto;
    white-space:pre-wrap;
    word-wrap:break-word; }
.bp3-control-group{
  -webkit-transform:translateZ(0);
          transform:translateZ(0);
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -webkit-box-orient:horizontal;
  -webkit-box-direction:normal;
      -ms-flex-direction:row;
          flex-direction:row;
  -webkit-box-align:stretch;
      -ms-flex-align:stretch;
          align-items:stretch; }
  .bp3-control-group > *{
    -webkit-box-flex:0;
        -ms-flex-positive:0;
            flex-grow:0;
    -ms-flex-negative:0;
        flex-shrink:0; }
  .bp3-control-group > .bp3-fill{
    -webkit-box-flex:1;
        -ms-flex-positive:1;
            flex-grow:1;
    -ms-flex-negative:1;
        flex-shrink:1; }
  .bp3-control-group .bp3-button,
  .bp3-control-group .bp3-html-select,
  .bp3-control-group .bp3-input,
  .bp3-control-group .bp3-select{
    position:relative; }
  .bp3-control-group .bp3-input{
    z-index:2;
    border-radius:inherit; }
    .bp3-control-group .bp3-input:focus{
      z-index:14;
      border-radius:3px; }
    .bp3-control-group .bp3-input[class*="bp3-intent"]{
      z-index:13; }
      .bp3-control-group .bp3-input[class*="bp3-intent"]:focus{
        z-index:15; }
    .bp3-control-group .bp3-input[readonly], .bp3-control-group .bp3-input:disabled, .bp3-control-group .bp3-input.bp3-disabled{
      z-index:1; }
  .bp3-control-group .bp3-input-group[class*="bp3-intent"] .bp3-input{
    z-index:13; }
    .bp3-control-group .bp3-input-group[class*="bp3-intent"] .bp3-input:focus{
      z-index:15; }
  .bp3-control-group .bp3-button,
  .bp3-control-group .bp3-html-select select,
  .bp3-control-group .bp3-select select{
    -webkit-transform:translateZ(0);
            transform:translateZ(0);
    z-index:4;
    border-radius:inherit; }
    .bp3-control-group .bp3-button:focus,
    .bp3-control-group .bp3-html-select select:focus,
    .bp3-control-group .bp3-select select:focus{
      z-index:5; }
    .bp3-control-group .bp3-button:hover,
    .bp3-control-group .bp3-html-select select:hover,
    .bp3-control-group .bp3-select select:hover{
      z-index:6; }
    .bp3-control-group .bp3-button:active,
    .bp3-control-group .bp3-html-select select:active,
    .bp3-control-group .bp3-select select:active{
      z-index:7; }
    .bp3-control-group .bp3-button[readonly], .bp3-control-group .bp3-button:disabled, .bp3-control-group .bp3-button.bp3-disabled,
    .bp3-control-group .bp3-html-select select[readonly],
    .bp3-control-group .bp3-html-select select:disabled,
    .bp3-control-group .bp3-html-select select.bp3-disabled,
    .bp3-control-group .bp3-select select[readonly],
    .bp3-control-group .bp3-select select:disabled,
    .bp3-control-group .bp3-select select.bp3-disabled{
      z-index:3; }
    .bp3-control-group .bp3-button[class*="bp3-intent"],
    .bp3-control-group .bp3-html-select select[class*="bp3-intent"],
    .bp3-control-group .bp3-select select[class*="bp3-intent"]{
      z-index:9; }
      .bp3-control-group .bp3-button[class*="bp3-intent"]:focus,
      .bp3-control-group .bp3-html-select select[class*="bp3-intent"]:focus,
      .bp3-control-group .bp3-select select[class*="bp3-intent"]:focus{
        z-index:10; }
      .bp3-control-group .bp3-button[class*="bp3-intent"]:hover,
      .bp3-control-group .bp3-html-select select[class*="bp3-intent"]:hover,
      .bp3-control-group .bp3-select select[class*="bp3-intent"]:hover{
        z-index:11; }
      .bp3-control-group .bp3-button[class*="bp3-intent"]:active,
      .bp3-control-group .bp3-html-select select[class*="bp3-intent"]:active,
      .bp3-control-group .bp3-select select[class*="bp3-intent"]:active{
        z-index:12; }
      .bp3-control-group .bp3-button[class*="bp3-intent"][readonly], .bp3-control-group .bp3-button[class*="bp3-intent"]:disabled, .bp3-control-group .bp3-button[class*="bp3-intent"].bp3-disabled,
      .bp3-control-group .bp3-html-select select[class*="bp3-intent"][readonly],
      .bp3-control-group .bp3-html-select select[class*="bp3-intent"]:disabled,
      .bp3-control-group .bp3-html-select select[class*="bp3-intent"].bp3-disabled,
      .bp3-control-group .bp3-select select[class*="bp3-intent"][readonly],
      .bp3-control-group .bp3-select select[class*="bp3-intent"]:disabled,
      .bp3-control-group .bp3-select select[class*="bp3-intent"].bp3-disabled{
        z-index:8; }
  .bp3-control-group .bp3-input-group > .bp3-icon,
  .bp3-control-group .bp3-input-group > .bp3-button,
  .bp3-control-group .bp3-input-group > .bp3-input-action{
    z-index:16; }
  .bp3-control-group .bp3-select::after,
  .bp3-control-group .bp3-html-select::after,
  .bp3-control-group .bp3-select > .bp3-icon,
  .bp3-control-group .bp3-html-select > .bp3-icon{
    z-index:17; }
  .bp3-control-group:not(.bp3-vertical) > *{
    margin-right:-1px; }
  .bp3-dark .bp3-control-group:not(.bp3-vertical) > *{
    margin-right:0; }
  .bp3-dark .bp3-control-group:not(.bp3-vertical) > .bp3-button + .bp3-button{
    margin-left:1px; }
  .bp3-control-group .bp3-popover-wrapper,
  .bp3-control-group .bp3-popover-target{
    border-radius:inherit; }
  .bp3-control-group > :first-child{
    border-radius:3px 0 0 3px; }
  .bp3-control-group > :last-child{
    margin-right:0;
    border-radius:0 3px 3px 0; }
  .bp3-control-group > :only-child{
    margin-right:0;
    border-radius:3px; }
  .bp3-control-group .bp3-input-group .bp3-button{
    border-radius:3px; }
  .bp3-control-group > .bp3-fill{
    -webkit-box-flex:1;
        -ms-flex:1 1 auto;
            flex:1 1 auto; }
  .bp3-control-group.bp3-fill > *:not(.bp3-fixed){
    -webkit-box-flex:1;
        -ms-flex:1 1 auto;
            flex:1 1 auto; }
  .bp3-control-group.bp3-vertical{
    -webkit-box-orient:vertical;
    -webkit-box-direction:normal;
        -ms-flex-direction:column;
            flex-direction:column; }
    .bp3-control-group.bp3-vertical > *{
      margin-top:-1px; }
    .bp3-control-group.bp3-vertical > :first-child{
      margin-top:0;
      border-radius:3px 3px 0 0; }
    .bp3-control-group.bp3-vertical > :last-child{
      border-radius:0 0 3px 3px; }
.bp3-control{
  display:block;
  position:relative;
  margin-bottom:10px;
  cursor:pointer;
  text-transform:none; }
  .bp3-control input:checked ~ .bp3-control-indicator{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
    background-color:#137cbd;
    background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.1)), to(rgba(255, 255, 255, 0)));
    background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.1), rgba(255, 255, 255, 0));
    color:#ffffff; }
  .bp3-control:hover input:checked ~ .bp3-control-indicator{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
    background-color:#106ba3; }
  .bp3-control input:not(:disabled):active:checked ~ .bp3-control-indicator{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2);
    background:#0e5a8a; }
  .bp3-control input:disabled:checked ~ .bp3-control-indicator{
    -webkit-box-shadow:none;
            box-shadow:none;
    background:rgba(19, 124, 189, 0.5); }
  .bp3-dark .bp3-control input:checked ~ .bp3-control-indicator{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); }
  .bp3-dark .bp3-control:hover input:checked ~ .bp3-control-indicator{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
    background-color:#106ba3; }
  .bp3-dark .bp3-control input:not(:disabled):active:checked ~ .bp3-control-indicator{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2);
    background-color:#0e5a8a; }
  .bp3-dark .bp3-control input:disabled:checked ~ .bp3-control-indicator{
    -webkit-box-shadow:none;
            box-shadow:none;
    background:rgba(14, 90, 138, 0.5); }
  .bp3-control:not(.bp3-align-right){
    padding-left:26px; }
    .bp3-control:not(.bp3-align-right) .bp3-control-indicator{
      margin-left:-26px; }
  .bp3-control.bp3-align-right{
    padding-right:26px; }
    .bp3-control.bp3-align-right .bp3-control-indicator{
      margin-right:-26px; }
  .bp3-control.bp3-disabled{
    cursor:not-allowed;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-control.bp3-inline{
    display:inline-block;
    margin-right:20px; }
  .bp3-control input{
    position:absolute;
    top:0;
    left:0;
    opacity:0;
    z-index:-1; }
  .bp3-control .bp3-control-indicator{
    display:inline-block;
    position:relative;
    margin-top:-3px;
    margin-right:10px;
    border:none;
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
    background-clip:padding-box;
    background-color:#f5f8fa;
    background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.8)), to(rgba(255, 255, 255, 0)));
    background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.8), rgba(255, 255, 255, 0));
    cursor:pointer;
    width:1em;
    height:1em;
    vertical-align:middle;
    font-size:16px;
    -webkit-user-select:none;
       -moz-user-select:none;
        -ms-user-select:none;
            user-select:none; }
    .bp3-control .bp3-control-indicator::before{
      display:block;
      width:1em;
      height:1em;
      content:""; }
  .bp3-control:hover .bp3-control-indicator{
    background-color:#ebf1f5; }
  .bp3-control input:not(:disabled):active ~ .bp3-control-indicator{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2);
    background:#d8e1e8; }
  .bp3-control input:disabled ~ .bp3-control-indicator{
    -webkit-box-shadow:none;
            box-shadow:none;
    background:rgba(206, 217, 224, 0.5);
    cursor:not-allowed; }
  .bp3-control input:focus ~ .bp3-control-indicator{
    outline:rgba(19, 124, 189, 0.6) auto 2px;
    outline-offset:2px;
    -moz-outline-radius:6px; }
  .bp3-control.bp3-align-right .bp3-control-indicator{
    float:right;
    margin-top:1px;
    margin-left:10px; }
  .bp3-control.bp3-large{
    font-size:16px; }
    .bp3-control.bp3-large:not(.bp3-align-right){
      padding-left:30px; }
      .bp3-control.bp3-large:not(.bp3-align-right) .bp3-control-indicator{
        margin-left:-30px; }
    .bp3-control.bp3-large.bp3-align-right{
      padding-right:30px; }
      .bp3-control.bp3-large.bp3-align-right .bp3-control-indicator{
        margin-right:-30px; }
    .bp3-control.bp3-large .bp3-control-indicator{
      font-size:20px; }
    .bp3-control.bp3-large.bp3-align-right .bp3-control-indicator{
      margin-top:0; }
  .bp3-control.bp3-checkbox input:indeterminate ~ .bp3-control-indicator{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
    background-color:#137cbd;
    background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.1)), to(rgba(255, 255, 255, 0)));
    background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.1), rgba(255, 255, 255, 0));
    color:#ffffff; }
  .bp3-control.bp3-checkbox:hover input:indeterminate ~ .bp3-control-indicator{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 -1px 0 rgba(16, 22, 26, 0.2);
    background-color:#106ba3; }
  .bp3-control.bp3-checkbox input:not(:disabled):active:indeterminate ~ .bp3-control-indicator{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2);
    background:#0e5a8a; }
  .bp3-control.bp3-checkbox input:disabled:indeterminate ~ .bp3-control-indicator{
    -webkit-box-shadow:none;
            box-shadow:none;
    background:rgba(19, 124, 189, 0.5); }
  .bp3-dark .bp3-control.bp3-checkbox input:indeterminate ~ .bp3-control-indicator{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4); }
  .bp3-dark .bp3-control.bp3-checkbox:hover input:indeterminate ~ .bp3-control-indicator{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
    background-color:#106ba3; }
  .bp3-dark .bp3-control.bp3-checkbox input:not(:disabled):active:indeterminate ~ .bp3-control-indicator{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4), inset 0 1px 2px rgba(16, 22, 26, 0.2);
    background-color:#0e5a8a; }
  .bp3-dark .bp3-control.bp3-checkbox input:disabled:indeterminate ~ .bp3-control-indicator{
    -webkit-box-shadow:none;
            box-shadow:none;
    background:rgba(14, 90, 138, 0.5); }
  .bp3-control.bp3-checkbox .bp3-control-indicator{
    border-radius:3px; }
  .bp3-control.bp3-checkbox input:checked ~ .bp3-control-indicator::before{
    background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill-rule='evenodd' clip-rule='evenodd' d='M12 5c-.28 0-.53.11-.71.29L7 9.59l-2.29-2.3a1.003 1.003 0 0 0-1.42 1.42l3 3c.18.18.43.29.71.29s.53-.11.71-.29l5-5A1.003 1.003 0 0 0 12 5z' fill='white'/%3e%3c/svg%3e"); }
  .bp3-control.bp3-checkbox input:indeterminate ~ .bp3-control-indicator::before{
    background-image:url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16'%3e%3cpath fill-rule='evenodd' clip-rule='evenodd' d='M11 7H5c-.55 0-1 .45-1 1s.45 1 1 1h6c.55 0 1-.45 1-1s-.45-1-1-1z' fill='white'/%3e%3c/svg%3e"); }
  .bp3-control.bp3-radio .bp3-control-indicator{
    border-radius:50%; }
  .bp3-control.bp3-radio input:checked ~ .bp3-control-indicator::before{
    background-image:radial-gradient(#ffffff, #ffffff 28%, transparent 32%); }
  .bp3-control.bp3-radio input:checked:disabled ~ .bp3-control-indicator::before{
    opacity:0.5; }
  .bp3-control.bp3-radio input:focus ~ .bp3-control-indicator{
    -moz-outline-radius:16px; }
  .bp3-control.bp3-switch input ~ .bp3-control-indicator{
    background:rgba(167, 182, 194, 0.5); }
  .bp3-control.bp3-switch:hover input ~ .bp3-control-indicator{
    background:rgba(115, 134, 148, 0.5); }
  .bp3-control.bp3-switch input:not(:disabled):active ~ .bp3-control-indicator{
    background:rgba(92, 112, 128, 0.5); }
  .bp3-control.bp3-switch input:disabled ~ .bp3-control-indicator{
    background:rgba(206, 217, 224, 0.5); }
    .bp3-control.bp3-switch input:disabled ~ .bp3-control-indicator::before{
      background:rgba(255, 255, 255, 0.8); }
  .bp3-control.bp3-switch input:checked ~ .bp3-control-indicator{
    background:#137cbd; }
  .bp3-control.bp3-switch:hover input:checked ~ .bp3-control-indicator{
    background:#106ba3; }
  .bp3-control.bp3-switch input:checked:not(:disabled):active ~ .bp3-control-indicator{
    background:#0e5a8a; }
  .bp3-control.bp3-switch input:checked:disabled ~ .bp3-control-indicator{
    background:rgba(19, 124, 189, 0.5); }
    .bp3-control.bp3-switch input:checked:disabled ~ .bp3-control-indicator::before{
      background:rgba(255, 255, 255, 0.8); }
  .bp3-control.bp3-switch:not(.bp3-align-right){
    padding-left:38px; }
    .bp3-control.bp3-switch:not(.bp3-align-right) .bp3-control-indicator{
      margin-left:-38px; }
  .bp3-control.bp3-switch.bp3-align-right{
    padding-right:38px; }
    .bp3-control.bp3-switch.bp3-align-right .bp3-control-indicator{
      margin-right:-38px; }
  .bp3-control.bp3-switch .bp3-control-indicator{
    border:none;
    border-radius:1.75em;
    -webkit-box-shadow:none !important;
            box-shadow:none !important;
    width:auto;
    min-width:1.75em;
    -webkit-transition:background-color 100ms cubic-bezier(0.4, 1, 0.75, 0.9);
    transition:background-color 100ms cubic-bezier(0.4, 1, 0.75, 0.9); }
    .bp3-control.bp3-switch .bp3-control-indicator::before{
      position:absolute;
      left:0;
      margin:2px;
      border-radius:50%;
      -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 1px 1px rgba(16, 22, 26, 0.2);
              box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 1px 1px rgba(16, 22, 26, 0.2);
      background:#ffffff;
      width:calc(1em - 4px);
      height:calc(1em - 4px);
      -webkit-transition:left 100ms cubic-bezier(0.4, 1, 0.75, 0.9);
      transition:left 100ms cubic-bezier(0.4, 1, 0.75, 0.9); }
  .bp3-control.bp3-switch input:checked ~ .bp3-control-indicator::before{
    left:calc(100% - 1em); }
  .bp3-control.bp3-switch.bp3-large:not(.bp3-align-right){
    padding-left:45px; }
    .bp3-control.bp3-switch.bp3-large:not(.bp3-align-right) .bp3-control-indicator{
      margin-left:-45px; }
  .bp3-control.bp3-switch.bp3-large.bp3-align-right{
    padding-right:45px; }
    .bp3-control.bp3-switch.bp3-large.bp3-align-right .bp3-control-indicator{
      margin-right:-45px; }
  .bp3-dark .bp3-control.bp3-switch input ~ .bp3-control-indicator{
    background:rgba(16, 22, 26, 0.5); }
  .bp3-dark .bp3-control.bp3-switch:hover input ~ .bp3-control-indicator{
    background:rgba(16, 22, 26, 0.7); }
  .bp3-dark .bp3-control.bp3-switch input:not(:disabled):active ~ .bp3-control-indicator{
    background:rgba(16, 22, 26, 0.9); }
  .bp3-dark .bp3-control.bp3-switch input:disabled ~ .bp3-control-indicator{
    background:rgba(57, 75, 89, 0.5); }
    .bp3-dark .bp3-control.bp3-switch input:disabled ~ .bp3-control-indicator::before{
      background:rgba(16, 22, 26, 0.4); }
  .bp3-dark .bp3-control.bp3-switch input:checked ~ .bp3-control-indicator{
    background:#137cbd; }
  .bp3-dark .bp3-control.bp3-switch:hover input:checked ~ .bp3-control-indicator{
    background:#106ba3; }
  .bp3-dark .bp3-control.bp3-switch input:checked:not(:disabled):active ~ .bp3-control-indicator{
    background:#0e5a8a; }
  .bp3-dark .bp3-control.bp3-switch input:checked:disabled ~ .bp3-control-indicator{
    background:rgba(14, 90, 138, 0.5); }
    .bp3-dark .bp3-control.bp3-switch input:checked:disabled ~ .bp3-control-indicator::before{
      background:rgba(16, 22, 26, 0.4); }
  .bp3-dark .bp3-control.bp3-switch .bp3-control-indicator::before{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
    background:#394b59; }
  .bp3-dark .bp3-control.bp3-switch input:checked ~ .bp3-control-indicator::before{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4); }
  .bp3-control.bp3-switch .bp3-switch-inner-text{
    text-align:center;
    font-size:0.7em; }
  .bp3-control.bp3-switch .bp3-control-indicator-child:first-child{
    visibility:hidden;
    margin-right:1.2em;
    margin-left:0.5em;
    line-height:0; }
  .bp3-control.bp3-switch .bp3-control-indicator-child:last-child{
    visibility:visible;
    margin-right:0.5em;
    margin-left:1.2em;
    line-height:1em; }
  .bp3-control.bp3-switch input:checked ~ .bp3-control-indicator .bp3-control-indicator-child:first-child{
    visibility:visible;
    line-height:1em; }
  .bp3-control.bp3-switch input:checked ~ .bp3-control-indicator .bp3-control-indicator-child:last-child{
    visibility:hidden;
    line-height:0; }
  .bp3-dark .bp3-control{
    color:#f5f8fa; }
    .bp3-dark .bp3-control.bp3-disabled{
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark .bp3-control .bp3-control-indicator{
      -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
              box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
      background-color:#394b59;
      background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.05)), to(rgba(255, 255, 255, 0)));
      background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.05), rgba(255, 255, 255, 0)); }
    .bp3-dark .bp3-control:hover .bp3-control-indicator{
      background-color:#30404d; }
    .bp3-dark .bp3-control input:not(:disabled):active ~ .bp3-control-indicator{
      -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2);
              box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2);
      background:#202b33; }
    .bp3-dark .bp3-control input:disabled ~ .bp3-control-indicator{
      -webkit-box-shadow:none;
              box-shadow:none;
      background:rgba(57, 75, 89, 0.5);
      cursor:not-allowed; }
    .bp3-dark .bp3-control.bp3-checkbox input:disabled:checked ~ .bp3-control-indicator, .bp3-dark .bp3-control.bp3-checkbox input:disabled:indeterminate ~ .bp3-control-indicator{
      color:rgba(167, 182, 194, 0.6); }
.bp3-file-input{
  display:inline-block;
  position:relative;
  cursor:pointer;
  height:30px; }
  .bp3-file-input input{
    opacity:0;
    margin:0;
    min-width:200px; }
    .bp3-file-input input:disabled + .bp3-file-upload-input,
    .bp3-file-input input.bp3-disabled + .bp3-file-upload-input{
      -webkit-box-shadow:none;
              box-shadow:none;
      background:rgba(206, 217, 224, 0.5);
      cursor:not-allowed;
      color:rgba(92, 112, 128, 0.6);
      resize:none; }
      .bp3-file-input input:disabled + .bp3-file-upload-input::after,
      .bp3-file-input input.bp3-disabled + .bp3-file-upload-input::after{
        outline:none;
        -webkit-box-shadow:none;
                box-shadow:none;
        background-color:rgba(206, 217, 224, 0.5);
        background-image:none;
        cursor:not-allowed;
        color:rgba(92, 112, 128, 0.6); }
        .bp3-file-input input:disabled + .bp3-file-upload-input::after.bp3-active, .bp3-file-input input:disabled + .bp3-file-upload-input::after.bp3-active:hover,
        .bp3-file-input input.bp3-disabled + .bp3-file-upload-input::after.bp3-active,
        .bp3-file-input input.bp3-disabled + .bp3-file-upload-input::after.bp3-active:hover{
          background:rgba(206, 217, 224, 0.7); }
      .bp3-dark .bp3-file-input input:disabled + .bp3-file-upload-input, .bp3-dark
      .bp3-file-input input.bp3-disabled + .bp3-file-upload-input{
        -webkit-box-shadow:none;
                box-shadow:none;
        background:rgba(57, 75, 89, 0.5);
        color:rgba(167, 182, 194, 0.6); }
        .bp3-dark .bp3-file-input input:disabled + .bp3-file-upload-input::after, .bp3-dark
        .bp3-file-input input.bp3-disabled + .bp3-file-upload-input::after{
          -webkit-box-shadow:none;
                  box-shadow:none;
          background-color:rgba(57, 75, 89, 0.5);
          background-image:none;
          color:rgba(167, 182, 194, 0.6); }
          .bp3-dark .bp3-file-input input:disabled + .bp3-file-upload-input::after.bp3-active, .bp3-dark
          .bp3-file-input input.bp3-disabled + .bp3-file-upload-input::after.bp3-active{
            background:rgba(57, 75, 89, 0.7); }
  .bp3-file-input.bp3-file-input-has-selection .bp3-file-upload-input{
    color:#182026; }
  .bp3-dark .bp3-file-input.bp3-file-input-has-selection .bp3-file-upload-input{
    color:#f5f8fa; }
  .bp3-file-input.bp3-fill{
    width:100%; }
  .bp3-file-input.bp3-large,
  .bp3-large .bp3-file-input{
    height:40px; }
  .bp3-file-input .bp3-file-upload-input-custom-text::after{
    content:attr(bp3-button-text); }

.bp3-file-upload-input{
  outline:none;
  border:none;
  border-radius:3px;
  -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2);
          box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2);
  background:#ffffff;
  height:30px;
  padding:0 10px;
  vertical-align:middle;
  line-height:30px;
  color:#182026;
  font-size:14px;
  font-weight:400;
  -webkit-transition:-webkit-box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9);
  transition:-webkit-box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9);
  transition:box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9);
  transition:box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9);
  -webkit-appearance:none;
     -moz-appearance:none;
          appearance:none;
  overflow:hidden;
  text-overflow:ellipsis;
  white-space:nowrap;
  word-wrap:normal;
  position:absolute;
  top:0;
  right:0;
  left:0;
  padding-right:80px;
  color:rgba(92, 112, 128, 0.6);
  -webkit-user-select:none;
     -moz-user-select:none;
      -ms-user-select:none;
          user-select:none; }
  .bp3-file-upload-input::-webkit-input-placeholder{
    opacity:1;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-file-upload-input::-moz-placeholder{
    opacity:1;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-file-upload-input:-ms-input-placeholder{
    opacity:1;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-file-upload-input::-ms-input-placeholder{
    opacity:1;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-file-upload-input::placeholder{
    opacity:1;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-file-upload-input:focus, .bp3-file-upload-input.bp3-active{
    -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
  .bp3-file-upload-input[type="search"], .bp3-file-upload-input.bp3-round{
    border-radius:30px;
    -webkit-box-sizing:border-box;
            box-sizing:border-box;
    padding-left:10px; }
  .bp3-file-upload-input[readonly]{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.15);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.15); }
  .bp3-file-upload-input:disabled, .bp3-file-upload-input.bp3-disabled{
    -webkit-box-shadow:none;
            box-shadow:none;
    background:rgba(206, 217, 224, 0.5);
    cursor:not-allowed;
    color:rgba(92, 112, 128, 0.6);
    resize:none; }
  .bp3-file-upload-input::after{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
    background-color:#f5f8fa;
    background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.8)), to(rgba(255, 255, 255, 0)));
    background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.8), rgba(255, 255, 255, 0));
    color:#182026;
    min-width:24px;
    min-height:24px;
    overflow:hidden;
    text-overflow:ellipsis;
    white-space:nowrap;
    word-wrap:normal;
    position:absolute;
    top:0;
    right:0;
    margin:3px;
    border-radius:3px;
    width:70px;
    text-align:center;
    line-height:24px;
    content:"Browse"; }
    .bp3-file-upload-input::after:hover{
      -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
              box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
      background-clip:padding-box;
      background-color:#ebf1f5; }
    .bp3-file-upload-input::after:active, .bp3-file-upload-input::after.bp3-active{
      -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2);
              box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2);
      background-color:#d8e1e8;
      background-image:none; }
    .bp3-file-upload-input::after:disabled, .bp3-file-upload-input::after.bp3-disabled{
      outline:none;
      -webkit-box-shadow:none;
              box-shadow:none;
      background-color:rgba(206, 217, 224, 0.5);
      background-image:none;
      cursor:not-allowed;
      color:rgba(92, 112, 128, 0.6); }
      .bp3-file-upload-input::after:disabled.bp3-active, .bp3-file-upload-input::after:disabled.bp3-active:hover, .bp3-file-upload-input::after.bp3-disabled.bp3-active, .bp3-file-upload-input::after.bp3-disabled.bp3-active:hover{
        background:rgba(206, 217, 224, 0.7); }
  .bp3-file-upload-input:hover::after{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
    background-clip:padding-box;
    background-color:#ebf1f5; }
  .bp3-file-upload-input:active::after{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2);
    background-color:#d8e1e8;
    background-image:none; }
  .bp3-large .bp3-file-upload-input{
    height:40px;
    line-height:40px;
    font-size:16px;
    padding-right:95px; }
    .bp3-large .bp3-file-upload-input[type="search"], .bp3-large .bp3-file-upload-input.bp3-round{
      padding:0 15px; }
    .bp3-large .bp3-file-upload-input::after{
      min-width:30px;
      min-height:30px;
      margin:5px;
      width:85px;
      line-height:30px; }
  .bp3-dark .bp3-file-upload-input{
    -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
    background:rgba(16, 22, 26, 0.3);
    color:#f5f8fa;
    color:rgba(167, 182, 194, 0.6); }
    .bp3-dark .bp3-file-upload-input::-webkit-input-placeholder{
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark .bp3-file-upload-input::-moz-placeholder{
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark .bp3-file-upload-input:-ms-input-placeholder{
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark .bp3-file-upload-input::-ms-input-placeholder{
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark .bp3-file-upload-input::placeholder{
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark .bp3-file-upload-input:focus{
      -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
              box-shadow:0 0 0 1px #137cbd, 0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); }
    .bp3-dark .bp3-file-upload-input[readonly]{
      -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4);
              box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4); }
    .bp3-dark .bp3-file-upload-input:disabled, .bp3-dark .bp3-file-upload-input.bp3-disabled{
      -webkit-box-shadow:none;
              box-shadow:none;
      background:rgba(57, 75, 89, 0.5);
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark .bp3-file-upload-input::after{
      -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
              box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
      background-color:#394b59;
      background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.05)), to(rgba(255, 255, 255, 0)));
      background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.05), rgba(255, 255, 255, 0));
      color:#f5f8fa; }
      .bp3-dark .bp3-file-upload-input::after:hover, .bp3-dark .bp3-file-upload-input::after:active, .bp3-dark .bp3-file-upload-input::after.bp3-active{
        color:#f5f8fa; }
      .bp3-dark .bp3-file-upload-input::after:hover{
        -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
                box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
        background-color:#30404d; }
      .bp3-dark .bp3-file-upload-input::after:active, .bp3-dark .bp3-file-upload-input::after.bp3-active{
        -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2);
                box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2);
        background-color:#202b33;
        background-image:none; }
      .bp3-dark .bp3-file-upload-input::after:disabled, .bp3-dark .bp3-file-upload-input::after.bp3-disabled{
        -webkit-box-shadow:none;
                box-shadow:none;
        background-color:rgba(57, 75, 89, 0.5);
        background-image:none;
        color:rgba(167, 182, 194, 0.6); }
        .bp3-dark .bp3-file-upload-input::after:disabled.bp3-active, .bp3-dark .bp3-file-upload-input::after.bp3-disabled.bp3-active{
          background:rgba(57, 75, 89, 0.7); }
      .bp3-dark .bp3-file-upload-input::after .bp3-button-spinner .bp3-spinner-head{
        background:rgba(16, 22, 26, 0.5);
        stroke:#8a9ba8; }
    .bp3-dark .bp3-file-upload-input:hover::after{
      -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
              box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
      background-color:#30404d; }
    .bp3-dark .bp3-file-upload-input:active::after{
      -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2);
              box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2);
      background-color:#202b33;
      background-image:none; }

.bp3-file-upload-input::after{
  -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
          box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1); }
.bp3-form-group{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -webkit-box-orient:vertical;
  -webkit-box-direction:normal;
      -ms-flex-direction:column;
          flex-direction:column;
  margin:0 0 15px; }
  .bp3-form-group label.bp3-label{
    margin-bottom:5px; }
  .bp3-form-group .bp3-control{
    margin-top:7px; }
  .bp3-form-group .bp3-form-helper-text{
    margin-top:5px;
    color:#5c7080;
    font-size:12px; }
  .bp3-form-group.bp3-intent-primary .bp3-form-helper-text{
    color:#106ba3; }
  .bp3-form-group.bp3-intent-success .bp3-form-helper-text{
    color:#0d8050; }
  .bp3-form-group.bp3-intent-warning .bp3-form-helper-text{
    color:#bf7326; }
  .bp3-form-group.bp3-intent-danger .bp3-form-helper-text{
    color:#c23030; }
  .bp3-form-group.bp3-inline{
    -webkit-box-orient:horizontal;
    -webkit-box-direction:normal;
        -ms-flex-direction:row;
            flex-direction:row;
    -webkit-box-align:start;
        -ms-flex-align:start;
            align-items:flex-start; }
    .bp3-form-group.bp3-inline.bp3-large label.bp3-label{
      margin:0 10px 0 0;
      line-height:40px; }
    .bp3-form-group.bp3-inline label.bp3-label{
      margin:0 10px 0 0;
      line-height:30px; }
  .bp3-form-group.bp3-disabled .bp3-label,
  .bp3-form-group.bp3-disabled .bp3-text-muted,
  .bp3-form-group.bp3-disabled .bp3-form-helper-text{
    color:rgba(92, 112, 128, 0.6) !important; }
  .bp3-dark .bp3-form-group.bp3-intent-primary .bp3-form-helper-text{
    color:#48aff0; }
  .bp3-dark .bp3-form-group.bp3-intent-success .bp3-form-helper-text{
    color:#3dcc91; }
  .bp3-dark .bp3-form-group.bp3-intent-warning .bp3-form-helper-text{
    color:#ffb366; }
  .bp3-dark .bp3-form-group.bp3-intent-danger .bp3-form-helper-text{
    color:#ff7373; }
  .bp3-dark .bp3-form-group .bp3-form-helper-text{
    color:#a7b6c2; }
  .bp3-dark .bp3-form-group.bp3-disabled .bp3-label,
  .bp3-dark .bp3-form-group.bp3-disabled .bp3-text-muted,
  .bp3-dark .bp3-form-group.bp3-disabled .bp3-form-helper-text{
    color:rgba(167, 182, 194, 0.6) !important; }
.bp3-input-group{
  display:block;
  position:relative; }
  .bp3-input-group .bp3-input{
    position:relative;
    width:100%; }
    .bp3-input-group .bp3-input:not(:first-child){
      padding-left:30px; }
    .bp3-input-group .bp3-input:not(:last-child){
      padding-right:30px; }
  .bp3-input-group .bp3-input-action,
  .bp3-input-group > .bp3-button,
  .bp3-input-group > .bp3-icon{
    position:absolute;
    top:0; }
    .bp3-input-group .bp3-input-action:first-child,
    .bp3-input-group > .bp3-button:first-child,
    .bp3-input-group > .bp3-icon:first-child{
      left:0; }
    .bp3-input-group .bp3-input-action:last-child,
    .bp3-input-group > .bp3-button:last-child,
    .bp3-input-group > .bp3-icon:last-child{
      right:0; }
  .bp3-input-group .bp3-button{
    min-width:24px;
    min-height:24px;
    margin:3px;
    padding:0 7px; }
    .bp3-input-group .bp3-button:empty{
      padding:0; }
  .bp3-input-group > .bp3-icon{
    z-index:1;
    color:#5c7080; }
    .bp3-input-group > .bp3-icon:empty{
      line-height:1;
      font-family:"Icons16", sans-serif;
      font-size:16px;
      font-weight:400;
      font-style:normal;
      -moz-osx-font-smoothing:grayscale;
      -webkit-font-smoothing:antialiased; }
  .bp3-input-group > .bp3-icon,
  .bp3-input-group .bp3-input-action > .bp3-spinner{
    margin:7px; }
  .bp3-input-group .bp3-tag{
    margin:5px; }
  .bp3-input-group .bp3-input:not(:focus) + .bp3-button.bp3-minimal:not(:hover):not(:focus),
  .bp3-input-group .bp3-input:not(:focus) + .bp3-input-action .bp3-button.bp3-minimal:not(:hover):not(:focus){
    color:#5c7080; }
    .bp3-dark .bp3-input-group .bp3-input:not(:focus) + .bp3-button.bp3-minimal:not(:hover):not(:focus), .bp3-dark
    .bp3-input-group .bp3-input:not(:focus) + .bp3-input-action .bp3-button.bp3-minimal:not(:hover):not(:focus){
      color:#a7b6c2; }
    .bp3-input-group .bp3-input:not(:focus) + .bp3-button.bp3-minimal:not(:hover):not(:focus) .bp3-icon, .bp3-input-group .bp3-input:not(:focus) + .bp3-button.bp3-minimal:not(:hover):not(:focus) .bp3-icon-standard, .bp3-input-group .bp3-input:not(:focus) + .bp3-button.bp3-minimal:not(:hover):not(:focus) .bp3-icon-large,
    .bp3-input-group .bp3-input:not(:focus) + .bp3-input-action .bp3-button.bp3-minimal:not(:hover):not(:focus) .bp3-icon,
    .bp3-input-group .bp3-input:not(:focus) + .bp3-input-action .bp3-button.bp3-minimal:not(:hover):not(:focus) .bp3-icon-standard,
    .bp3-input-group .bp3-input:not(:focus) + .bp3-input-action .bp3-button.bp3-minimal:not(:hover):not(:focus) .bp3-icon-large{
      color:#5c7080; }
  .bp3-input-group .bp3-input:not(:focus) + .bp3-button.bp3-minimal:disabled,
  .bp3-input-group .bp3-input:not(:focus) + .bp3-input-action .bp3-button.bp3-minimal:disabled{
    color:rgba(92, 112, 128, 0.6) !important; }
    .bp3-input-group .bp3-input:not(:focus) + .bp3-button.bp3-minimal:disabled .bp3-icon, .bp3-input-group .bp3-input:not(:focus) + .bp3-button.bp3-minimal:disabled .bp3-icon-standard, .bp3-input-group .bp3-input:not(:focus) + .bp3-button.bp3-minimal:disabled .bp3-icon-large,
    .bp3-input-group .bp3-input:not(:focus) + .bp3-input-action .bp3-button.bp3-minimal:disabled .bp3-icon,
    .bp3-input-group .bp3-input:not(:focus) + .bp3-input-action .bp3-button.bp3-minimal:disabled .bp3-icon-standard,
    .bp3-input-group .bp3-input:not(:focus) + .bp3-input-action .bp3-button.bp3-minimal:disabled .bp3-icon-large{
      color:rgba(92, 112, 128, 0.6) !important; }
  .bp3-input-group.bp3-disabled{
    cursor:not-allowed; }
    .bp3-input-group.bp3-disabled .bp3-icon{
      color:rgba(92, 112, 128, 0.6); }
  .bp3-input-group.bp3-large .bp3-button{
    min-width:30px;
    min-height:30px;
    margin:5px; }
  .bp3-input-group.bp3-large > .bp3-icon,
  .bp3-input-group.bp3-large .bp3-input-action > .bp3-spinner{
    margin:12px; }
  .bp3-input-group.bp3-large .bp3-input{
    height:40px;
    line-height:40px;
    font-size:16px; }
    .bp3-input-group.bp3-large .bp3-input[type="search"], .bp3-input-group.bp3-large .bp3-input.bp3-round{
      padding:0 15px; }
    .bp3-input-group.bp3-large .bp3-input:not(:first-child){
      padding-left:40px; }
    .bp3-input-group.bp3-large .bp3-input:not(:last-child){
      padding-right:40px; }
  .bp3-input-group.bp3-small .bp3-button{
    min-width:20px;
    min-height:20px;
    margin:2px; }
  .bp3-input-group.bp3-small .bp3-tag{
    min-width:20px;
    min-height:20px;
    margin:2px; }
  .bp3-input-group.bp3-small > .bp3-icon,
  .bp3-input-group.bp3-small .bp3-input-action > .bp3-spinner{
    margin:4px; }
  .bp3-input-group.bp3-small .bp3-input{
    height:24px;
    padding-right:8px;
    padding-left:8px;
    line-height:24px;
    font-size:12px; }
    .bp3-input-group.bp3-small .bp3-input[type="search"], .bp3-input-group.bp3-small .bp3-input.bp3-round{
      padding:0 12px; }
    .bp3-input-group.bp3-small .bp3-input:not(:first-child){
      padding-left:24px; }
    .bp3-input-group.bp3-small .bp3-input:not(:last-child){
      padding-right:24px; }
  .bp3-input-group.bp3-fill{
    -webkit-box-flex:1;
        -ms-flex:1 1 auto;
            flex:1 1 auto;
    width:100%; }
  .bp3-input-group.bp3-round .bp3-button,
  .bp3-input-group.bp3-round .bp3-input,
  .bp3-input-group.bp3-round .bp3-tag{
    border-radius:30px; }
  .bp3-dark .bp3-input-group .bp3-icon{
    color:#a7b6c2; }
  .bp3-dark .bp3-input-group.bp3-disabled .bp3-icon{
    color:rgba(167, 182, 194, 0.6); }
  .bp3-input-group.bp3-intent-primary .bp3-input{
    -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px #137cbd, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px #137cbd, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
    .bp3-input-group.bp3-intent-primary .bp3-input:focus{
      -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
              box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
    .bp3-input-group.bp3-intent-primary .bp3-input[readonly]{
      -webkit-box-shadow:inset 0 0 0 1px #137cbd;
              box-shadow:inset 0 0 0 1px #137cbd; }
    .bp3-input-group.bp3-intent-primary .bp3-input:disabled, .bp3-input-group.bp3-intent-primary .bp3-input.bp3-disabled{
      -webkit-box-shadow:none;
              box-shadow:none; }
  .bp3-input-group.bp3-intent-primary > .bp3-icon{
    color:#106ba3; }
    .bp3-dark .bp3-input-group.bp3-intent-primary > .bp3-icon{
      color:#48aff0; }
  .bp3-input-group.bp3-intent-success .bp3-input{
    -webkit-box-shadow:0 0 0 0 rgba(15, 153, 96, 0), 0 0 0 0 rgba(15, 153, 96, 0), inset 0 0 0 1px #0f9960, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 0 rgba(15, 153, 96, 0), 0 0 0 0 rgba(15, 153, 96, 0), inset 0 0 0 1px #0f9960, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
    .bp3-input-group.bp3-intent-success .bp3-input:focus{
      -webkit-box-shadow:0 0 0 1px #0f9960, 0 0 0 3px rgba(15, 153, 96, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
              box-shadow:0 0 0 1px #0f9960, 0 0 0 3px rgba(15, 153, 96, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
    .bp3-input-group.bp3-intent-success .bp3-input[readonly]{
      -webkit-box-shadow:inset 0 0 0 1px #0f9960;
              box-shadow:inset 0 0 0 1px #0f9960; }
    .bp3-input-group.bp3-intent-success .bp3-input:disabled, .bp3-input-group.bp3-intent-success .bp3-input.bp3-disabled{
      -webkit-box-shadow:none;
              box-shadow:none; }
  .bp3-input-group.bp3-intent-success > .bp3-icon{
    color:#0d8050; }
    .bp3-dark .bp3-input-group.bp3-intent-success > .bp3-icon{
      color:#3dcc91; }
  .bp3-input-group.bp3-intent-warning .bp3-input{
    -webkit-box-shadow:0 0 0 0 rgba(217, 130, 43, 0), 0 0 0 0 rgba(217, 130, 43, 0), inset 0 0 0 1px #d9822b, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 0 rgba(217, 130, 43, 0), 0 0 0 0 rgba(217, 130, 43, 0), inset 0 0 0 1px #d9822b, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
    .bp3-input-group.bp3-intent-warning .bp3-input:focus{
      -webkit-box-shadow:0 0 0 1px #d9822b, 0 0 0 3px rgba(217, 130, 43, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
              box-shadow:0 0 0 1px #d9822b, 0 0 0 3px rgba(217, 130, 43, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
    .bp3-input-group.bp3-intent-warning .bp3-input[readonly]{
      -webkit-box-shadow:inset 0 0 0 1px #d9822b;
              box-shadow:inset 0 0 0 1px #d9822b; }
    .bp3-input-group.bp3-intent-warning .bp3-input:disabled, .bp3-input-group.bp3-intent-warning .bp3-input.bp3-disabled{
      -webkit-box-shadow:none;
              box-shadow:none; }
  .bp3-input-group.bp3-intent-warning > .bp3-icon{
    color:#bf7326; }
    .bp3-dark .bp3-input-group.bp3-intent-warning > .bp3-icon{
      color:#ffb366; }
  .bp3-input-group.bp3-intent-danger .bp3-input{
    -webkit-box-shadow:0 0 0 0 rgba(219, 55, 55, 0), 0 0 0 0 rgba(219, 55, 55, 0), inset 0 0 0 1px #db3737, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 0 rgba(219, 55, 55, 0), 0 0 0 0 rgba(219, 55, 55, 0), inset 0 0 0 1px #db3737, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
    .bp3-input-group.bp3-intent-danger .bp3-input:focus{
      -webkit-box-shadow:0 0 0 1px #db3737, 0 0 0 3px rgba(219, 55, 55, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
              box-shadow:0 0 0 1px #db3737, 0 0 0 3px rgba(219, 55, 55, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
    .bp3-input-group.bp3-intent-danger .bp3-input[readonly]{
      -webkit-box-shadow:inset 0 0 0 1px #db3737;
              box-shadow:inset 0 0 0 1px #db3737; }
    .bp3-input-group.bp3-intent-danger .bp3-input:disabled, .bp3-input-group.bp3-intent-danger .bp3-input.bp3-disabled{
      -webkit-box-shadow:none;
              box-shadow:none; }
  .bp3-input-group.bp3-intent-danger > .bp3-icon{
    color:#c23030; }
    .bp3-dark .bp3-input-group.bp3-intent-danger > .bp3-icon{
      color:#ff7373; }
.bp3-input{
  outline:none;
  border:none;
  border-radius:3px;
  -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2);
          box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2);
  background:#ffffff;
  height:30px;
  padding:0 10px;
  vertical-align:middle;
  line-height:30px;
  color:#182026;
  font-size:14px;
  font-weight:400;
  -webkit-transition:-webkit-box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9);
  transition:-webkit-box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9);
  transition:box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9);
  transition:box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-box-shadow 100ms cubic-bezier(0.4, 1, 0.75, 0.9);
  -webkit-appearance:none;
     -moz-appearance:none;
          appearance:none; }
  .bp3-input::-webkit-input-placeholder{
    opacity:1;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-input::-moz-placeholder{
    opacity:1;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-input:-ms-input-placeholder{
    opacity:1;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-input::-ms-input-placeholder{
    opacity:1;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-input::placeholder{
    opacity:1;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-input:focus, .bp3-input.bp3-active{
    -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
  .bp3-input[type="search"], .bp3-input.bp3-round{
    border-radius:30px;
    -webkit-box-sizing:border-box;
            box-sizing:border-box;
    padding-left:10px; }
  .bp3-input[readonly]{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.15);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.15); }
  .bp3-input:disabled, .bp3-input.bp3-disabled{
    -webkit-box-shadow:none;
            box-shadow:none;
    background:rgba(206, 217, 224, 0.5);
    cursor:not-allowed;
    color:rgba(92, 112, 128, 0.6);
    resize:none; }
  .bp3-input.bp3-large{
    height:40px;
    line-height:40px;
    font-size:16px; }
    .bp3-input.bp3-large[type="search"], .bp3-input.bp3-large.bp3-round{
      padding:0 15px; }
  .bp3-input.bp3-small{
    height:24px;
    padding-right:8px;
    padding-left:8px;
    line-height:24px;
    font-size:12px; }
    .bp3-input.bp3-small[type="search"], .bp3-input.bp3-small.bp3-round{
      padding:0 12px; }
  .bp3-input.bp3-fill{
    -webkit-box-flex:1;
        -ms-flex:1 1 auto;
            flex:1 1 auto;
    width:100%; }
  .bp3-dark .bp3-input{
    -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
    background:rgba(16, 22, 26, 0.3);
    color:#f5f8fa; }
    .bp3-dark .bp3-input::-webkit-input-placeholder{
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark .bp3-input::-moz-placeholder{
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark .bp3-input:-ms-input-placeholder{
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark .bp3-input::-ms-input-placeholder{
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark .bp3-input::placeholder{
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark .bp3-input:focus{
      -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
              box-shadow:0 0 0 1px #137cbd, 0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); }
    .bp3-dark .bp3-input[readonly]{
      -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4);
              box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4); }
    .bp3-dark .bp3-input:disabled, .bp3-dark .bp3-input.bp3-disabled{
      -webkit-box-shadow:none;
              box-shadow:none;
      background:rgba(57, 75, 89, 0.5);
      color:rgba(167, 182, 194, 0.6); }
  .bp3-input.bp3-intent-primary{
    -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px #137cbd, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px #137cbd, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
    .bp3-input.bp3-intent-primary:focus{
      -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
              box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
    .bp3-input.bp3-intent-primary[readonly]{
      -webkit-box-shadow:inset 0 0 0 1px #137cbd;
              box-shadow:inset 0 0 0 1px #137cbd; }
    .bp3-input.bp3-intent-primary:disabled, .bp3-input.bp3-intent-primary.bp3-disabled{
      -webkit-box-shadow:none;
              box-shadow:none; }
    .bp3-dark .bp3-input.bp3-intent-primary{
      -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px #137cbd, inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
              box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px #137cbd, inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); }
      .bp3-dark .bp3-input.bp3-intent-primary:focus{
        -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
                box-shadow:0 0 0 1px #137cbd, 0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); }
      .bp3-dark .bp3-input.bp3-intent-primary[readonly]{
        -webkit-box-shadow:inset 0 0 0 1px #137cbd;
                box-shadow:inset 0 0 0 1px #137cbd; }
      .bp3-dark .bp3-input.bp3-intent-primary:disabled, .bp3-dark .bp3-input.bp3-intent-primary.bp3-disabled{
        -webkit-box-shadow:none;
                box-shadow:none; }
  .bp3-input.bp3-intent-success{
    -webkit-box-shadow:0 0 0 0 rgba(15, 153, 96, 0), 0 0 0 0 rgba(15, 153, 96, 0), inset 0 0 0 1px #0f9960, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 0 rgba(15, 153, 96, 0), 0 0 0 0 rgba(15, 153, 96, 0), inset 0 0 0 1px #0f9960, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
    .bp3-input.bp3-intent-success:focus{
      -webkit-box-shadow:0 0 0 1px #0f9960, 0 0 0 3px rgba(15, 153, 96, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
              box-shadow:0 0 0 1px #0f9960, 0 0 0 3px rgba(15, 153, 96, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
    .bp3-input.bp3-intent-success[readonly]{
      -webkit-box-shadow:inset 0 0 0 1px #0f9960;
              box-shadow:inset 0 0 0 1px #0f9960; }
    .bp3-input.bp3-intent-success:disabled, .bp3-input.bp3-intent-success.bp3-disabled{
      -webkit-box-shadow:none;
              box-shadow:none; }
    .bp3-dark .bp3-input.bp3-intent-success{
      -webkit-box-shadow:0 0 0 0 rgba(15, 153, 96, 0), 0 0 0 0 rgba(15, 153, 96, 0), 0 0 0 0 rgba(15, 153, 96, 0), inset 0 0 0 1px #0f9960, inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
              box-shadow:0 0 0 0 rgba(15, 153, 96, 0), 0 0 0 0 rgba(15, 153, 96, 0), 0 0 0 0 rgba(15, 153, 96, 0), inset 0 0 0 1px #0f9960, inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); }
      .bp3-dark .bp3-input.bp3-intent-success:focus{
        -webkit-box-shadow:0 0 0 1px #0f9960, 0 0 0 1px #0f9960, 0 0 0 3px rgba(15, 153, 96, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
                box-shadow:0 0 0 1px #0f9960, 0 0 0 1px #0f9960, 0 0 0 3px rgba(15, 153, 96, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); }
      .bp3-dark .bp3-input.bp3-intent-success[readonly]{
        -webkit-box-shadow:inset 0 0 0 1px #0f9960;
                box-shadow:inset 0 0 0 1px #0f9960; }
      .bp3-dark .bp3-input.bp3-intent-success:disabled, .bp3-dark .bp3-input.bp3-intent-success.bp3-disabled{
        -webkit-box-shadow:none;
                box-shadow:none; }
  .bp3-input.bp3-intent-warning{
    -webkit-box-shadow:0 0 0 0 rgba(217, 130, 43, 0), 0 0 0 0 rgba(217, 130, 43, 0), inset 0 0 0 1px #d9822b, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 0 rgba(217, 130, 43, 0), 0 0 0 0 rgba(217, 130, 43, 0), inset 0 0 0 1px #d9822b, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
    .bp3-input.bp3-intent-warning:focus{
      -webkit-box-shadow:0 0 0 1px #d9822b, 0 0 0 3px rgba(217, 130, 43, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
              box-shadow:0 0 0 1px #d9822b, 0 0 0 3px rgba(217, 130, 43, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
    .bp3-input.bp3-intent-warning[readonly]{
      -webkit-box-shadow:inset 0 0 0 1px #d9822b;
              box-shadow:inset 0 0 0 1px #d9822b; }
    .bp3-input.bp3-intent-warning:disabled, .bp3-input.bp3-intent-warning.bp3-disabled{
      -webkit-box-shadow:none;
              box-shadow:none; }
    .bp3-dark .bp3-input.bp3-intent-warning{
      -webkit-box-shadow:0 0 0 0 rgba(217, 130, 43, 0), 0 0 0 0 rgba(217, 130, 43, 0), 0 0 0 0 rgba(217, 130, 43, 0), inset 0 0 0 1px #d9822b, inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
              box-shadow:0 0 0 0 rgba(217, 130, 43, 0), 0 0 0 0 rgba(217, 130, 43, 0), 0 0 0 0 rgba(217, 130, 43, 0), inset 0 0 0 1px #d9822b, inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); }
      .bp3-dark .bp3-input.bp3-intent-warning:focus{
        -webkit-box-shadow:0 0 0 1px #d9822b, 0 0 0 1px #d9822b, 0 0 0 3px rgba(217, 130, 43, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
                box-shadow:0 0 0 1px #d9822b, 0 0 0 1px #d9822b, 0 0 0 3px rgba(217, 130, 43, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); }
      .bp3-dark .bp3-input.bp3-intent-warning[readonly]{
        -webkit-box-shadow:inset 0 0 0 1px #d9822b;
                box-shadow:inset 0 0 0 1px #d9822b; }
      .bp3-dark .bp3-input.bp3-intent-warning:disabled, .bp3-dark .bp3-input.bp3-intent-warning.bp3-disabled{
        -webkit-box-shadow:none;
                box-shadow:none; }
  .bp3-input.bp3-intent-danger{
    -webkit-box-shadow:0 0 0 0 rgba(219, 55, 55, 0), 0 0 0 0 rgba(219, 55, 55, 0), inset 0 0 0 1px #db3737, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 0 rgba(219, 55, 55, 0), 0 0 0 0 rgba(219, 55, 55, 0), inset 0 0 0 1px #db3737, inset 0 0 0 1px rgba(16, 22, 26, 0.15), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
    .bp3-input.bp3-intent-danger:focus{
      -webkit-box-shadow:0 0 0 1px #db3737, 0 0 0 3px rgba(219, 55, 55, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
              box-shadow:0 0 0 1px #db3737, 0 0 0 3px rgba(219, 55, 55, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
    .bp3-input.bp3-intent-danger[readonly]{
      -webkit-box-shadow:inset 0 0 0 1px #db3737;
              box-shadow:inset 0 0 0 1px #db3737; }
    .bp3-input.bp3-intent-danger:disabled, .bp3-input.bp3-intent-danger.bp3-disabled{
      -webkit-box-shadow:none;
              box-shadow:none; }
    .bp3-dark .bp3-input.bp3-intent-danger{
      -webkit-box-shadow:0 0 0 0 rgba(219, 55, 55, 0), 0 0 0 0 rgba(219, 55, 55, 0), 0 0 0 0 rgba(219, 55, 55, 0), inset 0 0 0 1px #db3737, inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
              box-shadow:0 0 0 0 rgba(219, 55, 55, 0), 0 0 0 0 rgba(219, 55, 55, 0), 0 0 0 0 rgba(219, 55, 55, 0), inset 0 0 0 1px #db3737, inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); }
      .bp3-dark .bp3-input.bp3-intent-danger:focus{
        -webkit-box-shadow:0 0 0 1px #db3737, 0 0 0 1px #db3737, 0 0 0 3px rgba(219, 55, 55, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
                box-shadow:0 0 0 1px #db3737, 0 0 0 1px #db3737, 0 0 0 3px rgba(219, 55, 55, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); }
      .bp3-dark .bp3-input.bp3-intent-danger[readonly]{
        -webkit-box-shadow:inset 0 0 0 1px #db3737;
                box-shadow:inset 0 0 0 1px #db3737; }
      .bp3-dark .bp3-input.bp3-intent-danger:disabled, .bp3-dark .bp3-input.bp3-intent-danger.bp3-disabled{
        -webkit-box-shadow:none;
                box-shadow:none; }
  .bp3-input::-ms-clear{
    display:none; }
textarea.bp3-input{
  max-width:100%;
  padding:10px; }
  textarea.bp3-input, textarea.bp3-input.bp3-large, textarea.bp3-input.bp3-small{
    height:auto;
    line-height:inherit; }
  textarea.bp3-input.bp3-small{
    padding:8px; }
  .bp3-dark textarea.bp3-input{
    -webkit-box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), 0 0 0 0 rgba(19, 124, 189, 0), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
    background:rgba(16, 22, 26, 0.3);
    color:#f5f8fa; }
    .bp3-dark textarea.bp3-input::-webkit-input-placeholder{
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark textarea.bp3-input::-moz-placeholder{
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark textarea.bp3-input:-ms-input-placeholder{
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark textarea.bp3-input::-ms-input-placeholder{
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark textarea.bp3-input::placeholder{
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark textarea.bp3-input:focus{
      -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
              box-shadow:0 0 0 1px #137cbd, 0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); }
    .bp3-dark textarea.bp3-input[readonly]{
      -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4);
              box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.4); }
    .bp3-dark textarea.bp3-input:disabled, .bp3-dark textarea.bp3-input.bp3-disabled{
      -webkit-box-shadow:none;
              box-shadow:none;
      background:rgba(57, 75, 89, 0.5);
      color:rgba(167, 182, 194, 0.6); }
label.bp3-label{
  display:block;
  margin-top:0;
  margin-bottom:15px; }
  label.bp3-label .bp3-html-select,
  label.bp3-label .bp3-input,
  label.bp3-label .bp3-select,
  label.bp3-label .bp3-slider,
  label.bp3-label .bp3-popover-wrapper{
    display:block;
    margin-top:5px;
    text-transform:none; }
  label.bp3-label .bp3-button-group{
    margin-top:5px; }
  label.bp3-label .bp3-select select,
  label.bp3-label .bp3-html-select select{
    width:100%;
    vertical-align:top;
    font-weight:400; }
  label.bp3-label.bp3-disabled,
  label.bp3-label.bp3-disabled .bp3-text-muted{
    color:rgba(92, 112, 128, 0.6); }
  label.bp3-label.bp3-inline{
    line-height:30px; }
    label.bp3-label.bp3-inline .bp3-html-select,
    label.bp3-label.bp3-inline .bp3-input,
    label.bp3-label.bp3-inline .bp3-input-group,
    label.bp3-label.bp3-inline .bp3-select,
    label.bp3-label.bp3-inline .bp3-popover-wrapper{
      display:inline-block;
      margin:0 0 0 5px;
      vertical-align:top; }
    label.bp3-label.bp3-inline .bp3-button-group{
      margin:0 0 0 5px; }
    label.bp3-label.bp3-inline .bp3-input-group .bp3-input{
      margin-left:0; }
    label.bp3-label.bp3-inline.bp3-large{
      line-height:40px; }
  label.bp3-label:not(.bp3-inline) .bp3-popover-target{
    display:block; }
  .bp3-dark label.bp3-label{
    color:#f5f8fa; }
    .bp3-dark label.bp3-label.bp3-disabled,
    .bp3-dark label.bp3-label.bp3-disabled .bp3-text-muted{
      color:rgba(167, 182, 194, 0.6); }
.bp3-numeric-input .bp3-button-group.bp3-vertical > .bp3-button{
  -webkit-box-flex:1;
      -ms-flex:1 1 14px;
          flex:1 1 14px;
  width:30px;
  min-height:0;
  padding:0; }
  .bp3-numeric-input .bp3-button-group.bp3-vertical > .bp3-button:first-child{
    border-radius:0 3px 0 0; }
  .bp3-numeric-input .bp3-button-group.bp3-vertical > .bp3-button:last-child{
    border-radius:0 0 3px 0; }

.bp3-numeric-input .bp3-button-group.bp3-vertical:first-child > .bp3-button:first-child{
  border-radius:3px 0 0 0; }

.bp3-numeric-input .bp3-button-group.bp3-vertical:first-child > .bp3-button:last-child{
  border-radius:0 0 0 3px; }

.bp3-numeric-input.bp3-large .bp3-button-group.bp3-vertical > .bp3-button{
  width:40px; }

form{
  display:block; }
.bp3-html-select select,
.bp3-select select{
  display:-webkit-inline-box;
  display:-ms-inline-flexbox;
  display:inline-flex;
  -webkit-box-orient:horizontal;
  -webkit-box-direction:normal;
      -ms-flex-direction:row;
          flex-direction:row;
  -webkit-box-align:center;
      -ms-flex-align:center;
          align-items:center;
  -webkit-box-pack:center;
      -ms-flex-pack:center;
          justify-content:center;
  border:none;
  border-radius:3px;
  cursor:pointer;
  padding:5px 10px;
  vertical-align:middle;
  text-align:left;
  font-size:14px;
  -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
          box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
  background-color:#f5f8fa;
  background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.8)), to(rgba(255, 255, 255, 0)));
  background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.8), rgba(255, 255, 255, 0));
  color:#182026;
  border-radius:3px;
  width:100%;
  height:30px;
  padding:0 25px 0 10px;
  -moz-appearance:none;
  -webkit-appearance:none; }
  .bp3-html-select select > *, .bp3-select select > *{
    -webkit-box-flex:0;
        -ms-flex-positive:0;
            flex-grow:0;
    -ms-flex-negative:0;
        flex-shrink:0; }
  .bp3-html-select select > .bp3-fill, .bp3-select select > .bp3-fill{
    -webkit-box-flex:1;
        -ms-flex-positive:1;
            flex-grow:1;
    -ms-flex-negative:1;
        flex-shrink:1; }
  .bp3-html-select select::before,
  .bp3-select select::before, .bp3-html-select select > *, .bp3-select select > *{
    margin-right:7px; }
  .bp3-html-select select:empty::before,
  .bp3-select select:empty::before,
  .bp3-html-select select > :last-child,
  .bp3-select select > :last-child{
    margin-right:0; }
  .bp3-html-select select:hover,
  .bp3-select select:hover{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
    background-clip:padding-box;
    background-color:#ebf1f5; }
  .bp3-html-select select:active,
  .bp3-select select:active, .bp3-html-select select.bp3-active,
  .bp3-select select.bp3-active{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2);
    background-color:#d8e1e8;
    background-image:none; }
  .bp3-html-select select:disabled,
  .bp3-select select:disabled, .bp3-html-select select.bp3-disabled,
  .bp3-select select.bp3-disabled{
    outline:none;
    -webkit-box-shadow:none;
            box-shadow:none;
    background-color:rgba(206, 217, 224, 0.5);
    background-image:none;
    cursor:not-allowed;
    color:rgba(92, 112, 128, 0.6); }
    .bp3-html-select select:disabled.bp3-active,
    .bp3-select select:disabled.bp3-active, .bp3-html-select select:disabled.bp3-active:hover,
    .bp3-select select:disabled.bp3-active:hover, .bp3-html-select select.bp3-disabled.bp3-active,
    .bp3-select select.bp3-disabled.bp3-active, .bp3-html-select select.bp3-disabled.bp3-active:hover,
    .bp3-select select.bp3-disabled.bp3-active:hover{
      background:rgba(206, 217, 224, 0.7); }

.bp3-html-select.bp3-minimal select,
.bp3-select.bp3-minimal select{
  -webkit-box-shadow:none;
          box-shadow:none;
  background:none; }
  .bp3-html-select.bp3-minimal select:hover,
  .bp3-select.bp3-minimal select:hover{
    -webkit-box-shadow:none;
            box-shadow:none;
    background:rgba(167, 182, 194, 0.3);
    text-decoration:none;
    color:#182026; }
  .bp3-html-select.bp3-minimal select:active,
  .bp3-select.bp3-minimal select:active, .bp3-html-select.bp3-minimal select.bp3-active,
  .bp3-select.bp3-minimal select.bp3-active{
    -webkit-box-shadow:none;
            box-shadow:none;
    background:rgba(115, 134, 148, 0.3);
    color:#182026; }
  .bp3-html-select.bp3-minimal select:disabled,
  .bp3-select.bp3-minimal select:disabled, .bp3-html-select.bp3-minimal select:disabled:hover,
  .bp3-select.bp3-minimal select:disabled:hover, .bp3-html-select.bp3-minimal select.bp3-disabled,
  .bp3-select.bp3-minimal select.bp3-disabled, .bp3-html-select.bp3-minimal select.bp3-disabled:hover,
  .bp3-select.bp3-minimal select.bp3-disabled:hover{
    background:none;
    cursor:not-allowed;
    color:rgba(92, 112, 128, 0.6); }
    .bp3-html-select.bp3-minimal select:disabled.bp3-active,
    .bp3-select.bp3-minimal select:disabled.bp3-active, .bp3-html-select.bp3-minimal select:disabled:hover.bp3-active,
    .bp3-select.bp3-minimal select:disabled:hover.bp3-active, .bp3-html-select.bp3-minimal select.bp3-disabled.bp3-active,
    .bp3-select.bp3-minimal select.bp3-disabled.bp3-active, .bp3-html-select.bp3-minimal select.bp3-disabled:hover.bp3-active,
    .bp3-select.bp3-minimal select.bp3-disabled:hover.bp3-active{
      background:rgba(115, 134, 148, 0.3); }
  .bp3-dark .bp3-html-select.bp3-minimal select, .bp3-html-select.bp3-minimal .bp3-dark select,
  .bp3-dark .bp3-select.bp3-minimal select, .bp3-select.bp3-minimal .bp3-dark select{
    -webkit-box-shadow:none;
            box-shadow:none;
    background:none;
    color:inherit; }
    .bp3-dark .bp3-html-select.bp3-minimal select:hover, .bp3-html-select.bp3-minimal .bp3-dark select:hover,
    .bp3-dark .bp3-select.bp3-minimal select:hover, .bp3-select.bp3-minimal .bp3-dark select:hover, .bp3-dark .bp3-html-select.bp3-minimal select:active, .bp3-html-select.bp3-minimal .bp3-dark select:active,
    .bp3-dark .bp3-select.bp3-minimal select:active, .bp3-select.bp3-minimal .bp3-dark select:active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-active,
    .bp3-dark .bp3-select.bp3-minimal select.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-active{
      -webkit-box-shadow:none;
              box-shadow:none;
      background:none; }
    .bp3-dark .bp3-html-select.bp3-minimal select:hover, .bp3-html-select.bp3-minimal .bp3-dark select:hover,
    .bp3-dark .bp3-select.bp3-minimal select:hover, .bp3-select.bp3-minimal .bp3-dark select:hover{
      background:rgba(138, 155, 168, 0.15); }
    .bp3-dark .bp3-html-select.bp3-minimal select:active, .bp3-html-select.bp3-minimal .bp3-dark select:active,
    .bp3-dark .bp3-select.bp3-minimal select:active, .bp3-select.bp3-minimal .bp3-dark select:active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-active,
    .bp3-dark .bp3-select.bp3-minimal select.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-active{
      background:rgba(138, 155, 168, 0.3);
      color:#f5f8fa; }
    .bp3-dark .bp3-html-select.bp3-minimal select:disabled, .bp3-html-select.bp3-minimal .bp3-dark select:disabled,
    .bp3-dark .bp3-select.bp3-minimal select:disabled, .bp3-select.bp3-minimal .bp3-dark select:disabled, .bp3-dark .bp3-html-select.bp3-minimal select:disabled:hover, .bp3-html-select.bp3-minimal .bp3-dark select:disabled:hover,
    .bp3-dark .bp3-select.bp3-minimal select:disabled:hover, .bp3-select.bp3-minimal .bp3-dark select:disabled:hover, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-disabled, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-disabled,
    .bp3-dark .bp3-select.bp3-minimal select.bp3-disabled, .bp3-select.bp3-minimal .bp3-dark select.bp3-disabled, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-disabled:hover, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-disabled:hover,
    .bp3-dark .bp3-select.bp3-minimal select.bp3-disabled:hover, .bp3-select.bp3-minimal .bp3-dark select.bp3-disabled:hover{
      background:none;
      cursor:not-allowed;
      color:rgba(167, 182, 194, 0.6); }
      .bp3-dark .bp3-html-select.bp3-minimal select:disabled.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select:disabled.bp3-active,
      .bp3-dark .bp3-select.bp3-minimal select:disabled.bp3-active, .bp3-select.bp3-minimal .bp3-dark select:disabled.bp3-active, .bp3-dark .bp3-html-select.bp3-minimal select:disabled:hover.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select:disabled:hover.bp3-active,
      .bp3-dark .bp3-select.bp3-minimal select:disabled:hover.bp3-active, .bp3-select.bp3-minimal .bp3-dark select:disabled:hover.bp3-active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-disabled.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-disabled.bp3-active,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-disabled.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-disabled.bp3-active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-disabled:hover.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-disabled:hover.bp3-active,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-disabled:hover.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-disabled:hover.bp3-active{
        background:rgba(138, 155, 168, 0.3); }
  .bp3-html-select.bp3-minimal select.bp3-intent-primary,
  .bp3-select.bp3-minimal select.bp3-intent-primary{
    color:#106ba3; }
    .bp3-html-select.bp3-minimal select.bp3-intent-primary:hover,
    .bp3-select.bp3-minimal select.bp3-intent-primary:hover, .bp3-html-select.bp3-minimal select.bp3-intent-primary:active,
    .bp3-select.bp3-minimal select.bp3-intent-primary:active, .bp3-html-select.bp3-minimal select.bp3-intent-primary.bp3-active,
    .bp3-select.bp3-minimal select.bp3-intent-primary.bp3-active{
      -webkit-box-shadow:none;
              box-shadow:none;
      background:none;
      color:#106ba3; }
    .bp3-html-select.bp3-minimal select.bp3-intent-primary:hover,
    .bp3-select.bp3-minimal select.bp3-intent-primary:hover{
      background:rgba(19, 124, 189, 0.15);
      color:#106ba3; }
    .bp3-html-select.bp3-minimal select.bp3-intent-primary:active,
    .bp3-select.bp3-minimal select.bp3-intent-primary:active, .bp3-html-select.bp3-minimal select.bp3-intent-primary.bp3-active,
    .bp3-select.bp3-minimal select.bp3-intent-primary.bp3-active{
      background:rgba(19, 124, 189, 0.3);
      color:#106ba3; }
    .bp3-html-select.bp3-minimal select.bp3-intent-primary:disabled,
    .bp3-select.bp3-minimal select.bp3-intent-primary:disabled, .bp3-html-select.bp3-minimal select.bp3-intent-primary.bp3-disabled,
    .bp3-select.bp3-minimal select.bp3-intent-primary.bp3-disabled{
      background:none;
      color:rgba(16, 107, 163, 0.5); }
      .bp3-html-select.bp3-minimal select.bp3-intent-primary:disabled.bp3-active,
      .bp3-select.bp3-minimal select.bp3-intent-primary:disabled.bp3-active, .bp3-html-select.bp3-minimal select.bp3-intent-primary.bp3-disabled.bp3-active,
      .bp3-select.bp3-minimal select.bp3-intent-primary.bp3-disabled.bp3-active{
        background:rgba(19, 124, 189, 0.3); }
    .bp3-html-select.bp3-minimal select.bp3-intent-primary .bp3-button-spinner .bp3-spinner-head, .bp3-select.bp3-minimal select.bp3-intent-primary .bp3-button-spinner .bp3-spinner-head{
      stroke:#106ba3; }
    .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-primary, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-primary,
    .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-primary, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-primary{
      color:#48aff0; }
      .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-primary:hover, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-primary:hover,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-primary:hover, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-primary:hover{
        background:rgba(19, 124, 189, 0.2);
        color:#48aff0; }
      .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-primary:active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-primary:active,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-primary:active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-primary:active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-primary.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-primary.bp3-active,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-primary.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-primary.bp3-active{
        background:rgba(19, 124, 189, 0.3);
        color:#48aff0; }
      .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-primary:disabled, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-primary:disabled,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-primary:disabled, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-primary:disabled, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-primary.bp3-disabled, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-primary.bp3-disabled,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-primary.bp3-disabled, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-primary.bp3-disabled{
        background:none;
        color:rgba(72, 175, 240, 0.5); }
        .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-primary:disabled.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-primary:disabled.bp3-active,
        .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-primary:disabled.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-primary:disabled.bp3-active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-primary.bp3-disabled.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-primary.bp3-disabled.bp3-active,
        .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-primary.bp3-disabled.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-primary.bp3-disabled.bp3-active{
          background:rgba(19, 124, 189, 0.3); }
  .bp3-html-select.bp3-minimal select.bp3-intent-success,
  .bp3-select.bp3-minimal select.bp3-intent-success{
    color:#0d8050; }
    .bp3-html-select.bp3-minimal select.bp3-intent-success:hover,
    .bp3-select.bp3-minimal select.bp3-intent-success:hover, .bp3-html-select.bp3-minimal select.bp3-intent-success:active,
    .bp3-select.bp3-minimal select.bp3-intent-success:active, .bp3-html-select.bp3-minimal select.bp3-intent-success.bp3-active,
    .bp3-select.bp3-minimal select.bp3-intent-success.bp3-active{
      -webkit-box-shadow:none;
              box-shadow:none;
      background:none;
      color:#0d8050; }
    .bp3-html-select.bp3-minimal select.bp3-intent-success:hover,
    .bp3-select.bp3-minimal select.bp3-intent-success:hover{
      background:rgba(15, 153, 96, 0.15);
      color:#0d8050; }
    .bp3-html-select.bp3-minimal select.bp3-intent-success:active,
    .bp3-select.bp3-minimal select.bp3-intent-success:active, .bp3-html-select.bp3-minimal select.bp3-intent-success.bp3-active,
    .bp3-select.bp3-minimal select.bp3-intent-success.bp3-active{
      background:rgba(15, 153, 96, 0.3);
      color:#0d8050; }
    .bp3-html-select.bp3-minimal select.bp3-intent-success:disabled,
    .bp3-select.bp3-minimal select.bp3-intent-success:disabled, .bp3-html-select.bp3-minimal select.bp3-intent-success.bp3-disabled,
    .bp3-select.bp3-minimal select.bp3-intent-success.bp3-disabled{
      background:none;
      color:rgba(13, 128, 80, 0.5); }
      .bp3-html-select.bp3-minimal select.bp3-intent-success:disabled.bp3-active,
      .bp3-select.bp3-minimal select.bp3-intent-success:disabled.bp3-active, .bp3-html-select.bp3-minimal select.bp3-intent-success.bp3-disabled.bp3-active,
      .bp3-select.bp3-minimal select.bp3-intent-success.bp3-disabled.bp3-active{
        background:rgba(15, 153, 96, 0.3); }
    .bp3-html-select.bp3-minimal select.bp3-intent-success .bp3-button-spinner .bp3-spinner-head, .bp3-select.bp3-minimal select.bp3-intent-success .bp3-button-spinner .bp3-spinner-head{
      stroke:#0d8050; }
    .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-success, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-success,
    .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-success, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-success{
      color:#3dcc91; }
      .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-success:hover, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-success:hover,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-success:hover, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-success:hover{
        background:rgba(15, 153, 96, 0.2);
        color:#3dcc91; }
      .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-success:active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-success:active,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-success:active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-success:active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-success.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-success.bp3-active,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-success.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-success.bp3-active{
        background:rgba(15, 153, 96, 0.3);
        color:#3dcc91; }
      .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-success:disabled, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-success:disabled,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-success:disabled, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-success:disabled, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-success.bp3-disabled, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-success.bp3-disabled,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-success.bp3-disabled, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-success.bp3-disabled{
        background:none;
        color:rgba(61, 204, 145, 0.5); }
        .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-success:disabled.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-success:disabled.bp3-active,
        .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-success:disabled.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-success:disabled.bp3-active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-success.bp3-disabled.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-success.bp3-disabled.bp3-active,
        .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-success.bp3-disabled.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-success.bp3-disabled.bp3-active{
          background:rgba(15, 153, 96, 0.3); }
  .bp3-html-select.bp3-minimal select.bp3-intent-warning,
  .bp3-select.bp3-minimal select.bp3-intent-warning{
    color:#bf7326; }
    .bp3-html-select.bp3-minimal select.bp3-intent-warning:hover,
    .bp3-select.bp3-minimal select.bp3-intent-warning:hover, .bp3-html-select.bp3-minimal select.bp3-intent-warning:active,
    .bp3-select.bp3-minimal select.bp3-intent-warning:active, .bp3-html-select.bp3-minimal select.bp3-intent-warning.bp3-active,
    .bp3-select.bp3-minimal select.bp3-intent-warning.bp3-active{
      -webkit-box-shadow:none;
              box-shadow:none;
      background:none;
      color:#bf7326; }
    .bp3-html-select.bp3-minimal select.bp3-intent-warning:hover,
    .bp3-select.bp3-minimal select.bp3-intent-warning:hover{
      background:rgba(217, 130, 43, 0.15);
      color:#bf7326; }
    .bp3-html-select.bp3-minimal select.bp3-intent-warning:active,
    .bp3-select.bp3-minimal select.bp3-intent-warning:active, .bp3-html-select.bp3-minimal select.bp3-intent-warning.bp3-active,
    .bp3-select.bp3-minimal select.bp3-intent-warning.bp3-active{
      background:rgba(217, 130, 43, 0.3);
      color:#bf7326; }
    .bp3-html-select.bp3-minimal select.bp3-intent-warning:disabled,
    .bp3-select.bp3-minimal select.bp3-intent-warning:disabled, .bp3-html-select.bp3-minimal select.bp3-intent-warning.bp3-disabled,
    .bp3-select.bp3-minimal select.bp3-intent-warning.bp3-disabled{
      background:none;
      color:rgba(191, 115, 38, 0.5); }
      .bp3-html-select.bp3-minimal select.bp3-intent-warning:disabled.bp3-active,
      .bp3-select.bp3-minimal select.bp3-intent-warning:disabled.bp3-active, .bp3-html-select.bp3-minimal select.bp3-intent-warning.bp3-disabled.bp3-active,
      .bp3-select.bp3-minimal select.bp3-intent-warning.bp3-disabled.bp3-active{
        background:rgba(217, 130, 43, 0.3); }
    .bp3-html-select.bp3-minimal select.bp3-intent-warning .bp3-button-spinner .bp3-spinner-head, .bp3-select.bp3-minimal select.bp3-intent-warning .bp3-button-spinner .bp3-spinner-head{
      stroke:#bf7326; }
    .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-warning, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-warning,
    .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-warning, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-warning{
      color:#ffb366; }
      .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-warning:hover, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-warning:hover,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-warning:hover, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-warning:hover{
        background:rgba(217, 130, 43, 0.2);
        color:#ffb366; }
      .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-warning:active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-warning:active,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-warning:active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-warning:active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-warning.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-warning.bp3-active,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-warning.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-warning.bp3-active{
        background:rgba(217, 130, 43, 0.3);
        color:#ffb366; }
      .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-warning:disabled, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-warning:disabled,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-warning:disabled, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-warning:disabled, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-warning.bp3-disabled, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-warning.bp3-disabled,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-warning.bp3-disabled, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-warning.bp3-disabled{
        background:none;
        color:rgba(255, 179, 102, 0.5); }
        .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-warning:disabled.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-warning:disabled.bp3-active,
        .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-warning:disabled.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-warning:disabled.bp3-active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-warning.bp3-disabled.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-warning.bp3-disabled.bp3-active,
        .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-warning.bp3-disabled.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-warning.bp3-disabled.bp3-active{
          background:rgba(217, 130, 43, 0.3); }
  .bp3-html-select.bp3-minimal select.bp3-intent-danger,
  .bp3-select.bp3-minimal select.bp3-intent-danger{
    color:#c23030; }
    .bp3-html-select.bp3-minimal select.bp3-intent-danger:hover,
    .bp3-select.bp3-minimal select.bp3-intent-danger:hover, .bp3-html-select.bp3-minimal select.bp3-intent-danger:active,
    .bp3-select.bp3-minimal select.bp3-intent-danger:active, .bp3-html-select.bp3-minimal select.bp3-intent-danger.bp3-active,
    .bp3-select.bp3-minimal select.bp3-intent-danger.bp3-active{
      -webkit-box-shadow:none;
              box-shadow:none;
      background:none;
      color:#c23030; }
    .bp3-html-select.bp3-minimal select.bp3-intent-danger:hover,
    .bp3-select.bp3-minimal select.bp3-intent-danger:hover{
      background:rgba(219, 55, 55, 0.15);
      color:#c23030; }
    .bp3-html-select.bp3-minimal select.bp3-intent-danger:active,
    .bp3-select.bp3-minimal select.bp3-intent-danger:active, .bp3-html-select.bp3-minimal select.bp3-intent-danger.bp3-active,
    .bp3-select.bp3-minimal select.bp3-intent-danger.bp3-active{
      background:rgba(219, 55, 55, 0.3);
      color:#c23030; }
    .bp3-html-select.bp3-minimal select.bp3-intent-danger:disabled,
    .bp3-select.bp3-minimal select.bp3-intent-danger:disabled, .bp3-html-select.bp3-minimal select.bp3-intent-danger.bp3-disabled,
    .bp3-select.bp3-minimal select.bp3-intent-danger.bp3-disabled{
      background:none;
      color:rgba(194, 48, 48, 0.5); }
      .bp3-html-select.bp3-minimal select.bp3-intent-danger:disabled.bp3-active,
      .bp3-select.bp3-minimal select.bp3-intent-danger:disabled.bp3-active, .bp3-html-select.bp3-minimal select.bp3-intent-danger.bp3-disabled.bp3-active,
      .bp3-select.bp3-minimal select.bp3-intent-danger.bp3-disabled.bp3-active{
        background:rgba(219, 55, 55, 0.3); }
    .bp3-html-select.bp3-minimal select.bp3-intent-danger .bp3-button-spinner .bp3-spinner-head, .bp3-select.bp3-minimal select.bp3-intent-danger .bp3-button-spinner .bp3-spinner-head{
      stroke:#c23030; }
    .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-danger, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-danger,
    .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-danger, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-danger{
      color:#ff7373; }
      .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-danger:hover, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-danger:hover,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-danger:hover, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-danger:hover{
        background:rgba(219, 55, 55, 0.2);
        color:#ff7373; }
      .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-danger:active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-danger:active,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-danger:active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-danger:active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-danger.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-danger.bp3-active,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-danger.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-danger.bp3-active{
        background:rgba(219, 55, 55, 0.3);
        color:#ff7373; }
      .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-danger:disabled, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-danger:disabled,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-danger:disabled, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-danger:disabled, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-danger.bp3-disabled, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-danger.bp3-disabled,
      .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-danger.bp3-disabled, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-danger.bp3-disabled{
        background:none;
        color:rgba(255, 115, 115, 0.5); }
        .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-danger:disabled.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-danger:disabled.bp3-active,
        .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-danger:disabled.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-danger:disabled.bp3-active, .bp3-dark .bp3-html-select.bp3-minimal select.bp3-intent-danger.bp3-disabled.bp3-active, .bp3-html-select.bp3-minimal .bp3-dark select.bp3-intent-danger.bp3-disabled.bp3-active,
        .bp3-dark .bp3-select.bp3-minimal select.bp3-intent-danger.bp3-disabled.bp3-active, .bp3-select.bp3-minimal .bp3-dark select.bp3-intent-danger.bp3-disabled.bp3-active{
          background:rgba(219, 55, 55, 0.3); }

.bp3-html-select.bp3-large select,
.bp3-select.bp3-large select{
  height:40px;
  padding-right:35px;
  font-size:16px; }

.bp3-dark .bp3-html-select select, .bp3-dark .bp3-select select{
  -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
          box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
  background-color:#394b59;
  background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.05)), to(rgba(255, 255, 255, 0)));
  background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.05), rgba(255, 255, 255, 0));
  color:#f5f8fa; }
  .bp3-dark .bp3-html-select select:hover, .bp3-dark .bp3-select select:hover, .bp3-dark .bp3-html-select select:active, .bp3-dark .bp3-select select:active, .bp3-dark .bp3-html-select select.bp3-active, .bp3-dark .bp3-select select.bp3-active{
    color:#f5f8fa; }
  .bp3-dark .bp3-html-select select:hover, .bp3-dark .bp3-select select:hover{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
    background-color:#30404d; }
  .bp3-dark .bp3-html-select select:active, .bp3-dark .bp3-select select:active, .bp3-dark .bp3-html-select select.bp3-active, .bp3-dark .bp3-select select.bp3-active{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2);
    background-color:#202b33;
    background-image:none; }
  .bp3-dark .bp3-html-select select:disabled, .bp3-dark .bp3-select select:disabled, .bp3-dark .bp3-html-select select.bp3-disabled, .bp3-dark .bp3-select select.bp3-disabled{
    -webkit-box-shadow:none;
            box-shadow:none;
    background-color:rgba(57, 75, 89, 0.5);
    background-image:none;
    color:rgba(167, 182, 194, 0.6); }
    .bp3-dark .bp3-html-select select:disabled.bp3-active, .bp3-dark .bp3-select select:disabled.bp3-active, .bp3-dark .bp3-html-select select.bp3-disabled.bp3-active, .bp3-dark .bp3-select select.bp3-disabled.bp3-active{
      background:rgba(57, 75, 89, 0.7); }
  .bp3-dark .bp3-html-select select .bp3-button-spinner .bp3-spinner-head, .bp3-dark .bp3-select select .bp3-button-spinner .bp3-spinner-head{
    background:rgba(16, 22, 26, 0.5);
    stroke:#8a9ba8; }

.bp3-html-select select:disabled,
.bp3-select select:disabled{
  -webkit-box-shadow:none;
          box-shadow:none;
  background-color:rgba(206, 217, 224, 0.5);
  cursor:not-allowed;
  color:rgba(92, 112, 128, 0.6); }

.bp3-html-select .bp3-icon,
.bp3-select .bp3-icon, .bp3-select::after{
  position:absolute;
  top:7px;
  right:7px;
  color:#5c7080;
  pointer-events:none; }
  .bp3-html-select .bp3-disabled.bp3-icon,
  .bp3-select .bp3-disabled.bp3-icon, .bp3-disabled.bp3-select::after{
    color:rgba(92, 112, 128, 0.6); }
.bp3-html-select,
.bp3-select{
  display:inline-block;
  position:relative;
  vertical-align:middle;
  letter-spacing:normal; }
  .bp3-html-select select::-ms-expand,
  .bp3-select select::-ms-expand{
    display:none; }
  .bp3-html-select .bp3-icon,
  .bp3-select .bp3-icon{
    color:#5c7080; }
    .bp3-html-select .bp3-icon:hover,
    .bp3-select .bp3-icon:hover{
      color:#182026; }
    .bp3-dark .bp3-html-select .bp3-icon, .bp3-dark
    .bp3-select .bp3-icon{
      color:#a7b6c2; }
      .bp3-dark .bp3-html-select .bp3-icon:hover, .bp3-dark
      .bp3-select .bp3-icon:hover{
        color:#f5f8fa; }
  .bp3-html-select.bp3-large::after,
  .bp3-html-select.bp3-large .bp3-icon,
  .bp3-select.bp3-large::after,
  .bp3-select.bp3-large .bp3-icon{
    top:12px;
    right:12px; }
  .bp3-html-select.bp3-fill,
  .bp3-html-select.bp3-fill select,
  .bp3-select.bp3-fill,
  .bp3-select.bp3-fill select{
    width:100%; }
  .bp3-dark .bp3-html-select option, .bp3-dark
  .bp3-select option{
    background-color:#30404d;
    color:#f5f8fa; }
  .bp3-dark .bp3-html-select::after, .bp3-dark
  .bp3-select::after{
    color:#a7b6c2; }

.bp3-select::after{
  line-height:1;
  font-family:"Icons16", sans-serif;
  font-size:16px;
  font-weight:400;
  font-style:normal;
  -moz-osx-font-smoothing:grayscale;
  -webkit-font-smoothing:antialiased;
  content:""; }
.bp3-running-text table, table.bp3-html-table{
  border-spacing:0;
  font-size:14px; }
  .bp3-running-text table th, table.bp3-html-table th,
  .bp3-running-text table td,
  table.bp3-html-table td{
    padding:11px;
    vertical-align:top;
    text-align:left; }
  .bp3-running-text table th, table.bp3-html-table th{
    color:#182026;
    font-weight:600; }
  
  .bp3-running-text table td,
  table.bp3-html-table td{
    color:#182026; }
  .bp3-running-text table tbody tr:first-child th, table.bp3-html-table tbody tr:first-child th,
  .bp3-running-text table tbody tr:first-child td,
  table.bp3-html-table tbody tr:first-child td{
    -webkit-box-shadow:inset 0 1px 0 0 rgba(16, 22, 26, 0.15);
            box-shadow:inset 0 1px 0 0 rgba(16, 22, 26, 0.15); }
  .bp3-dark .bp3-running-text table th, .bp3-running-text .bp3-dark table th, .bp3-dark table.bp3-html-table th{
    color:#f5f8fa; }
  .bp3-dark .bp3-running-text table td, .bp3-running-text .bp3-dark table td, .bp3-dark table.bp3-html-table td{
    color:#f5f8fa; }
  .bp3-dark .bp3-running-text table tbody tr:first-child th, .bp3-running-text .bp3-dark table tbody tr:first-child th, .bp3-dark table.bp3-html-table tbody tr:first-child th,
  .bp3-dark .bp3-running-text table tbody tr:first-child td,
  .bp3-running-text .bp3-dark table tbody tr:first-child td,
  .bp3-dark table.bp3-html-table tbody tr:first-child td{
    -webkit-box-shadow:inset 0 1px 0 0 rgba(255, 255, 255, 0.15);
            box-shadow:inset 0 1px 0 0 rgba(255, 255, 255, 0.15); }

table.bp3-html-table.bp3-html-table-condensed th,
table.bp3-html-table.bp3-html-table-condensed td, table.bp3-html-table.bp3-small th,
table.bp3-html-table.bp3-small td{
  padding-top:6px;
  padding-bottom:6px; }

table.bp3-html-table.bp3-html-table-striped tbody tr:nth-child(odd) td{
  background:rgba(191, 204, 214, 0.15); }

table.bp3-html-table.bp3-html-table-bordered th:not(:first-child){
  -webkit-box-shadow:inset 1px 0 0 0 rgba(16, 22, 26, 0.15);
          box-shadow:inset 1px 0 0 0 rgba(16, 22, 26, 0.15); }

table.bp3-html-table.bp3-html-table-bordered tbody tr td{
  -webkit-box-shadow:inset 0 1px 0 0 rgba(16, 22, 26, 0.15);
          box-shadow:inset 0 1px 0 0 rgba(16, 22, 26, 0.15); }
  table.bp3-html-table.bp3-html-table-bordered tbody tr td:not(:first-child){
    -webkit-box-shadow:inset 1px 1px 0 0 rgba(16, 22, 26, 0.15);
            box-shadow:inset 1px 1px 0 0 rgba(16, 22, 26, 0.15); }

table.bp3-html-table.bp3-html-table-bordered.bp3-html-table-striped tbody tr:not(:first-child) td{
  -webkit-box-shadow:none;
          box-shadow:none; }
  table.bp3-html-table.bp3-html-table-bordered.bp3-html-table-striped tbody tr:not(:first-child) td:not(:first-child){
    -webkit-box-shadow:inset 1px 0 0 0 rgba(16, 22, 26, 0.15);
            box-shadow:inset 1px 0 0 0 rgba(16, 22, 26, 0.15); }

table.bp3-html-table.bp3-interactive tbody tr:hover td{
  background-color:rgba(191, 204, 214, 0.3);
  cursor:pointer; }

table.bp3-html-table.bp3-interactive tbody tr:active td{
  background-color:rgba(191, 204, 214, 0.4); }

.bp3-dark table.bp3-html-table.bp3-html-table-striped tbody tr:nth-child(odd) td{
  background:rgba(92, 112, 128, 0.15); }

.bp3-dark table.bp3-html-table.bp3-html-table-bordered th:not(:first-child){
  -webkit-box-shadow:inset 1px 0 0 0 rgba(255, 255, 255, 0.15);
          box-shadow:inset 1px 0 0 0 rgba(255, 255, 255, 0.15); }

.bp3-dark table.bp3-html-table.bp3-html-table-bordered tbody tr td{
  -webkit-box-shadow:inset 0 1px 0 0 rgba(255, 255, 255, 0.15);
          box-shadow:inset 0 1px 0 0 rgba(255, 255, 255, 0.15); }
  .bp3-dark table.bp3-html-table.bp3-html-table-bordered tbody tr td:not(:first-child){
    -webkit-box-shadow:inset 1px 1px 0 0 rgba(255, 255, 255, 0.15);
            box-shadow:inset 1px 1px 0 0 rgba(255, 255, 255, 0.15); }

.bp3-dark table.bp3-html-table.bp3-html-table-bordered.bp3-html-table-striped tbody tr:not(:first-child) td{
  -webkit-box-shadow:inset 1px 0 0 0 rgba(255, 255, 255, 0.15);
          box-shadow:inset 1px 0 0 0 rgba(255, 255, 255, 0.15); }
  .bp3-dark table.bp3-html-table.bp3-html-table-bordered.bp3-html-table-striped tbody tr:not(:first-child) td:first-child{
    -webkit-box-shadow:none;
            box-shadow:none; }

.bp3-dark table.bp3-html-table.bp3-interactive tbody tr:hover td{
  background-color:rgba(92, 112, 128, 0.3);
  cursor:pointer; }

.bp3-dark table.bp3-html-table.bp3-interactive tbody tr:active td{
  background-color:rgba(92, 112, 128, 0.4); }

.bp3-key-combo{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -webkit-box-orient:horizontal;
  -webkit-box-direction:normal;
      -ms-flex-direction:row;
          flex-direction:row;
  -webkit-box-align:center;
      -ms-flex-align:center;
          align-items:center; }
  .bp3-key-combo > *{
    -webkit-box-flex:0;
        -ms-flex-positive:0;
            flex-grow:0;
    -ms-flex-negative:0;
        flex-shrink:0; }
  .bp3-key-combo > .bp3-fill{
    -webkit-box-flex:1;
        -ms-flex-positive:1;
            flex-grow:1;
    -ms-flex-negative:1;
        flex-shrink:1; }
  .bp3-key-combo::before,
  .bp3-key-combo > *{
    margin-right:5px; }
  .bp3-key-combo:empty::before,
  .bp3-key-combo > :last-child{
    margin-right:0; }

.bp3-hotkey-dialog{
  top:40px;
  padding-bottom:0; }
  .bp3-hotkey-dialog .bp3-dialog-body{
    margin:0;
    padding:0; }
  .bp3-hotkey-dialog .bp3-hotkey-label{
    -webkit-box-flex:1;
        -ms-flex-positive:1;
            flex-grow:1; }

.bp3-hotkey-column{
  margin:auto;
  max-height:80vh;
  overflow-y:auto;
  padding:30px; }
  .bp3-hotkey-column .bp3-heading{
    margin-bottom:20px; }
    .bp3-hotkey-column .bp3-heading:not(:first-child){
      margin-top:40px; }

.bp3-hotkey{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -webkit-box-align:center;
      -ms-flex-align:center;
          align-items:center;
  -webkit-box-pack:justify;
      -ms-flex-pack:justify;
          justify-content:space-between;
  margin-right:0;
  margin-left:0; }
  .bp3-hotkey:not(:last-child){
    margin-bottom:10px; }
.bp3-icon{
  display:inline-block;
  -webkit-box-flex:0;
      -ms-flex:0 0 auto;
          flex:0 0 auto;
  vertical-align:text-bottom; }
  .bp3-icon:not(:empty)::before{
    content:"" !important;
    content:unset !important; }
  .bp3-icon > svg{
    display:block; }
    .bp3-icon > svg:not([fill]){
      fill:currentColor; }

.bp3-icon.bp3-intent-primary, .bp3-icon-standard.bp3-intent-primary, .bp3-icon-large.bp3-intent-primary{
  color:#106ba3; }
  .bp3-dark .bp3-icon.bp3-intent-primary, .bp3-dark .bp3-icon-standard.bp3-intent-primary, .bp3-dark .bp3-icon-large.bp3-intent-primary{
    color:#48aff0; }

.bp3-icon.bp3-intent-success, .bp3-icon-standard.bp3-intent-success, .bp3-icon-large.bp3-intent-success{
  color:#0d8050; }
  .bp3-dark .bp3-icon.bp3-intent-success, .bp3-dark .bp3-icon-standard.bp3-intent-success, .bp3-dark .bp3-icon-large.bp3-intent-success{
    color:#3dcc91; }

.bp3-icon.bp3-intent-warning, .bp3-icon-standard.bp3-intent-warning, .bp3-icon-large.bp3-intent-warning{
  color:#bf7326; }
  .bp3-dark .bp3-icon.bp3-intent-warning, .bp3-dark .bp3-icon-standard.bp3-intent-warning, .bp3-dark .bp3-icon-large.bp3-intent-warning{
    color:#ffb366; }

.bp3-icon.bp3-intent-danger, .bp3-icon-standard.bp3-intent-danger, .bp3-icon-large.bp3-intent-danger{
  color:#c23030; }
  .bp3-dark .bp3-icon.bp3-intent-danger, .bp3-dark .bp3-icon-standard.bp3-intent-danger, .bp3-dark .bp3-icon-large.bp3-intent-danger{
    color:#ff7373; }

span.bp3-icon-standard{
  line-height:1;
  font-family:"Icons16", sans-serif;
  font-size:16px;
  font-weight:400;
  font-style:normal;
  -moz-osx-font-smoothing:grayscale;
  -webkit-font-smoothing:antialiased;
  display:inline-block; }

span.bp3-icon-large{
  line-height:1;
  font-family:"Icons20", sans-serif;
  font-size:20px;
  font-weight:400;
  font-style:normal;
  -moz-osx-font-smoothing:grayscale;
  -webkit-font-smoothing:antialiased;
  display:inline-block; }

span.bp3-icon:empty{
  line-height:1;
  font-family:"Icons20";
  font-size:inherit;
  font-weight:400;
  font-style:normal; }
  span.bp3-icon:empty::before{
    -moz-osx-font-smoothing:grayscale;
    -webkit-font-smoothing:antialiased; }

.bp3-icon-add::before{
  content:""; }

.bp3-icon-add-column-left::before{
  content:""; }

.bp3-icon-add-column-right::before{
  content:""; }

.bp3-icon-add-row-bottom::before{
  content:""; }

.bp3-icon-add-row-top::before{
  content:""; }

.bp3-icon-add-to-artifact::before{
  content:""; }

.bp3-icon-add-to-folder::before{
  content:""; }

.bp3-icon-airplane::before{
  content:""; }

.bp3-icon-align-center::before{
  content:""; }

.bp3-icon-align-justify::before{
  content:""; }

.bp3-icon-align-left::before{
  content:""; }

.bp3-icon-align-right::before{
  content:""; }

.bp3-icon-alignment-bottom::before{
  content:""; }

.bp3-icon-alignment-horizontal-center::before{
  content:""; }

.bp3-icon-alignment-left::before{
  content:""; }

.bp3-icon-alignment-right::before{
  content:""; }

.bp3-icon-alignment-top::before{
  content:""; }

.bp3-icon-alignment-vertical-center::before{
  content:""; }

.bp3-icon-annotation::before{
  content:""; }

.bp3-icon-application::before{
  content:""; }

.bp3-icon-applications::before{
  content:""; }

.bp3-icon-archive::before{
  content:""; }

.bp3-icon-arrow-bottom-left::before{
  content:"↙"; }

.bp3-icon-arrow-bottom-right::before{
  content:"↘"; }

.bp3-icon-arrow-down::before{
  content:"↓"; }

.bp3-icon-arrow-left::before{
  content:"←"; }

.bp3-icon-arrow-right::before{
  content:"→"; }

.bp3-icon-arrow-top-left::before{
  content:"↖"; }

.bp3-icon-arrow-top-right::before{
  content:"↗"; }

.bp3-icon-arrow-up::before{
  content:"↑"; }

.bp3-icon-arrows-horizontal::before{
  content:"↔"; }

.bp3-icon-arrows-vertical::before{
  content:"↕"; }

.bp3-icon-asterisk::before{
  content:"*"; }

.bp3-icon-automatic-updates::before{
  content:""; }

.bp3-icon-badge::before{
  content:""; }

.bp3-icon-ban-circle::before{
  content:""; }

.bp3-icon-bank-account::before{
  content:""; }

.bp3-icon-barcode::before{
  content:""; }

.bp3-icon-blank::before{
  content:""; }

.bp3-icon-blocked-person::before{
  content:""; }

.bp3-icon-bold::before{
  content:""; }

.bp3-icon-book::before{
  content:""; }

.bp3-icon-bookmark::before{
  content:""; }

.bp3-icon-box::before{
  content:""; }

.bp3-icon-briefcase::before{
  content:""; }

.bp3-icon-bring-data::before{
  content:""; }

.bp3-icon-build::before{
  content:""; }

.bp3-icon-calculator::before{
  content:""; }

.bp3-icon-calendar::before{
  content:""; }

.bp3-icon-camera::before{
  content:""; }

.bp3-icon-caret-down::before{
  content:"⌄"; }

.bp3-icon-caret-left::before{
  content:"〈"; }

.bp3-icon-caret-right::before{
  content:"〉"; }

.bp3-icon-caret-up::before{
  content:"⌃"; }

.bp3-icon-cell-tower::before{
  content:""; }

.bp3-icon-changes::before{
  content:""; }

.bp3-icon-chart::before{
  content:""; }

.bp3-icon-chat::before{
  content:""; }

.bp3-icon-chevron-backward::before{
  content:""; }

.bp3-icon-chevron-down::before{
  content:""; }

.bp3-icon-chevron-forward::before{
  content:""; }

.bp3-icon-chevron-left::before{
  content:""; }

.bp3-icon-chevron-right::before{
  content:""; }

.bp3-icon-chevron-up::before{
  content:""; }

.bp3-icon-circle::before{
  content:""; }

.bp3-icon-circle-arrow-down::before{
  content:""; }

.bp3-icon-circle-arrow-left::before{
  content:""; }

.bp3-icon-circle-arrow-right::before{
  content:""; }

.bp3-icon-circle-arrow-up::before{
  content:""; }

.bp3-icon-citation::before{
  content:""; }

.bp3-icon-clean::before{
  content:""; }

.bp3-icon-clipboard::before{
  content:""; }

.bp3-icon-cloud::before{
  content:"☁"; }

.bp3-icon-cloud-download::before{
  content:""; }

.bp3-icon-cloud-upload::before{
  content:""; }

.bp3-icon-code::before{
  content:""; }

.bp3-icon-code-block::before{
  content:""; }

.bp3-icon-cog::before{
  content:""; }

.bp3-icon-collapse-all::before{
  content:""; }

.bp3-icon-column-layout::before{
  content:""; }

.bp3-icon-comment::before{
  content:""; }

.bp3-icon-comparison::before{
  content:""; }

.bp3-icon-compass::before{
  content:""; }

.bp3-icon-compressed::before{
  content:""; }

.bp3-icon-confirm::before{
  content:""; }

.bp3-icon-console::before{
  content:""; }

.bp3-icon-contrast::before{
  content:""; }

.bp3-icon-control::before{
  content:""; }

.bp3-icon-credit-card::before{
  content:""; }

.bp3-icon-cross::before{
  content:"✗"; }

.bp3-icon-crown::before{
  content:""; }

.bp3-icon-cube::before{
  content:""; }

.bp3-icon-cube-add::before{
  content:""; }

.bp3-icon-cube-remove::before{
  content:""; }

.bp3-icon-curved-range-chart::before{
  content:""; }

.bp3-icon-cut::before{
  content:""; }

.bp3-icon-dashboard::before{
  content:""; }

.bp3-icon-data-lineage::before{
  content:""; }

.bp3-icon-database::before{
  content:""; }

.bp3-icon-delete::before{
  content:""; }

.bp3-icon-delta::before{
  content:"Δ"; }

.bp3-icon-derive-column::before{
  content:""; }

.bp3-icon-desktop::before{
  content:""; }

.bp3-icon-diagram-tree::before{
  content:""; }

.bp3-icon-direction-left::before{
  content:""; }

.bp3-icon-direction-right::before{
  content:""; }

.bp3-icon-disable::before{
  content:""; }

.bp3-icon-document::before{
  content:""; }

.bp3-icon-document-open::before{
  content:""; }

.bp3-icon-document-share::before{
  content:""; }

.bp3-icon-dollar::before{
  content:"$"; }

.bp3-icon-dot::before{
  content:"•"; }

.bp3-icon-double-caret-horizontal::before{
  content:""; }

.bp3-icon-double-caret-vertical::before{
  content:""; }

.bp3-icon-double-chevron-down::before{
  content:""; }

.bp3-icon-double-chevron-left::before{
  content:""; }

.bp3-icon-double-chevron-right::before{
  content:""; }

.bp3-icon-double-chevron-up::before{
  content:""; }

.bp3-icon-doughnut-chart::before{
  content:""; }

.bp3-icon-download::before{
  content:""; }

.bp3-icon-drag-handle-horizontal::before{
  content:""; }

.bp3-icon-drag-handle-vertical::before{
  content:""; }

.bp3-icon-draw::before{
  content:""; }

.bp3-icon-drive-time::before{
  content:""; }

.bp3-icon-duplicate::before{
  content:""; }

.bp3-icon-edit::before{
  content:"✎"; }

.bp3-icon-eject::before{
  content:"⏏"; }

.bp3-icon-endorsed::before{
  content:""; }

.bp3-icon-envelope::before{
  content:"✉"; }

.bp3-icon-equals::before{
  content:""; }

.bp3-icon-eraser::before{
  content:""; }

.bp3-icon-error::before{
  content:""; }

.bp3-icon-euro::before{
  content:"€"; }

.bp3-icon-exchange::before{
  content:""; }

.bp3-icon-exclude-row::before{
  content:""; }

.bp3-icon-expand-all::before{
  content:""; }

.bp3-icon-export::before{
  content:""; }

.bp3-icon-eye-off::before{
  content:""; }

.bp3-icon-eye-on::before{
  content:""; }

.bp3-icon-eye-open::before{
  content:""; }

.bp3-icon-fast-backward::before{
  content:""; }

.bp3-icon-fast-forward::before{
  content:""; }

.bp3-icon-feed::before{
  content:""; }

.bp3-icon-feed-subscribed::before{
  content:""; }

.bp3-icon-film::before{
  content:""; }

.bp3-icon-filter::before{
  content:""; }

.bp3-icon-filter-keep::before{
  content:""; }

.bp3-icon-filter-list::before{
  content:""; }

.bp3-icon-filter-open::before{
  content:""; }

.bp3-icon-filter-remove::before{
  content:""; }

.bp3-icon-flag::before{
  content:"⚑"; }

.bp3-icon-flame::before{
  content:""; }

.bp3-icon-flash::before{
  content:""; }

.bp3-icon-floppy-disk::before{
  content:""; }

.bp3-icon-flow-branch::before{
  content:""; }

.bp3-icon-flow-end::before{
  content:""; }

.bp3-icon-flow-linear::before{
  content:""; }

.bp3-icon-flow-review::before{
  content:""; }

.bp3-icon-flow-review-branch::before{
  content:""; }

.bp3-icon-flows::before{
  content:""; }

.bp3-icon-folder-close::before{
  content:""; }

.bp3-icon-folder-new::before{
  content:""; }

.bp3-icon-folder-open::before{
  content:""; }

.bp3-icon-folder-shared::before{
  content:""; }

.bp3-icon-folder-shared-open::before{
  content:""; }

.bp3-icon-follower::before{
  content:""; }

.bp3-icon-following::before{
  content:""; }

.bp3-icon-font::before{
  content:""; }

.bp3-icon-fork::before{
  content:""; }

.bp3-icon-form::before{
  content:""; }

.bp3-icon-full-circle::before{
  content:""; }

.bp3-icon-full-stacked-chart::before{
  content:""; }

.bp3-icon-fullscreen::before{
  content:""; }

.bp3-icon-function::before{
  content:""; }

.bp3-icon-gantt-chart::before{
  content:""; }

.bp3-icon-geolocation::before{
  content:""; }

.bp3-icon-geosearch::before{
  content:""; }

.bp3-icon-git-branch::before{
  content:""; }

.bp3-icon-git-commit::before{
  content:""; }

.bp3-icon-git-merge::before{
  content:""; }

.bp3-icon-git-new-branch::before{
  content:""; }

.bp3-icon-git-pull::before{
  content:""; }

.bp3-icon-git-push::before{
  content:""; }

.bp3-icon-git-repo::before{
  content:""; }

.bp3-icon-glass::before{
  content:""; }

.bp3-icon-globe::before{
  content:""; }

.bp3-icon-globe-network::before{
  content:""; }

.bp3-icon-graph::before{
  content:""; }

.bp3-icon-graph-remove::before{
  content:""; }

.bp3-icon-greater-than::before{
  content:""; }

.bp3-icon-greater-than-or-equal-to::before{
  content:""; }

.bp3-icon-grid::before{
  content:""; }

.bp3-icon-grid-view::before{
  content:""; }

.bp3-icon-group-objects::before{
  content:""; }

.bp3-icon-grouped-bar-chart::before{
  content:""; }

.bp3-icon-hand::before{
  content:""; }

.bp3-icon-hand-down::before{
  content:""; }

.bp3-icon-hand-left::before{
  content:""; }

.bp3-icon-hand-right::before{
  content:""; }

.bp3-icon-hand-up::before{
  content:""; }

.bp3-icon-header::before{
  content:""; }

.bp3-icon-header-one::before{
  content:""; }

.bp3-icon-header-two::before{
  content:""; }

.bp3-icon-headset::before{
  content:""; }

.bp3-icon-heart::before{
  content:"♥"; }

.bp3-icon-heart-broken::before{
  content:""; }

.bp3-icon-heat-grid::before{
  content:""; }

.bp3-icon-heatmap::before{
  content:""; }

.bp3-icon-help::before{
  content:"?"; }

.bp3-icon-helper-management::before{
  content:""; }

.bp3-icon-highlight::before{
  content:""; }

.bp3-icon-history::before{
  content:""; }

.bp3-icon-home::before{
  content:"⌂"; }

.bp3-icon-horizontal-bar-chart::before{
  content:""; }

.bp3-icon-horizontal-bar-chart-asc::before{
  content:""; }

.bp3-icon-horizontal-bar-chart-desc::before{
  content:""; }

.bp3-icon-horizontal-distribution::before{
  content:""; }

.bp3-icon-id-number::before{
  content:""; }

.bp3-icon-image-rotate-left::before{
  content:""; }

.bp3-icon-image-rotate-right::before{
  content:""; }

.bp3-icon-import::before{
  content:""; }

.bp3-icon-inbox::before{
  content:""; }

.bp3-icon-inbox-filtered::before{
  content:""; }

.bp3-icon-inbox-geo::before{
  content:""; }

.bp3-icon-inbox-search::before{
  content:""; }

.bp3-icon-inbox-update::before{
  content:""; }

.bp3-icon-info-sign::before{
  content:"ℹ"; }

.bp3-icon-inheritance::before{
  content:""; }

.bp3-icon-inner-join::before{
  content:""; }

.bp3-icon-insert::before{
  content:""; }

.bp3-icon-intersection::before{
  content:""; }

.bp3-icon-ip-address::before{
  content:""; }

.bp3-icon-issue::before{
  content:""; }

.bp3-icon-issue-closed::before{
  content:""; }

.bp3-icon-issue-new::before{
  content:""; }

.bp3-icon-italic::before{
  content:""; }

.bp3-icon-join-table::before{
  content:""; }

.bp3-icon-key::before{
  content:""; }

.bp3-icon-key-backspace::before{
  content:""; }

.bp3-icon-key-command::before{
  content:""; }

.bp3-icon-key-control::before{
  content:""; }

.bp3-icon-key-delete::before{
  content:""; }

.bp3-icon-key-enter::before{
  content:""; }

.bp3-icon-key-escape::before{
  content:""; }

.bp3-icon-key-option::before{
  content:""; }

.bp3-icon-key-shift::before{
  content:""; }

.bp3-icon-key-tab::before{
  content:""; }

.bp3-icon-known-vehicle::before{
  content:""; }

.bp3-icon-label::before{
  content:""; }

.bp3-icon-layer::before{
  content:""; }

.bp3-icon-layers::before{
  content:""; }

.bp3-icon-layout::before{
  content:""; }

.bp3-icon-layout-auto::before{
  content:""; }

.bp3-icon-layout-balloon::before{
  content:""; }

.bp3-icon-layout-circle::before{
  content:""; }

.bp3-icon-layout-grid::before{
  content:""; }

.bp3-icon-layout-group-by::before{
  content:""; }

.bp3-icon-layout-hierarchy::before{
  content:""; }

.bp3-icon-layout-linear::before{
  content:""; }

.bp3-icon-layout-skew-grid::before{
  content:""; }

.bp3-icon-layout-sorted-clusters::before{
  content:""; }

.bp3-icon-learning::before{
  content:""; }

.bp3-icon-left-join::before{
  content:""; }

.bp3-icon-less-than::before{
  content:""; }

.bp3-icon-less-than-or-equal-to::before{
  content:""; }

.bp3-icon-lifesaver::before{
  content:""; }

.bp3-icon-lightbulb::before{
  content:""; }

.bp3-icon-link::before{
  content:""; }

.bp3-icon-list::before{
  content:"☰"; }

.bp3-icon-list-columns::before{
  content:""; }

.bp3-icon-list-detail-view::before{
  content:""; }

.bp3-icon-locate::before{
  content:""; }

.bp3-icon-lock::before{
  content:""; }

.bp3-icon-log-in::before{
  content:""; }

.bp3-icon-log-out::before{
  content:""; }

.bp3-icon-manual::before{
  content:""; }

.bp3-icon-manually-entered-data::before{
  content:""; }

.bp3-icon-map::before{
  content:""; }

.bp3-icon-map-create::before{
  content:""; }

.bp3-icon-map-marker::before{
  content:""; }

.bp3-icon-maximize::before{
  content:""; }

.bp3-icon-media::before{
  content:""; }

.bp3-icon-menu::before{
  content:""; }

.bp3-icon-menu-closed::before{
  content:""; }

.bp3-icon-menu-open::before{
  content:""; }

.bp3-icon-merge-columns::before{
  content:""; }

.bp3-icon-merge-links::before{
  content:""; }

.bp3-icon-minimize::before{
  content:""; }

.bp3-icon-minus::before{
  content:"−"; }

.bp3-icon-mobile-phone::before{
  content:""; }

.bp3-icon-mobile-video::before{
  content:""; }

.bp3-icon-moon::before{
  content:""; }

.bp3-icon-more::before{
  content:""; }

.bp3-icon-mountain::before{
  content:""; }

.bp3-icon-move::before{
  content:""; }

.bp3-icon-mugshot::before{
  content:""; }

.bp3-icon-multi-select::before{
  content:""; }

.bp3-icon-music::before{
  content:""; }

.bp3-icon-new-drawing::before{
  content:""; }

.bp3-icon-new-grid-item::before{
  content:""; }

.bp3-icon-new-layer::before{
  content:""; }

.bp3-icon-new-layers::before{
  content:""; }

.bp3-icon-new-link::before{
  content:""; }

.bp3-icon-new-object::before{
  content:""; }

.bp3-icon-new-person::before{
  content:""; }

.bp3-icon-new-prescription::before{
  content:""; }

.bp3-icon-new-text-box::before{
  content:""; }

.bp3-icon-ninja::before{
  content:""; }

.bp3-icon-not-equal-to::before{
  content:""; }

.bp3-icon-notifications::before{
  content:""; }

.bp3-icon-notifications-updated::before{
  content:""; }

.bp3-icon-numbered-list::before{
  content:""; }

.bp3-icon-numerical::before{
  content:""; }

.bp3-icon-office::before{
  content:""; }

.bp3-icon-offline::before{
  content:""; }

.bp3-icon-oil-field::before{
  content:""; }

.bp3-icon-one-column::before{
  content:""; }

.bp3-icon-outdated::before{
  content:""; }

.bp3-icon-page-layout::before{
  content:""; }

.bp3-icon-panel-stats::before{
  content:""; }

.bp3-icon-panel-table::before{
  content:""; }

.bp3-icon-paperclip::before{
  content:""; }

.bp3-icon-paragraph::before{
  content:""; }

.bp3-icon-path::before{
  content:""; }

.bp3-icon-path-search::before{
  content:""; }

.bp3-icon-pause::before{
  content:""; }

.bp3-icon-people::before{
  content:""; }

.bp3-icon-percentage::before{
  content:""; }

.bp3-icon-person::before{
  content:""; }

.bp3-icon-phone::before{
  content:"☎"; }

.bp3-icon-pie-chart::before{
  content:""; }

.bp3-icon-pin::before{
  content:""; }

.bp3-icon-pivot::before{
  content:""; }

.bp3-icon-pivot-table::before{
  content:""; }

.bp3-icon-play::before{
  content:""; }

.bp3-icon-plus::before{
  content:"+"; }

.bp3-icon-polygon-filter::before{
  content:""; }

.bp3-icon-power::before{
  content:""; }

.bp3-icon-predictive-analysis::before{
  content:""; }

.bp3-icon-prescription::before{
  content:""; }

.bp3-icon-presentation::before{
  content:""; }

.bp3-icon-print::before{
  content:"⎙"; }

.bp3-icon-projects::before{
  content:""; }

.bp3-icon-properties::before{
  content:""; }

.bp3-icon-property::before{
  content:""; }

.bp3-icon-publish-function::before{
  content:""; }

.bp3-icon-pulse::before{
  content:""; }

.bp3-icon-random::before{
  content:""; }

.bp3-icon-record::before{
  content:""; }

.bp3-icon-redo::before{
  content:""; }

.bp3-icon-refresh::before{
  content:""; }

.bp3-icon-regression-chart::before{
  content:""; }

.bp3-icon-remove::before{
  content:""; }

.bp3-icon-remove-column::before{
  content:""; }

.bp3-icon-remove-column-left::before{
  content:""; }

.bp3-icon-remove-column-right::before{
  content:""; }

.bp3-icon-remove-row-bottom::before{
  content:""; }

.bp3-icon-remove-row-top::before{
  content:""; }

.bp3-icon-repeat::before{
  content:""; }

.bp3-icon-reset::before{
  content:""; }

.bp3-icon-resolve::before{
  content:""; }

.bp3-icon-rig::before{
  content:""; }

.bp3-icon-right-join::before{
  content:""; }

.bp3-icon-ring::before{
  content:""; }

.bp3-icon-rotate-document::before{
  content:""; }

.bp3-icon-rotate-page::before{
  content:""; }

.bp3-icon-satellite::before{
  content:""; }

.bp3-icon-saved::before{
  content:""; }

.bp3-icon-scatter-plot::before{
  content:""; }

.bp3-icon-search::before{
  content:""; }

.bp3-icon-search-around::before{
  content:""; }

.bp3-icon-search-template::before{
  content:""; }

.bp3-icon-search-text::before{
  content:""; }

.bp3-icon-segmented-control::before{
  content:""; }

.bp3-icon-select::before{
  content:""; }

.bp3-icon-selection::before{
  content:"⦿"; }

.bp3-icon-send-to::before{
  content:""; }

.bp3-icon-send-to-graph::before{
  content:""; }

.bp3-icon-send-to-map::before{
  content:""; }

.bp3-icon-series-add::before{
  content:""; }

.bp3-icon-series-configuration::before{
  content:""; }

.bp3-icon-series-derived::before{
  content:""; }

.bp3-icon-series-filtered::before{
  content:""; }

.bp3-icon-series-search::before{
  content:""; }

.bp3-icon-settings::before{
  content:""; }

.bp3-icon-share::before{
  content:""; }

.bp3-icon-shield::before{
  content:""; }

.bp3-icon-shop::before{
  content:""; }

.bp3-icon-shopping-cart::before{
  content:""; }

.bp3-icon-signal-search::before{
  content:""; }

.bp3-icon-sim-card::before{
  content:""; }

.bp3-icon-slash::before{
  content:""; }

.bp3-icon-small-cross::before{
  content:""; }

.bp3-icon-small-minus::before{
  content:""; }

.bp3-icon-small-plus::before{
  content:""; }

.bp3-icon-small-tick::before{
  content:""; }

.bp3-icon-snowflake::before{
  content:""; }

.bp3-icon-social-media::before{
  content:""; }

.bp3-icon-sort::before{
  content:""; }

.bp3-icon-sort-alphabetical::before{
  content:""; }

.bp3-icon-sort-alphabetical-desc::before{
  content:""; }

.bp3-icon-sort-asc::before{
  content:""; }

.bp3-icon-sort-desc::before{
  content:""; }

.bp3-icon-sort-numerical::before{
  content:""; }

.bp3-icon-sort-numerical-desc::before{
  content:""; }

.bp3-icon-split-columns::before{
  content:""; }

.bp3-icon-square::before{
  content:""; }

.bp3-icon-stacked-chart::before{
  content:""; }

.bp3-icon-star::before{
  content:"★"; }

.bp3-icon-star-empty::before{
  content:"☆"; }

.bp3-icon-step-backward::before{
  content:""; }

.bp3-icon-step-chart::before{
  content:""; }

.bp3-icon-step-forward::before{
  content:""; }

.bp3-icon-stop::before{
  content:""; }

.bp3-icon-stopwatch::before{
  content:""; }

.bp3-icon-strikethrough::before{
  content:""; }

.bp3-icon-style::before{
  content:""; }

.bp3-icon-swap-horizontal::before{
  content:""; }

.bp3-icon-swap-vertical::before{
  content:""; }

.bp3-icon-symbol-circle::before{
  content:""; }

.bp3-icon-symbol-cross::before{
  content:""; }

.bp3-icon-symbol-diamond::before{
  content:""; }

.bp3-icon-symbol-square::before{
  content:""; }

.bp3-icon-symbol-triangle-down::before{
  content:""; }

.bp3-icon-symbol-triangle-up::before{
  content:""; }

.bp3-icon-tag::before{
  content:""; }

.bp3-icon-take-action::before{
  content:""; }

.bp3-icon-taxi::before{
  content:""; }

.bp3-icon-text-highlight::before{
  content:""; }

.bp3-icon-th::before{
  content:""; }

.bp3-icon-th-derived::before{
  content:""; }

.bp3-icon-th-disconnect::before{
  content:""; }

.bp3-icon-th-filtered::before{
  content:""; }

.bp3-icon-th-list::before{
  content:""; }

.bp3-icon-thumbs-down::before{
  content:""; }

.bp3-icon-thumbs-up::before{
  content:""; }

.bp3-icon-tick::before{
  content:"✓"; }

.bp3-icon-tick-circle::before{
  content:""; }

.bp3-icon-time::before{
  content:"⏲"; }

.bp3-icon-timeline-area-chart::before{
  content:""; }

.bp3-icon-timeline-bar-chart::before{
  content:""; }

.bp3-icon-timeline-events::before{
  content:""; }

.bp3-icon-timeline-line-chart::before{
  content:""; }

.bp3-icon-tint::before{
  content:""; }

.bp3-icon-torch::before{
  content:""; }

.bp3-icon-tractor::before{
  content:""; }

.bp3-icon-train::before{
  content:""; }

.bp3-icon-translate::before{
  content:""; }

.bp3-icon-trash::before{
  content:""; }

.bp3-icon-tree::before{
  content:""; }

.bp3-icon-trending-down::before{
  content:""; }

.bp3-icon-trending-up::before{
  content:""; }

.bp3-icon-truck::before{
  content:""; }

.bp3-icon-two-columns::before{
  content:""; }

.bp3-icon-unarchive::before{
  content:""; }

.bp3-icon-underline::before{
  content:"⎁"; }

.bp3-icon-undo::before{
  content:"⎌"; }

.bp3-icon-ungroup-objects::before{
  content:""; }

.bp3-icon-unknown-vehicle::before{
  content:""; }

.bp3-icon-unlock::before{
  content:""; }

.bp3-icon-unpin::before{
  content:""; }

.bp3-icon-unresolve::before{
  content:""; }

.bp3-icon-updated::before{
  content:""; }

.bp3-icon-upload::before{
  content:""; }

.bp3-icon-user::before{
  content:""; }

.bp3-icon-variable::before{
  content:""; }

.bp3-icon-vertical-bar-chart-asc::before{
  content:""; }

.bp3-icon-vertical-bar-chart-desc::before{
  content:""; }

.bp3-icon-vertical-distribution::before{
  content:""; }

.bp3-icon-video::before{
  content:""; }

.bp3-icon-volume-down::before{
  content:""; }

.bp3-icon-volume-off::before{
  content:""; }

.bp3-icon-volume-up::before{
  content:""; }

.bp3-icon-walk::before{
  content:""; }

.bp3-icon-warning-sign::before{
  content:""; }

.bp3-icon-waterfall-chart::before{
  content:""; }

.bp3-icon-widget::before{
  content:""; }

.bp3-icon-widget-button::before{
  content:""; }

.bp3-icon-widget-footer::before{
  content:""; }

.bp3-icon-widget-header::before{
  content:""; }

.bp3-icon-wrench::before{
  content:""; }

.bp3-icon-zoom-in::before{
  content:""; }

.bp3-icon-zoom-out::before{
  content:""; }

.bp3-icon-zoom-to-fit::before{
  content:""; }
.bp3-submenu > .bp3-popover-wrapper{
  display:block; }

.bp3-submenu .bp3-popover-target{
  display:block; }

.bp3-submenu.bp3-popover{
  -webkit-box-shadow:none;
          box-shadow:none;
  padding:0 5px; }
  .bp3-submenu.bp3-popover > .bp3-popover-content{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2); }
  .bp3-dark .bp3-submenu.bp3-popover, .bp3-submenu.bp3-popover.bp3-dark{
    -webkit-box-shadow:none;
            box-shadow:none; }
    .bp3-dark .bp3-submenu.bp3-popover > .bp3-popover-content, .bp3-submenu.bp3-popover.bp3-dark > .bp3-popover-content{
      -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4);
              box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4); }
.bp3-menu{
  margin:0;
  border-radius:3px;
  background:#ffffff;
  min-width:180px;
  padding:5px;
  list-style:none;
  text-align:left;
  color:#182026; }

.bp3-menu-divider{
  display:block;
  margin:5px;
  border-top:1px solid rgba(16, 22, 26, 0.15); }
  .bp3-dark .bp3-menu-divider{
    border-top-color:rgba(255, 255, 255, 0.15); }

.bp3-menu-item{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -webkit-box-orient:horizontal;
  -webkit-box-direction:normal;
      -ms-flex-direction:row;
          flex-direction:row;
  -webkit-box-align:start;
      -ms-flex-align:start;
          align-items:flex-start;
  border-radius:2px;
  padding:5px 7px;
  text-decoration:none;
  line-height:20px;
  color:inherit;
  -webkit-user-select:none;
     -moz-user-select:none;
      -ms-user-select:none;
          user-select:none; }
  .bp3-menu-item > *{
    -webkit-box-flex:0;
        -ms-flex-positive:0;
            flex-grow:0;
    -ms-flex-negative:0;
        flex-shrink:0; }
  .bp3-menu-item > .bp3-fill{
    -webkit-box-flex:1;
        -ms-flex-positive:1;
            flex-grow:1;
    -ms-flex-negative:1;
        flex-shrink:1; }
  .bp3-menu-item::before,
  .bp3-menu-item > *{
    margin-right:7px; }
  .bp3-menu-item:empty::before,
  .bp3-menu-item > :last-child{
    margin-right:0; }
  .bp3-menu-item > .bp3-fill{
    word-break:break-word; }
  .bp3-menu-item:hover, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-menu-item{
    background-color:rgba(167, 182, 194, 0.3);
    cursor:pointer;
    text-decoration:none; }
  .bp3-menu-item.bp3-disabled{
    background-color:inherit;
    cursor:not-allowed;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-dark .bp3-menu-item{
    color:inherit; }
    .bp3-dark .bp3-menu-item:hover, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-menu-item, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-menu-item{
      background-color:rgba(138, 155, 168, 0.15);
      color:inherit; }
    .bp3-dark .bp3-menu-item.bp3-disabled{
      background-color:inherit;
      color:rgba(167, 182, 194, 0.6); }
  .bp3-menu-item.bp3-intent-primary{
    color:#106ba3; }
    .bp3-menu-item.bp3-intent-primary .bp3-icon{
      color:inherit; }
    .bp3-menu-item.bp3-intent-primary::before, .bp3-menu-item.bp3-intent-primary::after,
    .bp3-menu-item.bp3-intent-primary .bp3-menu-item-label{
      color:#106ba3; }
    .bp3-menu-item.bp3-intent-primary:hover, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item, .bp3-menu-item.bp3-intent-primary.bp3-active{
      background-color:#137cbd; }
    .bp3-menu-item.bp3-intent-primary:active{
      background-color:#106ba3; }
    .bp3-menu-item.bp3-intent-primary:hover, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item, .bp3-menu-item.bp3-intent-primary:hover::before, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item::before, .bp3-menu-item.bp3-intent-primary:hover::after, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item::after,
    .bp3-menu-item.bp3-intent-primary:hover .bp3-menu-item-label,
    .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item .bp3-menu-item-label, .bp3-menu-item.bp3-intent-primary:active, .bp3-menu-item.bp3-intent-primary:active::before, .bp3-menu-item.bp3-intent-primary:active::after,
    .bp3-menu-item.bp3-intent-primary:active .bp3-menu-item-label, .bp3-menu-item.bp3-intent-primary.bp3-active, .bp3-menu-item.bp3-intent-primary.bp3-active::before, .bp3-menu-item.bp3-intent-primary.bp3-active::after,
    .bp3-menu-item.bp3-intent-primary.bp3-active .bp3-menu-item-label{
      color:#ffffff; }
  .bp3-menu-item.bp3-intent-success{
    color:#0d8050; }
    .bp3-menu-item.bp3-intent-success .bp3-icon{
      color:inherit; }
    .bp3-menu-item.bp3-intent-success::before, .bp3-menu-item.bp3-intent-success::after,
    .bp3-menu-item.bp3-intent-success .bp3-menu-item-label{
      color:#0d8050; }
    .bp3-menu-item.bp3-intent-success:hover, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item, .bp3-menu-item.bp3-intent-success.bp3-active{
      background-color:#0f9960; }
    .bp3-menu-item.bp3-intent-success:active{
      background-color:#0d8050; }
    .bp3-menu-item.bp3-intent-success:hover, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item, .bp3-menu-item.bp3-intent-success:hover::before, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item::before, .bp3-menu-item.bp3-intent-success:hover::after, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item::after,
    .bp3-menu-item.bp3-intent-success:hover .bp3-menu-item-label,
    .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item .bp3-menu-item-label, .bp3-menu-item.bp3-intent-success:active, .bp3-menu-item.bp3-intent-success:active::before, .bp3-menu-item.bp3-intent-success:active::after,
    .bp3-menu-item.bp3-intent-success:active .bp3-menu-item-label, .bp3-menu-item.bp3-intent-success.bp3-active, .bp3-menu-item.bp3-intent-success.bp3-active::before, .bp3-menu-item.bp3-intent-success.bp3-active::after,
    .bp3-menu-item.bp3-intent-success.bp3-active .bp3-menu-item-label{
      color:#ffffff; }
  .bp3-menu-item.bp3-intent-warning{
    color:#bf7326; }
    .bp3-menu-item.bp3-intent-warning .bp3-icon{
      color:inherit; }
    .bp3-menu-item.bp3-intent-warning::before, .bp3-menu-item.bp3-intent-warning::after,
    .bp3-menu-item.bp3-intent-warning .bp3-menu-item-label{
      color:#bf7326; }
    .bp3-menu-item.bp3-intent-warning:hover, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item, .bp3-menu-item.bp3-intent-warning.bp3-active{
      background-color:#d9822b; }
    .bp3-menu-item.bp3-intent-warning:active{
      background-color:#bf7326; }
    .bp3-menu-item.bp3-intent-warning:hover, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item, .bp3-menu-item.bp3-intent-warning:hover::before, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item::before, .bp3-menu-item.bp3-intent-warning:hover::after, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item::after,
    .bp3-menu-item.bp3-intent-warning:hover .bp3-menu-item-label,
    .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item .bp3-menu-item-label, .bp3-menu-item.bp3-intent-warning:active, .bp3-menu-item.bp3-intent-warning:active::before, .bp3-menu-item.bp3-intent-warning:active::after,
    .bp3-menu-item.bp3-intent-warning:active .bp3-menu-item-label, .bp3-menu-item.bp3-intent-warning.bp3-active, .bp3-menu-item.bp3-intent-warning.bp3-active::before, .bp3-menu-item.bp3-intent-warning.bp3-active::after,
    .bp3-menu-item.bp3-intent-warning.bp3-active .bp3-menu-item-label{
      color:#ffffff; }
  .bp3-menu-item.bp3-intent-danger{
    color:#c23030; }
    .bp3-menu-item.bp3-intent-danger .bp3-icon{
      color:inherit; }
    .bp3-menu-item.bp3-intent-danger::before, .bp3-menu-item.bp3-intent-danger::after,
    .bp3-menu-item.bp3-intent-danger .bp3-menu-item-label{
      color:#c23030; }
    .bp3-menu-item.bp3-intent-danger:hover, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item, .bp3-menu-item.bp3-intent-danger.bp3-active{
      background-color:#db3737; }
    .bp3-menu-item.bp3-intent-danger:active{
      background-color:#c23030; }
    .bp3-menu-item.bp3-intent-danger:hover, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item, .bp3-menu-item.bp3-intent-danger:hover::before, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item::before, .bp3-menu-item.bp3-intent-danger:hover::after, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item::after,
    .bp3-menu-item.bp3-intent-danger:hover .bp3-menu-item-label,
    .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item .bp3-menu-item-label, .bp3-menu-item.bp3-intent-danger:active, .bp3-menu-item.bp3-intent-danger:active::before, .bp3-menu-item.bp3-intent-danger:active::after,
    .bp3-menu-item.bp3-intent-danger:active .bp3-menu-item-label, .bp3-menu-item.bp3-intent-danger.bp3-active, .bp3-menu-item.bp3-intent-danger.bp3-active::before, .bp3-menu-item.bp3-intent-danger.bp3-active::after,
    .bp3-menu-item.bp3-intent-danger.bp3-active .bp3-menu-item-label{
      color:#ffffff; }
  .bp3-menu-item::before{
    line-height:1;
    font-family:"Icons16", sans-serif;
    font-size:16px;
    font-weight:400;
    font-style:normal;
    -moz-osx-font-smoothing:grayscale;
    -webkit-font-smoothing:antialiased;
    margin-right:7px; }
  .bp3-menu-item::before,
  .bp3-menu-item > .bp3-icon{
    margin-top:2px;
    color:#5c7080; }
  .bp3-menu-item .bp3-menu-item-label{
    color:#5c7080; }
  .bp3-menu-item:hover, .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-menu-item{
    color:inherit; }
  .bp3-menu-item.bp3-active, .bp3-menu-item:active{
    background-color:rgba(115, 134, 148, 0.3); }
  .bp3-menu-item.bp3-disabled{
    outline:none !important;
    background-color:inherit !important;
    cursor:not-allowed !important;
    color:rgba(92, 112, 128, 0.6) !important; }
    .bp3-menu-item.bp3-disabled::before,
    .bp3-menu-item.bp3-disabled > .bp3-icon,
    .bp3-menu-item.bp3-disabled .bp3-menu-item-label{
      color:rgba(92, 112, 128, 0.6) !important; }
  .bp3-large .bp3-menu-item{
    padding:9px 7px;
    line-height:22px;
    font-size:16px; }
    .bp3-large .bp3-menu-item .bp3-icon{
      margin-top:3px; }
    .bp3-large .bp3-menu-item::before{
      line-height:1;
      font-family:"Icons20", sans-serif;
      font-size:20px;
      font-weight:400;
      font-style:normal;
      -moz-osx-font-smoothing:grayscale;
      -webkit-font-smoothing:antialiased;
      margin-top:1px;
      margin-right:10px; }

button.bp3-menu-item{
  border:none;
  background:none;
  width:100%;
  text-align:left; }
.bp3-menu-header{
  display:block;
  margin:5px;
  border-top:1px solid rgba(16, 22, 26, 0.15);
  cursor:default;
  padding-left:2px; }
  .bp3-dark .bp3-menu-header{
    border-top-color:rgba(255, 255, 255, 0.15); }
  .bp3-menu-header:first-of-type{
    border-top:none; }
  .bp3-menu-header > h6{
    color:#182026;
    font-weight:600;
    overflow:hidden;
    text-overflow:ellipsis;
    white-space:nowrap;
    word-wrap:normal;
    margin:0;
    padding:10px 7px 0 1px;
    line-height:17px; }
    .bp3-dark .bp3-menu-header > h6{
      color:#f5f8fa; }
  .bp3-menu-header:first-of-type > h6{
    padding-top:0; }
  .bp3-large .bp3-menu-header > h6{
    padding-top:15px;
    padding-bottom:5px;
    font-size:18px; }
  .bp3-large .bp3-menu-header:first-of-type > h6{
    padding-top:0; }

.bp3-dark .bp3-menu{
  background:#30404d;
  color:#f5f8fa; }

.bp3-dark .bp3-menu-item.bp3-intent-primary{
  color:#48aff0; }
  .bp3-dark .bp3-menu-item.bp3-intent-primary .bp3-icon{
    color:inherit; }
  .bp3-dark .bp3-menu-item.bp3-intent-primary::before, .bp3-dark .bp3-menu-item.bp3-intent-primary::after,
  .bp3-dark .bp3-menu-item.bp3-intent-primary .bp3-menu-item-label{
    color:#48aff0; }
  .bp3-dark .bp3-menu-item.bp3-intent-primary:hover, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item, .bp3-dark .bp3-menu-item.bp3-intent-primary.bp3-active{
    background-color:#137cbd; }
  .bp3-dark .bp3-menu-item.bp3-intent-primary:active{
    background-color:#106ba3; }
  .bp3-dark .bp3-menu-item.bp3-intent-primary:hover, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item, .bp3-dark .bp3-menu-item.bp3-intent-primary:hover::before, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item::before, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item::before, .bp3-dark .bp3-menu-item.bp3-intent-primary:hover::after, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item::after, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item::after,
  .bp3-dark .bp3-menu-item.bp3-intent-primary:hover .bp3-menu-item-label,
  .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item .bp3-menu-item-label,
  .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-primary.bp3-menu-item .bp3-menu-item-label, .bp3-dark .bp3-menu-item.bp3-intent-primary:active, .bp3-dark .bp3-menu-item.bp3-intent-primary:active::before, .bp3-dark .bp3-menu-item.bp3-intent-primary:active::after,
  .bp3-dark .bp3-menu-item.bp3-intent-primary:active .bp3-menu-item-label, .bp3-dark .bp3-menu-item.bp3-intent-primary.bp3-active, .bp3-dark .bp3-menu-item.bp3-intent-primary.bp3-active::before, .bp3-dark .bp3-menu-item.bp3-intent-primary.bp3-active::after,
  .bp3-dark .bp3-menu-item.bp3-intent-primary.bp3-active .bp3-menu-item-label{
    color:#ffffff; }

.bp3-dark .bp3-menu-item.bp3-intent-success{
  color:#3dcc91; }
  .bp3-dark .bp3-menu-item.bp3-intent-success .bp3-icon{
    color:inherit; }
  .bp3-dark .bp3-menu-item.bp3-intent-success::before, .bp3-dark .bp3-menu-item.bp3-intent-success::after,
  .bp3-dark .bp3-menu-item.bp3-intent-success .bp3-menu-item-label{
    color:#3dcc91; }
  .bp3-dark .bp3-menu-item.bp3-intent-success:hover, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item, .bp3-dark .bp3-menu-item.bp3-intent-success.bp3-active{
    background-color:#0f9960; }
  .bp3-dark .bp3-menu-item.bp3-intent-success:active{
    background-color:#0d8050; }
  .bp3-dark .bp3-menu-item.bp3-intent-success:hover, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item, .bp3-dark .bp3-menu-item.bp3-intent-success:hover::before, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item::before, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item::before, .bp3-dark .bp3-menu-item.bp3-intent-success:hover::after, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item::after, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item::after,
  .bp3-dark .bp3-menu-item.bp3-intent-success:hover .bp3-menu-item-label,
  .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item .bp3-menu-item-label,
  .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-success.bp3-menu-item .bp3-menu-item-label, .bp3-dark .bp3-menu-item.bp3-intent-success:active, .bp3-dark .bp3-menu-item.bp3-intent-success:active::before, .bp3-dark .bp3-menu-item.bp3-intent-success:active::after,
  .bp3-dark .bp3-menu-item.bp3-intent-success:active .bp3-menu-item-label, .bp3-dark .bp3-menu-item.bp3-intent-success.bp3-active, .bp3-dark .bp3-menu-item.bp3-intent-success.bp3-active::before, .bp3-dark .bp3-menu-item.bp3-intent-success.bp3-active::after,
  .bp3-dark .bp3-menu-item.bp3-intent-success.bp3-active .bp3-menu-item-label{
    color:#ffffff; }

.bp3-dark .bp3-menu-item.bp3-intent-warning{
  color:#ffb366; }
  .bp3-dark .bp3-menu-item.bp3-intent-warning .bp3-icon{
    color:inherit; }
  .bp3-dark .bp3-menu-item.bp3-intent-warning::before, .bp3-dark .bp3-menu-item.bp3-intent-warning::after,
  .bp3-dark .bp3-menu-item.bp3-intent-warning .bp3-menu-item-label{
    color:#ffb366; }
  .bp3-dark .bp3-menu-item.bp3-intent-warning:hover, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item, .bp3-dark .bp3-menu-item.bp3-intent-warning.bp3-active{
    background-color:#d9822b; }
  .bp3-dark .bp3-menu-item.bp3-intent-warning:active{
    background-color:#bf7326; }
  .bp3-dark .bp3-menu-item.bp3-intent-warning:hover, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item, .bp3-dark .bp3-menu-item.bp3-intent-warning:hover::before, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item::before, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item::before, .bp3-dark .bp3-menu-item.bp3-intent-warning:hover::after, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item::after, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item::after,
  .bp3-dark .bp3-menu-item.bp3-intent-warning:hover .bp3-menu-item-label,
  .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item .bp3-menu-item-label,
  .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-warning.bp3-menu-item .bp3-menu-item-label, .bp3-dark .bp3-menu-item.bp3-intent-warning:active, .bp3-dark .bp3-menu-item.bp3-intent-warning:active::before, .bp3-dark .bp3-menu-item.bp3-intent-warning:active::after,
  .bp3-dark .bp3-menu-item.bp3-intent-warning:active .bp3-menu-item-label, .bp3-dark .bp3-menu-item.bp3-intent-warning.bp3-active, .bp3-dark .bp3-menu-item.bp3-intent-warning.bp3-active::before, .bp3-dark .bp3-menu-item.bp3-intent-warning.bp3-active::after,
  .bp3-dark .bp3-menu-item.bp3-intent-warning.bp3-active .bp3-menu-item-label{
    color:#ffffff; }

.bp3-dark .bp3-menu-item.bp3-intent-danger{
  color:#ff7373; }
  .bp3-dark .bp3-menu-item.bp3-intent-danger .bp3-icon{
    color:inherit; }
  .bp3-dark .bp3-menu-item.bp3-intent-danger::before, .bp3-dark .bp3-menu-item.bp3-intent-danger::after,
  .bp3-dark .bp3-menu-item.bp3-intent-danger .bp3-menu-item-label{
    color:#ff7373; }
  .bp3-dark .bp3-menu-item.bp3-intent-danger:hover, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item, .bp3-dark .bp3-menu-item.bp3-intent-danger.bp3-active{
    background-color:#db3737; }
  .bp3-dark .bp3-menu-item.bp3-intent-danger:active{
    background-color:#c23030; }
  .bp3-dark .bp3-menu-item.bp3-intent-danger:hover, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item, .bp3-dark .bp3-menu-item.bp3-intent-danger:hover::before, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item::before, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item::before, .bp3-dark .bp3-menu-item.bp3-intent-danger:hover::after, .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item::after, .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item::after,
  .bp3-dark .bp3-menu-item.bp3-intent-danger:hover .bp3-menu-item-label,
  .bp3-dark .bp3-submenu .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item .bp3-menu-item-label,
  .bp3-submenu .bp3-dark .bp3-popover-target.bp3-popover-open > .bp3-intent-danger.bp3-menu-item .bp3-menu-item-label, .bp3-dark .bp3-menu-item.bp3-intent-danger:active, .bp3-dark .bp3-menu-item.bp3-intent-danger:active::before, .bp3-dark .bp3-menu-item.bp3-intent-danger:active::after,
  .bp3-dark .bp3-menu-item.bp3-intent-danger:active .bp3-menu-item-label, .bp3-dark .bp3-menu-item.bp3-intent-danger.bp3-active, .bp3-dark .bp3-menu-item.bp3-intent-danger.bp3-active::before, .bp3-dark .bp3-menu-item.bp3-intent-danger.bp3-active::after,
  .bp3-dark .bp3-menu-item.bp3-intent-danger.bp3-active .bp3-menu-item-label{
    color:#ffffff; }

.bp3-dark .bp3-menu-item::before,
.bp3-dark .bp3-menu-item > .bp3-icon{
  color:#a7b6c2; }

.bp3-dark .bp3-menu-item .bp3-menu-item-label{
  color:#a7b6c2; }

.bp3-dark .bp3-menu-item.bp3-active, .bp3-dark .bp3-menu-item:active{
  background-color:rgba(138, 155, 168, 0.3); }

.bp3-dark .bp3-menu-item.bp3-disabled{
  color:rgba(167, 182, 194, 0.6) !important; }
  .bp3-dark .bp3-menu-item.bp3-disabled::before,
  .bp3-dark .bp3-menu-item.bp3-disabled > .bp3-icon,
  .bp3-dark .bp3-menu-item.bp3-disabled .bp3-menu-item-label{
    color:rgba(167, 182, 194, 0.6) !important; }

.bp3-dark .bp3-menu-divider,
.bp3-dark .bp3-menu-header{
  border-color:rgba(255, 255, 255, 0.15); }

.bp3-dark .bp3-menu-header > h6{
  color:#f5f8fa; }

.bp3-label .bp3-menu{
  margin-top:5px; }
.bp3-navbar{
  position:relative;
  z-index:10;
  -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.2);
          box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.2);
  background-color:#ffffff;
  width:100%;
  height:50px;
  padding:0 15px; }
  .bp3-navbar.bp3-dark,
  .bp3-dark .bp3-navbar{
    background-color:#394b59; }
  .bp3-navbar.bp3-dark{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.4);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.4); }
  .bp3-dark .bp3-navbar{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 0 0 rgba(16, 22, 26, 0), 0 1px 1px rgba(16, 22, 26, 0.4); }
  .bp3-navbar.bp3-fixed-top{
    position:fixed;
    top:0;
    right:0;
    left:0; }

.bp3-navbar-heading{
  margin-right:15px;
  font-size:16px; }

.bp3-navbar-group{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -webkit-box-align:center;
      -ms-flex-align:center;
          align-items:center;
  height:50px; }
  .bp3-navbar-group.bp3-align-left{
    float:left; }
  .bp3-navbar-group.bp3-align-right{
    float:right; }

.bp3-navbar-divider{
  margin:0 10px;
  border-left:1px solid rgba(16, 22, 26, 0.15);
  height:20px; }
  .bp3-dark .bp3-navbar-divider{
    border-left-color:rgba(255, 255, 255, 0.15); }
.bp3-non-ideal-state{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -webkit-box-orient:vertical;
  -webkit-box-direction:normal;
      -ms-flex-direction:column;
          flex-direction:column;
  -webkit-box-align:center;
      -ms-flex-align:center;
          align-items:center;
  -webkit-box-pack:center;
      -ms-flex-pack:center;
          justify-content:center;
  width:100%;
  height:100%;
  text-align:center; }
  .bp3-non-ideal-state > *{
    -webkit-box-flex:0;
        -ms-flex-positive:0;
            flex-grow:0;
    -ms-flex-negative:0;
        flex-shrink:0; }
  .bp3-non-ideal-state > .bp3-fill{
    -webkit-box-flex:1;
        -ms-flex-positive:1;
            flex-grow:1;
    -ms-flex-negative:1;
        flex-shrink:1; }
  .bp3-non-ideal-state::before,
  .bp3-non-ideal-state > *{
    margin-bottom:20px; }
  .bp3-non-ideal-state:empty::before,
  .bp3-non-ideal-state > :last-child{
    margin-bottom:0; }
  .bp3-non-ideal-state > *{
    max-width:400px; }

.bp3-non-ideal-state-visual{
  color:rgba(92, 112, 128, 0.6);
  font-size:60px; }
  .bp3-dark .bp3-non-ideal-state-visual{
    color:rgba(167, 182, 194, 0.6); }

.bp3-overflow-list{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -ms-flex-wrap:nowrap;
      flex-wrap:nowrap;
  min-width:0; }

.bp3-overflow-list-spacer{
  -ms-flex-negative:1;
      flex-shrink:1;
  width:1px; }

body.bp3-overlay-open{
  overflow:hidden; }

.bp3-overlay{
  position:static;
  top:0;
  right:0;
  bottom:0;
  left:0;
  z-index:20; }
  .bp3-overlay:not(.bp3-overlay-open){
    pointer-events:none; }
  .bp3-overlay.bp3-overlay-container{
    position:fixed;
    overflow:hidden; }
    .bp3-overlay.bp3-overlay-container.bp3-overlay-inline{
      position:absolute; }
  .bp3-overlay.bp3-overlay-scroll-container{
    position:fixed;
    overflow:auto; }
    .bp3-overlay.bp3-overlay-scroll-container.bp3-overlay-inline{
      position:absolute; }
  .bp3-overlay.bp3-overlay-inline{
    display:inline;
    overflow:visible; }

.bp3-overlay-content{
  position:fixed;
  z-index:20; }
  .bp3-overlay-inline .bp3-overlay-content,
  .bp3-overlay-scroll-container .bp3-overlay-content{
    position:absolute; }

.bp3-overlay-backdrop{
  position:fixed;
  top:0;
  right:0;
  bottom:0;
  left:0;
  opacity:1;
  z-index:20;
  background-color:rgba(16, 22, 26, 0.7);
  overflow:auto;
  -webkit-user-select:none;
     -moz-user-select:none;
      -ms-user-select:none;
          user-select:none; }
  .bp3-overlay-backdrop.bp3-overlay-enter, .bp3-overlay-backdrop.bp3-overlay-appear{
    opacity:0; }
  .bp3-overlay-backdrop.bp3-overlay-enter-active, .bp3-overlay-backdrop.bp3-overlay-appear-active{
    opacity:1;
    -webkit-transition-property:opacity;
    transition-property:opacity;
    -webkit-transition-duration:200ms;
            transition-duration:200ms;
    -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
            transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
    -webkit-transition-delay:0;
            transition-delay:0; }
  .bp3-overlay-backdrop.bp3-overlay-exit{
    opacity:1; }
  .bp3-overlay-backdrop.bp3-overlay-exit-active{
    opacity:0;
    -webkit-transition-property:opacity;
    transition-property:opacity;
    -webkit-transition-duration:200ms;
            transition-duration:200ms;
    -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
            transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
    -webkit-transition-delay:0;
            transition-delay:0; }
  .bp3-overlay-backdrop:focus{
    outline:none; }
  .bp3-overlay-inline .bp3-overlay-backdrop{
    position:absolute; }
.bp3-panel-stack{
  position:relative;
  overflow:hidden; }

.bp3-panel-stack-header{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -ms-flex-negative:0;
      flex-shrink:0;
  -webkit-box-align:center;
      -ms-flex-align:center;
          align-items:center;
  z-index:1;
  -webkit-box-shadow:0 1px rgba(16, 22, 26, 0.15);
          box-shadow:0 1px rgba(16, 22, 26, 0.15);
  height:30px; }
  .bp3-dark .bp3-panel-stack-header{
    -webkit-box-shadow:0 1px rgba(255, 255, 255, 0.15);
            box-shadow:0 1px rgba(255, 255, 255, 0.15); }
  .bp3-panel-stack-header > span{
    display:-webkit-box;
    display:-ms-flexbox;
    display:flex;
    -webkit-box-flex:1;
        -ms-flex:1;
            flex:1;
    -webkit-box-align:stretch;
        -ms-flex-align:stretch;
            align-items:stretch; }
  .bp3-panel-stack-header .bp3-heading{
    margin:0 5px; }

.bp3-button.bp3-panel-stack-header-back{
  margin-left:5px;
  padding-left:0;
  white-space:nowrap; }
  .bp3-button.bp3-panel-stack-header-back .bp3-icon{
    margin:0 2px; }

.bp3-panel-stack-view{
  position:absolute;
  top:0;
  right:0;
  bottom:0;
  left:0;
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -webkit-box-orient:vertical;
  -webkit-box-direction:normal;
      -ms-flex-direction:column;
          flex-direction:column;
  margin-right:-1px;
  border-right:1px solid rgba(16, 22, 26, 0.15);
  background-color:#ffffff;
  overflow-y:auto; }
  .bp3-dark .bp3-panel-stack-view{
    background-color:#30404d; }

.bp3-panel-stack-push .bp3-panel-stack-enter, .bp3-panel-stack-push .bp3-panel-stack-appear{
  -webkit-transform:translateX(100%);
          transform:translateX(100%);
  opacity:0; }

.bp3-panel-stack-push .bp3-panel-stack-enter-active, .bp3-panel-stack-push .bp3-panel-stack-appear-active{
  -webkit-transform:translate(0%);
          transform:translate(0%);
  opacity:1;
  -webkit-transition-property:opacity, -webkit-transform;
  transition-property:opacity, -webkit-transform;
  transition-property:transform, opacity;
  transition-property:transform, opacity, -webkit-transform;
  -webkit-transition-duration:400ms;
          transition-duration:400ms;
  -webkit-transition-timing-function:ease;
          transition-timing-function:ease;
  -webkit-transition-delay:0;
          transition-delay:0; }

.bp3-panel-stack-push .bp3-panel-stack-exit{
  -webkit-transform:translate(0%);
          transform:translate(0%);
  opacity:1; }

.bp3-panel-stack-push .bp3-panel-stack-exit-active{
  -webkit-transform:translateX(-50%);
          transform:translateX(-50%);
  opacity:0;
  -webkit-transition-property:opacity, -webkit-transform;
  transition-property:opacity, -webkit-transform;
  transition-property:transform, opacity;
  transition-property:transform, opacity, -webkit-transform;
  -webkit-transition-duration:400ms;
          transition-duration:400ms;
  -webkit-transition-timing-function:ease;
          transition-timing-function:ease;
  -webkit-transition-delay:0;
          transition-delay:0; }

.bp3-panel-stack-pop .bp3-panel-stack-enter, .bp3-panel-stack-pop .bp3-panel-stack-appear{
  -webkit-transform:translateX(-50%);
          transform:translateX(-50%);
  opacity:0; }

.bp3-panel-stack-pop .bp3-panel-stack-enter-active, .bp3-panel-stack-pop .bp3-panel-stack-appear-active{
  -webkit-transform:translate(0%);
          transform:translate(0%);
  opacity:1;
  -webkit-transition-property:opacity, -webkit-transform;
  transition-property:opacity, -webkit-transform;
  transition-property:transform, opacity;
  transition-property:transform, opacity, -webkit-transform;
  -webkit-transition-duration:400ms;
          transition-duration:400ms;
  -webkit-transition-timing-function:ease;
          transition-timing-function:ease;
  -webkit-transition-delay:0;
          transition-delay:0; }

.bp3-panel-stack-pop .bp3-panel-stack-exit{
  -webkit-transform:translate(0%);
          transform:translate(0%);
  opacity:1; }

.bp3-panel-stack-pop .bp3-panel-stack-exit-active{
  -webkit-transform:translateX(100%);
          transform:translateX(100%);
  opacity:0;
  -webkit-transition-property:opacity, -webkit-transform;
  transition-property:opacity, -webkit-transform;
  transition-property:transform, opacity;
  transition-property:transform, opacity, -webkit-transform;
  -webkit-transition-duration:400ms;
          transition-duration:400ms;
  -webkit-transition-timing-function:ease;
          transition-timing-function:ease;
  -webkit-transition-delay:0;
          transition-delay:0; }
.bp3-popover{
  -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2);
          box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2);
  -webkit-transform:scale(1);
          transform:scale(1);
  display:inline-block;
  z-index:20;
  border-radius:3px; }
  .bp3-popover .bp3-popover-arrow{
    position:absolute;
    width:30px;
    height:30px; }
    .bp3-popover .bp3-popover-arrow::before{
      margin:5px;
      width:20px;
      height:20px; }
  .bp3-tether-element-attached-bottom.bp3-tether-target-attached-top > .bp3-popover{
    margin-top:-17px;
    margin-bottom:17px; }
    .bp3-tether-element-attached-bottom.bp3-tether-target-attached-top > .bp3-popover > .bp3-popover-arrow{
      bottom:-11px; }
      .bp3-tether-element-attached-bottom.bp3-tether-target-attached-top > .bp3-popover > .bp3-popover-arrow svg{
        -webkit-transform:rotate(-90deg);
                transform:rotate(-90deg); }
  .bp3-tether-element-attached-left.bp3-tether-target-attached-right > .bp3-popover{
    margin-left:17px; }
    .bp3-tether-element-attached-left.bp3-tether-target-attached-right > .bp3-popover > .bp3-popover-arrow{
      left:-11px; }
      .bp3-tether-element-attached-left.bp3-tether-target-attached-right > .bp3-popover > .bp3-popover-arrow svg{
        -webkit-transform:rotate(0);
                transform:rotate(0); }
  .bp3-tether-element-attached-top.bp3-tether-target-attached-bottom > .bp3-popover{
    margin-top:17px; }
    .bp3-tether-element-attached-top.bp3-tether-target-attached-bottom > .bp3-popover > .bp3-popover-arrow{
      top:-11px; }
      .bp3-tether-element-attached-top.bp3-tether-target-attached-bottom > .bp3-popover > .bp3-popover-arrow svg{
        -webkit-transform:rotate(90deg);
                transform:rotate(90deg); }
  .bp3-tether-element-attached-right.bp3-tether-target-attached-left > .bp3-popover{
    margin-right:17px;
    margin-left:-17px; }
    .bp3-tether-element-attached-right.bp3-tether-target-attached-left > .bp3-popover > .bp3-popover-arrow{
      right:-11px; }
      .bp3-tether-element-attached-right.bp3-tether-target-attached-left > .bp3-popover > .bp3-popover-arrow svg{
        -webkit-transform:rotate(180deg);
                transform:rotate(180deg); }
  .bp3-tether-element-attached-middle > .bp3-popover > .bp3-popover-arrow{
    top:50%;
    -webkit-transform:translateY(-50%);
            transform:translateY(-50%); }
  .bp3-tether-element-attached-center > .bp3-popover > .bp3-popover-arrow{
    right:50%;
    -webkit-transform:translateX(50%);
            transform:translateX(50%); }
  .bp3-tether-element-attached-top.bp3-tether-target-attached-top > .bp3-popover > .bp3-popover-arrow{
    top:-0.3934px; }
  .bp3-tether-element-attached-right.bp3-tether-target-attached-right > .bp3-popover > .bp3-popover-arrow{
    right:-0.3934px; }
  .bp3-tether-element-attached-left.bp3-tether-target-attached-left > .bp3-popover > .bp3-popover-arrow{
    left:-0.3934px; }
  .bp3-tether-element-attached-bottom.bp3-tether-target-attached-bottom > .bp3-popover > .bp3-popover-arrow{
    bottom:-0.3934px; }
  .bp3-tether-element-attached-top.bp3-tether-element-attached-left > .bp3-popover{
    -webkit-transform-origin:top left;
            transform-origin:top left; }
  .bp3-tether-element-attached-top.bp3-tether-element-attached-center > .bp3-popover{
    -webkit-transform-origin:top center;
            transform-origin:top center; }
  .bp3-tether-element-attached-top.bp3-tether-element-attached-right > .bp3-popover{
    -webkit-transform-origin:top right;
            transform-origin:top right; }
  .bp3-tether-element-attached-middle.bp3-tether-element-attached-left > .bp3-popover{
    -webkit-transform-origin:center left;
            transform-origin:center left; }
  .bp3-tether-element-attached-middle.bp3-tether-element-attached-center > .bp3-popover{
    -webkit-transform-origin:center center;
            transform-origin:center center; }
  .bp3-tether-element-attached-middle.bp3-tether-element-attached-right > .bp3-popover{
    -webkit-transform-origin:center right;
            transform-origin:center right; }
  .bp3-tether-element-attached-bottom.bp3-tether-element-attached-left > .bp3-popover{
    -webkit-transform-origin:bottom left;
            transform-origin:bottom left; }
  .bp3-tether-element-attached-bottom.bp3-tether-element-attached-center > .bp3-popover{
    -webkit-transform-origin:bottom center;
            transform-origin:bottom center; }
  .bp3-tether-element-attached-bottom.bp3-tether-element-attached-right > .bp3-popover{
    -webkit-transform-origin:bottom right;
            transform-origin:bottom right; }
  .bp3-popover .bp3-popover-content{
    background:#ffffff;
    color:inherit; }
  .bp3-popover .bp3-popover-arrow::before{
    -webkit-box-shadow:1px 1px 6px rgba(16, 22, 26, 0.2);
            box-shadow:1px 1px 6px rgba(16, 22, 26, 0.2); }
  .bp3-popover .bp3-popover-arrow-border{
    fill:#10161a;
    fill-opacity:0.1; }
  .bp3-popover .bp3-popover-arrow-fill{
    fill:#ffffff; }
  .bp3-popover-enter > .bp3-popover, .bp3-popover-appear > .bp3-popover{
    -webkit-transform:scale(0.3);
            transform:scale(0.3); }
  .bp3-popover-enter-active > .bp3-popover, .bp3-popover-appear-active > .bp3-popover{
    -webkit-transform:scale(1);
            transform:scale(1);
    -webkit-transition-property:-webkit-transform;
    transition-property:-webkit-transform;
    transition-property:transform;
    transition-property:transform, -webkit-transform;
    -webkit-transition-duration:300ms;
            transition-duration:300ms;
    -webkit-transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11);
            transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11);
    -webkit-transition-delay:0;
            transition-delay:0; }
  .bp3-popover-exit > .bp3-popover{
    -webkit-transform:scale(1);
            transform:scale(1); }
  .bp3-popover-exit-active > .bp3-popover{
    -webkit-transform:scale(0.3);
            transform:scale(0.3);
    -webkit-transition-property:-webkit-transform;
    transition-property:-webkit-transform;
    transition-property:transform;
    transition-property:transform, -webkit-transform;
    -webkit-transition-duration:300ms;
            transition-duration:300ms;
    -webkit-transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11);
            transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11);
    -webkit-transition-delay:0;
            transition-delay:0; }
  .bp3-popover .bp3-popover-content{
    position:relative;
    border-radius:3px; }
  .bp3-popover.bp3-popover-content-sizing .bp3-popover-content{
    max-width:350px;
    padding:20px; }
  .bp3-popover-target + .bp3-overlay .bp3-popover.bp3-popover-content-sizing{
    width:350px; }
  .bp3-popover.bp3-minimal{
    margin:0 !important; }
    .bp3-popover.bp3-minimal .bp3-popover-arrow{
      display:none; }
    .bp3-popover.bp3-minimal.bp3-popover{
      -webkit-transform:scale(1);
              transform:scale(1); }
      .bp3-popover-enter > .bp3-popover.bp3-minimal.bp3-popover, .bp3-popover-appear > .bp3-popover.bp3-minimal.bp3-popover{
        -webkit-transform:scale(1);
                transform:scale(1); }
      .bp3-popover-enter-active > .bp3-popover.bp3-minimal.bp3-popover, .bp3-popover-appear-active > .bp3-popover.bp3-minimal.bp3-popover{
        -webkit-transform:scale(1);
                transform:scale(1);
        -webkit-transition-property:-webkit-transform;
        transition-property:-webkit-transform;
        transition-property:transform;
        transition-property:transform, -webkit-transform;
        -webkit-transition-duration:100ms;
                transition-duration:100ms;
        -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
                transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
        -webkit-transition-delay:0;
                transition-delay:0; }
      .bp3-popover-exit > .bp3-popover.bp3-minimal.bp3-popover{
        -webkit-transform:scale(1);
                transform:scale(1); }
      .bp3-popover-exit-active > .bp3-popover.bp3-minimal.bp3-popover{
        -webkit-transform:scale(1);
                transform:scale(1);
        -webkit-transition-property:-webkit-transform;
        transition-property:-webkit-transform;
        transition-property:transform;
        transition-property:transform, -webkit-transform;
        -webkit-transition-duration:100ms;
                transition-duration:100ms;
        -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
                transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
        -webkit-transition-delay:0;
                transition-delay:0; }
  .bp3-popover.bp3-dark,
  .bp3-dark .bp3-popover{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4); }
    .bp3-popover.bp3-dark .bp3-popover-content,
    .bp3-dark .bp3-popover .bp3-popover-content{
      background:#30404d;
      color:inherit; }
    .bp3-popover.bp3-dark .bp3-popover-arrow::before,
    .bp3-dark .bp3-popover .bp3-popover-arrow::before{
      -webkit-box-shadow:1px 1px 6px rgba(16, 22, 26, 0.4);
              box-shadow:1px 1px 6px rgba(16, 22, 26, 0.4); }
    .bp3-popover.bp3-dark .bp3-popover-arrow-border,
    .bp3-dark .bp3-popover .bp3-popover-arrow-border{
      fill:#10161a;
      fill-opacity:0.2; }
    .bp3-popover.bp3-dark .bp3-popover-arrow-fill,
    .bp3-dark .bp3-popover .bp3-popover-arrow-fill{
      fill:#30404d; }

.bp3-popover-arrow::before{
  display:block;
  position:absolute;
  -webkit-transform:rotate(45deg);
          transform:rotate(45deg);
  border-radius:2px;
  content:""; }

.bp3-tether-pinned .bp3-popover-arrow{
  display:none; }

.bp3-popover-backdrop{
  background:rgba(255, 255, 255, 0); }

.bp3-transition-container{
  opacity:1;
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  z-index:20; }
  .bp3-transition-container.bp3-popover-enter, .bp3-transition-container.bp3-popover-appear{
    opacity:0; }
  .bp3-transition-container.bp3-popover-enter-active, .bp3-transition-container.bp3-popover-appear-active{
    opacity:1;
    -webkit-transition-property:opacity;
    transition-property:opacity;
    -webkit-transition-duration:100ms;
            transition-duration:100ms;
    -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
            transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
    -webkit-transition-delay:0;
            transition-delay:0; }
  .bp3-transition-container.bp3-popover-exit{
    opacity:1; }
  .bp3-transition-container.bp3-popover-exit-active{
    opacity:0;
    -webkit-transition-property:opacity;
    transition-property:opacity;
    -webkit-transition-duration:100ms;
            transition-duration:100ms;
    -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
            transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
    -webkit-transition-delay:0;
            transition-delay:0; }
  .bp3-transition-container:focus{
    outline:none; }
  .bp3-transition-container.bp3-popover-leave .bp3-popover-content{
    pointer-events:none; }
  .bp3-transition-container[data-x-out-of-boundaries]{
    display:none; }

span.bp3-popover-target{
  display:inline-block; }

.bp3-popover-wrapper.bp3-fill{
  width:100%; }

.bp3-portal{
  position:absolute;
  top:0;
  right:0;
  left:0; }
@-webkit-keyframes linear-progress-bar-stripes{
  from{
    background-position:0 0; }
  to{
    background-position:30px 0; } }
@keyframes linear-progress-bar-stripes{
  from{
    background-position:0 0; }
  to{
    background-position:30px 0; } }

.bp3-progress-bar{
  display:block;
  position:relative;
  border-radius:40px;
  background:rgba(92, 112, 128, 0.2);
  width:100%;
  height:8px;
  overflow:hidden; }
  .bp3-progress-bar .bp3-progress-meter{
    position:absolute;
    border-radius:40px;
    background:linear-gradient(-45deg, rgba(255, 255, 255, 0.2) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.2) 50%, rgba(255, 255, 255, 0.2) 75%, transparent 75%);
    background-color:rgba(92, 112, 128, 0.8);
    background-size:30px 30px;
    width:100%;
    height:100%;
    -webkit-transition:width 200ms cubic-bezier(0.4, 1, 0.75, 0.9);
    transition:width 200ms cubic-bezier(0.4, 1, 0.75, 0.9); }
  .bp3-progress-bar:not(.bp3-no-animation):not(.bp3-no-stripes) .bp3-progress-meter{
    animation:linear-progress-bar-stripes 300ms linear infinite reverse; }
  .bp3-progress-bar.bp3-no-stripes .bp3-progress-meter{
    background-image:none; }

.bp3-dark .bp3-progress-bar{
  background:rgba(16, 22, 26, 0.5); }
  .bp3-dark .bp3-progress-bar .bp3-progress-meter{
    background-color:#8a9ba8; }

.bp3-progress-bar.bp3-intent-primary .bp3-progress-meter{
  background-color:#137cbd; }

.bp3-progress-bar.bp3-intent-success .bp3-progress-meter{
  background-color:#0f9960; }

.bp3-progress-bar.bp3-intent-warning .bp3-progress-meter{
  background-color:#d9822b; }

.bp3-progress-bar.bp3-intent-danger .bp3-progress-meter{
  background-color:#db3737; }
@-webkit-keyframes skeleton-glow{
  from{
    border-color:rgba(206, 217, 224, 0.2);
    background:rgba(206, 217, 224, 0.2); }
  to{
    border-color:rgba(92, 112, 128, 0.2);
    background:rgba(92, 112, 128, 0.2); } }
@keyframes skeleton-glow{
  from{
    border-color:rgba(206, 217, 224, 0.2);
    background:rgba(206, 217, 224, 0.2); }
  to{
    border-color:rgba(92, 112, 128, 0.2);
    background:rgba(92, 112, 128, 0.2); } }
.bp3-skeleton{
  border-color:rgba(206, 217, 224, 0.2) !important;
  border-radius:2px;
  -webkit-box-shadow:none !important;
          box-shadow:none !important;
  background:rgba(206, 217, 224, 0.2);
  background-clip:padding-box !important;
  cursor:default;
  color:transparent !important;
  -webkit-animation:1000ms linear infinite alternate skeleton-glow;
          animation:1000ms linear infinite alternate skeleton-glow;
  pointer-events:none;
  -webkit-user-select:none;
     -moz-user-select:none;
      -ms-user-select:none;
          user-select:none; }
  .bp3-skeleton::before, .bp3-skeleton::after,
  .bp3-skeleton *{
    visibility:hidden !important; }
.bp3-slider{
  width:100%;
  min-width:150px;
  height:40px;
  position:relative;
  outline:none;
  cursor:default;
  -webkit-user-select:none;
     -moz-user-select:none;
      -ms-user-select:none;
          user-select:none; }
  .bp3-slider:hover{
    cursor:pointer; }
  .bp3-slider:active{
    cursor:-webkit-grabbing;
    cursor:grabbing; }
  .bp3-slider.bp3-disabled{
    opacity:0.5;
    cursor:not-allowed; }
  .bp3-slider.bp3-slider-unlabeled{
    height:16px; }

.bp3-slider-track,
.bp3-slider-progress{
  top:5px;
  right:0;
  left:0;
  height:6px;
  position:absolute; }

.bp3-slider-track{
  border-radius:3px;
  overflow:hidden; }

.bp3-slider-progress{
  background:rgba(92, 112, 128, 0.2); }
  .bp3-dark .bp3-slider-progress{
    background:rgba(16, 22, 26, 0.5); }
  .bp3-slider-progress.bp3-intent-primary{
    background-color:#137cbd; }
  .bp3-slider-progress.bp3-intent-success{
    background-color:#0f9960; }
  .bp3-slider-progress.bp3-intent-warning{
    background-color:#d9822b; }
  .bp3-slider-progress.bp3-intent-danger{
    background-color:#db3737; }

.bp3-slider-handle{
  -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
          box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
  background-color:#f5f8fa;
  background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.8)), to(rgba(255, 255, 255, 0)));
  background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.8), rgba(255, 255, 255, 0));
  color:#182026;
  position:absolute;
  top:0;
  left:0;
  border-radius:3px;
  -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 1px 1px rgba(16, 22, 26, 0.2);
          box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 1px 1px rgba(16, 22, 26, 0.2);
  cursor:pointer;
  width:16px;
  height:16px; }
  .bp3-slider-handle:hover{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
    background-clip:padding-box;
    background-color:#ebf1f5; }
  .bp3-slider-handle:active, .bp3-slider-handle.bp3-active{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2);
    background-color:#d8e1e8;
    background-image:none; }
  .bp3-slider-handle:disabled, .bp3-slider-handle.bp3-disabled{
    outline:none;
    -webkit-box-shadow:none;
            box-shadow:none;
    background-color:rgba(206, 217, 224, 0.5);
    background-image:none;
    cursor:not-allowed;
    color:rgba(92, 112, 128, 0.6); }
    .bp3-slider-handle:disabled.bp3-active, .bp3-slider-handle:disabled.bp3-active:hover, .bp3-slider-handle.bp3-disabled.bp3-active, .bp3-slider-handle.bp3-disabled.bp3-active:hover{
      background:rgba(206, 217, 224, 0.7); }
  .bp3-slider-handle:focus{
    z-index:1; }
  .bp3-slider-handle:hover{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 -1px 0 rgba(16, 22, 26, 0.1);
    background-clip:padding-box;
    background-color:#ebf1f5;
    z-index:2;
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 1px 1px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 1px 1px rgba(16, 22, 26, 0.2);
    cursor:-webkit-grab;
    cursor:grab; }
  .bp3-slider-handle.bp3-active{
    -webkit-box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2);
            box-shadow:inset 0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 2px rgba(16, 22, 26, 0.2);
    background-color:#d8e1e8;
    background-image:none;
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 1px rgba(16, 22, 26, 0.1);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), inset 0 1px 1px rgba(16, 22, 26, 0.1);
    cursor:-webkit-grabbing;
    cursor:grabbing; }
  .bp3-disabled .bp3-slider-handle{
    -webkit-box-shadow:none;
            box-shadow:none;
    background:#bfccd6;
    pointer-events:none; }
  .bp3-dark .bp3-slider-handle{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
    background-color:#394b59;
    background-image:-webkit-gradient(linear, left top, left bottom, from(rgba(255, 255, 255, 0.05)), to(rgba(255, 255, 255, 0)));
    background-image:linear-gradient(to bottom, rgba(255, 255, 255, 0.05), rgba(255, 255, 255, 0));
    color:#f5f8fa; }
    .bp3-dark .bp3-slider-handle:hover, .bp3-dark .bp3-slider-handle:active, .bp3-dark .bp3-slider-handle.bp3-active{
      color:#f5f8fa; }
    .bp3-dark .bp3-slider-handle:hover{
      -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
              box-shadow:0 0 0 1px rgba(16, 22, 26, 0.4);
      background-color:#30404d; }
    .bp3-dark .bp3-slider-handle:active, .bp3-dark .bp3-slider-handle.bp3-active{
      -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2);
              box-shadow:0 0 0 1px rgba(16, 22, 26, 0.6), inset 0 1px 2px rgba(16, 22, 26, 0.2);
      background-color:#202b33;
      background-image:none; }
    .bp3-dark .bp3-slider-handle:disabled, .bp3-dark .bp3-slider-handle.bp3-disabled{
      -webkit-box-shadow:none;
              box-shadow:none;
      background-color:rgba(57, 75, 89, 0.5);
      background-image:none;
      color:rgba(167, 182, 194, 0.6); }
      .bp3-dark .bp3-slider-handle:disabled.bp3-active, .bp3-dark .bp3-slider-handle.bp3-disabled.bp3-active{
        background:rgba(57, 75, 89, 0.7); }
    .bp3-dark .bp3-slider-handle .bp3-button-spinner .bp3-spinner-head{
      background:rgba(16, 22, 26, 0.5);
      stroke:#8a9ba8; }
    .bp3-dark .bp3-slider-handle, .bp3-dark .bp3-slider-handle:hover{
      background-color:#394b59; }
    .bp3-dark .bp3-slider-handle.bp3-active{
      background-color:#293742; }
  .bp3-dark .bp3-disabled .bp3-slider-handle{
    border-color:#5c7080;
    -webkit-box-shadow:none;
            box-shadow:none;
    background:#5c7080; }
  .bp3-slider-handle .bp3-slider-label{
    margin-left:8px;
    border-radius:3px;
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2);
    background:#394b59;
    color:#f5f8fa; }
    .bp3-dark .bp3-slider-handle .bp3-slider-label{
      -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4);
              box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4);
      background:#e1e8ed;
      color:#394b59; }
    .bp3-disabled .bp3-slider-handle .bp3-slider-label{
      -webkit-box-shadow:none;
              box-shadow:none; }
  .bp3-slider-handle.bp3-start, .bp3-slider-handle.bp3-end{
    width:8px; }
  .bp3-slider-handle.bp3-start{
    border-top-right-radius:0;
    border-bottom-right-radius:0; }
  .bp3-slider-handle.bp3-end{
    margin-left:8px;
    border-top-left-radius:0;
    border-bottom-left-radius:0; }
    .bp3-slider-handle.bp3-end .bp3-slider-label{
      margin-left:0; }

.bp3-slider-label{
  -webkit-transform:translate(-50%, 20px);
          transform:translate(-50%, 20px);
  display:inline-block;
  position:absolute;
  padding:2px 5px;
  vertical-align:top;
  line-height:1;
  font-size:12px; }

.bp3-slider.bp3-vertical{
  width:40px;
  min-width:40px;
  height:150px; }
  .bp3-slider.bp3-vertical .bp3-slider-track,
  .bp3-slider.bp3-vertical .bp3-slider-progress{
    top:0;
    bottom:0;
    left:5px;
    width:6px;
    height:auto; }
  .bp3-slider.bp3-vertical .bp3-slider-progress{
    top:auto; }
  .bp3-slider.bp3-vertical .bp3-slider-label{
    -webkit-transform:translate(20px, 50%);
            transform:translate(20px, 50%); }
  .bp3-slider.bp3-vertical .bp3-slider-handle{
    top:auto; }
    .bp3-slider.bp3-vertical .bp3-slider-handle .bp3-slider-label{
      margin-top:-8px;
      margin-left:0; }
    .bp3-slider.bp3-vertical .bp3-slider-handle.bp3-end, .bp3-slider.bp3-vertical .bp3-slider-handle.bp3-start{
      margin-left:0;
      width:16px;
      height:8px; }
    .bp3-slider.bp3-vertical .bp3-slider-handle.bp3-start{
      border-top-left-radius:0;
      border-bottom-right-radius:3px; }
      .bp3-slider.bp3-vertical .bp3-slider-handle.bp3-start .bp3-slider-label{
        -webkit-transform:translate(20px);
                transform:translate(20px); }
    .bp3-slider.bp3-vertical .bp3-slider-handle.bp3-end{
      margin-bottom:8px;
      border-top-left-radius:3px;
      border-bottom-left-radius:0;
      border-bottom-right-radius:0; }

@-webkit-keyframes pt-spinner-animation{
  from{
    -webkit-transform:rotate(0deg);
            transform:rotate(0deg); }
  to{
    -webkit-transform:rotate(360deg);
            transform:rotate(360deg); } }

@keyframes pt-spinner-animation{
  from{
    -webkit-transform:rotate(0deg);
            transform:rotate(0deg); }
  to{
    -webkit-transform:rotate(360deg);
            transform:rotate(360deg); } }

.bp3-spinner{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -webkit-box-align:center;
      -ms-flex-align:center;
          align-items:center;
  -webkit-box-pack:center;
      -ms-flex-pack:center;
          justify-content:center;
  overflow:visible;
  vertical-align:middle; }
  .bp3-spinner svg{
    display:block; }
  .bp3-spinner path{
    fill-opacity:0; }
  .bp3-spinner .bp3-spinner-head{
    -webkit-transform-origin:center;
            transform-origin:center;
    -webkit-transition:stroke-dashoffset 200ms cubic-bezier(0.4, 1, 0.75, 0.9);
    transition:stroke-dashoffset 200ms cubic-bezier(0.4, 1, 0.75, 0.9);
    stroke:rgba(92, 112, 128, 0.8);
    stroke-linecap:round; }
  .bp3-spinner .bp3-spinner-track{
    stroke:rgba(92, 112, 128, 0.2); }

.bp3-spinner-animation{
  -webkit-animation:pt-spinner-animation 500ms linear infinite;
          animation:pt-spinner-animation 500ms linear infinite; }
  .bp3-no-spin > .bp3-spinner-animation{
    -webkit-animation:none;
            animation:none; }

.bp3-dark .bp3-spinner .bp3-spinner-head{
  stroke:#8a9ba8; }

.bp3-dark .bp3-spinner .bp3-spinner-track{
  stroke:rgba(16, 22, 26, 0.5); }

.bp3-spinner.bp3-intent-primary .bp3-spinner-head{
  stroke:#137cbd; }

.bp3-spinner.bp3-intent-success .bp3-spinner-head{
  stroke:#0f9960; }

.bp3-spinner.bp3-intent-warning .bp3-spinner-head{
  stroke:#d9822b; }

.bp3-spinner.bp3-intent-danger .bp3-spinner-head{
  stroke:#db3737; }
.bp3-tabs.bp3-vertical{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex; }
  .bp3-tabs.bp3-vertical > .bp3-tab-list{
    -webkit-box-orient:vertical;
    -webkit-box-direction:normal;
        -ms-flex-direction:column;
            flex-direction:column;
    -webkit-box-align:start;
        -ms-flex-align:start;
            align-items:flex-start; }
    .bp3-tabs.bp3-vertical > .bp3-tab-list .bp3-tab{
      border-radius:3px;
      width:100%;
      padding:0 10px; }
      .bp3-tabs.bp3-vertical > .bp3-tab-list .bp3-tab[aria-selected="true"]{
        -webkit-box-shadow:none;
                box-shadow:none;
        background-color:rgba(19, 124, 189, 0.2); }
    .bp3-tabs.bp3-vertical > .bp3-tab-list .bp3-tab-indicator-wrapper .bp3-tab-indicator{
      top:0;
      right:0;
      bottom:0;
      left:0;
      border-radius:3px;
      background-color:rgba(19, 124, 189, 0.2);
      height:auto; }
  .bp3-tabs.bp3-vertical > .bp3-tab-panel{
    margin-top:0;
    padding-left:20px; }

.bp3-tab-list{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -webkit-box-flex:0;
      -ms-flex:0 0 auto;
          flex:0 0 auto;
  -webkit-box-align:end;
      -ms-flex-align:end;
          align-items:flex-end;
  position:relative;
  margin:0;
  border:none;
  padding:0;
  list-style:none; }
  .bp3-tab-list > *:not(:last-child){
    margin-right:20px; }

.bp3-tab{
  overflow:hidden;
  text-overflow:ellipsis;
  white-space:nowrap;
  word-wrap:normal;
  -webkit-box-flex:0;
      -ms-flex:0 0 auto;
          flex:0 0 auto;
  position:relative;
  cursor:pointer;
  max-width:100%;
  vertical-align:top;
  line-height:30px;
  color:#182026;
  font-size:14px; }
  .bp3-tab a{
    display:block;
    text-decoration:none;
    color:inherit; }
  .bp3-tab-indicator-wrapper ~ .bp3-tab{
    -webkit-box-shadow:none !important;
            box-shadow:none !important;
    background-color:transparent !important; }
  .bp3-tab[aria-disabled="true"]{
    cursor:not-allowed;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-tab[aria-selected="true"]{
    border-radius:0;
    -webkit-box-shadow:inset 0 -3px 0 #106ba3;
            box-shadow:inset 0 -3px 0 #106ba3; }
  .bp3-tab[aria-selected="true"], .bp3-tab:not([aria-disabled="true"]):hover{
    color:#106ba3; }
  .bp3-tab:focus{
    -moz-outline-radius:0; }
  .bp3-large > .bp3-tab{
    line-height:40px;
    font-size:16px; }

.bp3-tab-panel{
  margin-top:20px; }
  .bp3-tab-panel[aria-hidden="true"]{
    display:none; }

.bp3-tab-indicator-wrapper{
  position:absolute;
  top:0;
  left:0;
  -webkit-transform:translateX(0), translateY(0);
          transform:translateX(0), translateY(0);
  -webkit-transition:height, width, -webkit-transform;
  transition:height, width, -webkit-transform;
  transition:height, transform, width;
  transition:height, transform, width, -webkit-transform;
  -webkit-transition-duration:200ms;
          transition-duration:200ms;
  -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
          transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
  pointer-events:none; }
  .bp3-tab-indicator-wrapper .bp3-tab-indicator{
    position:absolute;
    right:0;
    bottom:0;
    left:0;
    background-color:#106ba3;
    height:3px; }
  .bp3-tab-indicator-wrapper.bp3-no-animation{
    -webkit-transition:none;
    transition:none; }

.bp3-dark .bp3-tab{
  color:#f5f8fa; }
  .bp3-dark .bp3-tab[aria-disabled="true"]{
    color:rgba(167, 182, 194, 0.6); }
  .bp3-dark .bp3-tab[aria-selected="true"]{
    -webkit-box-shadow:inset 0 -3px 0 #48aff0;
            box-shadow:inset 0 -3px 0 #48aff0; }
  .bp3-dark .bp3-tab[aria-selected="true"], .bp3-dark .bp3-tab:not([aria-disabled="true"]):hover{
    color:#48aff0; }

.bp3-dark .bp3-tab-indicator{
  background-color:#48aff0; }

.bp3-flex-expander{
  -webkit-box-flex:1;
      -ms-flex:1 1;
          flex:1 1; }
.bp3-tag{
  display:-webkit-inline-box;
  display:-ms-inline-flexbox;
  display:inline-flex;
  -webkit-box-orient:horizontal;
  -webkit-box-direction:normal;
      -ms-flex-direction:row;
          flex-direction:row;
  -webkit-box-align:center;
      -ms-flex-align:center;
          align-items:center;
  position:relative;
  border:none;
  border-radius:3px;
  -webkit-box-shadow:none;
          box-shadow:none;
  background-color:#5c7080;
  min-width:20px;
  max-width:100%;
  min-height:20px;
  padding:2px 6px;
  line-height:16px;
  color:#f5f8fa;
  font-size:12px; }
  .bp3-tag.bp3-interactive{
    cursor:pointer; }
    .bp3-tag.bp3-interactive:hover{
      background-color:rgba(92, 112, 128, 0.85); }
    .bp3-tag.bp3-interactive.bp3-active, .bp3-tag.bp3-interactive:active{
      background-color:rgba(92, 112, 128, 0.7); }
  .bp3-tag > *{
    -webkit-box-flex:0;
        -ms-flex-positive:0;
            flex-grow:0;
    -ms-flex-negative:0;
        flex-shrink:0; }
  .bp3-tag > .bp3-fill{
    -webkit-box-flex:1;
        -ms-flex-positive:1;
            flex-grow:1;
    -ms-flex-negative:1;
        flex-shrink:1; }
  .bp3-tag::before,
  .bp3-tag > *{
    margin-right:4px; }
  .bp3-tag:empty::before,
  .bp3-tag > :last-child{
    margin-right:0; }
  .bp3-tag:focus{
    outline:rgba(19, 124, 189, 0.6) auto 2px;
    outline-offset:0;
    -moz-outline-radius:6px; }
  .bp3-tag.bp3-round{
    border-radius:30px;
    padding-right:8px;
    padding-left:8px; }
  .bp3-dark .bp3-tag{
    background-color:#bfccd6;
    color:#182026; }
    .bp3-dark .bp3-tag.bp3-interactive{
      cursor:pointer; }
      .bp3-dark .bp3-tag.bp3-interactive:hover{
        background-color:rgba(191, 204, 214, 0.85); }
      .bp3-dark .bp3-tag.bp3-interactive.bp3-active, .bp3-dark .bp3-tag.bp3-interactive:active{
        background-color:rgba(191, 204, 214, 0.7); }
    .bp3-dark .bp3-tag > .bp3-icon, .bp3-dark .bp3-tag .bp3-icon-standard, .bp3-dark .bp3-tag .bp3-icon-large{
      fill:currentColor; }
  .bp3-tag > .bp3-icon, .bp3-tag .bp3-icon-standard, .bp3-tag .bp3-icon-large{
    fill:#ffffff; }
  .bp3-tag.bp3-large,
  .bp3-large .bp3-tag{
    min-width:30px;
    min-height:30px;
    padding:0 10px;
    line-height:20px;
    font-size:14px; }
    .bp3-tag.bp3-large::before,
    .bp3-tag.bp3-large > *,
    .bp3-large .bp3-tag::before,
    .bp3-large .bp3-tag > *{
      margin-right:7px; }
    .bp3-tag.bp3-large:empty::before,
    .bp3-tag.bp3-large > :last-child,
    .bp3-large .bp3-tag:empty::before,
    .bp3-large .bp3-tag > :last-child{
      margin-right:0; }
    .bp3-tag.bp3-large.bp3-round,
    .bp3-large .bp3-tag.bp3-round{
      padding-right:12px;
      padding-left:12px; }
  .bp3-tag.bp3-intent-primary{
    background:#137cbd;
    color:#ffffff; }
    .bp3-tag.bp3-intent-primary.bp3-interactive{
      cursor:pointer; }
      .bp3-tag.bp3-intent-primary.bp3-interactive:hover{
        background-color:rgba(19, 124, 189, 0.85); }
      .bp3-tag.bp3-intent-primary.bp3-interactive.bp3-active, .bp3-tag.bp3-intent-primary.bp3-interactive:active{
        background-color:rgba(19, 124, 189, 0.7); }
  .bp3-tag.bp3-intent-success{
    background:#0f9960;
    color:#ffffff; }
    .bp3-tag.bp3-intent-success.bp3-interactive{
      cursor:pointer; }
      .bp3-tag.bp3-intent-success.bp3-interactive:hover{
        background-color:rgba(15, 153, 96, 0.85); }
      .bp3-tag.bp3-intent-success.bp3-interactive.bp3-active, .bp3-tag.bp3-intent-success.bp3-interactive:active{
        background-color:rgba(15, 153, 96, 0.7); }
  .bp3-tag.bp3-intent-warning{
    background:#d9822b;
    color:#ffffff; }
    .bp3-tag.bp3-intent-warning.bp3-interactive{
      cursor:pointer; }
      .bp3-tag.bp3-intent-warning.bp3-interactive:hover{
        background-color:rgba(217, 130, 43, 0.85); }
      .bp3-tag.bp3-intent-warning.bp3-interactive.bp3-active, .bp3-tag.bp3-intent-warning.bp3-interactive:active{
        background-color:rgba(217, 130, 43, 0.7); }
  .bp3-tag.bp3-intent-danger{
    background:#db3737;
    color:#ffffff; }
    .bp3-tag.bp3-intent-danger.bp3-interactive{
      cursor:pointer; }
      .bp3-tag.bp3-intent-danger.bp3-interactive:hover{
        background-color:rgba(219, 55, 55, 0.85); }
      .bp3-tag.bp3-intent-danger.bp3-interactive.bp3-active, .bp3-tag.bp3-intent-danger.bp3-interactive:active{
        background-color:rgba(219, 55, 55, 0.7); }
  .bp3-tag.bp3-fill{
    display:-webkit-box;
    display:-ms-flexbox;
    display:flex;
    width:100%; }
  .bp3-tag.bp3-minimal > .bp3-icon, .bp3-tag.bp3-minimal .bp3-icon-standard, .bp3-tag.bp3-minimal .bp3-icon-large{
    fill:#5c7080; }
  .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]){
    background-color:rgba(138, 155, 168, 0.2);
    color:#182026; }
    .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]).bp3-interactive{
      cursor:pointer; }
      .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]).bp3-interactive:hover{
        background-color:rgba(92, 112, 128, 0.3); }
      .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]).bp3-interactive.bp3-active, .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]).bp3-interactive:active{
        background-color:rgba(92, 112, 128, 0.4); }
    .bp3-dark .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]){
      color:#f5f8fa; }
      .bp3-dark .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]).bp3-interactive{
        cursor:pointer; }
        .bp3-dark .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]).bp3-interactive:hover{
          background-color:rgba(191, 204, 214, 0.3); }
        .bp3-dark .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]).bp3-interactive.bp3-active, .bp3-dark .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]).bp3-interactive:active{
          background-color:rgba(191, 204, 214, 0.4); }
      .bp3-dark .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]) > .bp3-icon, .bp3-dark .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]) .bp3-icon-standard, .bp3-dark .bp3-tag.bp3-minimal:not([class*="bp3-intent-"]) .bp3-icon-large{
        fill:#a7b6c2; }
  .bp3-tag.bp3-minimal.bp3-intent-primary{
    background-color:rgba(19, 124, 189, 0.15);
    color:#106ba3; }
    .bp3-tag.bp3-minimal.bp3-intent-primary.bp3-interactive{
      cursor:pointer; }
      .bp3-tag.bp3-minimal.bp3-intent-primary.bp3-interactive:hover{
        background-color:rgba(19, 124, 189, 0.25); }
      .bp3-tag.bp3-minimal.bp3-intent-primary.bp3-interactive.bp3-active, .bp3-tag.bp3-minimal.bp3-intent-primary.bp3-interactive:active{
        background-color:rgba(19, 124, 189, 0.35); }
    .bp3-tag.bp3-minimal.bp3-intent-primary > .bp3-icon, .bp3-tag.bp3-minimal.bp3-intent-primary .bp3-icon-standard, .bp3-tag.bp3-minimal.bp3-intent-primary .bp3-icon-large{
      fill:#137cbd; }
    .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-primary{
      background-color:rgba(19, 124, 189, 0.25);
      color:#48aff0; }
      .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-primary.bp3-interactive{
        cursor:pointer; }
        .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-primary.bp3-interactive:hover{
          background-color:rgba(19, 124, 189, 0.35); }
        .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-primary.bp3-interactive.bp3-active, .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-primary.bp3-interactive:active{
          background-color:rgba(19, 124, 189, 0.45); }
  .bp3-tag.bp3-minimal.bp3-intent-success{
    background-color:rgba(15, 153, 96, 0.15);
    color:#0d8050; }
    .bp3-tag.bp3-minimal.bp3-intent-success.bp3-interactive{
      cursor:pointer; }
      .bp3-tag.bp3-minimal.bp3-intent-success.bp3-interactive:hover{
        background-color:rgba(15, 153, 96, 0.25); }
      .bp3-tag.bp3-minimal.bp3-intent-success.bp3-interactive.bp3-active, .bp3-tag.bp3-minimal.bp3-intent-success.bp3-interactive:active{
        background-color:rgba(15, 153, 96, 0.35); }
    .bp3-tag.bp3-minimal.bp3-intent-success > .bp3-icon, .bp3-tag.bp3-minimal.bp3-intent-success .bp3-icon-standard, .bp3-tag.bp3-minimal.bp3-intent-success .bp3-icon-large{
      fill:#0f9960; }
    .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-success{
      background-color:rgba(15, 153, 96, 0.25);
      color:#3dcc91; }
      .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-success.bp3-interactive{
        cursor:pointer; }
        .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-success.bp3-interactive:hover{
          background-color:rgba(15, 153, 96, 0.35); }
        .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-success.bp3-interactive.bp3-active, .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-success.bp3-interactive:active{
          background-color:rgba(15, 153, 96, 0.45); }
  .bp3-tag.bp3-minimal.bp3-intent-warning{
    background-color:rgba(217, 130, 43, 0.15);
    color:#bf7326; }
    .bp3-tag.bp3-minimal.bp3-intent-warning.bp3-interactive{
      cursor:pointer; }
      .bp3-tag.bp3-minimal.bp3-intent-warning.bp3-interactive:hover{
        background-color:rgba(217, 130, 43, 0.25); }
      .bp3-tag.bp3-minimal.bp3-intent-warning.bp3-interactive.bp3-active, .bp3-tag.bp3-minimal.bp3-intent-warning.bp3-interactive:active{
        background-color:rgba(217, 130, 43, 0.35); }
    .bp3-tag.bp3-minimal.bp3-intent-warning > .bp3-icon, .bp3-tag.bp3-minimal.bp3-intent-warning .bp3-icon-standard, .bp3-tag.bp3-minimal.bp3-intent-warning .bp3-icon-large{
      fill:#d9822b; }
    .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-warning{
      background-color:rgba(217, 130, 43, 0.25);
      color:#ffb366; }
      .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-warning.bp3-interactive{
        cursor:pointer; }
        .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-warning.bp3-interactive:hover{
          background-color:rgba(217, 130, 43, 0.35); }
        .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-warning.bp3-interactive.bp3-active, .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-warning.bp3-interactive:active{
          background-color:rgba(217, 130, 43, 0.45); }
  .bp3-tag.bp3-minimal.bp3-intent-danger{
    background-color:rgba(219, 55, 55, 0.15);
    color:#c23030; }
    .bp3-tag.bp3-minimal.bp3-intent-danger.bp3-interactive{
      cursor:pointer; }
      .bp3-tag.bp3-minimal.bp3-intent-danger.bp3-interactive:hover{
        background-color:rgba(219, 55, 55, 0.25); }
      .bp3-tag.bp3-minimal.bp3-intent-danger.bp3-interactive.bp3-active, .bp3-tag.bp3-minimal.bp3-intent-danger.bp3-interactive:active{
        background-color:rgba(219, 55, 55, 0.35); }
    .bp3-tag.bp3-minimal.bp3-intent-danger > .bp3-icon, .bp3-tag.bp3-minimal.bp3-intent-danger .bp3-icon-standard, .bp3-tag.bp3-minimal.bp3-intent-danger .bp3-icon-large{
      fill:#db3737; }
    .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-danger{
      background-color:rgba(219, 55, 55, 0.25);
      color:#ff7373; }
      .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-danger.bp3-interactive{
        cursor:pointer; }
        .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-danger.bp3-interactive:hover{
          background-color:rgba(219, 55, 55, 0.35); }
        .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-danger.bp3-interactive.bp3-active, .bp3-dark .bp3-tag.bp3-minimal.bp3-intent-danger.bp3-interactive:active{
          background-color:rgba(219, 55, 55, 0.45); }

.bp3-tag-remove{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  opacity:0.5;
  margin-top:-2px;
  margin-right:-6px !important;
  margin-bottom:-2px;
  border:none;
  background:none;
  cursor:pointer;
  padding:2px;
  padding-left:0;
  color:inherit; }
  .bp3-tag-remove:hover{
    opacity:0.8;
    background:none;
    text-decoration:none; }
  .bp3-tag-remove:active{
    opacity:1; }
  .bp3-tag-remove:empty::before{
    line-height:1;
    font-family:"Icons16", sans-serif;
    font-size:16px;
    font-weight:400;
    font-style:normal;
    -moz-osx-font-smoothing:grayscale;
    -webkit-font-smoothing:antialiased;
    content:""; }
  .bp3-large .bp3-tag-remove{
    margin-right:-10px !important;
    padding:5px;
    padding-left:0; }
    .bp3-large .bp3-tag-remove:empty::before{
      line-height:1;
      font-family:"Icons20", sans-serif;
      font-size:20px;
      font-weight:400;
      font-style:normal; }
.bp3-tag-input{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -webkit-box-orient:horizontal;
  -webkit-box-direction:normal;
      -ms-flex-direction:row;
          flex-direction:row;
  -webkit-box-align:start;
      -ms-flex-align:start;
          align-items:flex-start;
  cursor:text;
  height:auto;
  min-height:30px;
  padding-right:0;
  padding-left:5px;
  line-height:inherit; }
  .bp3-tag-input > *{
    -webkit-box-flex:0;
        -ms-flex-positive:0;
            flex-grow:0;
    -ms-flex-negative:0;
        flex-shrink:0; }
  .bp3-tag-input > .bp3-tag-input-values{
    -webkit-box-flex:1;
        -ms-flex-positive:1;
            flex-grow:1;
    -ms-flex-negative:1;
        flex-shrink:1; }
  .bp3-tag-input .bp3-tag-input-icon{
    margin-top:7px;
    margin-right:7px;
    margin-left:2px;
    color:#5c7080; }
  .bp3-tag-input .bp3-tag-input-values{
    display:-webkit-box;
    display:-ms-flexbox;
    display:flex;
    -webkit-box-orient:horizontal;
    -webkit-box-direction:normal;
        -ms-flex-direction:row;
            flex-direction:row;
    -ms-flex-wrap:wrap;
        flex-wrap:wrap;
    -webkit-box-align:center;
        -ms-flex-align:center;
            align-items:center;
    -ms-flex-item-align:stretch;
        align-self:stretch;
    margin-top:5px;
    margin-right:7px;
    min-width:0; }
    .bp3-tag-input .bp3-tag-input-values > *{
      -webkit-box-flex:0;
          -ms-flex-positive:0;
              flex-grow:0;
      -ms-flex-negative:0;
          flex-shrink:0; }
    .bp3-tag-input .bp3-tag-input-values > .bp3-fill{
      -webkit-box-flex:1;
          -ms-flex-positive:1;
              flex-grow:1;
      -ms-flex-negative:1;
          flex-shrink:1; }
    .bp3-tag-input .bp3-tag-input-values::before,
    .bp3-tag-input .bp3-tag-input-values > *{
      margin-right:5px; }
    .bp3-tag-input .bp3-tag-input-values:empty::before,
    .bp3-tag-input .bp3-tag-input-values > :last-child{
      margin-right:0; }
    .bp3-tag-input .bp3-tag-input-values:first-child .bp3-input-ghost:first-child{
      padding-left:5px; }
    .bp3-tag-input .bp3-tag-input-values > *{
      margin-bottom:5px; }
  .bp3-tag-input .bp3-tag{
    overflow-wrap:break-word; }
    .bp3-tag-input .bp3-tag.bp3-active{
      outline:rgba(19, 124, 189, 0.6) auto 2px;
      outline-offset:0;
      -moz-outline-radius:6px; }
  .bp3-tag-input .bp3-input-ghost{
    -webkit-box-flex:1;
        -ms-flex:1 1 auto;
            flex:1 1 auto;
    width:80px;
    line-height:20px; }
    .bp3-tag-input .bp3-input-ghost:disabled, .bp3-tag-input .bp3-input-ghost.bp3-disabled{
      cursor:not-allowed; }
  .bp3-tag-input .bp3-button,
  .bp3-tag-input .bp3-spinner{
    margin:3px;
    margin-left:0; }
  .bp3-tag-input .bp3-button{
    min-width:24px;
    min-height:24px;
    padding:0 7px; }
  .bp3-tag-input.bp3-large{
    height:auto;
    min-height:40px; }
    .bp3-tag-input.bp3-large::before,
    .bp3-tag-input.bp3-large > *{
      margin-right:10px; }
    .bp3-tag-input.bp3-large:empty::before,
    .bp3-tag-input.bp3-large > :last-child{
      margin-right:0; }
    .bp3-tag-input.bp3-large .bp3-tag-input-icon{
      margin-top:10px;
      margin-left:5px; }
    .bp3-tag-input.bp3-large .bp3-input-ghost{
      line-height:30px; }
    .bp3-tag-input.bp3-large .bp3-button{
      min-width:30px;
      min-height:30px;
      padding:5px 10px;
      margin:5px;
      margin-left:0; }
    .bp3-tag-input.bp3-large .bp3-spinner{
      margin:8px;
      margin-left:0; }
  .bp3-tag-input.bp3-active{
    -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
            box-shadow:0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
    background-color:#ffffff; }
    .bp3-tag-input.bp3-active.bp3-intent-primary{
      -webkit-box-shadow:0 0 0 1px #106ba3, 0 0 0 3px rgba(16, 107, 163, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
              box-shadow:0 0 0 1px #106ba3, 0 0 0 3px rgba(16, 107, 163, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
    .bp3-tag-input.bp3-active.bp3-intent-success{
      -webkit-box-shadow:0 0 0 1px #0d8050, 0 0 0 3px rgba(13, 128, 80, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
              box-shadow:0 0 0 1px #0d8050, 0 0 0 3px rgba(13, 128, 80, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
    .bp3-tag-input.bp3-active.bp3-intent-warning{
      -webkit-box-shadow:0 0 0 1px #bf7326, 0 0 0 3px rgba(191, 115, 38, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
              box-shadow:0 0 0 1px #bf7326, 0 0 0 3px rgba(191, 115, 38, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
    .bp3-tag-input.bp3-active.bp3-intent-danger{
      -webkit-box-shadow:0 0 0 1px #c23030, 0 0 0 3px rgba(194, 48, 48, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2);
              box-shadow:0 0 0 1px #c23030, 0 0 0 3px rgba(194, 48, 48, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.2); }
  .bp3-dark .bp3-tag-input .bp3-tag-input-icon, .bp3-tag-input.bp3-dark .bp3-tag-input-icon{
    color:#a7b6c2; }
  .bp3-dark .bp3-tag-input .bp3-input-ghost, .bp3-tag-input.bp3-dark .bp3-input-ghost{
    color:#f5f8fa; }
    .bp3-dark .bp3-tag-input .bp3-input-ghost::-webkit-input-placeholder, .bp3-tag-input.bp3-dark .bp3-input-ghost::-webkit-input-placeholder{
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark .bp3-tag-input .bp3-input-ghost::-moz-placeholder, .bp3-tag-input.bp3-dark .bp3-input-ghost::-moz-placeholder{
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark .bp3-tag-input .bp3-input-ghost:-ms-input-placeholder, .bp3-tag-input.bp3-dark .bp3-input-ghost:-ms-input-placeholder{
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark .bp3-tag-input .bp3-input-ghost::-ms-input-placeholder, .bp3-tag-input.bp3-dark .bp3-input-ghost::-ms-input-placeholder{
      color:rgba(167, 182, 194, 0.6); }
    .bp3-dark .bp3-tag-input .bp3-input-ghost::placeholder, .bp3-tag-input.bp3-dark .bp3-input-ghost::placeholder{
      color:rgba(167, 182, 194, 0.6); }
  .bp3-dark .bp3-tag-input.bp3-active, .bp3-tag-input.bp3-dark.bp3-active{
    -webkit-box-shadow:0 0 0 1px #137cbd, 0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px #137cbd, 0 0 0 1px #137cbd, 0 0 0 3px rgba(19, 124, 189, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
    background-color:rgba(16, 22, 26, 0.3); }
    .bp3-dark .bp3-tag-input.bp3-active.bp3-intent-primary, .bp3-tag-input.bp3-dark.bp3-active.bp3-intent-primary{
      -webkit-box-shadow:0 0 0 1px #106ba3, 0 0 0 3px rgba(16, 107, 163, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
              box-shadow:0 0 0 1px #106ba3, 0 0 0 3px rgba(16, 107, 163, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); }
    .bp3-dark .bp3-tag-input.bp3-active.bp3-intent-success, .bp3-tag-input.bp3-dark.bp3-active.bp3-intent-success{
      -webkit-box-shadow:0 0 0 1px #0d8050, 0 0 0 3px rgba(13, 128, 80, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
              box-shadow:0 0 0 1px #0d8050, 0 0 0 3px rgba(13, 128, 80, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); }
    .bp3-dark .bp3-tag-input.bp3-active.bp3-intent-warning, .bp3-tag-input.bp3-dark.bp3-active.bp3-intent-warning{
      -webkit-box-shadow:0 0 0 1px #bf7326, 0 0 0 3px rgba(191, 115, 38, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
              box-shadow:0 0 0 1px #bf7326, 0 0 0 3px rgba(191, 115, 38, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); }
    .bp3-dark .bp3-tag-input.bp3-active.bp3-intent-danger, .bp3-tag-input.bp3-dark.bp3-active.bp3-intent-danger{
      -webkit-box-shadow:0 0 0 1px #c23030, 0 0 0 3px rgba(194, 48, 48, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4);
              box-shadow:0 0 0 1px #c23030, 0 0 0 3px rgba(194, 48, 48, 0.3), inset 0 0 0 1px rgba(16, 22, 26, 0.3), inset 0 1px 1px rgba(16, 22, 26, 0.4); }

.bp3-input-ghost{
  border:none;
  -webkit-box-shadow:none;
          box-shadow:none;
  background:none;
  padding:0; }
  .bp3-input-ghost::-webkit-input-placeholder{
    opacity:1;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-input-ghost::-moz-placeholder{
    opacity:1;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-input-ghost:-ms-input-placeholder{
    opacity:1;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-input-ghost::-ms-input-placeholder{
    opacity:1;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-input-ghost::placeholder{
    opacity:1;
    color:rgba(92, 112, 128, 0.6); }
  .bp3-input-ghost:focus{
    outline:none !important; }
.bp3-toast{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -webkit-box-align:start;
      -ms-flex-align:start;
          align-items:flex-start;
  position:relative !important;
  margin:20px 0 0;
  border-radius:3px;
  -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2);
          box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2);
  background-color:#ffffff;
  min-width:300px;
  max-width:500px;
  pointer-events:all; }
  .bp3-toast.bp3-toast-enter, .bp3-toast.bp3-toast-appear{
    -webkit-transform:translateY(-40px);
            transform:translateY(-40px); }
  .bp3-toast.bp3-toast-enter-active, .bp3-toast.bp3-toast-appear-active{
    -webkit-transform:translateY(0);
            transform:translateY(0);
    -webkit-transition-property:-webkit-transform;
    transition-property:-webkit-transform;
    transition-property:transform;
    transition-property:transform, -webkit-transform;
    -webkit-transition-duration:300ms;
            transition-duration:300ms;
    -webkit-transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11);
            transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11);
    -webkit-transition-delay:0;
            transition-delay:0; }
  .bp3-toast.bp3-toast-enter ~ .bp3-toast, .bp3-toast.bp3-toast-appear ~ .bp3-toast{
    -webkit-transform:translateY(-40px);
            transform:translateY(-40px); }
  .bp3-toast.bp3-toast-enter-active ~ .bp3-toast, .bp3-toast.bp3-toast-appear-active ~ .bp3-toast{
    -webkit-transform:translateY(0);
            transform:translateY(0);
    -webkit-transition-property:-webkit-transform;
    transition-property:-webkit-transform;
    transition-property:transform;
    transition-property:transform, -webkit-transform;
    -webkit-transition-duration:300ms;
            transition-duration:300ms;
    -webkit-transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11);
            transition-timing-function:cubic-bezier(0.54, 1.12, 0.38, 1.11);
    -webkit-transition-delay:0;
            transition-delay:0; }
  .bp3-toast.bp3-toast-exit{
    opacity:1;
    -webkit-filter:blur(0);
            filter:blur(0); }
  .bp3-toast.bp3-toast-exit-active{
    opacity:0;
    -webkit-filter:blur(10px);
            filter:blur(10px);
    -webkit-transition-property:opacity, -webkit-filter;
    transition-property:opacity, -webkit-filter;
    transition-property:opacity, filter;
    transition-property:opacity, filter, -webkit-filter;
    -webkit-transition-duration:300ms;
            transition-duration:300ms;
    -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
            transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
    -webkit-transition-delay:0;
            transition-delay:0; }
  .bp3-toast.bp3-toast-exit ~ .bp3-toast{
    -webkit-transform:translateY(0);
            transform:translateY(0); }
  .bp3-toast.bp3-toast-exit-active ~ .bp3-toast{
    -webkit-transform:translateY(-40px);
            transform:translateY(-40px);
    -webkit-transition-property:-webkit-transform;
    transition-property:-webkit-transform;
    transition-property:transform;
    transition-property:transform, -webkit-transform;
    -webkit-transition-duration:100ms;
            transition-duration:100ms;
    -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
            transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
    -webkit-transition-delay:50ms;
            transition-delay:50ms; }
  .bp3-toast .bp3-button-group{
    -webkit-box-flex:0;
        -ms-flex:0 0 auto;
            flex:0 0 auto;
    padding:5px;
    padding-left:0; }
  .bp3-toast > .bp3-icon{
    margin:12px;
    margin-right:0;
    color:#5c7080; }
  .bp3-toast.bp3-dark,
  .bp3-dark .bp3-toast{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4);
    background-color:#394b59; }
    .bp3-toast.bp3-dark > .bp3-icon,
    .bp3-dark .bp3-toast > .bp3-icon{
      color:#a7b6c2; }
  .bp3-toast[class*="bp3-intent-"] a{
    color:rgba(255, 255, 255, 0.7); }
    .bp3-toast[class*="bp3-intent-"] a:hover{
      color:#ffffff; }
  .bp3-toast[class*="bp3-intent-"] > .bp3-icon{
    color:#ffffff; }
  .bp3-toast[class*="bp3-intent-"] .bp3-button, .bp3-toast[class*="bp3-intent-"] .bp3-button::before,
  .bp3-toast[class*="bp3-intent-"] .bp3-button .bp3-icon, .bp3-toast[class*="bp3-intent-"] .bp3-button:active{
    color:rgba(255, 255, 255, 0.7) !important; }
  .bp3-toast[class*="bp3-intent-"] .bp3-button:focus{
    outline-color:rgba(255, 255, 255, 0.5); }
  .bp3-toast[class*="bp3-intent-"] .bp3-button:hover{
    background-color:rgba(255, 255, 255, 0.15) !important;
    color:#ffffff !important; }
  .bp3-toast[class*="bp3-intent-"] .bp3-button:active{
    background-color:rgba(255, 255, 255, 0.3) !important;
    color:#ffffff !important; }
  .bp3-toast[class*="bp3-intent-"] .bp3-button::after{
    background:rgba(255, 255, 255, 0.3) !important; }
  .bp3-toast.bp3-intent-primary{
    background-color:#137cbd;
    color:#ffffff; }
  .bp3-toast.bp3-intent-success{
    background-color:#0f9960;
    color:#ffffff; }
  .bp3-toast.bp3-intent-warning{
    background-color:#d9822b;
    color:#ffffff; }
  .bp3-toast.bp3-intent-danger{
    background-color:#db3737;
    color:#ffffff; }

.bp3-toast-message{
  -webkit-box-flex:1;
      -ms-flex:1 1 auto;
          flex:1 1 auto;
  padding:11px;
  word-break:break-word; }

.bp3-toast-container{
  display:-webkit-box !important;
  display:-ms-flexbox !important;
  display:flex !important;
  -webkit-box-orient:vertical;
  -webkit-box-direction:normal;
      -ms-flex-direction:column;
          flex-direction:column;
  -webkit-box-align:center;
      -ms-flex-align:center;
          align-items:center;
  position:fixed;
  right:0;
  left:0;
  z-index:40;
  overflow:hidden;
  padding:0 20px 20px;
  pointer-events:none; }
  .bp3-toast-container.bp3-toast-container-top{
    top:0;
    bottom:auto; }
  .bp3-toast-container.bp3-toast-container-bottom{
    -webkit-box-orient:vertical;
    -webkit-box-direction:reverse;
        -ms-flex-direction:column-reverse;
            flex-direction:column-reverse;
    top:auto;
    bottom:0; }
  .bp3-toast-container.bp3-toast-container-left{
    -webkit-box-align:start;
        -ms-flex-align:start;
            align-items:flex-start; }
  .bp3-toast-container.bp3-toast-container-right{
    -webkit-box-align:end;
        -ms-flex-align:end;
            align-items:flex-end; }

.bp3-toast-container-bottom .bp3-toast.bp3-toast-enter:not(.bp3-toast-enter-active),
.bp3-toast-container-bottom .bp3-toast.bp3-toast-enter:not(.bp3-toast-enter-active) ~ .bp3-toast, .bp3-toast-container-bottom .bp3-toast.bp3-toast-appear:not(.bp3-toast-appear-active),
.bp3-toast-container-bottom .bp3-toast.bp3-toast-appear:not(.bp3-toast-appear-active) ~ .bp3-toast,
.bp3-toast-container-bottom .bp3-toast.bp3-toast-leave-active ~ .bp3-toast{
  -webkit-transform:translateY(60px);
          transform:translateY(60px); }
.bp3-tooltip{
  -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2);
          box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 2px 4px rgba(16, 22, 26, 0.2), 0 8px 24px rgba(16, 22, 26, 0.2);
  -webkit-transform:scale(1);
          transform:scale(1); }
  .bp3-tooltip .bp3-popover-arrow{
    position:absolute;
    width:22px;
    height:22px; }
    .bp3-tooltip .bp3-popover-arrow::before{
      margin:4px;
      width:14px;
      height:14px; }
  .bp3-tether-element-attached-bottom.bp3-tether-target-attached-top > .bp3-tooltip{
    margin-top:-11px;
    margin-bottom:11px; }
    .bp3-tether-element-attached-bottom.bp3-tether-target-attached-top > .bp3-tooltip > .bp3-popover-arrow{
      bottom:-8px; }
      .bp3-tether-element-attached-bottom.bp3-tether-target-attached-top > .bp3-tooltip > .bp3-popover-arrow svg{
        -webkit-transform:rotate(-90deg);
                transform:rotate(-90deg); }
  .bp3-tether-element-attached-left.bp3-tether-target-attached-right > .bp3-tooltip{
    margin-left:11px; }
    .bp3-tether-element-attached-left.bp3-tether-target-attached-right > .bp3-tooltip > .bp3-popover-arrow{
      left:-8px; }
      .bp3-tether-element-attached-left.bp3-tether-target-attached-right > .bp3-tooltip > .bp3-popover-arrow svg{
        -webkit-transform:rotate(0);
                transform:rotate(0); }
  .bp3-tether-element-attached-top.bp3-tether-target-attached-bottom > .bp3-tooltip{
    margin-top:11px; }
    .bp3-tether-element-attached-top.bp3-tether-target-attached-bottom > .bp3-tooltip > .bp3-popover-arrow{
      top:-8px; }
      .bp3-tether-element-attached-top.bp3-tether-target-attached-bottom > .bp3-tooltip > .bp3-popover-arrow svg{
        -webkit-transform:rotate(90deg);
                transform:rotate(90deg); }
  .bp3-tether-element-attached-right.bp3-tether-target-attached-left > .bp3-tooltip{
    margin-right:11px;
    margin-left:-11px; }
    .bp3-tether-element-attached-right.bp3-tether-target-attached-left > .bp3-tooltip > .bp3-popover-arrow{
      right:-8px; }
      .bp3-tether-element-attached-right.bp3-tether-target-attached-left > .bp3-tooltip > .bp3-popover-arrow svg{
        -webkit-transform:rotate(180deg);
                transform:rotate(180deg); }
  .bp3-tether-element-attached-middle > .bp3-tooltip > .bp3-popover-arrow{
    top:50%;
    -webkit-transform:translateY(-50%);
            transform:translateY(-50%); }
  .bp3-tether-element-attached-center > .bp3-tooltip > .bp3-popover-arrow{
    right:50%;
    -webkit-transform:translateX(50%);
            transform:translateX(50%); }
  .bp3-tether-element-attached-top.bp3-tether-target-attached-top > .bp3-tooltip > .bp3-popover-arrow{
    top:-0.22183px; }
  .bp3-tether-element-attached-right.bp3-tether-target-attached-right > .bp3-tooltip > .bp3-popover-arrow{
    right:-0.22183px; }
  .bp3-tether-element-attached-left.bp3-tether-target-attached-left > .bp3-tooltip > .bp3-popover-arrow{
    left:-0.22183px; }
  .bp3-tether-element-attached-bottom.bp3-tether-target-attached-bottom > .bp3-tooltip > .bp3-popover-arrow{
    bottom:-0.22183px; }
  .bp3-tether-element-attached-top.bp3-tether-element-attached-left > .bp3-tooltip{
    -webkit-transform-origin:top left;
            transform-origin:top left; }
  .bp3-tether-element-attached-top.bp3-tether-element-attached-center > .bp3-tooltip{
    -webkit-transform-origin:top center;
            transform-origin:top center; }
  .bp3-tether-element-attached-top.bp3-tether-element-attached-right > .bp3-tooltip{
    -webkit-transform-origin:top right;
            transform-origin:top right; }
  .bp3-tether-element-attached-middle.bp3-tether-element-attached-left > .bp3-tooltip{
    -webkit-transform-origin:center left;
            transform-origin:center left; }
  .bp3-tether-element-attached-middle.bp3-tether-element-attached-center > .bp3-tooltip{
    -webkit-transform-origin:center center;
            transform-origin:center center; }
  .bp3-tether-element-attached-middle.bp3-tether-element-attached-right > .bp3-tooltip{
    -webkit-transform-origin:center right;
            transform-origin:center right; }
  .bp3-tether-element-attached-bottom.bp3-tether-element-attached-left > .bp3-tooltip{
    -webkit-transform-origin:bottom left;
            transform-origin:bottom left; }
  .bp3-tether-element-attached-bottom.bp3-tether-element-attached-center > .bp3-tooltip{
    -webkit-transform-origin:bottom center;
            transform-origin:bottom center; }
  .bp3-tether-element-attached-bottom.bp3-tether-element-attached-right > .bp3-tooltip{
    -webkit-transform-origin:bottom right;
            transform-origin:bottom right; }
  .bp3-tooltip .bp3-popover-content{
    background:#394b59;
    color:#f5f8fa; }
  .bp3-tooltip .bp3-popover-arrow::before{
    -webkit-box-shadow:1px 1px 6px rgba(16, 22, 26, 0.2);
            box-shadow:1px 1px 6px rgba(16, 22, 26, 0.2); }
  .bp3-tooltip .bp3-popover-arrow-border{
    fill:#10161a;
    fill-opacity:0.1; }
  .bp3-tooltip .bp3-popover-arrow-fill{
    fill:#394b59; }
  .bp3-popover-enter > .bp3-tooltip, .bp3-popover-appear > .bp3-tooltip{
    -webkit-transform:scale(0.8);
            transform:scale(0.8); }
  .bp3-popover-enter-active > .bp3-tooltip, .bp3-popover-appear-active > .bp3-tooltip{
    -webkit-transform:scale(1);
            transform:scale(1);
    -webkit-transition-property:-webkit-transform;
    transition-property:-webkit-transform;
    transition-property:transform;
    transition-property:transform, -webkit-transform;
    -webkit-transition-duration:100ms;
            transition-duration:100ms;
    -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
            transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
    -webkit-transition-delay:0;
            transition-delay:0; }
  .bp3-popover-exit > .bp3-tooltip{
    -webkit-transform:scale(1);
            transform:scale(1); }
  .bp3-popover-exit-active > .bp3-tooltip{
    -webkit-transform:scale(0.8);
            transform:scale(0.8);
    -webkit-transition-property:-webkit-transform;
    transition-property:-webkit-transform;
    transition-property:transform;
    transition-property:transform, -webkit-transform;
    -webkit-transition-duration:100ms;
            transition-duration:100ms;
    -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
            transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
    -webkit-transition-delay:0;
            transition-delay:0; }
  .bp3-tooltip .bp3-popover-content{
    padding:10px 12px; }
  .bp3-tooltip.bp3-dark,
  .bp3-dark .bp3-tooltip{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 2px 4px rgba(16, 22, 26, 0.4), 0 8px 24px rgba(16, 22, 26, 0.4); }
    .bp3-tooltip.bp3-dark .bp3-popover-content,
    .bp3-dark .bp3-tooltip .bp3-popover-content{
      background:#e1e8ed;
      color:#394b59; }
    .bp3-tooltip.bp3-dark .bp3-popover-arrow::before,
    .bp3-dark .bp3-tooltip .bp3-popover-arrow::before{
      -webkit-box-shadow:1px 1px 6px rgba(16, 22, 26, 0.4);
              box-shadow:1px 1px 6px rgba(16, 22, 26, 0.4); }
    .bp3-tooltip.bp3-dark .bp3-popover-arrow-border,
    .bp3-dark .bp3-tooltip .bp3-popover-arrow-border{
      fill:#10161a;
      fill-opacity:0.2; }
    .bp3-tooltip.bp3-dark .bp3-popover-arrow-fill,
    .bp3-dark .bp3-tooltip .bp3-popover-arrow-fill{
      fill:#e1e8ed; }
  .bp3-tooltip.bp3-intent-primary .bp3-popover-content{
    background:#137cbd;
    color:#ffffff; }
  .bp3-tooltip.bp3-intent-primary .bp3-popover-arrow-fill{
    fill:#137cbd; }
  .bp3-tooltip.bp3-intent-success .bp3-popover-content{
    background:#0f9960;
    color:#ffffff; }
  .bp3-tooltip.bp3-intent-success .bp3-popover-arrow-fill{
    fill:#0f9960; }
  .bp3-tooltip.bp3-intent-warning .bp3-popover-content{
    background:#d9822b;
    color:#ffffff; }
  .bp3-tooltip.bp3-intent-warning .bp3-popover-arrow-fill{
    fill:#d9822b; }
  .bp3-tooltip.bp3-intent-danger .bp3-popover-content{
    background:#db3737;
    color:#ffffff; }
  .bp3-tooltip.bp3-intent-danger .bp3-popover-arrow-fill{
    fill:#db3737; }

.bp3-tooltip-indicator{
  border-bottom:dotted 1px;
  cursor:help; }
.bp3-tree .bp3-icon, .bp3-tree .bp3-icon-standard, .bp3-tree .bp3-icon-large{
  color:#5c7080; }
  .bp3-tree .bp3-icon.bp3-intent-primary, .bp3-tree .bp3-icon-standard.bp3-intent-primary, .bp3-tree .bp3-icon-large.bp3-intent-primary{
    color:#137cbd; }
  .bp3-tree .bp3-icon.bp3-intent-success, .bp3-tree .bp3-icon-standard.bp3-intent-success, .bp3-tree .bp3-icon-large.bp3-intent-success{
    color:#0f9960; }
  .bp3-tree .bp3-icon.bp3-intent-warning, .bp3-tree .bp3-icon-standard.bp3-intent-warning, .bp3-tree .bp3-icon-large.bp3-intent-warning{
    color:#d9822b; }
  .bp3-tree .bp3-icon.bp3-intent-danger, .bp3-tree .bp3-icon-standard.bp3-intent-danger, .bp3-tree .bp3-icon-large.bp3-intent-danger{
    color:#db3737; }

.bp3-tree-node-list{
  margin:0;
  padding-left:0;
  list-style:none; }

.bp3-tree-root{
  position:relative;
  background-color:transparent;
  cursor:default;
  padding-left:0; }

.bp3-tree-node-content-0{
  padding-left:0px; }

.bp3-tree-node-content-1{
  padding-left:23px; }

.bp3-tree-node-content-2{
  padding-left:46px; }

.bp3-tree-node-content-3{
  padding-left:69px; }

.bp3-tree-node-content-4{
  padding-left:92px; }

.bp3-tree-node-content-5{
  padding-left:115px; }

.bp3-tree-node-content-6{
  padding-left:138px; }

.bp3-tree-node-content-7{
  padding-left:161px; }

.bp3-tree-node-content-8{
  padding-left:184px; }

.bp3-tree-node-content-9{
  padding-left:207px; }

.bp3-tree-node-content-10{
  padding-left:230px; }

.bp3-tree-node-content-11{
  padding-left:253px; }

.bp3-tree-node-content-12{
  padding-left:276px; }

.bp3-tree-node-content-13{
  padding-left:299px; }

.bp3-tree-node-content-14{
  padding-left:322px; }

.bp3-tree-node-content-15{
  padding-left:345px; }

.bp3-tree-node-content-16{
  padding-left:368px; }

.bp3-tree-node-content-17{
  padding-left:391px; }

.bp3-tree-node-content-18{
  padding-left:414px; }

.bp3-tree-node-content-19{
  padding-left:437px; }

.bp3-tree-node-content-20{
  padding-left:460px; }

.bp3-tree-node-content{
  display:-webkit-box;
  display:-ms-flexbox;
  display:flex;
  -webkit-box-align:center;
      -ms-flex-align:center;
          align-items:center;
  width:100%;
  height:30px;
  padding-right:5px; }
  .bp3-tree-node-content:hover{
    background-color:rgba(191, 204, 214, 0.4); }

.bp3-tree-node-caret,
.bp3-tree-node-caret-none{
  min-width:30px; }

.bp3-tree-node-caret{
  color:#5c7080;
  -webkit-transform:rotate(0deg);
          transform:rotate(0deg);
  cursor:pointer;
  padding:7px;
  -webkit-transition:-webkit-transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9);
  transition:-webkit-transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9);
  transition:transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9);
  transition:transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9), -webkit-transform 200ms cubic-bezier(0.4, 1, 0.75, 0.9); }
  .bp3-tree-node-caret:hover{
    color:#182026; }
  .bp3-dark .bp3-tree-node-caret{
    color:#a7b6c2; }
    .bp3-dark .bp3-tree-node-caret:hover{
      color:#f5f8fa; }
  .bp3-tree-node-caret.bp3-tree-node-caret-open{
    -webkit-transform:rotate(90deg);
            transform:rotate(90deg); }
  .bp3-tree-node-caret.bp3-icon-standard::before{
    content:""; }

.bp3-tree-node-icon{
  position:relative;
  margin-right:7px; }

.bp3-tree-node-label{
  overflow:hidden;
  text-overflow:ellipsis;
  white-space:nowrap;
  word-wrap:normal;
  -webkit-box-flex:1;
      -ms-flex:1 1 auto;
          flex:1 1 auto;
  position:relative;
  -webkit-user-select:none;
     -moz-user-select:none;
      -ms-user-select:none;
          user-select:none; }
  .bp3-tree-node-label span{
    display:inline; }

.bp3-tree-node-secondary-label{
  padding:0 5px;
  -webkit-user-select:none;
     -moz-user-select:none;
      -ms-user-select:none;
          user-select:none; }
  .bp3-tree-node-secondary-label .bp3-popover-wrapper,
  .bp3-tree-node-secondary-label .bp3-popover-target{
    display:-webkit-box;
    display:-ms-flexbox;
    display:flex;
    -webkit-box-align:center;
        -ms-flex-align:center;
            align-items:center; }

.bp3-tree-node.bp3-disabled .bp3-tree-node-content{
  background-color:inherit;
  cursor:not-allowed;
  color:rgba(92, 112, 128, 0.6); }

.bp3-tree-node.bp3-disabled .bp3-tree-node-caret,
.bp3-tree-node.bp3-disabled .bp3-tree-node-icon{
  cursor:not-allowed;
  color:rgba(92, 112, 128, 0.6); }

.bp3-tree-node.bp3-tree-node-selected > .bp3-tree-node-content{
  background-color:#137cbd; }
  .bp3-tree-node.bp3-tree-node-selected > .bp3-tree-node-content,
  .bp3-tree-node.bp3-tree-node-selected > .bp3-tree-node-content .bp3-icon, .bp3-tree-node.bp3-tree-node-selected > .bp3-tree-node-content .bp3-icon-standard, .bp3-tree-node.bp3-tree-node-selected > .bp3-tree-node-content .bp3-icon-large{
    color:#ffffff; }
  .bp3-tree-node.bp3-tree-node-selected > .bp3-tree-node-content .bp3-tree-node-caret::before{
    color:rgba(255, 255, 255, 0.7); }
  .bp3-tree-node.bp3-tree-node-selected > .bp3-tree-node-content .bp3-tree-node-caret:hover::before{
    color:#ffffff; }

.bp3-dark .bp3-tree-node-content:hover{
  background-color:rgba(92, 112, 128, 0.3); }

.bp3-dark .bp3-tree .bp3-icon, .bp3-dark .bp3-tree .bp3-icon-standard, .bp3-dark .bp3-tree .bp3-icon-large{
  color:#a7b6c2; }
  .bp3-dark .bp3-tree .bp3-icon.bp3-intent-primary, .bp3-dark .bp3-tree .bp3-icon-standard.bp3-intent-primary, .bp3-dark .bp3-tree .bp3-icon-large.bp3-intent-primary{
    color:#137cbd; }
  .bp3-dark .bp3-tree .bp3-icon.bp3-intent-success, .bp3-dark .bp3-tree .bp3-icon-standard.bp3-intent-success, .bp3-dark .bp3-tree .bp3-icon-large.bp3-intent-success{
    color:#0f9960; }
  .bp3-dark .bp3-tree .bp3-icon.bp3-intent-warning, .bp3-dark .bp3-tree .bp3-icon-standard.bp3-intent-warning, .bp3-dark .bp3-tree .bp3-icon-large.bp3-intent-warning{
    color:#d9822b; }
  .bp3-dark .bp3-tree .bp3-icon.bp3-intent-danger, .bp3-dark .bp3-tree .bp3-icon-standard.bp3-intent-danger, .bp3-dark .bp3-tree .bp3-icon-large.bp3-intent-danger{
    color:#db3737; }

.bp3-dark .bp3-tree-node.bp3-tree-node-selected > .bp3-tree-node-content{
  background-color:#137cbd; }
/*!

Copyright 2017-present Palantir Technologies, Inc. All rights reserved.
Licensed under the Apache License, Version 2.0.

*/
.bp3-omnibar{
  -webkit-filter:blur(0);
          filter:blur(0);
  opacity:1;
  top:20vh;
  left:calc(50% - 250px);
  z-index:21;
  border-radius:3px;
  -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 4px 8px rgba(16, 22, 26, 0.2), 0 18px 46px 6px rgba(16, 22, 26, 0.2);
          box-shadow:0 0 0 1px rgba(16, 22, 26, 0.1), 0 4px 8px rgba(16, 22, 26, 0.2), 0 18px 46px 6px rgba(16, 22, 26, 0.2);
  background-color:#ffffff;
  width:500px; }
  .bp3-omnibar.bp3-overlay-enter, .bp3-omnibar.bp3-overlay-appear{
    -webkit-filter:blur(20px);
            filter:blur(20px);
    opacity:0.2; }
  .bp3-omnibar.bp3-overlay-enter-active, .bp3-omnibar.bp3-overlay-appear-active{
    -webkit-filter:blur(0);
            filter:blur(0);
    opacity:1;
    -webkit-transition-property:opacity, -webkit-filter;
    transition-property:opacity, -webkit-filter;
    transition-property:filter, opacity;
    transition-property:filter, opacity, -webkit-filter;
    -webkit-transition-duration:200ms;
            transition-duration:200ms;
    -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
            transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
    -webkit-transition-delay:0;
            transition-delay:0; }
  .bp3-omnibar.bp3-overlay-exit{
    -webkit-filter:blur(0);
            filter:blur(0);
    opacity:1; }
  .bp3-omnibar.bp3-overlay-exit-active{
    -webkit-filter:blur(20px);
            filter:blur(20px);
    opacity:0.2;
    -webkit-transition-property:opacity, -webkit-filter;
    transition-property:opacity, -webkit-filter;
    transition-property:filter, opacity;
    transition-property:filter, opacity, -webkit-filter;
    -webkit-transition-duration:200ms;
            transition-duration:200ms;
    -webkit-transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
            transition-timing-function:cubic-bezier(0.4, 1, 0.75, 0.9);
    -webkit-transition-delay:0;
            transition-delay:0; }
  .bp3-omnibar .bp3-input{
    border-radius:0;
    background-color:transparent; }
    .bp3-omnibar .bp3-input, .bp3-omnibar .bp3-input:focus{
      -webkit-box-shadow:none;
              box-shadow:none; }
  .bp3-omnibar .bp3-menu{
    border-radius:0;
    -webkit-box-shadow:inset 0 1px 0 rgba(16, 22, 26, 0.15);
            box-shadow:inset 0 1px 0 rgba(16, 22, 26, 0.15);
    background-color:transparent;
    max-height:calc(60vh - 40px);
    overflow:auto; }
    .bp3-omnibar .bp3-menu:empty{
      display:none; }
  .bp3-dark .bp3-omnibar, .bp3-omnibar.bp3-dark{
    -webkit-box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 4px 8px rgba(16, 22, 26, 0.4), 0 18px 46px 6px rgba(16, 22, 26, 0.4);
            box-shadow:0 0 0 1px rgba(16, 22, 26, 0.2), 0 4px 8px rgba(16, 22, 26, 0.4), 0 18px 46px 6px rgba(16, 22, 26, 0.4);
    background-color:#30404d; }

.bp3-omnibar-overlay .bp3-overlay-backdrop{
  background-color:rgba(16, 22, 26, 0.2); }

.bp3-select-popover .bp3-popover-content{
  padding:5px; }

.bp3-select-popover .bp3-input-group{
  margin-bottom:0; }

.bp3-select-popover .bp3-menu{
  max-width:400px;
  max-height:300px;
  overflow:auto;
  padding:0; }
  .bp3-select-popover .bp3-menu:not(:first-child){
    padding-top:5px; }

.bp3-multi-select{
  min-width:150px; }

.bp3-multi-select-popover .bp3-menu{
  max-width:400px;
  max-height:300px;
  overflow:auto; }

.bp3-select-popover .bp3-popover-content{
  padding:5px; }

.bp3-select-popover .bp3-input-group{
  margin-bottom:0; }

.bp3-select-popover .bp3-menu{
  max-width:400px;
  max-height:300px;
  overflow:auto;
  padding:0; }
  .bp3-select-popover .bp3-menu:not(:first-child){
    padding-top:5px; }
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/* This file was auto-generated by ensureUiComponents() in @jupyterlab/buildutils */

/**
 * (DEPRECATED) Support for consuming icons as CSS background images
 */

/* Icons urls */

:root {
  --jp-icon-add: url();
  --jp-icon-bug: url();
  --jp-icon-build: url();
  --jp-icon-caret-down-empty-thin: url();
  --jp-icon-caret-down-empty: url();
  --jp-icon-caret-down: url();
  --jp-icon-caret-left: url();
  --jp-icon-caret-right: url();
  --jp-icon-caret-up-empty-thin: url();
  --jp-icon-caret-up: url();
  --jp-icon-case-sensitive: url();
  --jp-icon-check: url();
  --jp-icon-circle-empty: url();
  --jp-icon-circle: url();
  --jp-icon-clear: url();
  --jp-icon-close: url();
  --jp-icon-console: url();
  --jp-icon-copy: url();
  --jp-icon-cut: url();
  --jp-icon-download: url();
  --jp-icon-edit: url();
  --jp-icon-ellipses: url();
  --jp-icon-extension: url();
  --jp-icon-fast-forward: url();
  --jp-icon-file-upload: url();
  --jp-icon-file: url();
  --jp-icon-filter-list: url();
  --jp-icon-folder: url();
  --jp-icon-html5: url();
  --jp-icon-image: url();
  --jp-icon-inspector: url();
  --jp-icon-json: url();
  --jp-icon-jupyter-favicon: url();
  --jp-icon-jupyter: url();
  --jp-icon-jupyterlab-wordmark: url();
  --jp-icon-kernel: url();
  --jp-icon-keyboard: url();
  --jp-icon-launcher: url();
  --jp-icon-line-form: url();
  --jp-icon-link: url();
  --jp-icon-list: url();
  --jp-icon-listings-info: url();
  --jp-icon-markdown: url();
  --jp-icon-new-folder: url();
  --jp-icon-not-trusted: url();
  --jp-icon-notebook: url();
  --jp-icon-palette: url();
  --jp-icon-paste: url();
  --jp-icon-python: url();
  --jp-icon-r-kernel: url();
  --jp-icon-react: url();
  --jp-icon-refresh: url();
  --jp-icon-regex: url();
  --jp-icon-run: url();
  --jp-icon-running: url();
  --jp-icon-save: url();
  --jp-icon-search: url();
  --jp-icon-settings: url();
  --jp-icon-spreadsheet: url();
  --jp-icon-stop: url();
  --jp-icon-tab: url();
  --jp-icon-terminal: url();
  --jp-icon-text-editor: url();
  --jp-icon-trusted: url();
  --jp-icon-undo: url();
  --jp-icon-vega: url();
  --jp-icon-yaml: url();
}

/* Icon CSS class declarations */

.jp-AddIcon {
  background-image: var(--jp-icon-add);
}
.jp-BugIcon {
  background-image: var(--jp-icon-bug);
}
.jp-BuildIcon {
  background-image: var(--jp-icon-build);
}
.jp-CaretDownEmptyIcon {
  background-image: var(--jp-icon-caret-down-empty);
}
.jp-CaretDownEmptyThinIcon {
  background-image: var(--jp-icon-caret-down-empty-thin);
}
.jp-CaretDownIcon {
  background-image: var(--jp-icon-caret-down);
}
.jp-CaretLeftIcon {
  background-image: var(--jp-icon-caret-left);
}
.jp-CaretRightIcon {
  background-image: var(--jp-icon-caret-right);
}
.jp-CaretUpEmptyThinIcon {
  background-image: var(--jp-icon-caret-up-empty-thin);
}
.jp-CaretUpIcon {
  background-image: var(--jp-icon-caret-up);
}
.jp-CaseSensitiveIcon {
  background-image: var(--jp-icon-case-sensitive);
}
.jp-CheckIcon {
  background-image: var(--jp-icon-check);
}
.jp-CircleEmptyIcon {
  background-image: var(--jp-icon-circle-empty);
}
.jp-CircleIcon {
  background-image: var(--jp-icon-circle);
}
.jp-ClearIcon {
  background-image: var(--jp-icon-clear);
}
.jp-CloseIcon {
  background-image: var(--jp-icon-close);
}
.jp-ConsoleIcon {
  background-image: var(--jp-icon-console);
}
.jp-CopyIcon {
  background-image: var(--jp-icon-copy);
}
.jp-CutIcon {
  background-image: var(--jp-icon-cut);
}
.jp-DownloadIcon {
  background-image: var(--jp-icon-download);
}
.jp-EditIcon {
  background-image: var(--jp-icon-edit);
}
.jp-EllipsesIcon {
  background-image: var(--jp-icon-ellipses);
}
.jp-ExtensionIcon {
  background-image: var(--jp-icon-extension);
}
.jp-FastForwardIcon {
  background-image: var(--jp-icon-fast-forward);
}
.jp-FileIcon {
  background-image: var(--jp-icon-file);
}
.jp-FileUploadIcon {
  background-image: var(--jp-icon-file-upload);
}
.jp-FilterListIcon {
  background-image: var(--jp-icon-filter-list);
}
.jp-FolderIcon {
  background-image: var(--jp-icon-folder);
}
.jp-Html5Icon {
  background-image: var(--jp-icon-html5);
}
.jp-ImageIcon {
  background-image: var(--jp-icon-image);
}
.jp-InspectorIcon {
  background-image: var(--jp-icon-inspector);
}
.jp-JsonIcon {
  background-image: var(--jp-icon-json);
}
.jp-JupyterFaviconIcon {
  background-image: var(--jp-icon-jupyter-favicon);
}
.jp-JupyterIcon {
  background-image: var(--jp-icon-jupyter);
}
.jp-JupyterlabWordmarkIcon {
  background-image: var(--jp-icon-jupyterlab-wordmark);
}
.jp-KernelIcon {
  background-image: var(--jp-icon-kernel);
}
.jp-KeyboardIcon {
  background-image: var(--jp-icon-keyboard);
}
.jp-LauncherIcon {
  background-image: var(--jp-icon-launcher);
}
.jp-LineFormIcon {
  background-image: var(--jp-icon-line-form);
}
.jp-LinkIcon {
  background-image: var(--jp-icon-link);
}
.jp-ListIcon {
  background-image: var(--jp-icon-list);
}
.jp-ListingsInfoIcon {
  background-image: var(--jp-icon-listings-info);
}
.jp-MarkdownIcon {
  background-image: var(--jp-icon-markdown);
}
.jp-NewFolderIcon {
  background-image: var(--jp-icon-new-folder);
}
.jp-NotTrustedIcon {
  background-image: var(--jp-icon-not-trusted);
}
.jp-NotebookIcon {
  background-image: var(--jp-icon-notebook);
}
.jp-PaletteIcon {
  background-image: var(--jp-icon-palette);
}
.jp-PasteIcon {
  background-image: var(--jp-icon-paste);
}
.jp-PythonIcon {
  background-image: var(--jp-icon-python);
}
.jp-RKernelIcon {
  background-image: var(--jp-icon-r-kernel);
}
.jp-ReactIcon {
  background-image: var(--jp-icon-react);
}
.jp-RefreshIcon {
  background-image: var(--jp-icon-refresh);
}
.jp-RegexIcon {
  background-image: var(--jp-icon-regex);
}
.jp-RunIcon {
  background-image: var(--jp-icon-run);
}
.jp-RunningIcon {
  background-image: var(--jp-icon-running);
}
.jp-SaveIcon {
  background-image: var(--jp-icon-save);
}
.jp-SearchIcon {
  background-image: var(--jp-icon-search);
}
.jp-SettingsIcon {
  background-image: var(--jp-icon-settings);
}
.jp-SpreadsheetIcon {
  background-image: var(--jp-icon-spreadsheet);
}
.jp-StopIcon {
  background-image: var(--jp-icon-stop);
}
.jp-TabIcon {
  background-image: var(--jp-icon-tab);
}
.jp-TerminalIcon {
  background-image: var(--jp-icon-terminal);
}
.jp-TextEditorIcon {
  background-image: var(--jp-icon-text-editor);
}
.jp-TrustedIcon {
  background-image: var(--jp-icon-trusted);
}
.jp-UndoIcon {
  background-image: var(--jp-icon-undo);
}
.jp-VegaIcon {
  background-image: var(--jp-icon-vega);
}
.jp-YamlIcon {
  background-image: var(--jp-icon-yaml);
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/**
 * (DEPRECATED) Support for consuming icons as CSS background images
 */

:root {
  --jp-icon-search-white: url();
}

.jp-Icon,
.jp-MaterialIcon {
  background-position: center;
  background-repeat: no-repeat;
  background-size: 16px;
  min-width: 16px;
  min-height: 16px;
}

.jp-Icon-cover {
  background-position: center;
  background-repeat: no-repeat;
  background-size: cover;
}

/**
 * (DEPRECATED) Support for specific CSS icon sizes
 */

.jp-Icon-16 {
  background-size: 16px;
  min-width: 16px;
  min-height: 16px;
}

.jp-Icon-18 {
  background-size: 18px;
  min-width: 18px;
  min-height: 18px;
}

.jp-Icon-20 {
  background-size: 20px;
  min-width: 20px;
  min-height: 20px;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/**
 * Support for icons as inline SVG HTMLElements
 */

/* recolor the primary elements of an icon */
.jp-icon0[fill] {
  fill: var(--jp-inverse-layout-color0);
}
.jp-icon1[fill] {
  fill: var(--jp-inverse-layout-color1);
}
.jp-icon2[fill] {
  fill: var(--jp-inverse-layout-color2);
}
.jp-icon3[fill] {
  fill: var(--jp-inverse-layout-color3);
}
.jp-icon4[fill] {
  fill: var(--jp-inverse-layout-color4);
}

.jp-icon0[stroke] {
  stroke: var(--jp-inverse-layout-color0);
}
.jp-icon1[stroke] {
  stroke: var(--jp-inverse-layout-color1);
}
.jp-icon2[stroke] {
  stroke: var(--jp-inverse-layout-color2);
}
.jp-icon3[stroke] {
  stroke: var(--jp-inverse-layout-color3);
}
.jp-icon4[stroke] {
  stroke: var(--jp-inverse-layout-color4);
}
/* recolor the accent elements of an icon */
.jp-icon-accent0[fill] {
  fill: var(--jp-layout-color0);
}
.jp-icon-accent1[fill] {
  fill: var(--jp-layout-color1);
}
.jp-icon-accent2[fill] {
  fill: var(--jp-layout-color2);
}
.jp-icon-accent3[fill] {
  fill: var(--jp-layout-color3);
}
.jp-icon-accent4[fill] {
  fill: var(--jp-layout-color4);
}

.jp-icon-accent0[stroke] {
  stroke: var(--jp-layout-color0);
}
.jp-icon-accent1[stroke] {
  stroke: var(--jp-layout-color1);
}
.jp-icon-accent2[stroke] {
  stroke: var(--jp-layout-color2);
}
.jp-icon-accent3[stroke] {
  stroke: var(--jp-layout-color3);
}
.jp-icon-accent4[stroke] {
  stroke: var(--jp-layout-color4);
}
/* set the color of an icon to transparent */
.jp-icon-none[fill] {
  fill: none;
}

.jp-icon-none[stroke] {
  stroke: none;
}
/* brand icon colors. Same for light and dark */
.jp-icon-brand0[fill] {
  fill: var(--jp-brand-color0);
}
.jp-icon-brand1[fill] {
  fill: var(--jp-brand-color1);
}
.jp-icon-brand2[fill] {
  fill: var(--jp-brand-color2);
}
.jp-icon-brand3[fill] {
  fill: var(--jp-brand-color3);
}
.jp-icon-brand4[fill] {
  fill: var(--jp-brand-color4);
}

.jp-icon-brand0[stroke] {
  stroke: var(--jp-brand-color0);
}
.jp-icon-brand1[stroke] {
  stroke: var(--jp-brand-color1);
}
.jp-icon-brand2[stroke] {
  stroke: var(--jp-brand-color2);
}
.jp-icon-brand3[stroke] {
  stroke: var(--jp-brand-color3);
}
.jp-icon-brand4[stroke] {
  stroke: var(--jp-brand-color4);
}
/* warn icon colors. Same for light and dark */
.jp-icon-warn0[fill] {
  fill: var(--jp-warn-color0);
}
.jp-icon-warn1[fill] {
  fill: var(--jp-warn-color1);
}
.jp-icon-warn2[fill] {
  fill: var(--jp-warn-color2);
}
.jp-icon-warn3[fill] {
  fill: var(--jp-warn-color3);
}

.jp-icon-warn0[stroke] {
  stroke: var(--jp-warn-color0);
}
.jp-icon-warn1[stroke] {
  stroke: var(--jp-warn-color1);
}
.jp-icon-warn2[stroke] {
  stroke: var(--jp-warn-color2);
}
.jp-icon-warn3[stroke] {
  stroke: var(--jp-warn-color3);
}
/* icon colors that contrast well with each other and most backgrounds */
.jp-icon-contrast0[fill] {
  fill: var(--jp-icon-contrast-color0);
}
.jp-icon-contrast1[fill] {
  fill: var(--jp-icon-contrast-color1);
}
.jp-icon-contrast2[fill] {
  fill: var(--jp-icon-contrast-color2);
}
.jp-icon-contrast3[fill] {
  fill: var(--jp-icon-contrast-color3);
}

.jp-icon-contrast0[stroke] {
  stroke: var(--jp-icon-contrast-color0);
}
.jp-icon-contrast1[stroke] {
  stroke: var(--jp-icon-contrast-color1);
}
.jp-icon-contrast2[stroke] {
  stroke: var(--jp-icon-contrast-color2);
}
.jp-icon-contrast3[stroke] {
  stroke: var(--jp-icon-contrast-color3);
}

/* CSS for icons in selected items in the settings editor */
#setting-editor .jp-PluginList .jp-mod-selected .jp-icon-selectable[fill] {
  fill: #fff;
}
#setting-editor
  .jp-PluginList
  .jp-mod-selected
  .jp-icon-selectable-inverse[fill] {
  fill: var(--jp-brand-color1);
}

/* CSS for icons in selected filebrowser listing items */
.jp-DirListing-item.jp-mod-selected .jp-icon-selectable[fill] {
  fill: #fff;
}
.jp-DirListing-item.jp-mod-selected .jp-icon-selectable-inverse[fill] {
  fill: var(--jp-brand-color1);
}

/* CSS for icons in selected tabs in the sidebar tab manager */
#tab-manager .lm-TabBar-tab.jp-mod-active .jp-icon-selectable[fill] {
  fill: #fff;
}

#tab-manager .lm-TabBar-tab.jp-mod-active .jp-icon-selectable-inverse[fill] {
  fill: var(--jp-brand-color1);
}
#tab-manager
  .lm-TabBar-tab.jp-mod-active
  .jp-icon-hover
  :hover
  .jp-icon-selectable[fill] {
  fill: var(--jp-brand-color1);
}

#tab-manager
  .lm-TabBar-tab.jp-mod-active
  .jp-icon-hover
  :hover
  .jp-icon-selectable-inverse[fill] {
  fill: #fff;
}

/**
 * TODO: come up with non css-hack solution for showing the busy icon on top
 *  of the close icon
 * CSS for complex behavior of close icon of tabs in the sidebar tab manager
 */
#tab-manager
  .lm-TabBar-tab.jp-mod-dirty
  > .lm-TabBar-tabCloseIcon
  > :not(:hover)
  > .jp-icon3[fill] {
  fill: none;
}
#tab-manager
  .lm-TabBar-tab.jp-mod-dirty
  > .lm-TabBar-tabCloseIcon
  > :not(:hover)
  > .jp-icon-busy[fill] {
  fill: var(--jp-inverse-layout-color3);
}

#tab-manager
  .lm-TabBar-tab.jp-mod-dirty.jp-mod-active
  > .lm-TabBar-tabCloseIcon
  > :not(:hover)
  > .jp-icon-busy[fill] {
  fill: #fff;
}

/**
* TODO: come up with non css-hack solution for showing the busy icon on top
*  of the close icon
* CSS for complex behavior of close icon of tabs in the main area tabbar
*/
.lm-DockPanel-tabBar
  .lm-TabBar-tab.lm-mod-closable.jp-mod-dirty
  > .lm-TabBar-tabCloseIcon
  > :not(:hover)
  > .jp-icon3[fill] {
  fill: none;
}
.lm-DockPanel-tabBar
  .lm-TabBar-tab.lm-mod-closable.jp-mod-dirty
  > .lm-TabBar-tabCloseIcon
  > :not(:hover)
  > .jp-icon-busy[fill] {
  fill: var(--jp-inverse-layout-color3);
}

/* CSS for icons in status bar */
#jp-main-statusbar .jp-mod-selected .jp-icon-selectable[fill] {
  fill: #fff;
}

#jp-main-statusbar .jp-mod-selected .jp-icon-selectable-inverse[fill] {
  fill: var(--jp-brand-color1);
}
/* special handling for splash icon CSS. While the theme CSS reloads during
   splash, the splash icon can loose theming. To prevent that, we set a
   default for its color variable */
:root {
  --jp-warn-color0: var(--md-orange-700);
}

/* not sure what to do with this one, used in filebrowser listing */
.jp-DragIcon {
  margin-right: 4px;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/**
 * Support for alt colors for icons as inline SVG HTMLElements
 */

/* alt recolor the primary elements of an icon */
.jp-icon-alt .jp-icon0[fill] {
  fill: var(--jp-layout-color0);
}
.jp-icon-alt .jp-icon1[fill] {
  fill: var(--jp-layout-color1);
}
.jp-icon-alt .jp-icon2[fill] {
  fill: var(--jp-layout-color2);
}
.jp-icon-alt .jp-icon3[fill] {
  fill: var(--jp-layout-color3);
}
.jp-icon-alt .jp-icon4[fill] {
  fill: var(--jp-layout-color4);
}

.jp-icon-alt .jp-icon0[stroke] {
  stroke: var(--jp-layout-color0);
}
.jp-icon-alt .jp-icon1[stroke] {
  stroke: var(--jp-layout-color1);
}
.jp-icon-alt .jp-icon2[stroke] {
  stroke: var(--jp-layout-color2);
}
.jp-icon-alt .jp-icon3[stroke] {
  stroke: var(--jp-layout-color3);
}
.jp-icon-alt .jp-icon4[stroke] {
  stroke: var(--jp-layout-color4);
}

/* alt recolor the accent elements of an icon */
.jp-icon-alt .jp-icon-accent0[fill] {
  fill: var(--jp-inverse-layout-color0);
}
.jp-icon-alt .jp-icon-accent1[fill] {
  fill: var(--jp-inverse-layout-color1);
}
.jp-icon-alt .jp-icon-accent2[fill] {
  fill: var(--jp-inverse-layout-color2);
}
.jp-icon-alt .jp-icon-accent3[fill] {
  fill: var(--jp-inverse-layout-color3);
}
.jp-icon-alt .jp-icon-accent4[fill] {
  fill: var(--jp-inverse-layout-color4);
}

.jp-icon-alt .jp-icon-accent0[stroke] {
  stroke: var(--jp-inverse-layout-color0);
}
.jp-icon-alt .jp-icon-accent1[stroke] {
  stroke: var(--jp-inverse-layout-color1);
}
.jp-icon-alt .jp-icon-accent2[stroke] {
  stroke: var(--jp-inverse-layout-color2);
}
.jp-icon-alt .jp-icon-accent3[stroke] {
  stroke: var(--jp-inverse-layout-color3);
}
.jp-icon-alt .jp-icon-accent4[stroke] {
  stroke: var(--jp-inverse-layout-color4);
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

.jp-icon-hoverShow:not(:hover) svg {
  display: none !important;
}

/**
 * Support for hover colors for icons as inline SVG HTMLElements
 */

/**
 * regular colors
 */

/* recolor the primary elements of an icon */
.jp-icon-hover :hover .jp-icon0-hover[fill] {
  fill: var(--jp-inverse-layout-color0);
}
.jp-icon-hover :hover .jp-icon1-hover[fill] {
  fill: var(--jp-inverse-layout-color1);
}
.jp-icon-hover :hover .jp-icon2-hover[fill] {
  fill: var(--jp-inverse-layout-color2);
}
.jp-icon-hover :hover .jp-icon3-hover[fill] {
  fill: var(--jp-inverse-layout-color3);
}
.jp-icon-hover :hover .jp-icon4-hover[fill] {
  fill: var(--jp-inverse-layout-color4);
}

.jp-icon-hover :hover .jp-icon0-hover[stroke] {
  stroke: var(--jp-inverse-layout-color0);
}
.jp-icon-hover :hover .jp-icon1-hover[stroke] {
  stroke: var(--jp-inverse-layout-color1);
}
.jp-icon-hover :hover .jp-icon2-hover[stroke] {
  stroke: var(--jp-inverse-layout-color2);
}
.jp-icon-hover :hover .jp-icon3-hover[stroke] {
  stroke: var(--jp-inverse-layout-color3);
}
.jp-icon-hover :hover .jp-icon4-hover[stroke] {
  stroke: var(--jp-inverse-layout-color4);
}

/* recolor the accent elements of an icon */
.jp-icon-hover :hover .jp-icon-accent0-hover[fill] {
  fill: var(--jp-layout-color0);
}
.jp-icon-hover :hover .jp-icon-accent1-hover[fill] {
  fill: var(--jp-layout-color1);
}
.jp-icon-hover :hover .jp-icon-accent2-hover[fill] {
  fill: var(--jp-layout-color2);
}
.jp-icon-hover :hover .jp-icon-accent3-hover[fill] {
  fill: var(--jp-layout-color3);
}
.jp-icon-hover :hover .jp-icon-accent4-hover[fill] {
  fill: var(--jp-layout-color4);
}

.jp-icon-hover :hover .jp-icon-accent0-hover[stroke] {
  stroke: var(--jp-layout-color0);
}
.jp-icon-hover :hover .jp-icon-accent1-hover[stroke] {
  stroke: var(--jp-layout-color1);
}
.jp-icon-hover :hover .jp-icon-accent2-hover[stroke] {
  stroke: var(--jp-layout-color2);
}
.jp-icon-hover :hover .jp-icon-accent3-hover[stroke] {
  stroke: var(--jp-layout-color3);
}
.jp-icon-hover :hover .jp-icon-accent4-hover[stroke] {
  stroke: var(--jp-layout-color4);
}

/* set the color of an icon to transparent */
.jp-icon-hover :hover .jp-icon-none-hover[fill] {
  fill: none;
}

.jp-icon-hover :hover .jp-icon-none-hover[stroke] {
  stroke: none;
}

/**
 * inverse colors
 */

/* inverse recolor the primary elements of an icon */
.jp-icon-hover.jp-icon-alt :hover .jp-icon0-hover[fill] {
  fill: var(--jp-layout-color0);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon1-hover[fill] {
  fill: var(--jp-layout-color1);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon2-hover[fill] {
  fill: var(--jp-layout-color2);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon3-hover[fill] {
  fill: var(--jp-layout-color3);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon4-hover[fill] {
  fill: var(--jp-layout-color4);
}

.jp-icon-hover.jp-icon-alt :hover .jp-icon0-hover[stroke] {
  stroke: var(--jp-layout-color0);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon1-hover[stroke] {
  stroke: var(--jp-layout-color1);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon2-hover[stroke] {
  stroke: var(--jp-layout-color2);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon3-hover[stroke] {
  stroke: var(--jp-layout-color3);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon4-hover[stroke] {
  stroke: var(--jp-layout-color4);
}

/* inverse recolor the accent elements of an icon */
.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent0-hover[fill] {
  fill: var(--jp-inverse-layout-color0);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent1-hover[fill] {
  fill: var(--jp-inverse-layout-color1);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent2-hover[fill] {
  fill: var(--jp-inverse-layout-color2);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent3-hover[fill] {
  fill: var(--jp-inverse-layout-color3);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent4-hover[fill] {
  fill: var(--jp-inverse-layout-color4);
}

.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent0-hover[stroke] {
  stroke: var(--jp-inverse-layout-color0);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent1-hover[stroke] {
  stroke: var(--jp-inverse-layout-color1);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent2-hover[stroke] {
  stroke: var(--jp-inverse-layout-color2);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent3-hover[stroke] {
  stroke: var(--jp-inverse-layout-color3);
}
.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent4-hover[stroke] {
  stroke: var(--jp-inverse-layout-color4);
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/* Sibling imports */

/* Override Blueprint's _reset.scss styles */
html {
  box-sizing: unset;
}

*,
*::before,
*::after {
  box-sizing: unset;
}

body {
  color: unset;
  font-family: var(--jp-ui-font-family);
}

p {
  margin-top: unset;
  margin-bottom: unset;
}

small {
  font-size: unset;
}

strong {
  font-weight: unset;
}

/* Override Blueprint's _typography.scss styles */
a {
  text-decoration: unset;
  color: unset;
}
a:hover {
  text-decoration: unset;
  color: unset;
}

/* Override Blueprint's _accessibility.scss styles */
:focus {
  outline: unset;
  outline-offset: unset;
  -moz-outline-radius: unset;
}

/* Styles for ui-components */
.jp-Button {
  border-radius: var(--jp-border-radius);
  padding: 0px 12px;
  font-size: var(--jp-ui-font-size1);
}

/* Use our own theme for hover styles */
button.jp-Button.bp3-button.bp3-minimal:hover {
  background-color: var(--jp-layout-color2);
}
.jp-Button.minimal {
  color: unset !important;
}

.jp-Button.jp-ToolbarButtonComponent {
  text-transform: none;
}

.jp-InputGroup input {
  box-sizing: border-box;
  border-radius: 0;
  background-color: transparent;
  color: var(--jp-ui-font-color0);
  box-shadow: inset 0 0 0 var(--jp-border-width) var(--jp-input-border-color);
}

.jp-InputGroup input:focus {
  box-shadow: inset 0 0 0 var(--jp-border-width)
      var(--jp-input-active-box-shadow-color),
    inset 0 0 0 3px var(--jp-input-active-box-shadow-color);
}

.jp-InputGroup input::placeholder,
input::placeholder {
  color: var(--jp-ui-font-color3);
}

.jp-BPIcon {
  display: inline-block;
  vertical-align: middle;
  margin: auto;
}

/* Stop blueprint futzing with our icon fills */
.bp3-icon.jp-BPIcon > svg:not([fill]) {
  fill: var(--jp-inverse-layout-color3);
}

.jp-InputGroupAction {
  padding: 6px;
}

.jp-HTMLSelect.jp-DefaultStyle select {
  background-color: initial;
  border: none;
  border-radius: 0;
  box-shadow: none;
  color: var(--jp-ui-font-color0);
  display: block;
  font-size: var(--jp-ui-font-size1);
  height: 24px;
  line-height: 14px;
  padding: 0 25px 0 10px;
  text-align: left;
  -moz-appearance: none;
  -webkit-appearance: none;
}

/* Use our own theme for hover and option styles */
.jp-HTMLSelect.jp-DefaultStyle select:hover,
.jp-HTMLSelect.jp-DefaultStyle select > option {
  background-color: var(--jp-layout-color2);
  color: var(--jp-ui-font-color0);
}
select {
  box-sizing: border-box;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/* This file was auto-generated by ensurePackage() in @jupyterlab/buildutils */

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

.jp-Collapse {
  display: flex;
  flex-direction: column;
  align-items: stretch;
  border-top: 1px solid var(--jp-border-color2);
  border-bottom: 1px solid var(--jp-border-color2);
}

.jp-Collapse-header {
  padding: 1px 12px;
  color: var(--jp-ui-font-color1);
  background-color: var(--jp-layout-color1);
  font-size: var(--jp-ui-font-size2);
}

.jp-Collapse-header:hover {
  background-color: var(--jp-layout-color2);
}

.jp-Collapse-contents {
  padding: 0px 12px 0px 12px;
  background-color: var(--jp-layout-color1);
  color: var(--jp-ui-font-color1);
  overflow: auto;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/*-----------------------------------------------------------------------------
| Variables
|----------------------------------------------------------------------------*/

:root {
  --jp-private-commandpalette-search-height: 28px;
}

/*-----------------------------------------------------------------------------
| Overall styles
|----------------------------------------------------------------------------*/

.lm-CommandPalette {
  padding-bottom: 0px;
  color: var(--jp-ui-font-color1);
  background: var(--jp-layout-color1);
  /* This is needed so that all font sizing of children done in ems is
   * relative to this base size */
  font-size: var(--jp-ui-font-size1);
}

/*-----------------------------------------------------------------------------
| Search
|----------------------------------------------------------------------------*/

.lm-CommandPalette-search {
  padding: 4px;
  background-color: var(--jp-layout-color1);
  z-index: 2;
}

.lm-CommandPalette-wrapper {
  overflow: overlay;
  padding: 0px 9px;
  background-color: var(--jp-input-active-background);
  height: 30px;
  box-shadow: inset 0 0 0 var(--jp-border-width) var(--jp-input-border-color);
}

.lm-CommandPalette.lm-mod-focused .lm-CommandPalette-wrapper {
  box-shadow: inset 0 0 0 1px var(--jp-input-active-box-shadow-color),
    inset 0 0 0 3px var(--jp-input-active-box-shadow-color);
}

.lm-CommandPalette-wrapper::after {
  content: ' ';
  color: white;
  background-color: var(--jp-brand-color1);
  position: absolute;
  top: 4px;
  right: 4px;
  height: 30px;
  width: 10px;
  padding: 0px 10px;
  background-image: var(--jp-icon-search-white);
  background-size: 20px;
  background-repeat: no-repeat;
  background-position: center;
}

.lm-CommandPalette-input {
  background: transparent;
  width: calc(100% - 18px);
  float: left;
  border: none;
  outline: none;
  font-size: var(--jp-ui-font-size1);
  color: var(--jp-ui-font-color0);
  line-height: var(--jp-private-commandpalette-search-height);
}

.lm-CommandPalette-input::-webkit-input-placeholder,
.lm-CommandPalette-input::-moz-placeholder,
.lm-CommandPalette-input:-ms-input-placeholder {
  color: var(--jp-ui-font-color3);
  font-size: var(--jp-ui-font-size1);
}

/*-----------------------------------------------------------------------------
| Results
|----------------------------------------------------------------------------*/

.lm-CommandPalette-header:first-child {
  margin-top: 0px;
}

.lm-CommandPalette-header {
  border-bottom: solid var(--jp-border-width) var(--jp-border-color2);
  color: var(--jp-ui-font-color1);
  cursor: pointer;
  display: flex;
  font-size: var(--jp-ui-font-size0);
  font-weight: 600;
  letter-spacing: 1px;
  margin-top: 8px;
  padding: 8px 0 8px 12px;
  text-transform: uppercase;
}

.lm-CommandPalette-header.lm-mod-active {
  background: var(--jp-layout-color2);
}

.lm-CommandPalette-header > mark {
  background-color: transparent;
  font-weight: bold;
  color: var(--jp-ui-font-color1);
}

.lm-CommandPalette-item {
  padding: 4px 12px 4px 4px;
  color: var(--jp-ui-font-color1);
  font-size: var(--jp-ui-font-size1);
  font-weight: 400;
  display: flex;
}

.lm-CommandPalette-item.lm-mod-disabled {
  color: var(--jp-ui-font-color3);
}

.lm-CommandPalette-item.lm-mod-active {
  background: var(--jp-layout-color3);
}

.lm-CommandPalette-item.lm-mod-active:hover:not(.lm-mod-disabled) {
  background: var(--jp-layout-color4);
}

.lm-CommandPalette-item:hover:not(.lm-mod-active):not(.lm-mod-disabled) {
  background: var(--jp-layout-color2);
}

.lm-CommandPalette-itemContent {
  overflow: hidden;
}

.lm-CommandPalette-itemLabel > mark {
  color: var(--jp-ui-font-color0);
  background-color: transparent;
  font-weight: bold;
}

.lm-CommandPalette-item.lm-mod-disabled mark {
  color: var(--jp-ui-font-color3);
}

.lm-CommandPalette-item .lm-CommandPalette-itemIcon {
  margin: 0 4px 0 0;
  position: relative;
  width: 16px;
  top: 2px;
  flex: 0 0 auto;
}

.lm-CommandPalette-item.lm-mod-disabled .lm-CommandPalette-itemIcon {
  opacity: 0.4;
}

.lm-CommandPalette-item .lm-CommandPalette-itemShortcut {
  flex: 0 0 auto;
}

.lm-CommandPalette-itemCaption {
  display: none;
}

.lm-CommandPalette-content {
  background-color: var(--jp-layout-color1);
}

.lm-CommandPalette-content:empty:after {
  content: 'No results';
  margin: auto;
  margin-top: 20px;
  width: 100px;
  display: block;
  font-size: var(--jp-ui-font-size2);
  font-family: var(--jp-ui-font-family);
  font-weight: lighter;
}

.lm-CommandPalette-emptyMessage {
  text-align: center;
  margin-top: 24px;
  line-height: 1.32;
  padding: 0px 8px;
  color: var(--jp-content-font-color3);
}

/*-----------------------------------------------------------------------------
| Copyright (c) 2014-2017, Jupyter Development Team.
|
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

.jp-Dialog {
  position: absolute;
  z-index: 10000;
  display: flex;
  flex-direction: column;
  align-items: center;
  justify-content: center;
  top: 0px;
  left: 0px;
  margin: 0;
  padding: 0;
  width: 100%;
  height: 100%;
  background: var(--jp-dialog-background);
}

.jp-Dialog-content {
  display: flex;
  flex-direction: column;
  margin-left: auto;
  margin-right: auto;
  background: var(--jp-layout-color1);
  padding: 24px;
  padding-bottom: 12px;
  min-width: 300px;
  min-height: 150px;
  max-width: 1000px;
  max-height: 500px;
  box-sizing: border-box;
  box-shadow: var(--jp-elevation-z20);
  word-wrap: break-word;
  border-radius: var(--jp-border-radius);
  /* This is needed so that all font sizing of children done in ems is
   * relative to this base size */
  font-size: var(--jp-ui-font-size1);
  color: var(--jp-ui-font-color1);
}

.jp-Dialog-button {
  overflow: visible;
}

button.jp-Dialog-button:focus {
  outline: 1px solid var(--jp-brand-color1);
  outline-offset: 4px;
  -moz-outline-radius: 0px;
}

button.jp-Dialog-button:focus::-moz-focus-inner {
  border: 0;
}

.jp-Dialog-header {
  flex: 0 0 auto;
  padding-bottom: 12px;
  font-size: var(--jp-ui-font-size3);
  font-weight: 400;
  color: var(--jp-ui-font-color0);
}

.jp-Dialog-body {
  display: flex;
  flex-direction: column;
  flex: 1 1 auto;
  font-size: var(--jp-ui-font-size1);
  background: var(--jp-layout-color1);
  overflow: auto;
}

.jp-Dialog-footer {
  display: flex;
  flex-direction: row;
  justify-content: flex-end;
  flex: 0 0 auto;
  margin-left: -12px;
  margin-right: -12px;
  padding: 12px;
}

.jp-Dialog-title {
  overflow: hidden;
  white-space: nowrap;
  text-overflow: ellipsis;
}

.jp-Dialog-body > .jp-select-wrapper {
  width: 100%;
}

.jp-Dialog-body > button {
  padding: 0px 16px;
}

.jp-Dialog-body > label {
  line-height: 1.4;
  color: var(--jp-ui-font-color0);
}

.jp-Dialog-button.jp-mod-styled:not(:last-child) {
  margin-right: 12px;
}

/*-----------------------------------------------------------------------------
| Copyright (c) 2014-2016, Jupyter Development Team.
|
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

.jp-HoverBox {
  position: fixed;
}

.jp-HoverBox.jp-mod-outofview {
  display: none;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

.jp-IFrame {
  width: 100%;
  height: 100%;
}

.jp-IFrame > iframe {
  border: none;
}

/*
When drag events occur, `p-mod-override-cursor` is added to the body.
Because iframes steal all cursor events, the following two rules are necessary
to suppress pointer events while resize drags are occurring. There may be a
better solution to this problem.
*/
body.lm-mod-override-cursor .jp-IFrame {
  position: relative;
}

body.lm-mod-override-cursor .jp-IFrame:before {
  content: '';
  position: absolute;
  top: 0;
  left: 0;
  right: 0;
  bottom: 0;
  background: transparent;
}

/*-----------------------------------------------------------------------------
| Copyright (c) 2014-2016, Jupyter Development Team.
|
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

.jp-MainAreaWidget > :focus {
  outline: none;
}

/**
 * google-material-color v1.2.6
 * https://github.com/danlevan/google-material-color
 */
:root {
  --md-red-50: #ffebee;
  --md-red-100: #ffcdd2;
  --md-red-200: #ef9a9a;
  --md-red-300: #e57373;
  --md-red-400: #ef5350;
  --md-red-500: #f44336;
  --md-red-600: #e53935;
  --md-red-700: #d32f2f;
  --md-red-800: #c62828;
  --md-red-900: #b71c1c;
  --md-red-A100: #ff8a80;
  --md-red-A200: #ff5252;
  --md-red-A400: #ff1744;
  --md-red-A700: #d50000;

  --md-pink-50: #fce4ec;
  --md-pink-100: #f8bbd0;
  --md-pink-200: #f48fb1;
  --md-pink-300: #f06292;
  --md-pink-400: #ec407a;
  --md-pink-500: #e91e63;
  --md-pink-600: #d81b60;
  --md-pink-700: #c2185b;
  --md-pink-800: #ad1457;
  --md-pink-900: #880e4f;
  --md-pink-A100: #ff80ab;
  --md-pink-A200: #ff4081;
  --md-pink-A400: #f50057;
  --md-pink-A700: #c51162;

  --md-purple-50: #f3e5f5;
  --md-purple-100: #e1bee7;
  --md-purple-200: #ce93d8;
  --md-purple-300: #ba68c8;
  --md-purple-400: #ab47bc;
  --md-purple-500: #9c27b0;
  --md-purple-600: #8e24aa;
  --md-purple-700: #7b1fa2;
  --md-purple-800: #6a1b9a;
  --md-purple-900: #4a148c;
  --md-purple-A100: #ea80fc;
  --md-purple-A200: #e040fb;
  --md-purple-A400: #d500f9;
  --md-purple-A700: #aa00ff;

  --md-deep-purple-50: #ede7f6;
  --md-deep-purple-100: #d1c4e9;
  --md-deep-purple-200: #b39ddb;
  --md-deep-purple-300: #9575cd;
  --md-deep-purple-400: #7e57c2;
  --md-deep-purple-500: #673ab7;
  --md-deep-purple-600: #5e35b1;
  --md-deep-purple-700: #512da8;
  --md-deep-purple-800: #4527a0;
  --md-deep-purple-900: #311b92;
  --md-deep-purple-A100: #b388ff;
  --md-deep-purple-A200: #7c4dff;
  --md-deep-purple-A400: #651fff;
  --md-deep-purple-A700: #6200ea;

  --md-indigo-50: #e8eaf6;
  --md-indigo-100: #c5cae9;
  --md-indigo-200: #9fa8da;
  --md-indigo-300: #7986cb;
  --md-indigo-400: #5c6bc0;
  --md-indigo-500: #3f51b5;
  --md-indigo-600: #3949ab;
  --md-indigo-700: #303f9f;
  --md-indigo-800: #283593;
  --md-indigo-900: #1a237e;
  --md-indigo-A100: #8c9eff;
  --md-indigo-A200: #536dfe;
  --md-indigo-A400: #3d5afe;
  --md-indigo-A700: #304ffe;

  --md-blue-50: #e3f2fd;
  --md-blue-100: #bbdefb;
  --md-blue-200: #90caf9;
  --md-blue-300: #64b5f6;
  --md-blue-400: #42a5f5;
  --md-blue-500: #2196f3;
  --md-blue-600: #1e88e5;
  --md-blue-700: #1976d2;
  --md-blue-800: #1565c0;
  --md-blue-900: #0d47a1;
  --md-blue-A100: #82b1ff;
  --md-blue-A200: #448aff;
  --md-blue-A400: #2979ff;
  --md-blue-A700: #2962ff;

  --md-light-blue-50: #e1f5fe;
  --md-light-blue-100: #b3e5fc;
  --md-light-blue-200: #81d4fa;
  --md-light-blue-300: #4fc3f7;
  --md-light-blue-400: #29b6f6;
  --md-light-blue-500: #03a9f4;
  --md-light-blue-600: #039be5;
  --md-light-blue-700: #0288d1;
  --md-light-blue-800: #0277bd;
  --md-light-blue-900: #01579b;
  --md-light-blue-A100: #80d8ff;
  --md-light-blue-A200: #40c4ff;
  --md-light-blue-A400: #00b0ff;
  --md-light-blue-A700: #0091ea;

  --md-cyan-50: #e0f7fa;
  --md-cyan-100: #b2ebf2;
  --md-cyan-200: #80deea;
  --md-cyan-300: #4dd0e1;
  --md-cyan-400: #26c6da;
  --md-cyan-500: #00bcd4;
  --md-cyan-600: #00acc1;
  --md-cyan-700: #0097a7;
  --md-cyan-800: #00838f;
  --md-cyan-900: #006064;
  --md-cyan-A100: #84ffff;
  --md-cyan-A200: #18ffff;
  --md-cyan-A400: #00e5ff;
  --md-cyan-A700: #00b8d4;

  --md-teal-50: #e0f2f1;
  --md-teal-100: #b2dfdb;
  --md-teal-200: #80cbc4;
  --md-teal-300: #4db6ac;
  --md-teal-400: #26a69a;
  --md-teal-500: #009688;
  --md-teal-600: #00897b;
  --md-teal-700: #00796b;
  --md-teal-800: #00695c;
  --md-teal-900: #004d40;
  --md-teal-A100: #a7ffeb;
  --md-teal-A200: #64ffda;
  --md-teal-A400: #1de9b6;
  --md-teal-A700: #00bfa5;

  --md-green-50: #e8f5e9;
  --md-green-100: #c8e6c9;
  --md-green-200: #a5d6a7;
  --md-green-300: #81c784;
  --md-green-400: #66bb6a;
  --md-green-500: #4caf50;
  --md-green-600: #43a047;
  --md-green-700: #388e3c;
  --md-green-800: #2e7d32;
  --md-green-900: #1b5e20;
  --md-green-A100: #b9f6ca;
  --md-green-A200: #69f0ae;
  --md-green-A400: #00e676;
  --md-green-A700: #00c853;

  --md-light-green-50: #f1f8e9;
  --md-light-green-100: #dcedc8;
  --md-light-green-200: #c5e1a5;
  --md-light-green-300: #aed581;
  --md-light-green-400: #9ccc65;
  --md-light-green-500: #8bc34a;
  --md-light-green-600: #7cb342;
  --md-light-green-700: #689f38;
  --md-light-green-800: #558b2f;
  --md-light-green-900: #33691e;
  --md-light-green-A100: #ccff90;
  --md-light-green-A200: #b2ff59;
  --md-light-green-A400: #76ff03;
  --md-light-green-A700: #64dd17;

  --md-lime-50: #f9fbe7;
  --md-lime-100: #f0f4c3;
  --md-lime-200: #e6ee9c;
  --md-lime-300: #dce775;
  --md-lime-400: #d4e157;
  --md-lime-500: #cddc39;
  --md-lime-600: #c0ca33;
  --md-lime-700: #afb42b;
  --md-lime-800: #9e9d24;
  --md-lime-900: #827717;
  --md-lime-A100: #f4ff81;
  --md-lime-A200: #eeff41;
  --md-lime-A400: #c6ff00;
  --md-lime-A700: #aeea00;

  --md-yellow-50: #fffde7;
  --md-yellow-100: #fff9c4;
  --md-yellow-200: #fff59d;
  --md-yellow-300: #fff176;
  --md-yellow-400: #ffee58;
  --md-yellow-500: #ffeb3b;
  --md-yellow-600: #fdd835;
  --md-yellow-700: #fbc02d;
  --md-yellow-800: #f9a825;
  --md-yellow-900: #f57f17;
  --md-yellow-A100: #ffff8d;
  --md-yellow-A200: #ffff00;
  --md-yellow-A400: #ffea00;
  --md-yellow-A700: #ffd600;

  --md-amber-50: #fff8e1;
  --md-amber-100: #ffecb3;
  --md-amber-200: #ffe082;
  --md-amber-300: #ffd54f;
  --md-amber-400: #ffca28;
  --md-amber-500: #ffc107;
  --md-amber-600: #ffb300;
  --md-amber-700: #ffa000;
  --md-amber-800: #ff8f00;
  --md-amber-900: #ff6f00;
  --md-amber-A100: #ffe57f;
  --md-amber-A200: #ffd740;
  --md-amber-A400: #ffc400;
  --md-amber-A700: #ffab00;

  --md-orange-50: #fff3e0;
  --md-orange-100: #ffe0b2;
  --md-orange-200: #ffcc80;
  --md-orange-300: #ffb74d;
  --md-orange-400: #ffa726;
  --md-orange-500: #ff9800;
  --md-orange-600: #fb8c00;
  --md-orange-700: #f57c00;
  --md-orange-800: #ef6c00;
  --md-orange-900: #e65100;
  --md-orange-A100: #ffd180;
  --md-orange-A200: #ffab40;
  --md-orange-A400: #ff9100;
  --md-orange-A700: #ff6d00;

  --md-deep-orange-50: #fbe9e7;
  --md-deep-orange-100: #ffccbc;
  --md-deep-orange-200: #ffab91;
  --md-deep-orange-300: #ff8a65;
  --md-deep-orange-400: #ff7043;
  --md-deep-orange-500: #ff5722;
  --md-deep-orange-600: #f4511e;
  --md-deep-orange-700: #e64a19;
  --md-deep-orange-800: #d84315;
  --md-deep-orange-900: #bf360c;
  --md-deep-orange-A100: #ff9e80;
  --md-deep-orange-A200: #ff6e40;
  --md-deep-orange-A400: #ff3d00;
  --md-deep-orange-A700: #dd2c00;

  --md-brown-50: #efebe9;
  --md-brown-100: #d7ccc8;
  --md-brown-200: #bcaaa4;
  --md-brown-300: #a1887f;
  --md-brown-400: #8d6e63;
  --md-brown-500: #795548;
  --md-brown-600: #6d4c41;
  --md-brown-700: #5d4037;
  --md-brown-800: #4e342e;
  --md-brown-900: #3e2723;

  --md-grey-50: #fafafa;
  --md-grey-100: #f5f5f5;
  --md-grey-200: #eeeeee;
  --md-grey-300: #e0e0e0;
  --md-grey-400: #bdbdbd;
  --md-grey-500: #9e9e9e;
  --md-grey-600: #757575;
  --md-grey-700: #616161;
  --md-grey-800: #424242;
  --md-grey-900: #212121;

  --md-blue-grey-50: #eceff1;
  --md-blue-grey-100: #cfd8dc;
  --md-blue-grey-200: #b0bec5;
  --md-blue-grey-300: #90a4ae;
  --md-blue-grey-400: #78909c;
  --md-blue-grey-500: #607d8b;
  --md-blue-grey-600: #546e7a;
  --md-blue-grey-700: #455a64;
  --md-blue-grey-800: #37474f;
  --md-blue-grey-900: #263238;
}

/*-----------------------------------------------------------------------------
| Copyright (c) 2017, Jupyter Development Team.
|
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

.jp-Spinner {
  position: absolute;
  display: flex;
  justify-content: center;
  align-items: center;
  z-index: 10;
  left: 0;
  top: 0;
  width: 100%;
  height: 100%;
  background: var(--jp-layout-color0);
  outline: none;
}

.jp-SpinnerContent {
  font-size: 10px;
  margin: 50px auto;
  text-indent: -9999em;
  width: 3em;
  height: 3em;
  border-radius: 50%;
  background: var(--jp-brand-color3);
  background: linear-gradient(
    to right,
    #f37626 10%,
    rgba(255, 255, 255, 0) 42%
  );
  position: relative;
  animation: load3 1s infinite linear, fadeIn 1s;
}

.jp-SpinnerContent:before {
  width: 50%;
  height: 50%;
  background: #f37626;
  border-radius: 100% 0 0 0;
  position: absolute;
  top: 0;
  left: 0;
  content: '';
}

.jp-SpinnerContent:after {
  background: var(--jp-layout-color0);
  width: 75%;
  height: 75%;
  border-radius: 50%;
  content: '';
  margin: auto;
  position: absolute;
  top: 0;
  left: 0;
  bottom: 0;
  right: 0;
}

@keyframes fadeIn {
  0% {
    opacity: 0;
  }
  100% {
    opacity: 1;
  }
}

@keyframes load3 {
  0% {
    transform: rotate(0deg);
  }
  100% {
    transform: rotate(360deg);
  }
}

/*-----------------------------------------------------------------------------
| Copyright (c) 2014-2017, Jupyter Development Team.
|
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

button.jp-mod-styled {
  font-size: var(--jp-ui-font-size1);
  color: var(--jp-ui-font-color0);
  border: none;
  box-sizing: border-box;
  text-align: center;
  line-height: 32px;
  height: 32px;
  padding: 0px 12px;
  letter-spacing: 0.8px;
  outline: none;
  appearance: none;
  -webkit-appearance: none;
  -moz-appearance: none;
}

input.jp-mod-styled {
  background: var(--jp-input-background);
  height: 28px;
  box-sizing: border-box;
  border: var(--jp-border-width) solid var(--jp-border-color1);
  padding-left: 7px;
  padding-right: 7px;
  font-size: var(--jp-ui-font-size2);
  color: var(--jp-ui-font-color0);
  outline: none;
  appearance: none;
  -webkit-appearance: none;
  -moz-appearance: none;
}

input.jp-mod-styled:focus {
  border: var(--jp-border-width) solid var(--md-blue-500);
  box-shadow: inset 0 0 4px var(--md-blue-300);
}

.jp-select-wrapper {
  display: flex;
  position: relative;
  flex-direction: column;
  padding: 1px;
  background-color: var(--jp-layout-color1);
  height: 28px;
  box-sizing: border-box;
  margin-bottom: 12px;
}

.jp-select-wrapper.jp-mod-focused select.jp-mod-styled {
  border: var(--jp-border-width) solid var(--jp-input-active-border-color);
  box-shadow: var(--jp-input-box-shadow);
  background-color: var(--jp-input-active-background);
}

select.jp-mod-styled:hover {
  background-color: var(--jp-layout-color1);
  cursor: pointer;
  color: var(--jp-ui-font-color0);
  background-color: var(--jp-input-hover-background);
  box-shadow: inset 0 0px 1px rgba(0, 0, 0, 0.5);
}

select.jp-mod-styled {
  flex: 1 1 auto;
  height: 32px;
  width: 100%;
  font-size: var(--jp-ui-font-size2);
  background: var(--jp-input-background);
  color: var(--jp-ui-font-color0);
  padding: 0 25px 0 8px;
  border: var(--jp-border-width) solid var(--jp-input-border-color);
  border-radius: 0px;
  outline: none;
  appearance: none;
  -webkit-appearance: none;
  -moz-appearance: none;
}

/*-----------------------------------------------------------------------------
| Copyright (c) 2014-2016, Jupyter Development Team.
|
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

:root {
  --jp-private-toolbar-height: calc(
    28px + var(--jp-border-width)
  ); /* leave 28px for content */
}

.jp-Toolbar {
  color: var(--jp-ui-font-color1);
  flex: 0 0 auto;
  display: flex;
  flex-direction: row;
  border-bottom: var(--jp-border-width) solid var(--jp-toolbar-border-color);
  box-shadow: var(--jp-toolbar-box-shadow);
  background: var(--jp-toolbar-background);
  min-height: var(--jp-toolbar-micro-height);
  padding: 2px;
  z-index: 1;
}

/* Toolbar items */

.jp-Toolbar > .jp-Toolbar-item.jp-Toolbar-spacer {
  flex-grow: 1;
  flex-shrink: 1;
}

.jp-Toolbar-item.jp-Toolbar-kernelStatus {
  display: inline-block;
  width: 32px;
  background-repeat: no-repeat;
  background-position: center;
  background-size: 16px;
}

.jp-Toolbar > .jp-Toolbar-item {
  flex: 0 0 auto;
  display: flex;
  padding-left: 1px;
  padding-right: 1px;
  font-size: var(--jp-ui-font-size1);
  line-height: var(--jp-private-toolbar-height);
  height: 100%;
}

/* Toolbar buttons */

/* This is the div we use to wrap the react component into a Widget */
div.jp-ToolbarButton {
  color: transparent;
  border: none;
  box-sizing: border-box;
  outline: none;
  appearance: none;
  -webkit-appearance: none;
  -moz-appearance: none;
  padding: 0px;
  margin: 0px;
}

button.jp-ToolbarButtonComponent {
  background: var(--jp-layout-color1);
  border: none;
  box-sizing: border-box;
  outline: none;
  appearance: none;
  -webkit-appearance: none;
  -moz-appearance: none;
  padding: 0px 6px;
  margin: 0px;
  height: 24px;
  border-radius: var(--jp-border-radius);
  display: flex;
  align-items: center;
  text-align: center;
  font-size: 14px;
  min-width: unset;
  min-height: unset;
}

button.jp-ToolbarButtonComponent:disabled {
  opacity: 0.4;
}

button.jp-ToolbarButtonComponent span {
  padding: 0px;
  flex: 0 0 auto;
}

button.jp-ToolbarButtonComponent .jp-ToolbarButtonComponent-label {
  font-size: var(--jp-ui-font-size1);
  line-height: 100%;
  padding-left: 2px;
  color: var(--jp-ui-font-color1);
}

/*-----------------------------------------------------------------------------
| Copyright (c) 2014-2017, Jupyter Development Team.
|
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/* This file was auto-generated by ensurePackage() in @jupyterlab/buildutils */

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Copyright (c) 2014-2017, PhosphorJS Contributors
|
| Distributed under the terms of the BSD 3-Clause License.
|
| The full license is in the file LICENSE, distributed with this software.
|----------------------------------------------------------------------------*/


/* <DEPRECATED> */ body.p-mod-override-cursor *, /* </DEPRECATED> */
body.lm-mod-override-cursor * {
  cursor: inherit !important;
}

/*-----------------------------------------------------------------------------
| Copyright (c) 2014-2016, Jupyter Development Team.
|
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

.jp-JSONEditor {
  display: flex;
  flex-direction: column;
  width: 100%;
}

.jp-JSONEditor-host {
  flex: 1 1 auto;
  border: var(--jp-border-width) solid var(--jp-input-border-color);
  border-radius: 0px;
  background: var(--jp-layout-color0);
  min-height: 50px;
  padding: 1px;
}

.jp-JSONEditor.jp-mod-error .jp-JSONEditor-host {
  border-color: red;
  outline-color: red;
}

.jp-JSONEditor-header {
  display: flex;
  flex: 1 0 auto;
  padding: 0 0 0 12px;
}

.jp-JSONEditor-header label {
  flex: 0 0 auto;
}

.jp-JSONEditor-commitButton {
  height: 16px;
  width: 16px;
  background-size: 18px;
  background-repeat: no-repeat;
  background-position: center;
}

.jp-JSONEditor-host.jp-mod-focused {
  background-color: var(--jp-input-active-background);
  border: 1px solid var(--jp-input-active-border-color);
  box-shadow: var(--jp-input-box-shadow);
}

.jp-Editor.jp-mod-dropTarget {
  border: var(--jp-border-width) solid var(--jp-input-active-border-color);
  box-shadow: var(--jp-input-box-shadow);
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/* This file was auto-generated by ensurePackage() in @jupyterlab/buildutils */

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/* BASICS */

.CodeMirror {
  /* Set height, width, borders, and global font properties here */
  font-family: monospace;
  height: 300px;
  color: black;
  direction: ltr;
}

/* PADDING */

.CodeMirror-lines {
  padding: 4px 0; /* Vertical padding around content */
}
.CodeMirror pre.CodeMirror-line,
.CodeMirror pre.CodeMirror-line-like {
  padding: 0 4px; /* Horizontal padding of content */
}

.CodeMirror-scrollbar-filler, .CodeMirror-gutter-filler {
  background-color: white; /* The little square between H and V scrollbars */
}

/* GUTTER */

.CodeMirror-gutters {
  border-right: 1px solid #ddd;
  background-color: #f7f7f7;
  white-space: nowrap;
}
.CodeMirror-linenumbers {}
.CodeMirror-linenumber {
  padding: 0 3px 0 5px;
  min-width: 20px;
  text-align: right;
  color: #999;
  white-space: nowrap;
}

.CodeMirror-guttermarker { color: black; }
.CodeMirror-guttermarker-subtle { color: #999; }

/* CURSOR */

.CodeMirror-cursor {
  border-left: 1px solid black;
  border-right: none;
  width: 0;
}
/* Shown when moving in bi-directional text */
.CodeMirror div.CodeMirror-secondarycursor {
  border-left: 1px solid silver;
}
.cm-fat-cursor .CodeMirror-cursor {
  width: auto;
  border: 0 !important;
  background: #7e7;
}
.cm-fat-cursor div.CodeMirror-cursors {
  z-index: 1;
}
.cm-fat-cursor-mark {
  background-color: rgba(20, 255, 20, 0.5);
  -webkit-animation: blink 1.06s steps(1) infinite;
  -moz-animation: blink 1.06s steps(1) infinite;
  animation: blink 1.06s steps(1) infinite;
}
.cm-animate-fat-cursor {
  width: auto;
  border: 0;
  -webkit-animation: blink 1.06s steps(1) infinite;
  -moz-animation: blink 1.06s steps(1) infinite;
  animation: blink 1.06s steps(1) infinite;
  background-color: #7e7;
}
@-moz-keyframes blink {
  0% {}
  50% { background-color: transparent; }
  100% {}
}
@-webkit-keyframes blink {
  0% {}
  50% { background-color: transparent; }
  100% {}
}
@keyframes blink {
  0% {}
  50% { background-color: transparent; }
  100% {}
}

/* Can style cursor different in overwrite (non-insert) mode */
.CodeMirror-overwrite .CodeMirror-cursor {}

.cm-tab { display: inline-block; text-decoration: inherit; }

.CodeMirror-rulers {
  position: absolute;
  left: 0; right: 0; top: -50px; bottom: 0;
  overflow: hidden;
}
.CodeMirror-ruler {
  border-left: 1px solid #ccc;
  top: 0; bottom: 0;
  position: absolute;
}

/* DEFAULT THEME */

.cm-s-default .cm-header {color: blue;}
.cm-s-default .cm-quote {color: #090;}
.cm-negative {color: #d44;}
.cm-positive {color: #292;}
.cm-header, .cm-strong {font-weight: bold;}
.cm-em {font-style: italic;}
.cm-link {text-decoration: underline;}
.cm-strikethrough {text-decoration: line-through;}

.cm-s-default .cm-keyword {color: #708;}
.cm-s-default .cm-atom {color: #219;}
.cm-s-default .cm-number {color: #164;}
.cm-s-default .cm-def {color: #00f;}
.cm-s-default .cm-variable,
.cm-s-default .cm-punctuation,
.cm-s-default .cm-property,
.cm-s-default .cm-operator {}
.cm-s-default .cm-variable-2 {color: #05a;}
.cm-s-default .cm-variable-3, .cm-s-default .cm-type {color: #085;}
.cm-s-default .cm-comment {color: #a50;}
.cm-s-default .cm-string {color: #a11;}
.cm-s-default .cm-string-2 {color: #f50;}
.cm-s-default .cm-meta {color: #555;}
.cm-s-default .cm-qualifier {color: #555;}
.cm-s-default .cm-builtin {color: #30a;}
.cm-s-default .cm-bracket {color: #997;}
.cm-s-default .cm-tag {color: #170;}
.cm-s-default .cm-attribute {color: #00c;}
.cm-s-default .cm-hr {color: #999;}
.cm-s-default .cm-link {color: #00c;}

.cm-s-default .cm-error {color: #f00;}
.cm-invalidchar {color: #f00;}

.CodeMirror-composing { border-bottom: 2px solid; }

/* Default styles for common addons */

div.CodeMirror span.CodeMirror-matchingbracket {color: #0b0;}
div.CodeMirror span.CodeMirror-nonmatchingbracket {color: #a22;}
.CodeMirror-matchingtag { background: rgba(255, 150, 0, .3); }
.CodeMirror-activeline-background {background: #e8f2ff;}

/* STOP */

/* The rest of this file contains styles related to the mechanics of
   the editor. You probably shouldn't touch them. */

.CodeMirror {
  position: relative;
  overflow: hidden;
  background: white;
}

.CodeMirror-scroll {
  overflow: scroll !important; /* Things will break if this is overridden */
  /* 30px is the magic margin used to hide the element's real scrollbars */
  /* See overflow: hidden in .CodeMirror */
  margin-bottom: -30px; margin-right: -30px;
  padding-bottom: 30px;
  height: 100%;
  outline: none; /* Prevent dragging from highlighting the element */
  position: relative;
}
.CodeMirror-sizer {
  position: relative;
  border-right: 30px solid transparent;
}

/* The fake, visible scrollbars. Used to force redraw during scrolling
   before actual scrolling happens, thus preventing shaking and
   flickering artifacts. */
.CodeMirror-vscrollbar, .CodeMirror-hscrollbar, .CodeMirror-scrollbar-filler, .CodeMirror-gutter-filler {
  position: absolute;
  z-index: 6;
  display: none;
}
.CodeMirror-vscrollbar {
  right: 0; top: 0;
  overflow-x: hidden;
  overflow-y: scroll;
}
.CodeMirror-hscrollbar {
  bottom: 0; left: 0;
  overflow-y: hidden;
  overflow-x: scroll;
}
.CodeMirror-scrollbar-filler {
  right: 0; bottom: 0;
}
.CodeMirror-gutter-filler {
  left: 0; bottom: 0;
}

.CodeMirror-gutters {
  position: absolute; left: 0; top: 0;
  min-height: 100%;
  z-index: 3;
}
.CodeMirror-gutter {
  white-space: normal;
  height: 100%;
  display: inline-block;
  vertical-align: top;
  margin-bottom: -30px;
}
.CodeMirror-gutter-wrapper {
  position: absolute;
  z-index: 4;
  background: none !important;
  border: none !important;
}
.CodeMirror-gutter-background {
  position: absolute;
  top: 0; bottom: 0;
  z-index: 4;
}
.CodeMirror-gutter-elt {
  position: absolute;
  cursor: default;
  z-index: 4;
}
.CodeMirror-gutter-wrapper ::selection { background-color: transparent }
.CodeMirror-gutter-wrapper ::-moz-selection { background-color: transparent }

.CodeMirror-lines {
  cursor: text;
  min-height: 1px; /* prevents collapsing before first draw */
}
.CodeMirror pre.CodeMirror-line,
.CodeMirror pre.CodeMirror-line-like {
  /* Reset some styles that the rest of the page might have set */
  -moz-border-radius: 0; -webkit-border-radius: 0; border-radius: 0;
  border-width: 0;
  background: transparent;
  font-family: inherit;
  font-size: inherit;
  margin: 0;
  white-space: pre;
  word-wrap: normal;
  line-height: inherit;
  color: inherit;
  z-index: 2;
  position: relative;
  overflow: visible;
  -webkit-tap-highlight-color: transparent;
  -webkit-font-variant-ligatures: contextual;
  font-variant-ligatures: contextual;
}
.CodeMirror-wrap pre.CodeMirror-line,
.CodeMirror-wrap pre.CodeMirror-line-like {
  word-wrap: break-word;
  white-space: pre-wrap;
  word-break: normal;
}

.CodeMirror-linebackground {
  position: absolute;
  left: 0; right: 0; top: 0; bottom: 0;
  z-index: 0;
}

.CodeMirror-linewidget {
  position: relative;
  z-index: 2;
  padding: 0.1px; /* Force widget margins to stay inside of the container */
}

.CodeMirror-widget {}

.CodeMirror-rtl pre { direction: rtl; }

.CodeMirror-code {
  outline: none;
}

/* Force content-box sizing for the elements where we expect it */
.CodeMirror-scroll,
.CodeMirror-sizer,
.CodeMirror-gutter,
.CodeMirror-gutters,
.CodeMirror-linenumber {
  -moz-box-sizing: content-box;
  box-sizing: content-box;
}

.CodeMirror-measure {
  position: absolute;
  width: 100%;
  height: 0;
  overflow: hidden;
  visibility: hidden;
}

.CodeMirror-cursor {
  position: absolute;
  pointer-events: none;
}
.CodeMirror-measure pre { position: static; }

div.CodeMirror-cursors {
  visibility: hidden;
  position: relative;
  z-index: 3;
}
div.CodeMirror-dragcursors {
  visibility: visible;
}

.CodeMirror-focused div.CodeMirror-cursors {
  visibility: visible;
}

.CodeMirror-selected { background: #d9d9d9; }
.CodeMirror-focused .CodeMirror-selected { background: #d7d4f0; }
.CodeMirror-crosshair { cursor: crosshair; }
.CodeMirror-line::selection, .CodeMirror-line > span::selection, .CodeMirror-line > span > span::selection { background: #d7d4f0; }
.CodeMirror-line::-moz-selection, .CodeMirror-line > span::-moz-selection, .CodeMirror-line > span > span::-moz-selection { background: #d7d4f0; }

.cm-searching {
  background-color: #ffa;
  background-color: rgba(255, 255, 0, .4);
}

/* Used to force a border model for a node */
.cm-force-border { padding-right: .1px; }

@media print {
  /* Hide the cursor when printing */
  .CodeMirror div.CodeMirror-cursors {
    visibility: hidden;
  }
}

/* See issue #2901 */
.cm-tab-wrap-hack:after { content: ''; }

/* Help users use markselection to safely style text background */
span.CodeMirror-selectedtext { background: none; }

.CodeMirror-dialog {
  position: absolute;
  left: 0; right: 0;
  background: inherit;
  z-index: 15;
  padding: .1em .8em;
  overflow: hidden;
  color: inherit;
}

.CodeMirror-dialog-top {
  border-bottom: 1px solid #eee;
  top: 0;
}

.CodeMirror-dialog-bottom {
  border-top: 1px solid #eee;
  bottom: 0;
}

.CodeMirror-dialog input {
  border: none;
  outline: none;
  background: transparent;
  width: 20em;
  color: inherit;
  font-family: monospace;
}

.CodeMirror-dialog button {
  font-size: 70%;
}

.CodeMirror-foldmarker {
  color: blue;
  text-shadow: #b9f 1px 1px 2px, #b9f -1px -1px 2px, #b9f 1px -1px 2px, #b9f -1px 1px 2px;
  font-family: arial;
  line-height: .3;
  cursor: pointer;
}
.CodeMirror-foldgutter {
  width: .7em;
}
.CodeMirror-foldgutter-open,
.CodeMirror-foldgutter-folded {
  cursor: pointer;
}
.CodeMirror-foldgutter-open:after {
  content: "\25BE";
}
.CodeMirror-foldgutter-folded:after {
  content: "\25B8";
}

/*
  Name:       material
  Author:     Mattia Astorino (http://github.com/equinusocio)
  Website:    https://material-theme.site/
*/

.cm-s-material.CodeMirror {
  background-color: #263238;
  color: #EEFFFF;
}

.cm-s-material .CodeMirror-gutters {
  background: #263238;
  color: #546E7A;
  border: none;
}

.cm-s-material .CodeMirror-guttermarker,
.cm-s-material .CodeMirror-guttermarker-subtle,
.cm-s-material .CodeMirror-linenumber {
  color: #546E7A;
}

.cm-s-material .CodeMirror-cursor {
  border-left: 1px solid #FFCC00;
}

.cm-s-material div.CodeMirror-selected {
  background: rgba(128, 203, 196, 0.2);
}

.cm-s-material.CodeMirror-focused div.CodeMirror-selected {
  background: rgba(128, 203, 196, 0.2);
}

.cm-s-material .CodeMirror-line::selection,
.cm-s-material .CodeMirror-line>span::selection,
.cm-s-material .CodeMirror-line>span>span::selection {
  background: rgba(128, 203, 196, 0.2);
}

.cm-s-material .CodeMirror-line::-moz-selection,
.cm-s-material .CodeMirror-line>span::-moz-selection,
.cm-s-material .CodeMirror-line>span>span::-moz-selection {
  background: rgba(128, 203, 196, 0.2);
}

.cm-s-material .CodeMirror-activeline-background {
  background: rgba(0, 0, 0, 0.5);
}

.cm-s-material .cm-keyword {
  color: #C792EA;
}

.cm-s-material .cm-operator {
  color: #89DDFF;
}

.cm-s-material .cm-variable-2 {
  color: #EEFFFF;
}

.cm-s-material .cm-variable-3,
.cm-s-material .cm-type {
  color: #f07178;
}

.cm-s-material .cm-builtin {
  color: #FFCB6B;
}

.cm-s-material .cm-atom {
  color: #F78C6C;
}

.cm-s-material .cm-number {
  color: #FF5370;
}

.cm-s-material .cm-def {
  color: #82AAFF;
}

.cm-s-material .cm-string {
  color: #C3E88D;
}

.cm-s-material .cm-string-2 {
  color: #f07178;
}

.cm-s-material .cm-comment {
  color: #546E7A;
}

.cm-s-material .cm-variable {
  color: #f07178;
}

.cm-s-material .cm-tag {
  color: #FF5370;
}

.cm-s-material .cm-meta {
  color: #FFCB6B;
}

.cm-s-material .cm-attribute {
  color: #C792EA;
}

.cm-s-material .cm-property {
  color: #C792EA;
}

.cm-s-material .cm-qualifier {
  color: #DECB6B;
}

.cm-s-material .cm-variable-3,
.cm-s-material .cm-type {
  color: #DECB6B;
}


.cm-s-material .cm-error {
  color: rgba(255, 255, 255, 1.0);
  background-color: #FF5370;
}

.cm-s-material .CodeMirror-matchingbracket {
  text-decoration: underline;
  color: white !important;
}
/**
 * "
 *  Using Zenburn color palette from the Emacs Zenburn Theme
 *  https://github.com/bbatsov/zenburn-emacs/blob/master/zenburn-theme.el
 *
 *  Also using parts of https://github.com/xavi/coderay-lighttable-theme
 * "
 * From: https://github.com/wisenomad/zenburn-lighttable-theme/blob/master/zenburn.css
 */

.cm-s-zenburn .CodeMirror-gutters { background: #3f3f3f !important; }
.cm-s-zenburn .CodeMirror-foldgutter-open, .CodeMirror-foldgutter-folded { color: #999; }
.cm-s-zenburn .CodeMirror-cursor { border-left: 1px solid white; }
.cm-s-zenburn { background-color: #3f3f3f; color: #dcdccc; }
.cm-s-zenburn span.cm-builtin { color: #dcdccc; font-weight: bold; }
.cm-s-zenburn span.cm-comment { color: #7f9f7f; }
.cm-s-zenburn span.cm-keyword { color: #f0dfaf; font-weight: bold; }
.cm-s-zenburn span.cm-atom { color: #bfebbf; }
.cm-s-zenburn span.cm-def { color: #dcdccc; }
.cm-s-zenburn span.cm-variable { color: #dfaf8f; }
.cm-s-zenburn span.cm-variable-2 { color: #dcdccc; }
.cm-s-zenburn span.cm-string { color: #cc9393; }
.cm-s-zenburn span.cm-string-2 { color: #cc9393; }
.cm-s-zenburn span.cm-number { color: #dcdccc; }
.cm-s-zenburn span.cm-tag { color: #93e0e3; }
.cm-s-zenburn span.cm-property { color: #dfaf8f; }
.cm-s-zenburn span.cm-attribute { color: #dfaf8f; }
.cm-s-zenburn span.cm-qualifier { color: #7cb8bb; }
.cm-s-zenburn span.cm-meta { color: #f0dfaf; }
.cm-s-zenburn span.cm-header { color: #f0efd0; }
.cm-s-zenburn span.cm-operator { color: #f0efd0; }
.cm-s-zenburn span.CodeMirror-matchingbracket { box-sizing: border-box; background: transparent; border-bottom: 1px solid; }
.cm-s-zenburn span.CodeMirror-nonmatchingbracket { border-bottom: 1px solid; background: none; }
.cm-s-zenburn .CodeMirror-activeline { background: #000000; }
.cm-s-zenburn .CodeMirror-activeline-background { background: #000000; }
.cm-s-zenburn div.CodeMirror-selected { background: #545454; }
.cm-s-zenburn .CodeMirror-focused div.CodeMirror-selected { background: #4f4f4f; }

.cm-s-abcdef.CodeMirror { background: #0f0f0f; color: #defdef; }
.cm-s-abcdef div.CodeMirror-selected { background: #515151; }
.cm-s-abcdef .CodeMirror-line::selection, .cm-s-abcdef .CodeMirror-line > span::selection, .cm-s-abcdef .CodeMirror-line > span > span::selection { background: rgba(56, 56, 56, 0.99); }
.cm-s-abcdef .CodeMirror-line::-moz-selection, .cm-s-abcdef .CodeMirror-line > span::-moz-selection, .cm-s-abcdef .CodeMirror-line > span > span::-moz-selection { background: rgba(56, 56, 56, 0.99); }
.cm-s-abcdef .CodeMirror-gutters { background: #555; border-right: 2px solid #314151; }
.cm-s-abcdef .CodeMirror-guttermarker { color: #222; }
.cm-s-abcdef .CodeMirror-guttermarker-subtle { color: azure; }
.cm-s-abcdef .CodeMirror-linenumber { color: #FFFFFF; }
.cm-s-abcdef .CodeMirror-cursor { border-left: 1px solid #00FF00; }

.cm-s-abcdef span.cm-keyword { color: darkgoldenrod; font-weight: bold; }
.cm-s-abcdef span.cm-atom { color: #77F; }
.cm-s-abcdef span.cm-number { color: violet; }
.cm-s-abcdef span.cm-def { color: #fffabc; }
.cm-s-abcdef span.cm-variable { color: #abcdef; }
.cm-s-abcdef span.cm-variable-2 { color: #cacbcc; }
.cm-s-abcdef span.cm-variable-3, .cm-s-abcdef span.cm-type { color: #def; }
.cm-s-abcdef span.cm-property { color: #fedcba; }
.cm-s-abcdef span.cm-operator { color: #ff0; }
.cm-s-abcdef span.cm-comment { color: #7a7b7c; font-style: italic;}
.cm-s-abcdef span.cm-string { color: #2b4; }
.cm-s-abcdef span.cm-meta { color: #C9F; }
.cm-s-abcdef span.cm-qualifier { color: #FFF700; }
.cm-s-abcdef span.cm-builtin { color: #30aabc; }
.cm-s-abcdef span.cm-bracket { color: #8a8a8a; }
.cm-s-abcdef span.cm-tag { color: #FFDD44; }
.cm-s-abcdef span.cm-attribute { color: #DDFF00; }
.cm-s-abcdef span.cm-error { color: #FF0000; }
.cm-s-abcdef span.cm-header { color: aquamarine; font-weight: bold; }
.cm-s-abcdef span.cm-link { color: blueviolet; }

.cm-s-abcdef .CodeMirror-activeline-background { background: #314151; }

/*

    Name:       Base16 Default Light
    Author:     Chris Kempson (http://chriskempson.com)

    CodeMirror template by Jan T. Sott (https://github.com/idleberg/base16-codemirror)
    Original Base16 color scheme by Chris Kempson (https://github.com/chriskempson/base16)

*/

.cm-s-base16-light.CodeMirror { background: #f5f5f5; color: #202020; }
.cm-s-base16-light div.CodeMirror-selected { background: #e0e0e0; }
.cm-s-base16-light .CodeMirror-line::selection, .cm-s-base16-light .CodeMirror-line > span::selection, .cm-s-base16-light .CodeMirror-line > span > span::selection { background: #e0e0e0; }
.cm-s-base16-light .CodeMirror-line::-moz-selection, .cm-s-base16-light .CodeMirror-line > span::-moz-selection, .cm-s-base16-light .CodeMirror-line > span > span::-moz-selection { background: #e0e0e0; }
.cm-s-base16-light .CodeMirror-gutters { background: #f5f5f5; border-right: 0px; }
.cm-s-base16-light .CodeMirror-guttermarker { color: #ac4142; }
.cm-s-base16-light .CodeMirror-guttermarker-subtle { color: #b0b0b0; }
.cm-s-base16-light .CodeMirror-linenumber { color: #b0b0b0; }
.cm-s-base16-light .CodeMirror-cursor { border-left: 1px solid #505050; }

.cm-s-base16-light span.cm-comment { color: #8f5536; }
.cm-s-base16-light span.cm-atom { color: #aa759f; }
.cm-s-base16-light span.cm-number { color: #aa759f; }

.cm-s-base16-light span.cm-property, .cm-s-base16-light span.cm-attribute { color: #90a959; }
.cm-s-base16-light span.cm-keyword { color: #ac4142; }
.cm-s-base16-light span.cm-string { color: #f4bf75; }

.cm-s-base16-light span.cm-variable { color: #90a959; }
.cm-s-base16-light span.cm-variable-2 { color: #6a9fb5; }
.cm-s-base16-light span.cm-def { color: #d28445; }
.cm-s-base16-light span.cm-bracket { color: #202020; }
.cm-s-base16-light span.cm-tag { color: #ac4142; }
.cm-s-base16-light span.cm-link { color: #aa759f; }
.cm-s-base16-light span.cm-error { background: #ac4142; color: #505050; }

.cm-s-base16-light .CodeMirror-activeline-background { background: #DDDCDC; }
.cm-s-base16-light .CodeMirror-matchingbracket { color: #f5f5f5 !important; background-color: #6A9FB5 !important}

/*

    Name:       Base16 Default Dark
    Author:     Chris Kempson (http://chriskempson.com)

    CodeMirror template by Jan T. Sott (https://github.com/idleberg/base16-codemirror)
    Original Base16 color scheme by Chris Kempson (https://github.com/chriskempson/base16)

*/

.cm-s-base16-dark.CodeMirror { background: #151515; color: #e0e0e0; }
.cm-s-base16-dark div.CodeMirror-selected { background: #303030; }
.cm-s-base16-dark .CodeMirror-line::selection, .cm-s-base16-dark .CodeMirror-line > span::selection, .cm-s-base16-dark .CodeMirror-line > span > span::selection { background: rgba(48, 48, 48, .99); }
.cm-s-base16-dark .CodeMirror-line::-moz-selection, .cm-s-base16-dark .CodeMirror-line > span::-moz-selection, .cm-s-base16-dark .CodeMirror-line > span > span::-moz-selection { background: rgba(48, 48, 48, .99); }
.cm-s-base16-dark .CodeMirror-gutters { background: #151515; border-right: 0px; }
.cm-s-base16-dark .CodeMirror-guttermarker { color: #ac4142; }
.cm-s-base16-dark .CodeMirror-guttermarker-subtle { color: #505050; }
.cm-s-base16-dark .CodeMirror-linenumber { color: #505050; }
.cm-s-base16-dark .CodeMirror-cursor { border-left: 1px solid #b0b0b0; }

.cm-s-base16-dark span.cm-comment { color: #8f5536; }
.cm-s-base16-dark span.cm-atom { color: #aa759f; }
.cm-s-base16-dark span.cm-number { color: #aa759f; }

.cm-s-base16-dark span.cm-property, .cm-s-base16-dark span.cm-attribute { color: #90a959; }
.cm-s-base16-dark span.cm-keyword { color: #ac4142; }
.cm-s-base16-dark span.cm-string { color: #f4bf75; }

.cm-s-base16-dark span.cm-variable { color: #90a959; }
.cm-s-base16-dark span.cm-variable-2 { color: #6a9fb5; }
.cm-s-base16-dark span.cm-def { color: #d28445; }
.cm-s-base16-dark span.cm-bracket { color: #e0e0e0; }
.cm-s-base16-dark span.cm-tag { color: #ac4142; }
.cm-s-base16-dark span.cm-link { color: #aa759f; }
.cm-s-base16-dark span.cm-error { background: #ac4142; color: #b0b0b0; }

.cm-s-base16-dark .CodeMirror-activeline-background { background: #202020; }
.cm-s-base16-dark .CodeMirror-matchingbracket { text-decoration: underline; color: white !important; }

/*

    Name:       dracula
    Author:     Michael Kaminsky (http://github.com/mkaminsky11)

    Original dracula color scheme by Zeno Rocha (https://github.com/zenorocha/dracula-theme)

*/


.cm-s-dracula.CodeMirror, .cm-s-dracula .CodeMirror-gutters {
  background-color: #282a36 !important;
  color: #f8f8f2 !important;
  border: none;
}
.cm-s-dracula .CodeMirror-gutters { color: #282a36; }
.cm-s-dracula .CodeMirror-cursor { border-left: solid thin #f8f8f0; }
.cm-s-dracula .CodeMirror-linenumber { color: #6D8A88; }
.cm-s-dracula .CodeMirror-selected { background: rgba(255, 255, 255, 0.10); }
.cm-s-dracula .CodeMirror-line::selection, .cm-s-dracula .CodeMirror-line > span::selection, .cm-s-dracula .CodeMirror-line > span > span::selection { background: rgba(255, 255, 255, 0.10); }
.cm-s-dracula .CodeMirror-line::-moz-selection, .cm-s-dracula .CodeMirror-line > span::-moz-selection, .cm-s-dracula .CodeMirror-line > span > span::-moz-selection { background: rgba(255, 255, 255, 0.10); }
.cm-s-dracula span.cm-comment { color: #6272a4; }
.cm-s-dracula span.cm-string, .cm-s-dracula span.cm-string-2 { color: #f1fa8c; }
.cm-s-dracula span.cm-number { color: #bd93f9; }
.cm-s-dracula span.cm-variable { color: #50fa7b; }
.cm-s-dracula span.cm-variable-2 { color: white; }
.cm-s-dracula span.cm-def { color: #50fa7b; }
.cm-s-dracula span.cm-operator { color: #ff79c6; }
.cm-s-dracula span.cm-keyword { color: #ff79c6; }
.cm-s-dracula span.cm-atom { color: #bd93f9; }
.cm-s-dracula span.cm-meta { color: #f8f8f2; }
.cm-s-dracula span.cm-tag { color: #ff79c6; }
.cm-s-dracula span.cm-attribute { color: #50fa7b; }
.cm-s-dracula span.cm-qualifier { color: #50fa7b; }
.cm-s-dracula span.cm-property { color: #66d9ef; }
.cm-s-dracula span.cm-builtin { color: #50fa7b; }
.cm-s-dracula span.cm-variable-3, .cm-s-dracula span.cm-type { color: #ffb86c; }

.cm-s-dracula .CodeMirror-activeline-background { background: rgba(255,255,255,0.1); }
.cm-s-dracula .CodeMirror-matchingbracket { text-decoration: underline; color: white !important; }

/*

    Name:       Hopscotch
    Author:     Jan T. Sott

    CodeMirror template by Jan T. Sott (https://github.com/idleberg/base16-codemirror)
    Original Base16 color scheme by Chris Kempson (https://github.com/chriskempson/base16)

*/

.cm-s-hopscotch.CodeMirror {background: #322931; color: #d5d3d5;}
.cm-s-hopscotch div.CodeMirror-selected {background: #433b42 !important;}
.cm-s-hopscotch .CodeMirror-gutters {background: #322931; border-right: 0px;}
.cm-s-hopscotch .CodeMirror-linenumber {color: #797379;}
.cm-s-hopscotch .CodeMirror-cursor {border-left: 1px solid #989498 !important;}

.cm-s-hopscotch span.cm-comment {color: #b33508;}
.cm-s-hopscotch span.cm-atom {color: #c85e7c;}
.cm-s-hopscotch span.cm-number {color: #c85e7c;}

.cm-s-hopscotch span.cm-property, .cm-s-hopscotch span.cm-attribute {color: #8fc13e;}
.cm-s-hopscotch span.cm-keyword {color: #dd464c;}
.cm-s-hopscotch span.cm-string {color: #fdcc59;}

.cm-s-hopscotch span.cm-variable {color: #8fc13e;}
.cm-s-hopscotch span.cm-variable-2 {color: #1290bf;}
.cm-s-hopscotch span.cm-def {color: #fd8b19;}
.cm-s-hopscotch span.cm-error {background: #dd464c; color: #989498;}
.cm-s-hopscotch span.cm-bracket {color: #d5d3d5;}
.cm-s-hopscotch span.cm-tag {color: #dd464c;}
.cm-s-hopscotch span.cm-link {color: #c85e7c;}

.cm-s-hopscotch .CodeMirror-matchingbracket { text-decoration: underline; color: white !important;}
.cm-s-hopscotch .CodeMirror-activeline-background { background: #302020; }

/****************************************************************/
/*   Based on mbonaci's Brackets mbo theme                      */
/*   https://github.com/mbonaci/global/blob/master/Mbo.tmTheme  */
/*   Create your own: http://tmtheme-editor.herokuapp.com       */
/****************************************************************/

.cm-s-mbo.CodeMirror { background: #2c2c2c; color: #ffffec; }
.cm-s-mbo div.CodeMirror-selected { background: #716C62; }
.cm-s-mbo .CodeMirror-line::selection, .cm-s-mbo .CodeMirror-line > span::selection, .cm-s-mbo .CodeMirror-line > span > span::selection { background: rgba(113, 108, 98, .99); }
.cm-s-mbo .CodeMirror-line::-moz-selection, .cm-s-mbo .CodeMirror-line > span::-moz-selection, .cm-s-mbo .CodeMirror-line > span > span::-moz-selection { background: rgba(113, 108, 98, .99); }
.cm-s-mbo .CodeMirror-gutters { background: #4e4e4e; border-right: 0px; }
.cm-s-mbo .CodeMirror-guttermarker { color: white; }
.cm-s-mbo .CodeMirror-guttermarker-subtle { color: grey; }
.cm-s-mbo .CodeMirror-linenumber { color: #dadada; }
.cm-s-mbo .CodeMirror-cursor { border-left: 1px solid #ffffec; }

.cm-s-mbo span.cm-comment { color: #95958a; }
.cm-s-mbo span.cm-atom { color: #00a8c6; }
.cm-s-mbo span.cm-number { color: #00a8c6; }

.cm-s-mbo span.cm-property, .cm-s-mbo span.cm-attribute { color: #9ddfe9; }
.cm-s-mbo span.cm-keyword { color: #ffb928; }
.cm-s-mbo span.cm-string { color: #ffcf6c; }
.cm-s-mbo span.cm-string.cm-property { color: #ffffec; }

.cm-s-mbo span.cm-variable { color: #ffffec; }
.cm-s-mbo span.cm-variable-2 { color: #00a8c6; }
.cm-s-mbo span.cm-def { color: #ffffec; }
.cm-s-mbo span.cm-bracket { color: #fffffc; font-weight: bold; }
.cm-s-mbo span.cm-tag { color: #9ddfe9; }
.cm-s-mbo span.cm-link { color: #f54b07; }
.cm-s-mbo span.cm-error { border-bottom: #636363; color: #ffffec; }
.cm-s-mbo span.cm-qualifier { color: #ffffec; }

.cm-s-mbo .CodeMirror-activeline-background { background: #494b41; }
.cm-s-mbo .CodeMirror-matchingbracket { color: #ffb928 !important; }
.cm-s-mbo .CodeMirror-matchingtag { background: rgba(255, 255, 255, .37); }

/*
  MDN-LIKE Theme - Mozilla
  Ported to CodeMirror by Peter Kroon <plakroon@gmail.com>
  Report bugs/issues here: https://github.com/codemirror/CodeMirror/issues
  GitHub: @peterkroon

  The mdn-like theme is inspired on the displayed code examples at: https://developer.mozilla.org/en-US/docs/Web/CSS/animation

*/
.cm-s-mdn-like.CodeMirror { color: #999; background-color: #fff; }
.cm-s-mdn-like div.CodeMirror-selected { background: #cfc; }
.cm-s-mdn-like .CodeMirror-line::selection, .cm-s-mdn-like .CodeMirror-line > span::selection, .cm-s-mdn-like .CodeMirror-line > span > span::selection { background: #cfc; }
.cm-s-mdn-like .CodeMirror-line::-moz-selection, .cm-s-mdn-like .CodeMirror-line > span::-moz-selection, .cm-s-mdn-like .CodeMirror-line > span > span::-moz-selection { background: #cfc; }

.cm-s-mdn-like .CodeMirror-gutters { background: #f8f8f8; border-left: 6px solid rgba(0,83,159,0.65); color: #333; }
.cm-s-mdn-like .CodeMirror-linenumber { color: #aaa; padding-left: 8px; }
.cm-s-mdn-like .CodeMirror-cursor { border-left: 2px solid #222; }

.cm-s-mdn-like .cm-keyword { color: #6262FF; }
.cm-s-mdn-like .cm-atom { color: #F90; }
.cm-s-mdn-like .cm-number { color:  #ca7841; }
.cm-s-mdn-like .cm-def { color: #8DA6CE; }
.cm-s-mdn-like span.cm-variable-2, .cm-s-mdn-like span.cm-tag { color: #690; }
.cm-s-mdn-like span.cm-variable-3, .cm-s-mdn-like span.cm-def, .cm-s-mdn-like span.cm-type { color: #07a; }

.cm-s-mdn-like .cm-variable { color: #07a; }
.cm-s-mdn-like .cm-property { color: #905; }
.cm-s-mdn-like .cm-qualifier { color: #690; }

.cm-s-mdn-like .cm-operator { color: #cda869; }
.cm-s-mdn-like .cm-comment { color:#777; font-weight:normal; }
.cm-s-mdn-like .cm-string { color:#07a; font-style:italic; }
.cm-s-mdn-like .cm-string-2 { color:#bd6b18; } /*?*/
.cm-s-mdn-like .cm-meta { color: #000; } /*?*/
.cm-s-mdn-like .cm-builtin { color: #9B7536; } /*?*/
.cm-s-mdn-like .cm-tag { color: #997643; }
.cm-s-mdn-like .cm-attribute { color: #d6bb6d; } /*?*/
.cm-s-mdn-like .cm-header { color: #FF6400; }
.cm-s-mdn-like .cm-hr { color: #AEAEAE; }
.cm-s-mdn-like .cm-link { color:#ad9361; font-style:italic; text-decoration:none; }
.cm-s-mdn-like .cm-error { border-bottom: 1px solid red; }

div.cm-s-mdn-like .CodeMirror-activeline-background { background: #efefff; }
div.cm-s-mdn-like span.CodeMirror-matchingbracket { outline:1px solid grey; color: inherit; }

.cm-s-mdn-like.CodeMirror { background-image: url(); }

/*

    Name:       seti
    Author:     Michael Kaminsky (http://github.com/mkaminsky11)

    Original seti color scheme by Jesse Weed (https://github.com/jesseweed/seti-syntax)

*/


.cm-s-seti.CodeMirror {
  background-color: #151718 !important;
  color: #CFD2D1 !important;
  border: none;
}
.cm-s-seti .CodeMirror-gutters {
  color: #404b53;
  background-color: #0E1112;
  border: none;
}
.cm-s-seti .CodeMirror-cursor { border-left: solid thin #f8f8f0; }
.cm-s-seti .CodeMirror-linenumber { color: #6D8A88; }
.cm-s-seti.CodeMirror-focused div.CodeMirror-selected { background: rgba(255, 255, 255, 0.10); }
.cm-s-seti .CodeMirror-line::selection, .cm-s-seti .CodeMirror-line > span::selection, .cm-s-seti .CodeMirror-line > span > span::selection { background: rgba(255, 255, 255, 0.10); }
.cm-s-seti .CodeMirror-line::-moz-selection, .cm-s-seti .CodeMirror-line > span::-moz-selection, .cm-s-seti .CodeMirror-line > span > span::-moz-selection { background: rgba(255, 255, 255, 0.10); }
.cm-s-seti span.cm-comment { color: #41535b; }
.cm-s-seti span.cm-string, .cm-s-seti span.cm-string-2 { color: #55b5db; }
.cm-s-seti span.cm-number { color: #cd3f45; }
.cm-s-seti span.cm-variable { color: #55b5db; }
.cm-s-seti span.cm-variable-2 { color: #a074c4; }
.cm-s-seti span.cm-def { color: #55b5db; }
.cm-s-seti span.cm-keyword { color: #ff79c6; }
.cm-s-seti span.cm-operator { color: #9fca56; }
.cm-s-seti span.cm-keyword { color: #e6cd69; }
.cm-s-seti span.cm-atom { color: #cd3f45; }
.cm-s-seti span.cm-meta { color: #55b5db; }
.cm-s-seti span.cm-tag { color: #55b5db; }
.cm-s-seti span.cm-attribute { color: #9fca56; }
.cm-s-seti span.cm-qualifier { color: #9fca56; }
.cm-s-seti span.cm-property { color: #a074c4; }
.cm-s-seti span.cm-variable-3, .cm-s-seti span.cm-type { color: #9fca56; }
.cm-s-seti span.cm-builtin { color: #9fca56; }
.cm-s-seti .CodeMirror-activeline-background { background: #101213; }
.cm-s-seti .CodeMirror-matchingbracket { text-decoration: underline; color: white !important; }

/*
Solarized theme for code-mirror
http://ethanschoonover.com/solarized
*/

/*
Solarized color palette
http://ethanschoonover.com/solarized/img/solarized-palette.png
*/

.solarized.base03 { color: #002b36; }
.solarized.base02 { color: #073642; }
.solarized.base01 { color: #586e75; }
.solarized.base00 { color: #657b83; }
.solarized.base0 { color: #839496; }
.solarized.base1 { color: #93a1a1; }
.solarized.base2 { color: #eee8d5; }
.solarized.base3  { color: #fdf6e3; }
.solarized.solar-yellow  { color: #b58900; }
.solarized.solar-orange  { color: #cb4b16; }
.solarized.solar-red { color: #dc322f; }
.solarized.solar-magenta { color: #d33682; }
.solarized.solar-violet  { color: #6c71c4; }
.solarized.solar-blue { color: #268bd2; }
.solarized.solar-cyan { color: #2aa198; }
.solarized.solar-green { color: #859900; }

/* Color scheme for code-mirror */

.cm-s-solarized {
  line-height: 1.45em;
  color-profile: sRGB;
  rendering-intent: auto;
}
.cm-s-solarized.cm-s-dark {
  color: #839496;
  background-color: #002b36;
  text-shadow: #002b36 0 1px;
}
.cm-s-solarized.cm-s-light {
  background-color: #fdf6e3;
  color: #657b83;
  text-shadow: #eee8d5 0 1px;
}

.cm-s-solarized .CodeMirror-widget {
  text-shadow: none;
}

.cm-s-solarized .cm-header { color: #586e75; }
.cm-s-solarized .cm-quote { color: #93a1a1; }

.cm-s-solarized .cm-keyword { color: #cb4b16; }
.cm-s-solarized .cm-atom { color: #d33682; }
.cm-s-solarized .cm-number { color: #d33682; }
.cm-s-solarized .cm-def { color: #2aa198; }

.cm-s-solarized .cm-variable { color: #839496; }
.cm-s-solarized .cm-variable-2 { color: #b58900; }
.cm-s-solarized .cm-variable-3, .cm-s-solarized .cm-type { color: #6c71c4; }

.cm-s-solarized .cm-property { color: #2aa198; }
.cm-s-solarized .cm-operator { color: #6c71c4; }

.cm-s-solarized .cm-comment { color: #586e75; font-style:italic; }

.cm-s-solarized .cm-string { color: #859900; }
.cm-s-solarized .cm-string-2 { color: #b58900; }

.cm-s-solarized .cm-meta { color: #859900; }
.cm-s-solarized .cm-qualifier { color: #b58900; }
.cm-s-solarized .cm-builtin { color: #d33682; }
.cm-s-solarized .cm-bracket { color: #cb4b16; }
.cm-s-solarized .CodeMirror-matchingbracket { color: #859900; }
.cm-s-solarized .CodeMirror-nonmatchingbracket { color: #dc322f; }
.cm-s-solarized .cm-tag { color: #93a1a1; }
.cm-s-solarized .cm-attribute { color: #2aa198; }
.cm-s-solarized .cm-hr {
  color: transparent;
  border-top: 1px solid #586e75;
  display: block;
}
.cm-s-solarized .cm-link { color: #93a1a1; cursor: pointer; }
.cm-s-solarized .cm-special { color: #6c71c4; }
.cm-s-solarized .cm-em {
  color: #999;
  text-decoration: underline;
  text-decoration-style: dotted;
}
.cm-s-solarized .cm-error,
.cm-s-solarized .cm-invalidchar {
  color: #586e75;
  border-bottom: 1px dotted #dc322f;
}

.cm-s-solarized.cm-s-dark div.CodeMirror-selected { background: #073642; }
.cm-s-solarized.cm-s-dark.CodeMirror ::selection { background: rgba(7, 54, 66, 0.99); }
.cm-s-solarized.cm-s-dark .CodeMirror-line::-moz-selection, .cm-s-dark .CodeMirror-line > span::-moz-selection, .cm-s-dark .CodeMirror-line > span > span::-moz-selection { background: rgba(7, 54, 66, 0.99); }

.cm-s-solarized.cm-s-light div.CodeMirror-selected { background: #eee8d5; }
.cm-s-solarized.cm-s-light .CodeMirror-line::selection, .cm-s-light .CodeMirror-line > span::selection, .cm-s-light .CodeMirror-line > span > span::selection { background: #eee8d5; }
.cm-s-solarized.cm-s-light .CodeMirror-line::-moz-selection, .cm-s-ligh .CodeMirror-line > span::-moz-selection, .cm-s-ligh .CodeMirror-line > span > span::-moz-selection { background: #eee8d5; }

/* Editor styling */



/* Little shadow on the view-port of the buffer view */
.cm-s-solarized.CodeMirror {
  -moz-box-shadow: inset 7px 0 12px -6px #000;
  -webkit-box-shadow: inset 7px 0 12px -6px #000;
  box-shadow: inset 7px 0 12px -6px #000;
}

/* Remove gutter border */
.cm-s-solarized .CodeMirror-gutters {
  border-right: 0;
}

/* Gutter colors and line number styling based of color scheme (dark / light) */

/* Dark */
.cm-s-solarized.cm-s-dark .CodeMirror-gutters {
  background-color: #073642;
}

.cm-s-solarized.cm-s-dark .CodeMirror-linenumber {
  color: #586e75;
  text-shadow: #021014 0 -1px;
}

/* Light */
.cm-s-solarized.cm-s-light .CodeMirror-gutters {
  background-color: #eee8d5;
}

.cm-s-solarized.cm-s-light .CodeMirror-linenumber {
  color: #839496;
}

/* Common */
.cm-s-solarized .CodeMirror-linenumber {
  padding: 0 5px;
}
.cm-s-solarized .CodeMirror-guttermarker-subtle { color: #586e75; }
.cm-s-solarized.cm-s-dark .CodeMirror-guttermarker { color: #ddd; }
.cm-s-solarized.cm-s-light .CodeMirror-guttermarker { color: #cb4b16; }

.cm-s-solarized .CodeMirror-gutter .CodeMirror-gutter-text {
  color: #586e75;
}

/* Cursor */
.cm-s-solarized .CodeMirror-cursor { border-left: 1px solid #819090; }

/* Fat cursor */
.cm-s-solarized.cm-s-light.cm-fat-cursor .CodeMirror-cursor { background: #77ee77; }
.cm-s-solarized.cm-s-light .cm-animate-fat-cursor { background-color: #77ee77; }
.cm-s-solarized.cm-s-dark.cm-fat-cursor .CodeMirror-cursor { background: #586e75; }
.cm-s-solarized.cm-s-dark .cm-animate-fat-cursor { background-color: #586e75; }

/* Active line */
.cm-s-solarized.cm-s-dark .CodeMirror-activeline-background {
  background: rgba(255, 255, 255, 0.06);
}
.cm-s-solarized.cm-s-light .CodeMirror-activeline-background {
  background: rgba(0, 0, 0, 0.06);
}

.cm-s-the-matrix.CodeMirror { background: #000000; color: #00FF00; }
.cm-s-the-matrix div.CodeMirror-selected { background: #2D2D2D; }
.cm-s-the-matrix .CodeMirror-line::selection, .cm-s-the-matrix .CodeMirror-line > span::selection, .cm-s-the-matrix .CodeMirror-line > span > span::selection { background: rgba(45, 45, 45, 0.99); }
.cm-s-the-matrix .CodeMirror-line::-moz-selection, .cm-s-the-matrix .CodeMirror-line > span::-moz-selection, .cm-s-the-matrix .CodeMirror-line > span > span::-moz-selection { background: rgba(45, 45, 45, 0.99); }
.cm-s-the-matrix .CodeMirror-gutters { background: #060; border-right: 2px solid #00FF00; }
.cm-s-the-matrix .CodeMirror-guttermarker { color: #0f0; }
.cm-s-the-matrix .CodeMirror-guttermarker-subtle { color: white; }
.cm-s-the-matrix .CodeMirror-linenumber { color: #FFFFFF; }
.cm-s-the-matrix .CodeMirror-cursor { border-left: 1px solid #00FF00; }

.cm-s-the-matrix span.cm-keyword { color: #008803; font-weight: bold; }
.cm-s-the-matrix span.cm-atom { color: #3FF; }
.cm-s-the-matrix span.cm-number { color: #FFB94F; }
.cm-s-the-matrix span.cm-def { color: #99C; }
.cm-s-the-matrix span.cm-variable { color: #F6C; }
.cm-s-the-matrix span.cm-variable-2 { color: #C6F; }
.cm-s-the-matrix span.cm-variable-3, .cm-s-the-matrix span.cm-type { color: #96F; }
.cm-s-the-matrix span.cm-property { color: #62FFA0; }
.cm-s-the-matrix span.cm-operator { color: #999; }
.cm-s-the-matrix span.cm-comment { color: #CCCCCC; }
.cm-s-the-matrix span.cm-string { color: #39C; }
.cm-s-the-matrix span.cm-meta { color: #C9F; }
.cm-s-the-matrix span.cm-qualifier { color: #FFF700; }
.cm-s-the-matrix span.cm-builtin { color: #30a; }
.cm-s-the-matrix span.cm-bracket { color: #cc7; }
.cm-s-the-matrix span.cm-tag { color: #FFBD40; }
.cm-s-the-matrix span.cm-attribute { color: #FFF700; }
.cm-s-the-matrix span.cm-error { color: #FF0000; }

.cm-s-the-matrix .CodeMirror-activeline-background { background: #040; }

/*
Copyright (C) 2011 by MarkLogic Corporation
Author: Mike Brevoort <mike@brevoort.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
.cm-s-xq-light span.cm-keyword { line-height: 1em; font-weight: bold; color: #5A5CAD; }
.cm-s-xq-light span.cm-atom { color: #6C8CD5; }
.cm-s-xq-light span.cm-number { color: #164; }
.cm-s-xq-light span.cm-def { text-decoration:underline; }
.cm-s-xq-light span.cm-variable { color: black; }
.cm-s-xq-light span.cm-variable-2 { color:black; }
.cm-s-xq-light span.cm-variable-3, .cm-s-xq-light span.cm-type { color: black; }
.cm-s-xq-light span.cm-property {}
.cm-s-xq-light span.cm-operator {}
.cm-s-xq-light span.cm-comment { color: #0080FF; font-style: italic; }
.cm-s-xq-light span.cm-string { color: red; }
.cm-s-xq-light span.cm-meta { color: yellow; }
.cm-s-xq-light span.cm-qualifier { color: grey; }
.cm-s-xq-light span.cm-builtin { color: #7EA656; }
.cm-s-xq-light span.cm-bracket { color: #cc7; }
.cm-s-xq-light span.cm-tag { color: #3F7F7F; }
.cm-s-xq-light span.cm-attribute { color: #7F007F; }
.cm-s-xq-light span.cm-error { color: #f00; }

.cm-s-xq-light .CodeMirror-activeline-background { background: #e8f2ff; }
.cm-s-xq-light .CodeMirror-matchingbracket { outline:1px solid grey;color:black !important;background:yellow; }

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

.CodeMirror {
  line-height: var(--jp-code-line-height);
  font-size: var(--jp-code-font-size);
  font-family: var(--jp-code-font-family);
  border: 0;
  border-radius: 0;
  height: auto;
  /* Changed to auto to autogrow */
}

.CodeMirror pre {
  padding: 0 var(--jp-code-padding);
}

.jp-CodeMirrorEditor[data-type='inline'] .CodeMirror-dialog {
  background-color: var(--jp-layout-color0);
  color: var(--jp-content-font-color1);
}

/* This causes https://github.com/jupyter/jupyterlab/issues/522 */
/* May not cause it not because we changed it! */
.CodeMirror-lines {
  padding: var(--jp-code-padding) 0;
}

.CodeMirror-linenumber {
  padding: 0 8px;
}

.jp-CodeMirrorEditor-static {
  margin: var(--jp-code-padding);
}

.jp-CodeMirrorEditor,
.jp-CodeMirrorEditor-static {
  cursor: text;
}

.jp-CodeMirrorEditor[data-type='inline'] .CodeMirror-cursor {
  border-left: var(--jp-code-cursor-width0) solid var(--jp-editor-cursor-color);
}

/* When zoomed out 67% and 33% on a screen of 1440 width x 900 height */
@media screen and (min-width: 2138px) and (max-width: 4319px) {
  .jp-CodeMirrorEditor[data-type='inline'] .CodeMirror-cursor {
    border-left: var(--jp-code-cursor-width1) solid
      var(--jp-editor-cursor-color);
  }
}

/* When zoomed out less than 33% */
@media screen and (min-width: 4320px) {
  .jp-CodeMirrorEditor[data-type='inline'] .CodeMirror-cursor {
    border-left: var(--jp-code-cursor-width2) solid
      var(--jp-editor-cursor-color);
  }
}

.CodeMirror.jp-mod-readOnly .CodeMirror-cursor {
  display: none;
}

.CodeMirror-gutters {
  border-right: 1px solid var(--jp-border-color2);
  background-color: var(--jp-layout-color0);
}

.jp-CollaboratorCursor {
  border-left: 5px solid transparent;
  border-right: 5px solid transparent;
  border-top: none;
  border-bottom: 3px solid;
  background-clip: content-box;
  margin-left: -5px;
  margin-right: -5px;
}

.CodeMirror-selectedtext.cm-searching {
  background-color: var(--jp-search-selected-match-background-color) !important;
  color: var(--jp-search-selected-match-color) !important;
}

.cm-searching {
  background-color: var(
    --jp-search-unselected-match-background-color
  ) !important;
  color: var(--jp-search-unselected-match-color) !important;
}

.CodeMirror-focused .CodeMirror-selected {
  background-color: var(--jp-editor-selected-focused-background);
}

.CodeMirror-selected {
  background-color: var(--jp-editor-selected-background);
}

.jp-CollaboratorCursor-hover {
  position: absolute;
  z-index: 1;
  transform: translateX(-50%);
  color: white;
  border-radius: 3px;
  padding-left: 4px;
  padding-right: 4px;
  padding-top: 1px;
  padding-bottom: 1px;
  text-align: center;
  font-size: var(--jp-ui-font-size1);
  white-space: nowrap;
}

.jp-CodeMirror-ruler {
  border-left: 1px dashed var(--jp-border-color2);
}

/**
 * Here is our jupyter theme for CodeMirror syntax highlighting
 * This is used in our marked.js syntax highlighting and CodeMirror itself
 * The string "jupyter" is set in ../codemirror/widget.DEFAULT_CODEMIRROR_THEME
 * This came from the classic notebook, which came form highlight.js/GitHub
 */

/**
 * CodeMirror themes are handling the background/color in this way. This works
 * fine for CodeMirror editors outside the notebook, but the notebook styles
 * these things differently.
 */
.CodeMirror.cm-s-jupyter {
  background: var(--jp-layout-color0);
  color: var(--jp-content-font-color1);
}

/* In the notebook, we want this styling to be handled by its container */
.jp-CodeConsole .CodeMirror.cm-s-jupyter,
.jp-Notebook .CodeMirror.cm-s-jupyter {
  background: transparent;
}

.cm-s-jupyter .CodeMirror-cursor {
  border-left: var(--jp-code-cursor-width0) solid var(--jp-editor-cursor-color);
}
.cm-s-jupyter span.cm-keyword {
  color: var(--jp-mirror-editor-keyword-color);
  font-weight: bold;
}
.cm-s-jupyter span.cm-atom {
  color: var(--jp-mirror-editor-atom-color);
}
.cm-s-jupyter span.cm-number {
  color: var(--jp-mirror-editor-number-color);
}
.cm-s-jupyter span.cm-def {
  color: var(--jp-mirror-editor-def-color);
}
.cm-s-jupyter span.cm-variable {
  color: var(--jp-mirror-editor-variable-color);
}
.cm-s-jupyter span.cm-variable-2 {
  color: var(--jp-mirror-editor-variable-2-color);
}
.cm-s-jupyter span.cm-variable-3 {
  color: var(--jp-mirror-editor-variable-3-color);
}
.cm-s-jupyter span.cm-punctuation {
  color: var(--jp-mirror-editor-punctuation-color);
}
.cm-s-jupyter span.cm-property {
  color: var(--jp-mirror-editor-property-color);
}
.cm-s-jupyter span.cm-operator {
  color: var(--jp-mirror-editor-operator-color);
  font-weight: bold;
}
.cm-s-jupyter span.cm-comment {
  color: var(--jp-mirror-editor-comment-color);
  font-style: italic;
}
.cm-s-jupyter span.cm-string {
  color: var(--jp-mirror-editor-string-color);
}
.cm-s-jupyter span.cm-string-2 {
  color: var(--jp-mirror-editor-string-2-color);
}
.cm-s-jupyter span.cm-meta {
  color: var(--jp-mirror-editor-meta-color);
}
.cm-s-jupyter span.cm-qualifier {
  color: var(--jp-mirror-editor-qualifier-color);
}
.cm-s-jupyter span.cm-builtin {
  color: var(--jp-mirror-editor-builtin-color);
}
.cm-s-jupyter span.cm-bracket {
  color: var(--jp-mirror-editor-bracket-color);
}
.cm-s-jupyter span.cm-tag {
  color: var(--jp-mirror-editor-tag-color);
}
.cm-s-jupyter span.cm-attribute {
  color: var(--jp-mirror-editor-attribute-color);
}
.cm-s-jupyter span.cm-header {
  color: var(--jp-mirror-editor-header-color);
}
.cm-s-jupyter span.cm-quote {
  color: var(--jp-mirror-editor-quote-color);
}
.cm-s-jupyter span.cm-link {
  color: var(--jp-mirror-editor-link-color);
}
.cm-s-jupyter span.cm-error {
  color: var(--jp-mirror-editor-error-color);
}
.cm-s-jupyter span.cm-hr {
  color: #999;
}

.cm-s-jupyter span.cm-tab {
  background: url();
  background-position: right;
  background-repeat: no-repeat;
}

.cm-s-jupyter .CodeMirror-activeline-background,
.cm-s-jupyter .CodeMirror-gutter {
  background-color: var(--jp-layout-color2);
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/* This file was auto-generated by ensurePackage() in @jupyterlab/buildutils */

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/*-----------------------------------------------------------------------------
| RenderedText
|----------------------------------------------------------------------------*/

.jp-RenderedText {
  text-align: left;
  padding-left: var(--jp-code-padding);
  line-height: var(--jp-code-line-height);
  font-family: var(--jp-code-font-family);
}

.jp-RenderedText pre,
.jp-RenderedJavaScript pre,
.jp-RenderedHTMLCommon pre {
  color: var(--jp-content-font-color1);
  font-size: var(--jp-code-font-size);
  border: none;
  margin: 0px;
  padding: 0px;
  line-height: normal;
}

.jp-RenderedText pre a:link {
  text-decoration: none;
  color: var(--jp-content-link-color);
}
.jp-RenderedText pre a:hover {
  text-decoration: underline;
  color: var(--jp-content-link-color);
}
.jp-RenderedText pre a:visited {
  text-decoration: none;
  color: var(--jp-content-link-color);
}

/* console foregrounds and backgrounds */
.jp-RenderedText pre .ansi-black-fg {
  color: #3e424d;
}
.jp-RenderedText pre .ansi-red-fg {
  color: #e75c58;
}
.jp-RenderedText pre .ansi-green-fg {
  color: #00a250;
}
.jp-RenderedText pre .ansi-yellow-fg {
  color: #ddb62b;
}
.jp-RenderedText pre .ansi-blue-fg {
  color: #208ffb;
}
.jp-RenderedText pre .ansi-magenta-fg {
  color: #d160c4;
}
.jp-RenderedText pre .ansi-cyan-fg {
  color: #60c6c8;
}
.jp-RenderedText pre .ansi-white-fg {
  color: #c5c1b4;
}

.jp-RenderedText pre .ansi-black-bg {
  background-color: #3e424d;
}
.jp-RenderedText pre .ansi-red-bg {
  background-color: #e75c58;
}
.jp-RenderedText pre .ansi-green-bg {
  background-color: #00a250;
}
.jp-RenderedText pre .ansi-yellow-bg {
  background-color: #ddb62b;
}
.jp-RenderedText pre .ansi-blue-bg {
  background-color: #208ffb;
}
.jp-RenderedText pre .ansi-magenta-bg {
  background-color: #d160c4;
}
.jp-RenderedText pre .ansi-cyan-bg {
  background-color: #60c6c8;
}
.jp-RenderedText pre .ansi-white-bg {
  background-color: #c5c1b4;
}

.jp-RenderedText pre .ansi-black-intense-fg {
  color: #282c36;
}
.jp-RenderedText pre .ansi-red-intense-fg {
  color: #b22b31;
}
.jp-RenderedText pre .ansi-green-intense-fg {
  color: #007427;
}
.jp-RenderedText pre .ansi-yellow-intense-fg {
  color: #b27d12;
}
.jp-RenderedText pre .ansi-blue-intense-fg {
  color: #0065ca;
}
.jp-RenderedText pre .ansi-magenta-intense-fg {
  color: #a03196;
}
.jp-RenderedText pre .ansi-cyan-intense-fg {
  color: #258f8f;
}
.jp-RenderedText pre .ansi-white-intense-fg {
  color: #a1a6b2;
}

.jp-RenderedText pre .ansi-black-intense-bg {
  background-color: #282c36;
}
.jp-RenderedText pre .ansi-red-intense-bg {
  background-color: #b22b31;
}
.jp-RenderedText pre .ansi-green-intense-bg {
  background-color: #007427;
}
.jp-RenderedText pre .ansi-yellow-intense-bg {
  background-color: #b27d12;
}
.jp-RenderedText pre .ansi-blue-intense-bg {
  background-color: #0065ca;
}
.jp-RenderedText pre .ansi-magenta-intense-bg {
  background-color: #a03196;
}
.jp-RenderedText pre .ansi-cyan-intense-bg {
  background-color: #258f8f;
}
.jp-RenderedText pre .ansi-white-intense-bg {
  background-color: #a1a6b2;
}

.jp-RenderedText pre .ansi-default-inverse-fg {
  color: var(--jp-ui-inverse-font-color0);
}
.jp-RenderedText pre .ansi-default-inverse-bg {
  background-color: var(--jp-inverse-layout-color0);
}

.jp-RenderedText pre .ansi-bold {
  font-weight: bold;
}
.jp-RenderedText pre .ansi-underline {
  text-decoration: underline;
}

.jp-RenderedText[data-mime-type='application/vnd.jupyter.stderr'] {
  background: var(--jp-rendermime-error-background);
  padding-top: var(--jp-code-padding);
}

/*-----------------------------------------------------------------------------
| RenderedLatex
|----------------------------------------------------------------------------*/

.jp-RenderedLatex {
  color: var(--jp-content-font-color1);
  font-size: var(--jp-content-font-size1);
  line-height: var(--jp-content-line-height);
}

/* Left-justify outputs.*/
.jp-OutputArea-output.jp-RenderedLatex {
  padding: var(--jp-code-padding);
  text-align: left;
}

/*-----------------------------------------------------------------------------
| RenderedHTML
|----------------------------------------------------------------------------*/

.jp-RenderedHTMLCommon {
  color: var(--jp-content-font-color1);
  font-family: var(--jp-content-font-family);
  font-size: var(--jp-content-font-size1);
  line-height: var(--jp-content-line-height);
  /* Give a bit more R padding on Markdown text to keep line lengths reasonable */
  padding-right: 20px;
}

.jp-RenderedHTMLCommon em {
  font-style: italic;
}

.jp-RenderedHTMLCommon strong {
  font-weight: bold;
}

.jp-RenderedHTMLCommon u {
  text-decoration: underline;
}

.jp-RenderedHTMLCommon a:link {
  text-decoration: none;
  color: var(--jp-content-link-color);
}

.jp-RenderedHTMLCommon a:hover {
  text-decoration: underline;
  color: var(--jp-content-link-color);
}

.jp-RenderedHTMLCommon a:visited {
  text-decoration: none;
  color: var(--jp-content-link-color);
}

/* Headings */

.jp-RenderedHTMLCommon h1,
.jp-RenderedHTMLCommon h2,
.jp-RenderedHTMLCommon h3,
.jp-RenderedHTMLCommon h4,
.jp-RenderedHTMLCommon h5,
.jp-RenderedHTMLCommon h6 {
  line-height: var(--jp-content-heading-line-height);
  font-weight: var(--jp-content-heading-font-weight);
  font-style: normal;
  margin: var(--jp-content-heading-margin-top) 0
    var(--jp-content-heading-margin-bottom) 0;
}

.jp-RenderedHTMLCommon h1:first-child,
.jp-RenderedHTMLCommon h2:first-child,
.jp-RenderedHTMLCommon h3:first-child,
.jp-RenderedHTMLCommon h4:first-child,
.jp-RenderedHTMLCommon h5:first-child,
.jp-RenderedHTMLCommon h6:first-child {
  margin-top: calc(0.5 * var(--jp-content-heading-margin-top));
}

.jp-RenderedHTMLCommon h1:last-child,
.jp-RenderedHTMLCommon h2:last-child,
.jp-RenderedHTMLCommon h3:last-child,
.jp-RenderedHTMLCommon h4:last-child,
.jp-RenderedHTMLCommon h5:last-child,
.jp-RenderedHTMLCommon h6:last-child {
  margin-bottom: calc(0.5 * var(--jp-content-heading-margin-bottom));
}

.jp-RenderedHTMLCommon h1 {
  font-size: var(--jp-content-font-size5);
}

.jp-RenderedHTMLCommon h2 {
  font-size: var(--jp-content-font-size4);
}

.jp-RenderedHTMLCommon h3 {
  font-size: var(--jp-content-font-size3);
}

.jp-RenderedHTMLCommon h4 {
  font-size: var(--jp-content-font-size2);
}

.jp-RenderedHTMLCommon h5 {
  font-size: var(--jp-content-font-size1);
}

.jp-RenderedHTMLCommon h6 {
  font-size: var(--jp-content-font-size0);
}

/* Lists */

.jp-RenderedHTMLCommon ul:not(.list-inline),
.jp-RenderedHTMLCommon ol:not(.list-inline) {
  padding-left: 2em;
}

.jp-RenderedHTMLCommon ul {
  list-style: disc;
}

.jp-RenderedHTMLCommon ul ul {
  list-style: square;
}

.jp-RenderedHTMLCommon ul ul ul {
  list-style: circle;
}

.jp-RenderedHTMLCommon ol {
  list-style: decimal;
}

.jp-RenderedHTMLCommon ol ol {
  list-style: upper-alpha;
}

.jp-RenderedHTMLCommon ol ol ol {
  list-style: lower-alpha;
}

.jp-RenderedHTMLCommon ol ol ol ol {
  list-style: lower-roman;
}

.jp-RenderedHTMLCommon ol ol ol ol ol {
  list-style: decimal;
}

.jp-RenderedHTMLCommon ol,
.jp-RenderedHTMLCommon ul {
  margin-bottom: 1em;
}

.jp-RenderedHTMLCommon ul ul,
.jp-RenderedHTMLCommon ul ol,
.jp-RenderedHTMLCommon ol ul,
.jp-RenderedHTMLCommon ol ol {
  margin-bottom: 0em;
}

.jp-RenderedHTMLCommon hr {
  color: var(--jp-border-color2);
  background-color: var(--jp-border-color1);
  margin-top: 1em;
  margin-bottom: 1em;
}

.jp-RenderedHTMLCommon > pre {
  margin: 1.5em 2em;
}

.jp-RenderedHTMLCommon pre,
.jp-RenderedHTMLCommon code {
  border: 0;
  background-color: var(--jp-layout-color0);
  color: var(--jp-content-font-color1);
  font-family: var(--jp-code-font-family);
  font-size: inherit;
  line-height: var(--jp-code-line-height);
  padding: 0;
  white-space: pre-wrap;
}

.jp-RenderedHTMLCommon :not(pre) > code {
  background-color: var(--jp-layout-color2);
  padding: 1px 5px;
}

/* Tables */

.jp-RenderedHTMLCommon table {
  border-collapse: collapse;
  border-spacing: 0;
  border: none;
  color: var(--jp-ui-font-color1);
  font-size: 12px;
  table-layout: fixed;
  margin-left: auto;
  margin-right: auto;
}

.jp-RenderedHTMLCommon thead {
  border-bottom: var(--jp-border-width) solid var(--jp-border-color1);
  vertical-align: bottom;
}

.jp-RenderedHTMLCommon td,
.jp-RenderedHTMLCommon th,
.jp-RenderedHTMLCommon tr {
  vertical-align: middle;
  padding: 0.5em 0.5em;
  line-height: normal;
  white-space: normal;
  max-width: none;
  border: none;
}

.jp-RenderedMarkdown.jp-RenderedHTMLCommon td,
.jp-RenderedMarkdown.jp-RenderedHTMLCommon th {
  max-width: none;
}

:not(.jp-RenderedMarkdown).jp-RenderedHTMLCommon td,
:not(.jp-RenderedMarkdown).jp-RenderedHTMLCommon th,
:not(.jp-RenderedMarkdown).jp-RenderedHTMLCommon tr {
  text-align: right;
}

.jp-RenderedHTMLCommon th {
  font-weight: bold;
}

.jp-RenderedHTMLCommon tbody tr:nth-child(odd) {
  background: var(--jp-layout-color0);
}

.jp-RenderedHTMLCommon tbody tr:nth-child(even) {
  background: var(--jp-rendermime-table-row-background);
}

.jp-RenderedHTMLCommon tbody tr:hover {
  background: var(--jp-rendermime-table-row-hover-background);
}

.jp-RenderedHTMLCommon table {
  margin-bottom: 1em;
}

.jp-RenderedHTMLCommon p {
  text-align: left;
  margin: 0px;
}

.jp-RenderedHTMLCommon p {
  margin-bottom: 1em;
}

.jp-RenderedHTMLCommon img {
  -moz-force-broken-image-icon: 1;
}

/* Restrict to direct children as other images could be nested in other content. */
.jp-RenderedHTMLCommon > img {
  display: block;
  margin-left: 0;
  margin-right: 0;
  margin-bottom: 1em;
}

/* Change color behind transparent images if they need it... */
[data-jp-theme-light='false'] .jp-RenderedImage img.jp-needs-light-background {
  background-color: var(--jp-inverse-layout-color1);
}
[data-jp-theme-light='true'] .jp-RenderedImage img.jp-needs-dark-background {
  background-color: var(--jp-inverse-layout-color1);
}
/* ...or leave it untouched if they don't */
[data-jp-theme-light='false'] .jp-RenderedImage img.jp-needs-dark-background {
}
[data-jp-theme-light='true'] .jp-RenderedImage img.jp-needs-light-background {
}

.jp-RenderedHTMLCommon img,
.jp-RenderedImage img,
.jp-RenderedHTMLCommon svg,
.jp-RenderedSVG svg {
  max-width: 100%;
  height: auto;
}

.jp-RenderedHTMLCommon img.jp-mod-unconfined,
.jp-RenderedImage img.jp-mod-unconfined,
.jp-RenderedHTMLCommon svg.jp-mod-unconfined,
.jp-RenderedSVG svg.jp-mod-unconfined {
  max-width: none;
}

.jp-RenderedHTMLCommon .alert {
  padding: var(--jp-notebook-padding);
  border: var(--jp-border-width) solid transparent;
  border-radius: var(--jp-border-radius);
  margin-bottom: 1em;
}

.jp-RenderedHTMLCommon .alert-info {
  color: var(--jp-info-color0);
  background-color: var(--jp-info-color3);
  border-color: var(--jp-info-color2);
}
.jp-RenderedHTMLCommon .alert-info hr {
  border-color: var(--jp-info-color3);
}
.jp-RenderedHTMLCommon .alert-info > p:last-child,
.jp-RenderedHTMLCommon .alert-info > ul:last-child {
  margin-bottom: 0;
}

.jp-RenderedHTMLCommon .alert-warning {
  color: var(--jp-warn-color0);
  background-color: var(--jp-warn-color3);
  border-color: var(--jp-warn-color2);
}
.jp-RenderedHTMLCommon .alert-warning hr {
  border-color: var(--jp-warn-color3);
}
.jp-RenderedHTMLCommon .alert-warning > p:last-child,
.jp-RenderedHTMLCommon .alert-warning > ul:last-child {
  margin-bottom: 0;
}

.jp-RenderedHTMLCommon .alert-success {
  color: var(--jp-success-color0);
  background-color: var(--jp-success-color3);
  border-color: var(--jp-success-color2);
}
.jp-RenderedHTMLCommon .alert-success hr {
  border-color: var(--jp-success-color3);
}
.jp-RenderedHTMLCommon .alert-success > p:last-child,
.jp-RenderedHTMLCommon .alert-success > ul:last-child {
  margin-bottom: 0;
}

.jp-RenderedHTMLCommon .alert-danger {
  color: var(--jp-error-color0);
  background-color: var(--jp-error-color3);
  border-color: var(--jp-error-color2);
}
.jp-RenderedHTMLCommon .alert-danger hr {
  border-color: var(--jp-error-color3);
}
.jp-RenderedHTMLCommon .alert-danger > p:last-child,
.jp-RenderedHTMLCommon .alert-danger > ul:last-child {
  margin-bottom: 0;
}

.jp-RenderedHTMLCommon blockquote {
  margin: 1em 2em;
  padding: 0 1em;
  border-left: 5px solid var(--jp-border-color2);
}

a.jp-InternalAnchorLink {
  visibility: hidden;
  margin-left: 8px;
  color: var(--md-blue-800);
}

h1:hover .jp-InternalAnchorLink,
h2:hover .jp-InternalAnchorLink,
h3:hover .jp-InternalAnchorLink,
h4:hover .jp-InternalAnchorLink,
h5:hover .jp-InternalAnchorLink,
h6:hover .jp-InternalAnchorLink {
  visibility: visible;
}

.jp-RenderedHTMLCommon kbd {
  background-color: var(--jp-rendermime-table-row-background);
  border: 1px solid var(--jp-border-color0);
  border-bottom-color: var(--jp-border-color2);
  border-radius: 3px;
  box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.25);
  display: inline-block;
  font-size: 0.8em;
  line-height: 1em;
  padding: 0.2em 0.5em;
}

/* Most direct children of .jp-RenderedHTMLCommon have a margin-bottom of 1.0.
 * At the bottom of cells this is a bit too much as there is also spacing
 * between cells. Going all the way to 0 gets too tight between markdown and
 * code cells.
 */
.jp-RenderedHTMLCommon > *:last-child {
  margin-bottom: 0.5em;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/* This file was auto-generated by ensurePackage() in @jupyterlab/buildutils */

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

.jp-MimeDocument {
  outline: none;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/* This file was auto-generated by ensurePackage() in @jupyterlab/buildutils */

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/*-----------------------------------------------------------------------------
| Variables
|----------------------------------------------------------------------------*/

:root {
  --jp-private-filebrowser-button-height: 28px;
  --jp-private-filebrowser-button-width: 48px;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

.jp-FileBrowser {
  display: flex;
  flex-direction: column;
  color: var(--jp-ui-font-color1);
  background: var(--jp-layout-color1);
  /* This is needed so that all font sizing of children done in ems is
   * relative to this base size */
  font-size: var(--jp-ui-font-size1);
}

.jp-FileBrowser-toolbar.jp-Toolbar {
  border-bottom: none;
  height: auto;
  margin: var(--jp-toolbar-header-margin);
  box-shadow: none;
}

.jp-BreadCrumbs {
  flex: 0 0 auto;
  margin: 4px 12px;
}

.jp-BreadCrumbs-item {
  margin: 0px 2px;
  padding: 0px 2px;
  border-radius: var(--jp-border-radius);
  cursor: pointer;
}

.jp-BreadCrumbs-item:hover {
  background-color: var(--jp-layout-color2);
}

.jp-BreadCrumbs-item:first-child {
  margin-left: 0px;
}

.jp-BreadCrumbs-item.jp-mod-dropTarget {
  background-color: var(--jp-brand-color2);
  opacity: 0.7;
}

/*-----------------------------------------------------------------------------
| Buttons
|----------------------------------------------------------------------------*/

.jp-FileBrowser-toolbar.jp-Toolbar {
  padding: 0px;
}

.jp-FileBrowser-toolbar.jp-Toolbar {
  justify-content: space-evenly;
}

.jp-FileBrowser-toolbar.jp-Toolbar .jp-Toolbar-item {
  flex: 1;
}

.jp-FileBrowser-toolbar.jp-Toolbar .jp-ToolbarButtonComponent {
  width: 100%;
}

/*-----------------------------------------------------------------------------
| DirListing
|----------------------------------------------------------------------------*/

.jp-DirListing {
  flex: 1 1 auto;
  display: flex;
  flex-direction: column;
  outline: 0;
}

.jp-DirListing-header {
  flex: 0 0 auto;
  display: flex;
  flex-direction: row;
  overflow: hidden;
  border-top: var(--jp-border-width) solid var(--jp-border-color2);
  border-bottom: var(--jp-border-width) solid var(--jp-border-color1);
  box-shadow: var(--jp-toolbar-box-shadow);
  z-index: 2;
}

.jp-DirListing-headerItem {
  padding: 4px 12px 2px 12px;
  font-weight: 500;
}

.jp-DirListing-headerItem:hover {
  background: var(--jp-layout-color2);
}

.jp-DirListing-headerItem.jp-id-name {
  flex: 1 0 84px;
}

.jp-DirListing-headerItem.jp-id-modified {
  flex: 0 0 112px;
  border-left: var(--jp-border-width) solid var(--jp-border-color2);
  text-align: right;
}

.jp-DirListing-narrow .jp-id-modified,
.jp-DirListing-narrow .jp-DirListing-itemModified {
  display: none;
}

.jp-DirListing-headerItem.jp-mod-selected {
  font-weight: 600;
}

/* increase specificity to override bundled default */
.jp-DirListing-content {
  flex: 1 1 auto;
  margin: 0;
  padding: 0;
  list-style-type: none;
  overflow: auto;
  background-color: var(--jp-layout-color1);
}

/* Style the directory listing content when a user drops a file to upload */
.jp-DirListing.jp-mod-native-drop .jp-DirListing-content {
  outline: 5px dashed rgba(128, 128, 128, 0.5);
  outline-offset: -10px;
  cursor: copy;
}

.jp-DirListing-item {
  display: flex;
  flex-direction: row;
  padding: 4px 12px;
  -webkit-user-select: none;
  -moz-user-select: none;
  -ms-user-select: none;
  user-select: none;
}

.jp-DirListing-item.jp-mod-selected {
  color: white;
  background: var(--jp-brand-color1);
}

.jp-DirListing-item.jp-mod-dropTarget {
  background: var(--jp-brand-color3);
}

.jp-DirListing-item:hover:not(.jp-mod-selected) {
  background: var(--jp-layout-color2);
}

.jp-DirListing-itemIcon {
  flex: 0 0 20px;
  margin-right: 4px;
}

.jp-DirListing-itemText {
  flex: 1 0 64px;
  white-space: nowrap;
  overflow: hidden;
  text-overflow: ellipsis;
  user-select: none;
}

.jp-DirListing-itemModified {
  flex: 0 0 125px;
  text-align: right;
}

.jp-DirListing-editor {
  flex: 1 0 64px;
  outline: none;
  border: none;
}

.jp-DirListing-item.jp-mod-running .jp-DirListing-itemIcon:before {
  color: limegreen;
  content: '\25CF';
  font-size: 8px;
  position: absolute;
  left: -8px;
}

.jp-DirListing-item.lm-mod-drag-image,
.jp-DirListing-item.jp-mod-selected.lm-mod-drag-image {
  font-size: var(--jp-ui-font-size1);
  padding-left: 4px;
  margin-left: 4px;
  width: 160px;
  background-color: var(--jp-ui-inverse-font-color2);
  box-shadow: var(--jp-elevation-z2);
  border-radius: 0px;
  color: var(--jp-ui-font-color1);
  transform: translateX(-40%) translateY(-58%);
}

.jp-DirListing-deadSpace {
  flex: 1 1 auto;
  margin: 0;
  padding: 0;
  list-style-type: none;
  overflow: auto;
  background-color: var(--jp-layout-color1);
}

.jp-Document {
  min-width: 120px;
  min-height: 120px;
  outline: none;
}

.jp-FileDialog.jp-mod-conflict input {
  color: red;
}

.jp-FileDialog .jp-new-name-title {
  margin-top: 12px;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/* This file was auto-generated by ensurePackage() in @jupyterlab/buildutils */

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/*-----------------------------------------------------------------------------
| Private CSS variables
|----------------------------------------------------------------------------*/

:root {
}

/*-----------------------------------------------------------------------------
| Main OutputArea
| OutputArea has a list of Outputs
|----------------------------------------------------------------------------*/

.jp-OutputArea {
  overflow-y: auto;
}

.jp-OutputArea-child {
  display: flex;
  flex-direction: row;
}

.jp-OutputPrompt {
  flex: 0 0 var(--jp-cell-prompt-width);
  color: var(--jp-cell-outprompt-font-color);
  font-family: var(--jp-cell-prompt-font-family);
  padding: var(--jp-code-padding);
  letter-spacing: var(--jp-cell-prompt-letter-spacing);
  line-height: var(--jp-code-line-height);
  font-size: var(--jp-code-font-size);
  border: var(--jp-border-width) solid transparent;
  opacity: var(--jp-cell-prompt-opacity);
  /* Right align prompt text, don't wrap to handle large prompt numbers */
  text-align: right;
  white-space: nowrap;
  overflow: hidden;
  text-overflow: ellipsis;
  /* Disable text selection */
  -webkit-user-select: none;
  -moz-user-select: none;
  -ms-user-select: none;
  user-select: none;
}

.jp-OutputArea-output {
  height: auto;
  overflow: auto;
  user-select: text;
  -moz-user-select: text;
  -webkit-user-select: text;
  -ms-user-select: text;
}

.jp-OutputArea-child .jp-OutputArea-output {
  flex-grow: 1;
  flex-shrink: 1;
}

/**
 * Isolated output.
 */
.jp-OutputArea-output.jp-mod-isolated {
  width: 100%;
  display: block;
}

/*
When drag events occur, `p-mod-override-cursor` is added to the body.
Because iframes steal all cursor events, the following two rules are necessary
to suppress pointer events while resize drags are occurring. There may be a
better solution to this problem.
*/
body.lm-mod-override-cursor .jp-OutputArea-output.jp-mod-isolated {
  position: relative;
}

body.lm-mod-override-cursor .jp-OutputArea-output.jp-mod-isolated:before {
  content: '';
  position: absolute;
  top: 0;
  left: 0;
  right: 0;
  bottom: 0;
  background: transparent;
}

/* pre */

.jp-OutputArea-output pre {
  border: none;
  margin: 0px;
  padding: 0px;
  overflow-x: auto;
  overflow-y: auto;
  word-break: break-all;
  word-wrap: break-word;
  white-space: pre-wrap;
}

/* tables */

.jp-OutputArea-output.jp-RenderedHTMLCommon table {
  margin-left: 0;
  margin-right: 0;
}

/* description lists */

.jp-OutputArea-output dl,
.jp-OutputArea-output dt,
.jp-OutputArea-output dd {
  display: block;
}

.jp-OutputArea-output dl {
  width: 100%;
  overflow: hidden;
  padding: 0;
  margin: 0;
}

.jp-OutputArea-output dt {
  font-weight: bold;
  float: left;
  width: 20%;
  padding: 0;
  margin: 0;
}

.jp-OutputArea-output dd {
  float: left;
  width: 80%;
  padding: 0;
  margin: 0;
}

/* Hide the gutter in case of
 *  - nested output areas (e.g. in the case of output widgets)
 *  - mirrored output areas
 */
.jp-OutputArea .jp-OutputArea .jp-OutputArea-prompt {
  display: none;
}

/*-----------------------------------------------------------------------------
| executeResult is added to any Output-result for the display of the object
| returned by a cell
|----------------------------------------------------------------------------*/

.jp-OutputArea-output.jp-OutputArea-executeResult {
  margin-left: 0px;
  flex: 1 1 auto;
}

.jp-OutputArea-executeResult.jp-RenderedText {
  padding-top: var(--jp-code-padding);
}

/*-----------------------------------------------------------------------------
| The Stdin output
|----------------------------------------------------------------------------*/

.jp-OutputArea-stdin {
  line-height: var(--jp-code-line-height);
  padding-top: var(--jp-code-padding);
  display: flex;
}

.jp-Stdin-prompt {
  color: var(--jp-content-font-color0);
  padding-right: var(--jp-code-padding);
  vertical-align: baseline;
  flex: 0 0 auto;
}

.jp-Stdin-input {
  font-family: var(--jp-code-font-family);
  font-size: inherit;
  color: inherit;
  background-color: inherit;
  width: 42%;
  min-width: 200px;
  /* make sure input baseline aligns with prompt */
  vertical-align: baseline;
  /* padding + margin = 0.5em between prompt and cursor */
  padding: 0em 0.25em;
  margin: 0em 0.25em;
  flex: 0 0 70%;
}

.jp-Stdin-input:focus {
  box-shadow: none;
}

/*-----------------------------------------------------------------------------
| Output Area View
|----------------------------------------------------------------------------*/

.jp-LinkedOutputView .jp-OutputArea {
  height: 100%;
  display: block;
}

.jp-LinkedOutputView .jp-OutputArea-output:only-child {
  height: 100%;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/* This file was auto-generated by ensurePackage() in @jupyterlab/buildutils */

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

.jp-Collapser {
  flex: 0 0 var(--jp-cell-collapser-width);
  padding: 0px;
  margin: 0px;
  border: none;
  outline: none;
  background: transparent;
  border-radius: var(--jp-border-radius);
  opacity: 1;
}

.jp-Collapser-child {
  display: block;
  width: 100%;
  box-sizing: border-box;
  /* height: 100% doesn't work because the height of its parent is computed from content */
  position: absolute;
  top: 0px;
  bottom: 0px;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/*-----------------------------------------------------------------------------
| Header/Footer
|----------------------------------------------------------------------------*/

/* Hidden by zero height by default */
.jp-CellHeader,
.jp-CellFooter {
  height: 0px;
  width: 100%;
  padding: 0px;
  margin: 0px;
  border: none;
  outline: none;
  background: transparent;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/*-----------------------------------------------------------------------------
| Input
|----------------------------------------------------------------------------*/

/* All input areas */
.jp-InputArea {
  display: flex;
  flex-direction: row;
}

.jp-InputArea-editor {
  flex: 1 1 auto;
}

.jp-InputArea-editor {
  /* This is the non-active, default styling */
  border: var(--jp-border-width) solid var(--jp-cell-editor-border-color);
  border-radius: 0px;
  background: var(--jp-cell-editor-background);
}

.jp-InputPrompt {
  flex: 0 0 var(--jp-cell-prompt-width);
  color: var(--jp-cell-inprompt-font-color);
  font-family: var(--jp-cell-prompt-font-family);
  padding: var(--jp-code-padding);
  letter-spacing: var(--jp-cell-prompt-letter-spacing);
  opacity: var(--jp-cell-prompt-opacity);
  line-height: var(--jp-code-line-height);
  font-size: var(--jp-code-font-size);
  border: var(--jp-border-width) solid transparent;
  opacity: var(--jp-cell-prompt-opacity);
  /* Right align prompt text, don't wrap to handle large prompt numbers */
  text-align: right;
  white-space: nowrap;
  overflow: hidden;
  text-overflow: ellipsis;
  /* Disable text selection */
  -webkit-user-select: none;
  -moz-user-select: none;
  -ms-user-select: none;
  user-select: none;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/*-----------------------------------------------------------------------------
| Placeholder
|----------------------------------------------------------------------------*/

.jp-Placeholder {
  display: flex;
  flex-direction: row;
  flex: 1 1 auto;
}

.jp-Placeholder-prompt {
  box-sizing: border-box;
}

.jp-Placeholder-content {
  flex: 1 1 auto;
  border: none;
  background: transparent;
  height: 20px;
  box-sizing: border-box;
}

.jp-Placeholder-content .jp-MoreHorizIcon {
  width: 32px;
  height: 16px;
  border: 1px solid transparent;
  border-radius: var(--jp-border-radius);
}

.jp-Placeholder-content .jp-MoreHorizIcon:hover {
  border: 1px solid var(--jp-border-color1);
  box-shadow: 0px 0px 2px 0px rgba(0, 0, 0, 0.25);
  background-color: var(--jp-layout-color0);
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/*-----------------------------------------------------------------------------
| Private CSS variables
|----------------------------------------------------------------------------*/

:root {
  --jp-private-cell-scrolling-output-offset: 5px;
}

/*-----------------------------------------------------------------------------
| Cell
|----------------------------------------------------------------------------*/

.jp-Cell {
  padding: var(--jp-cell-padding);
  margin: 0px;
  border: none;
  outline: none;
  background: transparent;
}

/*-----------------------------------------------------------------------------
| Common input/output
|----------------------------------------------------------------------------*/

.jp-Cell-inputWrapper,
.jp-Cell-outputWrapper {
  display: flex;
  flex-direction: row;
  padding: 0px;
  margin: 0px;
  /* Added to reveal the box-shadow on the input and output collapsers. */
  overflow: visible;
}

/* Only input/output areas inside cells */
.jp-Cell-inputArea,
.jp-Cell-outputArea {
  flex: 1 1 auto;
}

/*-----------------------------------------------------------------------------
| Collapser
|----------------------------------------------------------------------------*/

/* Make the output collapser disappear when there is not output, but do so
 * in a manner that leaves it in the layout and preserves its width.
 */
.jp-Cell.jp-mod-noOutputs .jp-Cell-outputCollapser {
  border: none !important;
  background: transparent !important;
}

.jp-Cell:not(.jp-mod-noOutputs) .jp-Cell-outputCollapser {
  min-height: var(--jp-cell-collapser-min-height);
}

/*-----------------------------------------------------------------------------
| Output
|----------------------------------------------------------------------------*/

/* Put a space between input and output when there IS output */
.jp-Cell:not(.jp-mod-noOutputs) .jp-Cell-outputWrapper {
  margin-top: 5px;
}

/* Text output with the Out[] prompt needs a top padding to match the
 * alignment of the Out[] prompt itself.
 */
.jp-OutputArea-executeResult .jp-RenderedText.jp-OutputArea-output {
  padding-top: var(--jp-code-padding);
}

.jp-CodeCell.jp-mod-outputsScrolled .jp-Cell-outputArea {
  overflow-y: auto;
  max-height: 200px;
  box-shadow: inset 0 0 6px 2px rgba(0, 0, 0, 0.3);
  margin-left: var(--jp-private-cell-scrolling-output-offset);
}

.jp-CodeCell.jp-mod-outputsScrolled .jp-OutputArea-prompt {
  flex: 0 0
    calc(
      var(--jp-cell-prompt-width) -
        var(--jp-private-cell-scrolling-output-offset)
    );
}

/*-----------------------------------------------------------------------------
| CodeCell
|----------------------------------------------------------------------------*/

/*-----------------------------------------------------------------------------
| MarkdownCell
|----------------------------------------------------------------------------*/

.jp-MarkdownOutput {
  flex: 1 1 auto;
  margin-top: 0;
  margin-bottom: 0;
  padding-left: var(--jp-code-padding);
}

.jp-MarkdownOutput.jp-RenderedHTMLCommon {
  overflow: auto;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/* This file was auto-generated by ensurePackage() in @jupyterlab/buildutils */

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/*-----------------------------------------------------------------------------
| Variables
|----------------------------------------------------------------------------*/

/*-----------------------------------------------------------------------------

/*-----------------------------------------------------------------------------
| Styles
|----------------------------------------------------------------------------*/

.jp-NotebookPanel-toolbar {
  padding: 2px;
}

.jp-Toolbar-item.jp-Notebook-toolbarCellType .jp-select-wrapper.jp-mod-focused {
  border: none;
  box-shadow: none;
}

.jp-Notebook-toolbarCellTypeDropdown select {
  height: 24px;
  font-size: var(--jp-ui-font-size1);
  line-height: 14px;
  border-radius: 0;
  display: block;
}

.jp-Notebook-toolbarCellTypeDropdown span {
  top: 5px !important;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/*-----------------------------------------------------------------------------
| Private CSS variables
|----------------------------------------------------------------------------*/

:root {
  --jp-private-notebook-dragImage-width: 304px;
  --jp-private-notebook-dragImage-height: 36px;
  --jp-private-notebook-selected-color: var(--md-blue-400);
  --jp-private-notebook-active-color: var(--md-green-400);
}

/*-----------------------------------------------------------------------------
| Imports
|----------------------------------------------------------------------------*/

/*-----------------------------------------------------------------------------
| Notebook
|----------------------------------------------------------------------------*/

.jp-NotebookPanel {
  display: block;
  height: 100%;
}

.jp-NotebookPanel.jp-Document {
  min-width: 240px;
  min-height: 120px;
}

.jp-Notebook {
  padding: var(--jp-notebook-padding);
  outline: none;
  overflow: auto;
  background: var(--jp-layout-color0);
}

.jp-Notebook.jp-mod-scrollPastEnd::after {
  display: block;
  content: '';
  min-height: var(--jp-notebook-scroll-padding);
}

.jp-Notebook .jp-Cell {
  overflow: visible;
}

.jp-Notebook .jp-Cell .jp-InputPrompt {
  cursor: move;
}

/*-----------------------------------------------------------------------------
| Notebook state related styling
|
| The notebook and cells each have states, here are the possibilities:
|
| - Notebook
|   - Command
|   - Edit
| - Cell
|   - None
|   - Active (only one can be active)
|   - Selected (the cells actions are applied to)
|   - Multiselected (when multiple selected, the cursor)
|   - No outputs
|----------------------------------------------------------------------------*/

/* Command or edit modes */

.jp-Notebook .jp-Cell:not(.jp-mod-active) .jp-InputPrompt {
  opacity: var(--jp-cell-prompt-not-active-opacity);
  color: var(--jp-cell-prompt-not-active-font-color);
}

.jp-Notebook .jp-Cell:not(.jp-mod-active) .jp-OutputPrompt {
  opacity: var(--jp-cell-prompt-not-active-opacity);
  color: var(--jp-cell-prompt-not-active-font-color);
}

/* cell is active */
.jp-Notebook .jp-Cell.jp-mod-active .jp-Collapser {
  background: var(--jp-brand-color1);
}

/* collapser is hovered */
.jp-Notebook .jp-Cell .jp-Collapser:hover {
  box-shadow: var(--jp-elevation-z2);
  background: var(--jp-brand-color1);
  opacity: var(--jp-cell-collapser-not-active-hover-opacity);
}

/* cell is active and collapser is hovered */
.jp-Notebook .jp-Cell.jp-mod-active .jp-Collapser:hover {
  background: var(--jp-brand-color0);
  opacity: 1;
}

/* Command mode */

.jp-Notebook.jp-mod-commandMode .jp-Cell.jp-mod-selected {
  background: var(--jp-notebook-multiselected-color);
}

.jp-Notebook.jp-mod-commandMode
  .jp-Cell.jp-mod-active.jp-mod-selected:not(.jp-mod-multiSelected) {
  background: transparent;
}

/* Edit mode */

.jp-Notebook.jp-mod-editMode .jp-Cell.jp-mod-active .jp-InputArea-editor {
  border: var(--jp-border-width) solid var(--jp-cell-editor-active-border-color);
  box-shadow: var(--jp-input-box-shadow);
  background-color: var(--jp-cell-editor-active-background);
}

/*-----------------------------------------------------------------------------
| Notebook drag and drop
|----------------------------------------------------------------------------*/

.jp-Notebook-cell.jp-mod-dropSource {
  opacity: 0.5;
}

.jp-Notebook-cell.jp-mod-dropTarget,
.jp-Notebook.jp-mod-commandMode
  .jp-Notebook-cell.jp-mod-active.jp-mod-selected.jp-mod-dropTarget {
  border-top-color: var(--jp-private-notebook-selected-color);
  border-top-style: solid;
  border-top-width: 2px;
}

.jp-dragImage {
  display: flex;
  flex-direction: row;
  width: var(--jp-private-notebook-dragImage-width);
  height: var(--jp-private-notebook-dragImage-height);
  border: var(--jp-border-width) solid var(--jp-cell-editor-border-color);
  background: var(--jp-cell-editor-background);
  overflow: visible;
}

.jp-dragImage-singlePrompt {
  box-shadow: 2px 2px 4px 0px rgba(0, 0, 0, 0.12);
}

.jp-dragImage .jp-dragImage-content {
  flex: 1 1 auto;
  z-index: 2;
  font-size: var(--jp-code-font-size);
  font-family: var(--jp-code-font-family);
  line-height: var(--jp-code-line-height);
  padding: var(--jp-code-padding);
  border: var(--jp-border-width) solid var(--jp-cell-editor-border-color);
  background: var(--jp-cell-editor-background-color);
  color: var(--jp-content-font-color3);
  text-align: left;
  margin: 4px 4px 4px 0px;
}

.jp-dragImage .jp-dragImage-prompt {
  flex: 0 0 auto;
  min-width: 36px;
  color: var(--jp-cell-inprompt-font-color);
  padding: var(--jp-code-padding);
  padding-left: 12px;
  font-family: var(--jp-cell-prompt-font-family);
  letter-spacing: var(--jp-cell-prompt-letter-spacing);
  line-height: 1.9;
  font-size: var(--jp-code-font-size);
  border: var(--jp-border-width) solid transparent;
}

.jp-dragImage-multipleBack {
  z-index: -1;
  position: absolute;
  height: 32px;
  width: 300px;
  top: 8px;
  left: 8px;
  background: var(--jp-layout-color2);
  border: var(--jp-border-width) solid var(--jp-input-border-color);
  box-shadow: 2px 2px 4px 0px rgba(0, 0, 0, 0.12);
}

/*-----------------------------------------------------------------------------
| Cell toolbar
|----------------------------------------------------------------------------*/

.jp-NotebookTools {
  display: block;
  min-width: var(--jp-sidebar-min-width);
  color: var(--jp-ui-font-color1);
  background: var(--jp-layout-color1);
  /* This is needed so that all font sizing of children done in ems is
    * relative to this base size */
  font-size: var(--jp-ui-font-size1);
  overflow: auto;
}

.jp-NotebookTools-tool {
  padding: 0px 12px 0 12px;
}

.jp-ActiveCellTool {
  padding: 12px;
  background-color: var(--jp-layout-color1);
  border-top: none !important;
}

.jp-ActiveCellTool .jp-InputArea-prompt {
  flex: 0 0 auto;
  padding-left: 0px;
}

.jp-ActiveCellTool .jp-InputArea-editor {
  flex: 1 1 auto;
  background: var(--jp-cell-editor-background);
  border-color: var(--jp-cell-editor-border-color);
}

.jp-ActiveCellTool .jp-InputArea-editor .CodeMirror {
  background: transparent;
}

.jp-MetadataEditorTool {
  flex-direction: column;
  padding: 12px 0px 12px 0px;
}

.jp-RankedPanel > :not(:first-child) {
  margin-top: 12px;
}

.jp-KeySelector select.jp-mod-styled {
  font-size: var(--jp-ui-font-size1);
  color: var(--jp-ui-font-color0);
  border: var(--jp-border-width) solid var(--jp-border-color1);
}

.jp-KeySelector label,
.jp-MetadataEditorTool label {
  line-height: 1.4;
}

/*-----------------------------------------------------------------------------
| Presentation Mode (.jp-mod-presentationMode)
|----------------------------------------------------------------------------*/

.jp-mod-presentationMode .jp-Notebook {
  --jp-content-font-size1: var(--jp-content-presentation-font-size1);
  --jp-code-font-size: var(--jp-code-presentation-font-size);
}

.jp-mod-presentationMode .jp-Notebook .jp-Cell .jp-InputPrompt,
.jp-mod-presentationMode .jp-Notebook .jp-Cell .jp-OutputPrompt {
  flex: 0 0 110px;
}

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/* This file was auto-generated by ensurePackage() in @jupyterlab/buildutils */

/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

</style>

    <style type="text/css">
/*-----------------------------------------------------------------------------
| Copyright (c) Jupyter Development Team.
| Distributed under the terms of the Modified BSD License.
|----------------------------------------------------------------------------*/

/*
The following CSS variables define the main, public API for styling JupyterLab.
These variables should be used by all plugins wherever possible. In other
words, plugins should not define custom colors, sizes, etc unless absolutely
necessary. This enables users to change the visual theme of JupyterLab
by changing these variables.

Many variables appear in an ordered sequence (0,1,2,3). These sequences
are designed to work well together, so for example, `--jp-border-color1` should
be used with `--jp-layout-color1`. The numbers have the following meanings:

* 0: super-primary, reserved for special emphasis
* 1: primary, most important under normal situations
* 2: secondary, next most important under normal situations
* 3: tertiary, next most important under normal situations

Throughout JupyterLab, we are mostly following principles from Google's
Material Design when selecting colors. We are not, however, following
all of MD as it is not optimized for dense, information rich UIs.
*/

:root {
  /* Elevation
   *
   * We style box-shadows using Material Design's idea of elevation. These particular numbers are taken from here:
   *
   * https://github.com/material-components/material-components-web
   * https://material-components-web.appspot.com/elevation.html
   */

  --jp-shadow-base-lightness: 0;
  --jp-shadow-umbra-color: rgba(
    var(--jp-shadow-base-lightness),
    var(--jp-shadow-base-lightness),
    var(--jp-shadow-base-lightness),
    0.2
  );
  --jp-shadow-penumbra-color: rgba(
    var(--jp-shadow-base-lightness),
    var(--jp-shadow-base-lightness),
    var(--jp-shadow-base-lightness),
    0.14
  );
  --jp-shadow-ambient-color: rgba(
    var(--jp-shadow-base-lightness),
    var(--jp-shadow-base-lightness),
    var(--jp-shadow-base-lightness),
    0.12
  );
  --jp-elevation-z0: none;
  --jp-elevation-z1: 0px 2px 1px -1px var(--jp-shadow-umbra-color),
    0px 1px 1px 0px var(--jp-shadow-penumbra-color),
    0px 1px 3px 0px var(--jp-shadow-ambient-color);
  --jp-elevation-z2: 0px 3px 1px -2px var(--jp-shadow-umbra-color),
    0px 2px 2px 0px var(--jp-shadow-penumbra-color),
    0px 1px 5px 0px var(--jp-shadow-ambient-color);
  --jp-elevation-z4: 0px 2px 4px -1px var(--jp-shadow-umbra-color),
    0px 4px 5px 0px var(--jp-shadow-penumbra-color),
    0px 1px 10px 0px var(--jp-shadow-ambient-color);
  --jp-elevation-z6: 0px 3px 5px -1px var(--jp-shadow-umbra-color),
    0px 6px 10px 0px var(--jp-shadow-penumbra-color),
    0px 1px 18px 0px var(--jp-shadow-ambient-color);
  --jp-elevation-z8: 0px 5px 5px -3px var(--jp-shadow-umbra-color),
    0px 8px 10px 1px var(--jp-shadow-penumbra-color),
    0px 3px 14px 2px var(--jp-shadow-ambient-color);
  --jp-elevation-z12: 0px 7px 8px -4px var(--jp-shadow-umbra-color),
    0px 12px 17px 2px var(--jp-shadow-penumbra-color),
    0px 5px 22px 4px var(--jp-shadow-ambient-color);
  --jp-elevation-z16: 0px 8px 10px -5px var(--jp-shadow-umbra-color),
    0px 16px 24px 2px var(--jp-shadow-penumbra-color),
    0px 6px 30px 5px var(--jp-shadow-ambient-color);
  --jp-elevation-z20: 0px 10px 13px -6px var(--jp-shadow-umbra-color),
    0px 20px 31px 3px var(--jp-shadow-penumbra-color),
    0px 8px 38px 7px var(--jp-shadow-ambient-color);
  --jp-elevation-z24: 0px 11px 15px -7px var(--jp-shadow-umbra-color),
    0px 24px 38px 3px var(--jp-shadow-penumbra-color),
    0px 9px 46px 8px var(--jp-shadow-ambient-color);

  /* Borders
   *
   * The following variables, specify the visual styling of borders in JupyterLab.
   */

  --jp-border-width: 1px;
  --jp-border-color0: var(--md-grey-400);
  --jp-border-color1: var(--md-grey-400);
  --jp-border-color2: var(--md-grey-300);
  --jp-border-color3: var(--md-grey-200);
  --jp-border-radius: 2px;

  /* UI Fonts
   *
   * The UI font CSS variables are used for the typography all of the JupyterLab
   * user interface elements that are not directly user generated content.
   *
   * The font sizing here is done assuming that the body font size of --jp-ui-font-size1
   * is applied to a parent element. When children elements, such as headings, are sized
   * in em all things will be computed relative to that body size.
   */

  --jp-ui-font-scale-factor: 1.2;
  --jp-ui-font-size0: 0.83333em;
  --jp-ui-font-size1: 13px; /* Base font size */
  --jp-ui-font-size2: 1.2em;
  --jp-ui-font-size3: 1.44em;

  --jp-ui-font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Helvetica,
    Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol';

  /*
   * Use these font colors against the corresponding main layout colors.
   * In a light theme, these go from dark to light.
   */

  /* Defaults use Material Design specification */
  --jp-ui-font-color0: rgba(0, 0, 0, 1);
  --jp-ui-font-color1: rgba(0, 0, 0, 0.87);
  --jp-ui-font-color2: rgba(0, 0, 0, 0.54);
  --jp-ui-font-color3: rgba(0, 0, 0, 0.38);

  /*
   * Use these against the brand/accent/warn/error colors.
   * These will typically go from light to darker, in both a dark and light theme.
   */

  --jp-ui-inverse-font-color0: rgba(255, 255, 255, 1);
  --jp-ui-inverse-font-color1: rgba(255, 255, 255, 1);
  --jp-ui-inverse-font-color2: rgba(255, 255, 255, 0.7);
  --jp-ui-inverse-font-color3: rgba(255, 255, 255, 0.5);

  /* Content Fonts
   *
   * Content font variables are used for typography of user generated content.
   *
   * The font sizing here is done assuming that the body font size of --jp-content-font-size1
   * is applied to a parent element. When children elements, such as headings, are sized
   * in em all things will be computed relative to that body size.
   */

  --jp-content-line-height: 1.6;
  --jp-content-font-scale-factor: 1.2;
  --jp-content-font-size0: 0.83333em;
  --jp-content-font-size1: 14px; /* Base font size */
  --jp-content-font-size2: 1.2em;
  --jp-content-font-size3: 1.44em;
  --jp-content-font-size4: 1.728em;
  --jp-content-font-size5: 2.0736em;

  /* This gives a magnification of about 125% in presentation mode over normal. */
  --jp-content-presentation-font-size1: 17px;

  --jp-content-heading-line-height: 1;
  --jp-content-heading-margin-top: 1.2em;
  --jp-content-heading-margin-bottom: 0.8em;
  --jp-content-heading-font-weight: 500;

  /* Defaults use Material Design specification */
  --jp-content-font-color0: rgba(0, 0, 0, 1);
  --jp-content-font-color1: rgba(0, 0, 0, 0.87);
  --jp-content-font-color2: rgba(0, 0, 0, 0.54);
  --jp-content-font-color3: rgba(0, 0, 0, 0.38);

  --jp-content-link-color: var(--md-blue-700);

  --jp-content-font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI',
    Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji',
    'Segoe UI Symbol';

  /*
   * Code Fonts
   *
   * Code font variables are used for typography of code and other monospaces content.
   */

  --jp-code-font-size: 13px;
  --jp-code-line-height: 1.3077; /* 17px for 13px base */
  --jp-code-padding: 5px; /* 5px for 13px base, codemirror highlighting needs integer px value */
  --jp-code-font-family-default: Menlo, Consolas, 'DejaVu Sans Mono', monospace;
  --jp-code-font-family: var(--jp-code-font-family-default);

  /* This gives a magnification of about 125% in presentation mode over normal. */
  --jp-code-presentation-font-size: 16px;

  /* may need to tweak cursor width if you change font size */
  --jp-code-cursor-width0: 1.4px;
  --jp-code-cursor-width1: 2px;
  --jp-code-cursor-width2: 4px;

  /* Layout
   *
   * The following are the main layout colors use in JupyterLab. In a light
   * theme these would go from light to dark.
   */

  --jp-layout-color0: white;
  --jp-layout-color1: white;
  --jp-layout-color2: var(--md-grey-200);
  --jp-layout-color3: var(--md-grey-400);
  --jp-layout-color4: var(--md-grey-600);

  /* Inverse Layout
   *
   * The following are the inverse layout colors use in JupyterLab. In a light
   * theme these would go from dark to light.
   */

  --jp-inverse-layout-color0: #111111;
  --jp-inverse-layout-color1: var(--md-grey-900);
  --jp-inverse-layout-color2: var(--md-grey-800);
  --jp-inverse-layout-color3: var(--md-grey-700);
  --jp-inverse-layout-color4: var(--md-grey-600);

  /* Brand/accent */

  --jp-brand-color0: var(--md-blue-700);
  --jp-brand-color1: var(--md-blue-500);
  --jp-brand-color2: var(--md-blue-300);
  --jp-brand-color3: var(--md-blue-100);
  --jp-brand-color4: var(--md-blue-50);

  --jp-accent-color0: var(--md-green-700);
  --jp-accent-color1: var(--md-green-500);
  --jp-accent-color2: var(--md-green-300);
  --jp-accent-color3: var(--md-green-100);

  /* State colors (warn, error, success, info) */

  --jp-warn-color0: var(--md-orange-700);
  --jp-warn-color1: var(--md-orange-500);
  --jp-warn-color2: var(--md-orange-300);
  --jp-warn-color3: var(--md-orange-100);

  --jp-error-color0: var(--md-red-700);
  --jp-error-color1: var(--md-red-500);
  --jp-error-color2: var(--md-red-300);
  --jp-error-color3: var(--md-red-100);

  --jp-success-color0: var(--md-green-700);
  --jp-success-color1: var(--md-green-500);
  --jp-success-color2: var(--md-green-300);
  --jp-success-color3: var(--md-green-100);

  --jp-info-color0: var(--md-cyan-700);
  --jp-info-color1: var(--md-cyan-500);
  --jp-info-color2: var(--md-cyan-300);
  --jp-info-color3: var(--md-cyan-100);

  /* Cell specific styles */

  --jp-cell-padding: 5px;

  --jp-cell-collapser-width: 8px;
  --jp-cell-collapser-min-height: 20px;
  --jp-cell-collapser-not-active-hover-opacity: 0.6;

  --jp-cell-editor-background: var(--md-grey-100);
  --jp-cell-editor-border-color: var(--md-grey-300);
  --jp-cell-editor-box-shadow: inset 0 0 2px var(--md-blue-300);
  --jp-cell-editor-active-background: var(--jp-layout-color0);
  --jp-cell-editor-active-border-color: var(--jp-brand-color1);

  --jp-cell-prompt-width: 64px;
  --jp-cell-prompt-font-family: 'Source Code Pro', monospace;
  --jp-cell-prompt-letter-spacing: 0px;
  --jp-cell-prompt-opacity: 1;
  --jp-cell-prompt-not-active-opacity: 0.5;
  --jp-cell-prompt-not-active-font-color: var(--md-grey-700);
  /* A custom blend of MD grey and blue 600
   * See https://meyerweb.com/eric/tools/color-blend/#546E7A:1E88E5:5:hex */
  --jp-cell-inprompt-font-color: #307fc1;
  /* A custom blend of MD grey and orange 600
   * https://meyerweb.com/eric/tools/color-blend/#546E7A:F4511E:5:hex */
  --jp-cell-outprompt-font-color: #bf5b3d;

  /* Notebook specific styles */

  --jp-notebook-padding: 10px;
  --jp-notebook-select-background: var(--jp-layout-color1);
  --jp-notebook-multiselected-color: var(--md-blue-50);

  /* The scroll padding is calculated to fill enough space at the bottom of the
  notebook to show one single-line cell (with appropriate padding) at the top
  when the notebook is scrolled all the way to the bottom. We also subtract one
  pixel so that no scrollbar appears if we have just one single-line cell in the
  notebook. This padding is to enable a 'scroll past end' feature in a notebook.
  */
  --jp-notebook-scroll-padding: calc(
    100% - var(--jp-code-font-size) * var(--jp-code-line-height) -
      var(--jp-code-padding) - var(--jp-cell-padding) - 1px
  );

  /* Rendermime styles */

  --jp-rendermime-error-background: #fdd;
  --jp-rendermime-table-row-background: var(--md-grey-100);
  --jp-rendermime-table-row-hover-background: var(--md-light-blue-50);

  /* Dialog specific styles */

  --jp-dialog-background: rgba(0, 0, 0, 0.25);

  /* Console specific styles */

  --jp-console-padding: 10px;

  /* Toolbar specific styles */

  --jp-toolbar-border-color: var(--jp-border-color1);
  --jp-toolbar-micro-height: 8px;
  --jp-toolbar-background: var(--jp-layout-color1);
  --jp-toolbar-box-shadow: 0px 0px 2px 0px rgba(0, 0, 0, 0.24);
  --jp-toolbar-header-margin: 4px 4px 0px 4px;
  --jp-toolbar-active-background: var(--md-grey-300);

  /* Input field styles */

  --jp-input-box-shadow: inset 0 0 2px var(--md-blue-300);
  --jp-input-active-background: var(--jp-layout-color1);
  --jp-input-hover-background: var(--jp-layout-color1);
  --jp-input-background: var(--md-grey-100);
  --jp-input-border-color: var(--jp-border-color1);
  --jp-input-active-border-color: var(--jp-brand-color1);
  --jp-input-active-box-shadow-color: rgba(19, 124, 189, 0.3);

  /* General editor styles */

  --jp-editor-selected-background: #d9d9d9;
  --jp-editor-selected-focused-background: #d7d4f0;
  --jp-editor-cursor-color: var(--jp-ui-font-color0);

  /* Code mirror specific styles */

  --jp-mirror-editor-keyword-color: #008000;
  --jp-mirror-editor-atom-color: #88f;
  --jp-mirror-editor-number-color: #080;
  --jp-mirror-editor-def-color: #00f;
  --jp-mirror-editor-variable-color: var(--md-grey-900);
  --jp-mirror-editor-variable-2-color: #05a;
  --jp-mirror-editor-variable-3-color: #085;
  --jp-mirror-editor-punctuation-color: #05a;
  --jp-mirror-editor-property-color: #05a;
  --jp-mirror-editor-operator-color: #aa22ff;
  --jp-mirror-editor-comment-color: #408080;
  --jp-mirror-editor-string-color: #ba2121;
  --jp-mirror-editor-string-2-color: #708;
  --jp-mirror-editor-meta-color: #aa22ff;
  --jp-mirror-editor-qualifier-color: #555;
  --jp-mirror-editor-builtin-color: #008000;
  --jp-mirror-editor-bracket-color: #997;
  --jp-mirror-editor-tag-color: #170;
  --jp-mirror-editor-attribute-color: #00c;
  --jp-mirror-editor-header-color: blue;
  --jp-mirror-editor-quote-color: #090;
  --jp-mirror-editor-link-color: #00c;
  --jp-mirror-editor-error-color: #f00;
  --jp-mirror-editor-hr-color: #999;

  /* Vega extension styles */

  --jp-vega-background: white;

  /* Sidebar-related styles */

  --jp-sidebar-min-width: 180px;

  /* Search-related styles */

  --jp-search-toggle-off-opacity: 0.5;
  --jp-search-toggle-hover-opacity: 0.8;
  --jp-search-toggle-on-opacity: 1;
  --jp-search-selected-match-background-color: rgb(245, 200, 0);
  --jp-search-selected-match-color: black;
  --jp-search-unselected-match-background-color: var(
    --jp-inverse-layout-color0
  );
  --jp-search-unselected-match-color: var(--jp-ui-inverse-font-color0);

  /* Icon colors that work well with light or dark backgrounds */
  --jp-icon-contrast-color0: var(--md-purple-600);
  --jp-icon-contrast-color1: var(--md-green-600);
  --jp-icon-contrast-color2: var(--md-pink-600);
  --jp-icon-contrast-color3: var(--md-blue-600);
}
</style>

<style type="text/css">
a.anchor-link {
   display: none;
}
.highlight  {
    margin: 0.4em;
}

/* Input area styling */
.jp-InputArea {
    overflow: hidden;
}

.jp-InputArea-editor {
    overflow: hidden;
}

@media print {
  body {
    margin: 0;
  }
}
</style>



<!-- Load mathjax -->
    <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-MML-AM_CHTML-full,Safe"> </script>
    <!-- MathJax configuration -->
    <script type="text/x-mathjax-config">
    init_mathjax = function() {
        if (window.MathJax) {
        // MathJax loaded
            MathJax.Hub.Config({
                TeX: {
                    equationNumbers: {
                    autoNumber: "AMS",
                    useLabelIds: true
                    }
                },
                tex2jax: {
                    inlineMath: [ ['$','$'], ["\\(","\\)"] ],
                    displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
                    processEscapes: true,
                    processEnvironments: true
                },
                displayAlign: 'center',
                CommonHTML: {
                    linebreaks: { 
                    automatic: true 
                    }
                },
                "HTML-CSS": {
                    linebreaks: { 
                    automatic: true 
                    }
                }
            });
        
            MathJax.Hub.Queue(["Typeset", MathJax.Hub]);
        }
    }
    init_mathjax();
    </script>
    <!-- End of mathjax configuration --></head>
<body class="jp-Notebook" data-jp-theme-light="true" data-jp-theme-name="JupyterLab Light">
<div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[&nbsp;]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span> 
</pre></div>

     </div>
</div>
</div>
</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Table-of-Contents">Table of Contents<a class="anchor-link" href="#Table-of-Contents">&#182;</a></h1><ol>
<li><a href='#Notebook-order-to-get-to-this-point'>Notebook order to get to this point</a></li>
<li><a href='#Adding-Data'>Adding Data</a></li>
<li><a href='#Compute-Age/Sex-Stats-Using-Bootstrap'>Age & Sex</a></li>
<li><a href='#Compute-Race-Stats-Using-Bootstrap'>Race & Ethnicity</a></li>
<li><a href='#Compute-Time-Differential-ECG/Echo-Stats-Using-Bootstrap'>Time from ECG to Echo</a></li>
<li><a href='#Compute-Bundle-Branch-and-QRS-Stats-Using-Bootstrap'>Bundle Branch & QRS</a></li>
<li><a href='#Generate-Summary-Stats-for-Table-1-and-2'>Summary Stats for All Subgroups (Tables 1 & 2)</a></li>
<li><a href='#Now-we-run-the-vary_prevalance-scripts-from-ValveNet_v2-back-on-the-Dendrite-server'>Varying Prevalence (Table 3)</a></li>
<li><a href='#Test-Set-AUROC-and-AUPRC-Curves-(Fig-3A-and-3B)'>Overall AUROC & AUPRC (Figure 3A/3B)</a></li>
<li><a href='#Compute-a-Logistic-Regression-Model-using-Tabular-Data'>Logistic Regression on Tabular Data</a></li>
<li><a href='#NYP-Lawrence-Validation-with-and-without-Propensity-Score-Matching'>NYP Lawrence Validation</a></li>
<li><a href='#Model Calibration Curves'>Model Calibration Curves</a> </li>
<li><a href='#Determine PPV and NPV at Youden Index value per model'>Determining Performance per Model at Youden Index</a></li>
</ol>

</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[1]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">pyodbc</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>

<span class="kn">from</span> <span class="nn">sqlalchemy</span> <span class="kn">import</span> <span class="n">create_engine</span>
<span class="kn">from</span> <span class="nn">timeit</span> <span class="kn">import</span> <span class="n">default_timer</span> <span class="k">as</span> <span class="n">timer</span>

<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">time</span>

<span class="kn">from</span> <span class="nn">datetime</span> <span class="kn">import</span> <span class="n">date</span><span class="p">,</span> <span class="n">timedelta</span>   

<span class="kn">from</span> <span class="nn">openpyxl</span> <span class="kn">import</span> <span class="n">load_workbook</span>
<span class="kn">from</span> <span class="nn">itertools</span> <span class="kn">import</span> <span class="n">islice</span>

<span class="kn">from</span> <span class="nn">collections</span> <span class="kn">import</span> <span class="n">defaultdict</span>
<span class="kn">from</span> <span class="nn">collections</span> <span class="kn">import</span> <span class="n">Counter</span>

<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="kn">import</span> <span class="nn">matplotlib.pylab</span> <span class="k">as</span> <span class="nn">pl</span>
<span class="kn">import</span> <span class="nn">seaborn</span> <span class="k">as</span> <span class="nn">sns</span>

<span class="kn">import</span> <span class="nn">re</span>
<span class="kn">import</span> <span class="nn">os</span>

<span class="kn">import</span> <span class="nn">statsmodels.api</span> <span class="k">as</span> <span class="nn">sm</span>

<span class="kn">from</span> <span class="nn">scipy</span> <span class="kn">import</span> <span class="n">stats</span>

<span class="kn">from</span> <span class="nn">sklearn</span> <span class="kn">import</span> <span class="n">preprocessing</span>
<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="kn">import</span> <span class="n">confusion_matrix</span>
<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="kn">import</span> <span class="n">auc</span>
<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="kn">import</span> <span class="n">roc_curve</span>
<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="kn">import</span> <span class="n">roc_auc_score</span>
<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="kn">import</span> <span class="n">classification_report</span>
<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="kn">import</span> <span class="n">precision_recall_curve</span>
<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="kn">import</span> <span class="n">accuracy_score</span>
<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="kn">import</span> <span class="n">average_precision_score</span>
<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="kn">import</span> <span class="n">precision_recall_curve</span>
<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="kn">import</span> <span class="n">f1_score</span>
<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="kn">import</span> <span class="n">auc</span>
<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="kn">import</span> <span class="n">ConfusionMatrixDisplay</span>

<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="kn">import</span> <span class="n">LogisticRegression</span>
<span class="kn">from</span> <span class="nn">sklearn.model_selection</span> <span class="kn">import</span> <span class="n">train_test_split</span>
<span class="kn">from</span> <span class="nn">sklearn.preprocessing</span> <span class="kn">import</span> <span class="n">StandardScaler</span>

<span class="kn">from</span> <span class="nn">imblearn.datasets</span> <span class="kn">import</span> <span class="n">make_imbalance</span>
<span class="kn">from</span> <span class="nn">imblearn.under_sampling</span> <span class="kn">import</span> <span class="n">NearMiss</span>
<span class="kn">from</span> <span class="nn">imblearn.under_sampling</span> <span class="kn">import</span> <span class="n">RandomUnderSampler</span>
<span class="kn">from</span> <span class="nn">imblearn.pipeline</span> <span class="kn">import</span> <span class="n">make_pipeline</span>
<span class="kn">from</span> <span class="nn">imblearn.metrics</span> <span class="kn">import</span> <span class="n">classification_report_imbalanced</span>

<span class="kn">from</span> <span class="nn">tqdm</span> <span class="kn">import</span> <span class="n">tqdm</span><span class="p">,</span> <span class="n">tqdm_notebook</span>

<span class="kn">import</span> <span class="nn">math</span>

<span class="n">pd</span><span class="o">.</span><span class="n">options</span><span class="o">.</span><span class="n">display</span><span class="o">.</span><span class="n">max_rows</span> <span class="o">=</span> <span class="mi">500</span>
<span class="n">pd</span><span class="o">.</span><span class="n">options</span><span class="o">.</span><span class="n">display</span><span class="o">.</span><span class="n">max_columns</span> <span class="o">=</span> <span class="mi">500</span>
<span class="n">sns</span><span class="o">.</span><span class="n">set</span><span class="p">(</span><span class="n">style</span><span class="o">=</span><span class="s2">&quot;white&quot;</span><span class="p">)</span>
<span class="n">sns</span><span class="o">.</span><span class="n">set</span><span class="p">(</span><span class="n">style</span><span class="o">=</span><span class="s2">&quot;whitegrid&quot;</span><span class="p">,</span> <span class="n">color_codes</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>

<span class="k">def</span> <span class="nf">sigmoid</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
    <span class="k">return</span> <span class="mi">1</span> <span class="o">/</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="n">math</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="n">x</span><span class="p">))</span>

<span class="k">def</span> <span class="nf">cm</span><span class="p">(</span><span class="n">y_total</span><span class="p">,</span><span class="n">yhat_total</span><span class="p">,</span><span class="n">threshold</span> <span class="o">=</span> <span class="mf">0.5</span><span class="p">):</span>
    <span class="nb">print</span><span class="p">(</span><span class="n">threshold</span><span class="p">)</span>
    <span class="n">cm</span> <span class="o">=</span> <span class="n">confusion_matrix</span><span class="p">(</span><span class="n">y_total</span><span class="p">,</span><span class="n">yhat_total</span><span class="o">&gt;</span><span class="n">threshold</span><span class="p">)</span>
    <span class="n">tn</span><span class="p">,</span> <span class="n">fp</span><span class="p">,</span> <span class="n">fn</span><span class="p">,</span> <span class="n">tp</span> <span class="o">=</span> <span class="n">confusion_matrix</span><span class="p">(</span><span class="n">y_total</span><span class="p">,</span><span class="n">yhat_total</span><span class="o">&gt;</span><span class="n">threshold</span><span class="p">)</span><span class="o">.</span><span class="n">ravel</span><span class="p">()</span>
    <span class="n">specificity</span> <span class="o">=</span> <span class="p">(</span> <span class="n">tn</span> <span class="o">/</span> <span class="p">(</span><span class="n">tn</span><span class="o">+</span><span class="n">fp</span><span class="p">)</span> <span class="p">)</span>
    <span class="n">sensitivity</span><span class="o">=</span> <span class="p">(</span> <span class="n">tp</span> <span class="o">/</span> <span class="p">(</span><span class="n">tp</span><span class="o">+</span><span class="n">fn</span><span class="p">)</span> <span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Positive Predictive Value&#39;</span><span class="p">,</span><span class="nb">round</span><span class="p">(</span><span class="n">tp</span><span class="o">/</span><span class="p">(</span><span class="n">tp</span><span class="o">+</span><span class="n">fp</span><span class="p">),</span><span class="mi">2</span><span class="p">),</span><span class="s1">&#39;Negative Predictive Value&#39;</span><span class="p">,</span> <span class="nb">round</span><span class="p">(</span><span class="n">tn</span><span class="o">/</span><span class="p">(</span><span class="n">tn</span><span class="o">+</span><span class="n">fn</span><span class="p">),</span><span class="mi">2</span><span class="p">),</span> <span class="s1">&#39; Specificty &#39;</span><span class="p">,</span> <span class="n">specificity</span><span class="p">,</span> <span class="s1">&#39;Sensitivity &#39;</span><span class="p">,</span> <span class="n">sensitivity</span><span class="p">)</span>
    <span class="n">disp</span> <span class="o">=</span> <span class="n">ConfusionMatrixDisplay</span><span class="p">(</span><span class="n">confusion_matrix</span><span class="o">=</span><span class="n">cm</span><span class="p">,</span><span class="n">display_labels</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;No Event&#39;</span><span class="p">,</span><span class="s1">&#39;Adverse Event&#39;</span><span class="p">])</span>
    <span class="n">disp</span><span class="o">.</span><span class="n">plot</span><span class="p">()</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Confusion Matrix&quot;</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">grid</span><span class="p">(</span><span class="n">visible</span><span class="o">=</span><span class="kc">None</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
    
<span class="k">def</span> <span class="nf">point</span><span class="p">(</span><span class="n">y_total</span><span class="p">,</span><span class="n">yhat_total</span><span class="p">,</span><span class="n">t</span><span class="p">):</span>
    <span class="n">specificity</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="n">sensitivity</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">t</span><span class="p">:</span>
        <span class="n">tn</span><span class="p">,</span> <span class="n">fp</span><span class="p">,</span> <span class="n">fn</span><span class="p">,</span> <span class="n">tp</span> <span class="o">=</span> <span class="n">confusion_matrix</span><span class="p">(</span><span class="n">y_total</span><span class="p">,</span> <span class="n">yhat_total</span><span class="o">&gt;</span><span class="n">i</span><span class="p">)</span><span class="o">.</span><span class="n">ravel</span><span class="p">()</span>
        <span class="n">specificity</span><span class="o">.</span><span class="n">append</span><span class="p">(</span> <span class="n">tn</span> <span class="o">/</span> <span class="p">(</span><span class="n">tn</span><span class="o">+</span><span class="n">fp</span><span class="p">)</span> <span class="p">)</span>
        <span class="n">sensitivity</span><span class="o">.</span><span class="n">append</span><span class="p">(</span> <span class="n">tp</span> <span class="o">/</span> <span class="p">(</span><span class="n">tp</span><span class="o">+</span><span class="n">fn</span><span class="p">)</span> <span class="p">)</span>
    <span class="k">return</span> <span class="n">t</span><span class="p">[(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">specificity</span><span class="p">)</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">sensitivity</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">argmax</span><span class="p">()]</span>

<span class="k">def</span> <span class="nf">bootstrap</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">y_true_col</span><span class="p">,</span> <span class="n">y_score_col</span><span class="p">,</span> <span class="n">n_samples</span> <span class="o">=</span> <span class="mi">100</span><span class="p">):</span>
    <span class="nb">print</span><span class="p">(</span><span class="n">df</span><span class="o">.</span><span class="n">name</span><span class="p">,</span> <span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">)</span>
    
    <span class="n">y_total</span><span class="p">,</span> <span class="n">yhat_total</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="n">y_true_col</span><span class="p">]</span><span class="o">.</span><span class="n">values</span><span class="p">,</span> <span class="n">df</span><span class="p">[</span><span class="n">y_score_col</span><span class="p">]</span><span class="o">.</span><span class="n">values</span>
    <span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">df</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="n">n</span><span class="p">)</span>
    <span class="n">fpr_boot</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="n">tpr_boot</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="n">aucs</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">t</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_total</span><span class="p">,</span> <span class="n">yhat_total</span><span class="p">)</span>
    <span class="n">thresh</span> <span class="o">=</span> <span class="n">point</span><span class="p">(</span><span class="n">y_total</span><span class="p">,</span> <span class="n">yhat_total</span><span class="p">,</span> <span class="n">t</span><span class="p">)</span>
    
    <span class="c1"># bootstrap for confidence interval</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">tqdm</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">n_samples</span><span class="p">)):</span>
        <span class="n">choices</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="nb">len</span><span class="p">(</span><span class="n">yhat_total</span><span class="p">)),</span><span class="nb">int</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">yhat_total</span><span class="p">)</span><span class="o">/</span><span class="mi">2</span><span class="p">))</span>
        <span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_total</span><span class="p">[</span><span class="n">choices</span><span class="p">],</span><span class="n">yhat_total</span><span class="p">[</span><span class="n">choices</span><span class="p">])</span>
        <span class="n">fpr_boot</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">fpr</span><span class="p">)</span>
        <span class="n">tpr_boot</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tpr</span><span class="p">)</span>
        <span class="n">aucs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
        
    <span class="n">low</span><span class="p">,</span><span class="n">high</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">(</span><span class="n">aucs</span><span class="p">)</span><span class="o">-</span><span class="n">np</span><span class="o">.</span><span class="n">nanstd</span><span class="p">(</span><span class="n">aucs</span><span class="p">)</span><span class="o">*</span><span class="mf">1.96</span><span class="p">,</span><span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">(</span><span class="n">aucs</span><span class="p">)</span><span class="o">+</span><span class="n">np</span><span class="o">.</span><span class="n">nanstd</span><span class="p">(</span><span class="n">aucs</span><span class="p">)</span><span class="o">*</span><span class="mf">1.96</span>
    <span class="n">lower_point</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">percentile</span><span class="p">(</span><span class="n">aucs</span><span class="p">,</span><span class="mf">2.5</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span>
    <span class="n">higher_point</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">percentile</span><span class="p">(</span><span class="n">aucs</span><span class="p">,</span><span class="mf">97.5</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span>
    <span class="n">mean_point</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">(</span><span class="n">aucs</span><span class="p">),</span> <span class="mi">2</span><span class="p">)</span>
    
    <span class="n">x</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">aucs</span><span class="p">,</span> <span class="n">bins</span> <span class="o">=</span> <span class="mi">50</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;mean: &#39;</span><span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">mean_point</span><span class="p">))</span>

    <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="n">np</span><span class="o">.</span><span class="n">percentile</span><span class="p">(</span><span class="n">aucs</span><span class="p">,</span><span class="mf">2.5</span><span class="p">),</span><span class="n">np</span><span class="o">.</span><span class="n">percentile</span><span class="p">(</span><span class="n">aucs</span><span class="p">,</span><span class="mf">2.5</span><span class="p">)],[</span><span class="mi">0</span><span class="p">,</span><span class="nb">max</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">])],</span><span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;lower interval: &#39;</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">lower_point</span><span class="p">))</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="n">np</span><span class="o">.</span><span class="n">percentile</span><span class="p">(</span><span class="n">aucs</span><span class="p">,</span><span class="mf">97.5</span><span class="p">),</span><span class="n">np</span><span class="o">.</span><span class="n">percentile</span><span class="p">(</span><span class="n">aucs</span><span class="p">,</span><span class="mf">97.5</span><span class="p">)],[</span><span class="mi">0</span><span class="p">,</span><span class="nb">max</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">])],</span><span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;higher interval: &#39;</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">higher_point</span><span class="p">))</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;AUC Histogram&quot;</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s2">&quot;AUC&quot;</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>

    <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">()</span>
    <span class="n">lw</span> <span class="o">=</span> <span class="mi">2</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">1000</span><span class="p">):</span>
        <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="n">tpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;lightblue&#39;</span><span class="p">,</span>
                 <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_total</span><span class="p">,</span><span class="n">yhat_total</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;darkorange&#39;</span><span class="p">,</span>
             <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;ROC curve (AUROC = </span><span class="si">%0.3f</span><span class="s1">)&#39;</span> <span class="o">%</span> <span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;navy&#39;</span><span class="p">,</span> <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">linestyle</span><span class="o">=</span><span class="s1">&#39;--&#39;</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">xlim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">ylim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.05</span><span class="p">])</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;False Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;True Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">&#39;ROC Curve&#39;</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s2">&quot;lower right&quot;</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
    
<span class="k">def</span> <span class="nf">plot_results_by_factor_by_target</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">factor</span><span class="p">,</span> <span class="n">target</span><span class="p">):</span>
    <span class="k">if</span> <span class="n">factor</span> <span class="o">==</span> <span class="s1">&#39;All&#39;</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">target</span> <span class="o">==</span> <span class="s1">&#39;AS&#39;</span><span class="p">:</span>
             <span class="n">plot_results</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">factor_name</span> <span class="o">=</span> <span class="n">factor</span><span class="p">,</span> <span class="n">y_true_col</span> <span class="o">=</span> <span class="s1">&#39;y_AS&#39;</span><span class="p">,</span> <span class="n">y_score_col</span> <span class="o">=</span> <span class="s1">&#39;y_pred_AS_proba_sigmoid&#39;</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">target</span> <span class="o">==</span> <span class="s1">&#39;AI&#39;</span><span class="p">:</span>
             <span class="n">plot_results</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">factor_name</span> <span class="o">=</span> <span class="n">factor</span><span class="p">,</span> <span class="n">y_true_col</span> <span class="o">=</span> <span class="s1">&#39;y_AI&#39;</span><span class="p">,</span> <span class="n">y_score_col</span> <span class="o">=</span> <span class="s1">&#39;y_pred_AI_proba_sigmoid&#39;</span><span class="p">)</span>       
        <span class="k">if</span> <span class="n">target</span> <span class="o">==</span> <span class="s1">&#39;MR&#39;</span><span class="p">:</span>
             <span class="n">plot_results</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">factor_name</span> <span class="o">=</span> <span class="n">factor</span><span class="p">,</span> <span class="n">y_true_col</span> <span class="o">=</span> <span class="s1">&#39;y_MR&#39;</span><span class="p">,</span> <span class="n">y_score_col</span> <span class="o">=</span> <span class="s1">&#39;y_pred_MR_proba_sigmoid&#39;</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">target</span> <span class="o">==</span> <span class="s1">&#39;AS_AI_MR&#39;</span><span class="p">:</span>
             <span class="n">plot_results</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">factor_name</span> <span class="o">=</span> <span class="n">factor</span><span class="p">,</span> <span class="n">y_true_col</span> <span class="o">=</span> <span class="s1">&#39;y_AS_AI_MR&#39;</span><span class="p">,</span> <span class="n">y_score_col</span> <span class="o">=</span> <span class="s1">&#39;y_pred_AS_AI_MR_proba_sigmoid&#39;</span><span class="p">)</span>
             
    <span class="k">else</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">target</span> <span class="o">==</span> <span class="s1">&#39;AS&#39;</span><span class="p">:</span>
             <span class="n">df</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="n">factor</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">plot_results</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">factor_name</span> <span class="o">=</span> <span class="n">factor</span><span class="p">,</span> <span class="n">y_true_col</span> <span class="o">=</span> <span class="s1">&#39;y_AS&#39;</span><span class="p">,</span> <span class="n">y_score_col</span> <span class="o">=</span> <span class="s1">&#39;y_pred_AS_proba_sigmoid&#39;</span><span class="p">))</span>
        <span class="k">if</span> <span class="n">target</span> <span class="o">==</span> <span class="s1">&#39;AI&#39;</span><span class="p">:</span>
             <span class="n">df</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="n">factor</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">plot_results</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">factor_name</span> <span class="o">=</span> <span class="n">factor</span><span class="p">,</span> <span class="n">y_true_col</span> <span class="o">=</span> <span class="s1">&#39;y_AI&#39;</span><span class="p">,</span> <span class="n">y_score_col</span> <span class="o">=</span> <span class="s1">&#39;y_pred_AI_proba_sigmoid&#39;</span><span class="p">))</span>        
        <span class="k">if</span> <span class="n">target</span> <span class="o">==</span> <span class="s1">&#39;MR&#39;</span><span class="p">:</span>
             <span class="n">df</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="n">factor</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">plot_results</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">factor_name</span> <span class="o">=</span> <span class="n">factor</span><span class="p">,</span> <span class="n">y_true_col</span> <span class="o">=</span> <span class="s1">&#39;y_MR&#39;</span><span class="p">,</span> <span class="n">y_score_col</span> <span class="o">=</span> <span class="s1">&#39;y_pred_MR_proba_sigmoid&#39;</span><span class="p">))</span>
        <span class="k">if</span> <span class="n">target</span> <span class="o">==</span> <span class="s1">&#39;AS_AI_MR&#39;</span><span class="p">:</span>
             <span class="n">df</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="n">factor</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">plot_results</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">factor_name</span> <span class="o">=</span> <span class="n">factor</span><span class="p">,</span> <span class="n">y_true_col</span> <span class="o">=</span> <span class="s1">&#39;y_AS_AI_MR&#39;</span><span class="p">,</span> <span class="n">y_score_col</span> <span class="o">=</span> <span class="s1">&#39;y_pred_AS_AI_MR_proba_sigmoid&#39;</span><span class="p">))</span>   
                
<span class="k">def</span> <span class="nf">plot_results</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">factor_name</span><span class="p">,</span> <span class="n">y_true_col</span><span class="p">,</span> <span class="n">y_score_col</span><span class="p">):</span>
    <span class="k">if</span> <span class="ow">not</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">isdir</span><span class="p">(</span><span class="s1">&#39;figures&#39;</span><span class="p">):</span>
        <span class="n">os</span><span class="o">.</span><span class="n">mkdir</span><span class="p">(</span><span class="s1">&#39;figures&#39;</span><span class="p">)</span>
    
    <span class="nb">print</span><span class="p">(</span><span class="n">df</span><span class="o">.</span><span class="n">name</span><span class="p">,</span> <span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">)</span>
    <span class="n">level_name</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="n">df</span><span class="o">.</span><span class="n">name</span><span class="p">)</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">&#39;/&#39;</span><span class="p">,</span><span class="s1">&#39;_&#39;</span><span class="p">)</span>
    <span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="n">y_true_col</span><span class="p">],</span> <span class="n">df</span><span class="p">[</span><span class="n">y_score_col</span><span class="p">]</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span> <span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="n">roc_auc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUROC is:&#39;</span><span class="p">,</span> <span class="n">roc_auc</span><span class="p">)</span>

    <span class="n">optimal_idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">optimal_threshold</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">optimal_idx</span><span class="p">]</span>
    <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Threshold value is:&quot;</span><span class="p">,</span> <span class="n">optimal_threshold</span><span class="p">)</span>

    <span class="c1"># plot_roc_curve(fpr, tpr)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">()</span>
    <span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_AS_proba_sigmoid&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">bins</span><span class="o">=</span><span class="mi">50</span><span class="p">)</span>
    <span class="c1">#plt.savefig(f&#39;figures/{df.name.replace(&#39;/&#39;,&#39;_&#39;)}_{y_true_col}_hist.png&#39;)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">savefig</span><span class="p">(</span><span class="s1">&#39;figures/</span><span class="si">{}</span><span class="s1">_</span><span class="si">{}</span><span class="s1">_</span><span class="si">{}</span><span class="s1">_hist.png&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">factor_name</span><span class="p">,</span><span class="n">level_name</span><span class="p">,</span><span class="n">y_true_col</span><span class="p">))</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
    
    <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">()</span>
    <span class="n">sns</span><span class="o">.</span><span class="n">distplot</span><span class="p">(</span><span class="n">df</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="n">df</span><span class="p">[</span><span class="n">y_true_col</span><span class="p">]</span> <span class="o">==</span>  <span class="mi">0</span><span class="p">][</span><span class="n">y_score_col</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s2">&quot;skyblue&quot;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">&quot;Pos&quot;</span><span class="p">,</span><span class="n">bins</span><span class="o">=</span><span class="mi">50</span><span class="p">)</span>
    <span class="n">sns</span><span class="o">.</span><span class="n">distplot</span><span class="p">(</span><span class="n">df</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="n">df</span><span class="p">[</span><span class="n">y_true_col</span><span class="p">]</span> <span class="o">==</span> <span class="mi">1</span><span class="p">][</span><span class="n">y_score_col</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s2">&quot;red&quot;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">&quot;Neg&quot;</span><span class="p">,</span><span class="n">bins</span><span class="o">=</span><span class="mi">50</span><span class="p">)</span>
    <span class="n">y_pred_optimal</span> <span class="o">=</span> <span class="p">[</span><span class="mi">1</span> <span class="k">if</span> <span class="n">i</span> <span class="o">&gt;</span> <span class="n">optimal_threshold</span> <span class="k">else</span> <span class="mi">0</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">df</span><span class="p">[</span><span class="n">y_score_col</span><span class="p">]]</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">savefig</span><span class="p">(</span><span class="s1">&#39;figures/</span><span class="si">{}</span><span class="s1">_</span><span class="si">{}</span><span class="s1">_</span><span class="si">{}</span><span class="s1">_distplot.png&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">factor_name</span><span class="p">,</span><span class="n">level_name</span><span class="p">,</span><span class="n">y_true_col</span><span class="p">))</span>
    <span class="c1">#plt.show()</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
    
    <span class="c1"># create heatmap</span>
    <span class="n">cnf_matrix</span> <span class="o">=</span> <span class="n">confusion_matrix</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">y_scores</span><span class="p">))</span>
    <span class="n">oddsratio</span><span class="p">,</span> <span class="n">pvalue</span> <span class="o">=</span> <span class="n">stats</span><span class="o">.</span><span class="n">fisher_exact</span><span class="p">(</span><span class="n">cnf_matrix</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Odds Ratio is:&#39;</span><span class="p">,</span> <span class="nb">round</span><span class="p">(</span><span class="n">oddsratio</span><span class="p">,</span><span class="mi">1</span><span class="p">),</span> <span class="s1">&#39;P-Value is:&#39;</span><span class="p">,</span> <span class="nb">round</span><span class="p">(</span><span class="n">pvalue</span><span class="p">,</span><span class="mi">3</span><span class="p">))</span>
    
    <span class="n">mtx</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">stats</span><span class="o">.</span><span class="n">Table2x2</span><span class="p">(</span><span class="n">cnf_matrix</span><span class="p">)</span>
   
    <span class="n">display</span><span class="p">(</span><span class="n">mtx</span><span class="o">.</span><span class="n">summary</span><span class="p">())</span>
    <span class="c1">#plt.savefig(&#39;figures/{}_{}_summary.png&#39;.format(_name,y_true_col))</span>
    
    <span class="n">class_names</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">]</span> <span class="c1"># name  of classes</span>
    <span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">()</span>
    <span class="n">tick_marks</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">class_names</span><span class="p">))</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">xticks</span><span class="p">(</span><span class="n">tick_marks</span><span class="p">,</span> <span class="n">class_names</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">yticks</span><span class="p">(</span><span class="n">tick_marks</span><span class="p">,</span> <span class="n">class_names</span><span class="p">)</span>
    <span class="n">sns</span><span class="o">.</span><span class="n">heatmap</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">cnf_matrix</span><span class="p">),</span> <span class="n">annot</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="s2">&quot;YlGnBu&quot;</span> <span class="p">,</span><span class="n">fmt</span><span class="o">=</span><span class="s1">&#39;g&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">(</span><span class="n">ymin</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span><span class="n">ymax</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">xaxis</span><span class="o">.</span><span class="n">set_label_position</span><span class="p">(</span><span class="s2">&quot;top&quot;</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">()</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;Confusion matrix with threshold 0.5 [OR=</span><span class="si">{</span><span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">oddsratio</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span><span class="si">}</span><span class="s1">,p=</span><span class="si">{</span><span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">pvalue</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span><span class="si">}</span><span class="s1">]&#39;</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="mf">1.1</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;Actual label&#39;</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;Predicted label&#39;</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">savefig</span><span class="p">(</span><span class="s1">&#39;figures/</span><span class="si">{}</span><span class="s1">_</span><span class="si">{}</span><span class="s1">_</span><span class="si">{}</span><span class="s1">_confusion_matrix_0.5.png&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">factor_name</span><span class="p">,</span><span class="n">level_name</span><span class="p">,</span><span class="n">y_true_col</span><span class="p">))</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
    
    <span class="n">cnf_matrix</span> <span class="o">=</span> <span class="n">confusion_matrix</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_pred_optimal</span><span class="p">)</span>
    <span class="n">oddsratio</span><span class="p">,</span> <span class="n">pvalue</span> <span class="o">=</span> <span class="n">stats</span><span class="o">.</span><span class="n">fisher_exact</span><span class="p">(</span><span class="n">cnf_matrix</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Odds Ratio is:&#39;</span><span class="p">,</span> <span class="nb">round</span><span class="p">(</span><span class="n">oddsratio</span><span class="p">,</span><span class="mi">1</span><span class="p">),</span> <span class="s1">&#39;P-Value is:&#39;</span><span class="p">,</span> <span class="nb">round</span><span class="p">(</span><span class="n">pvalue</span><span class="p">,</span><span class="mi">3</span><span class="p">))</span>
    
    <span class="n">mtx</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">stats</span><span class="o">.</span><span class="n">Table2x2</span><span class="p">(</span><span class="n">cnf_matrix</span><span class="p">)</span>
    <span class="n">display</span><span class="p">(</span><span class="n">mtx</span><span class="o">.</span><span class="n">summary</span><span class="p">())</span>
    
    <span class="n">class_names</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">]</span> <span class="c1"># name  of classes</span>
    <span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">()</span>
    <span class="n">tick_marks</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">class_names</span><span class="p">))</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">yticks</span><span class="p">(</span><span class="n">tick_marks</span><span class="p">,</span> <span class="n">class_names</span><span class="p">)</span>
    <span class="n">sns</span><span class="o">.</span><span class="n">heatmap</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">cnf_matrix</span><span class="p">),</span> <span class="n">annot</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="s2">&quot;YlGnBu&quot;</span> <span class="p">,</span><span class="n">fmt</span><span class="o">=</span><span class="s1">&#39;g&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">(</span><span class="n">ymin</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span><span class="n">ymax</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">xaxis</span><span class="o">.</span><span class="n">set_label_position</span><span class="p">(</span><span class="s2">&quot;top&quot;</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">()</span> <span class="c1">#optimal threshold = (max(tpr-fpr))</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;Confusion matrix with optimal threshold </span><span class="si">{</span><span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">optimal_threshold</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span><span class="si">}</span><span class="s1"> [OR=</span><span class="si">{</span><span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">oddsratio</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span><span class="si">}</span><span class="s1">,p=</span><span class="si">{</span><span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">pvalue</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span><span class="si">}</span><span class="s1">]&#39;</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="mf">1.1</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;Actual label&#39;</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;Predicted label&#39;</span><span class="p">)</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">savefig</span><span class="p">(</span><span class="s1">&#39;figures/</span><span class="si">{}</span><span class="s1">_</span><span class="si">{}</span><span class="s1">_</span><span class="si">{}</span><span class="s1">_confusion_matrix_optimal.png&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">factor_name</span><span class="p">,</span><span class="n">level_name</span><span class="p">,</span><span class="n">y_true_col</span><span class="p">))</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>

<span class="k">def</span> <span class="nf">bootstrap_stats</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">y_true_col</span><span class="p">,</span> <span class="n">y_score_col</span><span class="p">,</span> <span class="n">n_samples</span> <span class="o">=</span> <span class="mi">100</span><span class="p">):</span>
    <span class="nb">print</span><span class="p">(</span><span class="n">df</span><span class="o">.</span><span class="n">name</span><span class="p">,</span> <span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">)</span>
    <span class="n">y_total</span><span class="p">,</span> <span class="n">yhat_total</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="n">y_true_col</span><span class="p">]</span><span class="o">.</span><span class="n">values</span><span class="p">,</span> <span class="n">df</span><span class="p">[</span><span class="n">y_score_col</span><span class="p">]</span><span class="o">.</span><span class="n">values</span>
    <span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">df</span><span class="p">)</span>
    
    <span class="n">fpr_boot</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="n">tpr_boot</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="n">aucs</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="n">odds_ratios</span> <span class="o">=</span> <span class="p">[]</span>
    
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">t</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_total</span><span class="p">,</span> <span class="n">yhat_total</span><span class="p">)</span>
    <span class="n">roc_auc_actual</span> <span class="o">=</span> <span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">)</span>  <span class="c1"># from the complete data set</span>
    <span class="n">roc_auc_actual</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_actual</span><span class="p">,</span><span class="mi">2</span><span class="p">)</span>
    <span class="n">cnf_matrix</span> <span class="o">=</span> <span class="n">confusion_matrix</span><span class="p">(</span><span class="n">y_total</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">yhat_total</span><span class="p">))</span>
    <span class="n">odds_ratio_actual</span><span class="p">,</span> <span class="n">pvalue</span> <span class="o">=</span> <span class="n">stats</span><span class="o">.</span><span class="n">fisher_exact</span><span class="p">(</span><span class="n">cnf_matrix</span><span class="p">)</span>
    <span class="n">odds_ratio_actual</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">odds_ratio_actual</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span>
     <span class="c1"># set an arbitrary min size for bootstrapping</span>
    <span class="k">if</span> <span class="n">n</span> <span class="o">&lt;</span> <span class="mi">200</span><span class="p">:</span>
        <span class="k">return</span> <span class="p">{</span><span class="s1">&#39;n&#39;</span><span class="p">:</span> <span class="n">n</span><span class="p">,</span> <span class="s1">&#39;n_positives&#39;</span><span class="p">:</span> <span class="nb">sum</span><span class="p">(</span><span class="n">y_total</span><span class="p">),</span> <span class="s1">&#39;roc_auc_actual&#39;</span><span class="p">:</span> <span class="n">roc_auc_actual</span><span class="p">,</span> <span class="s1">&#39;AU-ROC (95% CI)&#39;</span><span class="p">:</span> <span class="kc">None</span><span class="p">,</span> <span class="s1">&#39;odds_ratio_actual&#39;</span><span class="p">:</span> <span class="n">odds_ratio_actual</span><span class="p">,</span> <span class="s1">&#39;OR (95% CI)&#39;</span><span class="p">:</span> <span class="kc">None</span><span class="p">}</span>
    
    <span class="c1"># bootstrap for confidence interval</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">tqdm</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">n_samples</span><span class="p">)):</span>
        <span class="n">choices</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="nb">len</span><span class="p">(</span><span class="n">yhat_total</span><span class="p">)),</span><span class="nb">int</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">yhat_total</span><span class="p">)</span><span class="o">/</span><span class="mi">2</span><span class="p">))</span>
        <span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_total</span><span class="p">[</span><span class="n">choices</span><span class="p">],</span><span class="n">yhat_total</span><span class="p">[</span><span class="n">choices</span><span class="p">])</span>
        
        <span class="n">cnf_matrix</span> <span class="o">=</span> <span class="n">confusion_matrix</span><span class="p">(</span><span class="n">y_total</span><span class="p">[</span><span class="n">choices</span><span class="p">],</span><span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">yhat_total</span><span class="p">[</span><span class="n">choices</span><span class="p">]))</span> 
        <span class="n">odds_ratio_boot</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">stats</span><span class="o">.</span><span class="n">fisher_exact</span><span class="p">(</span><span class="n">cnf_matrix</span><span class="p">)</span>
        
        <span class="n">fpr_boot</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">fpr</span><span class="p">)</span>
        <span class="n">tpr_boot</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tpr</span><span class="p">)</span>
        <span class="n">aucs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
        <span class="n">odds_ratios</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">odds_ratio_boot</span><span class="p">)</span>
        
    <span class="n">auc_low</span><span class="p">,</span> <span class="n">auc_high</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">(</span><span class="n">aucs</span><span class="p">)</span><span class="o">-</span><span class="n">np</span><span class="o">.</span><span class="n">nanstd</span><span class="p">(</span><span class="n">aucs</span><span class="p">)</span><span class="o">*</span><span class="mf">1.96</span><span class="p">,</span><span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">(</span><span class="n">aucs</span><span class="p">)</span><span class="o">+</span><span class="n">np</span><span class="o">.</span><span class="n">nanstd</span><span class="p">(</span><span class="n">aucs</span><span class="p">)</span><span class="o">*</span><span class="mf">1.96</span>
    <span class="n">auc_lower_point</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">percentile</span><span class="p">(</span><span class="n">aucs</span><span class="p">,</span><span class="mf">2.5</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span>
    <span class="n">auc_higher_point</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">percentile</span><span class="p">(</span><span class="n">aucs</span><span class="p">,</span><span class="mf">97.5</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span>
    <span class="n">auc_mean_point</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">(</span><span class="n">aucs</span><span class="p">),</span> <span class="mi">2</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="n">auc_lower_point</span><span class="p">,</span> <span class="n">auc_higher_point</span><span class="p">,</span> <span class="n">auc_low</span><span class="p">,</span> <span class="n">auc_high</span><span class="p">)</span>
    
    <span class="n">odds_ratio_low</span><span class="p">,</span> <span class="n">odds_ratio_high</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">(</span><span class="n">odds_ratios</span><span class="p">)</span><span class="o">-</span><span class="n">np</span><span class="o">.</span><span class="n">nanstd</span><span class="p">(</span><span class="n">odds_ratios</span><span class="p">)</span><span class="o">*</span><span class="mf">1.96</span><span class="p">,</span><span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">(</span><span class="n">odds_ratios</span><span class="p">)</span><span class="o">+</span><span class="n">np</span><span class="o">.</span><span class="n">nanstd</span><span class="p">(</span><span class="n">odds_ratios</span><span class="p">)</span><span class="o">*</span><span class="mf">1.96</span>
    <span class="n">odds_ratio_lower_point</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">percentile</span><span class="p">(</span><span class="n">odds_ratios</span><span class="p">,</span><span class="mf">2.5</span><span class="p">),</span><span class="mi">1</span><span class="p">)</span>
    <span class="n">odds_ratio_higher_point</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">percentile</span><span class="p">(</span><span class="n">odds_ratios</span><span class="p">,</span><span class="mf">97.5</span><span class="p">),</span><span class="mi">1</span><span class="p">)</span>
    <span class="n">odds_ratio_mean_point</span> <span class="o">=</span> <span class="nb">round</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">nanmean</span><span class="p">(</span><span class="n">odds_ratios</span><span class="p">),</span> <span class="mi">1</span><span class="p">)</span>
    
    <span class="c1"># plt.figure()</span>
    <span class="c1"># lw = 2</span>
    <span class="c1"># for i in range(0,n_samples):</span>
    <span class="c1">#     plt.plot(fpr_boot[i],tpr_boot[i], color=&#39;lightblue&#39;,lw=lw)</span>
    <span class="c1"># fpr,tpr, _ = roc_curve(y_total,yhat_total)</span>
    <span class="c1"># plt.plot(fpr, tpr, color=&#39;darkorange&#39;,lw=lw, label=&#39;ROC curve (AUROC = %0.3f)&#39; % auc(fpr,tpr))</span>
    <span class="c1"># plt.plot([0, 1], [0, 1], color=&#39;navy&#39;, lw=lw, linestyle=&#39;--&#39;)</span>
    <span class="c1"># plt.xlim([0.0, 1.0])</span>
    <span class="c1"># plt.ylim([0.0, 1.05])</span>
    <span class="c1"># plt.xlabel(&#39;False Positive Rate&#39;)</span>
    <span class="c1"># plt.ylabel(&#39;True Positive Rate&#39;)</span>
    <span class="c1"># plt.title(&#39;ROC Curve&#39;)</span>
    <span class="c1"># plt.legend(loc=&quot;lower right&quot;)</span>
    <span class="c1"># plt.show()</span>
    
    <span class="k">return</span> <span class="p">{</span><span class="s1">&#39;n&#39;</span><span class="p">:</span><span class="n">n</span><span class="p">,</span> <span class="s1">&#39;n_positives&#39;</span><span class="p">:</span> <span class="nb">sum</span><span class="p">(</span><span class="n">y_total</span><span class="p">),</span> <span class="s1">&#39;roc_auc_actual&#39;</span><span class="p">:</span><span class="n">roc_auc_actual</span><span class="p">,</span> <span class="s1">&#39;AU-ROC (95% CI)&#39;</span><span class="p">:</span> <span class="p">[</span><span class="n">auc_lower_point</span><span class="p">,</span> <span class="n">auc_higher_point</span><span class="p">],</span> <span class="s1">&#39;odds_ratio_actual&#39;</span><span class="p">:</span><span class="n">odds_ratio_actual</span><span class="p">,</span> <span class="s1">&#39;OR (95% CI)&#39;</span><span class="p">:</span> <span class="p">[</span><span class="n">odds_ratio_lower_point</span><span class="p">,</span> <span class="n">odds_ratio_higher_point</span><span class="p">]}</span>
    <span class="c1"># return (n, roc_auc_actual, odds_ratio_actual, lower_point, mean_point, higher_point)</span>

<span class="k">def</span> <span class="nf">get_odds_ratio</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">):</span>
    <span class="n">cnf_matrix</span> <span class="o">=</span> <span class="n">confusion_matrix</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">)</span>
    <span class="n">odds_ratio</span><span class="p">,</span> <span class="n">pvalue</span> <span class="o">=</span> <span class="n">stats</span><span class="o">.</span><span class="n">fisher_exact</span><span class="p">(</span><span class="n">cnf_matrix</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">odds_ratio</span> 

<span class="c1"># Version of bootstrap which returns the fpr, tpr rather than plotting </span>
<span class="k">def</span> <span class="nf">boot</span><span class="p">(</span><span class="n">df</span><span class="p">):</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr_boot</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="n">tpr_boot</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="n">aucs</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="n">folder</span><span class="o">=</span><span class="kc">None</span>
    <span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">,</span> <span class="n">t</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span> <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span><span class="p">)</span>
    <span class="n">thresh</span> <span class="o">=</span> <span class="n">point</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span><span class="p">,</span><span class="n">t</span><span class="p">)</span>
    <span class="n">lw</span> <span class="o">=</span> <span class="mi">2</span>
    
    <span class="c1"># bootstrap for confidence interval</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">tqdm</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">1000</span><span class="p">)):</span>
        <span class="n">choices</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="nb">len</span><span class="p">(</span><span class="n">y_scores</span><span class="p">)),</span><span class="nb">int</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">y_scores</span><span class="p">)</span><span class="o">/</span><span class="mi">2</span><span class="p">))</span>
        <span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">[</span><span class="n">choices</span><span class="p">],</span><span class="n">y_scores</span><span class="p">[</span><span class="n">choices</span><span class="p">])</span>
        <span class="n">fpr_boot</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">fpr</span><span class="p">)</span>
        <span class="n">tpr_boot</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tpr</span><span class="p">)</span>
        <span class="n">aucs</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
        
    <span class="k">return</span> <span class="n">fpr_boot</span><span class="p">,</span> <span class="n">tpr_boot</span><span class="p">,</span> <span class="n">aucs</span>

<span class="k">def</span> <span class="nf">query_sql</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="n">server</span> <span class="o">=</span> <span class="s1">&#39;drtprd02jup01&#39;</span><span class="p">,</span><span class="n">database</span> <span class="o">=</span> <span class="s1">&#39;JupiterSCM&#39;</span><span class="p">):</span>
    <span class="n">start</span> <span class="o">=</span> <span class="n">timer</span><span class="p">()</span>
    <span class="n">engine</span> <span class="o">=</span> <span class="n">create_engine</span><span class="p">(</span><span class="s2">&quot;mssql+pyodbc://</span><span class="si">{}</span><span class="s2">/</span><span class="si">{}</span><span class="s2">?driver=SQL+Server&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">server</span><span class="p">,</span><span class="n">database</span><span class="p">),</span><span class="n">fast_executemany</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
    <span class="n">conn</span> <span class="o">=</span> <span class="n">engine</span><span class="o">.</span><span class="n">connect</span><span class="p">()</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Running query...&#39;</span><span class="p">)</span>
    <span class="n">result</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_sql</span><span class="p">(</span><span class="n">con</span><span class="o">=</span><span class="n">conn</span><span class="p">,</span> <span class="n">sql</span> <span class="o">=</span> <span class="n">query</span><span class="p">)</span>
    <span class="n">conn</span><span class="o">.</span><span class="n">close</span><span class="p">()</span>
    <span class="n">end</span> <span class="o">=</span> <span class="n">timer</span><span class="p">()</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Query took </span><span class="si">%s</span><span class="s1"> minutes&#39;</span> <span class="o">%</span> <span class="nb">round</span><span class="p">((</span><span class="n">end</span> <span class="o">-</span> <span class="n">start</span><span class="p">)</span><span class="o">/</span><span class="mi">60</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span>
    <span class="k">return</span> <span class="n">result</span>

<span class="k">def</span> <span class="nf">generate_age_multisite</span><span class="p">(</span><span class="n">df</span><span class="p">,</span><span class="n">study_date</span><span class="p">,</span><span class="n">dob</span><span class="p">):</span>
    <span class="n">df</span><span class="p">[</span><span class="n">study_date</span><span class="p">]</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">to_datetime</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="n">study_date</span><span class="p">],</span><span class="n">errors</span><span class="o">=</span><span class="s1">&#39;coerce&#39;</span><span class="p">)</span>
    <span class="n">df</span><span class="p">[</span><span class="n">dob</span><span class="p">]</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">to_datetime</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="n">dob</span><span class="p">],</span><span class="n">errors</span><span class="o">=</span><span class="s1">&#39;coerce&#39;</span><span class="p">)</span>
    <span class="n">DateofBirth_D</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="n">df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="n">study_date</span><span class="p">]</span> <span class="o">-</span> <span class="n">df</span><span class="p">[</span><span class="n">dob</span><span class="p">])</span><span class="o">.</span><span class="n">dt</span><span class="o">.</span><span class="n">days</span><span class="o">//</span><span class="mi">365</span>
    <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;Number of rows where age not calculated:</span><span class="si">{</span><span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">df</span><span class="o">.</span><span class="n">PatientAge_Years</span><span class="o">.</span><span class="n">isnull</span><span class="p">())</span><span class="si">}</span><span class="s1">&#39;</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">df</span>

<span class="k">def</span> <span class="nf">balance_binary</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">label</span><span class="p">,</span> <span class="n">desired_prevalence</span><span class="p">):</span>
    <span class="n">y</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="n">label</span><span class="p">]</span>
    <span class="n">X</span> <span class="o">=</span> <span class="n">df</span>
    <span class="n">binary_mask</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">bitwise_or</span><span class="p">(</span><span class="n">y</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> <span class="n">y</span> <span class="o">==</span> <span class="mi">1</span><span class="p">)</span>
    <span class="n">binary_y</span> <span class="o">=</span> <span class="n">y</span><span class="p">[</span><span class="n">binary_mask</span><span class="p">]</span>
    <span class="n">binary_X</span> <span class="o">=</span> <span class="n">X</span><span class="p">[</span><span class="n">binary_mask</span><span class="p">]</span>
    <span class="c1">#this is the ratio of minority:majority class, so if you want 30% prevalence of positive label sampling_strategy = 0.3/0.7</span>
    <span class="n">rus</span> <span class="o">=</span> <span class="n">RandomUnderSampler</span><span class="p">(</span><span class="n">sampling_strategy</span><span class="o">=</span><span class="p">(</span><span class="n">desired_prevalence</span><span class="o">/</span><span class="p">(</span><span class="mi">1</span><span class="o">-</span><span class="n">desired_prevalence</span><span class="p">)))</span> 
    <span class="n">X_res</span><span class="p">,</span> <span class="n">y_res</span> <span class="o">=</span> <span class="n">rus</span><span class="o">.</span><span class="n">fit_resample</span><span class="p">(</span><span class="n">binary_X</span><span class="p">,</span> <span class="n">binary_y</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">X_res</span>

<span class="k">def</span> <span class="nf">imbalance_binary</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">label</span><span class="p">,</span> <span class="n">desired_prevalence</span><span class="p">,</span> <span class="n">minority_class</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">majority_class</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
    <span class="n">majority_count</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="n">df</span><span class="p">[</span><span class="n">label</span><span class="p">]</span><span class="o">==</span><span class="n">majority_class</span><span class="p">]))</span>
    <span class="n">X_resampled</span><span class="p">,</span> <span class="n">y_resampled</span> <span class="o">=</span> <span class="n">make_imbalance</span><span class="p">(</span>
            <span class="n">df</span><span class="p">,</span>
            <span class="n">df</span><span class="p">[</span><span class="n">label</span><span class="p">],</span>
            <span class="n">sampling_strategy</span><span class="o">=</span><span class="p">{</span><span class="n">majority_class</span><span class="p">:</span><span class="nb">int</span><span class="p">(</span><span class="n">majority_count</span><span class="o">*</span><span class="p">(</span><span class="mi">1</span><span class="o">-</span><span class="n">desired_prevalence</span><span class="p">)),</span> <span class="n">minority_class</span><span class="p">:</span><span class="nb">int</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">df</span><span class="p">)</span><span class="o">*</span><span class="n">desired_prevalence</span><span class="p">)})</span>
    <span class="k">return</span> <span class="n">X_resampled</span>

<span class="k">def</span> <span class="nf">adjust_prevalence</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">label</span><span class="p">,</span> <span class="n">desired_prevalence</span><span class="p">,</span> <span class="n">minority_class</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
    <span class="n">wanted_count</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">df</span><span class="p">)</span><span class="o">*</span><span class="n">desired_prevalence</span>
    <span class="n">actual_count</span> <span class="o">=</span> <span class="n">Counter</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="n">label</span><span class="p">])[</span><span class="n">minority_class</span><span class="p">]</span>
    <span class="n">ratio</span> <span class="o">=</span> <span class="n">wanted_count</span><span class="o">/</span><span class="n">actual_count</span>
    <span class="k">if</span> <span class="n">ratio</span> <span class="o">&gt;=</span> <span class="mi">1</span><span class="p">:</span>
        <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;using RandomUnderSampler&#39;</span><span class="p">)</span>
        <span class="n">new_df</span> <span class="o">=</span> <span class="n">balance_binary</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">label</span><span class="p">,</span> <span class="n">desired_prevalence</span><span class="p">)</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;using make_imbalance&#39;</span><span class="p">)</span>
        <span class="n">new_df</span> <span class="o">=</span> <span class="n">imbalance_binary</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">label</span><span class="p">,</span> <span class="n">desired_prevalence</span><span class="p">,</span><span class="n">minority_class</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">new_df</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Notebook-order-to-get-to-this-point">Notebook order to get to this point<a class="anchor-link" href="#Notebook-order-to-get-to-this-point">&#182;</a></h1><ol>
<li>Generate an updated test dataset that removes bioprosthetic ECG-echo pairings and generates 1:1 pairing between ecg and echo, only including complete (all 3 labels present) echos and ECGs done 0 to 365 days prior to echo in question. One pair per patient, most recent period where pair is valid, with largest time difference between ECG and echo as tiebreaker (b/t 0 to 365 days)<br>
 <code>/Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Multivalvular_Label_Generation_No_Bioprosthesis_03_01_2022.ipynb</code></li>
</ol>
<hr>
<ol>
<li>Take that new list of ECG-echo pairs and run it on Dendrite to find the ECGs and preprocess the waveform arrays. Same for the tabular data. Then sanity check including looking at waveform/tabular output and going back into medical record to verify the label is correct, ecg is correct, and tabular data is correct. 
 <code>/Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/ValveNet_JACC_Revision_Dataset_Generation_03_02_2022.ipynb</code></li>
</ol>
<hr>
<ol>
<li>Run the ValveNet_v2 engine on Dendrite (10.144.220.25). Running the CADnet branch of ValveNet_v2 files:</li>
</ol>
<ul>
<li>eval_AI_no_prosthetics.py</li>
<li>eval_AS_no_prosthetics.py</li>
<li>eval_MR_no_prosthetics.py</li>
<li><p>eval_AS_AI_MR_no_prosthetics.py
to generate the y,y_pred output for all 4 labels</p>
<p><code>as_path = os.path.join(box_path_prefix, 'Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Aortic_Stenosis_2022-03-03--06:21:48/y_y_pred_roc_0.8805.csv')</code>
<code>ai_path = os.path.join(box_path_prefix, 'Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Aortic_Insufficiency_2022-03-03--06:22:25/y_y_pred_roc_0.7688.csv)</code>
<code>mr_path = os.path.join(box_path_prefix, 'Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Mitral_Regurgitation_2022-03-03--06:23:05/y_y_pred_roc_0.8280.csv')</code>
<code>as_ai_mr_path = os.path.join(box_path_prefix, 'Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_AS_AI_MR_Combination_2022-03-03--06:23:39/y_y_pred_roc_0.8351.csv')</code></p>
</li>
</ul>
<hr>
<ol>
<li>And now we're ready to run the post-hoc analyses in this notebook</li>
</ol>

</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[3]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">user</span> <span class="o">=</span> <span class="s1">&#39;pae2&#39;</span>
<span class="n">box_path_prefix</span> <span class="o">=</span> <span class="sa">f</span><span class="s1">&#39;/Users/</span><span class="si">{</span><span class="n">user</span><span class="si">}</span><span class="s1">&#39;</span>

<span class="c1"># original_test_27k = pd.read_csv(os.path.join(box_path_prefix, &#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/27k_test_metadata_no_prev_adjustment.csv&#39;))</span>
<span class="n">original_test_27k</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/JACC_REVISIONS_27k_test_metadata_no_prev_adjustment_new_ref.csv&#39;</span> <span class="p">))</span>
<span class="n">original_test_27k</span><span class="p">[</span><span class="s1">&#39;AcquisitionDateTime_DT&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">to_datetime</span><span class="p">(</span><span class="n">original_test_27k</span><span class="p">[</span><span class="s1">&#39;AcquisitionDateTime_DT&#39;</span><span class="p">])</span>
<span class="nb">print</span><span class="p">(</span><span class="n">original_test_27k</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>

<span class="n">columns_needed</span> <span class="o">=</span> <span class="p">[</span>
    <span class="s1">&#39;filename&#39;</span><span class="p">,</span>
    <span class="s1">&#39;AcquisitionDateTime_DT&#39;</span><span class="p">,</span>
    <span class="s1">&#39;TestID&#39;</span><span class="p">,</span>
    <span class="s1">&#39;PatientID&#39;</span><span class="p">,</span>
    <span class="s1">&#39;DateofBirth_D&#39;</span><span class="p">,</span>
    <span class="s1">&#39;Gender&#39;</span><span class="p">,</span>
    <span class="s1">&#39;Race&#39;</span><span class="p">,</span>
    <span class="s1">&#39;aortic_stenosis_label_four_grade&#39;</span><span class="p">,</span>
    <span class="s1">&#39;aortic_insufficiency_label_four_grade&#39;</span><span class="p">,</span>
    <span class="s1">&#39;mitral_regurgitation_label_four_grade&#39;</span><span class="p">,</span>
    <span class="s1">&#39;aortic_stenosis_label_binary&#39;</span><span class="p">,</span>
    <span class="s1">&#39;mitral_regurgitation_label_binary&#39;</span><span class="p">,</span>
    <span class="s1">&#39;aortic_insufficiency_label_binary&#39;</span><span class="p">,</span>
    <span class="s1">&#39;aortic_stenosis_label_binary_backfilled&#39;</span><span class="p">,</span>
    <span class="s1">&#39;aortic_insufficiency_label_binary_backfilled&#39;</span><span class="p">,</span>
    <span class="s1">&#39;mitral_regurgitation_label_binary_backfilled&#39;</span><span class="p">,</span>
    <span class="s1">&#39;AS_AI_MR_label_binary&#39;</span><span class="p">,</span>
    <span class="s1">&#39;AS_AI_MR_label_binary_backfilled&#39;</span><span class="p">,</span>              
    <span class="s1">&#39;QRSDuration&#39;</span><span class="p">,</span>
    <span class="s1">&#39;RIGHT BUNDLE BRANCH BLOCK&#39;</span><span class="p">,</span>
    <span class="s1">&#39;LEFT BUNDLE BRANCH BLOCK&#39;</span><span class="p">,</span>
    <span class="s1">&#39;days_since_echo&#39;</span>
<span class="p">]</span>

<span class="n">test_27k</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISION_test_df_newest_ecg_per_pt_tabular_metadata.csv&#39;</span><span class="p">))</span>
<span class="c1">#print(test_27k.columns.tolist())</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>(26606, 161)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3146: DtypeWarning: Columns (30,53,57,58,66) have mixed types.Specify dtype option on import or set low_memory=False.
  has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
</pre>
</div>
</div>

</div>

</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Adding-Data">Adding Data<a class="anchor-link" href="#Adding-Data">&#182;</a></h1>
</div>
</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="New-file-missing-LBBB-and-RBBB-so-we-need-to-add-those">New file missing LBBB and RBBB so we need to add those<a class="anchor-link" href="#New-file-missing-LBBB-and-RBBB-so-we-need-to-add-those">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[3]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">tabular_labels</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s1">&#39;/Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/Muse_Tabular_Labels_Master_04_24_2021.csv&#39;</span><span class="p">)</span>
<span class="n">selection</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;TestID&#39;</span><span class="p">,</span><span class="s1">&#39;LEFT BUNDLE BRANCH BLOCK&#39;</span><span class="p">,</span> <span class="s1">&#39;RIGHT BUNDLE BRANCH BLOCK&#39;</span><span class="p">]</span>
<span class="n">test_27k</span> <span class="o">=</span> <span class="n">test_27k</span><span class="o">.</span><span class="n">merge</span><span class="p">(</span><span class="n">tabular_labels</span><span class="p">[</span><span class="n">selection</span><span class="p">],</span> <span class="n">how</span><span class="o">=</span><span class="s1">&#39;left&#39;</span><span class="p">,</span><span class="n">on</span><span class="o">=</span><span class="s1">&#39;TestID&#39;</span><span class="p">,</span> <span class="n">validate</span><span class="o">=</span><span class="s1">&#39;1:1&#39;</span><span class="p">)</span>
<span class="n">test_27k</span> <span class="o">=</span> <span class="n">test_27k</span><span class="p">[</span><span class="n">columns_needed</span><span class="p">]</span>
<span class="n">test_27k</span><span class="p">[</span><span class="s1">&#39;AcquisitionDateTime_DT&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">to_datetime</span><span class="p">(</span><span class="n">test_27k</span><span class="p">[</span><span class="s1">&#39;AcquisitionDateTime_DT&#39;</span><span class="p">])</span>

<span class="nb">print</span><span class="p">(</span><span class="n">test_27k</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="c1"># test_27k.groupby([&#39;Ventricular_Pacing_Present&#39;,&#39;Poor_Data_Quality_Present&#39;]).size()</span>

<span class="c1"># # We might need to reindex these rows based on the original DF </span>
<span class="c1"># test_27k = original_test_27k[[&#39;filename&#39;]].merge(test_27k, on = &#39;filename&#39;, suffixes = (&#39;&#39;,&#39;_new&#39;), how = &#39;inner&#39;, validate = &#39;1:1&#39;)</span>
<span class="c1"># test_27k</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>(21048, 22)
</pre>
</div>
</div>

</div>

</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Backfill-four_grade-columns">Backfill four_grade columns<a class="anchor-link" href="#Backfill-four_grade-columns">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[4]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">test_27k</span><span class="p">[[</span><span class="s1">&#39;aortic_stenosis_label_four_grade&#39;</span><span class="p">,</span>
 <span class="s1">&#39;aortic_insufficiency_label_four_grade&#39;</span><span class="p">,</span>
 <span class="s1">&#39;mitral_regurgitation_label_four_grade&#39;</span><span class="p">]]</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="o">.</span><span class="n">value_counts</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[4]:</div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>aortic_stenosis_label_four_grade</th>
      <th>aortic_insufficiency_label_four_grade</th>
      <th>mitral_regurgitation_label_four_grade</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>15424</td>
      <td>17088</td>
      <td>13770</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>1166</td>
      <td>2348</td>
      <td>4902</td>
    </tr>
    <tr>
      <th>2.0</th>
      <td>284</td>
      <td>166</td>
      <td>601</td>
    </tr>
    <tr>
      <th>3.0</th>
      <td>623</td>
      <td>30</td>
      <td>141</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[5]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#Backfill the four_grade columns</span>
<span class="n">fours</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;aortic_stenosis_label_four_grade&#39;</span><span class="p">,</span>
 <span class="s1">&#39;aortic_insufficiency_label_four_grade&#39;</span><span class="p">,</span>
 <span class="s1">&#39;mitral_regurgitation_label_four_grade&#39;</span><span class="p">]</span>
<span class="k">for</span> <span class="n">column</span> <span class="ow">in</span> <span class="n">fours</span><span class="p">:</span>
    <span class="n">test_27k</span><span class="p">[</span><span class="n">column</span><span class="p">]</span> <span class="o">=</span> <span class="n">test_27k</span><span class="p">[</span><span class="n">column</span><span class="p">]</span><span class="o">.</span><span class="n">fillna</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[6]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">test_27k</span><span class="p">[[</span><span class="s1">&#39;aortic_stenosis_label_four_grade&#39;</span><span class="p">,</span>
 <span class="s1">&#39;aortic_insufficiency_label_four_grade&#39;</span><span class="p">,</span>
 <span class="s1">&#39;mitral_regurgitation_label_four_grade&#39;</span><span class="p">]]</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="o">.</span><span class="n">value_counts</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[6]:</div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>aortic_stenosis_label_four_grade</th>
      <th>aortic_insufficiency_label_four_grade</th>
      <th>mitral_regurgitation_label_four_grade</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>18975</td>
      <td>18504</td>
      <td>15404</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>1166</td>
      <td>2348</td>
      <td>4902</td>
    </tr>
    <tr>
      <th>2.0</th>
      <td>284</td>
      <td>166</td>
      <td>601</td>
    </tr>
    <tr>
      <th>3.0</th>
      <td>623</td>
      <td>30</td>
      <td>141</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

</div>

</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Add-PatientAge_Years">Add PatientAge_Years<a class="anchor-link" href="#Add-PatientAge_Years">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[7]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">test_27k</span> <span class="o">=</span> <span class="n">generate_age_multisite</span><span class="p">(</span><span class="n">test_27k</span><span class="p">,</span><span class="s1">&#39;AcquisitionDateTime_DT&#39;</span><span class="p">,</span><span class="s1">&#39;DateofBirth_D&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Number of rows where age not calculated:36
</pre>
</div>
</div>

</div>

</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Old-test-set-counts-vs-new-test-set">Old test set counts vs new test set<a class="anchor-link" href="#Old-test-set-counts-vs-new-test-set">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[8]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="nb">list</span><span class="p">(</span><span class="nb">filter</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="s1">&#39;four&#39;</span> <span class="ow">in</span> <span class="n">x</span><span class="p">,</span> <span class="n">test_27k</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[8]:</div>




<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain">
<pre>[&#39;aortic_stenosis_label_four_grade&#39;,
 &#39;aortic_insufficiency_label_four_grade&#39;,
 &#39;mitral_regurgitation_label_four_grade&#39;]</pre>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[9]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">original_test_27k</span><span class="p">[[</span><span class="s1">&#39;aortic_stenosis_label_binary_backfilled&#39;</span><span class="p">,</span> <span class="s1">&#39;mitral_regurgitation_label_binary_backfilled&#39;</span><span class="p">,</span>
       <span class="s1">&#39;aortic_insufficiency_label_binary_backfilled&#39;</span><span class="p">]]</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="o">.</span><span class="n">value_counts</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[9]:</div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>aortic_stenosis_label_binary_backfilled</th>
      <th>mitral_regurgitation_label_binary_backfilled</th>
      <th>aortic_insufficiency_label_binary_backfilled</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0</th>
      <td>25460</td>
      <td>25449</td>
      <td>26271</td>
    </tr>
    <tr>
      <th>1</th>
      <td>1146</td>
      <td>1157</td>
      <td>335</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[10]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">test_27k</span><span class="p">[[</span><span class="s1">&#39;aortic_stenosis_label_binary_backfilled&#39;</span><span class="p">,</span> <span class="s1">&#39;mitral_regurgitation_label_binary_backfilled&#39;</span><span class="p">,</span>
       <span class="s1">&#39;aortic_insufficiency_label_binary_backfilled&#39;</span><span class="p">]]</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="o">.</span><span class="n">value_counts</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[10]:</div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>aortic_stenosis_label_binary_backfilled</th>
      <th>mitral_regurgitation_label_binary_backfilled</th>
      <th>aortic_insufficiency_label_binary_backfilled</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>20141</td>
      <td>20306</td>
      <td>20852</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>907</td>
      <td>742</td>
      <td>196</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[11]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">test_27k</span><span class="o">.</span><span class="n">to_csv</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/JACC_REVISION_test_df_newest_ecg_per_pt_tabular_metadata_additional_backfill.csv&#39;</span><span class="p">),</span><span class="n">index</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[12]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># test_27k.to_csv(os.path.join(box_path_prefix, &#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/27k_test_metadata_no_prev_adjustment_newest_ecg_prosthetics_removed_metadata_reindexed.csv&#39;))</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Append-model-scores-to-the-data">Append model scores to the data<a class="anchor-link" href="#Append-model-scores-to-the-data">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[13]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Append model scores to the data</span>

<span class="c1"># Original</span>
<span class="n">as_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/Eval_Aortic_Stenosis_2022-01-18--04:38:05/y_y_pred_roc_0.8626.csv&#39;</span><span class="p">)</span>
<span class="n">ai_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/Eval_Aortic_Insufficiency_2022-01-18--04:38:37/y_y_pred_roc_0.7661.csv&#39;</span><span class="p">)</span>
<span class="n">mr_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/Eval_Mitral_Regurgitation_2022-01-18--04:39:09/y_y_pred_roc_0.8237.csv&#39;</span><span class="p">)</span>
<span class="n">as_ai_mr_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/Eval_AS_AI_MR_Combination_2022-01-18--04:35:19/y_y_pred_roc_0.8281.csv&#39;</span><span class="p">)</span>

<span class="n">as_pred</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">as_path</span><span class="p">,</span> <span class="n">names</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;y_AS&#39;</span><span class="p">,</span><span class="s1">&#39;y_pred_AS_proba&#39;</span><span class="p">],</span> <span class="n">dtype</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;y_AS&#39;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">int64</span><span class="p">})</span>
<span class="n">ai_pred</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">ai_path</span><span class="p">,</span> <span class="n">names</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;y_AI&#39;</span><span class="p">,</span><span class="s1">&#39;y_pred_AI_proba&#39;</span><span class="p">],</span> <span class="n">dtype</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;y_AI&#39;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">int64</span><span class="p">})</span>
<span class="n">mr_pred</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">mr_path</span><span class="p">,</span> <span class="n">names</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;y_MR&#39;</span><span class="p">,</span><span class="s1">&#39;y_pred_MR_proba&#39;</span><span class="p">],</span> <span class="n">dtype</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;y_MR&#39;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">int64</span><span class="p">})</span>
<span class="n">as_ai_mr_pred</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">as_ai_mr_path</span><span class="p">,</span> <span class="n">names</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;y_AS_AI_MR&#39;</span><span class="p">,</span><span class="s1">&#39;y_pred_AS_AI_MR_proba&#39;</span><span class="p">],</span> <span class="n">dtype</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;y_AS_AI_M&#39;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">int64</span><span class="p">})</span>

<span class="n">original_pred</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">as_pred</span><span class="p">,</span> <span class="n">ai_pred</span><span class="p">,</span> <span class="n">mr_pred</span><span class="p">,</span> <span class="n">as_ai_mr_pred</span><span class="p">],</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">original_pred</span><span class="p">[</span><span class="s1">&#39;y_pred_AS_proba_sigmoid&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">original_pred</span><span class="p">[</span><span class="s1">&#39;y_pred_AS_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
<span class="n">original_pred</span><span class="p">[</span><span class="s1">&#39;y_pred_AI_proba_sigmoid&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">original_pred</span><span class="p">[</span><span class="s1">&#39;y_pred_AI_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
<span class="n">original_pred</span><span class="p">[</span><span class="s1">&#39;y_pred_MR_proba_sigmoid&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">original_pred</span><span class="p">[</span><span class="s1">&#39;y_pred_MR_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
<span class="n">original_pred</span><span class="p">[</span><span class="s1">&#39;y_pred_AS_AI_MR_proba_sigmoid&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">original_pred</span><span class="p">[</span><span class="s1">&#39;y_pred_AS_AI_MR_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>

<span class="c1"># Bioprosthesis removed</span>
<span class="n">as_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Aortic_Stenosis_2022-03-03--06:21:48/y_y_pred_roc_0.8805.csv&#39;</span><span class="p">)</span>
<span class="n">ai_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Aortic_Insufficiency_2022-03-03--06:22:25/y_y_pred_roc_0.7688.csv&#39;</span><span class="p">)</span>
<span class="n">mr_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Mitral_Regurgitation_2022-03-03--06:23:05/y_y_pred_roc_0.8280.csv&#39;</span><span class="p">)</span>
<span class="n">as_ai_mr_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_AS_AI_MR_Combination_2022-03-03--06:23:39/y_y_pred_roc_0.8351.csv&#39;</span><span class="p">)</span>

<span class="n">as_pred</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">as_path</span><span class="p">,</span> <span class="n">names</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;y_AS&#39;</span><span class="p">,</span><span class="s1">&#39;y_pred_AS_proba&#39;</span><span class="p">],</span> <span class="n">dtype</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;y_AS&#39;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">int64</span><span class="p">})</span>
<span class="n">ai_pred</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">ai_path</span><span class="p">,</span> <span class="n">names</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;y_AI&#39;</span><span class="p">,</span><span class="s1">&#39;y_pred_AI_proba&#39;</span><span class="p">],</span> <span class="n">dtype</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;y_AI&#39;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">int64</span><span class="p">})</span>
<span class="n">mr_pred</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">mr_path</span><span class="p">,</span> <span class="n">names</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;y_MR&#39;</span><span class="p">,</span><span class="s1">&#39;y_pred_MR_proba&#39;</span><span class="p">],</span> <span class="n">dtype</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;y_MR&#39;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">int64</span><span class="p">})</span>
<span class="n">as_ai_mr_pred</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">as_ai_mr_path</span><span class="p">,</span> <span class="n">names</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;y_AS_AI_MR&#39;</span><span class="p">,</span><span class="s1">&#39;y_pred_AS_AI_MR_proba&#39;</span><span class="p">],</span> <span class="n">dtype</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;y_AS_AI_M&#39;</span><span class="p">:</span><span class="n">np</span><span class="o">.</span><span class="n">int64</span><span class="p">})</span>

<span class="n">pred</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">as_pred</span><span class="p">,</span> <span class="n">ai_pred</span><span class="p">,</span> <span class="n">mr_pred</span><span class="p">,</span> <span class="n">as_ai_mr_pred</span><span class="p">],</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">pred</span><span class="p">[</span><span class="s1">&#39;y_pred_AS_proba_sigmoid&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">pred</span><span class="p">[</span><span class="s1">&#39;y_pred_AS_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
<span class="n">pred</span><span class="p">[</span><span class="s1">&#39;y_pred_AI_proba_sigmoid&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">pred</span><span class="p">[</span><span class="s1">&#39;y_pred_AI_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
<span class="n">pred</span><span class="p">[</span><span class="s1">&#39;y_pred_MR_proba_sigmoid&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">pred</span><span class="p">[</span><span class="s1">&#39;y_pred_MR_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
<span class="n">pred</span><span class="p">[</span><span class="s1">&#39;y_pred_AS_AI_MR_proba_sigmoid&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">pred</span><span class="p">[</span><span class="s1">&#39;y_pred_AS_AI_MR_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>

<span class="n">test_pred</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">test_27k</span><span class="p">,</span> <span class="n">pred</span><span class="p">],</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>

<span class="n">lstFiles</span> <span class="o">=</span> <span class="p">[</span><span class="n">as_path</span><span class="p">,</span><span class="n">ai_path</span><span class="p">,</span><span class="n">mr_path</span><span class="p">,</span><span class="n">as_ai_mr_path</span><span class="p">]</span>
<span class="n">study_name</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;Eval_&#39;</span><span class="p">)[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;_2022&#39;</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">lstFiles</span><span class="p">]</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[14]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">original_pred</span><span class="p">[[</span><span class="s1">&#39;y_AS&#39;</span><span class="p">,</span><span class="s1">&#39;y_AI&#39;</span><span class="p">,</span><span class="s1">&#39;y_MR&#39;</span><span class="p">,</span><span class="s1">&#39;y_AS_AI_MR&#39;</span><span class="p">]]</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="o">.</span><span class="n">value_counts</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[14]:</div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>y_AS</th>
      <th>y_AI</th>
      <th>y_MR</th>
      <th>y_AS_AI_MR</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>25460</td>
      <td>26271</td>
      <td>25449</td>
      <td>24307</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>1146</td>
      <td>335</td>
      <td>1157</td>
      <td>2299</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[15]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">pred</span><span class="p">[[</span><span class="s1">&#39;y_AS&#39;</span><span class="p">,</span><span class="s1">&#39;y_AI&#39;</span><span class="p">,</span><span class="s1">&#39;y_MR&#39;</span><span class="p">,</span><span class="s1">&#39;y_AS_AI_MR&#39;</span><span class="p">]]</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="o">.</span><span class="n">value_counts</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[15]:</div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>y_AS</th>
      <th>y_AI</th>
      <th>y_MR</th>
      <th>y_AS_AI_MR</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0</th>
      <td>20141</td>
      <td>20852</td>
      <td>20306</td>
      <td>19404</td>
    </tr>
    <tr>
      <th>1</th>
      <td>907</td>
      <td>196</td>
      <td>742</td>
      <td>1644</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

</div>

</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Generate-Model-Output-Summary-Table">Generate Model Output Summary Table<a class="anchor-link" href="#Generate-Model-Output-Summary-Table">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[16]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">as_summary</span> <span class="o">=</span> <span class="n">test_pred</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;aortic_stenosis_label_four_grade&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)[</span><span class="s1">&#39;y_pred_AS_proba_sigmoid&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">describe</span><span class="p">(</span><span class="n">percentiles</span><span class="o">=</span><span class="p">[</span><span class="mf">0.025</span><span class="p">,</span> <span class="mf">0.975</span><span class="p">])</span>
<span class="n">mr_summary</span> <span class="o">=</span> <span class="n">test_pred</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;mitral_regurgitation_label_four_grade&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)[</span><span class="s1">&#39;y_pred_MR_proba_sigmoid&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">describe</span><span class="p">(</span><span class="n">percentiles</span><span class="o">=</span><span class="p">[</span><span class="mf">0.025</span><span class="p">,</span> <span class="mf">0.975</span><span class="p">])</span>
<span class="n">ai_summary</span> <span class="o">=</span> <span class="n">test_pred</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;aortic_insufficiency_label_four_grade&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)[</span><span class="s1">&#39;y_pred_AI_proba_sigmoid&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">describe</span><span class="p">(</span><span class="n">percentiles</span><span class="o">=</span><span class="p">[</span><span class="mf">0.025</span><span class="p">,</span> <span class="mf">0.975</span><span class="p">])</span>

<span class="n">as_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Aortic Stenosis&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">as_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">mr_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Mitral Regurgitation&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">mr_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">ai_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Aortic Insufficiency&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">ai_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>

<span class="n">summary_stats</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">as_summary</span><span class="p">,</span><span class="n">mr_summary</span><span class="p">,</span><span class="n">ai_summary</span><span class="p">],</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">summary_stats</span> <span class="o">=</span> <span class="n">summary_stats</span><span class="o">.</span><span class="n">rename</span><span class="p">(</span><span class="n">index</span> <span class="o">=</span> <span class="p">{</span><span class="mi">0</span><span class="p">:</span><span class="s1">&#39;None/trace*&#39;</span><span class="p">,</span><span class="mi">1</span><span class="p">:</span><span class="s1">&#39;Mild&#39;</span><span class="p">,</span><span class="mi">2</span><span class="p">:</span><span class="s1">&#39;Moderate&#39;</span><span class="p">,</span><span class="mi">3</span><span class="p">:</span><span class="s1">&#39;Severe&#39;</span><span class="p">})</span>

<span class="n">summary_stats</span><span class="o">.</span><span class="n">to_csv</span><span class="p">(</span><span class="s1">&#39;summary_stats.csv&#39;</span><span class="p">)</span>
<span class="c1">#output_cols = [&#39;y_pred_AS_proba&#39;, &#39;y_pred_AI_proba&#39;, &#39;y_pred_MR_proba&#39;, &#39;y_pred_AS_AI_MR_proba&#39;]</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[17]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">summary_stats</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[17]:</div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead tr th {
        text-align: left;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr>
      <th></th>
      <th colspan="8" halign="left">Aortic Stenosis</th>
      <th colspan="8" halign="left">Mitral Regurgitation</th>
      <th colspan="8" halign="left">Aortic Insufficiency</th>
    </tr>
    <tr>
      <th></th>
      <th>count</th>
      <th>mean</th>
      <th>std</th>
      <th>min</th>
      <th>2.5%</th>
      <th>50%</th>
      <th>97.5%</th>
      <th>max</th>
      <th>count</th>
      <th>mean</th>
      <th>std</th>
      <th>min</th>
      <th>2.5%</th>
      <th>50%</th>
      <th>97.5%</th>
      <th>max</th>
      <th>count</th>
      <th>mean</th>
      <th>std</th>
      <th>min</th>
      <th>2.5%</th>
      <th>50%</th>
      <th>97.5%</th>
      <th>max</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>None/trace*</th>
      <td>18975.0</td>
      <td>0.271788</td>
      <td>0.219771</td>
      <td>0.001363</td>
      <td>0.012322</td>
      <td>0.217372</td>
      <td>0.775906</td>
      <td>0.971297</td>
      <td>15404.0</td>
      <td>0.304829</td>
      <td>0.162789</td>
      <td>0.026033</td>
      <td>0.085917</td>
      <td>0.262900</td>
      <td>0.672151</td>
      <td>0.853389</td>
      <td>18504.0</td>
      <td>0.320664</td>
      <td>0.134718</td>
      <td>0.057341</td>
      <td>0.159497</td>
      <td>0.277066</td>
      <td>0.660512</td>
      <td>0.893703</td>
    </tr>
    <tr>
      <th>Mild</th>
      <td>1166.0</td>
      <td>0.536695</td>
      <td>0.218282</td>
      <td>0.017030</td>
      <td>0.115173</td>
      <td>0.564480</td>
      <td>0.880108</td>
      <td>0.976182</td>
      <td>4902.0</td>
      <td>0.436290</td>
      <td>0.182823</td>
      <td>0.047727</td>
      <td>0.132331</td>
      <td>0.433334</td>
      <td>0.739360</td>
      <td>0.850087</td>
      <td>2348.0</td>
      <td>0.410783</td>
      <td>0.155863</td>
      <td>0.131194</td>
      <td>0.198045</td>
      <td>0.374805</td>
      <td>0.736602</td>
      <td>0.940560</td>
    </tr>
    <tr>
      <th>Moderate</th>
      <td>284.0</td>
      <td>0.590465</td>
      <td>0.219712</td>
      <td>0.044428</td>
      <td>0.118110</td>
      <td>0.627991</td>
      <td>0.900383</td>
      <td>0.928993</td>
      <td>601.0</td>
      <td>0.564647</td>
      <td>0.157370</td>
      <td>0.083580</td>
      <td>0.192651</td>
      <td>0.610530</td>
      <td>0.768853</td>
      <td>0.823377</td>
      <td>166.0</td>
      <td>0.476017</td>
      <td>0.165181</td>
      <td>0.129977</td>
      <td>0.207978</td>
      <td>0.489910</td>
      <td>0.783583</td>
      <td>0.869834</td>
    </tr>
    <tr>
      <th>Severe</th>
      <td>623.0</td>
      <td>0.701876</td>
      <td>0.179399</td>
      <td>0.142367</td>
      <td>0.271392</td>
      <td>0.741752</td>
      <td>0.934518</td>
      <td>0.966101</td>
      <td>141.0</td>
      <td>0.588982</td>
      <td>0.148862</td>
      <td>0.098538</td>
      <td>0.217909</td>
      <td>0.637259</td>
      <td>0.768774</td>
      <td>0.800409</td>
      <td>30.0</td>
      <td>0.565792</td>
      <td>0.157375</td>
      <td>0.235375</td>
      <td>0.254424</td>
      <td>0.590199</td>
      <td>0.808102</td>
      <td>0.858896</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

</div>

</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Exploring-binary-label-vs.-y-discrepancies">Exploring binary label vs. y discrepancies<a class="anchor-link" href="#Exploring-binary-label-vs.-y-discrepancies">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[18]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">test_pred</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;y_AS&#39;</span><span class="p">,</span><span class="s1">&#39;y_AI&#39;</span><span class="p">,</span><span class="s1">&#39;y_MR&#39;</span><span class="p">])</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[18]:</div>




<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain">
<pre>y_AS  y_AI  y_MR
0     0     0       19404
            1         586
      1     0         124
            1          27
1     0     0         742
            1         120
      1     0          36
            1           9
dtype: int64</pre>
</div>

</div>

</div>

</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h3 id="These-seem-to-be-consistent-(except-for-1-case)">These seem to be consistent (except for 1 case)<a class="anchor-link" href="#These-seem-to-be-consistent-(except-for-1-case)">&#182;</a></h3>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[19]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">test_pred</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;aortic_stenosis_label_binary_backfilled&#39;</span><span class="p">,</span><span class="s1">&#39;aortic_stenosis_label_four_grade&#39;</span><span class="p">])</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[19]:</div>




<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain">
<pre>aortic_stenosis_label_binary_backfilled  aortic_stenosis_label_four_grade
0.0                                      0.0                                 18975
                                         1.0                                  1166
1.0                                      2.0                                   284
                                         3.0                                   623
dtype: int64</pre>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[20]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">test_pred</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;aortic_stenosis_label_binary_backfilled&#39;</span><span class="p">,</span><span class="s1">&#39;y_AS&#39;</span><span class="p">])</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[20]:</div>




<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain">
<pre>aortic_stenosis_label_binary_backfilled  y_AS
0.0                                      0       20141
1.0                                      1         907
dtype: int64</pre>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[21]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">test_pred</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;mitral_regurgitation_label_binary_backfilled&#39;</span><span class="p">,</span><span class="s1">&#39;y_MR&#39;</span><span class="p">])</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[21]:</div>




<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain">
<pre>mitral_regurgitation_label_binary_backfilled  y_MR
0.0                                           0       20306
1.0                                           1         742
dtype: int64</pre>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[22]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">test_pred</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;aortic_insufficiency_label_binary_backfilled&#39;</span><span class="p">,</span><span class="s1">&#39;y_AI&#39;</span><span class="p">])</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[22]:</div>




<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain">
<pre>aortic_insufficiency_label_binary_backfilled  y_AI
0.0                                           0       20852
1.0                                           1         196
dtype: int64</pre>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[23]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">test_pred</span><span class="p">[[</span><span class="s1">&#39;y_AS&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AS_proba&#39;</span><span class="p">,</span> <span class="s1">&#39;y_AI&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AI_proba&#39;</span><span class="p">,</span> <span class="s1">&#39;y_MR&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_MR_proba&#39;</span><span class="p">,</span> <span class="s1">&#39;y_AS_AI_MR&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AS_AI_MR_proba&#39;</span><span class="p">]]</span><span class="o">.</span><span class="n">apply</span><span class="p">([</span><span class="nb">min</span><span class="p">,</span> <span class="nb">max</span><span class="p">])</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[23]:</div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>y_AS</th>
      <th>y_pred_AS_proba</th>
      <th>y_AI</th>
      <th>y_pred_AI_proba</th>
      <th>y_MR</th>
      <th>y_pred_MR_proba</th>
      <th>y_AS_AI_MR</th>
      <th>y_pred_AS_AI_MR_proba</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>min</th>
      <td>0</td>
      <td>-6.597054</td>
      <td>0</td>
      <td>-2.799697</td>
      <td>0</td>
      <td>-3.622027</td>
      <td>0</td>
      <td>-4.252630</td>
    </tr>
    <tr>
      <th>max</th>
      <td>1</td>
      <td>3.713206</td>
      <td>1</td>
      <td>2.761508</td>
      <td>1</td>
      <td>1.761434</td>
      <td>1</td>
      <td>3.549835</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

</div>

</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Generate-Summary-Table-for-Race-/-Ethnicity">Generate Summary Table for Race / Ethnicity<a class="anchor-link" href="#Generate-Summary-Table-for-Race-/-Ethnicity">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[&nbsp;]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">race_ethnicity</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/RACE_ETHNICITY/west_empi_race_ethnicity_simplified_version.csv&#39;</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="n">race_ethnicity</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="n">race_ethnicity</span> <span class="o">=</span> <span class="n">race_ethnicity</span><span class="p">[</span><span class="n">race_ethnicity</span><span class="p">[</span><span class="s1">&#39;EMPI&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">notnull</span><span class="p">()]</span>
<span class="nb">print</span><span class="p">(</span><span class="n">race_ethnicity</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="n">race_ethnicity</span><span class="p">[</span><span class="s1">&#39;EMPI&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">race_ethnicity</span><span class="p">[</span><span class="s1">&#39;EMPI&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">int64</span><span class="p">)</span>
<span class="n">race_ethnicity</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[&nbsp;]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">syngo</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/RACE_ETHNICITY/SYNGO study with race and ethnicity per patient aggregation and simplification.csv&#39;</span><span class="p">))</span>
<span class="n">syngo</span><span class="p">[</span><span class="s1">&#39;PATIENT_ID&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">to_numeric</span><span class="p">(</span><span class="n">syngo</span><span class="p">[</span><span class="s1">&#39;PATIENT_ID&#39;</span><span class="p">],</span> <span class="n">errors</span> <span class="o">=</span> <span class="s1">&#39;coerce&#39;</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">syngo</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="n">syngo</span> <span class="o">=</span> <span class="n">syngo</span><span class="p">[</span><span class="n">syngo</span><span class="p">[</span><span class="s1">&#39;PATIENT_ID&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">notnull</span><span class="p">()]</span>
<span class="nb">print</span><span class="p">(</span><span class="n">syngo</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>

<span class="n">syngo</span><span class="p">[</span><span class="s1">&#39;PATIENT_ID&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">syngo</span><span class="p">[</span><span class="s1">&#39;PATIENT_ID&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">int64</span><span class="p">)</span>
<span class="n">syngo</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h3 id="Append-Race/Ethnicity-Data">Append Race/Ethnicity Data<a class="anchor-link" href="#Append-Race/Ethnicity-Data">&#182;</a></h3>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[26]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># test.set_index([&#39;PatientID&#39;]).join(syngo.set_index(&#39;PATIENT_ID&#39;), how = &#39;inner&#39;) # 23835</span>
<span class="c1"># test_race_ethnicity = test.drop(&#39;Race&#39;, axis = 1).set_index([&#39;PatientID&#39;]).join(race_ethnicity.set_index(&#39;EMPI&#39;), rsuffix = &#39;_df&#39;, how = &#39;inner&#39;) # more rows with this join 25054</span>

<span class="n">test_race_ethnicity</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">merge</span><span class="p">(</span><span class="n">left</span> <span class="o">=</span> <span class="n">test_pred</span><span class="o">.</span><span class="n">drop</span><span class="p">(</span><span class="s1">&#39;Race&#39;</span><span class="p">,</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">1</span><span class="p">),</span> <span class="n">left_on</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;PatientID&#39;</span><span class="p">],</span> <span class="n">right</span> <span class="o">=</span> <span class="n">race_ethnicity</span><span class="p">,</span> <span class="n">right_on</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;EMPI&#39;</span><span class="p">],</span> <span class="n">how</span> <span class="o">=</span> <span class="s1">&#39;left&#39;</span><span class="p">)</span> 
<span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[26]:</div>




<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain">
<pre>21048</pre>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[27]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;Race&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[27]:</div>




<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain">
<pre>Race
ASIAN                      485
BLACK/AFRICAN AMERICAN    2559
DECLINED                  1302
NATIVEAM                    26
OTHER                     7590
WHITE                     7807
NaN                       1279
dtype: int64</pre>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[28]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;Ethnicity&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[28]:</div>




<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain">
<pre>Ethnicity
NOT HISPANIC OR LATINO     5290
SPANISH/HISPANIC           4034
UNKNOWN                   10370
NaN                        1354
dtype: int64</pre>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[29]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">anna_race</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span><span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/NYP_Lawrence/propensity-score-matching-main/race_test_combined_anna upd.csv&#39;</span><span class="p">))</span>
<span class="n">anna_cols</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;filename&#39;</span><span class="p">,</span><span class="s1">&#39;RACE&#39;</span><span class="p">]</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[30]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">test_race_ethnicity</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">merge</span><span class="p">(</span><span class="n">anna_race</span><span class="p">[</span><span class="n">anna_cols</span><span class="p">],</span><span class="n">how</span><span class="o">=</span><span class="s1">&#39;left&#39;</span><span class="p">,</span><span class="n">on</span><span class="o">=</span><span class="s1">&#39;filename&#39;</span><span class="p">)</span>
<span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;Race&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;RACE&#39;</span><span class="p">]</span>
<span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">drop</span><span class="p">(</span><span class="n">columns</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;RACE&#39;</span><span class="p">],</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;Race&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[30]:</div>




<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain">
<pre>Race
ASIAN                      485
BLACK/AFRICAN AMERICAN    3381
DECLINED                  1203
NATIVEAM                    26
OTHER                     6347
WHITE                     8589
NaN                       1017
dtype: int64</pre>
</div>

</div>

</div>

</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Compute-Age/Sex-Stats-Using-Bootstrap">Compute Age/Sex Stats Using Bootstrap<a class="anchor-link" href="#Compute-Age/Sex-Stats-Using-Bootstrap">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[31]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">female_index</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="p">[</span><span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">Gender</span><span class="o">==</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">index</span>
<span class="n">male_index</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="p">[</span><span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">Gender</span><span class="o">==</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">index</span>

<span class="n">age18to60</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="p">[(</span><span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">0</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">60</span><span class="p">)]</span><span class="o">.</span><span class="n">index</span>
<span class="n">age60to70</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="p">[(</span><span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">61</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">70</span><span class="p">)]</span><span class="o">.</span><span class="n">index</span>
<span class="n">age70to80</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="p">[(</span><span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">71</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">80</span><span class="p">)]</span><span class="o">.</span><span class="n">index</span>
<span class="n">age80plus</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="p">[(</span><span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">81</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">130</span><span class="p">)]</span><span class="o">.</span><span class="n">index</span>

<span class="n">age18to65</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="p">[(</span><span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">0</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">65</span><span class="p">)]</span><span class="o">.</span><span class="n">index</span>
<span class="n">age65plus</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="p">[(</span><span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">65</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">130</span><span class="p">)]</span><span class="o">.</span><span class="n">index</span>

<span class="k">def</span> <span class="nf">new_age_column</span><span class="p">(</span><span class="n">row</span><span class="p">):</span>
    <span class="k">if</span> <span class="n">row</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">0</span> <span class="ow">and</span> <span class="n">row</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">60</span><span class="p">:</span>
        <span class="k">return</span> <span class="s1">&#39;18-60&#39;</span>
    <span class="k">elif</span> <span class="n">row</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">61</span> <span class="ow">and</span> <span class="n">row</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">70</span><span class="p">:</span>
        <span class="k">return</span> <span class="s1">&#39;60-70&#39;</span>
    <span class="k">elif</span> <span class="n">row</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">71</span> <span class="ow">and</span> <span class="n">row</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">80</span><span class="p">:</span>
        <span class="k">return</span> <span class="s1">&#39;70-80&#39;</span>
    <span class="k">elif</span> <span class="n">row</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">81</span> <span class="ow">and</span> <span class="n">row</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">120</span><span class="p">:</span>
        <span class="k">return</span> <span class="s1">&#39;80+&#39;</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="k">return</span> <span class="kc">None</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[32]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;Patient_Age_Group&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">new_age_column</span><span class="p">,</span><span class="n">axis</span> <span class="o">=</span><span class="mi">1</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[33]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;Patient_Age_Group&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">hist</span><span class="p">()</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[33]:</div>




<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain">
<pre>&lt;AxesSubplot:&gt;</pre>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[34]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">factor_var</span> <span class="o">=</span> <span class="s1">&#39;Patient_Age_Group&#39;</span>
<span class="n">target_var</span> <span class="o">=</span> <span class="s1">&#39;AS_AI_MR&#39;</span>
<span class="n">plot_results_by_factor_by_target</span><span class="p">(</span><span class="n">test_race_ethnicity</span><span class="p">,</span> <span class="n">factor_var</span><span class="p">,</span> <span class="n">target_var</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>18-60 

AUROC is: 0.81
Threshold value is: 0.27530762692370364
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 10.7 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>       <td>10.669</td>      <td></td> <td>7.963</td> <td>14.294</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>2.367</td> <td>0.149</td> <td>2.075</td>  <td>2.660</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>1.477</td>      <td></td> <td>1.338</td>  <td>1.630</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>0.390</td> <td>0.050</td> <td>0.291</td>  <td>0.488</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 9.1 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>        <td>9.053</td>      <td></td> <td>6.581</td> <td>12.454</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>2.203</td> <td>0.163</td> <td>1.884</td>  <td>2.522</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>3.189</td>      <td></td> <td>2.499</td>  <td>4.070</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>1.160</td> <td>0.124</td> <td>0.916</td>  <td>1.404</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>60-70 

AUROC is: 0.79
Threshold value is: 0.41694409320792375
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 6.1 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>   <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>        <td>6.130</td>      <td></td> <td>4.735</td> <td>7.935</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>1.813</td> <td>0.132</td> <td>1.555</td> <td>2.071</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>1.983</td>      <td></td> <td>1.711</td> <td>2.297</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>0.685</td> <td>0.075</td> <td>0.537</td> <td>0.832</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 7.5 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>        <td>7.472</td>      <td></td> <td>5.534</td> <td>10.089</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>2.011</td> <td>0.153</td> <td>1.711</td>  <td>2.311</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>3.089</td>      <td></td> <td>2.454</td>  <td>3.889</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>1.128</td> <td>0.117</td> <td>0.898</td>  <td>1.358</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>70-80 

AUROC is: 0.72
Threshold value is: 0.5144382945813603
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 3.8 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>   <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>        <td>3.751</td>      <td></td> <td>3.031</td> <td>4.642</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>1.322</td> <td>0.109</td> <td>1.109</td> <td>1.535</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>2.079</td>      <td></td> <td>1.798</td> <td>2.405</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>0.732</td> <td>0.074</td> <td>0.587</td> <td>0.877</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 3.9 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>   <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>        <td>3.916</td>      <td></td> <td>3.173</td> <td>4.832</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>1.365</td> <td>0.107</td> <td>1.155</td> <td>1.575</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>2.057</td>      <td></td> <td>1.789</td> <td>2.365</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>0.721</td> <td>0.071</td> <td>0.582</td> <td>0.861</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>80+ 

AUROC is: 0.73
Threshold value is: 0.6513456467300284
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 5.0 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>   <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>        <td>4.956</td>      <td></td> <td>3.792</td> <td>6.478</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>1.601</td> <td>0.137</td> <td>1.333</td> <td>1.868</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>3.617</td>      <td></td> <td>2.854</td> <td>4.583</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>1.286</td> <td>0.121</td> <td>1.049</td> <td>1.522</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 4.3 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>   <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>        <td>4.265</td>      <td></td> <td>3.551</td> <td>5.124</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>1.451</td> <td>0.094</td> <td>1.267</td> <td>1.634</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>2.183</td>      <td></td> <td>1.938</td> <td>2.458</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>0.781</td> <td>0.061</td> <td>0.662</td> <td>0.900</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>nan 

AUROC is: 0.89
Threshold value is: 0.5335808680976182
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: inf P-Value is: 0.002
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>     <th>LCB</th>    <th>UCB</th>   <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>       <td>36.250</td>      <td></td>  <td>1.786</td> <td>735.877</td>   <td>0.019</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>3.590</td> <td>1.536</td>  <td>0.580</td>   <td>6.601</td>   <td>0.019</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>8.622</td>      <td></td>  <td>0.610</td> <td>121.815</td>   <td>0.111</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>2.154</td> <td>1.351</td> <td>-0.494</td>   <td>4.803</td>   <td>0.111</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 20.7 P-Value is: 0.008
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>     <th>LCB</th>    <th>UCB</th>   <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>       <td>20.667</td>      <td></td>  <td>1.953</td> <td>218.712</td>   <td>0.012</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>3.029</td> <td>1.204</td>  <td>0.669</td>   <td>5.388</td>   <td>0.012</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>4.189</td>      <td></td>  <td>0.722</td>  <td>24.319</td>   <td>0.110</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>1.433</td> <td>0.897</td> <td>-0.326</td>   <td>3.191</td>   <td>0.110</td>
</tr>
</table>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[35]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">n_samples</span> <span class="o">=</span> <span class="mi">10</span> <span class="c1"># bootstrap parameter</span>

<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Aortic Stenosis&#39;</span><span class="p">)</span>
<span class="n">as_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;Patient_Age_Group&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AS&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AS_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Mitral Regurgitation&#39;</span><span class="p">)</span>
<span class="n">mr_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;Patient_Age_Group&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_MR&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_MR_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Aortic Insufficiency&#39;</span><span class="p">)</span>
<span class="n">ai_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;Patient_Age_Group&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AI&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AI_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Combined Aortic Stenosis, Aortic Regurgitation, and Mitral Regurgitation&#39;</span><span class="p">)</span>
<span class="n">as_mr_ai_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;Patient_Age_Group&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AS_AI_MR&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AS_AI_MR_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>           
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n\n\n</span><span class="s1">&#39;</span><span class="p">)</span>

<span class="n">as_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Aortic Stenosis&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">as_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">mr_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Mitral Regurgitation&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">mr_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">ai_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Aortic Insufficiency&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">ai_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">as_mr_ai_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Combined Aortic Stenosis, Aortic Regurgitation, and Mitral Regurgitation&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">as_mr_ai_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>

<span class="n">age_summary_stats</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">as_summary</span><span class="p">,</span><span class="n">mr_summary</span><span class="p">,</span><span class="n">ai_summary</span><span class="p">,</span><span class="n">as_mr_ai_summary</span><span class="p">],</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">age_summary_stats</span><span class="o">.</span><span class="n">to_csv</span><span class="p">(</span><span class="s1">&#39;age_summary_stats.csv&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Aortic Stenosis
18-60 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 10/10 [00:01&lt;00:00,  5.79it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.75 0.88 0.730097248666175 0.9176805793347693
60-70 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 10/10 [00:00&lt;00:00, 11.47it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.71 0.8 0.7019308909072053 0.8254304673223016
70-80 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 10/10 [00:00&lt;00:00, 19.52it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.72 0.79 0.718808566867564 0.7952340366099576
80+ 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 10/10 [00:00&lt;00:00, 31.05it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.72 0.78 0.7164895487694941 0.7762557265479183
nan 


Mitral Regurgitation
18-60 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 10/10 [00:01&lt;00:00,  6.24it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.75 0.86 0.7508599733475103 0.8824598129228192
60-70 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 10/10 [00:00&lt;00:00, 13.38it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.82 0.87 0.8015219235996562 0.8839832015076687
70-80 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 10/10 [00:00&lt;00:00, 16.72it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.73 0.83 0.7180120179594174 0.8540374026348359
80+ 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 10/10 [00:00&lt;00:00, 30.31it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.67 0.76 0.6605119237164262 0.7638071307161832
nan 


Aortic Insufficiency
18-60 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 10/10 [00:01&lt;00:00,  5.55it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.73 0.87 0.7240681444570903 0.9009310520437414
60-70 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 10/10 [00:00&lt;00:00, 11.40it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.63 0.83 0.6190394863561854 0.8638125653025401
70-80 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 10/10 [00:00&lt;00:00, 14.89it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.63 0.78 0.6044662864009422 0.8049715703823834
80+ 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 10/10 [00:00&lt;00:00, 20.90it/s]
/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_ranking.py:999: UndefinedMetricWarning: No positive samples in y_true, true positive value should be meaningless
  warnings.warn(
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.64 0.78 0.6076545211082022 0.8011775129506545
nan 


Combined Aortic Stenosis, Aortic Regurgitation, and Mitral Regurgitation
18-60 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 10/10 [00:01&lt;00:00,  5.57it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.8 0.83 0.7918608815291726 0.8389628150475155
60-70 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 10/10 [00:00&lt;00:00, 12.03it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.76 0.82 0.7609023967654973 0.8255039023416939
70-80 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 10/10 [00:00&lt;00:00, 18.52it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.72 0.74 0.7122707064958184 0.7369380115398251
80+ 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 10/10 [00:00&lt;00:00, 24.51it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.71 0.76 0.7058830155136864 0.7610709448934017
nan 





</pre>
</div>
</div>

</div>

</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Plot-Results-by-Age-Group">Plot Results by Age Group<a class="anchor-link" href="#Plot-Results-by-Age-Group">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[36]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#generate counts of each label number of studies, only non 65 plus</span>
<span class="n">n_AS</span><span class="p">,</span> <span class="n">n_AI</span><span class="p">,</span> <span class="n">n_MR</span><span class="p">,</span> <span class="n">n_AS_AI_MR</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span>
<span class="k">for</span> <span class="n">study</span> <span class="ow">in</span> <span class="n">study_name</span><span class="p">:</span>
    <span class="k">if</span> <span class="s1">&#39;65plus&#39;</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">study</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">study</span><span class="o">==</span><span class="s1">&#39;AS&#39;</span><span class="p">:</span>
            <span class="n">n_AS</span><span class="o">+=</span><span class="mi">1</span>
        <span class="k">if</span> <span class="n">study</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s1">&#39;AI&#39;</span><span class="p">):</span>
            <span class="n">n_AI</span><span class="o">+=</span><span class="mi">1</span>
        <span class="k">if</span> <span class="n">study</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s1">&#39;MR&#39;</span><span class="p">):</span>
            <span class="n">n_MR</span><span class="o">+=</span><span class="mi">1</span>
        <span class="k">if</span> <span class="s1">&#39;AS_AI_MR&#39;</span> <span class="ow">in</span> <span class="n">study</span><span class="p">:</span>
            <span class="n">n_AS_AI_MR</span><span class="o">+=</span><span class="mi">1</span>
            
<span class="c1">#generate color counts (must make separate for age 65 if we want the two studies that only differ from age to have same color)</span>
<span class="n">c_AS</span><span class="p">,</span> <span class="n">c_AI</span><span class="p">,</span> <span class="n">c_MR</span><span class="p">,</span> <span class="n">c_AS_AI_MR</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span>
<span class="n">c65_AS</span><span class="p">,</span> <span class="n">c65_AI</span><span class="p">,</span> <span class="n">c65_MR</span><span class="p">,</span> <span class="n">c65_AS_AI_MR</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span>

<span class="nb">print</span><span class="p">(</span><span class="n">lstFiles</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">study_name</span><span class="p">)</span>

<span class="n">columns</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">,</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span>
<span class="c1">#a = plt.figure(figsize=(15, 15), subplots = [1,2])  </span>
<span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span>

<span class="k">for</span> <span class="n">file</span><span class="p">,</span> <span class="n">ax</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">lstFiles</span><span class="p">,</span><span class="n">ax</span><span class="o">.</span><span class="n">flatten</span><span class="p">()):</span>
    <span class="c1">#plt.figure(figsize=(15, 15))  </span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">,</span><span class="n">file</span><span class="p">)</span>
    <span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">file</span><span class="p">,</span> <span class="n">names</span><span class="o">=</span><span class="n">columns</span><span class="p">)</span>
    <span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">test_race_ethnicity</span><span class="p">,</span> <span class="n">df</span><span class="p">],</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
    <span class="n">yhat</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">))</span>
    <span class="n">neg_count</span><span class="p">,</span> <span class="n">pos_count</span> <span class="o">=</span> <span class="p">(</span><span class="nb">format</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span><span class="s1">&#39;,d&#39;</span><span class="p">)),(</span><span class="nb">format</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()[</span><span class="mi">1</span><span class="p">],</span><span class="s1">&#39;,d&#39;</span><span class="p">))</span>

    <span class="c1"># calculate scores</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;All scores&#39;</span><span class="p">)</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span><span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUROC is:&#39;</span><span class="p">,</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">auroc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="mi">3</span><span class="p">)</span>
    <span class="n">auroc_total</span> <span class="o">=</span> <span class="n">auroc</span>
    <span class="n">optimal_idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">optimal_threshold</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">optimal_idx</span><span class="p">]</span>
    <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Threshold value is:&quot;</span><span class="p">,</span> <span class="n">optimal_threshold</span><span class="p">)</span>
    
    <span class="c1"># test_pred[test_pred[&#39;QRSDuration&#39;] &lt;= 120][&#39;QRSDuration&#39;].value_counts()</span>
    <span class="n">df_18_60</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;Patient_Age_Group&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="s1">&#39;18-60&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">reset_index</span><span class="p">()</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
    <span class="n">df_60_70</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;Patient_Age_Group&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="s1">&#39;60-70&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">reset_index</span><span class="p">()</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
    <span class="n">df_70_80</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;Patient_Age_Group&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="s1">&#39;70-80&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">reset_index</span><span class="p">()</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
    <span class="n">df_80_plus</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;Patient_Age_Group&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="s1">&#39;80+&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">reset_index</span><span class="p">()</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>

    
<span class="c1"># df_18_60</span>
    <span class="n">fpr_boot</span><span class="p">,</span> <span class="n">tpr_boot</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">boot</span><span class="p">(</span><span class="n">df_18_60</span><span class="p">)</span>
    
    <span class="c1"># plotting bootstrap</span>
    <span class="n">lw</span> <span class="o">=</span> <span class="mi">2</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">100</span><span class="p">):</span>
        <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="n">tpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;lightcoral&#39;</span><span class="p">,</span>
                 <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">alpha</span> <span class="o">=</span> <span class="o">.</span><span class="mi">1</span><span class="p">)</span>
        
    <span class="c1"># calculate scores</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df_18_60</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df_18_60</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span><span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUROC is:&#39;</span><span class="p">,</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">auroc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="mi">3</span><span class="p">)</span>
    <span class="n">optimal_idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">optimal_threshold</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">optimal_idx</span><span class="p">]</span>
    <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Threshold value is:&quot;</span><span class="p">,</span> <span class="n">optimal_threshold</span><span class="p">)</span>
    
    
    <span class="c1"># plottring ROC</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;red&#39;</span><span class="p">,</span>
    <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Age 18-60 (AUROC = </span><span class="si">%0.3f</span><span class="s1">)&#39;</span> <span class="o">%</span> <span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="c1">#plt.plot([0, 1], [0, 1], color=&#39;navy&#39;, lw=lw, linestyle=&#39;--&#39;)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.05</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">&#39;False Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">&#39;True Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s2">&quot;lower right&quot;</span><span class="p">)</span>
    
    
<span class="c1"># df_60_70</span>
    <span class="n">fpr_boot</span><span class="p">,</span> <span class="n">tpr_boot</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">boot</span><span class="p">(</span><span class="n">df_60_70</span><span class="p">)</span>
    
    <span class="c1"># plotting bootstrap</span>
    <span class="n">lw</span> <span class="o">=</span> <span class="mi">2</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">100</span><span class="p">):</span>
        <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="n">tpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;lightblue&#39;</span><span class="p">,</span>
                 <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">alpha</span> <span class="o">=</span> <span class="o">.</span><span class="mi">1</span><span class="p">)</span>
        
    <span class="c1"># calculate scores</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df_60_70</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df_60_70</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span><span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUROC is:&#39;</span><span class="p">,</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">auroc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="mi">3</span><span class="p">)</span>
    <span class="n">optimal_idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">optimal_threshold</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">optimal_idx</span><span class="p">]</span>
    <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Threshold value is:&quot;</span><span class="p">,</span> <span class="n">optimal_threshold</span><span class="p">)</span>
    
    <span class="c1"># plotting ROC</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;blue&#39;</span><span class="p">,</span>
    <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Age 61-70 (AUROC = </span><span class="si">%0.3f</span><span class="s1">)&#39;</span> <span class="o">%</span> <span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="c1">#plt.plot([0, 1], [0, 1], color=&#39;navy&#39;, lw=lw, linestyle=&#39;--&#39;)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.05</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">&#39;False Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">&#39;True Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s2">&quot;lower right&quot;</span><span class="p">)</span>
    
<span class="c1"># df_70_80</span>
    <span class="n">fpr_boot</span><span class="p">,</span> <span class="n">tpr_boot</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">boot</span><span class="p">(</span><span class="n">df_70_80</span><span class="p">)</span>
    
    <span class="c1"># plotting bootstrap</span>
    <span class="n">lw</span> <span class="o">=</span> <span class="mi">2</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">100</span><span class="p">):</span>
        <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="n">tpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;lightgreen&#39;</span><span class="p">,</span>
                 <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">alpha</span> <span class="o">=</span> <span class="o">.</span><span class="mi">1</span><span class="p">)</span>
        
    <span class="c1"># calculate scores</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df_70_80</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df_70_80</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span><span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUROC is:&#39;</span><span class="p">,</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">auroc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="mi">3</span><span class="p">)</span>
    <span class="n">optimal_idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">optimal_threshold</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">optimal_idx</span><span class="p">]</span>
    <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Threshold value is:&quot;</span><span class="p">,</span> <span class="n">optimal_threshold</span><span class="p">)</span>
    
    <span class="c1"># plotting ROC</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;green&#39;</span><span class="p">,</span>
    <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Age 71-80 (AUROC = </span><span class="si">%0.3f</span><span class="s1">)&#39;</span> <span class="o">%</span> <span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="c1">#plt.plot([0, 1], [0, 1], color=&#39;navy&#39;, lw=lw, linestyle=&#39;--&#39;)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.05</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">&#39;False Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">&#39;True Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s2">&quot;lower right&quot;</span><span class="p">)</span>
    
<span class="c1"># df_80_plus</span>
    <span class="n">fpr_boot</span><span class="p">,</span> <span class="n">tpr_boot</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">boot</span><span class="p">(</span><span class="n">df_80_plus</span><span class="p">)</span>
    
    <span class="c1"># plotting bootstrap</span>
    <span class="n">lw</span> <span class="o">=</span> <span class="mi">2</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">100</span><span class="p">):</span>
        <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="n">tpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;lightyellow&#39;</span><span class="p">,</span>
                 <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">alpha</span> <span class="o">=</span> <span class="o">.</span><span class="mi">1</span><span class="p">)</span>
        
    <span class="c1"># calculate scores</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df_80_plus</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df_80_plus</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span><span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUROC is:&#39;</span><span class="p">,</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">auroc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="mi">3</span><span class="p">)</span>
    <span class="n">optimal_idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">optimal_threshold</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">optimal_idx</span><span class="p">]</span>
    <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Threshold value is:&quot;</span><span class="p">,</span> <span class="n">optimal_threshold</span><span class="p">)</span>
    
    
    <span class="c1"># plotting ROC</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;gold&#39;</span><span class="p">,</span>
    <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Age 81+ (AUROC = </span><span class="si">%0.3f</span><span class="s1">)&#39;</span> <span class="o">%</span> <span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="c1">#plt.plot([0, 1], [0, 1], color=&#39;navy&#39;, lw=lw, linestyle=&#39;--&#39;)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.05</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">&#39;False Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">&#39;True Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s2">&quot;lower right&quot;</span><span class="p">)</span>
    
    
    

<span class="c1"># Plotting the Rest    </span>
    <span class="n">titlename</span> <span class="o">=</span> <span class="n">file</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;Eval_&#39;</span><span class="p">)[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;_2022&#39;</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="sa">f</span><span class="s1">&#39; [</span><span class="si">{</span><span class="n">pos_count</span><span class="si">}</span><span class="s1"> / </span><span class="si">{</span><span class="n">neg_count</span><span class="si">}</span><span class="s1">]&#39;</span> <span class="o">+</span> <span class="sa">f</span><span class="s1">&#39; (AUROC=</span><span class="si">{</span><span class="n">auroc_total</span><span class="si">}</span><span class="s1">)&#39;</span>
    <span class="n">titlename</span> <span class="o">=</span> <span class="n">titlename</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;AS_AI_MR&quot;</span><span class="p">,</span> <span class="s2">&quot;AS, AR, or MR&quot;</span><span class="p">)</span>
    <span class="n">titlename</span> <span class="o">=</span> <span class="n">titlename</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;_&quot;</span><span class="p">,</span> <span class="s2">&quot; &quot;</span><span class="p">)</span>
    <span class="n">titlename</span> <span class="o">=</span> <span class="n">titlename</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;Aortic Insufficiency&quot;</span><span class="p">,</span> <span class="s2">&quot;Aortic Regurgitation&quot;</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="n">titlename</span><span class="p">)</span>

    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;black&#39;</span><span class="p">,</span> <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">linestyle</span><span class="o">=</span><span class="s1">&#39;--&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.05</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">&#39;False Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">&#39;True Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="n">titlename</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s2">&quot;lower right&quot;</span><span class="p">)</span>
    
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>[&#39;/Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Aortic_Stenosis_2022-03-03--06:21:48/y_y_pred_roc_0.8805.csv&#39;, &#39;/Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Aortic_Insufficiency_2022-03-03--06:22:25/y_y_pred_roc_0.7688.csv&#39;, &#39;/Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Mitral_Regurgitation_2022-03-03--06:23:05/y_y_pred_roc_0.8280.csv&#39;, &#39;/Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_AS_AI_MR_Combination_2022-03-03--06:23:39/y_y_pred_roc_0.8351.csv&#39;]
[&#39;Aortic_Stenosis&#39;, &#39;Aortic_Insufficiency&#39;, &#39;Mitral_Regurgitation&#39;, &#39;AS_AI_MR_Combination&#39;]

 /Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Aortic_Stenosis_2022-03-03--06:21:48/y_y_pred_roc_0.8805.csv
All scores
AUROC is: 0.8804872725564813 0.8804872725564813
Threshold value is: 0.4290496913006215
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:03&lt;00:00, 257.97it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AUROC is: 0.8331332744406912 0.8331332744406912
Threshold value is: 0.14236707472614496
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:02&lt;00:00, 379.22it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AUROC is: 0.7845235557450437 0.7845235557450437
Threshold value is: 0.37757042779559474
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:02&lt;00:00, 462.21it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AUROC is: 0.7588724569454022 0.7588724569454022
Threshold value is: 0.591104117144755
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:02&lt;00:00, 469.46it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AUROC is: 0.7490658459186391 0.7490658459186391
Threshold value is: 0.7445367314698965
Aortic Stenosis [907 / 20,141] (AUROC=0.88)

 /Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Aortic_Insufficiency_2022-03-03--06:22:25/y_y_pred_roc_0.7688.csv
All scores
AUROC is: 0.7687817837666431 0.7687817837666431
Threshold value is: 0.3979350694912722
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:03&lt;00:00, 268.13it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AUROC is: 0.7945912098298676 0.7945912098298676
Threshold value is: 0.450291893659322
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:02&lt;00:00, 422.46it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AUROC is: 0.7350061590401021 0.7350061590401021
Threshold value is: 0.4194478427674115
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:02&lt;00:00, 471.75it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AUROC is: 0.6974560916096925 0.6974560916096925
Threshold value is: 0.3979350694912722
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:01&lt;00:00, 522.19it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AUROC is: 0.714252367613712 0.714252367613712
Threshold value is: 0.48813259378734075
Aortic Regurgitation [196 / 20,852] (AUROC=0.769)

 /Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Mitral_Regurgitation_2022-03-03--06:23:05/y_y_pred_roc_0.8280.csv
All scores
AUROC is: 0.828017318849102 0.828017318849102
Threshold value is: 0.45940651160283796
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:03&lt;00:00, 275.08it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AUROC is: 0.8211550864849018 0.8211550864849018
Threshold value is: 0.38141647091004066
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:02&lt;00:00, 427.12it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AUROC is: 0.8425296239982376 0.8425296239982376
Threshold value is: 0.44406463805623175
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:02&lt;00:00, 466.26it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AUROC is: 0.7860715229787394 0.7860715229787394
Threshold value is: 0.48397561958293783
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:01&lt;00:00, 526.02it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AUROC is: 0.7132101489244347 0.7132101489244347
Threshold value is: 0.5709031391543532
Mitral Regurgitation [742 / 20,306] (AUROC=0.828)

 /Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_AS_AI_MR_Combination_2022-03-03--06:23:39/y_y_pred_roc_0.8351.csv
All scores
AUROC is: 0.8354910330275293 0.8354910330275293
Threshold value is: 0.45716718045293103
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:03&lt;00:00, 285.58it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AUROC is: 0.8087341223412461 0.8087341223412461
Threshold value is: 0.27530762692370364
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:02&lt;00:00, 414.08it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AUROC is: 0.7878099487855584 0.7878099487855584
Threshold value is: 0.41694409320792375
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:02&lt;00:00, 449.85it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AUROC is: 0.7159081854485794 0.7159081854485794
Threshold value is: 0.5144382945813603
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:01&lt;00:00, 542.46it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AUROC is: 0.7270918262876714 0.7270918262876714
Threshold value is: 0.6513456467300284
AS, AR, or MR Combination [1,644 / 19,404] (AUROC=0.835)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[37]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="o">.</span><span class="n">savefig</span><span class="p">(</span><span class="s1">&#39;figures/age_roc.png&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Sex-Summary-Stats">Sex Summary Stats<a class="anchor-link" href="#Sex-Summary-Stats">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[40]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">new_gender_column</span><span class="p">(</span><span class="n">row</span><span class="p">):</span>
    <span class="k">if</span> <span class="n">row</span><span class="p">[</span><span class="s1">&#39;Gender&#39;</span><span class="p">]</span> <span class="o">==</span><span class="mi">1</span><span class="p">:</span>
        <span class="k">return</span> <span class="s1">&#39;female&#39;</span> 
    <span class="k">elif</span> <span class="n">row</span><span class="p">[</span><span class="s1">&#39;Gender&#39;</span><span class="p">]</span> <span class="o">==</span><span class="mi">0</span><span class="p">:</span>
        <span class="k">return</span> <span class="s1">&#39;male&#39;</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="k">return</span> <span class="kc">None</span>

<span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;Gender_Group&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">new_gender_column</span><span class="p">,</span><span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[44]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">n_samples</span> <span class="o">=</span> <span class="mi">1000</span> <span class="c1"># bootstrap parameter</span>

<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Aortic Stenosis&#39;</span><span class="p">)</span>
<span class="n">as_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;Gender_Group&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AS&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AS_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Mitral Regurgitation&#39;</span><span class="p">)</span>
<span class="n">mr_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;Gender_Group&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_MR&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_MR_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Aortic Insufficiency&#39;</span><span class="p">)</span>
<span class="n">ai_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;Gender_Group&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AI&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AI_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Combined Aortic Stenosis, Aortic Regurgitation, and Mitral Regurgitation&#39;</span><span class="p">)</span>
<span class="n">as_mr_ai_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;Gender_Group&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AS_AI_MR&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AS_AI_MR_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>           
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n\n\n</span><span class="s1">&#39;</span><span class="p">)</span>

<span class="n">as_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Aortic Stenosis&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">as_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">mr_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Mitral Regurgitation&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">mr_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">ai_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Aortic Insufficiency&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">ai_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">as_mr_ai_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Combined Aortic Stenosis, Aortic Regurgitation, and Mitral Regurgitation&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">as_mr_ai_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>

<span class="n">gender_summary_stats</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">as_summary</span><span class="p">,</span><span class="n">mr_summary</span><span class="p">,</span><span class="n">ai_summary</span><span class="p">,</span><span class="n">as_mr_ai_summary</span><span class="p">],</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">gender_summary_stats</span><span class="o">.</span><span class="n">to_csv</span><span class="p">(</span><span class="s1">&#39;gender_summary_stats.csv&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Aortic Stenosis
female 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [02:56&lt;00:00,  5.66it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.87 0.91 0.8671946663860116 0.9067624353464864
male 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [02:55&lt;00:00,  5.69it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.85 0.89 0.853465851083383 0.8948331734730581

Mitral Regurgitation
female 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [02:59&lt;00:00,  5.57it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.79 0.85 0.7899195135781897 0.8483298850623756
male 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [02:41&lt;00:00,  6.21it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.81 0.87 0.8143669285891035 0.8685378008365738

Aortic Insufficiency
female 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [03:32&lt;00:00,  4.71it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.66 0.82 0.6673672645499634 0.8269134134028334
male 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [03:13&lt;00:00,  5.17it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.72 0.84 0.7188412947968956 0.8398562592208147

Combined Aortic Stenosis, Aortic Regurgitation, and Mitral Regurgitation
female 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [02:50&lt;00:00,  5.85it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.82 0.86 0.8210521960559966 0.8583817703873379
male 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [02:27&lt;00:00,  6.78it/s]</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.81 0.85 0.8126983460363397 0.851611709201546




</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>
</pre>
</div>
</div>

</div>

</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Compute-Race-Stats-Using-Bootstrap">Compute Race Stats Using Bootstrap<a class="anchor-link" href="#Compute-Race-Stats-Using-Bootstrap">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[&nbsp;]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">n_samples</span> <span class="o">=</span> <span class="mi">1000</span> <span class="c1"># bootstrap parameter</span>

<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Aortic Stenosis&#39;</span><span class="p">)</span>
<span class="n">as_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;Race&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AS&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AS_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Mitral Regurgitation&#39;</span><span class="p">)</span>
<span class="n">mr_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;Race&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_MR&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_MR_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Aortic Insufficiency&#39;</span><span class="p">)</span>
<span class="n">ai_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;Race&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AI&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AI_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Combined Aortic Stenosis, Aortic Regurgitation, and Mitral Regurgitation&#39;</span><span class="p">)</span>
<span class="n">as_mr_ai_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;Race&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AS_AI_MR&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AS_AI_MR_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>           
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n\n\n</span><span class="s1">&#39;</span><span class="p">)</span>

<span class="n">as_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Aortic Stenosis&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">as_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">mr_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Mitral Regurgitation&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">mr_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">ai_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Aortic Insufficiency&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">ai_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">as_mr_ai_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Combined Aortic Stenosis, Aortic Regurgitation, and Mitral Regurgitation&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">as_mr_ai_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>

<span class="n">race_summary_stats</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">as_summary</span><span class="p">,</span><span class="n">mr_summary</span><span class="p">,</span><span class="n">ai_summary</span><span class="p">,</span><span class="n">as_mr_ai_summary</span><span class="p">],</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">race_summary_stats</span><span class="o">.</span><span class="n">to_csv</span><span class="p">(</span><span class="s1">&#39;race_summary_stats.csv&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Plot-Results-By-Race">Plot Results By Race<a class="anchor-link" href="#Plot-Results-By-Race">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[&nbsp;]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">factor_var</span> <span class="o">=</span> <span class="s1">&#39;Race&#39;</span>
<span class="n">target_var</span> <span class="o">=</span> <span class="s1">&#39;AS&#39;</span>
<span class="n">plot_results_by_factor_by_target</span><span class="p">(</span><span class="n">test_race_ethnicity</span><span class="p">,</span> <span class="n">factor_var</span><span class="p">,</span> <span class="n">target_var</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[64]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">columns</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">,</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span>
<span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span>

<span class="k">for</span> <span class="n">file</span><span class="p">,</span> <span class="n">ax</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">lstFiles</span><span class="p">,</span><span class="n">ax</span><span class="o">.</span><span class="n">flatten</span><span class="p">()):</span>
    <span class="c1">#plt.figure(figsize=(15, 15))  </span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">,</span><span class="n">file</span><span class="p">)</span>
    <span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">file</span><span class="p">,</span> <span class="n">names</span><span class="o">=</span><span class="n">columns</span><span class="p">)</span>
    <span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">test_race_ethnicity</span><span class="p">,</span> <span class="n">df</span><span class="p">],</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
    <span class="n">yhat</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">))</span>
    <span class="n">neg_count</span><span class="p">,</span> <span class="n">pos_count</span> <span class="o">=</span> <span class="p">(</span><span class="nb">format</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span><span class="s1">&#39;,d&#39;</span><span class="p">)),(</span><span class="nb">format</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()[</span><span class="mi">1</span><span class="p">],</span><span class="s1">&#39;,d&#39;</span><span class="p">))</span>

    <span class="c1"># calculate scores</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;All scores&#39;</span><span class="p">)</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span><span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUROC is:&#39;</span><span class="p">,</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">auroc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span>
    <span class="n">auroc_total</span> <span class="o">=</span> <span class="n">auroc</span>
    <span class="n">optimal_idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">optimal_threshold</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">optimal_idx</span><span class="p">]</span>
    <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Threshold value is:&quot;</span><span class="p">,</span> <span class="n">optimal_threshold</span><span class="p">)</span>
    
    <span class="n">df_white</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;Race&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="s1">&#39;WHITE&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">reset_index</span><span class="p">()</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
    <span class="n">df_black</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;Race&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="s1">&#39;BLACK/AFRICAN AMERICAN&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">reset_index</span><span class="p">()</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>

    <span class="nb">print</span><span class="p">(</span><span class="n">df_white</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="n">df_black</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
    
    <span class="c1"># Race white</span>
    <span class="n">fpr_boot</span><span class="p">,</span> <span class="n">tpr_boot</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">boot</span><span class="p">(</span><span class="n">df_white</span><span class="p">)</span>

    <span class="c1"># plotting </span>
    <span class="n">lw</span> <span class="o">=</span> <span class="mi">2</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">100</span><span class="p">):</span>
        <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="n">tpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;lightcoral&#39;</span><span class="p">,</span>
                 <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">alpha</span> <span class="o">=</span> <span class="o">.</span><span class="mi">1</span><span class="p">)</span>

    <span class="c1"># calculate scores</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;White&#39;</span><span class="p">)</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df_white</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df_white</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span><span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUROC is:&#39;</span><span class="p">,</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">auroc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span>
    <span class="n">optimal_idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">optimal_threshold</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">optimal_idx</span><span class="p">]</span>
    <span class="n">white_count</span> <span class="o">=</span> <span class="nb">format</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">df_white</span><span class="p">),</span><span class="s1">&#39;,d&#39;</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Threshold value is:&quot;</span><span class="p">,</span> <span class="n">optimal_threshold</span><span class="p">)</span>

    <span class="c1"># Race black</span>
    <span class="n">fpr_boot</span><span class="p">,</span> <span class="n">tpr_boot</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">boot</span><span class="p">(</span><span class="n">df_black</span><span class="p">)</span>

    <span class="c1"># plotting </span>
    <span class="n">lw</span> <span class="o">=</span> <span class="mi">2</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">100</span><span class="p">):</span>
        <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="n">tpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;lightblue&#39;</span><span class="p">,</span>
                 <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">alpha</span> <span class="o">=</span> <span class="o">.</span><span class="mi">1</span><span class="p">)</span>

    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;red&#39;</span><span class="p">,</span>
         <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="sa">f</span><span class="s1">&#39;White (N = </span><span class="si">{</span><span class="n">white_count</span><span class="si">}</span><span class="s1">, AUROC = %0.2f)&#39;</span> <span class="o">%</span> <span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="c1">#plt.plot([0, 1], [0, 1], color=&#39;navy&#39;, lw=lw, linestyle=&#39;--&#39;)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.05</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">&#39;False Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">&#39;True Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s2">&quot;lower right&quot;</span><span class="p">)</span>

    <span class="c1"># calculate scores</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Black&#39;</span><span class="p">)</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df_black</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df_black</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span><span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUROC is:&#39;</span><span class="p">,</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">auroc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span>
    <span class="n">optimal_idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">optimal_threshold</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">optimal_idx</span><span class="p">]</span>
    <span class="n">black_count</span> <span class="o">=</span> <span class="nb">format</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">df_black</span><span class="p">),</span><span class="s1">&#39;,d&#39;</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Threshold value is:&quot;</span><span class="p">,</span> <span class="n">optimal_threshold</span><span class="p">)</span>

    <span class="n">total_pos_count</span> <span class="o">=</span> <span class="n">df_white</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span> <span class="o">+</span> <span class="n">df_black</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span>
    <span class="n">total_count</span><span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">df_white</span><span class="p">)</span> <span class="o">+</span> <span class="nb">len</span><span class="p">(</span><span class="n">df_black</span><span class="p">)</span>
    <span class="n">total_count</span> <span class="o">=</span> <span class="nb">format</span><span class="p">(</span><span class="n">total_count</span><span class="p">,</span><span class="s1">&#39;,d&#39;</span><span class="p">)</span>
    <span class="n">titlename</span> <span class="o">=</span> <span class="n">file</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;Eval_&#39;</span><span class="p">)[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;_2022&#39;</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="sa">f</span><span class="s1">&#39; [</span><span class="si">{</span><span class="n">pos_count</span><span class="si">}</span><span class="s1"> / </span><span class="si">{</span><span class="n">total_count</span><span class="si">}</span><span class="s1">]&#39;</span> <span class="o">+</span> <span class="sa">f</span><span class="s1">&#39; (AUROC=</span><span class="si">{</span><span class="n">auroc_total</span><span class="si">}</span><span class="s1">)&#39;</span>
    <span class="n">titlename</span> <span class="o">=</span> <span class="n">titlename</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;AS_AI_MR&quot;</span><span class="p">,</span> <span class="s2">&quot;AS, AR, or MR&quot;</span><span class="p">)</span>
    <span class="n">titlename</span> <span class="o">=</span> <span class="n">titlename</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;_&quot;</span><span class="p">,</span> <span class="s2">&quot; &quot;</span><span class="p">)</span>
    <span class="n">titlename</span> <span class="o">=</span> <span class="n">titlename</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;Aortic Insufficiency&quot;</span><span class="p">,</span> <span class="s2">&quot;Aortic Regurgitation&quot;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="n">titlename</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="n">titlename</span><span class="p">)</span>

    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;navy&#39;</span><span class="p">,</span> <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="sa">f</span><span class="s1">&#39;Black or African American (N = </span><span class="si">{</span><span class="n">black_count</span><span class="si">}</span><span class="s1">, AUROC = %0.2f)&#39;</span> <span class="o">%</span> <span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;black&#39;</span><span class="p">,</span> <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">linestyle</span><span class="o">=</span><span class="s1">&#39;--&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.05</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">&#39;False Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">&#39;True Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s2">&quot;lower right&quot;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>
 /Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Aortic_Stenosis_2022-03-03--06:21:48/y_y_pred_roc_0.8805.csv
All scores
AUROC is: 0.8804872725564813 0.8804872725564813
Threshold value is: 0.4290496913006215
(8589, 41)
(3381, 41)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:04&lt;00:00, 211.54it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>White
AUROC is: 0.8713834161233114 0.8713834161233114
Threshold value is: 0.48821429768368324
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:02&lt;00:00, 380.84it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Black
AUROC is: 0.8679815838940801 0.8679815838940801
Threshold value is: 0.43497222371612443
Aortic Stenosis [907 / 11,970] (AUROC=0.88)

 /Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Aortic_Insufficiency_2022-03-03--06:22:25/y_y_pred_roc_0.7688.csv
All scores
AUROC is: 0.7687817837666431 0.7687817837666431
Threshold value is: 0.3979350694912722
(8589, 41)
(3381, 41)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:03&lt;00:00, 261.83it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>White
AUROC is: 0.7911882631674868 0.7911882631674868
Threshold value is: 0.4502594758980771
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:02&lt;00:00, 419.83it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Black
AUROC is: 0.6937129556956887 0.6937129556956887
Threshold value is: 0.5060507886250929
Aortic Regurgitation [196 / 11,970] (AUROC=0.77)

 /Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Mitral_Regurgitation_2022-03-03--06:23:05/y_y_pred_roc_0.8280.csv
All scores
AUROC is: 0.828017318849102 0.828017318849102
Threshold value is: 0.45940651160283796
(8589, 41)
(3381, 41)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:04&lt;00:00, 207.37it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>White
AUROC is: 0.8286614061861972 0.8286614061861972
Threshold value is: 0.49102300861229714
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:02&lt;00:00, 399.57it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Black
AUROC is: 0.7701759488148904 0.7701759488148904
Threshold value is: 0.433443442921303
Mitral Regurgitation [742 / 11,970] (AUROC=0.83)

 /Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_AS_AI_MR_Combination_2022-03-03--06:23:39/y_y_pred_roc_0.8351.csv
All scores
AUROC is: 0.8354910330275293 0.8354910330275293
Threshold value is: 0.45716718045293103
(8589, 41)
(3381, 41)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:04&lt;00:00, 223.86it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>White
AUROC is: 0.8373834239597975 0.8373834239597975
Threshold value is: 0.4820422523508854
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:02&lt;00:00, 402.33it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Black
AUROC is: 0.7832236814606132 0.7832236814606132
Threshold value is: 0.45048856689025873
AS, AR, or MR Combination [1,644 / 11,970] (AUROC=0.84)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[65]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="o">.</span><span class="n">savefig</span><span class="p">(</span><span class="s1">&#39;figures/race_roc.png&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[98]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_white</span><span class="o">.</span><span class="n">describe</span><span class="p">(</span><span class="n">percentiles</span><span class="o">=</span><span class="p">[</span><span class="mf">0.025</span><span class="p">,</span> <span class="mf">0.975</span><span class="p">])</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">s</span><span class="p">:</span> <span class="n">s</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="s1">&#39;</span><span class="si">{0:.3f}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">))</span><span class="o">.</span><span class="n">T</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[98]:</div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>count</th>
      <th>mean</th>
      <th>std</th>
      <th>min</th>
      <th>2.5%</th>
      <th>50%</th>
      <th>97.5%</th>
      <th>max</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>index</th>
      <td>8589.000</td>
      <td>9909.026</td>
      <td>5802.364</td>
      <td>0.000</td>
      <td>411.700</td>
      <td>9934.000</td>
      <td>19597.200</td>
      <td>20459.000</td>
    </tr>
    <tr>
      <th>TestID</th>
      <td>8589.000</td>
      <td>2447798.348</td>
      <td>668207.679</td>
      <td>1143854.000</td>
      <td>1502944.200</td>
      <td>2313477.000</td>
      <td>3550858.100</td>
      <td>3602346.000</td>
    </tr>
    <tr>
      <th>PatientID</th>
      <td>8589.000</td>
      <td>1049367271.334</td>
      <td>80630740.047</td>
      <td>1000000178.000</td>
      <td>1000466351.700</td>
      <td>1008470110.000</td>
      <td>1203584114.000</td>
      <td>1400107077.000</td>
    </tr>
    <tr>
      <th>Gender</th>
      <td>8589.000</td>
      <td>0.476</td>
      <td>0.499</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>aortic_stenosis_label_four_grade</th>
      <td>8589.000</td>
      <td>0.243</td>
      <td>0.711</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>3.000</td>
      <td>3.000</td>
    </tr>
    <tr>
      <th>aortic_insufficiency_label_four_grade</th>
      <td>8589.000</td>
      <td>0.150</td>
      <td>0.394</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>3.000</td>
    </tr>
    <tr>
      <th>mitral_regurgitation_label_four_grade</th>
      <td>8589.000</td>
      <td>0.325</td>
      <td>0.568</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>2.000</td>
      <td>3.000</td>
    </tr>
    <tr>
      <th>aortic_stenosis_label_binary</th>
      <td>6991.000</td>
      <td>0.081</td>
      <td>0.273</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>mitral_regurgitation_label_binary</th>
      <td>7821.000</td>
      <td>0.041</td>
      <td>0.198</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>aortic_insufficiency_label_binary</th>
      <td>7913.000</td>
      <td>0.012</td>
      <td>0.108</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>aortic_stenosis_label_binary_backfilled</th>
      <td>8589.000</td>
      <td>0.066</td>
      <td>0.248</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>aortic_insufficiency_label_binary_backfilled</th>
      <td>8589.000</td>
      <td>0.011</td>
      <td>0.103</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>mitral_regurgitation_label_binary_backfilled</th>
      <td>8589.000</td>
      <td>0.037</td>
      <td>0.189</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>AS_AI_MR_label_binary</th>
      <td>8045.000</td>
      <td>0.107</td>
      <td>0.309</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>AS_AI_MR_label_binary_backfilled</th>
      <td>8589.000</td>
      <td>0.100</td>
      <td>0.300</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>QRSDuration</th>
      <td>8589.000</td>
      <td>94.944</td>
      <td>21.407</td>
      <td>0.000</td>
      <td>68.000</td>
      <td>90.000</td>
      <td>154.000</td>
      <td>208.000</td>
    </tr>
    <tr>
      <th>RIGHT BUNDLE BRANCH BLOCK</th>
      <td>8564.000</td>
      <td>0.069</td>
      <td>0.253</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>LEFT BUNDLE BRANCH BLOCK</th>
      <td>8564.000</td>
      <td>0.027</td>
      <td>0.161</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>days_since_echo</th>
      <td>8589.000</td>
      <td>-83.908</td>
      <td>117.018</td>
      <td>-365.000</td>
      <td>-357.000</td>
      <td>-15.000</td>
      <td>0.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>PatientAge_Years</th>
      <td>8573.000</td>
      <td>63.699</td>
      <td>17.148</td>
      <td>0.000</td>
      <td>25.000</td>
      <td>66.000</td>
      <td>92.000</td>
      <td>104.000</td>
    </tr>
    <tr>
      <th>y_AS</th>
      <td>8589.000</td>
      <td>0.066</td>
      <td>0.248</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>y_pred_AS_proba</th>
      <td>8589.000</td>
      <td>-1.010</td>
      <td>1.548</td>
      <td>-6.597</td>
      <td>-4.247</td>
      <td>-0.940</td>
      <td>1.747</td>
      <td>3.350</td>
    </tr>
    <tr>
      <th>y_AI</th>
      <td>8589.000</td>
      <td>0.011</td>
      <td>0.103</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>y_pred_AI_proba</th>
      <td>8589.000</td>
      <td>-0.722</td>
      <td>0.635</td>
      <td>-2.800</td>
      <td>-1.610</td>
      <td>-0.882</td>
      <td>0.775</td>
      <td>2.762</td>
    </tr>
    <tr>
      <th>y_MR</th>
      <td>8589.000</td>
      <td>0.037</td>
      <td>0.189</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>y_pred_MR_proba</th>
      <td>8589.000</td>
      <td>-0.742</td>
      <td>0.880</td>
      <td>-3.415</td>
      <td>-2.260</td>
      <td>-0.837</td>
      <td>0.959</td>
      <td>1.735</td>
    </tr>
    <tr>
      <th>y_AS_AI_MR</th>
      <td>8589.000</td>
      <td>0.100</td>
      <td>0.300</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>y_pred_AS_AI_MR_proba</th>
      <td>8589.000</td>
      <td>-0.661</td>
      <td>1.066</td>
      <td>-4.253</td>
      <td>-2.675</td>
      <td>-0.692</td>
      <td>1.351</td>
      <td>2.406</td>
    </tr>
    <tr>
      <th>y_pred_AS_proba_sigmoid</th>
      <td>8589.000</td>
      <td>0.335</td>
      <td>0.250</td>
      <td>0.001</td>
      <td>0.014</td>
      <td>0.281</td>
      <td>0.852</td>
      <td>0.966</td>
    </tr>
    <tr>
      <th>y_pred_AI_proba_sigmoid</th>
      <td>8589.000</td>
      <td>0.337</td>
      <td>0.140</td>
      <td>0.057</td>
      <td>0.167</td>
      <td>0.293</td>
      <td>0.685</td>
      <td>0.941</td>
    </tr>
    <tr>
      <th>y_pred_MR_proba_sigmoid</th>
      <td>8589.000</td>
      <td>0.346</td>
      <td>0.182</td>
      <td>0.032</td>
      <td>0.095</td>
      <td>0.302</td>
      <td>0.723</td>
      <td>0.850</td>
    </tr>
    <tr>
      <th>y_pred_AS_AI_MR_proba_sigmoid</th>
      <td>8589.000</td>
      <td>0.370</td>
      <td>0.211</td>
      <td>0.014</td>
      <td>0.064</td>
      <td>0.334</td>
      <td>0.794</td>
      <td>0.917</td>
    </tr>
    <tr>
      <th>EMPI</th>
      <td>8426.000</td>
      <td>1049877479.927</td>
      <td>81028006.870</td>
      <td>1000000178.000</td>
      <td>1000465134.875</td>
      <td>1008427794.000</td>
      <td>1203573022.250</td>
      <td>1400107077.000</td>
    </tr>
    <tr>
      <th>y</th>
      <td>8589.000</td>
      <td>0.100</td>
      <td>0.300</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>y_pred_proba</th>
      <td>8589.000</td>
      <td>-0.661</td>
      <td>1.066</td>
      <td>-4.253</td>
      <td>-2.675</td>
      <td>-0.692</td>
      <td>1.351</td>
      <td>2.406</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[99]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">df_black</span><span class="o">.</span><span class="n">describe</span><span class="p">(</span><span class="n">percentiles</span><span class="o">=</span><span class="p">[</span><span class="mf">0.025</span><span class="p">,</span> <span class="mf">0.975</span><span class="p">])</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">s</span><span class="p">:</span> <span class="n">s</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="s1">&#39;</span><span class="si">{0:.3f}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">))</span><span class="o">.</span><span class="n">T</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[99]:</div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>count</th>
      <th>mean</th>
      <th>std</th>
      <th>min</th>
      <th>2.5%</th>
      <th>50%</th>
      <th>97.5%</th>
      <th>max</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>index</th>
      <td>3381.000</td>
      <td>10168.915</td>
      <td>6025.273</td>
      <td>5.000</td>
      <td>499.500</td>
      <td>9964.000</td>
      <td>19930.000</td>
      <td>20455.000</td>
    </tr>
    <tr>
      <th>TestID</th>
      <td>3381.000</td>
      <td>2581400.382</td>
      <td>674721.852</td>
      <td>1235844.000</td>
      <td>1536035.500</td>
      <td>2503321.000</td>
      <td>3554799.500</td>
      <td>3603193.000</td>
    </tr>
    <tr>
      <th>PatientID</th>
      <td>3381.000</td>
      <td>1059993983.839</td>
      <td>94728634.304</td>
      <td>1000003252.000</td>
      <td>1000590958.000</td>
      <td>1008495056.000</td>
      <td>1400036562.500</td>
      <td>1400105959.000</td>
    </tr>
    <tr>
      <th>Gender</th>
      <td>3381.000</td>
      <td>0.548</td>
      <td>0.498</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>aortic_stenosis_label_four_grade</th>
      <td>3381.000</td>
      <td>0.064</td>
      <td>0.332</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>3.000</td>
    </tr>
    <tr>
      <th>aortic_insufficiency_label_four_grade</th>
      <td>3381.000</td>
      <td>0.093</td>
      <td>0.314</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>3.000</td>
    </tr>
    <tr>
      <th>mitral_regurgitation_label_four_grade</th>
      <td>3381.000</td>
      <td>0.282</td>
      <td>0.521</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>2.000</td>
      <td>3.000</td>
    </tr>
    <tr>
      <th>aortic_stenosis_label_binary</th>
      <td>2809.000</td>
      <td>0.016</td>
      <td>0.124</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>mitral_regurgitation_label_binary</th>
      <td>3154.000</td>
      <td>0.029</td>
      <td>0.168</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>aortic_insufficiency_label_binary</th>
      <td>3189.000</td>
      <td>0.007</td>
      <td>0.083</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>aortic_stenosis_label_binary_backfilled</th>
      <td>3381.000</td>
      <td>0.013</td>
      <td>0.113</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>aortic_insufficiency_label_binary_backfilled</th>
      <td>3381.000</td>
      <td>0.007</td>
      <td>0.080</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>mitral_regurgitation_label_binary_backfilled</th>
      <td>3381.000</td>
      <td>0.027</td>
      <td>0.163</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>AS_AI_MR_label_binary</th>
      <td>3225.000</td>
      <td>0.046</td>
      <td>0.209</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>AS_AI_MR_label_binary_backfilled</th>
      <td>3381.000</td>
      <td>0.044</td>
      <td>0.205</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>QRSDuration</th>
      <td>3381.000</td>
      <td>90.171</td>
      <td>18.728</td>
      <td>4.000</td>
      <td>66.000</td>
      <td>86.000</td>
      <td>144.000</td>
      <td>202.000</td>
    </tr>
    <tr>
      <th>RIGHT BUNDLE BRANCH BLOCK</th>
      <td>3370.000</td>
      <td>0.047</td>
      <td>0.212</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>LEFT BUNDLE BRANCH BLOCK</th>
      <td>3370.000</td>
      <td>0.015</td>
      <td>0.121</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>days_since_echo</th>
      <td>3381.000</td>
      <td>-89.997</td>
      <td>122.262</td>
      <td>-365.000</td>
      <td>-360.000</td>
      <td>-15.000</td>
      <td>-1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>PatientAge_Years</th>
      <td>3374.000</td>
      <td>58.501</td>
      <td>17.152</td>
      <td>0.000</td>
      <td>23.000</td>
      <td>59.000</td>
      <td>89.000</td>
      <td>103.000</td>
    </tr>
    <tr>
      <th>y_AS</th>
      <td>3381.000</td>
      <td>0.013</td>
      <td>0.113</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>y_pred_AS_proba</th>
      <td>3381.000</td>
      <td>-1.468</td>
      <td>1.426</td>
      <td>-5.327</td>
      <td>-4.340</td>
      <td>-1.403</td>
      <td>1.168</td>
      <td>2.733</td>
    </tr>
    <tr>
      <th>y_AI</th>
      <td>3381.000</td>
      <td>0.007</td>
      <td>0.080</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>y_pred_AI_proba</th>
      <td>3381.000</td>
      <td>-0.774</td>
      <td>0.654</td>
      <td>-2.412</td>
      <td>-1.668</td>
      <td>-0.944</td>
      <td>0.749</td>
      <td>2.003</td>
    </tr>
    <tr>
      <th>y_MR</th>
      <td>3381.000</td>
      <td>0.027</td>
      <td>0.163</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>y_pred_MR_proba</th>
      <td>3381.000</td>
      <td>-0.692</td>
      <td>0.861</td>
      <td>-3.087</td>
      <td>-2.207</td>
      <td>-0.773</td>
      <td>0.857</td>
      <td>1.530</td>
    </tr>
    <tr>
      <th>y_AS_AI_MR</th>
      <td>3381.000</td>
      <td>0.044</td>
      <td>0.205</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>y_pred_AS_AI_MR_proba</th>
      <td>3381.000</td>
      <td>-0.811</td>
      <td>0.997</td>
      <td>-3.765</td>
      <td>-2.760</td>
      <td>-0.809</td>
      <td>1.056</td>
      <td>2.764</td>
    </tr>
    <tr>
      <th>y_pred_AS_proba_sigmoid</th>
      <td>3381.000</td>
      <td>0.256</td>
      <td>0.214</td>
      <td>0.005</td>
      <td>0.013</td>
      <td>0.197</td>
      <td>0.763</td>
      <td>0.939</td>
    </tr>
    <tr>
      <th>y_pred_AI_proba_sigmoid</th>
      <td>3381.000</td>
      <td>0.328</td>
      <td>0.143</td>
      <td>0.082</td>
      <td>0.159</td>
      <td>0.280</td>
      <td>0.679</td>
      <td>0.881</td>
    </tr>
    <tr>
      <th>y_pred_MR_proba_sigmoid</th>
      <td>3381.000</td>
      <td>0.355</td>
      <td>0.179</td>
      <td>0.044</td>
      <td>0.099</td>
      <td>0.316</td>
      <td>0.702</td>
      <td>0.822</td>
    </tr>
    <tr>
      <th>y_pred_AS_AI_MR_proba_sigmoid</th>
      <td>3381.000</td>
      <td>0.339</td>
      <td>0.191</td>
      <td>0.023</td>
      <td>0.060</td>
      <td>0.308</td>
      <td>0.742</td>
      <td>0.941</td>
    </tr>
    <tr>
      <th>EMPI</th>
      <td>3282.000</td>
      <td>1061308748.772</td>
      <td>95642515.005</td>
      <td>1000003252.000</td>
      <td>1000567756.975</td>
      <td>1008529619.500</td>
      <td>1400037685.275</td>
      <td>1400105959.000</td>
    </tr>
    <tr>
      <th>y</th>
      <td>3381.000</td>
      <td>0.044</td>
      <td>0.205</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>0.000</td>
      <td>1.000</td>
      <td>1.000</td>
    </tr>
    <tr>
      <th>y_pred_proba</th>
      <td>3381.000</td>
      <td>-0.811</td>
      <td>0.997</td>
      <td>-3.765</td>
      <td>-2.760</td>
      <td>-0.809</td>
      <td>1.056</td>
      <td>2.764</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

</div>

</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Compute-Ethnicity-Stats-Using-Bootstrap">Compute Ethnicity Stats Using Bootstrap<a class="anchor-link" href="#Compute-Ethnicity-Stats-Using-Bootstrap">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[&nbsp;]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">n_samples</span> <span class="o">=</span> <span class="mi">1000</span> <span class="c1"># bootstrap parameter</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Aortic Stenosis&#39;</span><span class="p">)</span>
<span class="n">as_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;Ethnicity&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AS&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AS_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Mitral Regurgitation&#39;</span><span class="p">)</span>
<span class="n">mr_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;Ethnicity&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_MR&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_MR_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Aortic Insufficiency&#39;</span><span class="p">)</span>
<span class="n">ai_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;Ethnicity&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AI&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AI_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Combined Aortic Stenosis, Aortic Regurgitation, and Mitral Regurgitation&#39;</span><span class="p">)</span>
<span class="n">as_mr_ai_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;Ethnicity&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AS_AI_MR&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AS_AI_MR_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>           
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n\n\n</span><span class="s1">&#39;</span><span class="p">)</span>

<span class="n">as_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Aortic Stenosis&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">as_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">mr_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Mitral Regurgitation&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">mr_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">ai_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Aortic Insufficiency&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">ai_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">as_mr_ai_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Combined Aortic Stenosis, Aortic Regurgitation, and Mitral Regurgitation&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">as_mr_ai_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>

<span class="n">ethnicity_summary_stats</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">as_summary</span><span class="p">,</span><span class="n">mr_summary</span><span class="p">,</span><span class="n">ai_summary</span><span class="p">,</span><span class="n">as_mr_ai_summary</span><span class="p">],</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">ethnicity_summary_stats</span><span class="o">.</span><span class="n">to_csv</span><span class="p">(</span><span class="s1">&#39;ethnicity_summary_stats.csv&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Plot-Results-By-Ethnicity">Plot Results By Ethnicity<a class="anchor-link" href="#Plot-Results-By-Ethnicity">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[69]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># This doesn&#39;t seem to work. Plotting comes out wierd.</span>
<span class="c1"># for y, y_true_col, y_score_col in [(&#39;Aortic Stenosis&#39;,&#39;y_AS&#39;,&#39;y_pred_AS_proba_sigmoid&#39;), (&#39;Aortic Insufficiency&#39;,&#39;y_AI&#39;,&#39;y_pred_AI_proba_sigmoid&#39;), (&#39;Mitral Regurgitation&#39;,&#39;y_MR&#39;,&#39;y_pred_MR_proba_sigmoid&#39;), (&#39;Combined&#39;,&#39;y_AS_AI_MR&#39;,&#39;y_pred_AS_AI_MR_proba_sigmoid&#39;)]:</span>
<span class="c1">#     print(y)</span>
<span class="c1">#     test_race_ethnicity.groupby([&#39;Ethnicity&#39;], dropna = False).apply(lambda x: plot_results(x, y_true_col, y_score_col))</span>

<span class="c1"># Still having trouble with groups overwriting one another </span>
<span class="n">factor_var</span> <span class="o">=</span> <span class="s1">&#39;Ethnicity&#39;</span>
<span class="n">target_var</span> <span class="o">=</span> <span class="s1">&#39;AS&#39;</span>
<span class="n">plot_results_by_factor_by_target</span><span class="p">(</span><span class="n">test_race_ethnicity</span><span class="p">,</span> <span class="n">factor_var</span><span class="p">,</span> <span class="n">target_var</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>NOT HISPANIC OR LATINO 

AUROC is: 0.86
Threshold value is: 0.48230155998638263
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 14.5 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>     <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>       <td>14.457</td>      <td></td> <td>10.778</td> <td>19.391</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>2.671</td> <td>0.150</td>  <td>2.377</td>  <td>2.965</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>4.052</td>      <td></td>  <td>3.213</td>  <td>5.111</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>1.399</td> <td>0.118</td>  <td>1.167</td>  <td>1.631</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 15.1 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>     <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>       <td>15.140</td>      <td></td> <td>11.155</td> <td>20.549</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>2.717</td> <td>0.156</td>  <td>2.412</td>  <td>3.023</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>4.429</td>      <td></td>  <td>3.456</td>  <td>5.675</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>1.488</td> <td>0.127</td>  <td>1.240</td>  <td>1.736</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>SPANISH/HISPANIC 

AUROC is: 0.88
Threshold value is: 0.44052041757831195
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 15.1 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>       <td>15.058</td>      <td></td> <td>9.461</td> <td>23.967</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>2.712</td> <td>0.237</td> <td>2.247</td>  <td>3.177</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>3.496</td>      <td></td> <td>2.463</td>  <td>4.961</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>1.251</td> <td>0.179</td> <td>0.901</td>  <td>1.602</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 15.8 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>       <td>15.839</td>      <td></td> <td>9.567</td> <td>26.225</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>2.762</td> <td>0.257</td> <td>2.258</td>  <td>3.267</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>4.208</td>      <td></td> <td>2.804</td>  <td>6.315</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>1.437</td> <td>0.207</td> <td>1.031</td>  <td>1.843</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>UNKNOWN 

AUROC is: 0.89
Threshold value is: 0.4274447734495537
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 16.1 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>     <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>       <td>16.087</td>      <td></td> <td>12.676</td> <td>20.417</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>2.778</td> <td>0.122</td>  <td>2.540</td>  <td>3.016</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>3.923</td>      <td></td>  <td>3.259</td>  <td>4.722</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>1.367</td> <td>0.095</td>  <td>1.181</td>  <td>1.552</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 21.4 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>     <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>       <td>21.371</td>      <td></td> <td>15.940</td> <td>28.654</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>3.062</td> <td>0.150</td>  <td>2.769</td>  <td>3.355</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>6.201</td>      <td></td>  <td>4.804</td>  <td>8.004</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>1.825</td> <td>0.130</td>  <td>1.569</td>  <td>2.080</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>nan 

AUROC is: 0.86
Threshold value is: 0.5918834778185068
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 10.5 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>       <td>10.490</td>      <td></td> <td>5.965</td> <td>18.445</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>2.350</td> <td>0.288</td> <td>1.786</td>  <td>2.915</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>3.110</td>      <td></td> <td>2.059</td>  <td>4.700</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>1.135</td> <td>0.211</td> <td>0.722</td>  <td>1.547</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 12.5 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>       <td>12.522</td>      <td></td> <td>7.322</td> <td>21.413</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>2.527</td> <td>0.274</td> <td>1.991</td>  <td>3.064</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>2.747</td>      <td></td> <td>1.924</td>  <td>3.923</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>1.011</td> <td>0.182</td> <td>0.654</td>  <td>1.367</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[70]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">columns</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">,</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span>
<span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span>

<span class="k">for</span> <span class="n">file</span><span class="p">,</span> <span class="n">ax</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">lstFiles</span><span class="p">,</span><span class="n">ax</span><span class="o">.</span><span class="n">flatten</span><span class="p">()):</span>
    <span class="c1">#plt.figure(figsize=(15, 15))  </span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">,</span><span class="n">file</span><span class="p">)</span>
    <span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">file</span><span class="p">,</span> <span class="n">names</span><span class="o">=</span><span class="n">columns</span><span class="p">)</span>
    <span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">test_race_ethnicity</span><span class="p">,</span> <span class="n">df</span><span class="p">],</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
    <span class="n">yhat</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">))</span>
    <span class="n">neg_count</span><span class="p">,</span> <span class="n">pos_count</span> <span class="o">=</span> <span class="p">(</span><span class="nb">format</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span><span class="s1">&#39;,d&#39;</span><span class="p">)),(</span><span class="nb">format</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()[</span><span class="mi">1</span><span class="p">],</span><span class="s1">&#39;,d&#39;</span><span class="p">))</span>

    <span class="c1"># calculate scores</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;All scores&#39;</span><span class="p">)</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span><span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUROC is:&#39;</span><span class="p">,</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">auroc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="mi">3</span><span class="p">)</span>
    <span class="n">auroc_total</span> <span class="o">=</span> <span class="n">auroc</span>
    <span class="n">optimal_idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">optimal_threshold</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">optimal_idx</span><span class="p">]</span>
    <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Threshold value is:&quot;</span><span class="p">,</span> <span class="n">optimal_threshold</span><span class="p">)</span>
    
    <span class="n">df_not_hispanic</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;Ethnicity&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="s1">&#39;NOT HISPANIC OR LATINO&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">reset_index</span><span class="p">()</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
    <span class="n">df_hispanic</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;Ethnicity&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="s1">&#39;SPANISH/HISPANIC&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">reset_index</span><span class="p">()</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>

    <span class="nb">print</span><span class="p">(</span><span class="n">df_not_hispanic</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="n">df_hispanic</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
    
    <span class="c1"># Ethnicity not hispanic</span>
    <span class="n">fpr_boot</span><span class="p">,</span> <span class="n">tpr_boot</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">boot</span><span class="p">(</span><span class="n">df_not_hispanic</span><span class="p">)</span>
    
    <span class="c1"># plotting </span>
    <span class="n">lw</span> <span class="o">=</span> <span class="mi">2</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">1000</span><span class="p">):</span>
        <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="n">tpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;lightcoral&#39;</span><span class="p">,</span>
                 <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">alpha</span> <span class="o">=</span> <span class="o">.</span><span class="mi">1</span><span class="p">)</span>
        
    <span class="c1"># calculate scores</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Not Hispanic&#39;</span><span class="p">)</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df_not_hispanic</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df_not_hispanic</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span><span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUROC is:&#39;</span><span class="p">,</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">auroc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="mi">3</span><span class="p">)</span>
    <span class="n">optimal_idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">optimal_threshold</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">optimal_idx</span><span class="p">]</span>
    <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Threshold value is:&quot;</span><span class="p">,</span> <span class="n">optimal_threshold</span><span class="p">)</span>
    
    <span class="c1"># Ethnicity hispanic</span>
    <span class="n">fpr_boot</span><span class="p">,</span> <span class="n">tpr_boot</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">boot</span><span class="p">(</span><span class="n">df_hispanic</span><span class="p">)</span>
    
    <span class="c1"># plotting </span>
    <span class="n">lw</span> <span class="o">=</span> <span class="mi">2</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">1000</span><span class="p">):</span>
        <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="n">tpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;lightblue&#39;</span><span class="p">,</span>
                 <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">alpha</span> <span class="o">=</span> <span class="o">.</span><span class="mi">1</span><span class="p">)</span>
    
    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;red&#39;</span><span class="p">,</span>
         <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Hispanic ROC curve (AUROC = </span><span class="si">%0.3f</span><span class="s1">)&#39;</span> <span class="o">%</span> <span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="c1">#plt.plot([0, 1], [0, 1], color=&#39;navy&#39;, lw=lw, linestyle=&#39;--&#39;)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.05</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">&#39;False Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">&#39;True Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s2">&quot;lower right&quot;</span><span class="p">)</span>
    
    <span class="c1"># calculate scores</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Hispanic&#39;</span><span class="p">)</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df_hispanic</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df_hispanic</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span><span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUROC is:&#39;</span><span class="p">,</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">auroc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="mi">3</span><span class="p">)</span>
    <span class="n">optimal_idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">optimal_threshold</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">optimal_idx</span><span class="p">]</span>
    <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Threshold value is:&quot;</span><span class="p">,</span> <span class="n">optimal_threshold</span><span class="p">)</span>
    
    <span class="n">titlename</span> <span class="o">=</span> <span class="n">file</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;Eval_&#39;</span><span class="p">)[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;_2022&#39;</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="sa">f</span><span class="s1">&#39; [</span><span class="si">{</span><span class="n">pos_count</span><span class="si">}</span><span class="s1"> / </span><span class="si">{</span><span class="n">neg_count</span><span class="si">}</span><span class="s1">]&#39;</span> <span class="o">+</span> <span class="sa">f</span><span class="s1">&#39; (AUROC=</span><span class="si">{</span><span class="n">auroc_total</span><span class="si">}</span><span class="s1">)&#39;</span>
    <span class="n">titlename</span> <span class="o">=</span> <span class="n">titlename</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;AS_AI_MR&quot;</span><span class="p">,</span> <span class="s2">&quot;AS, AR, or MR&quot;</span><span class="p">)</span>
    <span class="n">titlename</span> <span class="o">=</span> <span class="n">titlename</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;_&quot;</span><span class="p">,</span> <span class="s2">&quot; &quot;</span><span class="p">)</span>
    <span class="n">titlename</span> <span class="o">=</span> <span class="n">titlename</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;Aortic Insufficiency&quot;</span><span class="p">,</span> <span class="s2">&quot;Aortic Regurgitation&quot;</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="n">titlename</span><span class="p">)</span>
    
    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;navy&#39;</span><span class="p">,</span>
         <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Non-Hispanic ROC curve (AUROC = </span><span class="si">%0.3f</span><span class="s1">)&#39;</span> <span class="o">%</span> <span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;black&#39;</span><span class="p">,</span> <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">linestyle</span><span class="o">=</span><span class="s1">&#39;--&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.05</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">&#39;False Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">&#39;True Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="n">titlename</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s2">&quot;lower right&quot;</span><span class="p">)</span>
    
<span class="c1">#     marker=&#39;,&#39;</span>
<span class="c1">#     linewidth=3</span>
<span class="c1">#     linestyle=&#39;-&#39;</span>
<span class="c1">#     if labelname.startswith(&#39;Aortic Stenosis&#39;):</span>
<span class="c1">#         colorwheel=plt.cm.Reds(np.linspace(0.7,n_AS))</span>
<span class="c1">#         color=colorwheel[c_AS]</span>
<span class="c1">#     if labelname.startswith(&#39;Aortic Regurgitation&#39;):</span>
<span class="c1">#         colorwheel=plt.cm.Blues(np.linspace(0.6,n_AI))</span>
<span class="c1">#         color=colorwheel[c_AI]</span>
<span class="c1">#     if labelname.startswith(&#39;Mitral Regurgitation&#39;):</span>
<span class="c1">#         colorwheel=plt.cm.Greens(np.linspace(0.6,n_MR))</span>
<span class="c1">#         color=colorwheel[c_MR]</span>
<span class="c1">#     if &#39;AS/AR/MR&#39; in labelname:</span>
<span class="c1">#         colorwheel=plt.cm.Greys(np.linspace(0.8,n_AS_AI_MR))</span>
<span class="c1">#         color=colorwheel[c_AS_AI_MR]</span>
            
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>
 /Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Aortic_Stenosis_2022-03-03--06:21:48/y_y_pred_roc_0.8805.csv
All scores
AUROC is: 0.8804872725564813 0.8804872725564813
Threshold value is: 0.4290496913006215
(5290, 42)
(4034, 42)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:03&lt;00:00, 325.89it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Not Hispanic
AUROC is: 0.8639202926087781 0.8639202926087781
Threshold value is: 0.48230155998638263
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:02&lt;00:00, 348.32it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Hispanic
AUROC is: 0.8819814293978019 0.8819814293978019
Threshold value is: 0.44052041757831195
Aortic Stenosis [907 / 20,141] (AUROC=0.88)

 /Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Aortic_Insufficiency_2022-03-03--06:22:25/y_y_pred_roc_0.7688.csv
All scores
AUROC is: 0.7687817837666431 0.7687817837666431
Threshold value is: 0.3979350694912722
(5290, 42)
(4034, 42)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:03&lt;00:00, 298.86it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Not Hispanic
AUROC is: 0.721647272033575 0.721647272033575
Threshold value is: 0.47691565923631085
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:02&lt;00:00, 336.87it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Hispanic
AUROC is: 0.6792457703732403 0.6792457703732403
Threshold value is: 0.3979350694912722
Aortic Regurgitation [196 / 20,852] (AUROC=0.769)

 /Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Mitral_Regurgitation_2022-03-03--06:23:05/y_y_pred_roc_0.8280.csv
All scores
AUROC is: 0.828017318849102 0.828017318849102
Threshold value is: 0.45940651160283796
(5290, 42)
(4034, 42)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:03&lt;00:00, 319.63it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Not Hispanic
AUROC is: 0.8314383561643836 0.8314383561643836
Threshold value is: 0.4676501101949141
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:02&lt;00:00, 355.90it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Hispanic
AUROC is: 0.8219206618456686 0.8219206618456686
Threshold value is: 0.5021834840032425
Mitral Regurgitation [742 / 20,306] (AUROC=0.828)

 /Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_AS_AI_MR_Combination_2022-03-03--06:23:39/y_y_pred_roc_0.8351.csv
All scores
AUROC is: 0.8354910330275293 0.8354910330275293
Threshold value is: 0.45716718045293103
(5290, 42)
(4034, 42)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:03&lt;00:00, 329.72it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Not Hispanic
AUROC is: 0.8333336276154322 0.8333336276154322
Threshold value is: 0.5103109684980559
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:02&lt;00:00, 391.64it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Hispanic
AUROC is: 0.8203316797819682 0.8203316797819682
Threshold value is: 0.4543221183650831
AS, AR, or MR Combination [1,644 / 19,404] (AUROC=0.835)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[71]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="o">.</span><span class="n">savefig</span><span class="p">(</span><span class="s1">&#39;figures/ethnicity_roc.png&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Compute-Time-Differential-ECG/Echo-Stats-Using-Bootstrap">Compute Time Differential ECG/Echo Stats Using Bootstrap<a class="anchor-link" href="#Compute-Time-Differential-ECG/Echo-Stats-Using-Bootstrap">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[&nbsp;]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">n_samples</span> <span class="o">=</span> <span class="mi">1000</span> <span class="c1"># bootstrap parameter</span>

<span class="k">def</span> <span class="nf">new_time_column</span><span class="p">(</span><span class="n">row</span><span class="p">):</span>
    <span class="k">if</span> <span class="n">row</span><span class="p">[</span><span class="s1">&#39;days_since_echo&#39;</span><span class="p">]</span> <span class="o">&gt;=</span> <span class="o">-</span><span class="mi">90</span><span class="p">:</span>
        <span class="k">return</span> <span class="s1">&#39;0-3 months&#39;</span>
    <span class="k">if</span> <span class="n">row</span><span class="p">[</span><span class="s1">&#39;days_since_echo&#39;</span><span class="p">]</span> <span class="o">&lt;</span> <span class="o">-</span><span class="mi">90</span> <span class="ow">and</span> <span class="n">row</span><span class="p">[</span><span class="s1">&#39;days_since_echo&#39;</span><span class="p">]</span> <span class="o">&gt;=</span> <span class="o">-</span><span class="mi">180</span><span class="p">:</span>
        <span class="k">return</span> <span class="s1">&#39;3-6 months&#39;</span>
    <span class="k">if</span> <span class="n">row</span><span class="p">[</span><span class="s1">&#39;days_since_echo&#39;</span><span class="p">]</span> <span class="o">&lt;</span> <span class="o">-</span><span class="mi">180</span><span class="p">:</span>
        <span class="k">return</span> <span class="s1">&#39;6+ months&#39;</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="k">return</span> <span class="kc">None</span>
<span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;days_since_echo_group&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">new_time_column</span><span class="p">,</span><span class="n">axis</span> <span class="o">=</span><span class="mi">1</span><span class="p">)</span>

<span class="n">display</span><span class="p">(</span><span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;days_since_echo_group&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">hist</span><span class="p">())</span>

<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Aortic Stenosis&#39;</span><span class="p">)</span>
<span class="n">as_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;days_since_echo_group&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AS&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AS_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Mitral Regurgitation&#39;</span><span class="p">)</span>
<span class="n">mr_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;days_since_echo_group&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_MR&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_MR_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Aortic Insufficiency&#39;</span><span class="p">)</span>
<span class="n">ai_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;days_since_echo_group&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AI&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AI_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Combined Aortic Stenosis, Aortic Regurgitation, and Mitral Regurgitation&#39;</span><span class="p">)</span>
<span class="n">as_mr_ai_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;days_since_echo_group&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AS_AI_MR&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AS_AI_MR_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>           
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n\n\n</span><span class="s1">&#39;</span><span class="p">)</span>

<span class="n">as_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Aortic Stenosis&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">as_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">mr_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Mitral Regurgitation&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">mr_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">ai_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Aortic Insufficiency&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">ai_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">as_mr_ai_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Combined Aortic Stenosis, Aortic Regurgitation, and Mitral Regurgitation&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">as_mr_ai_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>

<span class="n">days_since_echo_summary_stats</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">as_summary</span><span class="p">,</span><span class="n">mr_summary</span><span class="p">,</span><span class="n">ai_summary</span><span class="p">,</span><span class="n">as_mr_ai_summary</span><span class="p">],</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">days_since_echo_summary_stats</span><span class="o">.</span><span class="n">to_csv</span><span class="p">(</span><span class="s1">&#39;days_since_echo_summary_stats.csv&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Compute-Bundle-Branch-and-QRS-Stats-Using-Bootstrap">Compute Bundle Branch and QRS Stats Using Bootstrap<a class="anchor-link" href="#Compute-Bundle-Branch-and-QRS-Stats-Using-Bootstrap">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[73]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">display</span><span class="p">(</span><span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;LEFT BUNDLE BRANCH BLOCK&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">())</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedText jp-OutputArea-output " data-mime-type="text/plain">
<pre>0.0    20491
1.0      493
Name: LEFT BUNDLE BRANCH BLOCK, dtype: int64</pre>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[&nbsp;]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">n_samples</span> <span class="o">=</span> <span class="mi">1000</span> <span class="c1"># bootstrap parameter</span>

<span class="k">def</span> <span class="nf">new_BBB_column</span><span class="p">(</span><span class="n">row</span><span class="p">):</span>
    <span class="k">if</span> <span class="n">row</span><span class="p">[</span><span class="s1">&#39;RIGHT BUNDLE BRANCH BLOCK&#39;</span><span class="p">]</span> <span class="o">==</span><span class="mi">0</span> <span class="ow">and</span> <span class="n">row</span><span class="p">[</span><span class="s1">&#39;LEFT BUNDLE BRANCH BLOCK&#39;</span><span class="p">]</span> <span class="o">==</span><span class="mi">0</span><span class="p">:</span>
        <span class="k">return</span> <span class="s1">&#39;No Bundle Branch Block&#39;</span>
    <span class="k">if</span> <span class="n">row</span><span class="p">[</span><span class="s1">&#39;RIGHT BUNDLE BRANCH BLOCK&#39;</span><span class="p">]</span> <span class="o">==</span><span class="mi">1</span><span class="p">:</span>
        <span class="k">return</span> <span class="s1">&#39;Right Bundle Branch Block&#39;</span>
    <span class="k">if</span> <span class="n">row</span><span class="p">[</span><span class="s1">&#39;LEFT BUNDLE BRANCH BLOCK&#39;</span><span class="p">]</span> <span class="o">==</span><span class="mi">1</span><span class="p">:</span>
        <span class="k">return</span> <span class="s1">&#39;Left Bundle Branch Block&#39;</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="k">return</span> <span class="kc">None</span>
<span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;BUNDLE_BRANCH_PRESENT_GROUP&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">new_BBB_column</span><span class="p">,</span><span class="n">axis</span> <span class="o">=</span><span class="mi">1</span><span class="p">)</span>

<span class="n">display</span><span class="p">(</span><span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;BUNDLE_BRANCH_PRESENT_GROUP&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">hist</span><span class="p">())</span>

<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Aortic Stenosis&#39;</span><span class="p">)</span>
<span class="n">as_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;BUNDLE_BRANCH_PRESENT_GROUP&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AS&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AS_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Mitral Regurgitation&#39;</span><span class="p">)</span>
<span class="n">mr_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;BUNDLE_BRANCH_PRESENT_GROUP&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_MR&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_MR_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Aortic Insufficiency&#39;</span><span class="p">)</span>
<span class="n">ai_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;BUNDLE_BRANCH_PRESENT_GROUP&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AI&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AI_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Combined Aortic Stenosis, Aortic Regurgitation, and Mitral Regurgitation&#39;</span><span class="p">)</span>
<span class="n">as_mr_ai_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;BUNDLE_BRANCH_PRESENT_GROUP&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AS_AI_MR&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AS_AI_MR_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>           
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n\n\n</span><span class="s1">&#39;</span><span class="p">)</span>

<span class="n">as_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Aortic Stenosis&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">as_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">mr_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Mitral Regurgitation&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">mr_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">ai_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Aortic Insufficiency&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">ai_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">as_mr_ai_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Combined Aortic Stenosis, Aortic Regurgitation, and Mitral Regurgitation&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">as_mr_ai_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>

<span class="n">bbb_summary_stats</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">as_summary</span><span class="p">,</span><span class="n">mr_summary</span><span class="p">,</span><span class="n">ai_summary</span><span class="p">,</span><span class="n">as_mr_ai_summary</span><span class="p">],</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">bbb_summary_stats</span><span class="o">.</span><span class="n">to_csv</span><span class="p">(</span><span class="s1">&#39;bbb_summary_stats.csv&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[&nbsp;]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">n_samples</span> <span class="o">=</span> <span class="mi">1000</span> <span class="c1"># bootstrap parameter</span>

<span class="k">def</span> <span class="nf">new_QRS_column</span><span class="p">(</span><span class="n">row</span><span class="p">):</span>
    <span class="k">if</span> <span class="n">row</span><span class="p">[</span><span class="s1">&#39;QRSDuration&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">120</span><span class="p">:</span>
        <span class="k">return</span> <span class="s1">&#39;QRS &gt;= 120&#39;</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="k">return</span> <span class="s1">&#39;QRS &lt; 120&#39;</span>
<span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;QRSDuration_Group&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">new_QRS_column</span><span class="p">,</span><span class="n">axis</span> <span class="o">=</span><span class="mi">1</span><span class="p">)</span>

<span class="n">display</span><span class="p">(</span><span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;QRSDuration_Group&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">hist</span><span class="p">())</span>

<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Aortic Stenosis&#39;</span><span class="p">)</span>
<span class="n">as_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;QRSDuration_Group&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AS&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AS_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Mitral Regurgitation&#39;</span><span class="p">)</span>
<span class="n">mr_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;QRSDuration_Group&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_MR&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_MR_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Aortic Insufficiency&#39;</span><span class="p">)</span>
<span class="n">ai_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;QRSDuration_Group&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AI&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AI_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Combined Aortic Stenosis, Aortic Regurgitation, and Mitral Regurgitation&#39;</span><span class="p">)</span>
<span class="n">as_mr_ai_summary</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">groupby</span><span class="p">([</span><span class="s1">&#39;QRSDuration_Group&#39;</span><span class="p">],</span> <span class="n">dropna</span> <span class="o">=</span> <span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">&#39;y_AS_AI_MR&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AS_AI_MR_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">)))</span>           
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n\n\n</span><span class="s1">&#39;</span><span class="p">)</span>

<span class="n">as_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Aortic Stenosis&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">as_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">mr_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Mitral Regurgitation&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">mr_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">ai_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Aortic Insufficiency&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">ai_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">as_mr_ai_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Combined Aortic Stenosis, Aortic Regurgitation, and Mitral Regurgitation&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">as_mr_ai_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>

<span class="n">qrs_summary_stats</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">as_summary</span><span class="p">,</span><span class="n">mr_summary</span><span class="p">,</span><span class="n">ai_summary</span><span class="p">,</span><span class="n">as_mr_ai_summary</span><span class="p">],</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">qrs_summary_stats</span><span class="o">.</span><span class="n">to_csv</span><span class="p">(</span><span class="s1">&#39;qrs_summary_stats.csv&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Plot-results-by-QRS-Duration">Plot results by QRS Duration<a class="anchor-link" href="#Plot-results-by-QRS-Duration">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[76]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;QRSDurationFactor&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;QRSDuration&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="s1">&#39;QRSDurationLessThan120&#39;</span> <span class="k">if</span> <span class="n">x</span> <span class="o">&lt;</span> <span class="mi">120</span> <span class="k">else</span> <span class="s1">&#39;QRSDurationGreaterThan120&#39;</span><span class="p">)</span>

<span class="n">factor_var</span> <span class="o">=</span> <span class="s1">&#39;QRSDurationFactor&#39;</span>
<span class="n">target_var</span> <span class="o">=</span> <span class="s1">&#39;AS_AI_MR&#39;</span>
<span class="n">plot_results_by_factor_by_target</span><span class="p">(</span><span class="n">test_race_ethnicity</span><span class="p">,</span> <span class="n">factor_var</span><span class="p">,</span> <span class="n">target_var</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>QRSDurationGreaterThan120 

AUROC is: 0.78
Threshold value is: 0.6449750458368416
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 8.3 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>        <td>8.315</td>      <td></td> <td>5.563</td> <td>12.428</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>2.118</td> <td>0.205</td> <td>1.716</td>  <td>2.520</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>5.562</td>      <td></td> <td>3.846</td>  <td>8.043</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>1.716</td> <td>0.188</td> <td>1.347</td>  <td>2.085</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 6.0 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>   <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>        <td>6.043</td>      <td></td> <td>4.729</td> <td>7.722</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>1.799</td> <td>0.125</td> <td>1.554</td> <td>2.044</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>2.640</td>      <td></td> <td>2.226</td> <td>3.130</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>0.971</td> <td>0.087</td> <td>0.800</td> <td>1.141</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>QRSDurationLessThan120 

AUROC is: 0.83
Threshold value is: 0.4066919309601984
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 9.3 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>        <td>9.324</td>      <td></td> <td>8.238</td> <td>10.554</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>2.233</td> <td>0.063</td> <td>2.109</td>  <td>2.356</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>2.453</td>      <td></td> <td>2.268</td>  <td>2.653</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>0.897</td> <td>0.040</td> <td>0.819</td>  <td>0.976</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 10.0 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>       <td>10.033</td>      <td></td> <td>8.694</td> <td>11.578</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>2.306</td> <td>0.073</td> <td>2.163</td>  <td>2.449</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>3.603</td>      <td></td> <td>3.220</td>  <td>4.031</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>1.282</td> <td>0.057</td> <td>1.169</td>  <td>1.394</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[77]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#generate counts of each label number of studies, only non 65 plus</span>
<span class="n">n_AS</span><span class="p">,</span> <span class="n">n_AI</span><span class="p">,</span> <span class="n">n_MR</span><span class="p">,</span> <span class="n">n_AS_AI_MR</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span>
<span class="k">for</span> <span class="n">study</span> <span class="ow">in</span> <span class="n">study_name</span><span class="p">:</span>
    <span class="k">if</span> <span class="s1">&#39;65plus&#39;</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">study</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">study</span><span class="o">==</span><span class="s1">&#39;AS&#39;</span><span class="p">:</span>
            <span class="n">n_AS</span><span class="o">+=</span><span class="mi">1</span>
        <span class="k">if</span> <span class="n">study</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s1">&#39;AI&#39;</span><span class="p">):</span>
            <span class="n">n_AI</span><span class="o">+=</span><span class="mi">1</span>
        <span class="k">if</span> <span class="n">study</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s1">&#39;MR&#39;</span><span class="p">):</span>
            <span class="n">n_MR</span><span class="o">+=</span><span class="mi">1</span>
        <span class="k">if</span> <span class="s1">&#39;AS_AI_MR&#39;</span> <span class="ow">in</span> <span class="n">study</span><span class="p">:</span>
            <span class="n">n_AS_AI_MR</span><span class="o">+=</span><span class="mi">1</span>
            
<span class="c1">#generate color counts (must make separate for age 65 if we want the two studies that only differ from age to have same color)</span>
<span class="n">c_AS</span><span class="p">,</span> <span class="n">c_AI</span><span class="p">,</span> <span class="n">c_MR</span><span class="p">,</span> <span class="n">c_AS_AI_MR</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span>
<span class="n">c65_AS</span><span class="p">,</span> <span class="n">c65_AI</span><span class="p">,</span> <span class="n">c65_MR</span><span class="p">,</span> <span class="n">c65_AS_AI_MR</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span>

<span class="nb">print</span><span class="p">(</span><span class="n">lstFiles</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">study_name</span><span class="p">)</span>

<span class="n">columns</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">,</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span>
<span class="c1">#a = plt.figure(figsize=(15, 15), subplots = [1,2])  </span>
<span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span>

<span class="k">for</span> <span class="n">file</span><span class="p">,</span> <span class="n">ax</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">lstFiles</span><span class="p">,</span><span class="n">ax</span><span class="o">.</span><span class="n">flatten</span><span class="p">()):</span>
    <span class="c1">#plt.figure(figsize=(15, 15))  </span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">,</span><span class="n">file</span><span class="p">)</span>
    <span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">file</span><span class="p">,</span> <span class="n">names</span><span class="o">=</span><span class="n">columns</span><span class="p">)</span>
    <span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">test_race_ethnicity</span><span class="p">,</span> <span class="n">df</span><span class="p">],</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
    <span class="n">yhat</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">))</span>
    <span class="n">neg_count</span><span class="p">,</span> <span class="n">pos_count</span> <span class="o">=</span> <span class="p">(</span><span class="nb">format</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span><span class="s1">&#39;,d&#39;</span><span class="p">)),(</span><span class="nb">format</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()[</span><span class="mi">1</span><span class="p">],</span><span class="s1">&#39;,d&#39;</span><span class="p">))</span>

    <span class="c1"># calculate scores</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;All scores&#39;</span><span class="p">)</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span><span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUROC is:&#39;</span><span class="p">,</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">auroc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="mi">3</span><span class="p">)</span>
    <span class="n">auroc_total</span> <span class="o">=</span> <span class="n">auroc</span>
    <span class="n">optimal_idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">optimal_threshold</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">optimal_idx</span><span class="p">]</span>
    <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Threshold value is:&quot;</span><span class="p">,</span> <span class="n">optimal_threshold</span><span class="p">)</span>
    
    <span class="c1"># test_pred[test_pred[&#39;QRSDuration&#39;] &lt;= 120][&#39;QRSDuration&#39;].value_counts()</span>
    <span class="n">df_qrs_less_than_120</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;QRSDuration&#39;</span><span class="p">]</span> <span class="o">&lt;</span> <span class="mi">120</span><span class="p">]</span><span class="o">.</span><span class="n">reset_index</span><span class="p">()</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
    <span class="n">df_qrs_greater_than_120</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;QRSDuration&#39;</span><span class="p">]</span> <span class="o">&gt;=</span> <span class="mi">120</span><span class="p">]</span><span class="o">.</span><span class="n">reset_index</span><span class="p">()</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>

    <span class="nb">print</span><span class="p">(</span><span class="n">df_qrs_less_than_120</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="n">df_qrs_greater_than_120</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
    
    <span class="c1"># QRS &lt;= 120</span>
    <span class="n">fpr_boot</span><span class="p">,</span> <span class="n">tpr_boot</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">boot</span><span class="p">(</span><span class="n">df_qrs_less_than_120</span><span class="p">)</span>
    
    <span class="c1"># plotting </span>
    <span class="n">lw</span> <span class="o">=</span> <span class="mi">2</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">100</span><span class="p">):</span>
        <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="n">tpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;lightcoral&#39;</span><span class="p">,</span>
                 <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">alpha</span> <span class="o">=</span> <span class="o">.</span><span class="mi">1</span><span class="p">)</span>
        
    <span class="c1"># calculate scores</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;QRS &lt; 120&#39;</span><span class="p">)</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df_qrs_less_than_120</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df_qrs_less_than_120</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span><span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUROC is:&#39;</span><span class="p">,</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">auroc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="mi">3</span><span class="p">)</span>
    <span class="n">optimal_idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">optimal_threshold</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">optimal_idx</span><span class="p">]</span>
    <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Threshold value is:&quot;</span><span class="p">,</span> <span class="n">optimal_threshold</span><span class="p">)</span>
    
    
    <span class="c1"># QRS &gt;= 120 </span>
    <span class="n">fpr_boot</span><span class="p">,</span> <span class="n">tpr_boot</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">boot</span><span class="p">(</span><span class="n">df_qrs_greater_than_120</span><span class="p">)</span>
    
    <span class="c1"># plotting </span>
    <span class="n">lw</span> <span class="o">=</span> <span class="mi">2</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">100</span><span class="p">):</span>
        <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="n">tpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;lightblue&#39;</span><span class="p">,</span>
                 <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">alpha</span> <span class="o">=</span> <span class="o">.</span><span class="mi">1</span><span class="p">)</span>
    
   
    <span class="c1"># QRS &lt; 120 acual ROC curve</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;red&#39;</span><span class="p">,</span>
         <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;QRS &lt; 120 ROC curve (AUROC = </span><span class="si">%0.3f</span><span class="s1">)&#39;</span> <span class="o">%</span> <span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="c1">#plt.plot([0, 1], [0, 1], color=&#39;navy&#39;, lw=lw, linestyle=&#39;--&#39;)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.05</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">&#39;False Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">&#39;True Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s2">&quot;lower right&quot;</span><span class="p">)</span>
    
    <span class="c1"># calculate scores</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;QRS &gt;= 120&#39;</span><span class="p">)</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df_qrs_greater_than_120</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df_qrs_greater_than_120</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span><span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUROC is:&#39;</span><span class="p">,</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">auroc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="mi">3</span><span class="p">)</span>
    <span class="n">optimal_idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">optimal_threshold</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">optimal_idx</span><span class="p">]</span>
    <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Threshold value is:&quot;</span><span class="p">,</span> <span class="n">optimal_threshold</span><span class="p">)</span>
    
    
    <span class="n">titlename</span> <span class="o">=</span> <span class="n">file</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;Eval_&#39;</span><span class="p">)[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;_2022&#39;</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="sa">f</span><span class="s1">&#39; [</span><span class="si">{</span><span class="n">pos_count</span><span class="si">}</span><span class="s1"> / </span><span class="si">{</span><span class="n">neg_count</span><span class="si">}</span><span class="s1">]&#39;</span> <span class="o">+</span> <span class="sa">f</span><span class="s1">&#39; (AUROC=</span><span class="si">{</span><span class="n">auroc_total</span><span class="si">}</span><span class="s1">)&#39;</span>
    <span class="n">titlename</span> <span class="o">=</span> <span class="n">titlename</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;AS_AI_MR&quot;</span><span class="p">,</span> <span class="s2">&quot;AS, AR, or MR&quot;</span><span class="p">)</span>
    <span class="n">titlename</span> <span class="o">=</span> <span class="n">titlename</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;_&quot;</span><span class="p">,</span> <span class="s2">&quot; &quot;</span><span class="p">)</span>
    <span class="n">titlename</span> <span class="o">=</span> <span class="n">titlename</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;Aortic Insufficiency&quot;</span><span class="p">,</span> <span class="s2">&quot;Aortic Regurgitation&quot;</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="n">titlename</span><span class="p">)</span>
    
    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;navy&#39;</span><span class="p">,</span>
         <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;QRS &gt;= 120 ROC curve (AUROC = </span><span class="si">%0.3f</span><span class="s1">)&#39;</span> <span class="o">%</span> <span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;black&#39;</span><span class="p">,</span> <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">linestyle</span><span class="o">=</span><span class="s1">&#39;--&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.05</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">&#39;False Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">&#39;True Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="n">titlename</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s2">&quot;lower right&quot;</span><span class="p">)</span>
    
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>[&#39;/Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Aortic_Stenosis_2022-03-03--06:21:48/y_y_pred_roc_0.8805.csv&#39;, &#39;/Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Aortic_Insufficiency_2022-03-03--06:22:25/y_y_pred_roc_0.7688.csv&#39;, &#39;/Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Mitral_Regurgitation_2022-03-03--06:23:05/y_y_pred_roc_0.8280.csv&#39;, &#39;/Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_AS_AI_MR_Combination_2022-03-03--06:23:39/y_y_pred_roc_0.8351.csv&#39;]
[&#39;Aortic_Stenosis&#39;, &#39;Aortic_Insufficiency&#39;, &#39;Mitral_Regurgitation&#39;, &#39;AS_AI_MR_Combination&#39;]

 /Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Aortic_Stenosis_2022-03-03--06:21:48/y_y_pred_roc_0.8805.csv
All scores
AUROC is: 0.8804872725564813 0.8804872725564813
Threshold value is: 0.4290496913006215
(18813, 46)
(2235, 46)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:06&lt;00:00, 156.31it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>QRS &lt; 120
AUROC is: 0.8857389529349896 0.8857389529349896
Threshold value is: 0.4290496913006215
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:02&lt;00:00, 496.16it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>QRS &gt;= 120
AUROC is: 0.7905320843851579 0.7905320843851579
Threshold value is: 0.591104117144755
Aortic Stenosis [907 / 20,141] (AUROC=0.88)

 /Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Aortic_Insufficiency_2022-03-03--06:22:25/y_y_pred_roc_0.7688.csv
All scores
AUROC is: 0.7687817837666431 0.7687817837666431
Threshold value is: 0.3979350694912722
(18813, 46)
(2235, 46)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:06&lt;00:00, 145.69it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>QRS &lt; 120
AUROC is: 0.7764085872286653 0.7764085872286653
Threshold value is: 0.4481974703041241
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:01&lt;00:00, 512.96it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>QRS &gt;= 120
AUROC is: 0.6583257506824386 0.6583257506824386
Threshold value is: 0.535040459125702
Aortic Regurgitation [196 / 20,852] (AUROC=0.769)

 /Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Mitral_Regurgitation_2022-03-03--06:23:05/y_y_pred_roc_0.8280.csv
All scores
AUROC is: 0.828017318849102 0.828017318849102
Threshold value is: 0.45940651160283796
(18813, 46)
(2235, 46)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:06&lt;00:00, 160.46it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>QRS &lt; 120
AUROC is: 0.8221273438167755 0.8221273438167755
Threshold value is: 0.43892152481829055
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:01&lt;00:00, 610.66it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>QRS &gt;= 120
AUROC is: 0.752938662644545 0.752938662644545
Threshold value is: 0.6198770145502475
Mitral Regurgitation [742 / 20,306] (AUROC=0.828)

 /Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_AS_AI_MR_Combination_2022-03-03--06:23:39/y_y_pred_roc_0.8351.csv
All scores
AUROC is: 0.8354910330275293 0.8354910330275293
Threshold value is: 0.45716718045293103
(18813, 46)
(2235, 46)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:05&lt;00:00, 169.43it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>QRS &lt; 120
AUROC is: 0.8321187756490442 0.8321187756490442
Threshold value is: 0.4066919309601984
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [00:01&lt;00:00, 607.17it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>QRS &gt;= 120
AUROC is: 0.7761847429030093 0.7761847429030093
Threshold value is: 0.6449750458368416
AS, AR, or MR Combination [1,644 / 19,404] (AUROC=0.835)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[78]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="o">.</span><span class="n">savefig</span><span class="p">(</span><span class="s1">&#39;figures/qrs_duration_roc.png&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Plot-results-by-LBBB/RBBB">Plot results by LBBB/RBBB<a class="anchor-link" href="#Plot-results-by-LBBB/RBBB">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[79]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">test_race_ethnicity</span><span class="p">[</span><span class="s1">&#39;BundleBranchBlock&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="s1">&#39;RightBundleBranchBlock&#39;</span> <span class="k">if</span> <span class="n">x</span><span class="p">[</span><span class="s1">&#39;RIGHT BUNDLE BRANCH BLOCK&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="mi">1</span> 
                          <span class="k">else</span> <span class="s1">&#39;LeftBundleBranchBlock&#39;</span> <span class="k">if</span> <span class="n">x</span><span class="p">[</span><span class="s1">&#39;LEFT BUNDLE BRANCH BLOCK&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="mi">1</span> 
                          <span class="k">else</span> <span class="s1">&#39;No Bundle Branch Block&#39;</span><span class="p">,</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>

<span class="n">factor_var</span> <span class="o">=</span> <span class="s1">&#39;BundleBranchBlock&#39;</span>
<span class="n">target_var</span> <span class="o">=</span> <span class="s1">&#39;AS_AI_MR&#39;</span>
<span class="n">plot_results_by_factor_by_target</span><span class="p">(</span><span class="n">test_race_ethnicity</span><span class="p">,</span> <span class="n">factor_var</span><span class="p">,</span> <span class="n">target_var</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>LeftBundleBranchBlock 

AUROC is: 0.73
Threshold value is: 0.6692591309384145
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 7.9 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>        <td>7.948</td>      <td></td> <td>2.847</td> <td>22.191</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>2.073</td> <td>0.524</td> <td>1.046</td>  <td>3.100</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>6.443</td>      <td></td> <td>2.412</td> <td>17.210</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>1.863</td> <td>0.501</td> <td>0.881</td>  <td>2.845</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 4.2 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>   <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>        <td>4.227</td>      <td></td> <td>2.709</td> <td>6.596</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>1.441</td> <td>0.227</td> <td>0.997</td> <td>1.886</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>2.139</td>      <td></td> <td>1.612</td> <td>2.838</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>0.760</td> <td>0.144</td> <td>0.477</td> <td>1.043</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>No Bundle Branch Block 

AUROC is: 0.84
Threshold value is: 0.45716718045293103
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 9.6 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>        <td>9.633</td>      <td></td> <td>8.539</td> <td>10.867</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>2.265</td> <td>0.061</td> <td>2.145</td>  <td>2.386</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>2.606</td>      <td></td> <td>2.408</td>  <td>2.821</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>0.958</td> <td>0.040</td> <td>0.879</td>  <td>1.037</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 9.9 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>        <td>9.937</td>      <td></td> <td>8.746</td> <td>11.289</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>2.296</td> <td>0.065</td> <td>2.169</td>  <td>2.424</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>3.085</td>      <td></td> <td>2.812</td>  <td>3.384</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>1.127</td> <td>0.047</td> <td>1.034</td>  <td>1.219</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>RightBundleBranchBlock 

AUROC is: 0.79
Threshold value is: 0.6141482952187097
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 7.9 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>        <td>7.889</td>      <td></td> <td>4.644</td> <td>13.401</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>2.065</td> <td>0.270</td> <td>1.535</td>  <td>2.595</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>4.683</td>      <td></td> <td>2.929</td>  <td>7.488</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>1.544</td> <td>0.239</td> <td>1.075</td>  <td>2.013</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 7.9 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>        <td>7.888</td>      <td></td> <td>5.271</td> <td>11.804</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>2.065</td> <td>0.206</td> <td>1.662</td>  <td>2.468</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>3.271</td>      <td></td> <td>2.406</td>  <td>4.446</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>1.185</td> <td>0.157</td> <td>0.878</td>  <td>1.492</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[&nbsp;]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1">#generate counts of each label number of studies, only non 65 plus</span>
<span class="n">n_AS</span><span class="p">,</span> <span class="n">n_AI</span><span class="p">,</span> <span class="n">n_MR</span><span class="p">,</span> <span class="n">n_AS_AI_MR</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span>
<span class="k">for</span> <span class="n">study</span> <span class="ow">in</span> <span class="n">study_name</span><span class="p">:</span>
    <span class="k">if</span> <span class="s1">&#39;65plus&#39;</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">study</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">study</span><span class="o">==</span><span class="s1">&#39;AS&#39;</span><span class="p">:</span>
            <span class="n">n_AS</span><span class="o">+=</span><span class="mi">1</span>
        <span class="k">if</span> <span class="n">study</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s1">&#39;AI&#39;</span><span class="p">):</span>
            <span class="n">n_AI</span><span class="o">+=</span><span class="mi">1</span>
        <span class="k">if</span> <span class="n">study</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s1">&#39;MR&#39;</span><span class="p">):</span>
            <span class="n">n_MR</span><span class="o">+=</span><span class="mi">1</span>
        <span class="k">if</span> <span class="s1">&#39;AS_AI_MR&#39;</span> <span class="ow">in</span> <span class="n">study</span><span class="p">:</span>
            <span class="n">n_AS_AI_MR</span><span class="o">+=</span><span class="mi">1</span>
            
<span class="c1">#generate color counts (must make separate for age 65 if we want the two studies that only differ from age to have same color)</span>
<span class="n">c_AS</span><span class="p">,</span> <span class="n">c_AI</span><span class="p">,</span> <span class="n">c_MR</span><span class="p">,</span> <span class="n">c_AS_AI_MR</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span>
<span class="n">c65_AS</span><span class="p">,</span> <span class="n">c65_AI</span><span class="p">,</span> <span class="n">c65_MR</span><span class="p">,</span> <span class="n">c65_AS_AI_MR</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span>

<span class="nb">print</span><span class="p">(</span><span class="n">lstFiles</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">study_name</span><span class="p">)</span>

<span class="n">columns</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">,</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span>
<span class="c1">#a = plt.figure(figsize=(15, 15), subplots = [1,2])  </span>
<span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span>

<span class="k">for</span> <span class="n">file</span><span class="p">,</span> <span class="n">ax</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">lstFiles</span><span class="p">,</span><span class="n">ax</span><span class="o">.</span><span class="n">flatten</span><span class="p">()):</span>
    <span class="c1">#plt.figure(figsize=(15, 15))  </span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">,</span><span class="n">file</span><span class="p">)</span>
    <span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">file</span><span class="p">,</span> <span class="n">names</span><span class="o">=</span><span class="n">columns</span><span class="p">)</span>
    <span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">test_race_ethnicity</span><span class="p">,</span> <span class="n">df</span><span class="p">],</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
    <span class="n">yhat</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">))</span>
    <span class="n">neg_count</span><span class="p">,</span> <span class="n">pos_count</span> <span class="o">=</span> <span class="p">(</span><span class="nb">format</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span><span class="s1">&#39;,d&#39;</span><span class="p">)),(</span><span class="nb">format</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()[</span><span class="mi">1</span><span class="p">],</span><span class="s1">&#39;,d&#39;</span><span class="p">))</span>

    <span class="c1"># calculate scores</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;All scores&#39;</span><span class="p">)</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span><span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUROC is:&#39;</span><span class="p">,</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">auroc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="mi">3</span><span class="p">)</span>
    <span class="n">auroc_total</span> <span class="o">=</span> <span class="n">auroc</span>
    <span class="n">optimal_idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">optimal_threshold</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">optimal_idx</span><span class="p">]</span>
    <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Threshold value is:&quot;</span><span class="p">,</span> <span class="n">optimal_threshold</span><span class="p">)</span>
    
    <span class="n">df_no_bundle_branch</span> <span class="o">=</span> <span class="n">df</span><span class="p">[(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;RIGHT BUNDLE BRANCH BLOCK&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="mi">0</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;LEFT BUNDLE BRANCH BLOCK&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="mi">0</span><span class="p">)]</span><span class="o">.</span><span class="n">reset_index</span><span class="p">()</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
    <span class="n">df_left_bundle_branch</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;LEFT BUNDLE BRANCH BLOCK&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">reset_index</span><span class="p">()</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
    <span class="n">df_right_bundle_branch</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;RIGHT BUNDLE BRANCH BLOCK&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">reset_index</span><span class="p">()</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span>
    
    <span class="nb">print</span><span class="p">(</span><span class="n">df_no_bundle_branch</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="n">df_left_bundle_branch</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="n">df_right_bundle_branch</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
    
    <span class="c1"># no_bundle_branch</span>
    <span class="n">fpr_boot</span><span class="p">,</span> <span class="n">tpr_boot</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">boot</span><span class="p">(</span><span class="n">df_no_bundle_branch</span><span class="p">)</span>
    
    <span class="c1"># plotting </span>
    <span class="n">lw</span> <span class="o">=</span> <span class="mi">2</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">100</span><span class="p">):</span>
        <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="n">tpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;lightgreen&#39;</span><span class="p">,</span>
                 <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">alpha</span> <span class="o">=</span> <span class="o">.</span><span class="mi">1</span><span class="p">)</span>
        
    <span class="c1"># calculate scores</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;No Bundle&#39;</span><span class="p">)</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df_no_bundle_branch</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df_no_bundle_branch</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span><span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUROC is:&#39;</span><span class="p">,</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">auroc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="mi">3</span><span class="p">)</span>
    <span class="n">optimal_idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">optimal_threshold</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">optimal_idx</span><span class="p">]</span>
    <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Threshold value is:&quot;</span><span class="p">,</span> <span class="n">optimal_threshold</span><span class="p">)</span>
    
    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;green&#39;</span><span class="p">,</span>
         <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;No Bundle Branch ROC curve (AUROC = </span><span class="si">%0.3f</span><span class="s1">)&#39;</span> <span class="o">%</span> <span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="c1">#plt.plot([0, 1], [0, 1], color=&#39;navy&#39;, lw=lw, linestyle=&#39;--&#39;)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.05</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">&#39;False Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">&#39;True Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s2">&quot;lower right&quot;</span><span class="p">)</span>
    
    
    
     <span class="c1"># left_bundle_branch</span>
    <span class="n">fpr_boot</span><span class="p">,</span> <span class="n">tpr_boot</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">boot</span><span class="p">(</span><span class="n">df_left_bundle_branch</span><span class="p">)</span>
    
    <span class="c1"># plotting </span>
    <span class="n">lw</span> <span class="o">=</span> <span class="mi">2</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">100</span><span class="p">):</span>
        <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="n">tpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;lightcoral&#39;</span><span class="p">,</span>
                 <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">alpha</span> <span class="o">=</span> <span class="o">.</span><span class="mi">1</span><span class="p">)</span>
        
    <span class="c1"># calculate scores</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Left Bundle&#39;</span><span class="p">)</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df_left_bundle_branch</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df_left_bundle_branch</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span><span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUROC is:&#39;</span><span class="p">,</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">auroc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="mi">3</span><span class="p">)</span>
    <span class="n">optimal_idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">optimal_threshold</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">optimal_idx</span><span class="p">]</span>
    <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Threshold value is:&quot;</span><span class="p">,</span> <span class="n">optimal_threshold</span><span class="p">)</span>
    
    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;red&#39;</span><span class="p">,</span>
         <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Left Bundle Branch ROC curve (AUROC = </span><span class="si">%0.3f</span><span class="s1">)&#39;</span> <span class="o">%</span> <span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="c1">#plt.plot([0, 1], [0, 1], color=&#39;navy&#39;, lw=lw, linestyle=&#39;--&#39;)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.05</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">&#39;False Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">&#39;True Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s2">&quot;lower right&quot;</span><span class="p">)</span>
    
    
    <span class="c1"># Right_bundle_branch</span>
    <span class="n">fpr_boot</span><span class="p">,</span> <span class="n">tpr_boot</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">boot</span><span class="p">(</span><span class="n">df_right_bundle_branch</span><span class="p">)</span>
    
    <span class="c1"># plotting </span>
    <span class="n">lw</span> <span class="o">=</span> <span class="mi">2</span>
    <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">100</span><span class="p">):</span>
        <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="n">tpr_boot</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;lightblue&#39;</span><span class="p">,</span>
                 <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">alpha</span> <span class="o">=</span> <span class="o">.</span><span class="mi">1</span><span class="p">)</span>
        
    <span class="c1"># calculate scores</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Right Bundle&#39;</span><span class="p">)</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df_right_bundle_branch</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df_right_bundle_branch</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span><span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUROC is:&#39;</span><span class="p">,</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">auroc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="mi">3</span><span class="p">)</span>
    <span class="n">optimal_idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">optimal_threshold</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">optimal_idx</span><span class="p">]</span>
    <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Threshold value is:&quot;</span><span class="p">,</span> <span class="n">optimal_threshold</span><span class="p">)</span>
    
    

    
    <span class="n">titlename</span> <span class="o">=</span> <span class="n">file</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;Eval_&#39;</span><span class="p">)[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;_2022&#39;</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="sa">f</span><span class="s1">&#39; [</span><span class="si">{</span><span class="n">pos_count</span><span class="si">}</span><span class="s1"> / </span><span class="si">{</span><span class="n">neg_count</span><span class="si">}</span><span class="s1">]&#39;</span> <span class="o">+</span> <span class="sa">f</span><span class="s1">&#39; (AUROC=</span><span class="si">{</span><span class="n">auroc_total</span><span class="si">}</span><span class="s1">)&#39;</span>
    <span class="n">titlename</span> <span class="o">=</span> <span class="n">titlename</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;AS_AI_MR&quot;</span><span class="p">,</span> <span class="s2">&quot;AS, AR, or MR&quot;</span><span class="p">)</span>
    <span class="n">titlename</span> <span class="o">=</span> <span class="n">titlename</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;_&quot;</span><span class="p">,</span> <span class="s2">&quot; &quot;</span><span class="p">)</span>
    <span class="n">titlename</span> <span class="o">=</span> <span class="n">titlename</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;Aortic Insufficiency&quot;</span><span class="p">,</span> <span class="s2">&quot;Aortic Regurgitation&quot;</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="n">titlename</span><span class="p">)</span>
    
    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;navy&#39;</span><span class="p">,</span>
         <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Right Bundle Branch ROC curve (AUROC = </span><span class="si">%0.3f</span><span class="s1">)&#39;</span> <span class="o">%</span> <span class="n">auc</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span><span class="n">tpr</span><span class="p">))</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">color</span><span class="o">=</span><span class="s1">&#39;black&#39;</span><span class="p">,</span> <span class="n">lw</span><span class="o">=</span><span class="n">lw</span><span class="p">,</span> <span class="n">linestyle</span><span class="o">=</span><span class="s1">&#39;--&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.05</span><span class="p">])</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">&#39;False Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">&#39;True Positive Rate&#39;</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="n">titlename</span><span class="p">)</span>
    <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s2">&quot;lower right&quot;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[81]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="o">.</span><span class="n">savefig</span><span class="p">(</span><span class="s1">&#39;figures/bundle_branch_roc.png&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Generate-Summary-Stats-for-Table-1-and-2">Generate Summary Stats for Table 1 and 2<a class="anchor-link" href="#Generate-Summary-Stats-for-Table-1-and-2">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[82]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Previously, I ran a for loop over each of the 4 target variables</span>
<span class="c1"># for y, y_true_col, y_score_col in [(&#39;Aortic Stenosis&#39;,&#39;y_AS&#39;,&#39;y_pred_AS_proba_sigmoid&#39;), (&#39;Aortic Insufficiency&#39;,&#39;y_AI&#39;,&#39;y_pred_AI_proba_sigmoid&#39;), (&#39;Mitral Regurgitation&#39;,&#39;y_MR&#39;,&#39;y_pred_MR_proba_sigmoid&#39;), (&#39;Combined&#39;,&#39;y_AS_AI_MR&#39;,&#39;y_pred_AS_AI_MR_proba_sigmoid&#39;)]:</span>
<span class="c1">#     print(y)</span>
<span class="c1">#     test_race_ethnicity.name = &#39;Overall&#39;</span>
<span class="c1">#     plot_results(test_race_ethnicity, y_true_col, y_score_col)</span>

<span class="c1"># Previous method used a loop. This doesn&#39;t seem to work. Plotting comes out wierd and plots are overwritten. Tried fixing by creating a function plot_results_by_factor_by_target and running in different cells.</span>
<span class="c1"># Pick target to be any of [&#39;AS&#39;,&#39;AI&#39;,&#39;MR&#39;,&#39;AS_AI_MR&#39;]</span>
<span class="c1"># Plots get saved in figures/.. dir</span>
<span class="n">factor_var</span> <span class="o">=</span> <span class="s1">&#39;All&#39;</span> <span class="c1"># Since we are plotting all the data</span>
<span class="n">target_var</span> <span class="o">=</span> <span class="s1">&#39;AS_AI_MR&#39;</span>
<span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="s1">&#39;All&#39;</span>
<span class="n">plot_results_by_factor_by_target</span><span class="p">(</span><span class="n">test_race_ethnicity</span><span class="p">,</span> <span class="n">factor_var</span><span class="p">,</span> <span class="n">target_var</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>All 

AUROC is: 0.84
Threshold value is: 0.45716718045293103
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 9.7 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>        <td>9.691</td>      <td></td> <td>8.648</td> <td>10.861</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>2.271</td> <td>0.058</td> <td>2.157</td>  <td>2.385</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>2.886</td>      <td></td> <td>2.665</td>  <td>3.125</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>1.060</td> <td>0.041</td> <td>0.980</td>  <td>1.139</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Odds Ratio is: 10.1 P-Value is: 0.0
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<table class="simpletable">
<tr>
         <td></td>        <th>Estimate</th>  <th>SE</th>    <th>LCB</th>    <th>UCB</th>  <th>p-value</th>
</tr>
<tr>
  <th>Odds ratio</th>       <td>10.113</td>      <td></td> <td>8.951</td> <td>11.426</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log odds ratio</th>    <td>2.314</td> <td>0.062</td> <td>2.192</td>  <td>2.436</td>   <td>0.000</td>
</tr>
<tr>
  <th>Risk ratio</th>        <td>3.427</td>      <td></td> <td>3.122</td>  <td>3.761</td>   <td>0.000</td>
</tr>
<tr>
  <th>Log risk ratio</th>    <td>1.232</td> <td>0.047</td> <td>1.139</td>  <td>1.325</td>   <td>0.000</td>
</tr>
</table>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[83]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">train_df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/220k_multivalve_train_tabular_metadata_new_ref.csv&#39;</span><span class="p">))</span>
<span class="n">eval_df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/13k_multivalve_eval_tabular_metadata_new_ref.csv&#39;</span><span class="p">))</span>
<span class="n">test_df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/JACC_REVISION_test_df_newest_ecg_per_pt_tabular_metadata_additional_backfill.csv&#39;</span><span class="p">))</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[84]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">dfs</span> <span class="o">=</span> <span class="p">[</span><span class="n">train_df</span><span class="p">,</span><span class="n">eval_df</span><span class="p">,</span><span class="n">test_df</span><span class="p">]</span>
<span class="n">fours</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;aortic_stenosis_label_four_grade&#39;</span><span class="p">,</span><span class="s1">&#39;aortic_insufficiency_label_four_grade&#39;</span><span class="p">,</span><span class="s1">&#39;mitral_regurgitation_label_four_grade&#39;</span><span class="p">]</span>
<span class="k">for</span> <span class="n">df</span> <span class="ow">in</span> <span class="n">dfs</span><span class="p">:</span>
    <span class="k">for</span> <span class="n">column</span> <span class="ow">in</span> <span class="n">fours</span><span class="p">:</span>
        <span class="n">df</span><span class="p">[</span><span class="n">column</span><span class="p">]</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="n">column</span><span class="p">]</span><span class="o">.</span><span class="n">fillna</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
        <span class="nb">print</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="n">column</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">(</span><span class="n">dropna</span><span class="o">=</span><span class="kc">False</span><span class="p">))</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.0    183755
3.0     18334
2.0     12091
1.0      7075
Name: aortic_stenosis_label_four_grade, dtype: int64
0.0    162862
1.0     49119
2.0      7898
3.0      1376
Name: aortic_insufficiency_label_four_grade, dtype: int64
0.0    88794
1.0    84270
2.0    38816
3.0     9375
Name: mitral_regurgitation_label_four_grade, dtype: int64
0.0    11351
3.0      852
2.0      475
1.0      272
Name: aortic_stenosis_label_four_grade, dtype: int64
0.0    10532
1.0     2117
2.0      249
3.0       52
Name: aortic_insufficiency_label_four_grade, dtype: int64
0.0    7648
1.0    4086
2.0    1005
3.0     211
Name: mitral_regurgitation_label_four_grade, dtype: int64
0.0    18975
1.0     1166
3.0      623
2.0      284
Name: aortic_stenosis_label_four_grade, dtype: int64
0.0    18504
1.0     2348
2.0      166
3.0       30
Name: aortic_insufficiency_label_four_grade, dtype: int64
0.0    15404
1.0     4902
2.0      601
3.0      141
Name: mitral_regurgitation_label_four_grade, dtype: int64
</pre>
</div>
</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[85]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">label_cols</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;aortic_stenosis_label_binary_backfilled&#39;</span><span class="p">,</span>
<span class="s1">&#39;aortic_insufficiency_label_binary_backfilled&#39;</span><span class="p">,</span>
<span class="s1">&#39;mitral_regurgitation_label_binary_backfilled&#39;</span><span class="p">,</span> 
<span class="s1">&#39;AS_AI_MR_label_binary_backfilled&#39;</span><span class="p">,</span>
<span class="s1">&#39;aortic_stenosis_label_four_grade&#39;</span><span class="p">,</span>
<span class="s1">&#39;aortic_insufficiency_label_four_grade&#39;</span><span class="p">,</span>
<span class="s1">&#39;mitral_regurgitation_label_four_grade&#39;</span><span class="p">]</span>
<span class="n">dfs</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;Train&#39;</span><span class="p">:</span><span class="n">train_df</span><span class="p">,</span>
       <span class="s1">&#39;Eval&#39;</span><span class="p">:</span><span class="n">eval_df</span><span class="p">,</span>
       <span class="s1">&#39;Test&#39;</span><span class="p">:</span><span class="n">test_df</span><span class="p">}</span>

<span class="k">for</span> <span class="n">key</span><span class="p">,</span><span class="n">value</span> <span class="ow">in</span> <span class="n">dfs</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;--------------</span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">,</span><span class="n">key</span><span class="p">,</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">--------------&#39;</span><span class="p">)</span>
    <span class="k">for</span> <span class="n">col</span> <span class="ow">in</span> <span class="n">label_cols</span><span class="p">:</span>
        <span class="n">s</span> <span class="o">=</span> <span class="n">value</span><span class="p">[</span><span class="n">col</span><span class="p">]</span>
        <span class="n">counts</span> <span class="o">=</span> <span class="n">s</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()</span>
        <span class="n">percent</span> <span class="o">=</span> <span class="n">s</span><span class="o">.</span><span class="n">value_counts</span><span class="p">(</span><span class="n">normalize</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
        <span class="n">percent100</span> <span class="o">=</span> <span class="s1">&#39;(&#39;</span> <span class="o">+</span> <span class="n">s</span><span class="o">.</span><span class="n">value_counts</span><span class="p">(</span><span class="n">normalize</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span><span class="n">sort</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">mul</span><span class="p">(</span><span class="mi">100</span><span class="p">)</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="nb">str</span><span class="p">)</span> <span class="o">+</span> <span class="s1">&#39;)&#39;</span>
        <span class="nb">print</span><span class="p">(</span><span class="n">col</span><span class="p">)</span>
        <span class="n">a</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">&#39;counts&#39;</span><span class="p">:</span> <span class="n">counts</span><span class="p">,</span> <span class="s1">&#39;percent&#39;</span><span class="p">:</span> <span class="n">percent100</span><span class="p">})</span>
        <span class="n">display</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
    <span class="n">fours</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;aortic_stenosis_label_four_grade&#39;</span><span class="p">,</span><span class="s1">&#39;aortic_insufficiency_label_four_grade&#39;</span><span class="p">,</span><span class="s1">&#39;mitral_regurgitation_label_four_grade&#39;</span><span class="p">]</span>
    <span class="n">s</span> <span class="o">=</span> <span class="n">value</span><span class="p">[</span><span class="n">fours</span><span class="p">]</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="n">counts</span> <span class="o">=</span> <span class="n">s</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()</span>
    <span class="n">percent</span> <span class="o">=</span> <span class="n">s</span><span class="o">.</span><span class="n">value_counts</span><span class="p">(</span><span class="n">normalize</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
    <span class="n">percent100</span> <span class="o">=</span> <span class="s1">&#39;(&#39;</span> <span class="o">+</span> <span class="n">s</span><span class="o">.</span><span class="n">value_counts</span><span class="p">(</span><span class="n">normalize</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span><span class="n">sort</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">mul</span><span class="p">(</span><span class="mi">100</span><span class="p">)</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="nb">str</span><span class="p">)</span> <span class="o">+</span> <span class="s1">&#39;)&#39;</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AS_AI_MR_four_grade&#39;</span><span class="p">)</span>
    <span class="n">a</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">&#39;counts&#39;</span><span class="p">:</span> <span class="n">counts</span><span class="p">,</span> <span class="s1">&#39;percent&#39;</span><span class="p">:</span> <span class="n">percent100</span><span class="p">})</span>
    <span class="n">display</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>--------------
 Train 
--------------
aortic_stenosis_label_binary_backfilled
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>190784</td>
      <td>(86.2)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>30471</td>
      <td>(13.8)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>aortic_insufficiency_label_binary_backfilled
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>212312</td>
      <td>(96.0)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>8943</td>
      <td>(4.0)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>mitral_regurgitation_label_binary_backfilled
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>174126</td>
      <td>(78.7)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>47129</td>
      <td>(21.3)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AS_AI_MR_label_binary_backfilled
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>147872</td>
      <td>(66.8)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>73383</td>
      <td>(33.2)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>aortic_stenosis_label_four_grade
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>183755</td>
      <td>(83.1)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>7075</td>
      <td>(3.2)</td>
    </tr>
    <tr>
      <th>2.0</th>
      <td>12091</td>
      <td>(5.5)</td>
    </tr>
    <tr>
      <th>3.0</th>
      <td>18334</td>
      <td>(8.3)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>aortic_insufficiency_label_four_grade
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>162862</td>
      <td>(73.6)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>49119</td>
      <td>(22.2)</td>
    </tr>
    <tr>
      <th>2.0</th>
      <td>7898</td>
      <td>(3.6)</td>
    </tr>
    <tr>
      <th>3.0</th>
      <td>1376</td>
      <td>(0.6)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>mitral_regurgitation_label_four_grade
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>88794</td>
      <td>(40.1)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>84270</td>
      <td>(38.1)</td>
    </tr>
    <tr>
      <th>2.0</th>
      <td>38816</td>
      <td>(17.5)</td>
    </tr>
    <tr>
      <th>3.0</th>
      <td>9375</td>
      <td>(4.2)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AS_AI_MR_four_grade
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>74058</td>
      <td>(33.5)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>72906</td>
      <td>(33.0)</td>
    </tr>
    <tr>
      <th>2.0</th>
      <td>46554</td>
      <td>(21.0)</td>
    </tr>
    <tr>
      <th>3.0</th>
      <td>27737</td>
      <td>(12.5)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>

--------------
 Eval 
--------------
aortic_stenosis_label_binary_backfilled
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>11613</td>
      <td>(89.7)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>1337</td>
      <td>(10.3)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>aortic_insufficiency_label_binary_backfilled
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>12653</td>
      <td>(97.7)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>297</td>
      <td>(2.3)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>mitral_regurgitation_label_binary_backfilled
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>11751</td>
      <td>(90.7)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>1199</td>
      <td>(9.3)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AS_AI_MR_label_binary_backfilled
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>10539</td>
      <td>(81.4)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>2411</td>
      <td>(18.6)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>aortic_stenosis_label_four_grade
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>11351</td>
      <td>(87.7)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>272</td>
      <td>(2.1)</td>
    </tr>
    <tr>
      <th>2.0</th>
      <td>475</td>
      <td>(3.7)</td>
    </tr>
    <tr>
      <th>3.0</th>
      <td>852</td>
      <td>(6.6)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>aortic_insufficiency_label_four_grade
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>10532</td>
      <td>(81.3)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>2117</td>
      <td>(16.3)</td>
    </tr>
    <tr>
      <th>2.0</th>
      <td>249</td>
      <td>(1.9)</td>
    </tr>
    <tr>
      <th>3.0</th>
      <td>52</td>
      <td>(0.4)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>mitral_regurgitation_label_four_grade
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>7648</td>
      <td>(59.1)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>4086</td>
      <td>(31.6)</td>
    </tr>
    <tr>
      <th>2.0</th>
      <td>1005</td>
      <td>(7.8)</td>
    </tr>
    <tr>
      <th>3.0</th>
      <td>211</td>
      <td>(1.6)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AS_AI_MR_four_grade
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>6632</td>
      <td>(51.2)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>3896</td>
      <td>(30.1)</td>
    </tr>
    <tr>
      <th>2.0</th>
      <td>1343</td>
      <td>(10.4)</td>
    </tr>
    <tr>
      <th>3.0</th>
      <td>1079</td>
      <td>(8.3)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>

--------------
 Test 
--------------
aortic_stenosis_label_binary_backfilled
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>20141</td>
      <td>(95.7)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>907</td>
      <td>(4.3)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>aortic_insufficiency_label_binary_backfilled
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>20852</td>
      <td>(99.1)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>196</td>
      <td>(0.9)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>mitral_regurgitation_label_binary_backfilled
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>20306</td>
      <td>(96.5)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>742</td>
      <td>(3.5)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AS_AI_MR_label_binary_backfilled
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>19404</td>
      <td>(92.2)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>1644</td>
      <td>(7.8)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>aortic_stenosis_label_four_grade
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>18975</td>
      <td>(90.2)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>1166</td>
      <td>(5.5)</td>
    </tr>
    <tr>
      <th>3.0</th>
      <td>623</td>
      <td>(3.0)</td>
    </tr>
    <tr>
      <th>2.0</th>
      <td>284</td>
      <td>(1.3)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>aortic_insufficiency_label_four_grade
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>18504</td>
      <td>(87.9)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>2348</td>
      <td>(11.2)</td>
    </tr>
    <tr>
      <th>2.0</th>
      <td>166</td>
      <td>(0.8)</td>
    </tr>
    <tr>
      <th>3.0</th>
      <td>30</td>
      <td>(0.1)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>mitral_regurgitation_label_four_grade
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>15404</td>
      <td>(73.2)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>4902</td>
      <td>(23.3)</td>
    </tr>
    <tr>
      <th>2.0</th>
      <td>601</td>
      <td>(2.9)</td>
    </tr>
    <tr>
      <th>3.0</th>
      <td>141</td>
      <td>(0.7)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AS_AI_MR_four_grade
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>13593</td>
      <td>(64.6)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>5811</td>
      <td>(27.6)</td>
    </tr>
    <tr>
      <th>2.0</th>
      <td>871</td>
      <td>(4.1)</td>
    </tr>
    <tr>
      <th>3.0</th>
      <td>773</td>
      <td>(3.7)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>

</pre>
</div>
</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[86]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="k">for</span> <span class="n">key</span><span class="p">,</span><span class="n">value</span> <span class="ow">in</span> <span class="n">dfs</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;----------------------------</span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">,</span><span class="n">key</span><span class="p">,</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">----------------------------&#39;</span><span class="p">)</span>
    <span class="n">display</span><span class="p">(</span><span class="n">value</span><span class="o">.</span><span class="n">describe</span><span class="p">(</span><span class="n">percentiles</span><span class="o">=</span><span class="p">[</span><span class="mf">0.025</span><span class="p">,</span> <span class="mf">0.975</span><span class="p">])</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="k">lambda</span> <span class="n">s</span><span class="p">:</span> <span class="n">s</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="s1">&#39;</span><span class="si">{0:.2f}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">))</span><span class="o">.</span><span class="n">T</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>----------------------------
 Train 
----------------------------
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>count</th>
      <th>mean</th>
      <th>std</th>
      <th>min</th>
      <th>2.5%</th>
      <th>50%</th>
      <th>97.5%</th>
      <th>max</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>TestID</th>
      <td>221255.00</td>
      <td>1916079.72</td>
      <td>598942.33</td>
      <td>653096.00</td>
      <td>773689.25</td>
      <td>1919853.00</td>
      <td>3025918.60</td>
      <td>3397880.00</td>
    </tr>
    <tr>
      <th>PatientID</th>
      <td>221255.00</td>
      <td>1023185484.09</td>
      <td>46698741.53</td>
      <td>1000000037.00</td>
      <td>1000448341.00</td>
      <td>1004999452.00</td>
      <td>1200497918.75</td>
      <td>1400016028.00</td>
    </tr>
    <tr>
      <th>Gender</th>
      <td>221255.00</td>
      <td>0.48</td>
      <td>0.50</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>Race</th>
      <td>210467.00</td>
      <td>4.19</td>
      <td>4.56</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>3.00</td>
      <td>11.00</td>
      <td>11.00</td>
    </tr>
    <tr>
      <th>Ventricular_Pacing_Present</th>
      <td>221255.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
    </tr>
    <tr>
      <th>Poor_Data_Quality</th>
      <td>221255.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
    </tr>
    <tr>
      <th>aortic_stenosis_label_binary</th>
      <td>221255.00</td>
      <td>0.14</td>
      <td>0.34</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>mitral_regurgitation_label_binary</th>
      <td>221255.00</td>
      <td>0.21</td>
      <td>0.41</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>aortic_insufficiency_label_binary</th>
      <td>221255.00</td>
      <td>0.04</td>
      <td>0.20</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>aortic_stenosis_label_binary_backfilled</th>
      <td>221255.00</td>
      <td>0.14</td>
      <td>0.34</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>aortic_insufficiency_label_binary_backfilled</th>
      <td>221255.00</td>
      <td>0.04</td>
      <td>0.20</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>mitral_regurgitation_label_binary_backfilled</th>
      <td>221255.00</td>
      <td>0.21</td>
      <td>0.41</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>AS_AI_MR_label_binary</th>
      <td>221255.00</td>
      <td>0.33</td>
      <td>0.47</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>AS_AI_MR_label_binary_backfilled</th>
      <td>221255.00</td>
      <td>0.33</td>
      <td>0.47</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PatientAge_Years</th>
      <td>221255.00</td>
      <td>62.59</td>
      <td>16.59</td>
      <td>2.00</td>
      <td>25.00</td>
      <td>64.00</td>
      <td>90.00</td>
      <td>120.00</td>
    </tr>
    <tr>
      <th>Poor_Data_Quality_Present</th>
      <td>221255.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
    </tr>
    <tr>
      <th>AtrialRate</th>
      <td>221255.00</td>
      <td>89.85</td>
      <td>49.20</td>
      <td>0.00</td>
      <td>50.00</td>
      <td>80.00</td>
      <td>258.00</td>
      <td>750.00</td>
    </tr>
    <tr>
      <th>VentricularRate</th>
      <td>221255.00</td>
      <td>81.62</td>
      <td>19.76</td>
      <td>0.00</td>
      <td>51.00</td>
      <td>79.00</td>
      <td>126.00</td>
      <td>304.00</td>
    </tr>
    <tr>
      <th>P_RInterval</th>
      <td>221255.00</td>
      <td>143.69</td>
      <td>63.27</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>154.00</td>
      <td>244.00</td>
      <td>1262.00</td>
    </tr>
    <tr>
      <th>QRSDuration</th>
      <td>221255.00</td>
      <td>97.72</td>
      <td>23.92</td>
      <td>0.00</td>
      <td>68.00</td>
      <td>90.00</td>
      <td>162.00</td>
      <td>286.00</td>
    </tr>
    <tr>
      <th>QTCCalculation</th>
      <td>221255.00</td>
      <td>451.59</td>
      <td>53.19</td>
      <td>0.00</td>
      <td>390.00</td>
      <td>447.00</td>
      <td>546.00</td>
      <td>12006.00</td>
    </tr>
    <tr>
      <th>QTcFredericia</th>
      <td>127353.00</td>
      <td>436.71</td>
      <td>40.15</td>
      <td>0.00</td>
      <td>370.00</td>
      <td>433.00</td>
      <td>526.00</td>
      <td>796.00</td>
    </tr>
    <tr>
      <th>AtrialRate_standard_scale</th>
      <td>221255.00</td>
      <td>-0.00</td>
      <td>1.00</td>
      <td>-1.83</td>
      <td>-0.81</td>
      <td>-0.20</td>
      <td>3.42</td>
      <td>13.42</td>
    </tr>
    <tr>
      <th>VentricularRate_standard_scale</th>
      <td>221255.00</td>
      <td>-0.00</td>
      <td>1.00</td>
      <td>-4.13</td>
      <td>-1.55</td>
      <td>-0.13</td>
      <td>2.25</td>
      <td>11.25</td>
    </tr>
    <tr>
      <th>P_RInterval_standard_scale</th>
      <td>221255.00</td>
      <td>-0.00</td>
      <td>1.00</td>
      <td>-2.27</td>
      <td>-2.27</td>
      <td>0.16</td>
      <td>1.59</td>
      <td>17.67</td>
    </tr>
    <tr>
      <th>QRSDuration_standard_scale</th>
      <td>221255.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>-4.09</td>
      <td>-1.24</td>
      <td>-0.32</td>
      <td>2.69</td>
      <td>7.87</td>
    </tr>
    <tr>
      <th>QTCCalculation_standard_scale</th>
      <td>221255.00</td>
      <td>-0.00</td>
      <td>1.00</td>
      <td>-8.49</td>
      <td>-1.16</td>
      <td>-0.09</td>
      <td>1.77</td>
      <td>217.22</td>
    </tr>
    <tr>
      <th>PatientAge_Years_standard_scale</th>
      <td>221255.00</td>
      <td>-0.00</td>
      <td>1.00</td>
      <td>-3.65</td>
      <td>-2.27</td>
      <td>0.08</td>
      <td>1.65</td>
      <td>3.46</td>
    </tr>
    <tr>
      <th>SINUS TACHYCARDIA</th>
      <td>221255.00</td>
      <td>0.12</td>
      <td>0.32</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>OCCASIONAL PREMATURE VENTRICULAR COMPLEXES</th>
      <td>221255.00</td>
      <td>0.02</td>
      <td>0.15</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>POSSIBLE LEFT ATRIAL ENLARGEMENT</th>
      <td>221255.00</td>
      <td>0.13</td>
      <td>0.33</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>LOW VOLTAGE QRS</th>
      <td>221255.00</td>
      <td>0.05</td>
      <td>0.21</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>CANNOT RULE OUT ANTERIOR INFARCT</th>
      <td>221255.00</td>
      <td>0.03</td>
      <td>0.16</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ABNORMAL ECG</th>
      <td>221255.00</td>
      <td>0.73</td>
      <td>0.45</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NO PREVIOUS ECGS AVAILABLE</th>
      <td>221242.00</td>
      <td>0.13</td>
      <td>0.34</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ANTERIOR INFARCT</th>
      <td>221255.00</td>
      <td>0.02</td>
      <td>0.13</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>WHEN COMPARED</th>
      <td>221242.00</td>
      <td>0.86</td>
      <td>0.35</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>DX STATEMENT IGNORED INCLUDES NO LONGER PRESENT</th>
      <td>221242.00</td>
      <td>0.11</td>
      <td>0.31</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>SINUS BRADYCARDIA</th>
      <td>221255.00</td>
      <td>0.10</td>
      <td>0.29</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>OTHERWISE NORMAL ECG</th>
      <td>221255.00</td>
      <td>0.06</td>
      <td>0.24</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NO SIGNIFICANT CHANGE WAS FOUND</th>
      <td>221242.00</td>
      <td>0.39</td>
      <td>0.49</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>SINUS ARRHYTHMIA</th>
      <td>221255.00</td>
      <td>0.03</td>
      <td>0.16</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>RSR OR QR PATTERN IN V1 AND/OR V2 SUGGESTS RIGHT VENTRICULAR CONDUCTION DELAY</th>
      <td>221255.00</td>
      <td>0.02</td>
      <td>0.15</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>BORDERLINE ECG</th>
      <td>221255.00</td>
      <td>0.07</td>
      <td>0.25</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NORMAL SINUS RHYTHM</th>
      <td>221255.00</td>
      <td>0.65</td>
      <td>0.48</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>OCCASIONAL PREMATURE SUPRAVENTRICULAR COMPLEXES</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.03</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NORMAL ECG</th>
      <td>221255.00</td>
      <td>0.12</td>
      <td>0.32</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>CANNOT RULE OUT INFERIOR INFARCT</th>
      <td>221255.00</td>
      <td>0.02</td>
      <td>0.13</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>POOR DATA QUALITY</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
    </tr>
    <tr>
      <th>LEFT VENTRICULAR HYPERTROPHY</th>
      <td>221255.00</td>
      <td>0.11</td>
      <td>0.32</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>INFERIOR INFARCT</th>
      <td>221255.00</td>
      <td>0.06</td>
      <td>0.24</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PREMATURE VENTRICULAR COMPLEXES</th>
      <td>221255.00</td>
      <td>0.03</td>
      <td>0.16</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>1ST DEGREE AV BLOCK</th>
      <td>221255.00</td>
      <td>0.07</td>
      <td>0.25</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NONSPECIFIC ST ABNORMALITY</th>
      <td>221255.00</td>
      <td>0.02</td>
      <td>0.14</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NONSPECIFIC T WAVE ABNORMALITY</th>
      <td>221255.00</td>
      <td>0.17</td>
      <td>0.37</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PROLONGED QT</th>
      <td>221242.00</td>
      <td>0.10</td>
      <td>0.30</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ATRIAL FIBRILLATION</th>
      <td>221255.00</td>
      <td>0.08</td>
      <td>0.28</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NONSPECIFIC INTRAVENTRICULAR CONDUCTION DELAY</th>
      <td>221255.00</td>
      <td>0.01</td>
      <td>0.10</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QT HAS SHORTENED</th>
      <td>221242.00</td>
      <td>0.03</td>
      <td>0.16</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QRS WIDENING AND REPOLARIZATION ABNORMALITY</th>
      <td>221255.00</td>
      <td>0.01</td>
      <td>0.08</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>RAPID VENTRICULAR RESPONSE</th>
      <td>221242.00</td>
      <td>0.03</td>
      <td>0.16</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NONSPECIFIC ST AND T WAVE ABNORMALITY</th>
      <td>221255.00</td>
      <td>0.05</td>
      <td>0.21</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ATRIAL FLUTTER</th>
      <td>221255.00</td>
      <td>0.02</td>
      <td>0.13</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>VARIABLE AV BLOCK</th>
      <td>221255.00</td>
      <td>0.01</td>
      <td>0.10</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ST &amp; T WAVE ABNORMALITY</th>
      <td>221255.00</td>
      <td>0.07</td>
      <td>0.25</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ST DEPRESSION</th>
      <td>221242.00</td>
      <td>0.01</td>
      <td>0.11</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>T WAVE INVERSION</th>
      <td>221255.00</td>
      <td>0.06</td>
      <td>0.24</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>RIGHT BUNDLE BRANCH BLOCK</th>
      <td>221255.00</td>
      <td>0.08</td>
      <td>0.27</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>LEFT AXIS DEVIATION</th>
      <td>221255.00</td>
      <td>0.11</td>
      <td>0.31</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QRS AXIS SHIFTED LEFT</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ST NORMALIZED</th>
      <td>221242.00</td>
      <td>0.01</td>
      <td>0.12</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QT HAS LENGTHENED</th>
      <td>221242.00</td>
      <td>0.03</td>
      <td>0.17</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ST ABNORMALITY</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.04</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PREMATURE VENTRICULAR OR ABERRANTLY CONDUCTED COMPLEXES</th>
      <td>221255.00</td>
      <td>0.02</td>
      <td>0.13</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>REPOLARIZATION ABNORMALITY</th>
      <td>221255.00</td>
      <td>0.03</td>
      <td>0.17</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>UNUSUAL P AXIS</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ANTEROSEPTAL INFARCT</th>
      <td>221255.00</td>
      <td>0.02</td>
      <td>0.13</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>MINIMAL VOLTAGE CRITERIA FOR LVH</th>
      <td>221242.00</td>
      <td>0.05</td>
      <td>0.21</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PULMONARY DISEASE PATTERN</th>
      <td>221255.00</td>
      <td>0.01</td>
      <td>0.09</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>MARKED  SINUS ARRHYTHMIA</th>
      <td>221242.00</td>
      <td>0.01</td>
      <td>0.08</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>T WAVE ABNORMALITY</th>
      <td>221242.00</td>
      <td>0.08</td>
      <td>0.28</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NONSPECIFIC INTRAVENTRICULAR CONDUCTION BLOCK</th>
      <td>221242.00</td>
      <td>0.02</td>
      <td>0.13</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PREMATURE SUPRAVENTRICULAR COMPLEXES ARE NOW PRESENT</th>
      <td>221255.00</td>
      <td>0.01</td>
      <td>0.08</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>BIATRIAL ENLARGEMENT</th>
      <td>221242.00</td>
      <td>0.01</td>
      <td>0.09</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>SEPTAL INFARCT</th>
      <td>221255.00</td>
      <td>0.04</td>
      <td>0.20</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>POSSIBLE ANTERIOR INFARCT</th>
      <td>221255.00</td>
      <td>0.01</td>
      <td>0.10</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>CANNOT RULE OUT SEPTAL INFARCT</th>
      <td>221255.00</td>
      <td>0.01</td>
      <td>0.11</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>LEFT ANTERIOR FASCICULAR BLOCK</th>
      <td>221255.00</td>
      <td>0.04</td>
      <td>0.19</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>LEFT BUNDLE BRANCH BLOCK</th>
      <td>221255.00</td>
      <td>0.03</td>
      <td>0.18</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>RIGHT AXIS DEVIATION</th>
      <td>221255.00</td>
      <td>0.03</td>
      <td>0.16</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>POSSIBLE INFERIOR INFARCT</th>
      <td>221255.00</td>
      <td>0.02</td>
      <td>0.13</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ST ELEVATION</th>
      <td>221242.00</td>
      <td>0.01</td>
      <td>0.11</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PR INTERVAL HAS DECREASED</th>
      <td>221242.00</td>
      <td>0.01</td>
      <td>0.08</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>RIGHT ATRIAL ENLARGEMENT</th>
      <td>221242.00</td>
      <td>0.01</td>
      <td>0.08</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ELECTRONIC VENTRICULAR PACEMAKER</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>SHORT PR</th>
      <td>221255.00</td>
      <td>0.01</td>
      <td>0.10</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ANTEROLATERAL INFARCT</th>
      <td>221242.00</td>
      <td>0.01</td>
      <td>0.11</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QRS WIDENING</th>
      <td>221242.00</td>
      <td>0.01</td>
      <td>0.10</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>RIGHT VENTRICULAR HYPERTROPHY</th>
      <td>221255.00</td>
      <td>0.01</td>
      <td>0.10</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>EARLY REPOLARIZATION</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ECTOPIC ATRIAL RHYTHM</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.04</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>LEFT POSTERIOR FASCICULAR BLOCK</th>
      <td>221255.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>INCOMPLETE RIGHT BUNDLE BRANCH BLOCK</th>
      <td>221255.00</td>
      <td>0.04</td>
      <td>0.20</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QUESTIONABLE CHANGE IN QRS AXIS</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.07</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>SLOW VENTRICULAR RESPONSE</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.07</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PR INTERVAL HAS INCREASED</th>
      <td>221242.00</td>
      <td>0.01</td>
      <td>0.09</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NONSPECIFIC CHANGE IN ST SEGMENT IN ANTERIOR LEADS</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.07</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>LEFT ATRIAL ENLARGEMENT</th>
      <td>221255.00</td>
      <td>0.01</td>
      <td>0.12</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>FREQUENT PREMATURE VENTRICULAR COMPLEXES</th>
      <td>221255.00</td>
      <td>0.01</td>
      <td>0.09</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>CANNOT RULE OUT ANTEROSEPTAL INFARCT</th>
      <td>221242.00</td>
      <td>0.01</td>
      <td>0.07</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>POSSIBLE LATERAL INFARCT</th>
      <td>221255.00</td>
      <td>0.01</td>
      <td>0.10</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>INCOMPLETE LEFT BUNDLE BRANCH BLOCK</th>
      <td>221242.00</td>
      <td>0.01</td>
      <td>0.08</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>BIFASCICULAR BLOCK</th>
      <td>221255.00</td>
      <td>0.02</td>
      <td>0.13</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>POSTERIOR EXTENSION</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.04</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>INVERTED T WAVES</th>
      <td>221242.00</td>
      <td>0.01</td>
      <td>0.12</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>T WAVE AMPLITUDE HAS DECREASED IN ANTERIOR LEADS</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.05</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>SIGNIFICANT CHANGES HAVE OCCURRED</th>
      <td>221242.00</td>
      <td>0.01</td>
      <td>0.07</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ABNORMAL QRST ANGLE</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>SUSPECT ARM LEAD REVERSAL</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.05</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QRS AXIS SHIFTED RIGHT</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.05</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>AV SEQUENTIAL OR DUAL CHAMBER ELECTRONIC PACEMAKER</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
    </tr>
    <tr>
      <th>PEDIATRIC ECG ANALYSIS</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.04</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QRS DURATION HAS DECREASED</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>LATERAL INFARCT</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QUESTIONABLE CHANGE IN INITIAL FORCES OF ANTERIOR LEADS</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PREMATURE ATRIAL COMPLEXES ARE NOW PRESENT</th>
      <td>221242.00</td>
      <td>0.02</td>
      <td>0.13</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QUESTIONABLE CHANGE IN INITIAL FORCES OF SEPTAL LEADS</th>
      <td>221242.00</td>
      <td>0.01</td>
      <td>0.07</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PROMINENT MIDPRECORDIAL VOLTAGE</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.02</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NONSPECIFIC CHANGE IN ST SEGMENT IN INFERIOR LEADS</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.07</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>DEMAND PACEMAKER  INTERPRETATION IS BASED ON INTRINSIC RHYTHM</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.05</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>POSSIBLE BIVENTRICULAR HYPERTROPHY</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.01</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>EARLY TRANSITION</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.07</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PREMATURE ATRIAL COMPLEXES</th>
      <td>221255.00</td>
      <td>0.03</td>
      <td>0.18</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QRS DURATION HAS INCREASED</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.07</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PREMATURE SUPRAVENTRICULAR COMPLEXES</th>
      <td>221255.00</td>
      <td>0.01</td>
      <td>0.10</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NONSPECIFIC CHANGE IN ST SEGMENT IN LATERAL LEADS</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>POOR PRECORDIAL R WAVE PROGRESSION</th>
      <td>221242.00</td>
      <td>0.01</td>
      <td>0.11</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ELECTRONIC ATRIAL PACEMAKER</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ABERRANT CONDUCTION</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.07</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>FIRST DEGREE AV BLOCK</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.05</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>OTHERWISE NORMAL</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.05</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>FUSION COMPLEXES</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>OCCASIONAL</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.04</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>RIGHT VENTRICULAR CONDUCTION DELAY</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.03</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>BASELINE ARTIFACT</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.02</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>RIGHT SUPERIOR AXIS DEVIATION</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.07</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ACUTE MI</th>
      <td>221255.00</td>
      <td>0.01</td>
      <td>0.11</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>UNCERTAIN ATRIAL RHYTHM</th>
      <td>221255.00</td>
      <td>0.00</td>
      <td>0.03</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>FUSION COMPLEXES ARE NOW PRESENT</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>CURRENT ARTIFACT PREVENTS MEANINGFUL COMPARISON</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.01</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>AGE AND GENDER SPECIFIC ECG ANALYSIS</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>VENTRICULARPACED RHYTHM</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
    </tr>
    <tr>
      <th>AV DUALPACED RHYTHM</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
    </tr>
    <tr>
      <th>ATRIALSENSED VENTRICULARPACED RHYTHM</th>
      <td>221255.00</td>
      <td>0.01</td>
      <td>0.08</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>BIVENTRICULAR PACEMAKER DETECTED</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
    </tr>
    <tr>
      <th>NORMAL AXIS</th>
      <td>221242.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>aortic_stenosis_label_four_grade</th>
      <td>221255.00</td>
      <td>0.39</td>
      <td>0.92</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>3.00</td>
      <td>3.00</td>
    </tr>
    <tr>
      <th>aortic_insufficiency_label_four_grade</th>
      <td>221255.00</td>
      <td>0.31</td>
      <td>0.57</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>2.00</td>
      <td>3.00</td>
    </tr>
    <tr>
      <th>mitral_regurgitation_label_four_grade</th>
      <td>221255.00</td>
      <td>0.86</td>
      <td>0.85</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>3.00</td>
      <td>3.00</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>----------------------------
 Eval 
----------------------------
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>count</th>
      <th>mean</th>
      <th>std</th>
      <th>min</th>
      <th>2.5%</th>
      <th>50%</th>
      <th>97.5%</th>
      <th>max</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>TestID</th>
      <td>12950.00</td>
      <td>2098154.59</td>
      <td>496993.03</td>
      <td>659608.00</td>
      <td>1076422.65</td>
      <td>2065930.00</td>
      <td>3044861.45</td>
      <td>3423945.00</td>
    </tr>
    <tr>
      <th>PatientID</th>
      <td>12950.00</td>
      <td>1032654872.34</td>
      <td>55337536.15</td>
      <td>1000003169.00</td>
      <td>1000566122.53</td>
      <td>1006747477.50</td>
      <td>1201003125.25</td>
      <td>1400012871.00</td>
    </tr>
    <tr>
      <th>Gender</th>
      <td>12950.00</td>
      <td>0.49</td>
      <td>0.50</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>Race</th>
      <td>11832.00</td>
      <td>4.21</td>
      <td>4.65</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>11.00</td>
      <td>11.00</td>
    </tr>
    <tr>
      <th>Ventricular_Pacing_Present</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
    </tr>
    <tr>
      <th>Poor_Data_Quality</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
    </tr>
    <tr>
      <th>aortic_stenosis_label_binary</th>
      <td>12950.00</td>
      <td>0.10</td>
      <td>0.30</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>mitral_regurgitation_label_binary</th>
      <td>12950.00</td>
      <td>0.09</td>
      <td>0.29</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>aortic_insufficiency_label_binary</th>
      <td>12950.00</td>
      <td>0.02</td>
      <td>0.15</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>aortic_stenosis_label_binary_backfilled</th>
      <td>12950.00</td>
      <td>0.10</td>
      <td>0.30</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>aortic_insufficiency_label_binary_backfilled</th>
      <td>12950.00</td>
      <td>0.02</td>
      <td>0.15</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>mitral_regurgitation_label_binary_backfilled</th>
      <td>12950.00</td>
      <td>0.09</td>
      <td>0.29</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>AS_AI_MR_label_binary</th>
      <td>12950.00</td>
      <td>0.19</td>
      <td>0.39</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>AS_AI_MR_label_binary_backfilled</th>
      <td>12950.00</td>
      <td>0.19</td>
      <td>0.39</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PatientAge_Years</th>
      <td>12950.00</td>
      <td>63.60</td>
      <td>17.24</td>
      <td>10.00</td>
      <td>25.00</td>
      <td>65.00</td>
      <td>92.00</td>
      <td>117.00</td>
    </tr>
    <tr>
      <th>Poor_Data_Quality_Present</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
    </tr>
    <tr>
      <th>AtrialRate</th>
      <td>12950.00</td>
      <td>86.85</td>
      <td>46.84</td>
      <td>0.00</td>
      <td>49.00</td>
      <td>78.00</td>
      <td>250.00</td>
      <td>535.00</td>
    </tr>
    <tr>
      <th>VentricularRate</th>
      <td>12950.00</td>
      <td>79.58</td>
      <td>19.07</td>
      <td>0.00</td>
      <td>50.00</td>
      <td>77.00</td>
      <td>123.00</td>
      <td>191.00</td>
    </tr>
    <tr>
      <th>P_RInterval</th>
      <td>12950.00</td>
      <td>144.59</td>
      <td>61.56</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>154.00</td>
      <td>244.00</td>
      <td>480.00</td>
    </tr>
    <tr>
      <th>QRSDuration</th>
      <td>12950.00</td>
      <td>96.63</td>
      <td>23.85</td>
      <td>0.00</td>
      <td>68.00</td>
      <td>90.00</td>
      <td>160.00</td>
      <td>246.00</td>
    </tr>
    <tr>
      <th>QTCCalculation</th>
      <td>12950.00</td>
      <td>448.50</td>
      <td>39.53</td>
      <td>0.00</td>
      <td>386.00</td>
      <td>444.00</td>
      <td>540.00</td>
      <td>709.00</td>
    </tr>
    <tr>
      <th>QTcFredericia</th>
      <td>9585.00</td>
      <td>432.16</td>
      <td>37.87</td>
      <td>0.00</td>
      <td>372.00</td>
      <td>428.00</td>
      <td>517.00</td>
      <td>716.00</td>
    </tr>
    <tr>
      <th>AtrialRate_standard_scale</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>-1.85</td>
      <td>-0.81</td>
      <td>-0.19</td>
      <td>3.48</td>
      <td>9.57</td>
    </tr>
    <tr>
      <th>VentricularRate_standard_scale</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>-4.17</td>
      <td>-1.55</td>
      <td>-0.14</td>
      <td>2.28</td>
      <td>5.84</td>
    </tr>
    <tr>
      <th>P_RInterval_standard_scale</th>
      <td>12950.00</td>
      <td>-0.00</td>
      <td>1.00</td>
      <td>-2.35</td>
      <td>-2.35</td>
      <td>0.15</td>
      <td>1.61</td>
      <td>5.45</td>
    </tr>
    <tr>
      <th>QRSDuration_standard_scale</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>-4.05</td>
      <td>-1.20</td>
      <td>-0.28</td>
      <td>2.66</td>
      <td>6.26</td>
    </tr>
    <tr>
      <th>QTCCalculation_standard_scale</th>
      <td>12950.00</td>
      <td>-0.00</td>
      <td>1.00</td>
      <td>-11.35</td>
      <td>-1.58</td>
      <td>-0.11</td>
      <td>2.31</td>
      <td>6.59</td>
    </tr>
    <tr>
      <th>PatientAge_Years_standard_scale</th>
      <td>12950.00</td>
      <td>-0.00</td>
      <td>1.00</td>
      <td>-3.11</td>
      <td>-2.24</td>
      <td>0.08</td>
      <td>1.65</td>
      <td>3.10</td>
    </tr>
    <tr>
      <th>SINUS TACHYCARDIA</th>
      <td>12950.00</td>
      <td>0.10</td>
      <td>0.30</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>OCCASIONAL PREMATURE VENTRICULAR COMPLEXES</th>
      <td>12950.00</td>
      <td>0.02</td>
      <td>0.14</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>POSSIBLE LEFT ATRIAL ENLARGEMENT</th>
      <td>12950.00</td>
      <td>0.12</td>
      <td>0.32</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>LOW VOLTAGE QRS</th>
      <td>12950.00</td>
      <td>0.05</td>
      <td>0.21</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>CANNOT RULE OUT ANTERIOR INFARCT</th>
      <td>12950.00</td>
      <td>0.03</td>
      <td>0.17</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ABNORMAL ECG</th>
      <td>12950.00</td>
      <td>0.67</td>
      <td>0.47</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NO PREVIOUS ECGS AVAILABLE</th>
      <td>12950.00</td>
      <td>0.21</td>
      <td>0.41</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ANTERIOR INFARCT</th>
      <td>12950.00</td>
      <td>0.02</td>
      <td>0.12</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>WHEN COMPARED</th>
      <td>12950.00</td>
      <td>0.77</td>
      <td>0.42</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>DX STATEMENT IGNORED INCLUDES NO LONGER PRESENT</th>
      <td>12950.00</td>
      <td>0.11</td>
      <td>0.31</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>SINUS BRADYCARDIA</th>
      <td>12950.00</td>
      <td>0.11</td>
      <td>0.32</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>OTHERWISE NORMAL ECG</th>
      <td>12950.00</td>
      <td>0.07</td>
      <td>0.26</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NO SIGNIFICANT CHANGE WAS FOUND</th>
      <td>12950.00</td>
      <td>0.35</td>
      <td>0.48</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>SINUS ARRHYTHMIA</th>
      <td>12950.00</td>
      <td>0.03</td>
      <td>0.18</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>RSR OR QR PATTERN IN V1 AND/OR V2 SUGGESTS RIGHT VENTRICULAR CONDUCTION DELAY</th>
      <td>12950.00</td>
      <td>0.02</td>
      <td>0.14</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>BORDERLINE ECG</th>
      <td>12950.00</td>
      <td>0.08</td>
      <td>0.27</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NORMAL SINUS RHYTHM</th>
      <td>12950.00</td>
      <td>0.66</td>
      <td>0.47</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>OCCASIONAL PREMATURE SUPRAVENTRICULAR COMPLEXES</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.01</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NORMAL ECG</th>
      <td>12950.00</td>
      <td>0.15</td>
      <td>0.36</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>CANNOT RULE OUT INFERIOR INFARCT</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.11</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>POOR DATA QUALITY</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
    </tr>
    <tr>
      <th>LEFT VENTRICULAR HYPERTROPHY</th>
      <td>12950.00</td>
      <td>0.10</td>
      <td>0.30</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>INFERIOR INFARCT</th>
      <td>12950.00</td>
      <td>0.06</td>
      <td>0.23</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PREMATURE VENTRICULAR COMPLEXES</th>
      <td>12950.00</td>
      <td>0.02</td>
      <td>0.14</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>1ST DEGREE AV BLOCK</th>
      <td>12950.00</td>
      <td>0.06</td>
      <td>0.25</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NONSPECIFIC ST ABNORMALITY</th>
      <td>12950.00</td>
      <td>0.02</td>
      <td>0.15</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NONSPECIFIC T WAVE ABNORMALITY</th>
      <td>12950.00</td>
      <td>0.15</td>
      <td>0.36</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PROLONGED QT</th>
      <td>12950.00</td>
      <td>0.08</td>
      <td>0.27</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ATRIAL FIBRILLATION</th>
      <td>12950.00</td>
      <td>0.08</td>
      <td>0.28</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NONSPECIFIC INTRAVENTRICULAR CONDUCTION DELAY</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.09</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QT HAS SHORTENED</th>
      <td>12950.00</td>
      <td>0.02</td>
      <td>0.15</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QRS WIDENING AND REPOLARIZATION ABNORMALITY</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.07</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>RAPID VENTRICULAR RESPONSE</th>
      <td>12950.00</td>
      <td>0.02</td>
      <td>0.16</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NONSPECIFIC ST AND T WAVE ABNORMALITY</th>
      <td>12950.00</td>
      <td>0.04</td>
      <td>0.19</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ATRIAL FLUTTER</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.11</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>VARIABLE AV BLOCK</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.09</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ST &amp; T WAVE ABNORMALITY</th>
      <td>12950.00</td>
      <td>0.05</td>
      <td>0.22</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ST DEPRESSION</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.09</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>T WAVE INVERSION</th>
      <td>12950.00</td>
      <td>0.05</td>
      <td>0.23</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>RIGHT BUNDLE BRANCH BLOCK</th>
      <td>12950.00</td>
      <td>0.07</td>
      <td>0.26</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>LEFT AXIS DEVIATION</th>
      <td>12950.00</td>
      <td>0.10</td>
      <td>0.30</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QRS AXIS SHIFTED LEFT</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.05</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ST NORMALIZED</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.11</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QT HAS LENGTHENED</th>
      <td>12950.00</td>
      <td>0.02</td>
      <td>0.15</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ST ABNORMALITY</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.03</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PREMATURE VENTRICULAR OR ABERRANTLY CONDUCTED COMPLEXES</th>
      <td>12950.00</td>
      <td>0.02</td>
      <td>0.13</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>REPOLARIZATION ABNORMALITY</th>
      <td>12950.00</td>
      <td>0.03</td>
      <td>0.16</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>UNUSUAL P AXIS</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.05</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ANTEROSEPTAL INFARCT</th>
      <td>12950.00</td>
      <td>0.02</td>
      <td>0.13</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>MINIMAL VOLTAGE CRITERIA FOR LVH</th>
      <td>12950.00</td>
      <td>0.05</td>
      <td>0.21</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PULMONARY DISEASE PATTERN</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.08</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>MARKED  SINUS ARRHYTHMIA</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.09</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>T WAVE ABNORMALITY</th>
      <td>12950.00</td>
      <td>0.07</td>
      <td>0.26</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NONSPECIFIC INTRAVENTRICULAR CONDUCTION BLOCK</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.12</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PREMATURE SUPRAVENTRICULAR COMPLEXES ARE NOW PRESENT</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.07</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>BIATRIAL ENLARGEMENT</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.07</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>SEPTAL INFARCT</th>
      <td>12950.00</td>
      <td>0.04</td>
      <td>0.20</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>POSSIBLE ANTERIOR INFARCT</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.10</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>CANNOT RULE OUT SEPTAL INFARCT</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.10</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>LEFT ANTERIOR FASCICULAR BLOCK</th>
      <td>12950.00</td>
      <td>0.04</td>
      <td>0.19</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>LEFT BUNDLE BRANCH BLOCK</th>
      <td>12950.00</td>
      <td>0.04</td>
      <td>0.19</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>RIGHT AXIS DEVIATION</th>
      <td>12950.00</td>
      <td>0.02</td>
      <td>0.14</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>POSSIBLE INFERIOR INFARCT</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.11</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ST ELEVATION</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.11</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PR INTERVAL HAS DECREASED</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.08</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>RIGHT ATRIAL ENLARGEMENT</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.07</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ELECTRONIC VENTRICULAR PACEMAKER</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
    </tr>
    <tr>
      <th>SHORT PR</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.11</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ANTEROLATERAL INFARCT</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.10</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QRS WIDENING</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.09</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>RIGHT VENTRICULAR HYPERTROPHY</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.07</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>EARLY REPOLARIZATION</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ECTOPIC ATRIAL RHYTHM</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.04</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>LEFT POSTERIOR FASCICULAR BLOCK</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.05</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>INCOMPLETE RIGHT BUNDLE BRANCH BLOCK</th>
      <td>12950.00</td>
      <td>0.03</td>
      <td>0.18</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QUESTIONABLE CHANGE IN QRS AXIS</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.07</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>SLOW VENTRICULAR RESPONSE</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.07</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PR INTERVAL HAS INCREASED</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.09</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NONSPECIFIC CHANGE IN ST SEGMENT IN ANTERIOR LEADS</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>LEFT ATRIAL ENLARGEMENT</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.08</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>FREQUENT PREMATURE VENTRICULAR COMPLEXES</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.08</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>CANNOT RULE OUT ANTEROSEPTAL INFARCT</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>POSSIBLE LATERAL INFARCT</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.10</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>INCOMPLETE LEFT BUNDLE BRANCH BLOCK</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>BIFASCICULAR BLOCK</th>
      <td>12950.00</td>
      <td>0.02</td>
      <td>0.13</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>POSTERIOR EXTENSION</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.04</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>INVERTED T WAVES</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.11</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>T WAVE AMPLITUDE HAS DECREASED IN ANTERIOR LEADS</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.05</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>SIGNIFICANT CHANGES HAVE OCCURRED</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ABNORMAL QRST ANGLE</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.05</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>SUSPECT ARM LEAD REVERSAL</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.05</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QRS AXIS SHIFTED RIGHT</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.05</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>AV SEQUENTIAL OR DUAL CHAMBER ELECTRONIC PACEMAKER</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
    </tr>
    <tr>
      <th>PEDIATRIC ECG ANALYSIS</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.03</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QRS DURATION HAS DECREASED</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.05</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>LATERAL INFARCT</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.05</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QUESTIONABLE CHANGE IN INITIAL FORCES OF ANTERIOR LEADS</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PREMATURE ATRIAL COMPLEXES ARE NOW PRESENT</th>
      <td>12950.00</td>
      <td>0.02</td>
      <td>0.13</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QUESTIONABLE CHANGE IN INITIAL FORCES OF SEPTAL LEADS</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.07</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PROMINENT MIDPRECORDIAL VOLTAGE</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.02</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NONSPECIFIC CHANGE IN ST SEGMENT IN INFERIOR LEADS</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.07</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>DEMAND PACEMAKER  INTERPRETATION IS BASED ON INTRINSIC RHYTHM</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.04</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>POSSIBLE BIVENTRICULAR HYPERTROPHY</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
    </tr>
    <tr>
      <th>EARLY TRANSITION</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PREMATURE ATRIAL COMPLEXES</th>
      <td>12950.00</td>
      <td>0.03</td>
      <td>0.18</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QRS DURATION HAS INCREASED</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PREMATURE SUPRAVENTRICULAR COMPLEXES</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.11</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>NONSPECIFIC CHANGE IN ST SEGMENT IN LATERAL LEADS</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.05</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>POOR PRECORDIAL R WAVE PROGRESSION</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.10</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ELECTRONIC ATRIAL PACEMAKER</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.04</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ABERRANT CONDUCTION</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>FIRST DEGREE AV BLOCK</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.03</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>OTHERWISE NORMAL</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>FUSION COMPLEXES</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.04</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>OCCASIONAL</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.03</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>RIGHT VENTRICULAR CONDUCTION DELAY</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.02</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>BASELINE ARTIFACT</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
    </tr>
    <tr>
      <th>RIGHT SUPERIOR AXIS DEVIATION</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.06</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>ACUTE MI</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.10</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>UNCERTAIN ATRIAL RHYTHM</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.03</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>FUSION COMPLEXES ARE NOW PRESENT</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.05</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>CURRENT ARTIFACT PREVENTS MEANINGFUL COMPARISON</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
    </tr>
    <tr>
      <th>AGE AND GENDER SPECIFIC ECG ANALYSIS</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.04</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>VENTRICULARPACED RHYTHM</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
    </tr>
    <tr>
      <th>AV DUALPACED RHYTHM</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
    </tr>
    <tr>
      <th>ATRIALSENSED VENTRICULARPACED RHYTHM</th>
      <td>12950.00</td>
      <td>0.01</td>
      <td>0.10</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>BIVENTRICULAR PACEMAKER DETECTED</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
    </tr>
    <tr>
      <th>NORMAL AXIS</th>
      <td>12950.00</td>
      <td>0.00</td>
      <td>0.04</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>aortic_stenosis_label_four_grade</th>
      <td>12950.00</td>
      <td>0.29</td>
      <td>0.82</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>3.00</td>
      <td>3.00</td>
    </tr>
    <tr>
      <th>aortic_insufficiency_label_four_grade</th>
      <td>12950.00</td>
      <td>0.21</td>
      <td>0.48</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>3.00</td>
    </tr>
    <tr>
      <th>mitral_regurgitation_label_four_grade</th>
      <td>12950.00</td>
      <td>0.52</td>
      <td>0.71</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>2.00</td>
      <td>3.00</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>----------------------------
 Test 
----------------------------
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>count</th>
      <th>mean</th>
      <th>std</th>
      <th>min</th>
      <th>2.5%</th>
      <th>50%</th>
      <th>97.5%</th>
      <th>max</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>TestID</th>
      <td>21048.00</td>
      <td>2522514.51</td>
      <td>695914.96</td>
      <td>1143854.00</td>
      <td>1510838.32</td>
      <td>2408502.00</td>
      <td>3560716.75</td>
      <td>3603193.00</td>
    </tr>
    <tr>
      <th>PatientID</th>
      <td>21048.00</td>
      <td>1067022344.92</td>
      <td>107495409.63</td>
      <td>1000000178.00</td>
      <td>1000619042.52</td>
      <td>1009046963.00</td>
      <td>1400118709.95</td>
      <td>1400299107.00</td>
    </tr>
    <tr>
      <th>Gender</th>
      <td>21048.00</td>
      <td>0.50</td>
      <td>0.50</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>Race</th>
      <td>12163.00</td>
      <td>4.33</td>
      <td>4.64</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>3.00</td>
      <td>11.00</td>
      <td>11.00</td>
    </tr>
    <tr>
      <th>aortic_stenosis_label_four_grade</th>
      <td>21048.00</td>
      <td>0.17</td>
      <td>0.59</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>3.00</td>
      <td>3.00</td>
    </tr>
    <tr>
      <th>aortic_insufficiency_label_four_grade</th>
      <td>21048.00</td>
      <td>0.13</td>
      <td>0.37</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>3.00</td>
    </tr>
    <tr>
      <th>mitral_regurgitation_label_four_grade</th>
      <td>21048.00</td>
      <td>0.31</td>
      <td>0.56</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>2.00</td>
      <td>3.00</td>
    </tr>
    <tr>
      <th>aortic_stenosis_label_binary</th>
      <td>17497.00</td>
      <td>0.05</td>
      <td>0.22</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>mitral_regurgitation_label_binary</th>
      <td>19414.00</td>
      <td>0.04</td>
      <td>0.19</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>aortic_insufficiency_label_binary</th>
      <td>19632.00</td>
      <td>0.01</td>
      <td>0.10</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>aortic_stenosis_label_binary_backfilled</th>
      <td>21048.00</td>
      <td>0.04</td>
      <td>0.20</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>aortic_insufficiency_label_binary_backfilled</th>
      <td>21048.00</td>
      <td>0.01</td>
      <td>0.10</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>mitral_regurgitation_label_binary_backfilled</th>
      <td>21048.00</td>
      <td>0.04</td>
      <td>0.18</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>AS_AI_MR_label_binary</th>
      <td>19902.00</td>
      <td>0.08</td>
      <td>0.28</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>AS_AI_MR_label_binary_backfilled</th>
      <td>21048.00</td>
      <td>0.08</td>
      <td>0.27</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>QRSDuration</th>
      <td>21048.00</td>
      <td>92.84</td>
      <td>20.29</td>
      <td>0.00</td>
      <td>68.00</td>
      <td>88.00</td>
      <td>150.00</td>
      <td>208.00</td>
    </tr>
    <tr>
      <th>RIGHT BUNDLE BRANCH BLOCK</th>
      <td>20984.00</td>
      <td>0.06</td>
      <td>0.24</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>LEFT BUNDLE BRANCH BLOCK</th>
      <td>20984.00</td>
      <td>0.02</td>
      <td>0.15</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>days_since_echo</th>
      <td>21048.00</td>
      <td>-77.68</td>
      <td>113.89</td>
      <td>-365.00</td>
      <td>-357.00</td>
      <td>-11.00</td>
      <td>0.00</td>
      <td>1.00</td>
    </tr>
    <tr>
      <th>PatientAge_Years</th>
      <td>21012.00</td>
      <td>61.52</td>
      <td>17.53</td>
      <td>0.00</td>
      <td>24.00</td>
      <td>63.00</td>
      <td>91.00</td>
      <td>121.00</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[87]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="k">for</span> <span class="n">key</span><span class="p">,</span><span class="n">value</span> <span class="ow">in</span> <span class="n">dfs</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;----------------------------</span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">,</span><span class="n">key</span><span class="p">,</span><span class="s1">&#39;(Male=0, Female=1)</span><span class="se">\n</span><span class="s1">----------------------------&#39;</span><span class="p">)</span>
    <span class="n">display</span><span class="p">(</span><span class="n">value</span><span class="o">.</span><span class="n">Gender</span><span class="o">.</span><span class="n">value_counts</span><span class="p">(</span><span class="n">dropna</span><span class="o">=</span><span class="kc">False</span><span class="p">))</span>
    <span class="n">display</span><span class="p">(</span><span class="n">value</span><span class="o">.</span><span class="n">Gender</span><span class="o">.</span><span class="n">value_counts</span><span class="p">(</span><span class="n">dropna</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span><span class="n">normalize</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>----------------------------
 Train (Male=0, Female=1)
----------------------------
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedText jp-OutputArea-output " data-mime-type="text/plain">
<pre>0.0    115330
1.0    105925
Name: Gender, dtype: int64</pre>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedText jp-OutputArea-output " data-mime-type="text/plain">
<pre>0.0    0.521254
1.0    0.478746
Name: Gender, dtype: float64</pre>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>----------------------------
 Eval (Male=0, Female=1)
----------------------------
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedText jp-OutputArea-output " data-mime-type="text/plain">
<pre>0.0    6543
1.0    6407
Name: Gender, dtype: int64</pre>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedText jp-OutputArea-output " data-mime-type="text/plain">
<pre>0.0    0.505251
1.0    0.494749
Name: Gender, dtype: float64</pre>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>----------------------------
 Test (Male=0, Female=1)
----------------------------
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedText jp-OutputArea-output " data-mime-type="text/plain">
<pre>0.0    10568
1.0    10480
Name: Gender, dtype: int64</pre>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedText jp-OutputArea-output " data-mime-type="text/plain">
<pre>0.0    0.50209
1.0    0.49791
Name: Gender, dtype: float64</pre>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[88]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">age_bins</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">60</span><span class="p">,</span><span class="mi">70</span><span class="p">,</span><span class="mi">80</span><span class="p">,</span><span class="mi">120</span><span class="p">]</span>
<span class="n">bincounts</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">cut</span><span class="p">(</span><span class="n">train_df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">],</span><span class="n">bins</span><span class="o">=</span><span class="n">age_bins</span><span class="p">,</span><span class="n">include_lowest</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span><span class="o">.</span><span class="n">value_counts</span><span class="p">(</span><span class="n">dropna</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="n">binpct</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">cut</span><span class="p">(</span><span class="n">train_df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">],</span><span class="n">bins</span><span class="o">=</span><span class="n">age_bins</span><span class="p">,</span><span class="n">include_lowest</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span><span class="o">.</span><span class="n">value_counts</span><span class="p">(</span><span class="n">dropna</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span><span class="n">normalize</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Compute-Overall-Stats-Using-Bootstrap">Compute Overall Stats Using Bootstrap<a class="anchor-link" href="#Compute-Overall-Stats-Using-Bootstrap">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[49]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">n_samples</span> <span class="o">=</span> <span class="mi">1000</span>
<span class="n">test_race_ethnicity</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="s1">&#39;All&#39;</span>

<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Aortic Stenosis&#39;</span><span class="p">)</span>
<span class="n">as_summary</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">json_normalize</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">test_race_ethnicity</span><span class="p">,</span> <span class="s1">&#39;y_AS&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AS_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Mitral Regurgitation&#39;</span><span class="p">)</span>
<span class="n">mr_summary</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">json_normalize</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">test_race_ethnicity</span><span class="p">,</span> <span class="s1">&#39;y_MR&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_MR_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Aortic Insufficiency&#39;</span><span class="p">)</span>
<span class="n">ai_summary</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">json_normalize</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">test_race_ethnicity</span><span class="p">,</span> <span class="s1">&#39;y_AI&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AI_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">))</span>
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">Combined Aortic Stenosis, Aortic Regurgitation, and Mitral Regurgitation&#39;</span><span class="p">)</span>
<span class="n">as_mr_ai_summary</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">json_normalize</span><span class="p">(</span><span class="n">bootstrap_stats</span><span class="p">(</span><span class="n">test_race_ethnicity</span><span class="p">,</span> <span class="s1">&#39;y_AS_AI_MR&#39;</span><span class="p">,</span> <span class="s1">&#39;y_pred_AS_AI_MR_proba_sigmoid&#39;</span><span class="p">,</span> <span class="n">n_samples</span><span class="p">))</span> 
<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;</span><span class="se">\n\n\n</span><span class="s1">&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Aortic Stenosis
All 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [06:12&lt;00:00,  2.68it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.87 0.9 0.8669916820715248 0.8949386072775464

Mitral Regurgitation
All 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [06:29&lt;00:00,  2.57it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.81 0.85 0.8068351190833125 0.8491307165193205

Aortic Insufficiency
All 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [05:54&lt;00:00,  2.82it/s]
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.72 0.81 0.7220325695511524 0.8148359849302759

Combined Aortic Stenosis, Aortic Regurgitation, and Mitral Regurgitation
All 

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>100%|██████████| 1000/1000 [04:19&lt;00:00,  3.85it/s]</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.82 0.85 0.8221128211597443 0.8480400196977026




</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>
</pre>
</div>
</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[50]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">as_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Aortic Stenosis&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">as_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">mr_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Mitral Regurgitation&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">mr_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">ai_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Aortic Insufficiency&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">ai_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>
<span class="n">as_mr_ai_summary</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="o">.</span><span class="n">from_tuples</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">(</span><span class="s1">&#39;Combined Aortic Stenosis, Aortic Regurgitation, and Mitral Regurgitation&#39;</span><span class="p">,</span> <span class="n">x</span><span class="p">),</span> <span class="n">as_mr_ai_summary</span><span class="o">.</span><span class="n">columns</span><span class="p">))</span>

<span class="n">overall_summary_stats</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">as_summary</span><span class="p">,</span><span class="n">mr_summary</span><span class="p">,</span><span class="n">ai_summary</span><span class="p">,</span><span class="n">as_mr_ai_summary</span><span class="p">],</span> <span class="n">axis</span> <span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">overall_summary_stats</span><span class="o">.</span><span class="n">index</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;Overall&#39;</span><span class="p">]</span>
<span class="n">overall_summary_stats</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[50]:</div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead tr th {
        text-align: left;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr>
      <th></th>
      <th colspan="6" halign="left">Aortic Stenosis</th>
      <th colspan="6" halign="left">Mitral Regurgitation</th>
      <th colspan="6" halign="left">Aortic Insufficiency</th>
      <th colspan="6" halign="left">Combined Aortic Stenosis, Aortic Regurgitation, and Mitral Regurgitation</th>
    </tr>
    <tr>
      <th></th>
      <th>n</th>
      <th>n_positives</th>
      <th>roc_auc_actual</th>
      <th>AU-ROC (95% CI)</th>
      <th>odds_ratio_actual</th>
      <th>OR (95% CI)</th>
      <th>n</th>
      <th>n_positives</th>
      <th>roc_auc_actual</th>
      <th>AU-ROC (95% CI)</th>
      <th>odds_ratio_actual</th>
      <th>OR (95% CI)</th>
      <th>n</th>
      <th>n_positives</th>
      <th>roc_auc_actual</th>
      <th>AU-ROC (95% CI)</th>
      <th>odds_ratio_actual</th>
      <th>OR (95% CI)</th>
      <th>n</th>
      <th>n_positives</th>
      <th>roc_auc_actual</th>
      <th>AU-ROC (95% CI)</th>
      <th>odds_ratio_actual</th>
      <th>OR (95% CI)</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>Overall</th>
      <td>21048</td>
      <td>907</td>
      <td>0.88</td>
      <td>[0.87, 0.9]</td>
      <td>15.2</td>
      <td>[12.4, 19.3]</td>
      <td>21048</td>
      <td>742</td>
      <td>0.83</td>
      <td>[0.81, 0.85]</td>
      <td>10.4</td>
      <td>[8.2, 13.2]</td>
      <td>21048</td>
      <td>196</td>
      <td>0.77</td>
      <td>[0.72, 0.81]</td>
      <td>6.7</td>
      <td>[4.4, 10.2]</td>
      <td>21048</td>
      <td>1644</td>
      <td>0.84</td>
      <td>[0.82, 0.85]</td>
      <td>9.7</td>
      <td>[8.3, 11.3]</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

</div>

</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Plot-Results-For-All-Data">Plot Results For All Data<a class="anchor-link" href="#Plot-Results-For-All-Data">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[53]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="c1"># Now combine overall, race, ethnicity and save results</span>
<span class="n">race_ethnicity_summary_stats</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="n">overall_summary_stats</span><span class="p">,</span> <span class="n">gender_summary_stats</span><span class="p">,</span> <span class="n">age_summary_stats</span><span class="p">,</span><span class="n">race_summary_stats</span><span class="p">,</span> <span class="n">ethnicity_summary_stats</span><span class="p">,</span><span class="n">bbb_summary_stats</span><span class="p">,</span><span class="n">qrs_summary_stats</span><span class="p">])</span>
<span class="n">race_ethnicity_summary_stats</span><span class="o">.</span><span class="n">to_csv</span><span class="p">(</span><span class="s1">&#39;all_subset_summary_stats.csv&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[&nbsp;]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">race_ethnicity_summary_stats</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Look-at-age-breakdown-on-per-study-level">Look at age breakdown on per study level<a class="anchor-link" href="#Look-at-age-breakdown-on-per-study-level">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[230]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="k">for</span> <span class="n">key</span><span class="p">,</span><span class="n">value</span> <span class="ow">in</span> <span class="n">dfs</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;--------------</span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">,</span><span class="n">key</span><span class="p">,</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">--------------&#39;</span><span class="p">)</span>
    <span class="n">df</span><span class="o">=</span><span class="n">value</span>
    <span class="n">age_bins</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">60</span><span class="p">,</span><span class="mi">70</span><span class="p">,</span><span class="mi">80</span><span class="p">,</span><span class="mi">120</span><span class="p">]</span>
    <span class="n">bincounts</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">cut</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">],</span><span class="n">bins</span><span class="o">=</span><span class="n">age_bins</span><span class="p">,</span><span class="n">include_lowest</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span><span class="o">.</span><span class="n">value_counts</span><span class="p">(</span><span class="n">dropna</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
    <span class="n">binpct</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">cut</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">],</span><span class="n">bins</span><span class="o">=</span><span class="n">age_bins</span><span class="p">,</span><span class="n">include_lowest</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span><span class="o">.</span><span class="n">value_counts</span><span class="p">(</span><span class="n">dropna</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span><span class="n">normalize</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
    <span class="n">binpct</span> <span class="o">=</span> <span class="s1">&#39;(&#39;</span> <span class="o">+</span> <span class="n">binpct</span><span class="o">.</span><span class="n">mul</span><span class="p">(</span><span class="mi">100</span><span class="p">)</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="nb">str</span><span class="p">)</span> <span class="o">+</span> <span class="s1">&#39;)&#39;</span>
    <span class="n">a</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">&#39;counts&#39;</span><span class="p">:</span> <span class="n">bincounts</span><span class="p">,</span> <span class="s1">&#39;percent&#39;</span><span class="p">:</span> <span class="n">binpct</span><span class="p">})</span>
    <span class="n">display</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>--------------
 Train 
--------------
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>(-0.001, 60.0]</th>
      <td>92088</td>
      <td>(41.6)</td>
    </tr>
    <tr>
      <th>(60.0, 70.0]</th>
      <td>53696</td>
      <td>(24.3)</td>
    </tr>
    <tr>
      <th>(70.0, 80.0]</th>
      <td>43669</td>
      <td>(19.7)</td>
    </tr>
    <tr>
      <th>(80.0, 120.0]</th>
      <td>31802</td>
      <td>(14.4)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>--------------
 Eval 
--------------
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>(-0.001, 60.0]</th>
      <td>5087</td>
      <td>(39.3)</td>
    </tr>
    <tr>
      <th>(60.0, 70.0]</th>
      <td>2952</td>
      <td>(22.8)</td>
    </tr>
    <tr>
      <th>(70.0, 80.0]</th>
      <td>2669</td>
      <td>(20.6)</td>
    </tr>
    <tr>
      <th>(80.0, 120.0]</th>
      <td>2242</td>
      <td>(17.3)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>--------------
 Test 
--------------
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>(-0.001, 60.0]</th>
      <td>9246</td>
      <td>(43.9)</td>
    </tr>
    <tr>
      <th>(60.0, 70.0]</th>
      <td>4811</td>
      <td>(22.9)</td>
    </tr>
    <tr>
      <th>(70.0, 80.0]</th>
      <td>3958</td>
      <td>(18.8)</td>
    </tr>
    <tr>
      <th>(80.0, 120.0]</th>
      <td>2991</td>
      <td>(14.2)</td>
    </tr>
    <tr>
      <th>NaN</th>
      <td>42</td>
      <td>(0.2)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

</div>

</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Look-at-age-breakdown-on-per-patient-level">Look at age breakdown on per patient level<a class="anchor-link" href="#Look-at-age-breakdown-on-per-patient-level">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[232]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="k">for</span> <span class="n">key</span><span class="p">,</span><span class="n">value</span> <span class="ow">in</span> <span class="n">dfs</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;--------------</span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">,</span><span class="n">key</span><span class="p">,</span><span class="s1">&#39;</span><span class="se">\n</span><span class="s1">--------------&#39;</span><span class="p">)</span>
    <span class="n">df</span><span class="o">=</span><span class="n">value</span>
    <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">df</span><span class="p">)</span> <span class="o">&gt;</span> <span class="n">df</span><span class="o">.</span><span class="n">PatientID</span><span class="o">.</span><span class="n">nunique</span><span class="p">():</span>
        <span class="n">df</span> <span class="o">=</span> <span class="n">train_df</span><span class="o">.</span><span class="n">groupby</span><span class="p">(</span><span class="s1">&#39;PatientID&#39;</span><span class="p">,</span><span class="n">dropna</span><span class="o">=</span><span class="kc">False</span><span class="p">)[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">max</span><span class="p">()</span><span class="o">.</span><span class="n">reset_index</span><span class="p">()</span>
    <span class="n">age_bins</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">60</span><span class="p">,</span><span class="mi">70</span><span class="p">,</span><span class="mi">80</span><span class="p">,</span><span class="mi">120</span><span class="p">]</span>
    <span class="n">bincounts</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">cut</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">],</span><span class="n">bins</span><span class="o">=</span><span class="n">age_bins</span><span class="p">,</span><span class="n">include_lowest</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span><span class="o">.</span><span class="n">value_counts</span><span class="p">(</span><span class="n">dropna</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
    <span class="n">binpct</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">cut</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">],</span><span class="n">bins</span><span class="o">=</span><span class="n">age_bins</span><span class="p">,</span><span class="n">include_lowest</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span><span class="o">.</span><span class="n">value_counts</span><span class="p">(</span><span class="n">dropna</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span><span class="n">normalize</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
    <span class="n">binpct</span> <span class="o">=</span> <span class="s1">&#39;(&#39;</span> <span class="o">+</span> <span class="n">binpct</span><span class="o">.</span><span class="n">mul</span><span class="p">(</span><span class="mi">100</span><span class="p">)</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="nb">str</span><span class="p">)</span> <span class="o">+</span> <span class="s1">&#39;)&#39;</span>
    <span class="n">a</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">&#39;counts&#39;</span><span class="p">:</span> <span class="n">bincounts</span><span class="p">,</span> <span class="s1">&#39;percent&#39;</span><span class="p">:</span> <span class="n">binpct</span><span class="p">})</span>
    <span class="n">display</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>--------------
 Train 
--------------
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>(-0.001, 60.0]</th>
      <td>16933</td>
      <td>(39.2)</td>
    </tr>
    <tr>
      <th>(60.0, 70.0]</th>
      <td>10041</td>
      <td>(23.3)</td>
    </tr>
    <tr>
      <th>(70.0, 80.0]</th>
      <td>8763</td>
      <td>(20.3)</td>
    </tr>
    <tr>
      <th>(80.0, 120.0]</th>
      <td>7428</td>
      <td>(17.2)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>--------------
 Eval 
--------------
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>(-0.001, 60.0]</th>
      <td>5087</td>
      <td>(39.3)</td>
    </tr>
    <tr>
      <th>(60.0, 70.0]</th>
      <td>2952</td>
      <td>(22.8)</td>
    </tr>
    <tr>
      <th>(70.0, 80.0]</th>
      <td>2669</td>
      <td>(20.6)</td>
    </tr>
    <tr>
      <th>(80.0, 120.0]</th>
      <td>2242</td>
      <td>(17.3)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>--------------
 Test 
--------------
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>(-0.001, 60.0]</th>
      <td>9246</td>
      <td>(43.9)</td>
    </tr>
    <tr>
      <th>(60.0, 70.0]</th>
      <td>4811</td>
      <td>(22.9)</td>
    </tr>
    <tr>
      <th>(70.0, 80.0]</th>
      <td>3958</td>
      <td>(18.8)</td>
    </tr>
    <tr>
      <th>(80.0, 120.0]</th>
      <td>2991</td>
      <td>(14.2)</td>
    </tr>
    <tr>
      <th>NaN</th>
      <td>42</td>
      <td>(0.2)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[233]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">s</span> <span class="o">=</span> <span class="n">train_df</span><span class="o">.</span><span class="n">groupby</span><span class="p">(</span><span class="s1">&#39;PatientID&#39;</span><span class="p">,</span><span class="n">dropna</span><span class="o">=</span><span class="kc">False</span><span class="p">)[</span><span class="s1">&#39;Gender&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">max</span><span class="p">()</span><span class="o">.</span><span class="n">reset_index</span><span class="p">()</span>
<span class="n">s</span> <span class="o">=</span> <span class="n">s</span><span class="p">[</span><span class="s1">&#39;Gender&#39;</span><span class="p">]</span>
<span class="n">counts</span> <span class="o">=</span> <span class="n">s</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()</span>
<span class="n">percent</span> <span class="o">=</span> <span class="n">s</span><span class="o">.</span><span class="n">value_counts</span><span class="p">(</span><span class="n">normalize</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">percent100</span> <span class="o">=</span> <span class="s1">&#39;(&#39;</span> <span class="o">+</span> <span class="n">s</span><span class="o">.</span><span class="n">value_counts</span><span class="p">(</span><span class="n">normalize</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span><span class="n">sort</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">mul</span><span class="p">(</span><span class="mi">100</span><span class="p">)</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="nb">str</span><span class="p">)</span> <span class="o">+</span> <span class="s1">&#39;)&#39;</span>
<span class="n">a</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span><span class="s1">&#39;counts&#39;</span><span class="p">:</span> <span class="n">counts</span><span class="p">,</span> <span class="s1">&#39;percent&#39;</span><span class="p">:</span> <span class="n">percent100</span><span class="p">})</span>
<span class="n">display</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>



<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output " data-mime-type="text/html">
<div>
<style scoped>
    .dataframe tbody tr th:only-of-type {
        vertical-align: middle;
    }

    .dataframe tbody tr th {
        vertical-align: top;
    }

    .dataframe thead th {
        text-align: right;
    }
</style>
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>counts</th>
      <th>percent</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0.0</th>
      <td>21663</td>
      <td>(50.2)</td>
    </tr>
    <tr>
      <th>1.0</th>
      <td>21502</td>
      <td>(49.8)</td>
    </tr>
  </tbody>
</table>
</div>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[234]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">female_index</span> <span class="o">=</span> <span class="n">test_df</span><span class="p">[</span><span class="n">test_df</span><span class="o">.</span><span class="n">Gender</span><span class="o">==</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">index</span>
<span class="n">male_index</span> <span class="o">=</span> <span class="n">test_df</span><span class="p">[</span><span class="n">test_df</span><span class="o">.</span><span class="n">Gender</span><span class="o">==</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">index</span>

<span class="n">age18to60</span> <span class="o">=</span> <span class="n">test_df</span><span class="p">[(</span><span class="n">test_df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">0</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">60</span><span class="p">)]</span><span class="o">.</span><span class="n">index</span>
<span class="n">age60to70</span> <span class="o">=</span> <span class="n">test_df</span><span class="p">[(</span><span class="n">test_df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">61</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">70</span><span class="p">)]</span><span class="o">.</span><span class="n">index</span>
<span class="n">age70to80</span> <span class="o">=</span> <span class="n">test_df</span><span class="p">[(</span><span class="n">test_df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">71</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">80</span><span class="p">)]</span><span class="o">.</span><span class="n">index</span>
<span class="n">age80plus</span> <span class="o">=</span> <span class="n">test_df</span><span class="p">[(</span><span class="n">test_df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">81</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">130</span><span class="p">)]</span><span class="o">.</span><span class="n">index</span>

<span class="n">age18to65</span> <span class="o">=</span> <span class="n">test_df</span><span class="p">[(</span><span class="n">test_df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">0</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">65</span><span class="p">)]</span><span class="o">.</span><span class="n">index</span>
<span class="n">age65plus</span> <span class="o">=</span> <span class="n">test_df</span><span class="p">[(</span><span class="n">test_df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">65</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">130</span><span class="p">)]</span><span class="o">.</span><span class="n">index</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[&nbsp;]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">np</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">&#39;JACC_REVISIONS_test_female_index.npy&#39;</span><span class="p">,</span><span class="n">female_index</span><span class="p">)</span>
<span class="n">np</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">&#39;JACC_REVISIONS_test_male_index.npy&#39;</span><span class="p">,</span><span class="n">male_index</span><span class="p">)</span>
<span class="n">np</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">&#39;JACC_REVISIONS_test_age18to60_index.npy&#39;</span><span class="p">,</span><span class="n">age18to60</span><span class="p">)</span>
<span class="n">np</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">&#39;JACC_REVISIONS_test_age60to70_index.npy&#39;</span><span class="p">,</span><span class="n">age60to70</span><span class="p">)</span>
<span class="n">np</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">&#39;JACC_REVISIONS_test_age70to80_index.npy&#39;</span><span class="p">,</span><span class="n">age70to80</span><span class="p">)</span>
<span class="n">np</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">&#39;JACC_REVISIONS_test_age80plus_index.npy&#39;</span><span class="p">,</span><span class="n">age80plus</span><span class="p">)</span>
<span class="n">np</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">&#39;JACC_REVISIONS_test_age18to65_index.npy&#39;</span><span class="p">,</span><span class="n">age18to65</span><span class="p">)</span>
<span class="n">np</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="s1">&#39;JACC_REVISIONS_test_age65plus_index.npy&#39;</span><span class="p">,</span><span class="n">age65plus</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[&nbsp;]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">base_filename</span> <span class="o">=</span> <span class="s1">&#39;JACC_REVISIONS_test&#39;</span>
<span class="n">base_df</span> <span class="o">=</span> <span class="n">test_df</span>
<span class="n">labels</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;AS_AI_MR_label_binary_backfilled&#39;</span><span class="p">]</span>
<span class="n">sample_prevalences</span> <span class="o">=</span> <span class="p">[</span><span class="mf">0.005</span><span class="p">,</span><span class="mf">0.01</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.05</span><span class="p">,</span><span class="mf">0.1</span><span class="p">]</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[91]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="k">for</span> <span class="n">prev</span> <span class="ow">in</span> <span class="n">sample_prevalences</span><span class="p">:</span>
    <span class="k">for</span> <span class="n">label</span> <span class="ow">in</span> <span class="n">labels</span><span class="p">:</span>
        <span class="nb">print</span><span class="p">(</span><span class="n">prev</span><span class="p">,</span><span class="n">label</span><span class="p">)</span>
        <span class="n">df</span> <span class="o">=</span> <span class="n">adjust_prevalence</span><span class="p">(</span><span class="n">base_df</span><span class="p">,</span> <span class="n">label</span><span class="p">,</span> <span class="n">prev</span><span class="p">,</span> <span class="n">minority_class</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
        <span class="n">index</span> <span class="o">=</span> <span class="n">base_df</span><span class="o">.</span><span class="n">reset_index</span><span class="p">()</span><span class="o">.</span><span class="n">merge</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">on</span><span class="o">=</span><span class="s1">&#39;filename&#39;</span><span class="p">,</span><span class="n">how</span><span class="o">=</span><span class="s2">&quot;inner&quot;</span><span class="p">,</span><span class="n">validate</span><span class="o">=</span><span class="s1">&#39;1:1&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s1">&#39;index&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">index</span>
        <span class="k">assert</span> <span class="nb">len</span><span class="p">(</span><span class="n">index</span><span class="p">)</span> <span class="o">==</span> <span class="nb">len</span><span class="p">(</span><span class="n">df</span><span class="p">),</span> <span class="s1">&#39;index length incorrect&#39;</span>        
        <span class="nb">print</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="n">label</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">(</span><span class="n">normalize</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span><span class="n">dropna</span><span class="o">=</span><span class="kc">False</span><span class="p">))</span>
        <span class="nb">print</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="n">label</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">(</span><span class="n">normalize</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span><span class="n">dropna</span><span class="o">=</span><span class="kc">False</span><span class="p">))</span>
        <span class="n">filename</span> <span class="o">=</span> <span class="n">base_filename</span> <span class="o">+</span> <span class="s1">&#39;_&#39;</span> <span class="o">+</span> <span class="n">label</span> <span class="o">+</span> <span class="s1">&#39;_prev_&#39;</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">prev</span><span class="p">)</span> <span class="o">+</span> <span class="s1">&#39;_index.npy&#39;</span>
        <span class="n">np</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">filename</span><span class="p">,</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">index</span><span class="p">))</span>
        <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;</span><span class="se">\n</span><span class="si">{</span><span class="n">filename</span><span class="si">}</span><span class="s1"> saved. </span><span class="se">\n\n</span><span class="s1">&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.005 AS_AI_MR_label_binary_backfilled
using make_imbalance
0.0    0.994591
1.0    0.005409
Name: AS_AI_MR_label_binary_backfilled, dtype: float64
0.0    19306
1.0      105
Name: AS_AI_MR_label_binary_backfilled, dtype: int64

JACC_REVISIONS_test_AS_AI_MR_label_binary_backfilled_prev_0.005_index.npy saved. 


0.01 AS_AI_MR_label_binary_backfilled
using make_imbalance
0.0    0.989186
1.0    0.010814
Name: AS_AI_MR_label_binary_backfilled, dtype: float64
0.0    19209
1.0      210
Name: AS_AI_MR_label_binary_backfilled, dtype: int64

JACC_REVISIONS_test_AS_AI_MR_label_binary_backfilled_prev_0.01_index.npy saved. 


0.02 AS_AI_MR_label_binary_backfilled
using make_imbalance
0.0    0.97839
1.0    0.02161
Name: AS_AI_MR_label_binary_backfilled, dtype: float64
0.0    19015
1.0      420
Name: AS_AI_MR_label_binary_backfilled, dtype: int64

JACC_REVISIONS_test_AS_AI_MR_label_binary_backfilled_prev_0.02_index.npy saved. 


0.05 AS_AI_MR_label_binary_backfilled
using make_imbalance
0.0    0.94601
1.0    0.05399
Name: AS_AI_MR_label_binary_backfilled, dtype: float64
0.0    18433
1.0     1052
Name: AS_AI_MR_label_binary_backfilled, dtype: int64

JACC_REVISIONS_test_AS_AI_MR_label_binary_backfilled_prev_0.05_index.npy saved. 


0.1 AS_AI_MR_label_binary_backfilled
using RandomUnderSampler
0.0    0.899994
1.0    0.100006
Name: AS_AI_MR_label_binary_backfilled, dtype: float64
0.0    14795
1.0     1644
Name: AS_AI_MR_label_binary_backfilled, dtype: int64

JACC_REVISIONS_test_AS_AI_MR_label_binary_backfilled_prev_0.1_index.npy saved. 


</pre>
</div>
</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[211]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">base_filename</span> <span class="o">=</span> <span class="s1">&#39;JACC_REVISIONS_test&#39;</span>
<span class="n">base_df</span> <span class="o">=</span> <span class="n">test_df</span><span class="p">[</span><span class="n">test_df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span><span class="o">&gt;=</span><span class="mi">65</span><span class="p">]</span>
<span class="n">labels</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;AS_AI_MR_label_binary_backfilled&#39;</span><span class="p">]</span>
<span class="n">sample_prevalences</span> <span class="o">=</span> <span class="p">[</span><span class="mf">0.005</span><span class="p">,</span><span class="mf">0.01</span><span class="p">,</span><span class="mf">0.02</span><span class="p">,</span><span class="mf">0.05</span><span class="p">,</span><span class="mf">0.1</span><span class="p">]</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[212]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="k">for</span> <span class="n">prev</span> <span class="ow">in</span> <span class="n">sample_prevalences</span><span class="p">:</span>
    <span class="k">for</span> <span class="n">label</span> <span class="ow">in</span> <span class="n">labels</span><span class="p">:</span>
        <span class="nb">print</span><span class="p">(</span><span class="n">prev</span><span class="p">,</span><span class="n">label</span><span class="p">)</span>
        <span class="n">df</span> <span class="o">=</span> <span class="n">adjust_prevalence</span><span class="p">(</span><span class="n">base_df</span><span class="p">,</span> <span class="n">label</span><span class="p">,</span> <span class="n">prev</span><span class="p">,</span> <span class="n">minority_class</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
        <span class="n">index</span> <span class="o">=</span> <span class="n">base_df</span><span class="o">.</span><span class="n">reset_index</span><span class="p">()</span><span class="o">.</span><span class="n">merge</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">on</span><span class="o">=</span><span class="s1">&#39;filename&#39;</span><span class="p">,</span><span class="n">how</span><span class="o">=</span><span class="s2">&quot;inner&quot;</span><span class="p">,</span><span class="n">validate</span><span class="o">=</span><span class="s1">&#39;1:1&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s1">&#39;index&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">index</span>
        <span class="k">assert</span> <span class="nb">len</span><span class="p">(</span><span class="n">index</span><span class="p">)</span> <span class="o">==</span> <span class="nb">len</span><span class="p">(</span><span class="n">df</span><span class="p">),</span> <span class="s1">&#39;index length incorrect&#39;</span>        
        <span class="nb">print</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="n">label</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">(</span><span class="n">normalize</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span><span class="n">dropna</span><span class="o">=</span><span class="kc">False</span><span class="p">))</span>
        <span class="nb">print</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="n">label</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">(</span><span class="n">normalize</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span><span class="n">dropna</span><span class="o">=</span><span class="kc">False</span><span class="p">))</span>
        <span class="n">filename</span> <span class="o">=</span> <span class="n">base_filename</span> <span class="o">+</span> <span class="s1">&#39;_&#39;</span> <span class="o">+</span> <span class="n">label</span> <span class="o">+</span> <span class="s1">&#39;_prev_&#39;</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">prev</span><span class="p">)</span> <span class="o">+</span> <span class="s1">&#39;_age_65_plus_index.npy&#39;</span>
        <span class="n">np</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="n">filename</span><span class="p">,</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">index</span><span class="p">))</span>
        <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;</span><span class="si">{</span><span class="n">filename</span><span class="si">}</span><span class="s1"> saved. </span><span class="se">\n</span><span class="s1">&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>0.005 AS_AI_MR_label_binary_backfilled
using make_imbalance
0.0    0.994249
1.0    0.005751
Name: AS_AI_MR_label_binary_backfilled, dtype: float64
0.0    8471
1.0      49
Name: AS_AI_MR_label_binary_backfilled, dtype: int64
JACC_REVISIONS_test_AS_AI_MR_label_binary_backfilled_prev_0.005_age_65_plus_index.npy saved. 

0.01 AS_AI_MR_label_binary_backfilled
using make_imbalance
0.0    0.988506
1.0    0.011494
Name: AS_AI_MR_label_binary_backfilled, dtype: float64
0.0    8428
1.0      98
Name: AS_AI_MR_label_binary_backfilled, dtype: int64
JACC_REVISIONS_test_AS_AI_MR_label_binary_backfilled_prev_0.01_age_65_plus_index.npy saved. 

0.02 AS_AI_MR_label_binary_backfilled
using make_imbalance
0.0    0.976932
1.0    0.023068
Name: AS_AI_MR_label_binary_backfilled, dtype: float64
0.0    8343
1.0     197
Name: AS_AI_MR_label_binary_backfilled, dtype: int64
JACC_REVISIONS_test_AS_AI_MR_label_binary_backfilled_prev_0.02_age_65_plus_index.npy saved. 

0.05 AS_AI_MR_label_binary_backfilled
using make_imbalance
0.0    0.942657
1.0    0.057343
Name: AS_AI_MR_label_binary_backfilled, dtype: float64
0.0    8088
1.0     492
Name: AS_AI_MR_label_binary_backfilled, dtype: int64
JACC_REVISIONS_test_AS_AI_MR_label_binary_backfilled_prev_0.05_age_65_plus_index.npy saved. 

0.1 AS_AI_MR_label_binary_backfilled
using make_imbalance
0.0    0.886088
1.0    0.113912
Name: AS_AI_MR_label_binary_backfilled, dtype: float64
0.0    7662
1.0     985
Name: AS_AI_MR_label_binary_backfilled, dtype: int64
JACC_REVISIONS_test_AS_AI_MR_label_binary_backfilled_prev_0.1_age_65_plus_index.npy saved. 

</pre>
</div>
</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[88]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">female_index</span> <span class="o">=</span> <span class="n">test_df</span><span class="p">[</span><span class="n">test_df</span><span class="o">.</span><span class="n">Gender</span><span class="o">==</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">index</span>
<span class="n">male_index</span> <span class="o">=</span> <span class="n">test_df</span><span class="p">[</span><span class="n">test_df</span><span class="o">.</span><span class="n">Gender</span><span class="o">==</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">index</span>

<span class="n">age18to60</span> <span class="o">=</span> <span class="n">test_df</span><span class="p">[(</span><span class="n">test_df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">0</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">60</span><span class="p">)]</span><span class="o">.</span><span class="n">index</span>
<span class="n">age60to70</span> <span class="o">=</span> <span class="n">test_df</span><span class="p">[(</span><span class="n">test_df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">61</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">70</span><span class="p">)]</span><span class="o">.</span><span class="n">index</span>
<span class="n">age70to80</span> <span class="o">=</span> <span class="n">test_df</span><span class="p">[(</span><span class="n">test_df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">71</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">80</span><span class="p">)]</span><span class="o">.</span><span class="n">index</span>
<span class="n">age80plus</span> <span class="o">=</span> <span class="n">test_df</span><span class="p">[(</span><span class="n">test_df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">81</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">130</span><span class="p">)]</span><span class="o">.</span><span class="n">index</span>

<span class="n">age18to65</span> <span class="o">=</span> <span class="n">test_df</span><span class="p">[(</span><span class="n">test_df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">0</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">65</span><span class="p">)]</span><span class="o">.</span><span class="n">index</span>
<span class="n">age65plus</span> <span class="o">=</span> <span class="n">test_df</span><span class="p">[(</span><span class="n">test_df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&gt;=</span><span class="mi">65</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">]</span> <span class="o">&lt;=</span><span class="mi">130</span><span class="p">)]</span><span class="o">.</span><span class="n">index</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Now-we-run-the-vary_prevalance-scripts-from-ValveNet_v2-back-on-the-Dendrite-server">Now we run the vary_prevalance scripts from ValveNet_v2 back on the Dendrite server<a class="anchor-link" href="#Now-we-run-the-vary_prevalance-scripts-from-ValveNet_v2-back-on-the-Dendrite-server">&#182;</a></h1><p><code>scp -r /Users/pae2/Box/Heart\ Failure\ Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/test_set_subsampling_indices pae2115@10.144.220.25:/home/pae2115/ValveNet_JACC_Revisions</code></p>
<p><code>!python /home/pae2115/ValveNet/ValveNet_Multisite_Validation/eval_AS_vary_prevalence.py</code></p>
<p><code>!python /home/pae2115/ValveNet/ValveNet_Multisite_Validation/eval_AI_vary_prevalence.py</code></p>
<p><code>!python /home/pae2115/ValveNet/ValveNet_Multisite_Validation/eval_MR_vary_prevalence.py</code></p>
<p><code>!python /home/pae2115/ValveNet/ValveNet_Multisite_Validation/eval_AS_AI_MR_vary_prevalence.py</code></p>
<h3 id="results-found-at-Box/Heart-Failure-Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/eval_vary_prevalence_script_outputs.ipynb">results found at <code>Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/eval_vary_prevalence_script_outputs.ipynb</code><a class="anchor-link" href="#results-found-at-Box/Heart-Failure-Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/eval_vary_prevalence_script_outputs.ipynb">&#182;</a></h3>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[38]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="sd">&#39;&#39;&#39;</span>
<span class="sd">-------------------Eval_AS_AI_MR_Combination Results-------------------</span>
<span class="sd">Loading from validation_data_config &lt;DataConfig(batch_size=64, shuffle=False, sampler=None, data_type=2, pin_memory=True, features_path=/home/pae2115/ValveNet_JACC_Revisions/JACC_REVISION_test_df_newest_ecg_per_pt_wander_removed_pct_truncated_mean_normalized_waveform_features.npy, labels_path=/home/pae2115/ValveNet_JACC_Revisions/JACC_REVISION_27k_test_metadata_no_prev_adjustment_new_ref_pace_removed_poor_quality_removed_wander_removed_pct_truncated_mean_normalized_prosthethics_removed_AS_AI_MR_label.npy, tabular_path=/home/pae2115/ValveNet_JACC_Revisions/JACC_REVISION_test_df_newest_ecg_per_pt_tabular.npy, features_permute_axes_order=[], labels_permute_axes_order=[]) @a9fd0&gt;</span>


<span class="sd">Loading features data from /home/pae2115/ValveNet_JACC_Revisions/JACC_REVISION_test_df_newest_ecg_per_pt_wander_removed_pct_truncated_mean_normalized_waveform_features.npy</span>
<span class="sd">Loading labels data from /home/pae2115/ValveNet_JACC_Revisions/JACC_REVISION_27k_test_metadata_no_prev_adjustment_new_ref_pace_removed_poor_quality_removed_wander_removed_pct_truncated_mean_normalized_prosthethics_removed_AS_AI_MR_label.npy</span>
<span class="sd">Loading tabular data from /home/pae2115/ValveNet_JACC_Revisions/JACC_REVISION_test_df_newest_ecg_per_pt_tabular.npy</span>
<span class="sd">result shape before permute_axes_order (21048, 1, 2500, 12)</span>
<span class="sd">result shape before permute_axes_order (21048,)</span>
<span class="sd">result shape before permute_axes_order (21048, 7)</span>

<span class="sd">Done loading features data from /home/pae2115/ValveNet_JACC_Revisions/JACC_REVISION_test_df_newest_ecg_per_pt_wander_removed_pct_truncated_mean_normalized_waveform_features.npy (21048, 1, 2500, 12)</span>
<span class="sd">Done loading labels data from /home/pae2115/ValveNet_JACC_Revisions/JACC_REVISION_27k_test_metadata_no_prev_adjustment_new_ref_pace_removed_poor_quality_removed_wander_removed_pct_truncated_mean_normalized_prosthethics_removed_AS_AI_MR_label.npy (21048,)</span>
<span class="sd">Done loading tabular data from /home/pae2115/ValveNet_JACC_Revisions/JACC_REVISION_test_df_newest_ecg_per_pt_tabular.npy (21048, 7)</span>
<span class="sd">Number of tabular features loaded 7</span>
<span class="sd">/home/pae2115/ValveNet_v2/common/data_utils.py:9: UserWarning: The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at  /opt/conda/conda-bld/pytorch_1634272204863/work/torch/csrc/utils/tensor_numpy.cpp:189.)</span>
<span class="sd">  return torch.from_numpy(np_array).float()</span>

<span class="sd">Eval label count:  Counter({0.0: 19404, 1.0: 1644})</span>
<span class="sd">Eval on: cuda:0</span>
<span class="sd">Iteration: [329/329] 100%|████████████████████████████████████████ [00:06&lt;00:00]</span>
<span class="sd">Validation Loss (no label weights passed): 0.4700</span>
<span class="sd">Validation ROC AUC: 0.8346</span>
<span class="sd">Validation AUPRC: 0.3202</span>
<span class="sd">Validation Precision at 2% Recall: 0.55</span>
<span class="sd">Validation Precision at 5% Recall: 0.5845070422535211</span>
<span class="sd">Validation Precision at 10% Recall: 0.5254777070063694</span>
<span class="sd">Validation Precision at 20% Recall: 0.45254470426409904</span>
<span class="sd">Validation Precision at 50% Recall: 0.30847076461769113</span>
<span class="sd">Validation Precision at 75% Recall: 0.21206392851005326</span>
<span class="sd">Validation Precision at 90% Recall: 0.152766308835673</span>
<span class="sd">Validation f1: 0.3390070921985812</span>


<span class="sd">-------------------JACC_REVISION_Eval_AS_AI_MR_JACC_REVISIONS_test_age65plus Results-------------------</span>
<span class="sd">Loading from validation_data_config &lt;DataConfig(batch_size=64, shuffle=False, sampler=None, data_type=2, pin_memory=True, features_path=./JACC_REVISION_Eval_AS_AI_MR_JACC_REVISIONS_test_age65plustmp_validation_waveform_array.npy, labels_path=./JACC_REVISION_Eval_AS_AI_MR_JACC_REVISIONS_test_age65plustmp_validation_label_array.npy, tabular_path=./JACC_REVISION_Eval_AS_AI_MR_JACC_REVISIONS_test_age65plustmp_validation_tabular_array.npy, features_permute_axes_order=[], labels_permute_axes_order=[]) @1e0970&gt;</span>


<span class="sd">Loading features data from ./JACC_REVISION_Eval_AS_AI_MR_JACC_REVISIONS_test_age65plustmp_validation_waveform_array.npy</span>
<span class="sd">Loading labels data from ./JACC_REVISION_Eval_AS_AI_MR_JACC_REVISIONS_test_age65plustmp_validation_label_array.npy</span>
<span class="sd">Loading tabular data from ./JACC_REVISION_Eval_AS_AI_MR_JACC_REVISIONS_test_age65plustmp_validation_tabular_array.npy</span>
<span class="sd">result shape before permute_axes_order (9858, 1, 2500, 12)</span>
<span class="sd">result shape before permute_axes_order (9858,)</span>
<span class="sd">result shape before permute_axes_order (9858, 7)</span>

<span class="sd">Done loading features data from ./JACC_REVISION_Eval_AS_AI_MR_JACC_REVISIONS_test_age65plustmp_validation_waveform_array.npy (9858, 1, 2500, 12)</span>
<span class="sd">Done loading labels data from ./JACC_REVISION_Eval_AS_AI_MR_JACC_REVISIONS_test_age65plustmp_validation_label_array.npy (9858,)</span>
<span class="sd">Done loading tabular data from ./JACC_REVISION_Eval_AS_AI_MR_JACC_REVISIONS_test_age65plustmp_validation_tabular_array.npy (9858, 7)</span>
<span class="sd">Number of tabular features loaded 7</span>

<span class="sd">Eval label count:  Counter({0.0: 8514, 1.0: 1344})</span>
<span class="sd">Eval on: cuda:0</span>
<span class="sd">Iteration: [155/155] 100%|████████████████████████████████████████ [00:03&lt;00:00]</span>
<span class="sd">Validation Loss (no label weights passed): 0.6517</span>
<span class="sd">Validation ROC AUC: 0.7695</span>
<span class="sd">Validation AUPRC: 0.3502</span>
<span class="sd">Validation Precision at 2% Recall: 0.5094339622641509</span>
<span class="sd">Validation Precision at 5% Recall: 0.5714285714285714</span>
<span class="sd">Validation Precision at 10% Recall: 0.5625</span>
<span class="sd">Validation Precision at 20% Recall: 0.4786476868327402</span>
<span class="sd">Validation Precision at 50% Recall: 0.33465937344604674</span>
<span class="sd">Validation Precision at 75% Recall: 0.2518093336660844</span>
<span class="sd">Validation Precision at 90% Recall: 0.20026481297583582</span>
<span class="sd">Validation f1: 0.36382148311556045</span>
<span class="sd">&#39;&#39;&#39;</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[38]:</div>




<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain">
<pre>&#39;\n-------------------Eval_AS_AI_MR_Combination Results-------------------\nLoading from validation_data_config &lt;DataConfig(batch_size=64, shuffle=False, sampler=None, data_type=2, pin_memory=True, features_path=/home/pae2115/ValveNet_JACC_Revisions/JACC_REVISION_test_df_newest_ecg_per_pt_wander_removed_pct_truncated_mean_normalized_waveform_features.npy, labels_path=/home/pae2115/ValveNet_JACC_Revisions/JACC_REVISION_27k_test_metadata_no_prev_adjustment_new_ref_pace_removed_poor_quality_removed_wander_removed_pct_truncated_mean_normalized_prosthethics_removed_AS_AI_MR_label.npy, tabular_path=/home/pae2115/ValveNet_JACC_Revisions/JACC_REVISION_test_df_newest_ecg_per_pt_tabular.npy, features_permute_axes_order=[], labels_permute_axes_order=[]) @a9fd0&gt;\n\n\nLoading features data from /home/pae2115/ValveNet_JACC_Revisions/JACC_REVISION_test_df_newest_ecg_per_pt_wander_removed_pct_truncated_mean_normalized_waveform_features.npy\nLoading labels data from /home/pae2115/ValveNet_JACC_Revisions/JACC_REVISION_27k_test_metadata_no_prev_adjustment_new_ref_pace_removed_poor_quality_removed_wander_removed_pct_truncated_mean_normalized_prosthethics_removed_AS_AI_MR_label.npy\nLoading tabular data from /home/pae2115/ValveNet_JACC_Revisions/JACC_REVISION_test_df_newest_ecg_per_pt_tabular.npy\nresult shape before permute_axes_order (21048, 1, 2500, 12)\nresult shape before permute_axes_order (21048,)\nresult shape before permute_axes_order (21048, 7)\n\nDone loading features data from /home/pae2115/ValveNet_JACC_Revisions/JACC_REVISION_test_df_newest_ecg_per_pt_wander_removed_pct_truncated_mean_normalized_waveform_features.npy (21048, 1, 2500, 12)\nDone loading labels data from /home/pae2115/ValveNet_JACC_Revisions/JACC_REVISION_27k_test_metadata_no_prev_adjustment_new_ref_pace_removed_poor_quality_removed_wander_removed_pct_truncated_mean_normalized_prosthethics_removed_AS_AI_MR_label.npy (21048,)\nDone loading tabular data from /home/pae2115/ValveNet_JACC_Revisions/JACC_REVISION_test_df_newest_ecg_per_pt_tabular.npy (21048, 7)\nNumber of tabular features loaded 7\n/home/pae2115/ValveNet_v2/common/data_utils.py:9: UserWarning: The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at  /opt/conda/conda-bld/pytorch_1634272204863/work/torch/csrc/utils/tensor_numpy.cpp:189.)\n  return torch.from_numpy(np_array).float()\n\nEval label count:  Counter({0.0: 19404, 1.0: 1644})\nEval on: cuda:0\nIteration: [329/329] 100%|████████████████████████████████████████ [00:06&lt;00:00]\nValidation Loss (no label weights passed): 0.4700\nValidation ROC AUC: 0.8346\nValidation AUPRC: 0.3202\nValidation Precision at 2% Recall: 0.55\nValidation Precision at 5% Recall: 0.5845070422535211\nValidation Precision at 10% Recall: 0.5254777070063694\nValidation Precision at 20% Recall: 0.45254470426409904\nValidation Precision at 50% Recall: 0.30847076461769113\nValidation Precision at 75% Recall: 0.21206392851005326\nValidation Precision at 90% Recall: 0.152766308835673\nValidation f1: 0.3390070921985812\n\n\n-------------------JACC_REVISION_Eval_AS_AI_MR_JACC_REVISIONS_test_age65plus Results-------------------\nLoading from validation_data_config &lt;DataConfig(batch_size=64, shuffle=False, sampler=None, data_type=2, pin_memory=True, features_path=./JACC_REVISION_Eval_AS_AI_MR_JACC_REVISIONS_test_age65plustmp_validation_waveform_array.npy, labels_path=./JACC_REVISION_Eval_AS_AI_MR_JACC_REVISIONS_test_age65plustmp_validation_label_array.npy, tabular_path=./JACC_REVISION_Eval_AS_AI_MR_JACC_REVISIONS_test_age65plustmp_validation_tabular_array.npy, features_permute_axes_order=[], labels_permute_axes_order=[]) @1e0970&gt;\n\n\nLoading features data from ./JACC_REVISION_Eval_AS_AI_MR_JACC_REVISIONS_test_age65plustmp_validation_waveform_array.npy\nLoading labels data from ./JACC_REVISION_Eval_AS_AI_MR_JACC_REVISIONS_test_age65plustmp_validation_label_array.npy\nLoading tabular data from ./JACC_REVISION_Eval_AS_AI_MR_JACC_REVISIONS_test_age65plustmp_validation_tabular_array.npy\nresult shape before permute_axes_order (9858, 1, 2500, 12)\nresult shape before permute_axes_order (9858,)\nresult shape before permute_axes_order (9858, 7)\n\nDone loading features data from ./JACC_REVISION_Eval_AS_AI_MR_JACC_REVISIONS_test_age65plustmp_validation_waveform_array.npy (9858, 1, 2500, 12)\nDone loading labels data from ./JACC_REVISION_Eval_AS_AI_MR_JACC_REVISIONS_test_age65plustmp_validation_label_array.npy (9858,)\nDone loading tabular data from ./JACC_REVISION_Eval_AS_AI_MR_JACC_REVISIONS_test_age65plustmp_validation_tabular_array.npy (9858, 7)\nNumber of tabular features loaded 7\n\nEval label count:  Counter({0.0: 8514, 1.0: 1344})\nEval on: cuda:0\nIteration: [155/155] 100%|████████████████████████████████████████ [00:03&lt;00:00]\nValidation Loss (no label weights passed): 0.6517\nValidation ROC AUC: 0.7695\nValidation AUPRC: 0.3502\nValidation Precision at 2% Recall: 0.5094339622641509\nValidation Precision at 5% Recall: 0.5714285714285714\nValidation Precision at 10% Recall: 0.5625\nValidation Precision at 20% Recall: 0.4786476868327402\nValidation Precision at 50% Recall: 0.33465937344604674\nValidation Precision at 75% Recall: 0.2518093336660844\nValidation Precision at 90% Recall: 0.20026481297583582\nValidation f1: 0.36382148311556045\n&#39;</pre>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[5]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">as_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Aortic_Stenosis_2022-03-03--06:21:48/y_y_pred_roc_0.8805.csv&#39;</span><span class="p">)</span>
<span class="n">ai_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Aortic_Insufficiency_2022-03-03--06:22:25/y_y_pred_roc_0.7688.csv&#39;</span><span class="p">)</span>
<span class="n">mr_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Mitral_Regurgitation_2022-03-03--06:23:05/y_y_pred_roc_0.8280.csv&#39;</span><span class="p">)</span>
<span class="n">as_ai_mr_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_AS_AI_MR_Combination_2022-03-03--06:23:39/y_y_pred_roc_0.8351.csv&#39;</span><span class="p">)</span>

<span class="n">lstFiles</span> <span class="o">=</span> <span class="p">[</span><span class="n">as_path</span><span class="p">,</span><span class="n">ai_path</span><span class="p">,</span><span class="n">mr_path</span><span class="p">,</span><span class="n">as_ai_mr_path</span><span class="p">]</span>
<span class="n">study_name</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;Eval_&#39;</span><span class="p">)[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;_2022&#39;</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">lstFiles</span><span class="p">]</span>
<span class="n">study_name</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[5]:</div>




<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain">
<pre>[&#39;Aortic_Stenosis&#39;,
 &#39;Aortic_Insufficiency&#39;,
 &#39;Mitral_Regurgitation&#39;,
 &#39;AS_AI_MR_Combination&#39;]</pre>
</div>

</div>

</div>

</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Test-Set-AUROC-and-AUPRC-Curves-(Fig-3A-and-3B)">Test Set AUROC and AUPRC Curves (Fig 3A and 3B)<a class="anchor-link" href="#Test-Set-AUROC-and-AUPRC-Curves-(Fig-3A-and-3B)">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[10]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span>  

<span class="k">for</span> <span class="n">file</span> <span class="ow">in</span> <span class="n">lstFiles</span><span class="p">:</span>
    <span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">file</span><span class="p">,</span> <span class="n">names</span><span class="o">=</span><span class="n">columns</span><span class="p">)</span>
    <span class="n">yhat</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">))</span>
    <span class="n">testy</span><span class="p">,</span> <span class="n">lr_probs</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">neg_count</span><span class="p">,</span> <span class="n">pos_count</span> <span class="o">=</span> <span class="p">(</span><span class="nb">format</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span><span class="s1">&#39;,d&#39;</span><span class="p">)),(</span><span class="nb">format</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()[</span><span class="mi">1</span><span class="p">],</span><span class="s1">&#39;,d&#39;</span><span class="p">))</span>
    <span class="n">lr_precision</span><span class="p">,</span> <span class="n">lr_recall</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">precision_recall_curve</span><span class="p">(</span><span class="n">testy</span><span class="p">,</span> <span class="n">lr_probs</span><span class="p">)</span>
    <span class="c1"># calculate scores</span>
    <span class="n">lr_f1</span><span class="p">,</span> <span class="n">lr_auc</span> <span class="o">=</span> <span class="n">f1_score</span><span class="p">(</span><span class="n">testy</span><span class="p">,</span> <span class="n">yhat</span><span class="p">),</span> <span class="n">auc</span><span class="p">(</span><span class="n">lr_recall</span><span class="p">,</span> <span class="n">lr_precision</span><span class="p">)</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span><span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="n">total_count</span> <span class="o">=</span> <span class="nb">format</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">df</span><span class="p">),</span><span class="s1">&#39;,d&#39;</span><span class="p">)</span>
    <span class="c1"># print(tpr)</span>
    <span class="c1"># print(fpr)</span>
    <span class="c1"># print(thresholds)</span>
    <span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUROC is:&#39;</span><span class="p">,</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">))</span>
    <span class="n">auroc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span>
    <span class="n">optimal_idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">optimal_threshold</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">optimal_idx</span><span class="p">]</span>
    <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;Threshold value is:&quot;</span><span class="p">,</span> <span class="n">optimal_threshold</span><span class="p">)</span>
<span class="c1">#     labelname = file.partition(&#39;Eval_&#39;)[2].partition(&#39;_2022&#39;)[0] + f&#39; [{pos_count} / {total_count}]&#39; + f&#39; (AUROC={auroc})&#39;</span>
    <span class="n">labelname</span> <span class="o">=</span> <span class="n">file</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;Eval_&#39;</span><span class="p">)[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;_2022&#39;</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="sa">f</span><span class="s1">&#39; (AUROC = </span><span class="si">{</span><span class="n">auroc</span><span class="si">}</span><span class="s1">)&#39;</span>
    <span class="n">labelname</span> <span class="o">=</span> <span class="n">labelname</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;AS_AI_MR&quot;</span><span class="p">,</span> <span class="s2">&quot;AS, AR, or MR&quot;</span><span class="p">)</span>
    <span class="n">labelname</span> <span class="o">=</span> <span class="n">labelname</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;_&quot;</span><span class="p">,</span> <span class="s2">&quot; &quot;</span><span class="p">)</span>
    <span class="n">labelname</span> <span class="o">=</span> <span class="n">labelname</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;Combination&quot;</span><span class="p">,</span> <span class="s2">&quot;&quot;</span><span class="p">)</span>
<span class="c1">#     labelname = labelname.replace(&quot;AI&quot;, &quot;Aortic Regurgitation&quot;)</span>
<span class="c1">#     labelname = labelname.replace(&quot;AS&quot;, &quot;Aortic Stenosis&quot;)</span>
<span class="c1">#     labelname = labelname.replace(&quot;MR&quot;, &quot;Mitral Regurgitation&quot;)</span>
    <span class="n">labelname</span> <span class="o">=</span> <span class="n">labelname</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;Aortic Insufficiency&quot;</span><span class="p">,</span> <span class="s2">&quot;Aortic Regurgitation&quot;</span><span class="p">)</span>
    <span class="n">marker</span><span class="o">=</span><span class="s1">&#39;,&#39;</span>
    <span class="n">linewidth</span><span class="o">=</span><span class="mi">3</span>
    <span class="n">linestyle</span><span class="o">=</span><span class="s1">&#39;-&#39;</span>
    <span class="k">if</span> <span class="n">labelname</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s1">&#39;Aortic Stenosis&#39;</span><span class="p">):</span>
        <span class="n">colorwheel</span><span class="o">=</span><span class="n">pl</span><span class="o">.</span><span class="n">cm</span><span class="o">.</span><span class="n">Reds</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mf">0.7</span><span class="p">,</span><span class="n">n_AS</span><span class="p">))</span>
        <span class="n">color</span><span class="o">=</span><span class="n">colorwheel</span><span class="p">[</span><span class="n">c_AS</span><span class="p">]</span>
    <span class="k">if</span> <span class="n">labelname</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s1">&#39;Aortic Regurgitation&#39;</span><span class="p">):</span>
        <span class="n">colorwheel</span><span class="o">=</span><span class="n">pl</span><span class="o">.</span><span class="n">cm</span><span class="o">.</span><span class="n">Blues</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mf">0.6</span><span class="p">,</span><span class="n">n_AI</span><span class="p">))</span>
        <span class="n">color</span><span class="o">=</span><span class="n">colorwheel</span><span class="p">[</span><span class="n">c_AI</span><span class="p">]</span>
    <span class="k">if</span> <span class="n">labelname</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s1">&#39;Mitral Regurgitation&#39;</span><span class="p">):</span>
        <span class="n">colorwheel</span><span class="o">=</span><span class="n">pl</span><span class="o">.</span><span class="n">cm</span><span class="o">.</span><span class="n">Greens</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mf">0.6</span><span class="p">,</span><span class="n">n_MR</span><span class="p">))</span>
        <span class="n">color</span><span class="o">=</span><span class="n">colorwheel</span><span class="p">[</span><span class="n">c_MR</span><span class="p">]</span>
    <span class="k">if</span> <span class="s1">&#39;AS, AR, or MR&#39;</span> <span class="ow">in</span> <span class="n">labelname</span><span class="p">:</span>
        <span class="n">colorwheel</span><span class="o">=</span><span class="n">pl</span><span class="o">.</span><span class="n">cm</span><span class="o">.</span><span class="n">Greys</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mf">0.8</span><span class="p">,</span><span class="n">n_AS_AI_MR</span><span class="p">))</span>
        <span class="n">color</span><span class="o">=</span><span class="n">colorwheel</span><span class="p">[</span><span class="n">c_AS_AI_MR</span><span class="p">]</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">labelname</span><span class="p">,</span><span class="n">linewidth</span><span class="o">=</span><span class="n">linewidth</span><span class="p">,</span><span class="n">color</span><span class="o">=</span><span class="n">color</span><span class="p">,</span><span class="n">marker</span><span class="o">=</span><span class="n">marker</span><span class="p">,</span><span class="n">linestyle</span><span class="o">=</span><span class="n">linestyle</span><span class="p">)</span>

<span class="n">plt</span><span class="o">.</span><span class="n">xlim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">],[</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">],</span><span class="s1">&#39;--k&#39;</span><span class="p">)</span> <span class="c1">#reference line dashed black</span>
<span class="n">plt</span><span class="o">.</span><span class="n">grid</span><span class="p">(</span><span class="kc">False</span><span class="p">)</span> <span class="c1">#remove gridlines</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;1-Specificity&#39;</span><span class="p">,</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">28</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;Sensitivity&#39;</span><span class="p">,</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">28</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xticks</span><span class="p">(</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">18</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">yticks</span><span class="p">(</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">18</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">&#39;AUROC per Valvular Disease and Combination Model in Test Cohort&#39;</span><span class="p">,</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">28</span><span class="p">,</span><span class="n">fontweight</span><span class="o">=</span><span class="s2">&quot;bold&quot;</span><span class="p">,</span><span class="n">pad</span> <span class="o">=</span> <span class="mi">34</span><span class="p">)</span>
<span class="c1"># show the legend</span>
<span class="n">res</span> <span class="o">=</span> <span class="p">(</span><span class="nb">format</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">df</span><span class="p">),</span><span class="s1">&#39;,d&#39;</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">title</span><span class="o">=</span><span class="sa">f</span><span class="s1">&#39;ValveNet Model, N = </span><span class="si">{</span><span class="n">total_count</span><span class="si">}</span><span class="s1"> patients&#39;</span><span class="p">,</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">18</span><span class="p">,</span> <span class="n">loc</span><span class="o">=</span><span class="p">(</span><span class="o">.</span><span class="mi">50</span><span class="p">,</span><span class="o">.</span><span class="mi">20</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">setp</span><span class="p">(</span><span class="n">plt</span><span class="o">.</span><span class="n">gca</span><span class="p">()</span><span class="o">.</span><span class="n">get_legend</span><span class="p">()</span><span class="o">.</span><span class="n">get_title</span><span class="p">(),</span> <span class="n">fontsize</span><span class="o">=</span><span class="s1">&#39;22&#39;</span><span class="p">)</span> <span class="c1">#change legend title fontsize</span>

<span class="n">plt</span><span class="o">.</span><span class="n">savefig</span><span class="p">(</span><span class="s1">&#39;figures/Test_ROC.png&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AUROC is: 0.8804872725564813
Threshold value is: 0.4290496913006215
AUROC is: 0.7687817837666431
Threshold value is: 0.3979350694912722
AUROC is: 0.828017318849102
Threshold value is: 0.45940651160283796
AUROC is: 0.8354910330275293
Threshold value is: 0.45716718045293103
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[9]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">itertools</span> <span class="kn">import</span> <span class="n">cycle</span>
<span class="n">columns</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">,</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span>
<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">15</span><span class="p">))</span>
<span class="c1">#generate counts of each label number of studies, only non 65 plus</span>
<span class="n">n_AS</span><span class="p">,</span> <span class="n">n_AI</span><span class="p">,</span> <span class="n">n_MR</span><span class="p">,</span> <span class="n">n_AS_AI_MR</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span>
<span class="k">for</span> <span class="n">study</span> <span class="ow">in</span> <span class="n">study_name</span><span class="p">:</span>
    <span class="k">if</span> <span class="s1">&#39;65plus&#39;</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">study</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">study</span><span class="o">==</span><span class="s1">&#39;AS&#39;</span><span class="p">:</span>
            <span class="n">n_AS</span><span class="o">+=</span><span class="mi">1</span>
        <span class="k">if</span> <span class="n">study</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s1">&#39;AI&#39;</span><span class="p">):</span>
            <span class="n">n_AI</span><span class="o">+=</span><span class="mi">1</span>
        <span class="k">if</span> <span class="n">study</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s1">&#39;MR&#39;</span><span class="p">):</span>
            <span class="n">n_MR</span><span class="o">+=</span><span class="mi">1</span>
        <span class="k">if</span> <span class="s1">&#39;AS_AI_MR&#39;</span> <span class="ow">in</span> <span class="n">study</span><span class="p">:</span>
            <span class="n">n_AS_AI_MR</span><span class="o">+=</span><span class="mi">1</span>
<span class="c1">#generate color counts (must make separate for age 65 if we want the two studies that only differ from age to have same color)</span>
<span class="n">c_AS</span><span class="p">,</span> <span class="n">c_AI</span><span class="p">,</span> <span class="n">c_MR</span><span class="p">,</span> <span class="n">c_AS_AI_MR</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span>
<span class="n">c65_AS</span><span class="p">,</span> <span class="n">c65_AI</span><span class="p">,</span> <span class="n">c65_MR</span><span class="p">,</span> <span class="n">c65_AS_AI_MR</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span>

<span class="k">for</span> <span class="n">file</span> <span class="ow">in</span> <span class="n">lstFiles</span><span class="p">:</span>
    <span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">file</span><span class="p">,</span> <span class="n">names</span><span class="o">=</span><span class="n">columns</span><span class="p">)</span>
    <span class="n">yhat</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">))</span>
    <span class="n">testy</span><span class="p">,</span> <span class="n">lr_probs</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">neg_count</span><span class="p">,</span> <span class="n">pos_count</span> <span class="o">=</span> <span class="p">(</span><span class="nb">format</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span><span class="s1">&#39;,d&#39;</span><span class="p">)),(</span><span class="nb">format</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()[</span><span class="mi">1</span><span class="p">],</span><span class="s1">&#39;,d&#39;</span><span class="p">))</span>
    <span class="n">lr_precision</span><span class="p">,</span> <span class="n">lr_recall</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">precision_recall_curve</span><span class="p">(</span><span class="n">testy</span><span class="p">,</span> <span class="n">lr_probs</span><span class="p">)</span>
    <span class="n">auprc</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">average_precision_score</span><span class="p">(</span><span class="n">testy</span><span class="p">,</span> <span class="n">lr_probs</span><span class="p">),</span><span class="mi">2</span><span class="p">)</span>
    <span class="n">total_count</span> <span class="o">=</span> <span class="nb">format</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">df</span><span class="p">),</span><span class="s1">&#39;,d&#39;</span><span class="p">)</span>
    <span class="c1"># calculate scores</span>
    <span class="n">lr_f1</span><span class="p">,</span> <span class="n">lr_auc</span> <span class="o">=</span> <span class="n">f1_score</span><span class="p">(</span><span class="n">testy</span><span class="p">,</span> <span class="n">yhat</span><span class="p">),</span> <span class="n">auc</span><span class="p">(</span><span class="n">lr_recall</span><span class="p">,</span> <span class="n">lr_precision</span><span class="p">)</span>
    <span class="c1"># summarize scores</span>
<span class="c1">#     print(&#39;Logistic: f1=%.3f auc=%.3f&#39; % (lr_f1, lr_auc))</span>
    <span class="c1"># plot the precision-recall curves</span>
<span class="c1">#     labelname = file.partition(&#39;Eval_&#39;)[2].partition(&#39;_2022&#39;)[0] + f&#39; [{pos_count} / {total_count}]&#39; + f&#39; (AUPRC={auprc})&#39;</span>
    <span class="n">labelname</span> <span class="o">=</span> <span class="n">file</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;Eval_&#39;</span><span class="p">)[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;_2022&#39;</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="sa">f</span><span class="s1">&#39; (AUPRC = </span><span class="si">{</span><span class="n">auprc</span><span class="si">}</span><span class="s1">)&#39;</span>
    <span class="n">labelname</span> <span class="o">=</span> <span class="n">labelname</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;AS_AI_MR&quot;</span><span class="p">,</span> <span class="s2">&quot;AS, AR, or MR&quot;</span><span class="p">)</span>
    <span class="n">labelname</span> <span class="o">=</span> <span class="n">labelname</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;_&quot;</span><span class="p">,</span> <span class="s2">&quot; &quot;</span><span class="p">)</span>
    <span class="n">labelname</span> <span class="o">=</span> <span class="n">labelname</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;Combination&quot;</span><span class="p">,</span> <span class="s2">&quot;&quot;</span><span class="p">)</span>
<span class="c1">#     labelname = labelname.replace(&quot;AI&quot;, &quot;Aortic Regurgitation&quot;)</span>
<span class="c1">#     labelname = labelname.replace(&quot;AS&quot;, &quot;Aortic Stenosis&quot;)</span>
<span class="c1">#     labelname = labelname.replace(&quot;MR&quot;, &quot;Mitral Regurgitation&quot;)</span>
    <span class="n">labelname</span> <span class="o">=</span> <span class="n">labelname</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;Aortic Insufficiency&quot;</span><span class="p">,</span> <span class="s2">&quot;Aortic Regurgitation&quot;</span><span class="p">)</span>
    <span class="n">linestyle</span><span class="o">=</span><span class="s1">&#39;solid&#39;</span>
    <span class="n">marker</span><span class="o">=</span><span class="s1">&#39;,&#39;</span>
    <span class="n">linewidth</span><span class="o">=</span><span class="mi">2</span>
    <span class="k">if</span> <span class="n">labelname</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s1">&#39;Aortic Stenosis&#39;</span><span class="p">):</span>
        <span class="n">colorwheel</span><span class="o">=</span><span class="n">pl</span><span class="o">.</span><span class="n">cm</span><span class="o">.</span><span class="n">Reds</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mf">0.7</span><span class="p">,</span><span class="n">n_AS</span><span class="p">))</span>
        <span class="n">color</span><span class="o">=</span><span class="n">colorwheel</span><span class="p">[</span><span class="n">c_AS</span><span class="p">]</span>
    <span class="k">if</span> <span class="n">labelname</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s1">&#39;Aortic Regurgitation&#39;</span><span class="p">):</span>
        <span class="n">colorwheel</span><span class="o">=</span><span class="n">pl</span><span class="o">.</span><span class="n">cm</span><span class="o">.</span><span class="n">Blues</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mf">0.6</span><span class="p">,</span><span class="n">n_AI</span><span class="p">))</span>
        <span class="n">color</span><span class="o">=</span><span class="n">colorwheel</span><span class="p">[</span><span class="n">c_AI</span><span class="p">]</span>
    <span class="k">if</span> <span class="n">labelname</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s1">&#39;Mitral Regurgitation&#39;</span><span class="p">):</span>
        <span class="n">colorwheel</span><span class="o">=</span><span class="n">pl</span><span class="o">.</span><span class="n">cm</span><span class="o">.</span><span class="n">Greens</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mf">0.6</span><span class="p">,</span><span class="n">n_MR</span><span class="p">))</span>
        <span class="n">color</span><span class="o">=</span><span class="n">colorwheel</span><span class="p">[</span><span class="n">c_MR</span><span class="p">]</span>
    <span class="k">if</span> <span class="s1">&#39;AS, AR, or MR&#39;</span> <span class="ow">in</span> <span class="n">labelname</span><span class="p">:</span>
        <span class="n">colorwheel</span><span class="o">=</span><span class="n">pl</span><span class="o">.</span><span class="n">cm</span><span class="o">.</span><span class="n">Greys</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mf">0.8</span><span class="p">,</span><span class="n">n_AS_AI_MR</span><span class="p">))</span>
        <span class="n">color</span><span class="o">=</span><span class="n">colorwheel</span><span class="p">[</span><span class="n">c_AS_AI_MR</span><span class="p">]</span>
    <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">lr_recall</span><span class="p">,</span> <span class="n">lr_precision</span><span class="p">,</span> <span class="n">marker</span><span class="o">=</span><span class="n">marker</span><span class="p">,</span> <span class="n">markersize</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">labelname</span><span class="p">,</span>
               <span class="n">color</span><span class="o">=</span><span class="n">color</span><span class="p">,</span><span class="n">linestyle</span><span class="o">=</span><span class="n">linestyle</span><span class="p">,</span><span class="n">linewidth</span><span class="o">=</span><span class="n">linewidth</span><span class="p">)</span>

<span class="c1"># no_skill = len(testy[testy==1]) / len(testy) </span>
<span class="c1"># pyplot.plot([0, 1], [no_skill, no_skill], linestyle=&#39;--&#39;, label=&#39;No Skill&#39;)</span>

<span class="c1"># axis labels</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;Recall&#39;</span><span class="p">,</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">28</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;Precision&#39;</span><span class="p">,</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">28</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xticks</span><span class="p">(</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">18</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">yticks</span><span class="p">(</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">18</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">grid</span><span class="p">(</span><span class="n">b</span><span class="o">=</span><span class="kc">None</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">&#39;Precision Recall Curves per Valvular Disease&#39;</span><span class="p">,</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">28</span><span class="p">,</span><span class="n">fontweight</span><span class="o">=</span><span class="s2">&quot;bold&quot;</span><span class="p">,</span><span class="n">pad</span> <span class="o">=</span> <span class="mi">34</span><span class="p">)</span>
<span class="c1"># show the legend</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">title</span><span class="o">=</span><span class="sa">f</span><span class="s1">&#39;ValveNet Model, N = </span><span class="si">{</span><span class="n">total_count</span><span class="si">}</span><span class="s1">&#39;</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="mi">18</span><span class="p">,</span> <span class="n">loc</span><span class="o">=</span><span class="p">(</span><span class="o">.</span><span class="mi">4</span><span class="p">,</span><span class="o">.</span><span class="mi">7</span><span class="p">),</span><span class="n">ncol</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">setp</span><span class="p">(</span><span class="n">plt</span><span class="o">.</span><span class="n">gca</span><span class="p">()</span><span class="o">.</span><span class="n">get_legend</span><span class="p">()</span><span class="o">.</span><span class="n">get_title</span><span class="p">(),</span> <span class="n">fontsize</span><span class="o">=</span><span class="s1">&#39;28&#39;</span><span class="p">)</span> <span class="c1">#change legend title fontsize</span>
<span class="c1"># show the plot</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>

<span class="n">plt</span><span class="o">.</span><span class="n">savefig</span><span class="p">(</span><span class="s1">&#39;figures/Test_AUPRC.png&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedText jp-OutputArea-output " data-mime-type="text/plain">
<pre>&lt;Figure size 432x288 with 0 Axes&gt;</pre>
</div>

</div>

</div>

</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Compute-a-Logistic-Regression-Model-using-Tabular-Data">Compute a Logistic Regression Model using Tabular Data<a class="anchor-link" href="#Compute-a-Logistic-Regression-Model-using-Tabular-Data">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[193]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">CONTINUOUS_COLUMNS</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;PatientAge_Years&#39;</span><span class="p">,</span><span class="s1">&#39;QRSDuration&#39;</span><span class="p">,</span><span class="s1">&#39;P_RInterval&#39;</span><span class="p">,</span><span class="s1">&#39;QTCCalculation&#39;</span><span class="p">,</span><span class="s1">&#39;VentricularRate&#39;</span><span class="p">,</span><span class="s1">&#39;AtrialRate&#39;</span><span class="p">]</span>

<span class="n">CONTINUOUS_COLUMNS_STANDARD_SCALE</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;PatientAge_Years_standard_scale&#39;</span><span class="p">,</span><span class="s1">&#39;QRSDuration_standard_scale&#39;</span><span class="p">,</span><span class="s1">&#39;P_RInterval_standard_scale&#39;</span><span class="p">,</span><span class="s1">&#39;QTCCalculation_standard_scale&#39;</span><span class="p">,</span>
                      <span class="s1">&#39;VentricularRate_standard_scale&#39;</span><span class="p">,</span><span class="s1">&#39;AtrialRate_standard_scale&#39;</span><span class="p">]</span>

<span class="n">TABULAR_COLUMNS_TRUNCATED</span> <span class="o">=</span> <span class="n">CONTINUOUS_COLUMNS_STANDARD_SCALE</span> <span class="o">+</span> <span class="p">[</span><span class="s1">&#39;Gender&#39;</span><span class="p">]</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[198]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">logit_train_df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/220k_multivalve_train_tabular_metadata_new_ref.csv&#39;</span><span class="p">))</span>
<span class="n">logit_test_df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISION_test_df_metadata_available.csv&#39;</span><span class="p">))</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3146: DtypeWarning: Columns (30,53,57,58,66) have mixed types.Specify dtype option on import or set low_memory=False.
  has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
</pre>
</div>
</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[199]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">train_tabular</span> <span class="o">=</span> <span class="n">logit_train_df</span><span class="p">[</span><span class="n">TABULAR_COLUMNS_TRUNCATED</span><span class="p">]</span>
<span class="n">test_tabular</span> <span class="o">=</span> <span class="n">logit_test_df</span><span class="p">[</span><span class="n">TABULAR_COLUMNS_TRUNCATED</span><span class="p">]</span>
<span class="n">train_label</span> <span class="o">=</span> <span class="n">logit_train_df</span><span class="p">[</span><span class="s1">&#39;AS_AI_MR_label_binary_backfilled&#39;</span><span class="p">]</span>
<span class="n">test_label</span> <span class="o">=</span> <span class="n">logit_test_df</span><span class="p">[</span><span class="s1">&#39;AS_AI_MR_label_binary_backfilled&#39;</span><span class="p">]</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[210]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">statsmodels.api</span> <span class="k">as</span> <span class="nn">sm</span>

<span class="n">X_train</span> <span class="o">=</span> <span class="n">train_tabular</span>
<span class="n">X_test</span> <span class="o">=</span> <span class="n">test_tabular</span>
<span class="n">y_train</span> <span class="o">=</span> <span class="n">train_label</span>
<span class="n">y_test</span> <span class="o">=</span> <span class="n">test_label</span>

<span class="n">X_train_constant</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">add_constant</span><span class="p">(</span><span class="n">X_train</span><span class="p">)</span>
<span class="c1"># logit_model_constant = sm.Logit(y_train, X_train_constant) #tried with and without adding a constant</span>
<span class="c1"># result_1 = logit_model_constant.fit()</span>
<span class="c1"># print (result_1.summary())</span>

<span class="c1"># params = result_1.params</span>
<span class="c1"># conf = result_1.conf_int()</span>
<span class="c1"># conf[&#39;OR&#39;] = params</span>
<span class="c1"># conf.columns = [&#39;2.5%&#39;, &#39;97.5%&#39;, &#39;OR&#39;]</span>
<span class="c1"># print (np.exp(conf))</span>

<span class="c1"># X_train, X_test, y_train, y_test = train_test_split(sm.add_constant(X), y_Amyloid_Yes_No, test_size=0.5, random_state=0)</span>
<span class="n">logreg</span> <span class="o">=</span> <span class="n">LogisticRegression</span><span class="p">()</span>
<span class="n">logreg</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train_constant</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>

<span class="n">X_test_constant</span> <span class="o">=</span> <span class="n">sm</span><span class="o">.</span><span class="n">add_constant</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>

<span class="n">y_pred</span> <span class="o">=</span> <span class="n">logreg</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test_constant</span><span class="p">)</span>

<span class="n">logit_roc_auc</span> <span class="o">=</span> <span class="n">roc_auc_score</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">logreg</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test_constant</span><span class="p">))</span>
<span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">logreg</span><span class="o">.</span><span class="n">predict_proba</span><span class="p">(</span><span class="n">X_test_constant</span><span class="p">)[:,</span><span class="mi">1</span><span class="p">])</span>

<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;Accuracy of logistic regression classifier on test set: </span><span class="si">{:.2f}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">logreg</span><span class="o">.</span><span class="n">score</span><span class="p">(</span><span class="n">X_test_constant</span><span class="p">,</span> <span class="n">y_test</span><span class="p">)))</span>

<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUC: </span><span class="si">%.3f</span><span class="s1">&#39;</span> <span class="o">%</span> <span class="n">logit_roc_auc</span><span class="p">)</span>

<span class="nb">print</span><span class="p">(</span><span class="n">classification_report</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">))</span>
<span class="n">report</span> <span class="o">=</span> <span class="n">classification_report</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">,</span> <span class="n">output_dict</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">df_classification_report</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">report</span><span class="p">)</span><span class="o">.</span><span class="n">transpose</span><span class="p">()</span>
<span class="n">df_classification_report</span><span class="o">.</span><span class="n">to_csv</span><span class="p">(</span><span class="s1">&#39;logit_model_stats.csv&#39;</span><span class="p">)</span>

<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;AS, AR, or MR (area = </span><span class="si">%0.2f</span><span class="s1">)&#39;</span> <span class="o">%</span> <span class="n">logit_roc_auc</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span><span class="s1">&#39;r--&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylim</span><span class="p">([</span><span class="mf">0.0</span><span class="p">,</span> <span class="mf">1.05</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;False Positive Rate&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;True Positive Rate&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">&#39;AUROC of Logistic Regression using Tabular Data Only&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s2">&quot;lower right&quot;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">savefig</span><span class="p">(</span><span class="s1">&#39;figures/Logit_ROC.png&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>

<span class="nb">print</span><span class="p">(</span><span class="s1">&#39;AUC: </span><span class="si">%.3f</span><span class="s1">&#39;</span> <span class="o">%</span> <span class="n">logit_roc_auc</span><span class="p">)</span>

<span class="n">cnf_matrix</span> <span class="o">=</span> <span class="n">confusion_matrix</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">)</span>
<span class="n">cnf_matrix</span>

<span class="n">class_names</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">]</span> <span class="c1"># name  of classes</span>
<span class="n">fig</span><span class="p">,</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">()</span>
<span class="n">tick_marks</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">class_names</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xticks</span><span class="p">(</span><span class="n">tick_marks</span><span class="p">,</span> <span class="n">class_names</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">yticks</span><span class="p">(</span><span class="n">tick_marks</span><span class="p">,</span> <span class="n">class_names</span><span class="p">)</span>
<span class="c1"># create heatmap</span>
<span class="n">sns</span><span class="o">.</span><span class="n">heatmap</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">cnf_matrix</span><span class="p">),</span> <span class="n">annot</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="s2">&quot;YlGnBu&quot;</span> <span class="p">,</span><span class="n">fmt</span><span class="o">=</span><span class="s1">&#39;g&#39;</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">xaxis</span><span class="o">.</span><span class="n">set_label_position</span><span class="p">(</span><span class="s2">&quot;top&quot;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">&#39;Confusion matrix&#39;</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="mf">1.1</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;Actual label&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;Predicted label&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Accuracy of logistic regression classifier on test set: 0.84
AUC: 0.663
              precision    recall  f1-score   support

         0.0       0.95      0.87      0.91     19404
         1.0       0.23      0.45      0.31      1644

    accuracy                           0.84     21048
   macro avg       0.59      0.66      0.61     21048
weighted avg       0.89      0.84      0.86     21048

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>AUC: 0.663
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[210]:</div>




<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain">
<pre>Text(0.5, 257.44, &#39;Predicted label&#39;)</pre>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[208]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="n">classification_report</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">))</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>              precision    recall  f1-score   support

         0.0       0.95      0.87      0.91     19404
         1.0       0.23      0.45      0.31      1644

    accuracy                           0.84     21048
   macro avg       0.59      0.66      0.61     21048
weighted avg       0.89      0.84      0.86     21048

</pre>
</div>
</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[&nbsp;]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span> 
</pre></div>

     </div>
</div>
</div>
</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="How-much-earlier-was-a-patient's-first-ECG-than-their-first-echo-among-severe-AS-patients?">How much earlier was a patient's first ECG than their first echo among severe AS patients?<a class="anchor-link" href="#How-much-earlier-was-a-patient's-first-ECG-than-their-first-echo-among-severe-AS-patients?">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[189]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">dates_dx</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISION_test_df_newest_ecg_per_pt_tabular_metadata.csv&#39;</span><span class="p">))</span>
<span class="n">master_muse</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s1">&#39;/Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/Master_File_MUSE_Pt_List.csv&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3146: DtypeWarning: Columns (30,53,57,58,66) have mixed types.Specify dtype option on import or set low_memory=False.
  has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3146: DtypeWarning: Columns (1,2,6) have mixed types.Specify dtype option on import or set low_memory=False.
  has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
</pre>
</div>
</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[190]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">severe_as_only</span><span class="p">[</span><span class="s1">&#39;first_AS_dx_DATE_TIME_CREATED&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">to_datetime</span><span class="p">(</span><span class="n">severe_as_only</span><span class="p">[</span><span class="s1">&#39;first_AS_dx_DATE_TIME_CREATED&#39;</span><span class="p">])</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>&lt;ipython-input-190-83008afd2160&gt;:1: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  severe_as_only[&#39;first_AS_dx_DATE_TIME_CREATED&#39;] = pd.to_datetime(severe_as_only[&#39;first_AS_dx_DATE_TIME_CREATED&#39;])
</pre>
</div>
</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[191]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">master_muse</span><span class="p">[</span><span class="s1">&#39;AcquisitionDateTime_DT&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">to_datetime</span><span class="p">(</span><span class="n">master_muse</span><span class="p">[</span><span class="s1">&#39;AcquisitionDateTime_DT&#39;</span><span class="p">])</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[192]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">pt_as_cols</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;PatientID&#39;</span><span class="p">,</span><span class="s1">&#39;first_AS_dx_DATE_TIME_CREATED&#39;</span><span class="p">]</span>
<span class="n">pt_as</span> <span class="o">=</span> <span class="n">severe_as_only</span><span class="p">[</span><span class="n">pt_as_cols</span><span class="p">]</span>
<span class="n">pt_as</span> <span class="o">=</span> <span class="n">pt_as</span><span class="o">.</span><span class="n">drop_duplicates</span><span class="p">()</span>
<span class="n">muse_pt_as</span> <span class="o">=</span> <span class="n">master_muse</span><span class="o">.</span><span class="n">merge</span><span class="p">(</span><span class="n">pt_as</span><span class="p">,</span><span class="n">how</span><span class="o">=</span><span class="s1">&#39;inner&#39;</span><span class="p">,</span><span class="n">on</span><span class="o">=</span><span class="s1">&#39;PatientID&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[193]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">muse_pt_as</span><span class="p">[</span><span class="s1">&#39;days_since_dx&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">muse_pt_as</span><span class="p">[</span><span class="s1">&#39;AcquisitionDateTime_DT&#39;</span><span class="p">]</span> <span class="o">-</span> <span class="n">muse_pt_as</span><span class="p">[</span><span class="s1">&#39;first_AS_dx_DATE_TIME_CREATED&#39;</span><span class="p">])</span><span class="o">.</span><span class="n">dt</span><span class="o">.</span><span class="n">days</span> <span class="c1">#negative means ECG was prior to echo</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[194]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">muse_pt_as</span> <span class="o">=</span> <span class="n">muse_pt_as</span><span class="p">[</span><span class="n">muse_pt_as</span><span class="p">[</span><span class="s1">&#39;days_since_dx&#39;</span><span class="p">]</span><span class="o">&lt;</span><span class="mi">3</span><span class="p">]</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[195]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">muse_pt_as_grouped</span> <span class="o">=</span> <span class="n">muse_pt_as</span><span class="o">.</span><span class="n">groupby</span><span class="p">(</span><span class="s1">&#39;PatientID&#39;</span><span class="p">)[</span><span class="s1">&#39;days_since_dx&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">min</span><span class="p">()</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[196]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">muse_pt_as_grouped</span><span class="o">.</span><span class="n">describe</span><span class="p">(</span><span class="n">percentiles</span><span class="o">=</span><span class="p">[</span><span class="mf">0.025</span><span class="p">,</span> <span class="mf">0.975</span><span class="p">])</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[196]:</div>




<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain">
<pre>count      195.000000
mean     -2035.435897
std       3081.856889
min     -11505.000000
2.5%     -9989.500000
50%        -20.000000
97.5%        1.000000
max          1.000000
Name: days_since_dx, dtype: float64</pre>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[197]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">ax</span> <span class="o">=</span> <span class="n">muse_pt_as_grouped</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">bins</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span><span class="mi">15</span><span class="p">),</span><span class="n">xlabelsize</span><span class="o">=</span><span class="mi">18</span><span class="p">,</span> <span class="n">ylabelsize</span><span class="o">=</span><span class="mi">18</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">&#39;Days Prior to Diagnosis of Severe AS (All ECGs Associated with Patient)&#39;</span><span class="p">,</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">20</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">&#39;Number of Patients&#39;</span><span class="p">,</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">20</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[197]:</div>




<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain">
<pre>Text(0, 0.5, &#39;Number of Patients&#39;)</pre>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[&nbsp;]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span> 
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[198]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">dates_dx</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISION_test_df_newest_ecg_per_pt_tabular_metadata.csv&#39;</span><span class="p">))</span>
<span class="n">master_muse</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s1">&#39;/Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/Master_File_MUSE_Pt_List.csv&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3146: DtypeWarning: Columns (30,53,57,58,66) have mixed types.Specify dtype option on import or set low_memory=False.
  has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/IPython/core/interactiveshell.py:3146: DtypeWarning: Columns (1,2,6) have mixed types.Specify dtype option on import or set low_memory=False.
  has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
</pre>
</div>
</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[199]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">severe_as_only</span><span class="p">[</span><span class="s1">&#39;first_AS_dx_DATE_TIME_CREATED&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">to_datetime</span><span class="p">(</span><span class="n">severe_as_only</span><span class="p">[</span><span class="s1">&#39;first_AS_dx_DATE_TIME_CREATED&#39;</span><span class="p">])</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>&lt;ipython-input-199-83008afd2160&gt;:1: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  severe_as_only[&#39;first_AS_dx_DATE_TIME_CREATED&#39;] = pd.to_datetime(severe_as_only[&#39;first_AS_dx_DATE_TIME_CREATED&#39;])
</pre>
</div>
</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[200]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">master_muse</span><span class="p">[</span><span class="s1">&#39;AcquisitionDateTime_DT&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">to_datetime</span><span class="p">(</span><span class="n">master_muse</span><span class="p">[</span><span class="s1">&#39;AcquisitionDateTime_DT&#39;</span><span class="p">])</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[201]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">pt_as_cols</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;TestID&#39;</span><span class="p">,</span><span class="s1">&#39;first_AS_dx_DATE_TIME_CREATED&#39;</span><span class="p">]</span>
<span class="n">pt_as</span> <span class="o">=</span> <span class="n">severe_as_only</span><span class="p">[</span><span class="n">pt_as_cols</span><span class="p">]</span>
<span class="n">pt_as</span> <span class="o">=</span> <span class="n">pt_as</span><span class="o">.</span><span class="n">drop_duplicates</span><span class="p">()</span>
<span class="n">muse_pt_as</span> <span class="o">=</span> <span class="n">master_muse</span><span class="o">.</span><span class="n">merge</span><span class="p">(</span><span class="n">pt_as</span><span class="p">,</span><span class="n">how</span><span class="o">=</span><span class="s1">&#39;inner&#39;</span><span class="p">,</span><span class="n">on</span><span class="o">=</span><span class="s1">&#39;TestID&#39;</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[202]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">muse_pt_as</span><span class="p">[</span><span class="s1">&#39;days_since_dx&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">muse_pt_as</span><span class="p">[</span><span class="s1">&#39;AcquisitionDateTime_DT&#39;</span><span class="p">]</span> <span class="o">-</span> <span class="n">muse_pt_as</span><span class="p">[</span><span class="s1">&#39;first_AS_dx_DATE_TIME_CREATED&#39;</span><span class="p">])</span><span class="o">.</span><span class="n">dt</span><span class="o">.</span><span class="n">days</span> <span class="c1">#negative means ECG was prior to echo</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[203]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">muse_pt_as</span> <span class="o">=</span> <span class="n">muse_pt_as</span><span class="p">[</span><span class="n">muse_pt_as</span><span class="p">[</span><span class="s1">&#39;days_since_dx&#39;</span><span class="p">]</span><span class="o">&lt;</span><span class="mi">3</span><span class="p">]</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[204]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">muse_pt_as_grouped</span> <span class="o">=</span> <span class="n">muse_pt_as</span><span class="o">.</span><span class="n">groupby</span><span class="p">(</span><span class="s1">&#39;PatientID&#39;</span><span class="p">)[</span><span class="s1">&#39;days_since_dx&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">min</span><span class="p">()</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[205]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">muse_pt_as_grouped</span><span class="o">.</span><span class="n">describe</span><span class="p">(</span><span class="n">percentiles</span><span class="o">=</span><span class="p">[</span><span class="mf">0.025</span><span class="p">,</span> <span class="mf">0.975</span><span class="p">])</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[205]:</div>




<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain">
<pre>count    388.000000
mean     -22.329897
std       63.600290
min     -359.000000
2.5%    -269.925000
50%       -1.000000
97.5%      0.000000
max        1.000000
Name: days_since_dx, dtype: float64</pre>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[206]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">ax</span> <span class="o">=</span> <span class="n">muse_pt_as_grouped</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">bins</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span><span class="mi">15</span><span class="p">),</span><span class="n">xlabelsize</span><span class="o">=</span><span class="mi">18</span><span class="p">,</span> <span class="n">ylabelsize</span><span class="o">=</span><span class="mi">18</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s1">&#39;Days Prior to Diagnosis of Severe AS (only ECGs in Test Set)&#39;</span><span class="p">,</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">20</span><span class="p">)</span>
<span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">&#39;Number of Patients&#39;</span><span class="p">,</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">20</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[206]:</div>




<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain">
<pre>Text(0, 0.5, &#39;Number of Patients&#39;)</pre>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[&nbsp;]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span> 
</pre></div>

     </div>
</div>
</div>
</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="NYP-Lawrence-Validation-with-and-without-Propensity-Score-Matching">NYP Lawrence Validation with and without Propensity Score Matching<a class="anchor-link" href="#NYP-Lawrence-Validation-with-and-without-Propensity-Score-Matching">&#182;</a></h1><p>This can be found at <code>/Users/pae2/Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/NYP_Lawrence/propensity-score-matching-main/propensity_score_matching_v2_ValveNet.ipynb</code></p>

</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[&nbsp;]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span> 
</pre></div>

     </div>
</div>
</div>
</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Model-Calibration-Curves">Model Calibration Curves<a class="anchor-link" href="#Model-Calibration-Curves">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs  ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[8]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn.naive_bayes</span> <span class="kn">import</span> <span class="n">GaussianNB</span>
<span class="kn">from</span> <span class="nn">sklearn.svm</span> <span class="kn">import</span> <span class="n">LinearSVC</span>
<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="kn">import</span> <span class="n">LogisticRegression</span>
<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="kn">import</span> <span class="p">(</span><span class="n">brier_score_loss</span><span class="p">,</span> <span class="n">precision_score</span><span class="p">,</span> <span class="n">recall_score</span><span class="p">,</span>
                             <span class="n">f1_score</span><span class="p">)</span>
<span class="kn">from</span> <span class="nn">sklearn.calibration</span> <span class="kn">import</span> <span class="n">CalibratedClassifierCV</span><span class="p">,</span> <span class="n">calibration_curve</span>
<span class="kn">from</span> <span class="nn">sklearn.model_selection</span> <span class="kn">import</span> <span class="n">train_test_split</span>
</pre></div>

     </div>
</div>
</div>
</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[9]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">as_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Aortic_Stenosis_2022-03-03--06:21:48/y_y_pred_roc_0.8805.csv&#39;</span><span class="p">)</span>
<span class="n">ai_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Aortic_Insufficiency_2022-03-03--06:22:25/y_y_pred_roc_0.7688.csv&#39;</span><span class="p">)</span>
<span class="n">mr_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_Mitral_Regurgitation_2022-03-03--06:23:05/y_y_pred_roc_0.8280.csv&#39;</span><span class="p">)</span>
<span class="n">as_ai_mr_path</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">box_path_prefix</span><span class="p">,</span> <span class="s1">&#39;Box/Heart Failure Analytics/Data/MuseLabelGeneration/ValveNet_JACC_Revisions/Dendrite_Transfer/JACC_REVISIONS_Eval_AS_AI_MR_Combination_2022-03-03--06:23:39/y_y_pred_roc_0.8351.csv&#39;</span><span class="p">)</span>

<span class="n">lstFiles</span> <span class="o">=</span> <span class="p">[</span><span class="n">as_path</span><span class="p">,</span><span class="n">ai_path</span><span class="p">,</span><span class="n">mr_path</span><span class="p">,</span><span class="n">as_ai_mr_path</span><span class="p">]</span>
<span class="n">study_name</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;Eval_&#39;</span><span class="p">)[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;_2022&#39;</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">lstFiles</span><span class="p">]</span>
<span class="n">study_name</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt">Out[9]:</div>




<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain">
<pre>[&#39;Aortic_Stenosis&#39;,
 &#39;Aortic_Insufficiency&#39;,
 &#39;Mitral_Regurgitation&#39;,
 &#39;AS_AI_MR_Combination&#39;]</pre>
</div>

</div>

</div>

</div>

</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[44]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="n">columns</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">,</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span>

<span class="k">for</span> <span class="n">path</span> <span class="ow">in</span> <span class="n">lstFiles</span><span class="p">:</span>
    <span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">path</span><span class="p">,</span> <span class="n">names</span><span class="o">=</span><span class="n">columns</span><span class="p">)</span>
    <span class="n">X</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">y</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">]</span>

    <span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span> <span class="o">=</span> <span class="n">train_test_split</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">test_size</span><span class="o">=</span><span class="mf">0.5</span><span class="p">)</span>
    <span class="n">X_train</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">X_train</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
    <span class="n">X_test</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>

    <span class="k">def</span> <span class="nf">plot_calibration_curve</span><span class="p">(</span><span class="n">est</span><span class="p">,</span> <span class="n">name</span><span class="p">,</span> <span class="n">fig_index</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Plot calibration curve for est w/o and with calibration. &quot;&quot;&quot;</span>
        <span class="c1"># Calibrated with isotonic calibration</span>
<span class="c1">#         isotonic = CalibratedClassifierCV(est, cv=2, method=&#39;isotonic&#39;)</span>

        <span class="c1"># Calibrated with sigmoid calibration</span>
        <span class="n">sigmoid</span> <span class="o">=</span> <span class="n">CalibratedClassifierCV</span><span class="p">(</span><span class="n">est</span><span class="p">,</span> <span class="n">cv</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s1">&#39;sigmoid&#39;</span><span class="p">)</span>

        <span class="c1"># Logistic regression with no calibration as baseline</span>
        <span class="n">lr</span> <span class="o">=</span> <span class="n">LogisticRegression</span><span class="p">(</span><span class="n">C</span><span class="o">=</span><span class="mf">1.</span><span class="p">)</span>

        <span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">fig_index</span><span class="p">,</span> <span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">10</span><span class="p">))</span>
        
        <span class="n">ax1</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplot2grid</span><span class="p">((</span><span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="n">rowspan</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
        <span class="n">ax2</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplot2grid</span><span class="p">((</span><span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">))</span>
        <span class="n">ax1</span><span class="o">.</span><span class="n">tick_params</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="s1">&#39;both&#39;</span><span class="p">,</span> <span class="n">which</span><span class="o">=</span><span class="s1">&#39;major&#39;</span><span class="p">,</span> <span class="n">labelsize</span><span class="o">=</span><span class="mi">14</span><span class="p">)</span>
        <span class="n">ax1</span><span class="o">.</span><span class="n">plot</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="s2">&quot;k:&quot;</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s2">&quot;Perfectly calibrated&quot;</span><span class="p">)</span>
        <span class="k">for</span> <span class="n">clf</span><span class="p">,</span> <span class="n">name</span> <span class="ow">in</span> <span class="p">[(</span><span class="n">lr</span><span class="p">,</span> <span class="s1">&#39;Logistic&#39;</span><span class="p">),</span>
                          <span class="p">(</span><span class="n">est</span><span class="p">,</span> <span class="n">name</span><span class="p">),</span>
<span class="c1">#                           (isotonic, name + &#39; + Isotonic&#39;),</span>
                          <span class="p">(</span><span class="n">sigmoid</span><span class="p">,</span> <span class="n">name</span> <span class="o">+</span> <span class="s1">&#39; + Sigmoid&#39;</span><span class="p">)]:</span>
            <span class="n">clf</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span>
            <span class="n">y_pred</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>
            <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">clf</span><span class="p">,</span> <span class="s2">&quot;predict_proba&quot;</span><span class="p">):</span>
                <span class="n">prob_pos</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">predict_proba</span><span class="p">(</span><span class="n">X_test</span><span class="p">)[:,</span> <span class="mi">1</span><span class="p">]</span>
            <span class="k">else</span><span class="p">:</span>  <span class="c1"># use decision function</span>
                <span class="n">prob_pos</span> <span class="o">=</span> <span class="n">clf</span><span class="o">.</span><span class="n">decision_function</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span>
                <span class="n">prob_pos</span> <span class="o">=</span> \
                    <span class="p">(</span><span class="n">prob_pos</span> <span class="o">-</span> <span class="n">prob_pos</span><span class="o">.</span><span class="n">min</span><span class="p">())</span> <span class="o">/</span> <span class="p">(</span><span class="n">prob_pos</span><span class="o">.</span><span class="n">max</span><span class="p">()</span> <span class="o">-</span> <span class="n">prob_pos</span><span class="o">.</span><span class="n">min</span><span class="p">())</span>

            <span class="n">clf_score</span> <span class="o">=</span> <span class="n">brier_score_loss</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">prob_pos</span><span class="p">,</span> <span class="n">pos_label</span><span class="o">=</span><span class="n">y</span><span class="o">.</span><span class="n">max</span><span class="p">())</span>
            <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;</span><span class="si">%s</span><span class="s2">:&quot;</span> <span class="o">%</span> <span class="n">name</span><span class="p">)</span>
            <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;</span><span class="se">\t</span><span class="s2">Brier: </span><span class="si">%1.3f</span><span class="s2">&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="n">clf_score</span><span class="p">))</span>
            <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;</span><span class="se">\t</span><span class="s2">Precision: </span><span class="si">%1.3f</span><span class="s2">&quot;</span> <span class="o">%</span> <span class="n">precision_score</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">))</span>
            <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;</span><span class="se">\t</span><span class="s2">Recall: </span><span class="si">%1.3f</span><span class="s2">&quot;</span> <span class="o">%</span> <span class="n">recall_score</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">))</span>
            <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;</span><span class="se">\t</span><span class="s2">F1: </span><span class="si">%1.3f</span><span class="se">\n</span><span class="s2">&quot;</span> <span class="o">%</span> <span class="n">f1_score</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">))</span>

            <span class="n">fraction_of_positives</span><span class="p">,</span> <span class="n">mean_predicted_value</span> <span class="o">=</span> \
                <span class="n">calibration_curve</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">prob_pos</span><span class="p">,</span> <span class="n">n_bins</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>

            <span class="n">ax1</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">mean_predicted_value</span><span class="p">,</span> <span class="n">fraction_of_positives</span><span class="p">,</span> <span class="s2">&quot;s-&quot;</span><span class="p">,</span>
                     <span class="n">label</span><span class="o">=</span><span class="s2">&quot;</span><span class="si">%s</span><span class="s2"> (</span><span class="si">%1.3f</span><span class="s2">)&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="n">name</span><span class="p">,</span> <span class="n">clf_score</span><span class="p">))</span>
            <span class="n">plt</span><span class="o">.</span><span class="n">xticks</span><span class="p">(</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">14</span><span class="p">)</span>
            <span class="n">plt</span><span class="o">.</span><span class="n">yticks</span><span class="p">(</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">14</span><span class="p">)</span>

            <span class="n">ax2</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">prob_pos</span><span class="p">,</span> <span class="nb">range</span><span class="o">=</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="n">bins</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">name</span><span class="p">,</span>
                     <span class="n">histtype</span><span class="o">=</span><span class="s2">&quot;step&quot;</span><span class="p">,</span> <span class="n">lw</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> 
        <span class="n">ax1</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s2">&quot;Fraction of positives&quot;</span><span class="p">,</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">28</span><span class="p">)</span>

        <span class="n">ax1</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span>

        <span class="n">ax1</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s2">&quot;lower right&quot;</span><span class="p">,</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">18</span><span class="p">)</span>
        <span class="n">file</span> <span class="o">=</span> <span class="n">path</span>
        <span class="n">labelname</span> <span class="o">=</span> <span class="n">file</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;Eval_&#39;</span><span class="p">)[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">partition</span><span class="p">(</span><span class="s1">&#39;_2022&#39;</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
        <span class="n">labelname</span> <span class="o">=</span> <span class="n">labelname</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;AS_AI_MR&quot;</span><span class="p">,</span> <span class="s2">&quot;AS, AR, or MR&quot;</span><span class="p">)</span>
        <span class="n">labelname</span> <span class="o">=</span> <span class="n">labelname</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;_&quot;</span><span class="p">,</span> <span class="s2">&quot; &quot;</span><span class="p">)</span>
        <span class="n">labelname</span> <span class="o">=</span> <span class="n">labelname</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;Combination&quot;</span><span class="p">,</span> <span class="s2">&quot;&quot;</span><span class="p">)</span>
    <span class="c1">#     labelname = labelname.replace(&quot;AI&quot;, &quot;Aortic Regurgitation&quot;)</span>
    <span class="c1">#     labelname = labelname.replace(&quot;AS&quot;, &quot;Aortic Stenosis&quot;)</span>
    <span class="c1">#     labelname = labelname.replace(&quot;MR&quot;, &quot;Mitral Regurgitation&quot;)</span>
        <span class="n">labelname</span> <span class="o">=</span> <span class="n">labelname</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s2">&quot;Aortic Insufficiency&quot;</span><span class="p">,</span> <span class="s2">&quot;Aortic Regurgitation&quot;</span><span class="p">)</span>
        
        <span class="n">ax1</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;Calibration plots for </span><span class="si">{</span><span class="n">labelname</span><span class="si">}</span><span class="s1"> (reliability curve)&#39;</span><span class="p">,</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">28</span><span class="p">,</span><span class="n">fontweight</span><span class="o">=</span><span class="s2">&quot;bold&quot;</span><span class="p">,</span><span class="n">pad</span> <span class="o">=</span> <span class="mi">34</span><span class="p">)</span>
        <span class="n">ax2</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s2">&quot;Mean predicted value&quot;</span><span class="p">,</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">28</span><span class="p">)</span>
        <span class="n">ax2</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s2">&quot;Count&quot;</span><span class="p">,</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">28</span><span class="p">)</span>
<span class="c1">#         ax2.legend(loc=&quot;upper center&quot;, ncol=2)</span>


        <span class="n">plt</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">()</span>

    <span class="c1"># Plot calibration curve for Gaussian Naive Bayes</span>
    <span class="n">plot_calibration_curve</span><span class="p">(</span><span class="n">GaussianNB</span><span class="p">(),</span> <span class="s2">&quot;Naive Bayes&quot;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>

    <span class="c1"># Plot calibration curve for Linear SVC</span>
<span class="c1">#     plot_calibration_curve(LinearSVC(max_iter=1000), &quot;SVC&quot;, 2)</span>

    <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Logistic:
	Brier: 0.035
	Precision: 0.000
	Recall: 0.000
	F1: 0.000

Naive Bayes:
	Brier: 0.035
	Precision: 0.543
	Recall: 0.041
	F1: 0.077

Naive Bayes + Sigmoid:
	Brier: 0.036
	Precision: 0.471
	Recall: 0.107
	F1: 0.174

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Logistic:
	Brier: 0.009
	Precision: 0.000
	Recall: 0.000
	F1: 0.000

Naive Bayes:
	Brier: 0.009
	Precision: 0.000
	Recall: 0.000
	F1: 0.000

Naive Bayes + Sigmoid:
	Brier: 0.009
	Precision: 0.000
	Recall: 0.000
	F1: 0.000

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Logistic:
	Brier: 0.031
	Precision: 0.000
	Recall: 0.000
	F1: 0.000

Naive Bayes:
	Brier: 0.031
	Precision: 0.000
	Recall: 0.000
	F1: 0.000

Naive Bayes + Sigmoid:
	Brier: 0.031
	Precision: 0.250
	Recall: 0.005
	F1: 0.011

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr">
<pre>/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/Users/pae2/opt/anaconda3/lib/python3.8/site-packages/sklearn/metrics/_classification.py:1318: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>Logistic:
	Brier: 0.061
	Precision: 0.690
	Recall: 0.036
	F1: 0.068

Naive Bayes:
	Brier: 0.061
	Precision: 0.558
	Recall: 0.071
	F1: 0.126

Naive Bayes + Sigmoid:
	Brier: 0.062
	Precision: 0.492
	Recall: 0.117
	F1: 0.189

</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>

</div>

</div>

</div>

</div>
<div class="jp-Cell-inputWrapper"><div class="jp-InputPrompt jp-InputArea-prompt">
</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput " data-mime-type="text/markdown">
<h1 id="Determine-PPV-and-NPV-at-Youden-Index-value-per-model">Determine PPV and NPV at Youden Index value per model<a class="anchor-link" href="#Determine-PPV-and-NPV-at-Youden-Index-value-per-model">&#182;</a></h1>
</div>
</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell   ">
<div class="jp-Cell-inputWrapper">
<div class="jp-InputArea jp-Cell-inputArea">
<div class="jp-InputPrompt jp-InputArea-prompt">In&nbsp;[78]:</div>
<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
     <div class="CodeMirror cm-s-jupyter">
<div class=" highlight hl-ipython3"><pre><span></span><span class="k">for</span> <span class="n">file</span> <span class="ow">in</span> <span class="n">lstFiles</span><span class="p">:</span>
    <span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">file</span><span class="p">,</span> <span class="n">names</span><span class="o">=</span><span class="n">columns</span><span class="p">)</span>
    <span class="n">yhat</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">))</span>
    <span class="n">testy</span><span class="p">,</span> <span class="n">lr_probs</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">neg_count</span><span class="p">,</span> <span class="n">pos_count</span> <span class="o">=</span> <span class="p">(</span><span class="nb">format</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span><span class="s1">&#39;,d&#39;</span><span class="p">)),(</span><span class="nb">format</span><span class="p">(</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()[</span><span class="mi">1</span><span class="p">],</span><span class="s1">&#39;,d&#39;</span><span class="p">))</span>
    <span class="n">lr_precision</span><span class="p">,</span> <span class="n">lr_recall</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">precision_recall_curve</span><span class="p">(</span><span class="n">testy</span><span class="p">,</span> <span class="n">lr_probs</span><span class="p">)</span>
    <span class="c1"># calculate scores</span>
    <span class="n">lr_f1</span><span class="p">,</span> <span class="n">lr_auc</span> <span class="o">=</span> <span class="n">f1_score</span><span class="p">(</span><span class="n">testy</span><span class="p">,</span> <span class="n">yhat</span><span class="p">),</span> <span class="n">auc</span><span class="p">(</span><span class="n">lr_recall</span><span class="p">,</span> <span class="n">lr_precision</span><span class="p">)</span>
    <span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">],</span><span class="n">df</span><span class="p">[</span><span class="s1">&#39;y_pred_proba&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">sigmoid</span><span class="p">)</span>
    <span class="n">fpr</span><span class="p">,</span> <span class="n">tpr</span><span class="p">,</span> <span class="n">thresholds</span> <span class="o">=</span> <span class="n">roc_curve</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_scores</span><span class="p">,</span><span class="n">pos_label</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
    <span class="n">total_count</span> <span class="o">=</span> <span class="nb">format</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">df</span><span class="p">),</span><span class="s1">&#39;,d&#39;</span><span class="p">)</span>
    <span class="n">idx</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">tpr</span> <span class="o">-</span> <span class="n">fpr</span><span class="p">)</span>
    <span class="n">youden_index</span> <span class="o">=</span> <span class="n">thresholds</span><span class="p">[</span><span class="n">idx</span><span class="p">]</span>
    <span class="n">cm</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span><span class="n">y_scores</span><span class="p">,</span> <span class="n">threshold</span><span class="o">=</span><span class="n">youden_index</span><span class="p">)</span>
</pre></div>

     </div>
</div>
</div>
</div>

<div class="jp-Cell-outputWrapper">


<div class="jp-OutputArea jp-Cell-outputArea">

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>1247
0.4290496913006215
0.4290496913006215
Positive Predictive Value 0.13 Negative Predictive Value 0.99  Specificty  0.742018767687801 Sensitivity  0.8621830209481808
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>263
0.3979350694912722
0.3979350694912722
Positive Predictive Value 0.02 Negative Predictive Value 1.0  Specificty  0.7421830040283905 Sensitivity  0.6836734693877551
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>1023
0.45940651160283796
0.45940651160283796
Positive Predictive Value 0.1 Negative Predictive Value 0.99  Specificty  0.743868807249089 Sensitivity  0.7924528301886793
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>

</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>


<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain">
<pre>1916
0.45716718045293103
0.45716718045293103
Positive Predictive Value 0.2 Negative Predictive Value 0.98  Specificty  0.7337146980004123 Sensitivity  0.7858880778588808
</pre>
</div>
</div>

<div class="jp-OutputArea-child">

    
    <div class="jp-OutputPrompt jp-OutputArea-prompt"></div>




<div class="jp-RenderedImage jp-OutputArea-output ">
<img src="
"
>
</div>

</div>

</div>

</div>

</div>
</body>







</html>