[bb64db]: / Retrieval / ATME_retrieval.py

Download this file

515 lines (414 with data), 20.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import os
import torch
import torch.optim as optim
from torch.nn import CrossEntropyLoss
from torch.nn import functional as F
from torch.optim import Adam
from torch.utils.data import DataLoader
os.environ["WANDB_API_KEY"] = "KEY"
os.environ["WANDB_MODE"] = 'offline'
from itertools import combinations
import clip
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torchvision.transforms as transforms
import tqdm
from BrainAligning_retrieval.eegdatasets_leaveone import EEGDataset
from einops.layers.torch import Rearrange, Reduce
from lavis.models.clip_models.loss import ClipLoss
from sklearn.metrics import confusion_matrix
from torch.utils.data import DataLoader, Dataset
import random
from utils import wandb_logger
import csv
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model + 1, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term[:d_model // 2 + 1])
pe[:, 1::2] = torch.cos(position * div_term[:d_model // 2])
self.register_buffer('pe', pe)
def forward(self, x):
pe = self.pe[:x.size(0), :].unsqueeze(1).repeat(1, x.size(1), 1)
x = x + pe
return x
class EEGAttention(nn.Module):
def __init__(self, channel, d_model, nhead):
super(EEGAttention, self).__init__()
self.pos_encoder = PositionalEncoding(d_model)
self.encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead)
self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=1)
self.channel = channel
self.d_model = d_model
def forward(self, src):
src = src.permute(2, 0, 1) # Change shape to [time_length, batch_size, channel]
src = self.pos_encoder(src)
output = self.transformer_encoder(src)
return output.permute(1, 2, 0) # Change shape back to [batch_size, channel, time_length]
class PatchEmbedding(nn.Module):
def __init__(self, emb_size=40):
super().__init__()
# revised from shallownet
self.shape = (63, 250)
self.tsconv = EEGNetv4(
in_chans=self.shape[0],
n_classes=1440,
input_window_samples=self.shape[1],
final_conv_length='auto',
pool_mode='mean',
F1=8,
D=20,
F2=160,
kernel_length=4,
third_kernel_size=(4, 2),
drop_prob=0.25
)
def forward(self, x: Tensor) -> Tensor:
x = x.unsqueeze(3)
# print("x", x.shape)
x = self.tsconv(x)
return x
class ResidualAdd(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
res = x
x = self.fn(x, **kwargs)
x += res
return x
class FlattenHead(nn.Sequential):
def __init__(self):
super().__init__()
def forward(self, x):
x = x.contiguous().view(x.size(0), -1)
return x
class Enc_eeg(nn.Sequential):
def __init__(self, emb_size=40, **kwargs):
super().__init__(
PatchEmbedding(emb_size),
FlattenHead()
)
class Proj_eeg(nn.Sequential):
def __init__(self, embedding_dim=1440, proj_dim=1024, drop_proj=0.5):
super().__init__(
nn.Linear(embedding_dim, proj_dim),
ResidualAdd(nn.Sequential(
nn.GELU(),
nn.Linear(proj_dim, proj_dim),
nn.Dropout(drop_proj),
)),
nn.LayerNorm(proj_dim),
)
class ATM_E(nn.Module):
def __init__(self, num_channels=63, sequence_length=250, num_subjects=1, num_features=64, num_latents=1024, num_blocks=1):
super(ATM_E, self).__init__()
self.attention_model = EEGAttention(num_channels, num_channels, nhead=1)
self.subject_wise_linear = nn.ModuleList([nn.Linear(sequence_length, sequence_length) for _ in range(num_subjects)])
self.enc_eeg = Enc_eeg()
self.proj_eeg = Proj_eeg()
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.loss_func = ClipLoss()
def forward(self, x):
x = self.attention_model(x)
# print(f'After attention shape: {x.shape}')
x = self.subject_wise_linear[0](x)
# print(f'After subject-specific linear transformation shape: {x.shape}')
eeg_embedding = self.enc_eeg(x)
# print(f'After enc_eeg shape: {eeg_embedding.shape}')
out = self.proj_eeg(eeg_embedding)
return out
def train_model(model, dataloader, optimizer, device, text_features_all, img_features_all):
model.train()
text_features_all = text_features_all.to(device).float() # (n_cls, d)
img_features_all = (img_features_all[::10]).to(device).float()
total_loss = 0
correct = 0
total = 0
alpha=0.99
features_list = [] # List to store features
save_features= True
for batch_idx, (eeg_data, labels, text, text_features, img, img_features) in enumerate(dataloader):
eeg_data = eeg_data.to(device)
text_features = text_features.to(device).float()
img_features = img_features.to(device).float()
labels = labels.to(device)
optimizer.zero_grad()
eeg_features = model(eeg_data).float()
features_list.append(eeg_features)
logit_scale = model.logit_scale
img_loss = model.loss_func(eeg_features, img_features, logit_scale)
text_loss = model.loss_func(eeg_features, text_features, logit_scale)
# loss = img_loss + text_loss
# print("text_loss", text_loss)
# print("img_loss", img_loss)
loss = alpha * img_loss + (1 - alpha) * text_loss
loss.backward()
optimizer.step()
total_loss += loss.item()
# logits = logit_scale * eeg_features @ text_features_all.T # (n_batch, n_cls)
logits_img = logit_scale * eeg_features @ img_features_all.T
# logits_text = logit_scale * eeg_features @ text_features_all.T
# logits_single = (logits_text + logits_img) / 2.0
# logits_text = logit_scale * eeg_features @ text_features_all.T
logits_single = logits_img
predicted = torch.argmax(logits_single, dim=1) # (n_batch, ) \in {0, 1, ..., n_cls-1}
batch_size = predicted.shape[0]
total += batch_size
correct += (predicted == labels).sum().item()
average_loss = total_loss / (batch_idx+1)
accuracy = correct / total
return average_loss, accuracy
def evaluate_model(model, dataloader, device, text_features_all, img_features_all, k):
model.eval()
text_features_all = text_features_all.to(device).float()
img_features_all = img_features_all.to(device).float()
total_loss = 0
correct = 0
total = 0
alpha = 0.99
top5_correct = 0
top5_correct_count = 0
all_labels = set(range(text_features_all.size(0)))
top5_acc = 0
with torch.no_grad():
for batch_idx, (eeg_data, labels, text, text_features, img, img_features) in enumerate(dataloader):
eeg_data = eeg_data.to(device)
text_features = text_features.to(device).float()
labels = labels.to(device)
img_features = img_features.to(device).float()
eeg_features = model(eeg_data).float()
logit_scale = model.logit_scale
# print(eeg_features.type, text_features.type, img_features.type)
img_loss = model.loss_func(eeg_features, img_features, logit_scale)
text_loss = model.loss_func(eeg_features, text_features, logit_scale)
loss = img_loss*alpha + text_loss*(1-alpha)
total_loss += loss.item()
for idx, label in enumerate(labels):
possible_classes = list(all_labels - {label.item()})
selected_classes = random.sample(possible_classes, k-1) + [label.item()]
# selected_text_features = text_features_all[selected_classes]
selected_img_features = img_features_all[selected_classes]
if k==200:
logits_img = logit_scale * eeg_features[idx] @ selected_img_features.T
# logits_text = logit_scale * eeg_features[idx] @ selected_text_features.T
# logits_single = (logits_text + logits_img) / 2.0
logits_single = logits_img
# print("logits_single", logits_single.shape)
# predicted_label = selected_classes[torch.argmax(logits_single).item()]
predicted_label = selected_classes[torch.argmax(logits_single).item()] # (n_batch, ) \in {0, 1, ..., n_cls-1}
if predicted_label == label.item():
# print("predicted_label", predicted_label)
correct += 1
# print("logits_single", logits_single)
_, top5_indices = torch.topk(logits_single, 5, largest =True)
if label.item() in [selected_classes[i] for i in top5_indices.tolist()]:
# print("top5_indices", top5_indices)
# print("Yes")
top5_correct_count+=1
# print("*"*50)
total += 1
elif k==2 or k==4 or k==10:
logits_img = logit_scale * eeg_features[idx] @ selected_img_features.T
# logits_text = logit_scale * eeg_features[idx] @ selected_text_features.T
# logits_single = (logits_text + logits_img) / 2.0
logits_single = logits_img
# print("logits_single", logits_single.shape)
# predicted_label = selected_classes[torch.argmax(logits_single).item()]
predicted_label = selected_classes[torch.argmax(logits_single).item()] # (n_batch, ) \in {0, 1, ..., n_cls-1}
if predicted_label == label.item():
correct += 1
total += 1
else:
print("Error.")
average_loss = total_loss / (batch_idx+1)
accuracy = correct / total
top5_acc = top5_correct_count / total
return average_loss, accuracy, top5_acc
def main_train_loop(sub, model, train_dataloader, test_dataloader, optimizer, device,
text_features_train_all, text_features_test_all, img_features_train_all, img_features_test_all, config, logger=None):
logger = wandb_logger(config) if logger else None
logger.watch(model,logger)
train_losses, train_accuracies = [], []
test_losses, test_accuracies = [], []
v2_accs = []
v4_accs = []
v10_accs = []
best_accuracy = 0.0
best_model_weights = None
best_epoch_info = {}
results = []
for epoch in range(config['epochs']):
train_loss, train_accuracy = train_model(model, train_dataloader, optimizer, device, text_features_train_all, img_features_train_all)
if epoch%5 == 0:
if config['insubject']==True:
torch.save(model.state_dict(), f"./models/{sub}_{epoch}.pth")
else:
torch.save(model.state_dict(), f"./models/across_{epoch}.pth")
train_losses.append(train_loss)
train_accuracies.append(train_accuracy)
test_loss, test_accuracy, top5_acc = evaluate_model(model, test_dataloader, device, text_features_test_all, img_features_test_all,k=200)
_, v2_acc, _ = evaluate_model(model, test_dataloader, device, text_features_test_all, img_features_test_all, k = 2)
_, v4_acc, _ = evaluate_model(model, test_dataloader, device, text_features_test_all, img_features_test_all, k = 4)
_, v10_acc, _ = evaluate_model(model, test_dataloader, device, text_features_test_all, img_features_test_all, k = 10)
test_losses.append(test_loss)
test_accuracies.append(test_accuracy)
v2_accs.append(v2_acc)
v4_accs.append(v4_acc)
v10_accs.append(v10_acc)
# Append results for this epoch
epoch_results = {
"epoch": epoch + 1,
"train_loss": train_loss,
"train_accuracy": train_accuracy,
"test_loss": test_loss,
"test_accuracy": test_accuracy,
"v2_acc": v2_acc,
"v4_acc": v4_acc,
"v10_acc": v10_acc,
"top5_acc":top5_acc
}
results.append(epoch_results)
if test_accuracy > best_accuracy:
best_accuracy = test_accuracy
best_model_weights = model.state_dict().copy()
best_epoch_info = {
"epoch": epoch + 1,
"train_loss": train_loss,
"train_accuracy": train_accuracy,
"test_loss": test_loss,
"test_accuracy": test_accuracy,
"v2_acc":v2_acc,
"v4_acc":v4_acc,
"v10_acc":v10_acc
}
logger.log({
"Train Loss": train_loss,
"Train Accuracy": train_accuracy,
"Test Loss": test_loss,
"Test Accuracy": test_accuracy,
"v2 Accuracy": v2_acc,
"v4 Accuracy": v4_acc,
"v10 Accuracy": v10_acc,
"Epoch": epoch
})
print(f"Epoch {epoch + 1}/{config['epochs']} - Train Loss: {train_loss:.4f}, Train Accuracy: {train_accuracy:.4f}, Test Loss: {test_loss:.4f}, Test Accuracy: {test_accuracy:.4f}, Top5 Accuracy: {top5_acc:.4f}")
print(f"Epoch {epoch + 1}/{config['epochs']} - v2 Accuracy:{v2_acc} - v4 Accuracy:{v4_acc} - v10 Accuracy:{v10_acc}")
# model.load_state_dict(best_model_weights)
# torch.save(model.state_dict(), '{train_pos_img_text}.pth')
fig, axs = plt.subplots(3, 2, figsize=(10, 15))
axs[0, 0].plot(train_losses, label='Train Loss')
axs[0, 0].plot(test_losses, label='Test Loss')
axs[0, 0].legend()
axs[0, 0].set_title("Loss Curve")
axs[0, 1].plot(train_accuracies, label='Train Accuracy')
axs[0, 1].plot(test_accuracies, label='Test Accuracy')
axs[0, 1].legend()
axs[0, 1].set_title("Accuracy Curve")
axs[1, 0].plot(v2_accs, label='2-class Accuracy')
axs[1, 0].legend()
axs[1, 0].set_title("2-Class Accuracy Curve")
axs[1, 1].plot(v4_accs, label='4-class Accuracy')
axs[1, 1].legend()
axs[1, 1].set_title("4-Class Accuracy Curve")
axs[2, 0].plot(v10_accs, label='10-class Accuracy')
axs[2, 0].legend()
axs[2, 0].set_title("10-Class Accuracy Curve")
info_text = (f"Best Model Info (from Epoch {best_epoch_info['epoch']}):\n"
f"Train Loss: {best_epoch_info['train_loss']:.4f}\n"
f"Train Accuracy: {best_epoch_info['train_accuracy']:.4f}\n"
f"Test Loss: {best_epoch_info['test_loss']:.4f}\n"
f"Test Accuracy: {best_epoch_info['test_accuracy']:.4f}\n"
f"v2_acc:{best_epoch_info['v2_acc']:.4f}\n"
f"v4_acc:{best_epoch_info['v4_acc']:.4f}\n"
f"v10_acc:{best_epoch_info['v10_acc']:.4f}")
axs[2, 1].axis('off')
axs[2, 1].text(0.5, 0.5, info_text, fontsize=10, ha='center', va='center', transform=axs[2, 1].transAxes)
plt.tight_layout()
plt.suptitle('pos_img_text', fontsize=16, y=1.05)
plt.savefig('pos_img_text')
logger.finish()
return results
def main():
parser = argparse.ArgumentParser(description='Train EEG-Image/Text Model')
parser.add_argument('--data_path', type=str, default="/home/ldy/Workspace/THINGS/Preprocessed_data_250Hz", help='Path to the preprocessed data')
parser.add_argument('--project', type=str, default="train_pos_img_text_rep", help='Project name')
parser.add_argument('--entity', type=str, default="sustech_rethinkingbci", help='Entity name')
parser.add_argument('--name', type=str, default="lr=3e-4_img_pos_pro_eeg", help='Experiment name')
parser.add_argument('--lr', type=float, default=3e-4, help='Learning rate')
parser.add_argument('--epochs', type=int, default=40, help='Number of training epochs')
parser.add_argument('--batch_size', type=int, default=1024, help='Batch size')
parser.add_argument('--logger', action='store_true', help='Enable logging')
parser.add_argument('--insubject', action='store_true', help='Train within subject')
parser.add_argument('--encoder_type', type=str, default='ATM_E', help='EEG encoder model type')
parser.add_argument('--device', type=str, default='cuda:0', help='Device to use for training (e.g., "cuda:0" or "cpu")')
args = parser.parse_args()
device = torch.device(args.device if torch.cuda.is_available() else 'cpu')
data_path = args.data_path
subjects = ['sub-01', 'sub-02', 'sub-03', 'sub-04', 'sub-05', 'sub-06', 'sub-07', 'sub-08', 'sub-09', 'sub-10']
for sub in subjects:
# Re-initialize the model for each subject
model = globals()[args.encoder_type]((63, 250))
model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr)
print(f'Processing {sub}: number of parameters:', sum(p.numel() for p in model.parameters()))
train_dataset = EEGDataset(
data_path,
subjects=[sub] if args.insubject else [],
exclude_subject=sub if not args.insubject else None,
train=True
)
test_dataset = EEGDataset(
data_path,
subjects=[sub] if args.insubject else [],
exclude_subject=sub if not args.insubject else None,
train=False
)
train_loader = DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=0,
drop_last=True
)
test_loader = DataLoader(
test_dataset,
batch_size=1,
shuffle=True,
num_workers=0,
drop_last=True
)
text_features_train_all = train_dataset.text_features
text_features_test_all = test_dataset.text_features
img_features_train_all = train_dataset.img_features
img_features_test_all = test_dataset.img_features
config = vars(args)
results = main_train_loop(
sub,
model,
train_loader,
test_loader,
optimizer,
device,
text_features_train_all,
text_features_test_all,
img_features_train_all,
img_features_test_all,
config,
logger=args.logger
)
# Save results to a CSV file
current_time = datetime.datetime.now().strftime("%m-%d_%H-%M")
results_dir = f"./outputs/{args.encoder_type}/{sub}/{current_time}"
os.makedirs(results_dir, exist_ok=True)
results_file = f"{results_dir}/{args.encoder_type}_{'cross_exclude_' if not args.insubject else ''}{sub}.csv"
with open(results_file, 'w', newline='') as file:
writer = csv.DictWriter(file, fieldnames=results[0].keys())
writer.writeheader()
writer.writerows(results)
print(f'Results saved to {results_file}')
if __name__ == '__main__':
main()