|
a |
|
b/lvl2/genEns_BagsSubjects.py |
|
|
1 |
# -*- coding: utf-8 -*- |
|
|
2 |
""" |
|
|
3 |
Created on Sat Aug 15 14:12:12 2015 |
|
|
4 |
|
|
|
5 |
@author: rc, alex |
|
|
6 |
""" |
|
|
7 |
import os |
|
|
8 |
import sys |
|
|
9 |
if __name__ == '__main__' and __package__ is None: |
|
|
10 |
filePath = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) |
|
|
11 |
sys.path.append(filePath) |
|
|
12 |
|
|
|
13 |
import numpy as np |
|
|
14 |
import yaml |
|
|
15 |
from copy import deepcopy |
|
|
16 |
from collections import OrderedDict |
|
|
17 |
from sklearn.metrics import roc_auc_score |
|
|
18 |
from sklearn.cross_validation import LeaveOneLabelOut |
|
|
19 |
|
|
|
20 |
from preprocessing.aux import getEventNames, delay_preds |
|
|
21 |
from utils.ensembles import createEnsFunc, loadPredictions, getLvl1ModelList |
|
|
22 |
|
|
|
23 |
from ensembling.WeightedMean import WeightedMeanClassifier |
|
|
24 |
from ensembling.NeuralNet import NeuralNet |
|
|
25 |
from ensembling.XGB import XGB |
|
|
26 |
|
|
|
27 |
def _from_yaml_to_func(method, params): |
|
|
28 |
"""go from yaml to method. |
|
|
29 |
|
|
|
30 |
Need to be here for accesing local variables. |
|
|
31 |
""" |
|
|
32 |
prm = dict() |
|
|
33 |
if params is not None: |
|
|
34 |
for key, val in params.iteritems(): |
|
|
35 |
prm[key] = eval(str(val)) |
|
|
36 |
return eval(method)(**prm) |
|
|
37 |
|
|
|
38 |
# ## here read YAML and build models ### |
|
|
39 |
yml = yaml.load(open(sys.argv[1])) |
|
|
40 |
|
|
|
41 |
fileName = yml['Meta']['file'] |
|
|
42 |
if 'subsample' in yml['Meta']: |
|
|
43 |
subsample = yml['Meta']['subsample'] |
|
|
44 |
else: |
|
|
45 |
subsample = 1 |
|
|
46 |
|
|
|
47 |
nbags = yml['Meta']['nbags'] |
|
|
48 |
bagsize = yml['Meta']['bagsize'] |
|
|
49 |
|
|
|
50 |
modelName, modelParams = yml['Model'].iteritems().next() |
|
|
51 |
model_base = _from_yaml_to_func(modelName, modelParams) |
|
|
52 |
|
|
|
53 |
ensemble = yml['Model'][modelName]['ensemble'] |
|
|
54 |
addSubjectID = True if 'addSubjectID' in yml.keys() else False |
|
|
55 |
|
|
|
56 |
mode = sys.argv[2] |
|
|
57 |
if mode == 'val': |
|
|
58 |
test = False |
|
|
59 |
elif mode == 'test': |
|
|
60 |
test = True |
|
|
61 |
else: |
|
|
62 |
raise('Invalid mode. Please specify either val or test') |
|
|
63 |
|
|
|
64 |
print('Running %s in mode %s, will be saved in %s' % (modelName,mode,fileName)) |
|
|
65 |
|
|
|
66 |
###### |
|
|
67 |
cols = getEventNames() |
|
|
68 |
|
|
|
69 |
ids = np.load('../infos_test.npy') |
|
|
70 |
subjects_test = ids[:, 1] |
|
|
71 |
series_test = ids[:, 2] |
|
|
72 |
ids = ids[:, 0] |
|
|
73 |
labels = np.load('../infos_val.npy') |
|
|
74 |
subjects = labels[:, -2] |
|
|
75 |
series = labels[:, -1] |
|
|
76 |
labels = labels[:, :-2] |
|
|
77 |
|
|
|
78 |
allCols = range(len(cols)) |
|
|
79 |
|
|
|
80 |
# ## loading prediction ### |
|
|
81 |
files = getLvl1ModelList() |
|
|
82 |
|
|
|
83 |
preds_val = OrderedDict() |
|
|
84 |
for f in files: |
|
|
85 |
loadPredictions(preds_val, f[0], f[1]) |
|
|
86 |
# validity check |
|
|
87 |
for m in ensemble: |
|
|
88 |
assert(m in preds_val) |
|
|
89 |
|
|
|
90 |
# ## train/test ### |
|
|
91 |
aggr = createEnsFunc(ensemble) |
|
|
92 |
dataTrain = aggr(preds_val) |
|
|
93 |
preds_val = None |
|
|
94 |
|
|
|
95 |
# switch to add subjects |
|
|
96 |
if addSubjectID: |
|
|
97 |
dataTrain = np.c_[dataTrain, subjects] |
|
|
98 |
|
|
|
99 |
np.random.seed(4234521) |
|
|
100 |
|
|
|
101 |
if test: |
|
|
102 |
# train the model |
|
|
103 |
all_models = [] |
|
|
104 |
for k in range(nbags): |
|
|
105 |
print("Train Bag #%d/%d" % (k+1, nbags)) |
|
|
106 |
model = deepcopy(model_base) |
|
|
107 |
allsubjects = np.arange(1,13) |
|
|
108 |
np.random.shuffle(allsubjects) |
|
|
109 |
ix_subjects = np.sum([subjects==s for s in allsubjects[0:bagsize]], axis=0) != 0 |
|
|
110 |
|
|
|
111 |
model.mdlNr = k |
|
|
112 |
model.fit(dataTrain[ix_subjects], labels[ix_subjects]) |
|
|
113 |
all_models.append(model) |
|
|
114 |
dataTrain = None |
|
|
115 |
|
|
|
116 |
# load test data |
|
|
117 |
preds_test = OrderedDict() |
|
|
118 |
for f in files: |
|
|
119 |
loadPredictions(preds_test, f[0], f[1], test=True) |
|
|
120 |
dataTest = aggr(preds_test) |
|
|
121 |
preds_test = None |
|
|
122 |
# switch to add subjects |
|
|
123 |
if addSubjectID: |
|
|
124 |
dataTest = np.c_[dataTest, subjects_test] |
|
|
125 |
|
|
|
126 |
# get predictions |
|
|
127 |
p = np.zeros((len(ids),6)) |
|
|
128 |
for k in range(nbags): |
|
|
129 |
print("Test Bag #%d" % (k+1)) |
|
|
130 |
model = all_models.pop(0) |
|
|
131 |
p += model.predict_proba(dataTest) / nbags |
|
|
132 |
np.save('test/test_%s.npy' % fileName, [p]) |
|
|
133 |
else: |
|
|
134 |
auc_tot = [] |
|
|
135 |
p = np.zeros(labels.shape) |
|
|
136 |
cv = LeaveOneLabelOut(series) |
|
|
137 |
for fold, (train, test) in enumerate(cv): |
|
|
138 |
for k in range(nbags): |
|
|
139 |
print("Train Bag #%d/%d" % (k+1, nbags)) |
|
|
140 |
allsubjects = np.arange(1,13) |
|
|
141 |
np.random.shuffle(allsubjects) |
|
|
142 |
ix_subjects = np.sum([subjects[train]==s for s in allsubjects[0:bagsize]], axis=0) != 0 |
|
|
143 |
model = deepcopy(model_base) |
|
|
144 |
model.mdlNr = k |
|
|
145 |
if modelName == 'NeuralNet': |
|
|
146 |
model.fit(dataTrain[train[ix_subjects]], labels[train[ix_subjects]], dataTrain[test], |
|
|
147 |
labels[test]) |
|
|
148 |
else: |
|
|
149 |
model.fit(dataTrain[train[ix_subjects]], labels[train[ix_subjects]]) |
|
|
150 |
p[test] += model.predict_proba(dataTrain[test]) / nbags |
|
|
151 |
auc = [roc_auc_score(labels[test][:, col], p[test][:, col]) |
|
|
152 |
for col in allCols] |
|
|
153 |
print np.mean(auc) |
|
|
154 |
auc_tot.append(np.mean(auc)) |
|
|
155 |
print('Fold %d, score: %.5f' % (fold, auc_tot[-1])) |
|
|
156 |
print('AUC: %.5f' % np.mean(auc_tot)) |
|
|
157 |
np.save('val/val_%s.npy' % fileName, [p]) |