[8adc28]: / code / benchmark_networks / Network_structure.py

Download this file

157 lines (109 with data), 4.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import tensorflow as tf
from tensorflow.keras import datasets, layers, models, Input, Sequential
# Author: Haoming Zhang
def fcNN(datanum):
model = tf.keras.Sequential()
model.add(Input(shape=(datanum,)))
model.add(layers.Dense(datanum, activation=tf.nn.relu ))
model.add(layers.Dropout(0.3))
model.add(layers.Dense(datanum))
model.add(layers.ReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Dense(datanum))
model.add(layers.ReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Dense(datanum))
model.summary()
return model
def RNN_lstm(datanum):
model = tf.keras.Sequential()
model.add(Input(shape=(datanum,1)))
model.add(layers.LSTM(1,return_sequences = True ))
model.add(layers.Flatten())
model.add(layers.Dense(datanum))
model.add(layers.ReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Dense(datanum))
model.add(layers.ReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Dense(datanum))
model.summary()
return model
def simple_CNN(datanum):
model = tf.keras.Sequential()
model.add(layers.Conv1D(64, 3, strides=1, padding='same',input_shape=[ datanum, 1]))
model.add(layers.BatchNormalization())
model.add(layers.ReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv1D(64, 3, strides=1, padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.ReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv1D(64, 3, strides=1, padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.ReLU())
model.add(layers.Dropout(0.3))
#num4
model.add(layers.Conv1D(64, 3, strides=1, padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.ReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Flatten())
model.add(layers.Dense(datanum))
model.build(input_shape=[ 1,datanum, 1] )
model.summary()
return model
# Resnet Basic Block module。
class Res_BasicBlock(layers.Layer):
def __init__(self,kernelsize, stride=1):
super(Res_BasicBlock, self).__init__()
self.bblock = Sequential([layers.Conv1D(32,kernelsize,strides=stride,padding="same"),
layers.BatchNormalization(),
layers.ReLU(),
layers.Conv1D(16,kernelsize,strides=1,padding="same"),
layers.BatchNormalization(),
layers.ReLU(),
layers.Conv1D(32,kernelsize,strides=1,padding="same"),
layers.BatchNormalization(),
layers.ReLU()])
self.jump_layer = lambda x:x
def call(self, inputs, training=None):
#Through the convolutional layer
out = self.bblock(inputs)
#skip
identity = self.jump_layer(inputs)
output = layers.add([out, identity]) #layers下面有一个add,把这2个层添加进来相加。
return output
class BasicBlockall(layers.Layer):
def __init__(self, stride=1):
super(BasicBlockall, self).__init__()
self.bblock3 = Sequential([Res_BasicBlock(3),
Res_BasicBlock(3)
])
self.bblock5 = Sequential([Res_BasicBlock(5),
Res_BasicBlock(5)
])
self.bblock7 = Sequential([Res_BasicBlock(7),
Res_BasicBlock(7)
])
self.downsample = lambda x:x
def call(self, inputs, training=None):
out3 = self.bblock3(inputs)
out5 = self.bblock5(inputs)
out7 = self.bblock7(inputs)
out = tf.concat( values = [out3,out5,out7] , axis = -1)
return out
def Complex_CNN(datanum):
model = Sequential()
model.add(layers.Conv1D(32 ,5,strides=1,padding="same",input_shape=[ datanum, 1]))
model.add(layers.BatchNormalization())
model.add( layers.ReLU())
model.add(BasicBlockall())
model.add(layers.Conv1D(32 ,1,strides=1,padding="same"))
model.add(layers.BatchNormalization())
model.add( layers.ReLU())
model.add(layers.Flatten())
model.add(layers.Dense(datanum))
model.build(input_shape=[ 1,datanum, 1] )
model.summary()
return model