92 lines (91 with data), 2.2 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import ecg_simulation_multichannel as s"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Creating normal dataset\n",
"Creating abnormal dataset\n"
]
}
],
"source": [
"'''\n",
"Function Name: simulation\n",
"Input: \n",
" normal_N: the number of normal ECG data;\n",
" abnormal_N: the number of abnormal ECG data;\n",
" save_params: whether save parameters for each ecg sample, default value is False.\n",
"Output:\n",
" 'sim_ecg_data.npy': output file, an array of shape (normal_N + abnormal_N, 12, sampling_rate*duration);\n",
" 'sim_ecg_labels.npy': file to save labels;\n",
" 'sim_ecg_params.npy': depend on save_params, file to save parameters for each ecg sample.\n",
"The saved data is already shuffled.\n",
"\n",
"For more parameters' settings, please check 'parameters.py' file.\n",
"'''\n",
"normal_N = 3\n",
"abnormal_N = 3\n",
"save_params = False\n",
"s.simulation(normal_N,abnormal_N,save_params)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"data shape: (6, 12, 2500)\n",
"[0 1 0 0 1 1]\n"
]
}
],
"source": [
"import numpy as np\n",
"data_shape = np.load('sim_ecg_data.npy').shape\n",
"print('data shape: ',data_shape)\n",
"labels = np.load('sim_ecg_labels.npy')\n",
"print(labels)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}