|
a |
|
b/lvl1/models/FBLC_256pts.yml |
|
|
1 |
# Import python package |
|
|
2 |
imports: |
|
|
3 |
preprocessing.filterBank: |
|
|
4 |
- FilterBank |
|
|
5 |
preprocessing.aux: |
|
|
6 |
- SubSample |
|
|
7 |
- DelayPreds |
|
|
8 |
sklearn.linear_model: |
|
|
9 |
- LogisticRegression |
|
|
10 |
sklearn.preprocessing: |
|
|
11 |
- StandardScaler |
|
|
12 |
- Normalizer |
|
|
13 |
sklearn.lda: |
|
|
14 |
- LDA |
|
|
15 |
|
|
|
16 |
# Meta variables |
|
|
17 |
Meta: |
|
|
18 |
file: 'FBLC_256pts_alex2' |
|
|
19 |
cores: 6 |
|
|
20 |
subsample: 10 |
|
|
21 |
subsample_test: 1 |
|
|
22 |
cachePreprocessed: False |
|
|
23 |
addPreprocessed: |
|
|
24 |
- 'CovsAlex_35Hz_500pts' |
|
|
25 |
|
|
|
26 |
# preprocessing functions receive arguments: X, y(only for train) |
|
|
27 |
Preprocessing: |
|
|
28 |
- FilterBank: |
|
|
29 |
filters: "'LowpassBank'" |
|
|
30 |
- SubSample: |
|
|
31 |
subsample: subsample |
|
|
32 |
|
|
|
33 |
Models: |
|
|
34 |
- '("l1",Normalizer(norm="l1")),("lr",LogisticRegression())' |
|
|
35 |
- '("l2",Normalizer(norm="l2")),("lr",LogisticRegression())' |
|
|
36 |
- '("sc",StandardScaler()),("lr",LogisticRegression())' |
|
|
37 |
- '("lda",LDA())' |
|
|
38 |
- '("l1",Normalizer(norm="l1")),("lda",LDA())' |