[24c4a6]: / 4-Models / autoECG-tensorflow-keras / autoecg_model_gpu.py

Download this file

427 lines (349 with data), 15.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# -*- coding: utf-8 -*-
# Turn off GPU if needed
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
##Checking if using GPU
import tensorflow as tf
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
tf.test.is_gpu_available(
cuda_only=False, min_cuda_compute_capability=None
)
tf.config.experimental.list_physical_devices('GPU')
"""# SET UP
"""
!pip install tensorflow-gpu==2.3.0
!pip install Keras==2.4.3
import keras
import tensorflow as tf
print(keras.__version__,tf.__version__)
###############################
####### Start from here #######
###############################
import keras
import tensorflow as tf
import numpy as np
import warnings
import argparse
warnings.filterwarnings("ignore")
from keras.models import load_model
from keras.optimizers import Adam
import h5py
import IPython
!pip install -q -U keras-tuner
import kerastuner as kt
# Commented out IPython magic to ensure Python compatibility.
# %load_ext autoreload
# %autoreload 2
# %matplotlib inline
"""# Load Data & Preprocessing
"""
X_train= np.load('/data/Xtrain.npy')
y_train=np.load('/data/ytrain.npy')
X_test=np.load('/data/Xtest.npy')
y_test=np.load('/data/ytest.npy')
#X_train=X_train[:,0,:,:]
#X_test=X_test[:,0,:,:]
import numpy as np
def preprocess(X):
m=4096-X.shape[2]
y=np.pad(X_train,[(0,0),(0,m),(0,0)],mode='constant', constant_values=0)
return y
X_train=preprocess(X_train)
X_test=preprocess(X_test)
print(X_train.shape,X_test.shape)
"""## Residual Net Model
"""
from keras.layers import (Input, Conv1D, MaxPooling1D, Dropout,
BatchNormalization, Activation, Add,
Flatten, Dense)
from keras.models import Model
import numpy as np
class ResidualUnit(object):
"""Residual unit block (unidimensional).
Parameters
----------
n_samples_out: int
Number of output samples.
n_filters_out: int
Number of output filters.
kernel_initializer: str, optional
Initializer for the weights matrices. See Keras initializers. By default it uses
'he_normal'.
dropout_rate: float [0, 1), optional
Dropout rate used in all Dropout layers. Default is 0.8
kernel_size: int, optional
Kernel size for convolutional layers. Default is 17.
preactivation: bool, optional
When preactivation is true use full preactivation architecture proposed
in [1]. Otherwise, use architecture proposed in the original ResNet
paper [2]. By default it is true.
postactivation_bn: bool, optional
Defines if you use batch normalization before or after the activation layer (there
seems to be some advantages in some cases:
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md).
If true, the batch normalization is used before the activation
function, otherwise the activation comes first, as it is usually done.
By default it is false.
activation_function: string, optional
Keras activation function to be used. By default 'relu'.
References
----------
.. [1] K. He, X. Zhang, S. Ren, and J. Sun, "Identity Mappings in Deep Residual Networks,"
arXiv:1603.05027 [cs], Mar. 2016. https://arxiv.org/pdf/1603.05027.pdf.
.. [2] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778. https://arxiv.org/pdf/1512.03385.pdf
"""
def __init__(self, n_samples_out, n_filters_out, kernel_initializer='he_normal',
dropout_rate=0.5, kernel_size=17, preactivation=True,
postactivation_bn=False, activation_function='relu'):
self.n_samples_out = n_samples_out
self.n_filters_out = n_filters_out
self.kernel_initializer = kernel_initializer
self.dropout_rate = dropout_rate
self.kernel_size = kernel_size
self.preactivation = preactivation
self.postactivation_bn = postactivation_bn
self.activation_function = activation_function
def _skip_connection(self, y, downsample, n_filters_in):
"""Implement skip connection."""
# Deal with downsampling
if downsample > 1:
y = MaxPooling1D(downsample, strides=downsample, padding='same')(y)
elif downsample == 1:
y = y
else:
raise ValueError("Number of samples should always decrease.")
# Deal with n_filters dimension increase
if n_filters_in != self.n_filters_out:
# This is one of the two alternatives presented in ResNet paper
# Other option is to just fill the matrix with zeros.
y = Conv1D(self.n_filters_out, 1, padding='same',
use_bias=False, kernel_initializer=self.kernel_initializer)(y)
return y
def _batch_norm_plus_activation(self, x):
if self.postactivation_bn:
x = Activation(self.activation_function)(x)
x = BatchNormalization(center=False, scale=False)(x)
else:
x = BatchNormalization()(x)
x = Activation(self.activation_function)(x)
return x
def on_epoch_end(self, epoch, logs=None):
print('###########',Keras.eval(self.model.optimizer.lr))
def __call__(self, inputs):
"""Residual unit."""
x, y = inputs
#n_samples_in = y.shape[1].value
n_samples_in = y.shape[1]
downsample = n_samples_in // self.n_samples_out
#n_filters_in = y.shape[2].value
n_filters_in = y.shape[2]
y = self._skip_connection(y, downsample, n_filters_in)
# 1st layer
x = Conv1D(self.n_filters_out, self.kernel_size, padding='same',
use_bias=False, kernel_initializer=self.kernel_initializer)(x)
x = self._batch_norm_plus_activation(x)
if self.dropout_rate > 0:
x = Dropout(self.dropout_rate)(x)
# 2nd layer
x = Conv1D(self.n_filters_out, self.kernel_size, strides=downsample,
padding='same', use_bias=False,
kernel_initializer=self.kernel_initializer)(x)
if self.preactivation:
x = Add()([x, y]) # Sum skip connection and main connection
y = x
x = self._batch_norm_plus_activation(x)
if self.dropout_rate > 0:
x = Dropout(self.dropout_rate)(x)
else:
x = BatchNormalization()(x)
x = Add()([x, y]) # Sum skip connection and main connection
x = Activation(self.activation_function)(x)
if self.dropout_rate > 0:
x = Dropout(self.dropout_rate)(x)
y = x
return [x, y]
# ----- Model ----- #
kernel_size = 8
kernel_initializer = 'he_normal'
signal = Input(shape=(4096, 12), dtype=np.float32, name='signal')
age_range = Input(shape=(6,), dtype=np.float32, name='age_range')
is_male = Input(shape=(1,), dtype=np.float32, name='is_male')
x = signal
x = Conv1D(64, kernel_size, padding='same', use_bias=False,
kernel_initializer=kernel_initializer)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x, y = ResidualUnit(1024, 128, kernel_size=kernel_size,
kernel_initializer=kernel_initializer)([x, x])
x, y = ResidualUnit(256, 196, kernel_size=kernel_size,
kernel_initializer=kernel_initializer)([x, y])
x, y = ResidualUnit(64, 256, kernel_size=kernel_size,
kernel_initializer=kernel_initializer)([x, y])
x, _ = ResidualUnit(16, 320, kernel_size=kernel_size,
kernel_initializer=kernel_initializer)([x, y])
x = Flatten()(x)
#diagn = Dense(6, activation='sigmoid')(x)
diagn = Dense(1,activation='sigmoid')(x)
model = Model(signal, diagn)
model.save_weights('model.h5')
model.summary()
import tensorflow as tf
bce_logits = tf.keras.losses.BinaryCrossentropy(from_logits=True, name='binary_crossentropy')
lr = 0.01
opt = tf.keras.optimizers.Adam(lr,epsilon=0.1)
loss = bce_logits
lr_metric = opt.lr
#model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['acc', lr_metric])
import keras
from datetime import datetime
#from sklearn.metrics import confusion_matrix, f1_score,
def scheduler(epoch, lr):
if epoch <= 7:
tf.summary.scalar('learning rate', data=lr, step=epoch)
return lr
else:
tf.summary.scalar('learning rate', data=lr * 0.9, step=epoch)
return lr * 0.9
callback = tf.keras.callbacks.LearningRateScheduler(scheduler)
#es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=4)
logdir = "logs/scalars/" + datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir)
bce_logits = tf.keras.losses.BinaryCrossentropy(from_logits=True, name='binary_crossentropy')
lr = 0.005
opt = tf.keras.optimizers.Adam(lr,epsilon=0.1)
loss = bce_logits
lr_metric = opt.lr
model.compile(optimizer=opt,
loss='binary_crossentropy',
metrics=[tf.keras.metrics.BinaryAccuracy(), tf.keras.metrics.AUC(),
tf.keras.metrics.Precision(), tf.keras.metrics.Recall()])
model.fit(X_train,
y_train,
batch_size=64,
epochs=50,
validation_data=(X_test, y_test),
callbacks=[callback,tensorboard_callback])
# Commented out IPython magic to ensure Python compatibility.
# %load_ext tensorboard
# %tensorboard --logdir logs
# Commented out IPython magic to ensure Python compatibility.
# %tensorboard --logdir logs
"""# Hyperparameter Tuning
"""
from kerastuner import HyperModel
from keras import Sequential
from keras.layers import (Input, Conv1D, MaxPooling1D, Dropout,
BatchNormalization, Activation, Add,
Flatten, Dense)
from keras.models import Model
import numpy as np
class ECGhyper(HyperModel):
def __init__(self, input_shape):
self.input_shape = input_shape
def build(self, hp):
'''
kernel_initializer = 'he_normal'
model = Sequential()
model.add(
Conv1D(64,
kernel_size=hp.Choice('kernel_size', [8,16,24,38], default=8),
input_shape=input_shape
)
)
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(
ResidualUnit(1024, 128,
kernel_size=hp.Choice('kernel_size', [8,16,24,38], default=8),
kernel_initializer=kernel_initializer
)
)
model.add(
ResidualUnit(256, 196, kernel_size=hp.Choice('kernel_size', [8,16,24,38], default=8),
kernel_initializer=kernel_initializer))
model.add(
ResidualUnit(64, 256, kernel_size=hp.Choice('kernel_size', [8,16,24,38], default=8),
kernel_initializer=kernel_initializer))
model.add(
ResidualUnit(16, 320, kernel_size=hp.Choice('kernel_size', [8,16,24,38], default=8),
kernel_initializer=kernel_initializer))
model.add(Flatten())
model.add(Dense(1,activation='sigmoid'))
'''
#kernel_size = 16
kernel_size=hp.Choice('kernel_size', [8,16,24,38], default=8)
kernel_initializer = 'he_normal'
signal = Input(shape=(4096, 12), dtype=np.float32, name='signal')
x = signal
x = Conv1D(64,
kernel_size=kernel_size,
input_shape=input_shape,kernel_initializer=kernel_initializer
)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x, y = ResidualUnit(1024, 128,
kernel_size=kernel_size,
kernel_initializer=kernel_initializer
)([x, x])
x, y = ResidualUnit(256, 196, kernel_size=kernel_size,
kernel_initializer=kernel_initializer)([x, y])
x, y = ResidualUnit(64, 256, kernel_size=kernel_size,
kernel_initializer=kernel_initializer)([x, y])
x, _ = ResidualUnit(kernel_size, 320, kernel_size=kernel_size,
kernel_initializer=kernel_initializer)([x, y])
x = Flatten()(x)
#diagn = Dense(6, activation='sigmoid')(x)
diagn = Dense(1,activation='sigmoid')(x)
model = Model(signal, diagn)
lr = hp.Choice('lr', values = [1e-2, 1e-3, 1e-4])
#bce_logits = tf.keras.losses.BinaryCrossentropy(from_logits=True, name='binary_crossentropy')
opt = tf.keras.optimizers.Adam(lr,epsilon=0.1)
#loss = bce_logits
#lr_metric = opt.lr
model.compile(optimizer=opt,
loss='binary_crossentropy',
metrics=[tf.keras.metrics.BinaryAccuracy(), 'AUC',
'Precision', 'Recall'])
return model
input_shape=(4096, 12)
hypermodel=ECGhyper(input_shape)
from kerastuner import RandomSearch, Objective
tuner_rs = RandomSearch(
hypermodel,
objective=Objective("val_loss", direction="max"),
seed=42,
max_trials=10,
executions_per_trial=2)
import keras
from datetime import datetime
#from sklearn.metrics import confusion_matrix, f1_score,
def scheduler(epoch, lr):
if epoch <= 7:
tf.summary.scalar('learning rate', data=lr, step=epoch)
return lr
else:
tf.summary.scalar('learning rate', data=lr * 0.9, step=epoch)
return lr * 0.9
callback = tf.keras.callbacks.LearningRateScheduler(scheduler)
#es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=4)
logdir = "logs/scalars/" + datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir)
tuner_rs.search(X_train, y_train, epochs=10, validation_split=0.2,callbacks=[callback,tensorboard_callback])
best_model = tuner_rs.get_best_models(num_models=1)[0]
#loss, mse = best_model.evaluate(x_test_scaled, y_test)
best_model.fit(X_train,
y_train,
batch_size=64,
epochs=30,
validation_data=(X_test, y_test),
callbacks=[callback,tensorboard_callback])
# Commented out IPython magic to ensure Python compatibility.
# %load_ext tensorboard
# %tensorboard --logdir logs
model.summary()
model.save_weights('model.h5')
#####RESET MODEL######
model.load_weights('model.h5')