Meta:
file: 'cnn_256'
Model:
NeuralNet:
ensemble: [
'FBL_L1', 'FBL_L2', 'FBL_Sc', 'FBL_LDA', 'FBL_LDA_L1',
'FBLCR_L1', 'FBLCR_L2', 'FBLCR_Sc', 'FBLCR_LDA', 'FBLCR_LDA_L1',
'FBL_delay_L1', 'FBL_delay_L2', 'FBL_delay_Sc', 'FBL_delay_LDA',
'C500_[1_15]_LR', 'C500_[1_15]_LDA',
'C500_[7_30]_LR', 'C500_[7_30]_LDA',
'C500_[20_35]_LR', 'C500_[20_35]_LDA',
'C500_[70_150]_LR', 'C500_[70_150]_LDA',
'C250_[35]_LR', 'C250_[35]_LDA',
'C500_[35]_LR', 'C500_[35]_LDA',
'ERPDist', 'ERPDist_LDA',
'CAll_LR',
'CNN_1D_FB30',
'CNN_2D_FB30',
'CNN_1D_FB7-30',
'CNN_1D_FB5',
]
training_params:
optim: 'adam'
lr: 0.001
delay: 1500
skip: 100
partsTrain: 4
partsTest: 4
smallEpochs: 1
majorEpochs: 2
checkEveryEpochs: 1
architecture:
- 'Dropout':
p: 0.5
- 'Conv':
nb_filters: 16
- 'Activation':
type: 'relu'
- 'Flatten':
- 'Dense':
num_units: 256
- 'Activation':
type: 'relu'
- 'Dropout':
p: 0.7
- 'Output':