[365bd4]: / code / models.py

Download this file

147 lines (116 with data), 7.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from keras import optimizers, losses, activations, models
from keras.layers import Dense, Input, Dropout, Convolution1D, MaxPool1D, GlobalMaxPool1D, GlobalAveragePooling1D, \
concatenate, SpatialDropout1D, TimeDistributed, Bidirectional, LSTM
from keras_contrib.layers import CRF
from utils import WINDOW_SIZE
def get_model():
nclass = 5
inp = Input(shape=(3000, 1))
img_1 = Convolution1D(16, kernel_size=5, activation=activations.relu, padding="valid")(inp)
img_1 = Convolution1D(16, kernel_size=5, activation=activations.relu, padding="valid")(img_1)
img_1 = MaxPool1D(pool_size=2)(img_1)
img_1 = SpatialDropout1D(rate=0.01)(img_1)
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = MaxPool1D(pool_size=2)(img_1)
img_1 = SpatialDropout1D(rate=0.01)(img_1)
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = MaxPool1D(pool_size=2)(img_1)
img_1 = SpatialDropout1D(rate=0.01)(img_1)
img_1 = Convolution1D(256, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = Convolution1D(256, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = GlobalMaxPool1D()(img_1)
img_1 = Dropout(rate=0.01)(img_1)
dense_1 = Dropout(rate=0.01)(Dense(64, activation=activations.relu, name="dense_1")(img_1))
dense_1 = Dropout(rate=0.05)(Dense(64, activation=activations.relu, name="dense_2")(dense_1))
dense_1 = Dense(nclass, activation=activations.softmax, name="dense_3")(dense_1)
model = models.Model(inputs=inp, outputs=dense_1)
opt = optimizers.Adam(0.001)
model.compile(optimizer=opt, loss=losses.sparse_categorical_crossentropy, metrics=['acc'])
model.summary()
return model
def get_base_model():
inp = Input(shape=(3000, 1))
img_1 = Convolution1D(16, kernel_size=5, activation=activations.relu, padding="valid")(inp)
img_1 = Convolution1D(16, kernel_size=5, activation=activations.relu, padding="valid")(img_1)
img_1 = MaxPool1D(pool_size=2)(img_1)
img_1 = SpatialDropout1D(rate=0.01)(img_1)
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = MaxPool1D(pool_size=2)(img_1)
img_1 = SpatialDropout1D(rate=0.01)(img_1)
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = MaxPool1D(pool_size=2)(img_1)
img_1 = SpatialDropout1D(rate=0.01)(img_1)
img_1 = Convolution1D(256, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = Convolution1D(256, kernel_size=3, activation=activations.relu, padding="valid")(img_1)
img_1 = GlobalMaxPool1D()(img_1)
img_1 = Dropout(rate=0.01)(img_1)
dense_1 = Dropout(0.01)(Dense(64, activation=activations.relu, name="dense_1")(img_1))
base_model = models.Model(inputs=inp, outputs=dense_1)
opt = optimizers.Adam(0.001)
base_model.compile(optimizer=opt, loss=losses.sparse_categorical_crossentropy, metrics=['acc'])
#model.summary()
return base_model
def get_model_cnn():
nclass = 5
seq_input = Input(shape=(None, 3000, 1))
base_model = get_base_model()
# for layer in base_model.layers:
# layer.trainable = False
encoded_sequence = TimeDistributed(base_model)(seq_input)
encoded_sequence = SpatialDropout1D(rate=0.01)(Convolution1D(128,
kernel_size=3,
activation="relu",
padding="same")(encoded_sequence))
encoded_sequence = Dropout(rate=0.05)(Convolution1D(128,
kernel_size=3,
activation="relu",
padding="same")(encoded_sequence))
#out = TimeDistributed(Dense(nclass, activation="softmax"))(encoded_sequence)
out = Convolution1D(nclass, kernel_size=3, activation="softmax", padding="same")(encoded_sequence)
model = models.Model(seq_input, out)
model.compile(optimizers.Adam(0.001), losses.sparse_categorical_crossentropy, metrics=['acc'])
model.summary()
return model
def get_model_lstm():
nclass = 5
seq_input = Input(shape=(None, 3000, 1))
base_model = get_base_model()
for layer in base_model.layers:
layer.trainable = False
encoded_sequence = TimeDistributed(base_model)(seq_input)
encoded_sequence = Bidirectional(LSTM(100, return_sequences=True))(encoded_sequence)
encoded_sequence = Dropout(rate=0.5)(encoded_sequence)
encoded_sequence = Bidirectional(LSTM(100, return_sequences=True))(encoded_sequence)
#out = TimeDistributed(Dense(nclass, activation="softmax"))(encoded_sequence)
out = Convolution1D(nclass, kernel_size=1, activation="softmax", padding="same")(encoded_sequence)
model = models.Model(seq_input, out)
model.compile(optimizers.Adam(0.001), losses.sparse_categorical_crossentropy, metrics=['acc'])
model.summary()
return model
def get_model_cnn_crf(lr=0.001):
nclass = 5
seq_input = Input(shape=(None, 3000, 1))
base_model = get_base_model()
# for layer in base_model.layers:
# layer.trainable = False
encoded_sequence = TimeDistributed(base_model)(seq_input)
encoded_sequence = SpatialDropout1D(rate=0.01)(Convolution1D(128,
kernel_size=3,
activation="relu",
padding="same")(encoded_sequence))
encoded_sequence = Dropout(rate=0.05)(Convolution1D(128,
kernel_size=3,
activation="linear",
padding="same")(encoded_sequence))
#out = TimeDistributed(Dense(nclass, activation="softmax"))(encoded_sequence)
# out = Convolution1D(nclass, kernel_size=3, activation="linear", padding="same")(encoded_sequence)
crf = CRF(nclass, sparse_target=True)
out = crf(encoded_sequence)
model = models.Model(seq_input, out)
model.compile(optimizers.Adam(lr), crf.loss_function, metrics=[crf.accuracy])
model.summary()
return model