[bb64db]: / Generation / diffusion_prior.py

Download this file

393 lines (310 with data), 12.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import os
import torch
from torch import nn
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm
from diffusers.models.embeddings import Timesteps, TimestepEmbedding
from torch.utils.data import Dataset
class DiffusionPrior(nn.Module):
def __init__(
self,
embed_dim=1024,
cond_dim=42,
hidden_dim=1024,
layers_per_block=4,
time_embed_dim=512,
act_fn=nn.SiLU,
dropout=0.0,
):
super().__init__()
self.embed_dim = embed_dim
# 1. time embedding
self.time_proj = Timesteps(time_embed_dim, True, 0)
self.time_embedding = TimestepEmbedding(
time_embed_dim,
hidden_dim,
)
# 2. conditional embedding
self.cond_embedding = nn.Linear(cond_dim, hidden_dim)
# 3. prior mlp
# 3.1 input
self.input_layer = nn.Sequential(
nn.Linear(embed_dim, hidden_dim),
nn.LayerNorm(hidden_dim),
act_fn(),
)
# 3.2 hidden
self.hidden_layers = nn.ModuleList(
[
nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.LayerNorm(hidden_dim),
act_fn(),
nn.Dropout(dropout),
)
for _ in range(layers_per_block)
]
)
# 3.3 output
self.output_layer = nn.Linear(hidden_dim, embed_dim)
def forward(self, x, t, c=None):
# x (batch_size, embed_dim)
# t (batch_size, )
# c (batch_size, cond_dim)
# 1. time embedding
t = self.time_proj(t) # (batch_size, time_embed_dim)
t = self.time_embedding(t) # (batch_size, hidden_dim)
# 2. conditional embedding
c = self.cond_embedding(c) if c is not None else 0 # (batch_size, hidden_dim)
# 3. prior mlp
# 3.1 input
x = self.input_layer(x)
# 3.2 hidden
for layer in self.hidden_layers:
x = x + t + c
x = layer(x) + x
# 3.3 output
x = self.output_layer(x)
return x
class DiffusionPriorUNet(nn.Module):
def __init__(
self,
embed_dim=1024,
cond_dim=42,
hidden_dim=[1024, 512, 256, 128, 64],
time_embed_dim=512,
act_fn=nn.SiLU,
dropout=0.0,
):
super().__init__()
self.embed_dim = embed_dim
self.cond_dim = cond_dim
self.hidden_dim = hidden_dim
# 1. time embedding
self.time_proj = Timesteps(time_embed_dim, True, 0)
# 2. conditional embedding
# to 3.2, 3,3
# 3. prior mlp
# 3.1 input
self.input_layer = nn.Sequential(
nn.Linear(embed_dim, hidden_dim[0]),
nn.LayerNorm(hidden_dim[0]),
act_fn(),
)
# 3.2 hidden encoder
self.num_layers = len(hidden_dim)
self.encode_time_embedding = nn.ModuleList(
[TimestepEmbedding(
time_embed_dim,
hidden_dim[i],
) for i in range(self.num_layers-1)]
) # d_0, ..., d_{n-1}
self.encode_cond_embedding = nn.ModuleList(
[nn.Linear(cond_dim, hidden_dim[i]) for i in range(self.num_layers-1)]
)
self.encode_layers = nn.ModuleList(
[nn.Sequential(
nn.Linear(hidden_dim[i], hidden_dim[i+1]),
nn.LayerNorm(hidden_dim[i+1]),
act_fn(),
nn.Dropout(dropout),
) for i in range(self.num_layers-1)]
)
# 3.3 hidden decoder
self.decode_time_embedding = nn.ModuleList(
[TimestepEmbedding(
time_embed_dim,
hidden_dim[i],
) for i in range(self.num_layers-1,0,-1)]
) # d_{n}, ..., d_1
self.decode_cond_embedding = nn.ModuleList(
[nn.Linear(cond_dim, hidden_dim[i]) for i in range(self.num_layers-1,0,-1)]
)
self.decode_layers = nn.ModuleList(
[nn.Sequential(
nn.Linear(hidden_dim[i], hidden_dim[i-1]),
nn.LayerNorm(hidden_dim[i-1]),
act_fn(),
nn.Dropout(dropout),
) for i in range(self.num_layers-1,0,-1)]
)
# 3.4 output
self.output_layer = nn.Linear(hidden_dim[0], embed_dim)
def forward(self, x, t, c=None):
# x (batch_size, embed_dim)
# t (batch_size, )
# c (batch_size, cond_dim)
# 1. time embedding
t = self.time_proj(t) # (batch_size, time_embed_dim)
# 2. conditional embedding
# to 3.2, 3.3
# 3. prior mlp
# 3.1 input
x = self.input_layer(x)
# 3.2 hidden encoder
hidden_activations = []
for i in range(self.num_layers-1):
hidden_activations.append(x)
t_emb = self.encode_time_embedding[i](t)
c_emb = self.encode_cond_embedding[i](c) if c is not None else 0
x = x + t_emb + c_emb
x = self.encode_layers[i](x)
# 3.3 hidden decoder
for i in range(self.num_layers-1):
t_emb = self.decode_time_embedding[i](t)
c_emb = self.decode_cond_embedding[i](c) if c is not None else 0
x = x + t_emb + c_emb
x = self.decode_layers[i](x)
x += hidden_activations[-1-i]
# 3.4 output
x = self.output_layer(x)
return x
class EmbeddingDataset(Dataset):
def __init__(self, c_embeddings, h_embeddings):
self.c_embeddings = c_embeddings
self.h_embeddings = h_embeddings
def __len__(self):
return len(self.c_embeddings)
def __getitem__(self, idx):
return {
"c_embedding": self.c_embeddings[idx],
"h_embedding": self.h_embeddings[idx]
}
class EmbeddingDatasetVICE(Dataset):
def __init__(self, path_data):
image_features_dict = torch.load(os.path.join(path_data, 'openclip_emb/image_features.pt'))
self.embedding_vise = torch.load(os.path.join(path_data, 'variables/embedding_vise.pt'))
self.image_features = image_features_dict['image_features']
self.labels = image_features_dict['labels']
self.label2index = image_features_dict['l2i']
def __len__(self):
return len(self.image_features)
def __getitem__(self, idx):
idx_c = self.label2index[self.labels[idx]]
return {
"c_embedding": self.embedding_vise[idx_c],
"h_embedding": self.image_features[idx]
}
# Copied from diffusers.schedulers.scheduling_heun_discrete.HeunDiscreteScheduler.add_noise
def add_noise_with_sigma(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.FloatTensor,
) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
# mps does not support float64
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
else:
schedule_timesteps = self.timesteps.to(original_samples.device)
timesteps = timesteps.to(original_samples.device)
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < len(original_samples.shape):
sigma = sigma.unsqueeze(-1)
noisy_samples = original_samples + noise * sigma
return noisy_samples, sigma
# diffusion pipe
class Pipe:
def __init__(self, diffusion_prior=None, scheduler=None, device='cuda'):
self.diffusion_prior = diffusion_prior.to(device)
if scheduler is None:
from diffusers.schedulers import DDPMScheduler
self.scheduler = DDPMScheduler()
# self.scheduler.add_noise_with_sigma = add_noise_with_sigma.__get__(self.scheduler)
else:
self.scheduler = scheduler
self.device = device
def train(self, dataloader, num_epochs=10, learning_rate=1e-4):
self.diffusion_prior.train()
device = self.device
criterion = nn.MSELoss(reduction='none')
optimizer = optim.Adam(self.diffusion_prior.parameters(), lr=learning_rate)
from diffusers.optimization import get_cosine_schedule_with_warmup
lr_scheduler = get_cosine_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=500,
num_training_steps=(len(dataloader) * num_epochs),
)
num_train_timesteps = self.scheduler.config.num_train_timesteps
for epoch in range(num_epochs):
loss_sum = 0
for batch in dataloader:
c_embeds = batch['c_embedding'].to(device) if 'c_embedding' in batch.keys() else None
h_embeds = batch['h_embedding'].to(device)
N = h_embeds.shape[0]
# 1. randomly replecing c_embeds to None
if torch.rand(1) < 0.1:
c_embeds = None
# 2. Generate noisy embeddings as input
noise = torch.randn_like(h_embeds)
# 3. sample timestep
timesteps = torch.randint(0, num_train_timesteps, (N,), device=device)
# 4. add noise to h_embedding
perturbed_h_embeds = self.scheduler.add_noise(
h_embeds,
noise,
timesteps
) # (batch_size, embed_dim), (batch_size, )
# 5. predict noise
noise_pre = self.diffusion_prior(perturbed_h_embeds, timesteps, c_embeds)
# 6. loss function weighted by sigma
loss = criterion(noise_pre, noise) # (batch_size,)
loss = (loss).mean()
# 7. update parameters
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.diffusion_prior.parameters(), 1.0)
lr_scheduler.step()
optimizer.step()
loss_sum += loss.item()
loss_epoch = loss_sum / len(dataloader)
print(f'epoch: {epoch}, loss: {loss_epoch}')
# lr_scheduler.step(loss)
def generate(
self,
c_embeds=None,
num_inference_steps=50,
timesteps=None,
guidance_scale=5.0,
generator=None
):
# c_embeds (batch_size, cond_dim)
self.diffusion_prior.eval()
N = c_embeds.shape[0] if c_embeds is not None else 1
# 1. Prepare timesteps
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import retrieve_timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, self.device, timesteps)
# 2. Prepare c_embeds
if c_embeds is not None:
c_embeds = c_embeds.to(self.device)
# 3. Prepare noise
h_t = torch.randn(N, self.diffusion_prior.embed_dim, generator=generator, device=self.device)
# 4. denoising loop
for _, t in tqdm(enumerate(timesteps)):
t = torch.ones(h_t.shape[0], dtype=torch.float, device=self.device) * t
# 4.1 noise prediction
if guidance_scale == 0 or c_embeds is None:
noise_pred = self.diffusion_prior(h_t, t)
else:
noise_pred_cond = self.diffusion_prior(h_t, t, c_embeds)
noise_pred_uncond = self.diffusion_prior(h_t, t)
# perform classifier-free guidance
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
# 4.2 compute the previous noisy sample h_t -> h_{t-1}
h_t = self.scheduler.step(noise_pred, t.long().item(), h_t, generator=generator).prev_sample
return h_t
if __name__ == '__main__':
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# 1. test prior
prior = DiffusionPriorUNet(cond_dim=1024)
x = torch.randn(2, 1024)
t = torch.randint(0, 1000, (2,))
c = torch.randn(2, 1024)
y = prior(x, t, c)
print(y.shape)