|
a |
|
b/code/preprocessing/EEG/fastica/fpica.m |
|
|
1 |
function [A, W] = fpica(X, whiteningMatrix, dewhiteningMatrix, approach, ... |
|
|
2 |
numOfIC, g, finetune, a1, a2, myy, stabilization, ... |
|
|
3 |
epsilon, maxNumIterations, maxFinetune, initState, ... |
|
|
4 |
guess, sampleSize, displayMode, displayInterval, ... |
|
|
5 |
s_verbose); |
|
|
6 |
%FPICA - Fixed point ICA. Main algorithm of FASTICA. |
|
|
7 |
% |
|
|
8 |
% [A, W] = fpica(whitesig, whiteningMatrix, dewhiteningMatrix, approach, |
|
|
9 |
% numOfIC, g, finetune, a1, a2, mu, stabilization, epsilon, |
|
|
10 |
% maxNumIterations, maxFinetune, initState, guess, sampleSize, |
|
|
11 |
% displayMode, displayInterval, verbose); |
|
|
12 |
% |
|
|
13 |
% Perform independent component analysis using Hyvarinen's fixed point |
|
|
14 |
% algorithm. Outputs an estimate of the mixing matrix A and its inverse W. |
|
|
15 |
% |
|
|
16 |
% whitesig :the whitened data as row vectors |
|
|
17 |
% whiteningMatrix :can be obtained with function whitenv |
|
|
18 |
% dewhiteningMatrix :can be obtained with function whitenv |
|
|
19 |
% approach [ 'symm' | 'defl' ] :the approach used (deflation or symmetric) |
|
|
20 |
% numOfIC [ 0 - Dim of whitesig ] :number of independent components estimated |
|
|
21 |
% g [ 'pow3' | 'tanh' | :the nonlinearity used |
|
|
22 |
% 'gaus' | 'skew' ] |
|
|
23 |
% finetune [same as g + 'off'] :the nonlinearity used in finetuning. |
|
|
24 |
% a1 :parameter for tuning 'tanh' |
|
|
25 |
% a2 :parameter for tuning 'gaus' |
|
|
26 |
% mu :step size in stabilized algorithm |
|
|
27 |
% stabilization [ 'on' | 'off' ] :if mu < 1 then automatically on |
|
|
28 |
% epsilon :stopping criterion |
|
|
29 |
% maxNumIterations :maximum number of iterations |
|
|
30 |
% maxFinetune :maximum number of iteretions for finetuning |
|
|
31 |
% initState [ 'rand' | 'guess' ] :initial guess or random initial state. See below |
|
|
32 |
% guess :initial guess for A. Ignored if initState = 'rand' |
|
|
33 |
% sampleSize [ 0 - 1 ] :percentage of the samples used in one iteration |
|
|
34 |
% displayMode [ 'signals' | 'basis' | :plot running estimate |
|
|
35 |
% 'filters' | 'off' ] |
|
|
36 |
% displayInterval :number of iterations we take between plots |
|
|
37 |
% verbose [ 'on' | 'off' ] :report progress in text format |
|
|
38 |
% |
|
|
39 |
% EXAMPLE |
|
|
40 |
% [E, D] = pcamat(vectors); |
|
|
41 |
% [nv, wm, dwm] = whitenv(vectors, E, D); |
|
|
42 |
% [A, W] = fpica(nv, wm, dwm); |
|
|
43 |
% |
|
|
44 |
% |
|
|
45 |
% This function is needed by FASTICA and FASTICAG |
|
|
46 |
% |
|
|
47 |
% See also FASTICA, FASTICAG, WHITENV, PCAMAT |
|
|
48 |
|
|
|
49 |
% @(#)$Id$ |
|
|
50 |
|
|
|
51 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
52 |
% Global variable for stopping the ICA calculations from the GUI |
|
|
53 |
global g_FastICA_interrupt; |
|
|
54 |
if isempty(g_FastICA_interrupt) |
|
|
55 |
clear global g_FastICA_interrupt; |
|
|
56 |
interruptible = 0; |
|
|
57 |
else |
|
|
58 |
interruptible = 1; |
|
|
59 |
end |
|
|
60 |
|
|
|
61 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
62 |
% Default values |
|
|
63 |
|
|
|
64 |
if nargin < 3, error('Not enough arguments!'); end |
|
|
65 |
[vectorSize, numSamples] = size(X); |
|
|
66 |
if nargin < 20, s_verbose = 'on'; end |
|
|
67 |
if nargin < 19, displayInterval = 1; end |
|
|
68 |
if nargin < 18, displayMode = 'on'; end |
|
|
69 |
if nargin < 17, sampleSize = 1; end |
|
|
70 |
if nargin < 16, guess = 1; end |
|
|
71 |
if nargin < 15, initState = 'rand'; end |
|
|
72 |
if nargin < 14, maxFinetune = 100; end |
|
|
73 |
if nargin < 13, maxNumIterations = 1000; end |
|
|
74 |
if nargin < 12, epsilon = 0.0001; end |
|
|
75 |
if nargin < 11, stabilization = 'on'; end |
|
|
76 |
if nargin < 10, myy = 1; end |
|
|
77 |
if nargin < 9, a2 = 1; end |
|
|
78 |
if nargin < 8, a1 = 1; end |
|
|
79 |
if nargin < 7, finetune = 'off'; end |
|
|
80 |
if nargin < 6, g = 'pow3'; end |
|
|
81 |
if nargin < 5, numOfIC = vectorSize; end % vectorSize = Dim |
|
|
82 |
if nargin < 4, approach = 'defl'; end |
|
|
83 |
|
|
|
84 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
85 |
% Checking the data |
|
|
86 |
|
|
|
87 |
if ~isreal(X) |
|
|
88 |
error('Input has an imaginary part.'); |
|
|
89 |
end |
|
|
90 |
|
|
|
91 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
92 |
% Checking the value for verbose |
|
|
93 |
|
|
|
94 |
switch lower(s_verbose) |
|
|
95 |
case 'on' |
|
|
96 |
b_verbose = 1; |
|
|
97 |
case 'off' |
|
|
98 |
b_verbose = 0; |
|
|
99 |
otherwise |
|
|
100 |
error(sprintf('Illegal value [ %s ] for parameter: ''verbose''\n', s_verbose)); |
|
|
101 |
end |
|
|
102 |
|
|
|
103 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
104 |
% Checking the value for approach |
|
|
105 |
|
|
|
106 |
switch lower(approach) |
|
|
107 |
case 'symm' |
|
|
108 |
approachMode = 1; |
|
|
109 |
case 'defl' |
|
|
110 |
approachMode = 2; |
|
|
111 |
otherwise |
|
|
112 |
error(sprintf('Illegal value [ %s ] for parameter: ''approach''\n', approach)); |
|
|
113 |
end |
|
|
114 |
if b_verbose, fprintf('Used approach [ %s ].\n', approach); end |
|
|
115 |
|
|
|
116 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
117 |
% Checking the value for numOfIC |
|
|
118 |
|
|
|
119 |
if vectorSize < numOfIC |
|
|
120 |
error('Must have numOfIC <= Dimension!'); |
|
|
121 |
end |
|
|
122 |
|
|
|
123 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
124 |
% Checking the sampleSize |
|
|
125 |
if sampleSize > 1 |
|
|
126 |
sampleSize = 1; |
|
|
127 |
if b_verbose |
|
|
128 |
fprintf('Warning: Setting ''sampleSize'' to 1.\n'); |
|
|
129 |
end |
|
|
130 |
elseif sampleSize < 1 |
|
|
131 |
if (sampleSize * numSamples) < 1000 |
|
|
132 |
sampleSize = min(1000/numSamples, 1); |
|
|
133 |
if b_verbose |
|
|
134 |
fprintf('Warning: Setting ''sampleSize'' to %0.3f (%d samples).\n', ... |
|
|
135 |
sampleSize, floor(sampleSize * numSamples)); |
|
|
136 |
end |
|
|
137 |
end |
|
|
138 |
end |
|
|
139 |
if b_verbose |
|
|
140 |
if b_verbose & (sampleSize < 1) |
|
|
141 |
fprintf('Using about %0.0f%% of the samples in random order in every step.\n',sampleSize*100); |
|
|
142 |
end |
|
|
143 |
end |
|
|
144 |
|
|
|
145 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
146 |
% Checking the value for nonlinearity. |
|
|
147 |
|
|
|
148 |
switch lower(g) |
|
|
149 |
case 'pow3' |
|
|
150 |
gOrig = 10; |
|
|
151 |
case 'tanh' |
|
|
152 |
gOrig = 20; |
|
|
153 |
case {'gaus', 'gauss'} |
|
|
154 |
gOrig = 30; |
|
|
155 |
case 'skew' |
|
|
156 |
gOrig = 40; |
|
|
157 |
otherwise |
|
|
158 |
error(sprintf('Illegal value [ %s ] for parameter: ''g''\n', g)); |
|
|
159 |
end |
|
|
160 |
if sampleSize ~= 1 |
|
|
161 |
gOrig = gOrig + 2; |
|
|
162 |
end |
|
|
163 |
if myy ~= 1 |
|
|
164 |
gOrig = gOrig + 1; |
|
|
165 |
end |
|
|
166 |
|
|
|
167 |
if b_verbose, |
|
|
168 |
fprintf('Used nonlinearity [ %s ].\n', g); |
|
|
169 |
end |
|
|
170 |
|
|
|
171 |
finetuningEnabled = 1; |
|
|
172 |
switch lower(finetune) |
|
|
173 |
case 'pow3' |
|
|
174 |
gFine = 10 + 1; |
|
|
175 |
case 'tanh' |
|
|
176 |
gFine = 20 + 1; |
|
|
177 |
case {'gaus', 'gauss'} |
|
|
178 |
gFine = 30 + 1; |
|
|
179 |
case 'skew' |
|
|
180 |
gFine = 40 + 1; |
|
|
181 |
case 'off' |
|
|
182 |
if myy ~= 1 |
|
|
183 |
gFine = gOrig; |
|
|
184 |
else |
|
|
185 |
gFine = gOrig + 1; |
|
|
186 |
end |
|
|
187 |
finetuningEnabled = 0; |
|
|
188 |
otherwise |
|
|
189 |
error(sprintf('Illegal value [ %s ] for parameter: ''finetune''\n', ... |
|
|
190 |
finetune)); |
|
|
191 |
end |
|
|
192 |
|
|
|
193 |
if b_verbose & finetuningEnabled |
|
|
194 |
fprintf('Finetuning enabled (nonlinearity: [ %s ]).\n', finetune); |
|
|
195 |
end |
|
|
196 |
|
|
|
197 |
switch lower(stabilization) |
|
|
198 |
case 'on' |
|
|
199 |
stabilizationEnabled = 1; |
|
|
200 |
case 'off' |
|
|
201 |
if myy ~= 1 |
|
|
202 |
stabilizationEnabled = 1; |
|
|
203 |
else |
|
|
204 |
stabilizationEnabled = 0; |
|
|
205 |
end |
|
|
206 |
otherwise |
|
|
207 |
error(sprintf('Illegal value [ %s ] for parameter: ''stabilization''\n', ... |
|
|
208 |
stabilization)); |
|
|
209 |
end |
|
|
210 |
|
|
|
211 |
if b_verbose & stabilizationEnabled |
|
|
212 |
fprintf('Using stabilized algorithm.\n'); |
|
|
213 |
end |
|
|
214 |
|
|
|
215 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
216 |
% Some other parameters |
|
|
217 |
myyOrig = myy; |
|
|
218 |
% When we start fine-tuning we'll set myy = myyK * myy |
|
|
219 |
myyK = 0.01; |
|
|
220 |
% How many times do we try for convergence until we give up. |
|
|
221 |
failureLimit = 5; |
|
|
222 |
|
|
|
223 |
|
|
|
224 |
usedNlinearity = gOrig; |
|
|
225 |
stroke = 0; |
|
|
226 |
notFine = 1; |
|
|
227 |
long = 0; |
|
|
228 |
|
|
|
229 |
|
|
|
230 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
231 |
% Checking the value for initial state. |
|
|
232 |
|
|
|
233 |
switch lower(initState) |
|
|
234 |
case 'rand' |
|
|
235 |
initialStateMode = 0; |
|
|
236 |
case 'guess' |
|
|
237 |
if size(guess,1) ~= size(whiteningMatrix,2) |
|
|
238 |
initialStateMode = 0; |
|
|
239 |
if b_verbose |
|
|
240 |
fprintf('Warning: size of initial guess is incorrect. Using random initial guess.\n'); |
|
|
241 |
end |
|
|
242 |
else |
|
|
243 |
initialStateMode = 1; |
|
|
244 |
if size(guess,2) < numOfIC |
|
|
245 |
if b_verbose |
|
|
246 |
fprintf('Warning: initial guess only for first %d components. Using random initial guess for others.\n', size(guess,2)); |
|
|
247 |
end |
|
|
248 |
guess(:, size(guess, 2) + 1:numOfIC) = ... |
|
|
249 |
rand(vectorSize,numOfIC-size(guess,2))-.5; |
|
|
250 |
elseif size(guess,2)>numOfIC |
|
|
251 |
guess=guess(:,1:numOfIC); |
|
|
252 |
fprintf('Warning: Initial guess too large. The excess column are dropped.\n'); |
|
|
253 |
end |
|
|
254 |
if b_verbose, fprintf('Using initial guess.\n'); end |
|
|
255 |
end |
|
|
256 |
otherwise |
|
|
257 |
error(sprintf('Illegal value [ %s ] for parameter: ''initState''\n', initState)); |
|
|
258 |
end |
|
|
259 |
|
|
|
260 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
261 |
% Checking the value for display mode. |
|
|
262 |
|
|
|
263 |
switch lower(displayMode) |
|
|
264 |
case {'off', 'none'} |
|
|
265 |
usedDisplay = 0; |
|
|
266 |
case {'on', 'signals'} |
|
|
267 |
usedDisplay = 1; |
|
|
268 |
if (b_verbose & (numSamples > 10000)) |
|
|
269 |
fprintf('Warning: Data vectors are very long. Plotting may take long time.\n'); |
|
|
270 |
end |
|
|
271 |
if (b_verbose & (numOfIC > 25)) |
|
|
272 |
fprintf('Warning: There are too many signals to plot. Plot may not look good.\n'); |
|
|
273 |
end |
|
|
274 |
case 'basis' |
|
|
275 |
usedDisplay = 2; |
|
|
276 |
if (b_verbose & (numOfIC > 25)) |
|
|
277 |
fprintf('Warning: There are too many signals to plot. Plot may not look good.\n'); |
|
|
278 |
end |
|
|
279 |
case 'filters' |
|
|
280 |
usedDisplay = 3; |
|
|
281 |
if (b_verbose & (vectorSize > 25)) |
|
|
282 |
fprintf('Warning: There are too many signals to plot. Plot may not look good.\n'); |
|
|
283 |
end |
|
|
284 |
otherwise |
|
|
285 |
error(sprintf('Illegal value [ %s ] for parameter: ''displayMode''\n', displayMode)); |
|
|
286 |
end |
|
|
287 |
|
|
|
288 |
% The displayInterval can't be less than 1... |
|
|
289 |
if displayInterval < 1 |
|
|
290 |
displayInterval = 1; |
|
|
291 |
end |
|
|
292 |
|
|
|
293 |
|
|
|
294 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
295 |
if b_verbose, fprintf('Starting ICA calculation...\n'); end |
|
|
296 |
|
|
|
297 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
298 |
% SYMMETRIC APPROACH |
|
|
299 |
if approachMode == 1, |
|
|
300 |
|
|
|
301 |
% set some parameters more... |
|
|
302 |
usedNlinearity = gOrig; |
|
|
303 |
stroke = 0; |
|
|
304 |
notFine = 1; |
|
|
305 |
long = 0; |
|
|
306 |
|
|
|
307 |
A = zeros(vectorSize, numOfIC); % Dewhitened basis vectors. |
|
|
308 |
if initialStateMode == 0 |
|
|
309 |
% Take random orthonormal initial vectors. |
|
|
310 |
B = orth (randn (vectorSize, numOfIC)); |
|
|
311 |
elseif initialStateMode == 1 |
|
|
312 |
% Use the given initial vector as the initial state |
|
|
313 |
B = whiteningMatrix * guess; |
|
|
314 |
end |
|
|
315 |
|
|
|
316 |
BOld = zeros(size(B)); |
|
|
317 |
BOld2 = zeros(size(B)); |
|
|
318 |
|
|
|
319 |
% This is the actual fixed-point iteration loop. |
|
|
320 |
for round = 1:maxNumIterations + 1, |
|
|
321 |
if round == maxNumIterations + 1, |
|
|
322 |
fprintf('No convergence after %d steps\n', maxNumIterations); |
|
|
323 |
fprintf('Note that the plots are probably wrong.\n'); |
|
|
324 |
if ~isempty(B) |
|
|
325 |
% Symmetric orthogonalization. |
|
|
326 |
B = B * real(inv(B' * B)^(1/2)); |
|
|
327 |
|
|
|
328 |
W = B' * whiteningMatrix; |
|
|
329 |
A = dewhiteningMatrix * B; |
|
|
330 |
else |
|
|
331 |
W = []; |
|
|
332 |
A = []; |
|
|
333 |
end |
|
|
334 |
return; |
|
|
335 |
end |
|
|
336 |
|
|
|
337 |
if (interruptible & g_FastICA_interrupt) |
|
|
338 |
if b_verbose |
|
|
339 |
fprintf('\n\nCalculation interrupted by the user\n'); |
|
|
340 |
end |
|
|
341 |
if ~isempty(B) |
|
|
342 |
W = B' * whiteningMatrix; |
|
|
343 |
A = dewhiteningMatrix * B; |
|
|
344 |
else |
|
|
345 |
W = []; |
|
|
346 |
A = []; |
|
|
347 |
end |
|
|
348 |
return; |
|
|
349 |
end |
|
|
350 |
|
|
|
351 |
|
|
|
352 |
% Symmetric orthogonalization. |
|
|
353 |
B = B * real(inv(B' * B)^(1/2)); |
|
|
354 |
|
|
|
355 |
% Test for termination condition. Note that we consider opposite |
|
|
356 |
% directions here as well. |
|
|
357 |
minAbsCos = min(abs(diag(B' * BOld))); |
|
|
358 |
minAbsCos2 = min(abs(diag(B' * BOld2))); |
|
|
359 |
|
|
|
360 |
if (1 - minAbsCos < epsilon) |
|
|
361 |
if finetuningEnabled & notFine |
|
|
362 |
if b_verbose, fprintf('Initial convergence, fine-tuning: \n'); end; |
|
|
363 |
notFine = 0; |
|
|
364 |
usedNlinearity = gFine; |
|
|
365 |
myy = myyK * myyOrig; |
|
|
366 |
BOld = zeros(size(B)); |
|
|
367 |
BOld2 = zeros(size(B)); |
|
|
368 |
|
|
|
369 |
else |
|
|
370 |
if b_verbose, fprintf('Convergence after %d steps\n', round); end |
|
|
371 |
|
|
|
372 |
% Calculate the de-whitened vectors. |
|
|
373 |
A = dewhiteningMatrix * B; |
|
|
374 |
break; |
|
|
375 |
end |
|
|
376 |
elseif stabilizationEnabled |
|
|
377 |
if (~stroke) & (1 - minAbsCos2 < epsilon) |
|
|
378 |
if b_verbose, fprintf('Stroke!\n'); end; |
|
|
379 |
stroke = myy; |
|
|
380 |
myy = .5*myy; |
|
|
381 |
if mod(usedNlinearity,2) == 0 |
|
|
382 |
usedNlinearity = usedNlinearity + 1; |
|
|
383 |
end |
|
|
384 |
elseif stroke |
|
|
385 |
myy = stroke; |
|
|
386 |
stroke = 0; |
|
|
387 |
if (myy == 1) & (mod(usedNlinearity,2) ~= 0) |
|
|
388 |
usedNlinearity = usedNlinearity - 1; |
|
|
389 |
end |
|
|
390 |
elseif (~long) & (round>maxNumIterations/2) |
|
|
391 |
if b_verbose, fprintf('Taking long (reducing step size)\n'); end; |
|
|
392 |
long = 1; |
|
|
393 |
myy = .5*myy; |
|
|
394 |
if mod(usedNlinearity,2) == 0 |
|
|
395 |
usedNlinearity = usedNlinearity + 1; |
|
|
396 |
end |
|
|
397 |
end |
|
|
398 |
end |
|
|
399 |
|
|
|
400 |
BOld2 = BOld; |
|
|
401 |
BOld = B; |
|
|
402 |
|
|
|
403 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
404 |
% Show the progress... |
|
|
405 |
if b_verbose |
|
|
406 |
if round == 1 |
|
|
407 |
fprintf('Step no. %d\n', round); |
|
|
408 |
else |
|
|
409 |
fprintf('Step no. %d, change in value of estimate: %.3g \n', round, 1 - minAbsCos); |
|
|
410 |
end |
|
|
411 |
end |
|
|
412 |
|
|
|
413 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
414 |
% Also plot the current state... |
|
|
415 |
switch usedDisplay |
|
|
416 |
case 1 |
|
|
417 |
if rem(round, displayInterval) == 0, |
|
|
418 |
% There was and may still be other displaymodes... |
|
|
419 |
% 1D signals |
|
|
420 |
icaplot('dispsig',(X'*B)'); |
|
|
421 |
drawnow; |
|
|
422 |
end |
|
|
423 |
case 2 |
|
|
424 |
if rem(round, displayInterval) == 0, |
|
|
425 |
% ... and now there are :-) |
|
|
426 |
% 1D basis |
|
|
427 |
A = dewhiteningMatrix * B; |
|
|
428 |
icaplot('dispsig',A'); |
|
|
429 |
drawnow; |
|
|
430 |
end |
|
|
431 |
case 3 |
|
|
432 |
if rem(round, displayInterval) == 0, |
|
|
433 |
% ... and now there are :-) |
|
|
434 |
% 1D filters |
|
|
435 |
W = B' * whiteningMatrix; |
|
|
436 |
icaplot('dispsig',W); |
|
|
437 |
drawnow; |
|
|
438 |
end |
|
|
439 |
otherwise |
|
|
440 |
end |
|
|
441 |
|
|
|
442 |
switch usedNlinearity |
|
|
443 |
% pow3 |
|
|
444 |
case 10 |
|
|
445 |
B = (X * (( X' * B) .^ 3)) / numSamples - 3 * B; |
|
|
446 |
case 11 |
|
|
447 |
% optimoitu - epsilonin kokoisia eroja |
|
|
448 |
% tämä on optimoitu koodi, katso vanha koodi esim. |
|
|
449 |
% aikaisemmista versioista kuten 2.0 beta3 |
|
|
450 |
Y = X' * B; |
|
|
451 |
Gpow3 = Y .^ 3; |
|
|
452 |
Beta = sum(Y .* Gpow3); |
|
|
453 |
D = diag(1 ./ (Beta - 3 * numSamples)); |
|
|
454 |
B = B + myy * B * (Y' * Gpow3 - diag(Beta)) * D; |
|
|
455 |
case 12 |
|
|
456 |
Xsub=X(:, getSamples(numSamples, sampleSize)); |
|
|
457 |
B = (Xsub * (( Xsub' * B) .^ 3)) / size(Xsub,2) - 3 * B; |
|
|
458 |
case 13 |
|
|
459 |
% Optimoitu |
|
|
460 |
Ysub=X(:, getSamples(numSamples, sampleSize))' * B; |
|
|
461 |
Gpow3 = Ysub .^ 3; |
|
|
462 |
Beta = sum(Ysub .* Gpow3); |
|
|
463 |
D = diag(1 ./ (Beta - 3 * size(Ysub', 2))); |
|
|
464 |
B = B + myy * B * (Ysub' * Gpow3 - diag(Beta)) * D; |
|
|
465 |
|
|
|
466 |
% tanh |
|
|
467 |
case 20 |
|
|
468 |
hypTan = tanh(a1 * X' * B); |
|
|
469 |
B = X * hypTan / numSamples - ... |
|
|
470 |
ones(size(B,1),1) * sum(1 - hypTan .^ 2) .* B / numSamples * ... |
|
|
471 |
a1; |
|
|
472 |
case 21 |
|
|
473 |
% optimoitu - epsilonin kokoisia |
|
|
474 |
Y = X' * B; |
|
|
475 |
hypTan = tanh(a1 * Y); |
|
|
476 |
Beta = sum(Y .* hypTan); |
|
|
477 |
D = diag(1 ./ (Beta - a1 * sum(1 - hypTan .^ 2))); |
|
|
478 |
B = B + myy * B * (Y' * hypTan - diag(Beta)) * D; |
|
|
479 |
case 22 |
|
|
480 |
Xsub=X(:, getSamples(numSamples, sampleSize)); |
|
|
481 |
hypTan = tanh(a1 * Xsub' * B); |
|
|
482 |
B = Xsub * hypTan / size(Xsub, 2) - ... |
|
|
483 |
ones(size(B,1),1) * sum(1 - hypTan .^ 2) .* B / size(Xsub, 2) * a1; |
|
|
484 |
case 23 |
|
|
485 |
% Optimoitu |
|
|
486 |
Y = X(:, getSamples(numSamples, sampleSize))' * B; |
|
|
487 |
hypTan = tanh(a1 * Y); |
|
|
488 |
Beta = sum(Y .* hypTan); |
|
|
489 |
D = diag(1 ./ (Beta - a1 * sum(1 - hypTan .^ 2))); |
|
|
490 |
B = B + myy * B * (Y' * hypTan - diag(Beta)) * D; |
|
|
491 |
|
|
|
492 |
% gauss |
|
|
493 |
case 30 |
|
|
494 |
U = X' * B; |
|
|
495 |
Usquared=U .^ 2; |
|
|
496 |
ex = exp(-a2 * Usquared / 2); |
|
|
497 |
gauss = U .* ex; |
|
|
498 |
dGauss = (1 - a2 * Usquared) .*ex; |
|
|
499 |
B = X * gauss / numSamples - ... |
|
|
500 |
ones(size(B,1),1) * sum(dGauss)... |
|
|
501 |
.* B / numSamples ; |
|
|
502 |
case 31 |
|
|
503 |
% optimoitu |
|
|
504 |
Y = X' * B; |
|
|
505 |
ex = exp(-a2 * (Y .^ 2) / 2); |
|
|
506 |
gauss = Y .* ex; |
|
|
507 |
Beta = sum(Y .* gauss); |
|
|
508 |
D = diag(1 ./ (Beta - sum((1 - a2 * (Y .^ 2)) .* ex))); |
|
|
509 |
B = B + myy * B * (Y' * gauss - diag(Beta)) * D; |
|
|
510 |
case 32 |
|
|
511 |
Xsub=X(:, getSamples(numSamples, sampleSize)); |
|
|
512 |
U = Xsub' * B; |
|
|
513 |
Usquared=U .^ 2; |
|
|
514 |
ex = exp(-a2 * Usquared / 2); |
|
|
515 |
gauss = U .* ex; |
|
|
516 |
dGauss = (1 - a2 * Usquared) .*ex; |
|
|
517 |
B = Xsub * gauss / size(Xsub,2) - ... |
|
|
518 |
ones(size(B,1),1) * sum(dGauss)... |
|
|
519 |
.* B / size(Xsub,2) ; |
|
|
520 |
case 33 |
|
|
521 |
% Optimoitu |
|
|
522 |
Y = X(:, getSamples(numSamples, sampleSize))' * B; |
|
|
523 |
ex = exp(-a2 * (Y .^ 2) / 2); |
|
|
524 |
gauss = Y .* ex; |
|
|
525 |
Beta = sum(Y .* gauss); |
|
|
526 |
D = diag(1 ./ (Beta - sum((1 - a2 * (Y .^ 2)) .* ex))); |
|
|
527 |
B = B + myy * B * (Y' * gauss - diag(Beta)) * D; |
|
|
528 |
|
|
|
529 |
% skew |
|
|
530 |
case 40 |
|
|
531 |
B = (X * ((X' * B) .^ 2)) / numSamples; |
|
|
532 |
case 41 |
|
|
533 |
% Optimoitu |
|
|
534 |
Y = X' * B; |
|
|
535 |
Gskew = Y .^ 2; |
|
|
536 |
Beta = sum(Y .* Gskew); |
|
|
537 |
D = diag(1 ./ (Beta)); |
|
|
538 |
B = B + myy * B * (Y' * Gskew - diag(Beta)) * D; |
|
|
539 |
case 42 |
|
|
540 |
Xsub=X(:, getSamples(numSamples, sampleSize)); |
|
|
541 |
B = (Xsub * ((Xsub' * B) .^ 2)) / size(Xsub,2); |
|
|
542 |
case 43 |
|
|
543 |
% Uusi optimoitu |
|
|
544 |
Y = X(:, getSamples(numSamples, sampleSize))' * B; |
|
|
545 |
Gskew = Y .^ 2; |
|
|
546 |
Beta = sum(Y .* Gskew); |
|
|
547 |
D = diag(1 ./ (Beta)); |
|
|
548 |
B = B + myy * B * (Y' * Gskew - diag(Beta)) * D; |
|
|
549 |
|
|
|
550 |
otherwise |
|
|
551 |
error('Code for desired nonlinearity not found!'); |
|
|
552 |
end |
|
|
553 |
end |
|
|
554 |
|
|
|
555 |
|
|
|
556 |
% Calculate ICA filters. |
|
|
557 |
W = B' * whiteningMatrix; |
|
|
558 |
|
|
|
559 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
560 |
% Also plot the last one... |
|
|
561 |
switch usedDisplay |
|
|
562 |
case 1 |
|
|
563 |
% There was and may still be other displaymodes... |
|
|
564 |
% 1D signals |
|
|
565 |
icaplot('dispsig',(X'*B)'); |
|
|
566 |
drawnow; |
|
|
567 |
case 2 |
|
|
568 |
% ... and now there are :-) |
|
|
569 |
% 1D basis |
|
|
570 |
icaplot('dispsig',A'); |
|
|
571 |
drawnow; |
|
|
572 |
case 3 |
|
|
573 |
% ... and now there are :-) |
|
|
574 |
% 1D filters |
|
|
575 |
icaplot('dispsig',W); |
|
|
576 |
drawnow; |
|
|
577 |
otherwise |
|
|
578 |
end |
|
|
579 |
end |
|
|
580 |
|
|
|
581 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
582 |
% DEFLATION APPROACH |
|
|
583 |
if approachMode == 2 |
|
|
584 |
|
|
|
585 |
B = zeros(vectorSize); |
|
|
586 |
|
|
|
587 |
% The search for a basis vector is repeated numOfIC times. |
|
|
588 |
round = 1; |
|
|
589 |
|
|
|
590 |
numFailures = 0; |
|
|
591 |
|
|
|
592 |
while round <= numOfIC, |
|
|
593 |
myy = myyOrig; |
|
|
594 |
usedNlinearity = gOrig; |
|
|
595 |
stroke = 0; |
|
|
596 |
notFine = 1; |
|
|
597 |
long = 0; |
|
|
598 |
endFinetuning = 0; |
|
|
599 |
|
|
|
600 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
601 |
% Show the progress... |
|
|
602 |
if b_verbose, fprintf('IC %d ', round); end |
|
|
603 |
|
|
|
604 |
% Take a random initial vector of lenght 1 and orthogonalize it |
|
|
605 |
% with respect to the other vectors. |
|
|
606 |
if initialStateMode == 0 |
|
|
607 |
w = randn (vectorSize, 1); |
|
|
608 |
elseif initialStateMode == 1 |
|
|
609 |
w=whiteningMatrix*guess(:,round); |
|
|
610 |
end |
|
|
611 |
w = w - B * B' * w; |
|
|
612 |
w = w / norm(w); |
|
|
613 |
|
|
|
614 |
wOld = zeros(size(w)); |
|
|
615 |
wOld2 = zeros(size(w)); |
|
|
616 |
|
|
|
617 |
% This is the actual fixed-point iteration loop. |
|
|
618 |
% for i = 1 : maxNumIterations + 1 |
|
|
619 |
i = 1; |
|
|
620 |
gabba = 1; |
|
|
621 |
while i <= maxNumIterations + gabba |
|
|
622 |
if (usedDisplay > 0) |
|
|
623 |
drawnow; |
|
|
624 |
end |
|
|
625 |
if (interruptible & g_FastICA_interrupt) |
|
|
626 |
if b_verbose |
|
|
627 |
fprintf('\n\nCalculation interrupted by the user\n'); |
|
|
628 |
end |
|
|
629 |
return; |
|
|
630 |
end |
|
|
631 |
|
|
|
632 |
% Project the vector into the space orthogonal to the space |
|
|
633 |
% spanned by the earlier found basis vectors. Note that we can do |
|
|
634 |
% the projection with matrix B, since the zero entries do not |
|
|
635 |
% contribute to the projection. |
|
|
636 |
w = w - B * B' * w; |
|
|
637 |
w = w / norm(w); |
|
|
638 |
|
|
|
639 |
if notFine |
|
|
640 |
if i == maxNumIterations + 1 |
|
|
641 |
if b_verbose |
|
|
642 |
fprintf('\nComponent number %d did not converge in %d iterations.\n', round, maxNumIterations); |
|
|
643 |
end |
|
|
644 |
round = round - 1; |
|
|
645 |
numFailures = numFailures + 1; |
|
|
646 |
if numFailures > failureLimit |
|
|
647 |
if b_verbose |
|
|
648 |
fprintf('Too many failures to converge (%d). Giving up.\n', numFailures); |
|
|
649 |
end |
|
|
650 |
if round == 0 |
|
|
651 |
A=[]; |
|
|
652 |
W=[]; |
|
|
653 |
end |
|
|
654 |
return; |
|
|
655 |
end |
|
|
656 |
% numFailures > failurelimit |
|
|
657 |
break; |
|
|
658 |
end |
|
|
659 |
% i == maxNumIterations + 1 |
|
|
660 |
else |
|
|
661 |
% if notFine |
|
|
662 |
if i >= endFinetuning |
|
|
663 |
wOld = w; % So the algorithm will stop on the next test... |
|
|
664 |
end |
|
|
665 |
end |
|
|
666 |
% if notFine |
|
|
667 |
|
|
|
668 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
669 |
% Show the progress... |
|
|
670 |
if b_verbose, fprintf('.'); end; |
|
|
671 |
|
|
|
672 |
|
|
|
673 |
% Test for termination condition. Note that the algorithm has |
|
|
674 |
% converged if the direction of w and wOld is the same, this |
|
|
675 |
% is why we test the two cases. |
|
|
676 |
if norm(w - wOld) < epsilon | norm(w + wOld) < epsilon |
|
|
677 |
if finetuningEnabled & notFine |
|
|
678 |
if b_verbose, fprintf('Initial convergence, fine-tuning: '); end; |
|
|
679 |
notFine = 0; |
|
|
680 |
gabba = maxFinetune; |
|
|
681 |
wOld = zeros(size(w)); |
|
|
682 |
wOld2 = zeros(size(w)); |
|
|
683 |
usedNlinearity = gFine; |
|
|
684 |
myy = myyK * myyOrig; |
|
|
685 |
|
|
|
686 |
endFinetuning = maxFinetune + i; |
|
|
687 |
|
|
|
688 |
else |
|
|
689 |
numFailures = 0; |
|
|
690 |
% Save the vector |
|
|
691 |
B(:, round) = w; |
|
|
692 |
|
|
|
693 |
% Calculate the de-whitened vector. |
|
|
694 |
A(:,round) = dewhiteningMatrix * w; |
|
|
695 |
% Calculate ICA filter. |
|
|
696 |
W(round,:) = w' * whiteningMatrix; |
|
|
697 |
|
|
|
698 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
699 |
% Show the progress... |
|
|
700 |
if b_verbose, fprintf('computed ( %d steps ) \n', i); end |
|
|
701 |
|
|
|
702 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
703 |
% Also plot the current state... |
|
|
704 |
switch usedDisplay |
|
|
705 |
case 1 |
|
|
706 |
if rem(round, displayInterval) == 0, |
|
|
707 |
% There was and may still be other displaymodes... |
|
|
708 |
% 1D signals |
|
|
709 |
temp = X'*B; |
|
|
710 |
icaplot('dispsig',temp(:,1:numOfIC)'); |
|
|
711 |
drawnow; |
|
|
712 |
end |
|
|
713 |
case 2 |
|
|
714 |
if rem(round, displayInterval) == 0, |
|
|
715 |
% ... and now there are :-) |
|
|
716 |
% 1D basis |
|
|
717 |
icaplot('dispsig',A'); |
|
|
718 |
drawnow; |
|
|
719 |
end |
|
|
720 |
case 3 |
|
|
721 |
if rem(round, displayInterval) == 0, |
|
|
722 |
% ... and now there are :-) |
|
|
723 |
% 1D filters |
|
|
724 |
icaplot('dispsig',W); |
|
|
725 |
drawnow; |
|
|
726 |
end |
|
|
727 |
end |
|
|
728 |
% switch usedDisplay |
|
|
729 |
break; % IC ready - next... |
|
|
730 |
end |
|
|
731 |
%if finetuningEnabled & notFine |
|
|
732 |
elseif stabilizationEnabled |
|
|
733 |
if (~stroke) & (norm(w - wOld2) < epsilon | norm(w + wOld2) < ... |
|
|
734 |
epsilon) |
|
|
735 |
stroke = myy; |
|
|
736 |
if b_verbose, fprintf('Stroke!'); end; |
|
|
737 |
myy = .5*myy; |
|
|
738 |
if mod(usedNlinearity,2) == 0 |
|
|
739 |
usedNlinearity = usedNlinearity + 1; |
|
|
740 |
end |
|
|
741 |
elseif stroke |
|
|
742 |
myy = stroke; |
|
|
743 |
stroke = 0; |
|
|
744 |
if (myy == 1) & (mod(usedNlinearity,2) ~= 0) |
|
|
745 |
usedNlinearity = usedNlinearity - 1; |
|
|
746 |
end |
|
|
747 |
elseif (notFine) & (~long) & (i > maxNumIterations / 2) |
|
|
748 |
if b_verbose, fprintf('Taking long (reducing step size) '); end; |
|
|
749 |
long = 1; |
|
|
750 |
myy = .5*myy; |
|
|
751 |
if mod(usedNlinearity,2) == 0 |
|
|
752 |
usedNlinearity = usedNlinearity + 1; |
|
|
753 |
end |
|
|
754 |
end |
|
|
755 |
end |
|
|
756 |
|
|
|
757 |
wOld2 = wOld; |
|
|
758 |
wOld = w; |
|
|
759 |
|
|
|
760 |
switch usedNlinearity |
|
|
761 |
% pow3 |
|
|
762 |
case 10 |
|
|
763 |
w = (X * ((X' * w) .^ 3)) / numSamples - 3 * w; |
|
|
764 |
case 11 |
|
|
765 |
EXGpow3 = (X * ((X' * w) .^ 3)) / numSamples; |
|
|
766 |
Beta = w' * EXGpow3; |
|
|
767 |
w = w - myy * (EXGpow3 - Beta * w) / (3 - Beta); |
|
|
768 |
case 12 |
|
|
769 |
Xsub=X(:,getSamples(numSamples, sampleSize)); |
|
|
770 |
w = (Xsub * ((Xsub' * w) .^ 3)) / size(Xsub, 2) - 3 * w; |
|
|
771 |
case 13 |
|
|
772 |
Xsub=X(:,getSamples(numSamples, sampleSize)); |
|
|
773 |
EXGpow3 = (Xsub * ((Xsub' * w) .^ 3)) / size(Xsub, 2); |
|
|
774 |
Beta = w' * EXGpow3; |
|
|
775 |
w = w - myy * (EXGpow3 - Beta * w) / (3 - Beta); |
|
|
776 |
% tanh |
|
|
777 |
case 20 |
|
|
778 |
% ######################################################################### |
|
|
779 |
% Riccardo Navarra "Mod" 10 Feb 2010 (*) (r.navarra@itab.unich.it) |
|
|
780 |
% Rewritten matrix product to speed up on multicore CPU (fpica.m) |
|
|
781 |
% ######################################################################### |
|
|
782 |
hypTan = tanh(a1 * (X' * w)); |
|
|
783 |
% ######################################################################### |
|
|
784 |
w = (X * hypTan - a1 * sum(1 - hypTan .^ 2)' * w) / numSamples; |
|
|
785 |
case 21 |
|
|
786 |
hypTan = tanh(a1 * X' * w); |
|
|
787 |
Beta = w' * X * hypTan; |
|
|
788 |
w = w - myy * ((X * hypTan - Beta * w) / ... |
|
|
789 |
(a1 * sum((1-hypTan .^2)') - Beta)); |
|
|
790 |
case 22 |
|
|
791 |
Xsub=X(:,getSamples(numSamples, sampleSize)); |
|
|
792 |
hypTan = tanh(a1 * Xsub' * w); |
|
|
793 |
w = (Xsub * hypTan - a1 * sum(1 - hypTan .^ 2)' * w) / size(Xsub, 2); |
|
|
794 |
case 23 |
|
|
795 |
Xsub=X(:,getSamples(numSamples, sampleSize)); |
|
|
796 |
hypTan = tanh(a1 * Xsub' * w); |
|
|
797 |
Beta = w' * Xsub * hypTan; |
|
|
798 |
w = w - myy * ((Xsub * hypTan - Beta * w) / ... |
|
|
799 |
(a1 * sum((1-hypTan .^2)') - Beta)); |
|
|
800 |
% gauss |
|
|
801 |
case 30 |
|
|
802 |
% This has been split for performance reasons. |
|
|
803 |
u = X' * w; |
|
|
804 |
u2=u.^2; |
|
|
805 |
ex=exp(-a2 * u2/2); |
|
|
806 |
gauss = u.*ex; |
|
|
807 |
dGauss = (1 - a2 * u2) .*ex; |
|
|
808 |
w = (X * gauss - sum(dGauss)' * w) / numSamples; |
|
|
809 |
case 31 |
|
|
810 |
u = X' * w; |
|
|
811 |
u2=u.^2; |
|
|
812 |
ex=exp(-a2 * u2/2); |
|
|
813 |
gauss = u.*ex; |
|
|
814 |
dGauss = (1 - a2 * u2) .*ex; |
|
|
815 |
Beta = w' * X * gauss; |
|
|
816 |
w = w - myy * ((X * gauss - Beta * w) / ... |
|
|
817 |
(sum(dGauss)' - Beta)); |
|
|
818 |
case 32 |
|
|
819 |
Xsub=X(:,getSamples(numSamples, sampleSize)); |
|
|
820 |
u = Xsub' * w; |
|
|
821 |
u2=u.^2; |
|
|
822 |
ex=exp(-a2 * u2/2); |
|
|
823 |
gauss = u.*ex; |
|
|
824 |
dGauss = (1 - a2 * u2) .*ex; |
|
|
825 |
w = (Xsub * gauss - sum(dGauss)' * w) / size(Xsub, 2); |
|
|
826 |
case 33 |
|
|
827 |
Xsub=X(:,getSamples(numSamples, sampleSize)); |
|
|
828 |
u = Xsub' * w; |
|
|
829 |
u2=u.^2; |
|
|
830 |
ex=exp(-a2 * u2/2); |
|
|
831 |
gauss = u.*ex; |
|
|
832 |
dGauss = (1 - a2 * u2) .*ex; |
|
|
833 |
Beta = w' * Xsub * gauss; |
|
|
834 |
w = w - myy * ((Xsub * gauss - Beta * w) / ... |
|
|
835 |
(sum(dGauss)' - Beta)); |
|
|
836 |
% skew |
|
|
837 |
case 40 |
|
|
838 |
w = (X * ((X' * w) .^ 2)) / numSamples; |
|
|
839 |
case 41 |
|
|
840 |
EXGskew = (X * ((X' * w) .^ 2)) / numSamples; |
|
|
841 |
Beta = w' * EXGskew; |
|
|
842 |
w = w - myy * (EXGskew - Beta*w)/(-Beta); |
|
|
843 |
case 42 |
|
|
844 |
Xsub=X(:,getSamples(numSamples, sampleSize)); |
|
|
845 |
w = (Xsub * ((Xsub' * w) .^ 2)) / size(Xsub, 2); |
|
|
846 |
case 43 |
|
|
847 |
Xsub=X(:,getSamples(numSamples, sampleSize)); |
|
|
848 |
EXGskew = (Xsub * ((Xsub' * w) .^ 2)) / size(Xsub, 2); |
|
|
849 |
Beta = w' * EXGskew; |
|
|
850 |
w = w - myy * (EXGskew - Beta*w)/(-Beta); |
|
|
851 |
|
|
|
852 |
otherwise |
|
|
853 |
error('Code for desired nonlinearity not found!'); |
|
|
854 |
end |
|
|
855 |
|
|
|
856 |
% Normalize the new w. |
|
|
857 |
w = w / norm(w); |
|
|
858 |
i = i + 1; |
|
|
859 |
end |
|
|
860 |
round = round + 1; |
|
|
861 |
end |
|
|
862 |
if b_verbose, fprintf('Done.\n'); end |
|
|
863 |
|
|
|
864 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
865 |
% Also plot the ones that may not have been plotted. |
|
|
866 |
if (usedDisplay > 0) & (rem(round-1, displayInterval) ~= 0) |
|
|
867 |
switch usedDisplay |
|
|
868 |
case 1 |
|
|
869 |
% There was and may still be other displaymodes... |
|
|
870 |
% 1D signals |
|
|
871 |
temp = X'*B; |
|
|
872 |
icaplot('dispsig',temp(:,1:numOfIC)'); |
|
|
873 |
drawnow; |
|
|
874 |
case 2 |
|
|
875 |
% ... and now there are :-) |
|
|
876 |
% 1D basis |
|
|
877 |
icaplot('dispsig',A'); |
|
|
878 |
drawnow; |
|
|
879 |
case 3 |
|
|
880 |
% ... and now there are :-) |
|
|
881 |
% 1D filters |
|
|
882 |
icaplot('dispsig',W); |
|
|
883 |
drawnow; |
|
|
884 |
otherwise |
|
|
885 |
end |
|
|
886 |
end |
|
|
887 |
end |
|
|
888 |
|
|
|
889 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
890 |
% In the end let's check the data for some security |
|
|
891 |
if ~isreal(A) |
|
|
892 |
if b_verbose, fprintf('Warning: removing the imaginary part from the result.\n'); end |
|
|
893 |
A = real(A); |
|
|
894 |
W = real(W); |
|
|
895 |
end |
|
|
896 |
|
|
|
897 |
|
|
|
898 |
|
|
|
899 |
|
|
|
900 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
901 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
902 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
903 |
% Subfunction |
|
|
904 |
% Calculates tanh simplier and faster than Matlab tanh. |
|
|
905 |
function y=tanh(x) |
|
|
906 |
y = 1 - 2 ./ (exp(2 * x) + 1); |
|
|
907 |
|
|
|
908 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
|
909 |
function Samples = getSamples(max, percentage) |
|
|
910 |
Samples = find(rand(1, max) < percentage); |