import os
import torch
import torch.optim as optim
from torch.nn import CrossEntropyLoss
from torch.nn import functional as F
from torch.optim import Adam
from torch.utils.data import DataLoader
os.environ["WANDB_API_KEY"] = "KEY"
os.environ["WANDB_MODE"] = 'offline'
from itertools import combinations
import clip
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torchvision.transforms as transforms
import tqdm
from eegdatasets_leaveone import EEGDataset
from einops.layers.torch import Rearrange, Reduce
from sklearn.metrics import confusion_matrix
from torch.utils.data import DataLoader, Dataset
import random
from util import wandb_logger
from braindecode.models import EEGNetv4, ATCNet, EEGConformer, EEGITNet, ShallowFBCSPNet
import csv
from torch import Tensor
import itertools
import math
import re
from subject_layers.Transformer_EncDec import Encoder, EncoderLayer
from subject_layers.SelfAttention_Family import FullAttention, AttentionLayer
from subject_layers.Embed import DataEmbedding
import numpy as np
from loss import ClipLoss
import argparse
from torch import nn
from torch.optim import AdamW
class Config:
def __init__(self):
self.task_name = 'classification' # Example task name
self.seq_len = 250 # Sequence length
self.pred_len = 250 # Prediction length
self.output_attention = False # Whether to output attention weights
self.d_model = 250 # Model dimension
self.embed = 'timeF' # Time encoding method
self.freq = 'h' # Time frequency
self.dropout = 0.25 # Dropout rate
self.factor = 1 # Attention scaling factor
self.n_heads = 4 # Number of attention heads
self.e_layers = 1 # Number of encoder layers
self.d_ff = 256 # Dimension of the feedforward network
self.activation = 'gelu' # Activation function
self.enc_in = 63 # Encoder input dimension (example value)
class iTransformer(nn.Module):
def __init__(self, configs, joint_train=False, num_subjects=10):
super(iTransformer, self).__init__()
self.task_name = configs.task_name
self.seq_len = configs.seq_len
self.pred_len = configs.pred_len
self.output_attention = configs.output_attention
# Embedding
self.enc_embedding = DataEmbedding(configs.seq_len, configs.d_model, configs.embed, configs.freq, configs.dropout, joint_train=False, num_subjects=num_subjects)
# Encoder
self.encoder = Encoder(
[
EncoderLayer(
AttentionLayer(
FullAttention(False, configs.factor, attention_dropout=configs.dropout, output_attention=configs.output_attention),
configs.d_model, configs.n_heads
),
configs.d_model,
configs.d_ff,
dropout=configs.dropout,
activation=configs.activation
) for l in range(configs.e_layers)
],
norm_layer=torch.nn.LayerNorm(configs.d_model)
)
def forward(self, x_enc, x_mark_enc, subject_ids=None):
# Embedding
enc_out = self.enc_embedding(x_enc, x_mark_enc, subject_ids)
enc_out, attns = self.encoder(enc_out, attn_mask=None)
enc_out = enc_out[:, :63, :]
# print("enc_out", enc_out.shape)
return enc_out
class PatchEmbedding(nn.Module):
def __init__(self, emb_size=40):
super().__init__()
# Revised from ShallowNet
self.tsconv = nn.Sequential(
nn.Conv2d(1, 40, (1, 25), stride=(1, 1)),
nn.AvgPool2d((1, 51), (1, 5)),
nn.BatchNorm2d(40),
nn.ELU(),
nn.Conv2d(40, 40, (63, 1), stride=(1, 1)),
nn.BatchNorm2d(40),
nn.ELU(),
nn.Dropout(0.5),
)
self.projection = nn.Sequential(
nn.Conv2d(40, emb_size, (1, 1), stride=(1, 1)),
Rearrange('b e (h) (w) -> b (h w) e'),
)
def forward(self, x: Tensor) -> Tensor:
# b, _, _, _ = x.shape
x = x.unsqueeze(1)
# print("x", x.shape)
x = self.tsconv(x)
# print("tsconv", x.shape)
x = self.projection(x)
# print("projection", x.shape)
return x
class ResidualAdd(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
res = x
x = self.fn(x, **kwargs)
x += res
return x
class FlattenHead(nn.Sequential):
def __init__(self):
super().__init__()
def forward(self, x):
x = x.contiguous().view(x.size(0), -1)
return x
class Enc_eeg(nn.Sequential):
def __init__(self, emb_size=40, **kwargs):
super().__init__(
PatchEmbedding(emb_size),
FlattenHead()
)
class Proj_eeg(nn.Sequential):
def __init__(self, embedding_dim=1440, proj_dim=1024, drop_proj=0.5):
super().__init__(
nn.Linear(embedding_dim, proj_dim),
ResidualAdd(nn.Sequential(
nn.GELU(),
nn.Linear(proj_dim, proj_dim),
nn.Dropout(drop_proj),
)),
nn.LayerNorm(proj_dim),
)
class ATMS(nn.Module):
def __init__(self, num_channels=63, sequence_length=250, num_subjects=2, num_features=64, num_latents=1024, num_blocks=1):
super(ATMS, self).__init__()
default_config = Config()
self.encoder = iTransformer(default_config)
self.subject_wise_linear = nn.ModuleList([nn.Linear(default_config.d_model, sequence_length) for _ in range(num_subjects)])
self.enc_eeg = Enc_eeg()
self.proj_eeg = Proj_eeg()
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.loss_func = ClipLoss()
def forward(self, x, subject_ids):
x = self.encoder(x, None, subject_ids)
# print(f'After attention shape: {x.shape}')
# print("x", x.shape)
# x = self.subject_wise_linear[0](x)
# print(f'After subject-specific linear transformation shape: {x.shape}')
eeg_embedding = self.enc_eeg(x)
out = self.proj_eeg(eeg_embedding)
return out
def extract_id_from_string(s):
match = re.search(r'\d+$', s)
if match:
return int(match.group())
return None
def train_model(sub, eeg_model, dataloader, optimizer, device, text_features_all, img_features_all, config):
eeg_model.train()
text_features_all = text_features_all.to(device).float() # (n_cls, d)
img_features_all = (img_features_all[::10]).to(device).float()
total_loss = 0
correct = 0
total = 0
alpha=0.90
features_list = [] # List to store features
save_features= True
mse_loss_fn = nn.MSELoss()
for batch_idx, (eeg_data, labels, text, text_features, img, img_features) in enumerate(dataloader):
eeg_data = eeg_data.to(device)
text_features = text_features.to(device).float()
img_features = img_features.to(device).float()
labels = labels.to(device)
optimizer.zero_grad()
batch_size = eeg_data.size(0) # Assume the first element is the data tensor
subject_id = extract_id_from_string(sub)
# eeg_data = eeg_data.permute(0, 2, 1)
subject_ids = torch.full((batch_size,), subject_id, dtype=torch.long).to(device)
# if not config.insubject:
# subject_ids = torch.full((batch_size,), -1, dtype=torch.long).to(device)
eeg_features = eeg_model(eeg_data, subject_ids).float()
features_list.append(eeg_features)
logit_scale = eeg_model.logit_scale
img_loss = eeg_model.loss_func(eeg_features, img_features, logit_scale)
text_loss = eeg_model.loss_func(eeg_features, text_features, logit_scale)
# loss = img_loss + text_loss
# print("text_loss", text_loss)
# print("img_loss", img_loss)
regress_loss = mse_loss_fn(eeg_features, img_features)
loss = (alpha * regress_loss *10 + (1 - alpha) * img_loss*10)
loss.backward()
optimizer.step()
total_loss += loss.item()
# logits = logit_scale * eeg_features @ text_features_all.T # (n_batch, n_cls)
# Compute corresponding logits
logits_img = logit_scale * eeg_features @ img_features_all.T
# logits_text = logit_scale * eeg_features @ text_features_all.T
# logits_single = (logits_text + logits_img) / 2.0
# logits_text = logit_scale * eeg_features @ text_features_all.T
logits_single = logits_img
predicted = torch.argmax(logits_single, dim=1) # (n_batch, ) ∈ {0, 1, ..., n_cls-1}
batch_size = predicted.shape[0]
total += batch_size
correct += (predicted == labels).sum().item()
del eeg_data, eeg_features, img_features
average_loss = total_loss / (batch_idx+1)
accuracy = correct / total
return average_loss, accuracy, torch.cat(features_list, dim=0)
def evaluate_model(sub, eeg_model, dataloader, device, text_features_all, img_features_all, k, config):
eeg_model.eval()
text_features_all = text_features_all.to(device).float()
img_features_all = img_features_all.to(device).float()
total_loss = 0
correct = 0
total = 0
alpha = 0.99
top5_correct = 0
top5_correct_count = 0
all_labels = set(range(text_features_all.size(0)))
top5_acc = 0
mse_loss_fn = nn.MSELoss()
with torch.no_grad():
for batch_idx, (eeg_data, labels, text, text_features, img, img_features) in enumerate(dataloader):
eeg_data = eeg_data.to(device)
text_features = text_features.to(device).float()
labels = labels.to(device)
img_features = img_features.to(device).float()
batch_size = eeg_data.size(0) # Assume the first element is the data tensor
subject_id = extract_id_from_string(sub)
# eeg_data = eeg_data.permute(0, 2, 1)
subject_ids = torch.full((batch_size,), subject_id, dtype=torch.long).to(device)
# if not config.insubject:
# subject_ids = torch.full((batch_size,), -1, dtype=torch.long).to(device)
eeg_features = eeg_model(eeg_data, subject_ids)
logit_scale = eeg_model.logit_scale
# print(eeg_features.type, text_features.type, img_features.type)
img_loss = eeg_model.loss_func(eeg_features, img_features, logit_scale)
text_loss = eeg_model.loss_func(eeg_features, text_features, logit_scale)
regress_loss = mse_loss_fn(eeg_features, img_features)
loss = (alpha * regress_loss *10 + (1 - alpha) * img_loss*10)
total_loss += loss.item()
for idx, label in enumerate(labels):
# First select k-1 classes excluding the correct class
possible_classes = list(all_labels - {label.item()})
selected_classes = random.sample(possible_classes, k-1) + [label.item()]
selected_img_features = img_features_all[selected_classes]
selected_text_features = text_features_all[selected_classes]
if k==200:
# Compute corresponding logits
logits_img = logit_scale * eeg_features[idx] @ selected_img_features.T
logits_single = logits_img
# print("logits_single", logits_single.shape)
# Get predicted class
# predicted_label = selected_classes[torch.argmax(logits_single).item()]
predicted_label = selected_classes[torch.argmax(logits_single).item()] # (n_batch, ) ∈ {0, 1, ..., n_cls-1}
if predicted_label == label.item():
# print("predicted_label", predicted_label)
correct += 1
# logits_single is the model output, assumed to be shape (n_batch, n_classes)
# label is the true label, shape (n_batch,)
# Get top-5 predicted indices
# print("logits_single", logits_single)
_, top5_indices = torch.topk(logits_single, 5, largest =True)
# Check if true label is in top-5 predictions
if label.item() in [selected_classes[i] for i in top5_indices.tolist()]:
top5_correct_count+=1
total += 1
elif k == 50 or k == 100:
# For k=50 or 100, select k classes for evaluation
selected_classes = random.sample(possible_classes, k-1) + [label.item()]
logits_img = logit_scale * eeg_features[idx] @ selected_img_features.T
logits_single = logits_img
predicted_label = selected_classes[torch.argmax(logits_single).item()]
if predicted_label == label.item():
correct += 1
_, top5_indices = torch.topk(logits_single, 5, largest =True)
# Check if true label is in top-5 predictions
if label.item() in [selected_classes[i] for i in top5_indices.tolist()]:
top5_correct_count+=1
total += 1
elif k==2 or k==4 or k==10:
selected_classes = random.sample(possible_classes, k-1) + [label.item()]
# Compute corresponding logits
logits_img = logit_scale * eeg_features[idx] @ selected_img_features.T
# logits_text = logit_scale * eeg_features[idx] @ selected_text_features.T
# logits_single = (logits_text + logits_img) / 2.0
logits_single = logits_img
# print("logits_single", logits_single.shape)
# Get predicted class
# predicted_label = selected_classes[torch.argmax(logits_single).item()]
predicted_label = selected_classes[torch.argmax(logits_single).item()] # (n_batch, ) ∈ {0, 1, ..., n_cls-1}
if predicted_label == label.item():
correct += 1
total += 1
else:
print("Error.")
del eeg_data, eeg_features, img_features
average_loss = total_loss / (batch_idx+1)
accuracy = correct / total
top5_acc = top5_correct_count / total
return average_loss, accuracy, top5_acc
def main_train_loop(sub, current_time, eeg_model, train_dataloader, test_dataloader, optimizer, device, text_features_train_all, text_features_test_all, img_features_train_all, img_features_test_all, config, logger=None):
logger = wandb_logger(config) if logger else None
logger.watch(eeg_model,logger)
train_losses, train_accuracies = [], []
test_losses, test_accuracies = [], []
v2_accs = []
v4_accs = []
v10_accs = []
best_accuracy = 0.0
best_model_weights = None
best_epoch_info = {}
results = [] # List to store results for each epoch
for epoch in range(config.epochs):
# Train the model
train_loss, train_accuracy, features_tensor = train_model(sub, eeg_model, train_dataloader, optimizer, device, text_features_train_all, img_features_train_all, config=config)
if (epoch +1) % 5 == 0:
# Save the model every 5 epochs
if config.insubject==True:
os.makedirs(f"./models/contrast/{config.encoder_type}/{sub}/{current_time}", exist_ok=True)
file_path = f"./models/contrast/{config.encoder_type}/{sub}/{current_time}/{epoch+1}.pth"
torch.save(eeg_model.state_dict(), file_path)
else:
os.makedirs(f"./models/contrast/across/{config.encoder_type}/{current_time}", exist_ok=True)
file_path = f"./models/contrast/across/{config.encoder_type}/{current_time}/{epoch+1}.pth"
torch.save(eeg_model.state_dict(), file_path)
print(f"Model saved in {file_path}!")
train_losses.append(train_loss)
train_accuracies.append(train_accuracy)
# Evaluate the model
test_loss, test_accuracy, top5_acc = evaluate_model(sub, eeg_model, test_dataloader, device, text_features_test_all, img_features_test_all,k=200, config=config)
_, v2_acc, _ = evaluate_model(sub, eeg_model, test_dataloader, device, text_features_test_all, img_features_test_all, k = 2, config=config)
_, v4_acc, _ = evaluate_model(sub, eeg_model, test_dataloader, device, text_features_test_all, img_features_test_all, k = 4, config=config)
_, v10_acc, _ = evaluate_model(sub, eeg_model, test_dataloader, device, text_features_test_all, img_features_test_all, k = 10, config=config)
_, v50_acc, v50_top5_acc = evaluate_model(sub, eeg_model, test_dataloader, device, text_features_test_all, img_features_test_all, k=50, config=config)
_, v100_acc, v100_top5_acc = evaluate_model(sub, eeg_model, test_dataloader, device, text_features_test_all, img_features_test_all, k=100, config=config)
test_losses.append(test_loss)
test_accuracies.append(test_accuracy)
v2_accs.append(v2_acc)
v4_accs.append(v4_acc)
v10_accs.append(v10_acc)
# Append results for this epoch
epoch_results = {
"epoch": epoch + 1,
# "train_loss": train_loss,
# "train_accuracy": train_accuracy,
"test_loss": test_loss,
"test_accuracy": test_accuracy,
"v2_acc": v2_acc,
"v4_acc": v4_acc,
"v10_acc": v10_acc,
"top5_acc":top5_acc,
"v50_acc": v50_acc,
"v100_acc": v100_acc,
"v50_top5_acc":v50_top5_acc,
"v100_top5_acc": v100_top5_acc
}
results.append(epoch_results)
# If the test accuracy of the current epoch is the best, save the model and related information
if test_accuracy > best_accuracy:
best_accuracy = test_accuracy
# best_model_weights = model.state_dict().copy()
best_epoch_info = {
"epoch": epoch + 1,
"train_loss": train_loss,
"train_accuracy": train_accuracy,
"test_loss": test_loss,
"test_accuracy": test_accuracy,
"v2_acc":v2_acc,
"v4_acc":v4_acc,
"v10_acc":v10_acc
}
logger.log({
"Train Loss": train_loss,
"Train Accuracy": train_accuracy,
"Test Loss": test_loss,
"Test Accuracy": test_accuracy,
"v2 Accuracy": v2_acc,
"v4 Accuracy": v4_acc,
"v10 Accuracy": v10_acc,
"Epoch": epoch
})
print(f"Epoch {epoch + 1}/{config.epochs} - Train Loss: {train_loss:.4f}, Train Accuracy: {train_accuracy:.4f}, Test Loss: {test_loss:.4f}, Test Accuracy: {test_accuracy:.4f}, Top5 Accuracy: {top5_acc:.4f}")
print(f"Epoch {epoch + 1}/{config.epochs} - v2 Accuracy:{v2_acc} - v4 Accuracy:{v4_acc} - v10 Accuracy:{v10_acc} - v50 Accuracy:{v50_acc} - v100 Accuracy:{v100_acc}")
# # Load best model weights
# model.load_state_dict(best_model_weights)
# # # Save best model
# torch.save(model.state_dict(), '{train_pos_img_text}.pth')
# Create 5 subplots
fig, axs = plt.subplots(3, 2, figsize=(10, 15))
# Loss plot
axs[0, 0].plot(train_losses, label='Train Loss')
axs[0, 0].plot(test_losses, label='Test Loss')
axs[0, 0].legend()
axs[0, 0].set_title("Loss Curve")
# Overall accuracy plot
axs[0, 1].plot(train_accuracies, label='Train Accuracy')
axs[0, 1].plot(test_accuracies, label='Test Accuracy')
axs[0, 1].legend()
axs[0, 1].set_title("Accuracy Curve")
# The following are the three new plots you added, assuming you have calculated the corresponding accuracies
# 2-class accuracy plot
axs[1, 0].plot(v2_accs, label='2-class Accuracy')
axs[1, 0].legend()
axs[1, 0].set_title("2-Class Accuracy Curve")
# 4-class accuracy plot
axs[1, 1].plot(v4_accs, label='4-class Accuracy')
axs[1, 1].legend()
axs[1, 1].set_title("4-Class Accuracy Curve")
# 10-class accuracy plot
axs[2, 0].plot(v10_accs, label='10-class Accuracy')
axs[2, 0].legend()
axs[2, 0].set_title("10-Class Accuracy Curve")
# Construct the string information you want to annotate
info_text = (f"Best Model Info (from Epoch {best_epoch_info['epoch']}):\n"
f"Train Loss: {best_epoch_info['train_loss']:.4f}\n"
f"Train Accuracy: {best_epoch_info['train_accuracy']:.4f}\n"
f"Test Loss: {best_epoch_info['test_loss']:.4f}\n"
f"Test Accuracy: {best_epoch_info['test_accuracy']:.4f}\n"
f"v2_acc:{best_epoch_info['v2_acc']:.4f}\n"
f"v4_acc:{best_epoch_info['v4_acc']:.4f}\n"
f"v10_acc:{best_epoch_info['v10_acc']:.4f}")
axs[2, 1].axis('off')
axs[2, 1].text(0.5, 0.5, info_text, fontsize=10, ha='center', va='center', transform=axs[2, 1].transAxes)
plt.tight_layout()
# Add main title
plt.suptitle('pos_img_text', fontsize=16, y=1.05)
plt.savefig('pos_img_text')
logger.finish()
return results
import datetime
def main():
# Use argparse to parse the command-line arguments
parser = argparse.ArgumentParser(description='EEG Transformer Training Script')
parser.add_argument('--data_path', type=str, default="/root/autodl-tmp/THINGS/Preprocessed_data_250Hz", help='Path to the EEG dataset')
parser.add_argument('--output_dir', type=str, default='./outputs/contrast', help='Directory to save output results')
parser.add_argument('--project', type=str, default="train_pos_img_text_rep", help='WandB project name')
parser.add_argument('--entity', type=str, default="sustech_rethinkingbci", help='WandB entity name')
parser.add_argument('--name', type=str, default="lr=3e-4_img_pos_pro_eeg", help='Experiment name')
parser.add_argument('--lr', type=float, default=3e-4, help='Learning rate')
parser.add_argument('--epochs', type=int, default=40, help='Number of epochs')
parser.add_argument('--batch_size', type=int, default=64, help='Batch size')
parser.add_argument('--logger', type=bool, default=True, help='Enable WandB logging')
parser.add_argument('--gpu', type=str, default='cuda:0', help='GPU device to use')
parser.add_argument('--device', type=str, choices=['cpu', 'gpu'], default='gpu', help='Device to run on (cpu or gpu)')
parser.add_argument('--insubject', type=bool, default=True, help='In-subject mode or cross-subject mode')
parser.add_argument('--encoder_type', type=str, default='ATMS', help='Encoder type')
parser.add_argument('--subjects', nargs='+', default=['sub-01', 'sub-02', 'sub-03', 'sub-04', 'sub-05', 'sub-06', 'sub-07', 'sub-08', 'sub-09', 'sub-10'], help='List of subject IDs (default: sub-01 to sub-10)')
args = parser.parse_args()
# Set device based on the argument
if args.device == 'gpu' and torch.cuda.is_available():
device = torch.device(args.gpu)
else:
device = torch.device('cpu')
subjects = args.subjects
current_time = datetime.datetime.now().strftime("%m-%d_%H-%M")
for sub in subjects:
eeg_model = globals()[args.encoder_type]()
eeg_model.to(device)
optimizer = AdamW(itertools.chain(eeg_model.parameters()), lr=args.lr)
if args.insubject:
train_dataset = EEGDataset(args.data_path, subjects=[sub], train=True)
test_dataset = EEGDataset(args.data_path, subjects=[sub], train=False)
else:
train_dataset = EEGDataset(args.data_path, exclude_subject=sub, subjects=subjects, train=True)
test_dataset = EEGDataset(args.data_path, exclude_subject=sub, subjects=subjects, train=False)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=0, drop_last=True)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=True, num_workers=0, drop_last=True)
text_features_train_all = train_dataset.text_features
text_features_test_all = test_dataset.text_features
img_features_train_all = train_dataset.img_features
img_features_test_all = test_dataset.img_features
results = main_train_loop(sub, current_time, eeg_model, train_loader, test_loader, optimizer, device,
text_features_train_all, text_features_test_all, img_features_train_all, img_features_test_all, config=args, logger=args.logger)
# Save results to a CSV file
results_dir = os.path.join(args.output_dir, args.encoder_type, sub, current_time)
os.makedirs(results_dir, exist_ok=True)
if args.insubject:
results_file = f"{results_dir}/{args.encoder_type}_{sub}.csv"
else:
results_file = f"{results_dir}/{args.encoder_type}_cross_exclude_{sub}.csv"
with open(results_file, 'w', newline='') as file:
writer = csv.DictWriter(file, fieldnames=results[0].keys())
writer.writeheader()
writer.writerows(results)
print(f'Results saved to {results_file}')
if __name__ == '__main__':
main()