|
a |
|
b/code/models.py |
|
|
1 |
from keras import optimizers, losses, activations, models |
|
|
2 |
from keras.layers import Dense, Input, Dropout, Convolution1D, MaxPool1D, GlobalMaxPool1D, GlobalAveragePooling1D, \ |
|
|
3 |
concatenate, SpatialDropout1D, TimeDistributed, Bidirectional, LSTM |
|
|
4 |
from keras_contrib.layers import CRF |
|
|
5 |
|
|
|
6 |
from utils import WINDOW_SIZE |
|
|
7 |
|
|
|
8 |
def get_model(): |
|
|
9 |
nclass = 5 |
|
|
10 |
inp = Input(shape=(3000, 1)) |
|
|
11 |
img_1 = Convolution1D(16, kernel_size=5, activation=activations.relu, padding="valid")(inp) |
|
|
12 |
img_1 = Convolution1D(16, kernel_size=5, activation=activations.relu, padding="valid")(img_1) |
|
|
13 |
img_1 = MaxPool1D(pool_size=2)(img_1) |
|
|
14 |
img_1 = SpatialDropout1D(rate=0.01)(img_1) |
|
|
15 |
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1) |
|
|
16 |
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1) |
|
|
17 |
img_1 = MaxPool1D(pool_size=2)(img_1) |
|
|
18 |
img_1 = SpatialDropout1D(rate=0.01)(img_1) |
|
|
19 |
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1) |
|
|
20 |
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1) |
|
|
21 |
img_1 = MaxPool1D(pool_size=2)(img_1) |
|
|
22 |
img_1 = SpatialDropout1D(rate=0.01)(img_1) |
|
|
23 |
img_1 = Convolution1D(256, kernel_size=3, activation=activations.relu, padding="valid")(img_1) |
|
|
24 |
img_1 = Convolution1D(256, kernel_size=3, activation=activations.relu, padding="valid")(img_1) |
|
|
25 |
img_1 = GlobalMaxPool1D()(img_1) |
|
|
26 |
img_1 = Dropout(rate=0.01)(img_1) |
|
|
27 |
|
|
|
28 |
dense_1 = Dropout(rate=0.01)(Dense(64, activation=activations.relu, name="dense_1")(img_1)) |
|
|
29 |
dense_1 = Dropout(rate=0.05)(Dense(64, activation=activations.relu, name="dense_2")(dense_1)) |
|
|
30 |
dense_1 = Dense(nclass, activation=activations.softmax, name="dense_3")(dense_1) |
|
|
31 |
|
|
|
32 |
model = models.Model(inputs=inp, outputs=dense_1) |
|
|
33 |
opt = optimizers.Adam(0.001) |
|
|
34 |
|
|
|
35 |
model.compile(optimizer=opt, loss=losses.sparse_categorical_crossentropy, metrics=['acc']) |
|
|
36 |
model.summary() |
|
|
37 |
return model |
|
|
38 |
|
|
|
39 |
def get_base_model(): |
|
|
40 |
inp = Input(shape=(3000, 1)) |
|
|
41 |
img_1 = Convolution1D(16, kernel_size=5, activation=activations.relu, padding="valid")(inp) |
|
|
42 |
img_1 = Convolution1D(16, kernel_size=5, activation=activations.relu, padding="valid")(img_1) |
|
|
43 |
img_1 = MaxPool1D(pool_size=2)(img_1) |
|
|
44 |
img_1 = SpatialDropout1D(rate=0.01)(img_1) |
|
|
45 |
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1) |
|
|
46 |
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1) |
|
|
47 |
img_1 = MaxPool1D(pool_size=2)(img_1) |
|
|
48 |
img_1 = SpatialDropout1D(rate=0.01)(img_1) |
|
|
49 |
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1) |
|
|
50 |
img_1 = Convolution1D(32, kernel_size=3, activation=activations.relu, padding="valid")(img_1) |
|
|
51 |
img_1 = MaxPool1D(pool_size=2)(img_1) |
|
|
52 |
img_1 = SpatialDropout1D(rate=0.01)(img_1) |
|
|
53 |
img_1 = Convolution1D(256, kernel_size=3, activation=activations.relu, padding="valid")(img_1) |
|
|
54 |
img_1 = Convolution1D(256, kernel_size=3, activation=activations.relu, padding="valid")(img_1) |
|
|
55 |
img_1 = GlobalMaxPool1D()(img_1) |
|
|
56 |
img_1 = Dropout(rate=0.01)(img_1) |
|
|
57 |
|
|
|
58 |
dense_1 = Dropout(0.01)(Dense(64, activation=activations.relu, name="dense_1")(img_1)) |
|
|
59 |
|
|
|
60 |
base_model = models.Model(inputs=inp, outputs=dense_1) |
|
|
61 |
opt = optimizers.Adam(0.001) |
|
|
62 |
|
|
|
63 |
base_model.compile(optimizer=opt, loss=losses.sparse_categorical_crossentropy, metrics=['acc']) |
|
|
64 |
#model.summary() |
|
|
65 |
return base_model |
|
|
66 |
|
|
|
67 |
|
|
|
68 |
def get_model_cnn(): |
|
|
69 |
nclass = 5 |
|
|
70 |
|
|
|
71 |
seq_input = Input(shape=(None, 3000, 1)) |
|
|
72 |
base_model = get_base_model() |
|
|
73 |
# for layer in base_model.layers: |
|
|
74 |
# layer.trainable = False |
|
|
75 |
encoded_sequence = TimeDistributed(base_model)(seq_input) |
|
|
76 |
encoded_sequence = SpatialDropout1D(rate=0.01)(Convolution1D(128, |
|
|
77 |
kernel_size=3, |
|
|
78 |
activation="relu", |
|
|
79 |
padding="same")(encoded_sequence)) |
|
|
80 |
encoded_sequence = Dropout(rate=0.05)(Convolution1D(128, |
|
|
81 |
kernel_size=3, |
|
|
82 |
activation="relu", |
|
|
83 |
padding="same")(encoded_sequence)) |
|
|
84 |
|
|
|
85 |
#out = TimeDistributed(Dense(nclass, activation="softmax"))(encoded_sequence) |
|
|
86 |
out = Convolution1D(nclass, kernel_size=3, activation="softmax", padding="same")(encoded_sequence) |
|
|
87 |
|
|
|
88 |
model = models.Model(seq_input, out) |
|
|
89 |
|
|
|
90 |
model.compile(optimizers.Adam(0.001), losses.sparse_categorical_crossentropy, metrics=['acc']) |
|
|
91 |
model.summary() |
|
|
92 |
|
|
|
93 |
return model |
|
|
94 |
|
|
|
95 |
def get_model_lstm(): |
|
|
96 |
nclass = 5 |
|
|
97 |
|
|
|
98 |
seq_input = Input(shape=(None, 3000, 1)) |
|
|
99 |
base_model = get_base_model() |
|
|
100 |
for layer in base_model.layers: |
|
|
101 |
layer.trainable = False |
|
|
102 |
encoded_sequence = TimeDistributed(base_model)(seq_input) |
|
|
103 |
encoded_sequence = Bidirectional(LSTM(100, return_sequences=True))(encoded_sequence) |
|
|
104 |
encoded_sequence = Dropout(rate=0.5)(encoded_sequence) |
|
|
105 |
encoded_sequence = Bidirectional(LSTM(100, return_sequences=True))(encoded_sequence) |
|
|
106 |
#out = TimeDistributed(Dense(nclass, activation="softmax"))(encoded_sequence) |
|
|
107 |
out = Convolution1D(nclass, kernel_size=1, activation="softmax", padding="same")(encoded_sequence) |
|
|
108 |
|
|
|
109 |
model = models.Model(seq_input, out) |
|
|
110 |
|
|
|
111 |
model.compile(optimizers.Adam(0.001), losses.sparse_categorical_crossentropy, metrics=['acc']) |
|
|
112 |
model.summary() |
|
|
113 |
|
|
|
114 |
return model |
|
|
115 |
|
|
|
116 |
def get_model_cnn_crf(lr=0.001): |
|
|
117 |
nclass = 5 |
|
|
118 |
|
|
|
119 |
seq_input = Input(shape=(None, 3000, 1)) |
|
|
120 |
base_model = get_base_model() |
|
|
121 |
# for layer in base_model.layers: |
|
|
122 |
# layer.trainable = False |
|
|
123 |
encoded_sequence = TimeDistributed(base_model)(seq_input) |
|
|
124 |
encoded_sequence = SpatialDropout1D(rate=0.01)(Convolution1D(128, |
|
|
125 |
kernel_size=3, |
|
|
126 |
activation="relu", |
|
|
127 |
padding="same")(encoded_sequence)) |
|
|
128 |
encoded_sequence = Dropout(rate=0.05)(Convolution1D(128, |
|
|
129 |
kernel_size=3, |
|
|
130 |
activation="linear", |
|
|
131 |
padding="same")(encoded_sequence)) |
|
|
132 |
|
|
|
133 |
#out = TimeDistributed(Dense(nclass, activation="softmax"))(encoded_sequence) |
|
|
134 |
# out = Convolution1D(nclass, kernel_size=3, activation="linear", padding="same")(encoded_sequence) |
|
|
135 |
|
|
|
136 |
crf = CRF(nclass, sparse_target=True) |
|
|
137 |
|
|
|
138 |
out = crf(encoded_sequence) |
|
|
139 |
|
|
|
140 |
|
|
|
141 |
model = models.Model(seq_input, out) |
|
|
142 |
|
|
|
143 |
model.compile(optimizers.Adam(lr), crf.loss_function, metrics=[crf.accuracy]) |
|
|
144 |
model.summary() |
|
|
145 |
|
|
|
146 |
return model |