|
a |
|
b/preprocessing/aux1.py |
|
|
1 |
# -*- coding: utf-8 -*- |
|
|
2 |
""" |
|
|
3 |
Created on Wed Jul 8 22:00:08 2015. |
|
|
4 |
|
|
|
5 |
@author: rc, alexandre |
|
|
6 |
""" |
|
|
7 |
|
|
|
8 |
|
|
|
9 |
import numpy as np |
|
|
10 |
import pandas as pd |
|
|
11 |
from mne.io import RawArray |
|
|
12 |
from mne.channels import read_montage |
|
|
13 |
from mne import create_info, concatenate_raws, pick_types |
|
|
14 |
from sklearn.base import BaseEstimator, TransformerMixin |
|
|
15 |
from glob import glob |
|
|
16 |
|
|
|
17 |
|
|
|
18 |
def getChannelNames(): |
|
|
19 |
"""Return Channels names.""" |
|
|
20 |
return ['Fp1', 'Fp2', 'F7', 'F3', 'Fz', 'F4', 'F8', 'FC5', 'FC1', 'FC2', |
|
|
21 |
'FC6', 'T7', 'C3', 'Cz', 'C4', 'T8', 'TP9', 'CP5', 'CP1', 'CP2', |
|
|
22 |
'CP6', 'TP10', 'P7', 'P3', 'Pz', 'P4', 'P8', 'PO9', 'O1', 'Oz', |
|
|
23 |
'O2', 'PO10'] |
|
|
24 |
|
|
|
25 |
|
|
|
26 |
def getEventNames(): |
|
|
27 |
"""Return Event name.""" |
|
|
28 |
return ['HandStart', 'FirstDigitTouch', 'BothStartLoadPhase', 'LiftOff', |
|
|
29 |
'Replace', 'BothReleased'] |
|
|
30 |
|
|
|
31 |
|
|
|
32 |
def load_raw_data(subject, test=False): |
|
|
33 |
"""Load Raw data from files. |
|
|
34 |
|
|
|
35 |
For a given subject, csv files are loaded, converted to MNE raw instance |
|
|
36 |
and concatenated. |
|
|
37 |
If test is True, training data are composed of series 1 to 8 and test data |
|
|
38 |
of series 9 and test. Otherwise, training data are series 1 to 6 and test |
|
|
39 |
data series 7 and 8. |
|
|
40 |
""" |
|
|
41 |
fnames_train = glob('../data/train/subj%d_series*_data.csv' % (subject)) |
|
|
42 |
fnames_train.sort() |
|
|
43 |
if test: |
|
|
44 |
fnames_test = glob('../data/test/subj%d_series*_data.csv' % (subject)) |
|
|
45 |
fnames_test.sort() |
|
|
46 |
else: |
|
|
47 |
fnames_test = fnames_train[-2:] |
|
|
48 |
fnames_train = fnames_train[:-2] |
|
|
49 |
|
|
|
50 |
# read and concatenate all the files |
|
|
51 |
raw_train = [creat_mne_raw_object(fname) for fname in fnames_train] |
|
|
52 |
raw_train = concatenate_raws(raw_train) |
|
|
53 |
# pick eeg signal |
|
|
54 |
picks = pick_types(raw_train.info, eeg=True) |
|
|
55 |
|
|
|
56 |
# get training data |
|
|
57 |
data_train = raw_train._data[picks].T |
|
|
58 |
labels_train = raw_train._data[32:].T |
|
|
59 |
|
|
|
60 |
raw_test = [creat_mne_raw_object(fname, read_events=not test) for fname in |
|
|
61 |
fnames_test] |
|
|
62 |
raw_test = concatenate_raws(raw_test) |
|
|
63 |
data_test = raw_test._data[picks].T |
|
|
64 |
|
|
|
65 |
# extract labels if validating on series 7&8 |
|
|
66 |
labels_test = None |
|
|
67 |
if not test: |
|
|
68 |
labels_test = raw_test._data[32:].T |
|
|
69 |
|
|
|
70 |
return data_train, labels_train, data_test, labels_test |
|
|
71 |
|
|
|
72 |
|
|
|
73 |
def creat_mne_raw_object(fname, read_events=True): |
|
|
74 |
"""Create a mne raw instance from csv file.""" |
|
|
75 |
# Read EEG file |
|
|
76 |
data = pd.read_csv(fname) |
|
|
77 |
|
|
|
78 |
# get chanel names |
|
|
79 |
ch_names = list(data.columns[1:]) |
|
|
80 |
|
|
|
81 |
# read EEG standard montage from mne |
|
|
82 |
montage = read_montage('standard_1005', ch_names) |
|
|
83 |
|
|
|
84 |
ch_type = ['eeg']*len(ch_names) |
|
|
85 |
data = 1e-6*np.array(data[ch_names]).T |
|
|
86 |
|
|
|
87 |
if read_events: |
|
|
88 |
# events file |
|
|
89 |
ev_fname = fname.replace('_data', '_events') |
|
|
90 |
# read event file |
|
|
91 |
events = pd.read_csv(ev_fname) |
|
|
92 |
events_names = events.columns[1:] |
|
|
93 |
events_data = np.array(events[events_names]).T |
|
|
94 |
|
|
|
95 |
# define channel type, the first is EEG, the last 6 are stimulations |
|
|
96 |
ch_type.extend(['stim']*6) |
|
|
97 |
ch_names.extend(events_names) |
|
|
98 |
# concatenate event file and data |
|
|
99 |
data = np.concatenate((data, events_data)) |
|
|
100 |
|
|
|
101 |
# create and populate MNE info structure |
|
|
102 |
info = create_info(ch_names, sfreq=500.0, ch_types=ch_type, |
|
|
103 |
montage=montage) |
|
|
104 |
info['filename'] = fname |
|
|
105 |
|
|
|
106 |
# create raw object |
|
|
107 |
raw = RawArray(data, info, verbose=False) |
|
|
108 |
|
|
|
109 |
return raw |
|
|
110 |
|
|
|
111 |
|
|
|
112 |
def sliding_window(sig, window=512, subsample=10, estimator=None): |
|
|
113 |
"""Extract a slinding window from signal. |
|
|
114 |
|
|
|
115 |
Raw signal is padded with zeros on the left to avoid use of future data. |
|
|
116 |
""" |
|
|
117 |
Ne, Ns = sig.shape |
|
|
118 |
# get the index before padding |
|
|
119 |
ix = range(0, Ns, subsample) |
|
|
120 |
|
|
|
121 |
# padd data |
|
|
122 |
padd = np.zeros((Ne, int(window) - 1)) |
|
|
123 |
sig = np.concatenate((padd, sig), axis=1) |
|
|
124 |
Ne, Ns = sig.shape |
|
|
125 |
|
|
|
126 |
if estimator is None: |
|
|
127 |
estimator = np.array |
|
|
128 |
# call this to get the shape |
|
|
129 |
X = estimator(sig[:, 0:window]) |
|
|
130 |
dims = list(X.shape) |
|
|
131 |
dims.insert(0, len(ix)) |
|
|
132 |
dims = tuple(dims) |
|
|
133 |
|
|
|
134 |
# allocate array |
|
|
135 |
X = np.empty(dims, dtype=X.dtype) |
|
|
136 |
for i in range(len(ix)): |
|
|
137 |
X[i] = estimator(sig[:, ix[i]:(ix[i] + window)]) |
|
|
138 |
|
|
|
139 |
return X |
|
|
140 |
|
|
|
141 |
|
|
|
142 |
def delay_preds(X, delay=100, skip=2, subsample=1, start=0, jump=None): |
|
|
143 |
"""Delay predictions. |
|
|
144 |
|
|
|
145 |
Create a feature vector by concatenation of present and past sample. |
|
|
146 |
The concatenation is done by shifting data to the right : |
|
|
147 |
|
|
|
148 |
out = | x1 x2 x3 ... xn | |
|
|
149 |
| 0 x1 x2 ... xn-1 | |
|
|
150 |
| 0 0 x1 ... xn-2 | |
|
|
151 |
|
|
|
152 |
No use of future data. |
|
|
153 |
""" |
|
|
154 |
if jump is None: |
|
|
155 |
jump = range(0, delay, skip) |
|
|
156 |
Ns, Ne = X.shape |
|
|
157 |
Ns_subsampled = len(range(start, Ns, subsample)) |
|
|
158 |
out = np.zeros((Ns_subsampled, Ne * len(jump))) |
|
|
159 |
for i, sk in enumerate(jump): |
|
|
160 |
chunk = X[0:(Ns - sk)][start::subsample] |
|
|
161 |
out[(Ns_subsampled-chunk.shape[0]):, (i * Ne):((i + 1) * Ne)] = chunk |
|
|
162 |
return out |
|
|
163 |
|
|
|
164 |
|
|
|
165 |
def delay_preds_2d(X, delay=100, skip=2, subsample=1, start=0, jump=None): |
|
|
166 |
"""Delay predictions with 2d shape. |
|
|
167 |
|
|
|
168 |
Same thing as delay_pred, but return delayed prediction with a 2d shape. |
|
|
169 |
""" |
|
|
170 |
if jump is None: |
|
|
171 |
jump = range(0, delay, skip) |
|
|
172 |
Ns, Ne = X.shape |
|
|
173 |
Ns_subsampled = len(range(start, Ns, subsample)) |
|
|
174 |
out = np.zeros((Ns_subsampled, len(jump), Ne)) |
|
|
175 |
for i, sk in enumerate(jump): |
|
|
176 |
chunk = X[0:(Ns - sk)][start::subsample] |
|
|
177 |
out[(Ns_subsampled-chunk.shape[0]):, i, :] = chunk |
|
|
178 |
return out[:, ::-1, :] |
|
|
179 |
|
|
|
180 |
|
|
|
181 |
class SlidingWindow(BaseEstimator, TransformerMixin): |
|
|
182 |
|
|
|
183 |
"""Sliding Window tranformer Mixin.""" |
|
|
184 |
|
|
|
185 |
def __init__(self, window=500, subsample=10, estimator=np.array): |
|
|
186 |
"""Init.""" |
|
|
187 |
self.window = window |
|
|
188 |
self.subsample = subsample |
|
|
189 |
self.estimator = estimator |
|
|
190 |
|
|
|
191 |
def fit(self, X, y=None): |
|
|
192 |
"""Fit, not used.""" |
|
|
193 |
return self |
|
|
194 |
|
|
|
195 |
def transform(self, X, y=None): |
|
|
196 |
"""Transform.""" |
|
|
197 |
return sliding_window(X.T, window=self.window, |
|
|
198 |
subsample=self.subsample, |
|
|
199 |
estimator=self.estimator) |
|
|
200 |
|
|
|
201 |
def update_subsample(self, old_sub, new_sub): |
|
|
202 |
"""update subsampling.""" |
|
|
203 |
self.subsample = new_sub |
|
|
204 |
|
|
|
205 |
|
|
|
206 |
class SubSample(BaseEstimator, TransformerMixin): |
|
|
207 |
|
|
|
208 |
"""Subsample tranformer Mixin.""" |
|
|
209 |
|
|
|
210 |
def __init__(self, subsample=10): |
|
|
211 |
"""Init.""" |
|
|
212 |
self.subsample = subsample |
|
|
213 |
|
|
|
214 |
def fit(self, X, y=None): |
|
|
215 |
"""Fit, not used.""" |
|
|
216 |
return self |
|
|
217 |
|
|
|
218 |
def transform(self, X, y=None): |
|
|
219 |
"""Transform.""" |
|
|
220 |
return X[::self.subsample] |
|
|
221 |
|
|
|
222 |
def update_subsample(self, old_sub, new_sub): |
|
|
223 |
"""update subsampling.""" |
|
|
224 |
self.subsample = new_sub |
|
|
225 |
|
|
|
226 |
|
|
|
227 |
class DelayPreds(BaseEstimator, TransformerMixin): |
|
|
228 |
|
|
|
229 |
"""Delayed prediction tranformer Mixin.""" |
|
|
230 |
|
|
|
231 |
def __init__(self, delay=1000, skip=100, two_dim=False): |
|
|
232 |
"""Init.""" |
|
|
233 |
self.delay = delay |
|
|
234 |
self.skip = skip |
|
|
235 |
self.two_dim = two_dim |
|
|
236 |
|
|
|
237 |
def fit(self, X, y=None): |
|
|
238 |
"""Fit, not used.""" |
|
|
239 |
return self |
|
|
240 |
|
|
|
241 |
def transform(self, X, y=None): |
|
|
242 |
"""Transform.""" |
|
|
243 |
if self.two_dim: |
|
|
244 |
return delay_preds_2d(X, delay=self.delay, skip=self.skip) |
|
|
245 |
else: |
|
|
246 |
return delay_preds(X, delay=self.delay, skip=self.skip) |
|
|
247 |
|
|
|
248 |
def update_subsample(self, old_sub, new_sub): |
|
|
249 |
"""update subsampling.""" |
|
|
250 |
ratio = old_sub / new_sub |
|
|
251 |
self.delay = int(self.delay * ratio) |
|
|
252 |
self.skip = int(self.skip * ratio) |
|
|
253 |
|
|
|
254 |
|
|
|
255 |
class NoneTransformer(BaseEstimator, TransformerMixin): |
|
|
256 |
|
|
|
257 |
"""Return None Transformer.""" |
|
|
258 |
|
|
|
259 |
def __init__(self): |
|
|
260 |
"""Init.""" |
|
|
261 |
pass |
|
|
262 |
|
|
|
263 |
def fit(self, X, y=None): |
|
|
264 |
"""Fit, not used.""" |
|
|
265 |
return self |
|
|
266 |
|
|
|
267 |
def transform(self, X, y=None): |
|
|
268 |
"""Transform.""" |
|
|
269 |
return None |