44822 lines (44821 with data), 2.4 MB
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from torch.utils.data import Dataset, DataLoader\n",
"import numpy as np\n",
"import os\n",
"import clip\n",
"from torch.nn import functional as F\n",
"import torch.nn as nn\n",
"from torchvision import transforms\n",
"from PIL import Image\n",
"train = False\n",
"classes = None\n",
"pictures= None\n",
"\n",
"def load_data():\n",
" data_list = []\n",
" label_list = []\n",
" texts = []\n",
" images = []\n",
" \n",
" if train:\n",
" text_directory = \"/home/ldy/Workspace/THINGS/images_set/training_images\" \n",
" else:\n",
" text_directory = \"/home/ldy/Workspace/THINGS/images_set/test_images\"\n",
"\n",
" dirnames = [d for d in os.listdir(text_directory) if os.path.isdir(os.path.join(text_directory, d))]\n",
" dirnames.sort()\n",
" \n",
" if classes is not None:\n",
" dirnames = [dirnames[i] for i in classes]\n",
"\n",
" for dir in dirnames:\n",
"\n",
" try:\n",
" idx = dir.index('_')\n",
" description = dir[idx+1:]\n",
" except ValueError:\n",
" print(f\"Skipped: {dir} due to no '_' found.\")\n",
" continue\n",
" \n",
" new_description = f\"{description}\"\n",
" texts.append(new_description)\n",
"\n",
" if train:\n",
" img_directory = \"/home/ldy/Workspace/THINGS/images_set/training_images\"\n",
" else:\n",
" img_directory =\"/home/ldy/Workspace/THINGS/images_set/test_images\"\n",
" \n",
" all_folders = [d for d in os.listdir(img_directory) if os.path.isdir(os.path.join(img_directory, d))]\n",
" all_folders.sort()\n",
"\n",
" if classes is not None and pictures is not None:\n",
" images = []\n",
" for i in range(len(classes)):\n",
" class_idx = classes[i]\n",
" pic_idx = pictures[i]\n",
" if class_idx < len(all_folders):\n",
" folder = all_folders[class_idx]\n",
" folder_path = os.path.join(img_directory, folder)\n",
" all_images = [img for img in os.listdir(folder_path) if img.lower().endswith(('.png', '.jpg', '.jpeg'))]\n",
" all_images.sort()\n",
" if pic_idx < len(all_images):\n",
" images.append(os.path.join(folder_path, all_images[pic_idx]))\n",
" elif classes is not None and pictures is None:\n",
" images = []\n",
" for i in range(len(classes)):\n",
" class_idx = classes[i]\n",
" if class_idx < len(all_folders):\n",
" folder = all_folders[class_idx]\n",
" folder_path = os.path.join(img_directory, folder)\n",
" all_images = [img for img in os.listdir(folder_path) if img.lower().endswith(('.png', '.jpg', '.jpeg'))]\n",
" all_images.sort()\n",
" images.extend(os.path.join(folder_path, img) for img in all_images)\n",
" elif classes is None:\n",
" images = []\n",
" for folder in all_folders:\n",
" folder_path = os.path.join(img_directory, folder)\n",
" all_images = [img for img in os.listdir(folder_path) if img.lower().endswith(('.png', '.jpg', '.jpeg'))]\n",
" all_images.sort() \n",
" images.extend(os.path.join(folder_path, img) for img in all_images)\n",
" else:\n",
"\n",
" print(\"Error\")\n",
" return texts, images\n",
"texts, images = load_data()\n",
"# images"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['aircraft_carrier',\n",
" 'antelope',\n",
" 'backscratcher',\n",
" 'balance_beam',\n",
" 'banana',\n",
" 'baseball_bat',\n",
" 'basil',\n",
" 'basketball',\n",
" 'bassoon',\n",
" 'baton4',\n",
" 'batter',\n",
" 'beaver',\n",
" 'bench',\n",
" 'bike',\n",
" 'birthday_cake',\n",
" 'blowtorch',\n",
" 'boat',\n",
" 'bok_choy',\n",
" 'bonnet',\n",
" 'bottle_opener',\n",
" 'brace',\n",
" 'bread',\n",
" 'breadbox',\n",
" 'bug',\n",
" 'buggy',\n",
" 'bullet',\n",
" 'bun',\n",
" 'bush',\n",
" 'calamari',\n",
" 'candlestick',\n",
" 'cart',\n",
" 'cashew',\n",
" 'cat',\n",
" 'caterpillar',\n",
" 'cd_player',\n",
" 'chain',\n",
" 'chaps',\n",
" 'cheese',\n",
" 'cheetah',\n",
" 'chest2',\n",
" 'chime',\n",
" 'chopsticks',\n",
" 'cleat',\n",
" 'cleaver',\n",
" 'coat',\n",
" 'cobra',\n",
" 'coconut',\n",
" 'coffee_bean',\n",
" 'coffeemaker',\n",
" 'cookie',\n",
" 'cordon_bleu',\n",
" 'coverall',\n",
" 'crab',\n",
" 'creme_brulee',\n",
" 'crepe',\n",
" 'crib',\n",
" 'croissant',\n",
" 'crow',\n",
" 'cruise_ship',\n",
" 'crumb',\n",
" 'cupcake',\n",
" 'dagger',\n",
" 'dalmatian',\n",
" 'dessert',\n",
" 'dragonfly',\n",
" 'dreidel',\n",
" 'drum',\n",
" 'duffel_bag',\n",
" 'eagle',\n",
" 'eel',\n",
" 'egg',\n",
" 'elephant',\n",
" 'espresso',\n",
" 'face_mask',\n",
" 'ferry',\n",
" 'flamingo',\n",
" 'folder',\n",
" 'fork',\n",
" 'freezer',\n",
" 'french_horn',\n",
" 'fruit',\n",
" 'garlic',\n",
" 'glove',\n",
" 'golf_cart',\n",
" 'gondola',\n",
" 'goose',\n",
" 'gopher',\n",
" 'gorilla',\n",
" 'grasshopper',\n",
" 'grenade',\n",
" 'hamburger',\n",
" 'hammer',\n",
" 'handbrake',\n",
" 'headscarf',\n",
" 'highchair',\n",
" 'hoodie',\n",
" 'hummingbird',\n",
" 'ice_cube',\n",
" 'ice_pack',\n",
" 'jeep',\n",
" 'jelly_bean',\n",
" 'jukebox',\n",
" 'kettle',\n",
" 'kneepad',\n",
" 'ladle',\n",
" 'lamb',\n",
" 'lampshade',\n",
" 'laundry_basket',\n",
" 'lettuce',\n",
" 'lightning_bug',\n",
" 'manatee',\n",
" 'marijuana',\n",
" 'meatloaf',\n",
" 'metal_detector',\n",
" 'minivan',\n",
" 'modem',\n",
" 'mosquito',\n",
" 'muff',\n",
" 'music_box',\n",
" 'mussel',\n",
" 'nightstand',\n",
" 'okra',\n",
" 'omelet',\n",
" 'onion',\n",
" 'orange',\n",
" 'orchid',\n",
" 'ostrich',\n",
" 'pajamas',\n",
" 'panther',\n",
" 'paperweight',\n",
" 'pear',\n",
" 'pepper1',\n",
" 'pheasant',\n",
" 'pickax',\n",
" 'pie',\n",
" 'pigeon',\n",
" 'piglet',\n",
" 'pocket',\n",
" 'pocketknife',\n",
" 'popcorn',\n",
" 'popsicle',\n",
" 'possum',\n",
" 'pretzel',\n",
" 'pug',\n",
" 'punch2',\n",
" 'purse',\n",
" 'radish',\n",
" 'raspberry',\n",
" 'recorder',\n",
" 'rhinoceros',\n",
" 'robot',\n",
" 'rooster',\n",
" 'rug',\n",
" 'sailboat',\n",
" 'sandal',\n",
" 'sandpaper',\n",
" 'sausage',\n",
" 'scallion',\n",
" 'scallop',\n",
" 'scooter',\n",
" 'seagull',\n",
" 'seaweed',\n",
" 'seed',\n",
" 'skateboard',\n",
" 'sled',\n",
" 'sleeping_bag',\n",
" 'slide',\n",
" 'slingshot',\n",
" 'snowshoe',\n",
" 'spatula',\n",
" 'spoon',\n",
" 'station_wagon',\n",
" 'stethoscope',\n",
" 'strawberry',\n",
" 'submarine',\n",
" 'suit',\n",
" 't-shirt',\n",
" 'table',\n",
" 'taillight',\n",
" 'tape_recorder',\n",
" 'television',\n",
" 'tiara',\n",
" 'tick',\n",
" 'tomato_sauce',\n",
" 'tongs',\n",
" 'tool',\n",
" 'top_hat',\n",
" 'treadmill',\n",
" 'tube_top',\n",
" 'turkey',\n",
" 'unicycle',\n",
" 'vise',\n",
" 'volleyball',\n",
" 'wallpaper',\n",
" 'walnut',\n",
" 'wheat',\n",
" 'wheelchair',\n",
" 'windshield',\n",
" 'wine',\n",
" 'wok']"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"texts"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"number of parameters: 3655541\n",
"self.subjects ['sub-08']\n",
"exclude_subject None\n",
"Data tensor shape: torch.Size([200, 63, 250]), label tensor shape: torch.Size([200]), text length: 200, image length: 200\n",
"features_tensor torch.Size([200, 1024])\n",
" - Test Loss: 10.0144, Test Accuracy: 0.4000\n"
]
}
],
"source": [
"import os\n",
"\n",
"import torch\n",
"import torch.optim as optim\n",
"from torch.nn import CrossEntropyLoss\n",
"from torch.nn import functional as F\n",
"from torch.optim import Adam\n",
"from torch.utils.data import DataLoader\n",
"\n",
"os.environ[\"WANDB_API_KEY\"] = \"KEY\"\n",
"os.environ[\"WANDB_MODE\"] = 'offline'\n",
"from itertools import combinations\n",
"\n",
"import clip\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import torch.nn as nn\n",
"import torchvision.transforms as transforms\n",
"import tqdm\n",
"from eegdatasets_leaveone import EEGDataset\n",
"\n",
"from einops.layers.torch import Rearrange, Reduce\n",
"\n",
"from sklearn.metrics import confusion_matrix\n",
"from torch.utils.data import DataLoader, Dataset\n",
"import random\n",
"from util import wandb_logger\n",
"from braindecode.models import EEGNetv4, ATCNet, EEGConformer, EEGITNet, ShallowFBCSPNet\n",
"import csv\n",
"from torch import Tensor\n",
"import itertools\n",
"import math\n",
"import re\n",
"from subject_layers.Transformer_EncDec import Encoder, EncoderLayer\n",
"from subject_layers.SelfAttention_Family import FullAttention, AttentionLayer\n",
"from subject_layers.Embed import DataEmbedding\n",
"import numpy as np\n",
"from loss import ClipLoss\n",
"import argparse\n",
"from torch import nn\n",
"from torch.optim import AdamW\n",
"\n",
"\n",
"class Config:\n",
" def __init__(self):\n",
" self.task_name = 'classification' # Example task name\n",
" self.seq_len = 250 # Sequence length\n",
" self.pred_len = 250 # Prediction length\n",
" self.output_attention = False # Whether to output attention weights\n",
" self.d_model = 250 # Model dimension\n",
" self.embed = 'timeF' # Time encoding method\n",
" self.freq = 'h' # Time frequency\n",
" self.dropout = 0.25 # Dropout rate\n",
" self.factor = 1 # Attention scaling factor\n",
" self.n_heads = 4 # Number of attention heads\n",
" self.e_layers = 1 # Number of encoder layers\n",
" self.d_ff = 256 # Dimension of the feedforward network\n",
" self.activation = 'gelu' # Activation function\n",
" self.enc_in = 63 # Encoder input dimension (example value)\n",
"\n",
"class iTransformer(nn.Module):\n",
" def __init__(self, configs, joint_train=False, num_subjects=10):\n",
" super(iTransformer, self).__init__()\n",
" self.task_name = configs.task_name\n",
" self.seq_len = configs.seq_len\n",
" self.pred_len = configs.pred_len\n",
" self.output_attention = configs.output_attention\n",
" # Embedding\n",
" self.enc_embedding = DataEmbedding(configs.seq_len, configs.d_model, configs.embed, configs.freq, configs.dropout, joint_train=False, num_subjects=num_subjects)\n",
" # Encoder\n",
" self.encoder = Encoder(\n",
" [\n",
" EncoderLayer(\n",
" AttentionLayer(\n",
" FullAttention(False, configs.factor, attention_dropout=configs.dropout, output_attention=configs.output_attention),\n",
" configs.d_model, configs.n_heads\n",
" ),\n",
" configs.d_model,\n",
" configs.d_ff,\n",
" dropout=configs.dropout,\n",
" activation=configs.activation\n",
" ) for l in range(configs.e_layers)\n",
" ],\n",
" norm_layer=torch.nn.LayerNorm(configs.d_model)\n",
" )\n",
"\n",
" def forward(self, x_enc, x_mark_enc, subject_ids=None):\n",
" # Embedding\n",
" enc_out = self.enc_embedding(x_enc, x_mark_enc, subject_ids)\n",
" enc_out, attns = self.encoder(enc_out, attn_mask=None)\n",
" enc_out = enc_out[:, :63, :] \n",
" # print(\"enc_out\", enc_out.shape)\n",
" return enc_out\n",
"\n",
"class PatchEmbedding(nn.Module):\n",
" def __init__(self, emb_size=40):\n",
" super().__init__()\n",
" # Revised from ShallowNet\n",
" self.tsconv = nn.Sequential(\n",
" nn.Conv2d(1, 40, (1, 25), stride=(1, 1)),\n",
" nn.AvgPool2d((1, 51), (1, 5)),\n",
" nn.BatchNorm2d(40),\n",
" nn.ELU(),\n",
" nn.Conv2d(40, 40, (63, 1), stride=(1, 1)),\n",
" nn.BatchNorm2d(40),\n",
" nn.ELU(),\n",
" nn.Dropout(0.5),\n",
" )\n",
"\n",
" self.projection = nn.Sequential(\n",
" nn.Conv2d(40, emb_size, (1, 1), stride=(1, 1)), \n",
" Rearrange('b e (h) (w) -> b (h w) e'),\n",
" )\n",
"\n",
" def forward(self, x: Tensor) -> Tensor:\n",
" # b, _, _, _ = x.shape\n",
" x = x.unsqueeze(1) \n",
" # print(\"x\", x.shape) \n",
" x = self.tsconv(x)\n",
" # print(\"tsconv\", x.shape) \n",
" x = self.projection(x)\n",
" # print(\"projection\", x.shape) \n",
" return x\n",
"\n",
"class ResidualAdd(nn.Module):\n",
" def __init__(self, fn):\n",
" super().__init__()\n",
" self.fn = fn\n",
"\n",
" def forward(self, x, **kwargs):\n",
" res = x\n",
" x = self.fn(x, **kwargs)\n",
" x += res\n",
" return x\n",
"\n",
"class FlattenHead(nn.Sequential):\n",
" def __init__(self):\n",
" super().__init__()\n",
"\n",
" def forward(self, x):\n",
" x = x.contiguous().view(x.size(0), -1)\n",
" return x\n",
"\n",
"class Enc_eeg(nn.Sequential):\n",
" def __init__(self, emb_size=40, **kwargs):\n",
" super().__init__(\n",
" PatchEmbedding(emb_size),\n",
" FlattenHead()\n",
" )\n",
"\n",
"class Proj_eeg(nn.Sequential):\n",
" def __init__(self, embedding_dim=1440, proj_dim=1024, drop_proj=0.5):\n",
" super().__init__(\n",
" nn.Linear(embedding_dim, proj_dim),\n",
" ResidualAdd(nn.Sequential(\n",
" nn.GELU(),\n",
" nn.Linear(proj_dim, proj_dim),\n",
" nn.Dropout(drop_proj),\n",
" )),\n",
" nn.LayerNorm(proj_dim),\n",
" )\n",
"\n",
"class ATMS(nn.Module): \n",
" def __init__(self, num_channels=63, sequence_length=25, num_subjects=1, num_features=64, num_latents=1024, num_blocks=1):\n",
" super(ATMS, self).__init__()\n",
" default_config = Config()\n",
" self.encoder = iTransformer(default_config) \n",
" self.subject_wise_linear = nn.ModuleList([nn.Linear(default_config.d_model, sequence_length) for _ in range(num_subjects)])\n",
" self.enc_eeg = Enc_eeg()\n",
" self.proj_eeg = Proj_eeg() \n",
" self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))\n",
" self.loss_func = ClipLoss() \n",
" \n",
" def forward(self, x, subject_ids):\n",
" x = self.encoder(x, None, subject_ids)\n",
" # print(f'After attention shape: {x.shape}')\n",
" # print(\"x\", x.shape)\n",
" # x = self.subject_wise_linear[0](x)\n",
" # print(f'After subject-specific linear transformation shape: {x.shape}')\n",
" eeg_embedding = self.enc_eeg(x)\n",
" \n",
" out = self.proj_eeg(eeg_embedding)\n",
" return out \n",
"\n",
"\n",
"def extract_id_from_string(s):\n",
" match = re.search(r'\\d+$', s)\n",
" if match:\n",
" return int(match.group())\n",
" return None\n",
"\n",
"\n",
"\n",
" \n",
"\n",
"def get_eegfeatures(sub, eegmodel, dataloader, device, text_features_all, img_features_all, k):\n",
" eegmodel.eval()\n",
" text_features_all = text_features_all.to(device).float()\n",
" img_features_all = img_features_all.to(device).float()\n",
" total_loss = 0\n",
" correct = 0\n",
" total = 0\n",
" alpha =0.9\n",
" top5_correct = 0\n",
" top5_correct_count = 0\n",
"\n",
" all_labels = set(range(text_features_all.size(0)))\n",
" top5_acc = 0\n",
" mse_loss_fn = nn.MSELoss()\n",
" ridge_lambda = 0.1\n",
" save_features = True\n",
" features_list = [] # List to store features \n",
" with torch.no_grad():\n",
" for batch_idx, (eeg_data, labels, text, text_features, img, img_features) in enumerate(dataloader):\n",
" eeg_data = eeg_data.to(device)\n",
" text_features = text_features.to(device).float()\n",
" labels = labels.to(device)\n",
" img_features = img_features.to(device).float()\n",
" \n",
" batch_size = eeg_data.size(0) # Assume the first element is the data tensor\n",
" subject_id = extract_id_from_string(sub)\n",
" # eeg_data = eeg_data.permute(0, 2, 1)\n",
" subject_ids = torch.full((batch_size,), subject_id, dtype=torch.long).to(device)\n",
" # if not config.insubject:\n",
" # subject_ids = torch.full((batch_size,), -1, dtype=torch.long).to(device) \n",
" eeg_features = eeg_model(eeg_data, subject_ids)\n",
"\n",
" \n",
" logit_scale = eeg_model.logit_scale \n",
" \n",
" regress_loss = mse_loss_fn(eeg_features, img_features)\n",
" # print(\"eeg_features\", eeg_features.shape)\n",
" # print(torch.std(eeg_features, dim=-1))\n",
" # print(torch.std(img_features, dim=-1))\n",
" # l2_norm = sum(p.pow(2.0).sum() for p in model.parameters())\n",
" # loss = (regress_loss + ridge_lambda * l2_norm) \n",
" img_loss = eegmodel.loss_func(eeg_features, img_features, logit_scale)\n",
" text_loss = eegmodel.loss_func(eeg_features, text_features, logit_scale)\n",
" contrastive_loss = img_loss\n",
" # loss = img_loss + text_loss\n",
"\n",
" regress_loss = mse_loss_fn(eeg_features, img_features)\n",
" # print(\"text_loss\", text_loss)\n",
" # print(\"img_loss\", img_loss)\n",
" # print(\"regress_loss\", regress_loss) \n",
" # l2_norm = sum(p.pow(2.0).sum() for p in model.parameters())\n",
" # loss = (regress_loss + ridge_lambda * l2_norm) \n",
" loss = alpha * regress_loss *10 + (1 - alpha) * contrastive_loss*10\n",
" # print(\"loss\", loss)\n",
" total_loss += loss.item()\n",
" \n",
" for idx, label in enumerate(labels):\n",
"\n",
" possible_classes = list(all_labels - {label.item()})\n",
" selected_classes = random.sample(possible_classes, k-1) + [label.item()]\n",
" selected_img_features = img_features_all[selected_classes]\n",
" \n",
"\n",
" logits_img = logit_scale * eeg_features[idx] @ selected_img_features.T\n",
" # logits_text = logit_scale * eeg_features[idx] @ selected_text_features.T\n",
" # logits_single = (logits_text + logits_img) / 2.0\n",
" logits_single = logits_img\n",
" # print(\"logits_single\", logits_single.shape)\n",
"\n",
" # predicted_label = selected_classes[torch.argmax(logits_single).item()]\n",
" predicted_label = selected_classes[torch.argmax(logits_single).item()] # (n_batch, ) \\in {0, 1, ..., n_cls-1}\n",
" if predicted_label == label.item():\n",
" correct += 1 \n",
" total += 1\n",
"\n",
" if save_features:\n",
" features_tensor = torch.cat(features_list, dim=0)\n",
" print(\"features_tensor\", features_tensor.shape)\n",
" torch.save(features_tensor.cpu(), f\"ATM_S_eeg_features_{sub}.pt\") # Save features as .pt file\n",
" average_loss = total_loss / (batch_idx+1)\n",
" accuracy = correct / total\n",
" return average_loss, accuracy, labels, features_tensor.cpu()\n",
"\n",
"from IPython.display import Image, display\n",
"config = {\n",
"\"data_path\": \"/home/ldy/Workspace/THINGS/Preprocessed_data_250Hz\",\n",
"\"project\": \"train_pos_img_text_rep\",\n",
"\"entity\": \"sustech_rethinkingbci\",\n",
"\"name\": \"lr=3e-4_img_pos_pro_eeg\",\n",
"\"lr\": 3e-4,\n",
"\"epochs\": 50,\n",
"\"batch_size\": 1024,\n",
"\"logger\": True,\n",
"\"encoder_type\":'ATMS',\n",
"}\n",
"\n",
"device = torch.device(\"cuda:1\" if torch.cuda.is_available() else \"cpu\")\n",
"\n",
"data_path = config['data_path']\n",
"emb_img_test = torch.load('variables/ViT-H-14_features_test.pt')\n",
"emb_img_train = torch.load('variables/ViT-H-14_features_train.pt')\n",
"\n",
"eeg_model = ATMS(63, 250)\n",
"print('number of parameters:', sum([p.numel() for p in eeg_model.parameters()]))\n",
"\n",
"#####################################################################################\n",
"\n",
"# eeg_model.load_state_dict(torch.load(\"/home/ldy/Workspace/Reconstruction/models/contrast/sub-08/01-30_00-44/40.pth\"))\n",
"eeg_model.load_state_dict(torch.load(\"models/contrast/ATMS/02-01_00-39/sub-08/40.pth\"))\n",
"eeg_model = eeg_model.to(device)\n",
"sub = 'sub-08'\n",
"#####################################################################################\n",
"\n",
"test_dataset = EEGDataset(data_path, subjects= [sub], train=False)\n",
"test_loader = DataLoader(test_dataset, batch_size=config[\"batch_size\"], shuffle=False, num_workers=0)\n",
"text_features_test_all = test_dataset.text_features\n",
"img_features_test_all = test_dataset.img_features\n",
"test_loss, test_accuracy,labels, eeg_features_test = get_eegfeatures(sub, eeg_model, test_loader, device, text_features_test_all, img_features_test_all,k=200)\n",
"print(f\" - Test Loss: {test_loss:.4f}, Test Accuracy: {test_accuracy:.4f}\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"self.subjects ['sub-08']\n",
"exclude_subject None\n",
"data_tensor torch.Size([66160, 63, 250])\n",
"Data tensor shape: torch.Size([66160, 63, 250]), label tensor shape: torch.Size([66160]), text length: 1654, image length: 16540\n",
"features_tensor torch.Size([66160, 1024])\n",
" - Test Loss: 3.2758, Test Accuracy: 0.0049\n"
]
}
],
"source": [
"#####################################################################################\n",
"train_dataset = EEGDataset(data_path, subjects= [sub], train=True)\n",
"train_loader = DataLoader(train_dataset, batch_size=config[\"batch_size\"], shuffle=False, num_workers=0)\n",
"text_features_test_all = train_dataset.text_features\n",
"img_features_test_all = train_dataset.img_features\n",
"\n",
"train_loss, train_accuracy, labels, eeg_features_train = get_eegfeatures(sub, eeg_model, train_loader, device, text_features_test_all, img_features_test_all,k=200)\n",
"print(f\" - Test Loss: {train_loss:.4f}, Test Accuracy: {train_accuracy:.4f}\")\n",
"#####################################################################################"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from torch import nn\n",
"import torch.nn.functional as F\n",
"import torchvision.transforms as transforms\n",
"import matplotlib.pyplot as plt\n",
"import open_clip\n",
"from matplotlib.font_manager import FontProperties\n",
"\n",
"import sys\n",
"from diffusion_prior import *\n",
"from custom_pipeline import *\n",
"# os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"5\" \n",
"device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"emb_img_train_4 = emb_img_train.view(1654,10,1,1024).repeat(1,1,4,1).view(-1,1024)\n",
"emb_eeg = torch.load('/home/ldy/Workspace/Reconstruction/ATM_S_eeg_features_sub-08.pt')\n",
"emb_eeg_test = torch.load('/home/ldy/Workspace/Reconstruction/ATM_S_eeg_features_sub-08_test.pt')"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(torch.Size([66160, 1024]), torch.Size([200, 1024]))"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"emb_eeg.shape, emb_eeg_test.shape"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([[-0.1238, 0.3548, -0.0982, ..., -0.1238, -0.1007, 0.3153],\n",
" [-0.3575, 0.1574, 0.1873, ..., -0.1572, -0.0012, -0.0402],\n",
" [ 0.1363, -0.0137, 0.0108, ..., 0.1267, 0.0490, 0.0866],\n",
" ...,\n",
" [-0.1759, 0.1623, -0.1370, ..., 0.0130, -0.1600, 0.1570],\n",
" [-0.0571, 0.0448, -0.0052, ..., -0.0680, -0.0456, -0.1129],\n",
" [ 0.1621, -0.0756, -0.1761, ..., 0.4318, -0.0697, 0.1337]])"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eeg_features_train"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"9675648\n",
"epoch: 0, loss: 1.1344401066119854\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"epoch: 1, loss: 0.9292311429977417\n",
"epoch: 2, loss: 0.736585728938763\n",
"epoch: 3, loss: 0.588545312331273\n",
"epoch: 4, loss: 0.4850911837357741\n",
"epoch: 5, loss: 0.4056916204782633\n",
"epoch: 6, loss: 0.35189338464003345\n",
"epoch: 7, loss: 0.315984092767422\n",
"epoch: 8, loss: 0.2968789875507355\n",
"epoch: 9, loss: 0.28051899992502655\n",
"epoch: 10, loss: 0.2677932581076255\n",
"epoch: 11, loss: 0.2535207924934534\n",
"epoch: 12, loss: 0.24409848474539242\n",
"epoch: 13, loss: 0.23552459249129662\n",
"epoch: 14, loss: 0.2260789449398334\n",
"epoch: 15, loss: 0.22022192294781023\n",
"epoch: 16, loss: 0.2125021634193567\n",
"epoch: 17, loss: 0.20839000275501837\n",
"epoch: 18, loss: 0.20245355367660522\n",
"epoch: 19, loss: 0.19897673290509443\n",
"epoch: 20, loss: 0.1944091748732787\n",
"epoch: 21, loss: 0.19272542412464436\n",
"epoch: 22, loss: 0.18650671954338366\n",
"epoch: 23, loss: 0.18548523990007548\n",
"epoch: 24, loss: 0.18224194118609796\n",
"epoch: 25, loss: 0.18095362599079426\n",
"epoch: 26, loss: 0.1800281714934569\n",
"epoch: 27, loss: 0.17756937673458686\n",
"epoch: 28, loss: 0.17618863857709444\n",
"epoch: 29, loss: 0.1762184230180887\n",
"epoch: 30, loss: 0.17424679948733404\n",
"epoch: 31, loss: 0.17420981228351592\n",
"epoch: 32, loss: 0.17379470421717716\n",
"epoch: 33, loss: 0.17088524538737077\n",
"epoch: 34, loss: 0.17061378955841064\n",
"epoch: 35, loss: 0.16935390898814567\n",
"epoch: 36, loss: 0.16830908977068387\n",
"epoch: 37, loss: 0.16750236061903145\n",
"epoch: 38, loss: 0.16830579776030322\n",
"epoch: 39, loss: 0.16762397885322572\n",
"epoch: 40, loss: 0.16833080764000233\n",
"epoch: 41, loss: 0.16785800113127783\n",
"epoch: 42, loss: 0.16532559876258557\n",
"epoch: 43, loss: 0.16452421981554766\n",
"epoch: 44, loss: 0.1655670892733794\n",
"epoch: 45, loss: 0.163530816252415\n",
"epoch: 46, loss: 0.16316048755095555\n",
"epoch: 47, loss: 0.16232041739500486\n",
"epoch: 48, loss: 0.1628689121741515\n",
"epoch: 49, loss: 0.16314658430906442\n",
"epoch: 50, loss: 0.16336078139451835\n",
"epoch: 51, loss: 0.1617690249131276\n",
"epoch: 52, loss: 0.16328621873488794\n",
"epoch: 53, loss: 0.1607393571963677\n",
"epoch: 54, loss: 0.16301484222595508\n",
"epoch: 55, loss: 0.15949749694420742\n",
"epoch: 56, loss: 0.16030829434211438\n",
"epoch: 57, loss: 0.1591236942089521\n",
"epoch: 58, loss: 0.16023946954653814\n",
"epoch: 59, loss: 0.1606473065339602\n",
"epoch: 60, loss: 0.15925471599285418\n",
"epoch: 61, loss: 0.15862511167159446\n",
"epoch: 62, loss: 0.1593767904318296\n",
"epoch: 63, loss: 0.15829763320776133\n",
"epoch: 64, loss: 0.15749442967084737\n",
"epoch: 65, loss: 0.15661058242504414\n",
"epoch: 66, loss: 0.15714115660924177\n",
"epoch: 67, loss: 0.157224217744974\n",
"epoch: 68, loss: 0.15663618170298063\n",
"epoch: 69, loss: 0.15837455093860625\n",
"epoch: 70, loss: 0.15649005105862251\n",
"epoch: 71, loss: 0.15533412236433763\n",
"epoch: 72, loss: 0.15790949624318343\n",
"epoch: 73, loss: 0.15629879052822407\n",
"epoch: 74, loss: 0.15386706659427055\n",
"epoch: 75, loss: 0.15473974897311285\n",
"epoch: 76, loss: 0.15485033026108375\n",
"epoch: 77, loss: 0.15450563224462363\n",
"epoch: 78, loss: 0.15427345289633823\n",
"epoch: 79, loss: 0.15429316552785727\n",
"epoch: 80, loss: 0.15444350701112014\n",
"epoch: 81, loss: 0.1555378755697837\n",
"epoch: 82, loss: 0.1537362570946033\n",
"epoch: 83, loss: 0.15100293182409727\n",
"epoch: 84, loss: 0.15267001734330105\n",
"epoch: 85, loss: 0.15223838365994968\n",
"epoch: 86, loss: 0.15142949429842142\n",
"epoch: 87, loss: 0.15308995384436389\n",
"epoch: 88, loss: 0.15360876871989323\n",
"epoch: 89, loss: 0.15240925091963547\n",
"epoch: 90, loss: 0.15263355580660012\n",
"epoch: 91, loss: 0.15052394385521228\n",
"epoch: 92, loss: 0.15002776200954732\n",
"epoch: 93, loss: 0.15073163738617532\n",
"epoch: 94, loss: 0.15027896028298598\n",
"epoch: 95, loss: 0.15254398836539343\n",
"epoch: 96, loss: 0.15104533731937408\n",
"epoch: 97, loss: 0.15143730090214655\n",
"epoch: 98, loss: 0.1510588084275906\n",
"epoch: 99, loss: 0.150067507991424\n",
"epoch: 100, loss: 0.15052403807640075\n",
"epoch: 101, loss: 0.1488396458900892\n",
"epoch: 102, loss: 0.1486033185170247\n",
"epoch: 103, loss: 0.1485636387880032\n",
"epoch: 104, loss: 0.14832089772591225\n",
"epoch: 105, loss: 0.1483670800924301\n",
"epoch: 106, loss: 0.14961037567028632\n",
"epoch: 107, loss: 0.14691191292726077\n",
"epoch: 108, loss: 0.14874679010647993\n",
"epoch: 109, loss: 0.14717456171145807\n",
"epoch: 110, loss: 0.14850829106110794\n",
"epoch: 111, loss: 0.14684475316451145\n",
"epoch: 112, loss: 0.14786454347463754\n",
"epoch: 113, loss: 0.14646279330437\n",
"epoch: 114, loss: 0.1458219065116002\n",
"epoch: 115, loss: 0.1457753394658749\n",
"epoch: 116, loss: 0.14665977794390458\n",
"epoch: 117, loss: 0.14478596265499408\n",
"epoch: 118, loss: 0.14656609296798706\n",
"epoch: 119, loss: 0.14687549815728115\n",
"epoch: 120, loss: 0.14582232787058905\n",
"epoch: 121, loss: 0.14617500144701737\n",
"epoch: 122, loss: 0.1452181630409681\n",
"epoch: 123, loss: 0.14451317420372597\n",
"epoch: 124, loss: 0.14412822150267088\n",
"epoch: 125, loss: 0.14444295763969422\n",
"epoch: 126, loss: 0.1441748117025082\n",
"epoch: 127, loss: 0.14528060543995638\n",
"epoch: 128, loss: 0.14454685289126176\n",
"epoch: 129, loss: 0.14477471273679\n",
"epoch: 130, loss: 0.146144244991816\n",
"epoch: 131, loss: 0.14483543107142816\n",
"epoch: 132, loss: 0.14504103133311638\n",
"epoch: 133, loss: 0.14567639667254229\n",
"epoch: 134, loss: 0.1450419389284574\n",
"epoch: 135, loss: 0.1439348924618501\n",
"epoch: 136, loss: 0.14462076586026412\n",
"epoch: 137, loss: 0.14327415159115425\n",
"epoch: 138, loss: 0.14444576925956287\n",
"epoch: 139, loss: 0.14416511150506828\n",
"epoch: 140, loss: 0.14309142163166633\n",
"epoch: 141, loss: 0.14402833191248088\n",
"epoch: 142, loss: 0.14333870135820828\n",
"epoch: 143, loss: 0.14401434980905972\n",
"epoch: 144, loss: 0.14302621369178478\n",
"epoch: 145, loss: 0.14393353026646835\n",
"epoch: 146, loss: 0.14527105620274178\n",
"epoch: 147, loss: 0.14506944119930268\n",
"epoch: 148, loss: 0.14403231281500598\n",
"epoch: 149, loss: 0.14518240552682143\n"
]
}
],
"source": [
"dataset = EmbeddingDataset(\n",
" c_embeddings=eeg_features_train, h_embeddings=emb_img_train_4, \n",
" # h_embeds_uncond=h_embeds_imgnet\n",
")\n",
"dl = DataLoader(dataset, batch_size=1024, shuffle=True, num_workers=64)\n",
"diffusion_prior = DiffusionPriorUNet(cond_dim=1024, dropout=0.1)\n",
"# number of parameters\n",
"print(sum(p.numel() for p in diffusion_prior.parameters() if p.requires_grad))\n",
"pipe = Pipe(diffusion_prior, device=device)\n",
"\n",
"# load pretrained model\n",
"model_name = 'diffusion_prior' # 'diffusion_prior_vice_pre_imagenet' or 'diffusion_prior_vice_pre'\n",
"pipe.train(dl, num_epochs=150, learning_rate=1e-3) # to 0.142 \n",
"# pipe.diffusion_prior.load_state_dict(torch.load(f'./fintune_ckpts/{config['encoder_type']}/{sub}/{model_name}.pt', map_location=device))"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "372496728eb54bd286ebe34e22e23975",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 243.24it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9441834c85d64f6a81f0ced1cc767f3c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/aircraft_carrier/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0614aa941c9f47d8a0ed6c3ecdb6650f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/aircraft_carrier/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7bb560577b794b3e8ec57baecb3b71f6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/aircraft_carrier/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6a69e79b21e84c2c8eb1c98d9e044058",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/aircraft_carrier/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fbf351404ecf42d08657e439be14b074",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/aircraft_carrier/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c0bc2dae98ea4d11a88bcf84256c549b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/aircraft_carrier/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a5f9369a69be469c9dfb3e664a07635a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/aircraft_carrier/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "07e63fc2cbe24dc2913347c70c487219",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/aircraft_carrier/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "95503bea458c41398da6898b3fa4c297",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/aircraft_carrier/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "14035bd037e14860b28ec6dc82c956f8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/aircraft_carrier/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 254.93it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c169241605ea4ac3bc4573d2dc5bd13b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/antelope/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "094002f6c1b64beab19c4ba5a66a77d8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/antelope/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bb62dd5e759c4003832e361843527f70",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/antelope/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4bba7e28c50347f5a8fe2fa31b44293f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/antelope/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3c75bced202e48f5b96c3f999852e4a9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/antelope/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dd07c16c124d44b89a591b20a7fb1794",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/antelope/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ff7d124ea60e46119d49f948a07f2e88",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/antelope/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "70525bb209d041fcb41adc195fd39511",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/antelope/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e5eb9d008e1741919bda21b1c6b6229c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/antelope/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "32cec369cce648d9ad1d3d61ee5cd446",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/antelope/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 185.13it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "980b985b4f1a4b048fa575ff498fe536",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/backscratcher/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9629d194451b42b1bd2016ab7178d390",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/backscratcher/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "de806b85731b4253ae93cd4fab01f380",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/backscratcher/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0d5fec8a97be42ec876efa1aa8945453",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/backscratcher/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "668efa15a6504aaabd2a7f8c9132bf95",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/backscratcher/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1c1ce87c6b4a4af4a4ccf45f497a8f5a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/backscratcher/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2bbd744804df4322ba5a459e30aea3ec",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/backscratcher/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ffc69ae760dc44189996d2c61ee5c91e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/backscratcher/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cc085050c2484124b8b94c2d026ebdd7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/backscratcher/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f8ba9534c8e64ac698f75c66853ed7e0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/backscratcher/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 261.64it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f8d9fa5d431f4b72bb2bb56c4af2af73",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/balance_beam/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4ad70e2323f244a988ef9e591ddeafca",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/balance_beam/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bc7bbfbe567f4013adcdd2342eac0246",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/balance_beam/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "58042a7061c144cdb1ea3d00d55e0698",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/balance_beam/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ba2d787a9fca44febd1531a4649c9427",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/balance_beam/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "61939d8e150b42bca13ce1223e773af0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/balance_beam/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b61aae937ad74f86a849eb262facbd9c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/balance_beam/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "51b5b2c8fca04529a8dc5a0bcb98edc4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/balance_beam/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0a3640d12c9d4d88a79a0b6291f7bb6d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/balance_beam/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "839a2179ba474dea9b653891a6f6c589",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/balance_beam/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 255.75it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "09dec1bee3cf4f589994194fabddc511",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/banana/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5c94fedf2e9c437884a004d469529184",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/banana/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f2a520257d2c4a63aad3d6d77217da79",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/banana/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b6afcfdec4554cec96a9f9cddf2a2214",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/banana/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cb0b09096ac24a77a900b23a8699fe79",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/banana/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "29727b8aa44347f18aba835be66c7533",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/banana/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3bf40668bc3c48a7a76b73cdb8978dc0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/banana/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2108cc929b794abbbba846a2f26a8773",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/banana/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8041c3e9a22d4846be4083534fc8b9f5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/banana/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9a880f8ad0e24fb4a5bfe247c53123c4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/banana/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 144.74it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "33295dcffa694c02bd103f0d345e12ae",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/baseball_bat/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0562949440fd484db8b09992eb9cf419",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/baseball_bat/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "96ee28e5dbc54ec6999598d878a99c39",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/baseball_bat/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7e6ef59fb04b40f8a872bf15d412ea22",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/baseball_bat/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f94f18468c5246bbb589c5088f66b54c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/baseball_bat/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fe02090cc24d4a5aacc93976bbb6261b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/baseball_bat/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e1a414f7aa5c4b3e9c3b132563ed1b05",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/baseball_bat/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "df291c0ab8b640c1abda1d02d3b78e52",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/baseball_bat/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "05e30c55b3934f0f927c576ec90e45e7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/baseball_bat/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "10362f7736a64f0ab58b6458d334cbf9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/baseball_bat/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 261.30it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9d5a0411b5d841478fb367e32a7036f7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/basil/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cb3823c32af84ee2b83766b30584adf4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/basil/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "28b648ef3ea3437d9b202cd636bf6b32",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/basil/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5579cbb5f158428f817707030224f2bb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/basil/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c226337ce8d34014bcbd04436a8aa72d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/basil/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e4eca9a4b92c4de883f2620aae95ebdc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/basil/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a3f4c179674d4f2fae35ef6929a959f2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/basil/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6bf8467801ba42b090312e13bdbc38d4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/basil/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b2ae57bb44094ddb9f6a2f8866d77d80",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/basil/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "aaf41eb73852410591f2b807e1e00a71",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/basil/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 180.83it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "24634bdbfcc14f1f87bfa2bdf339bc25",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/basketball/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dcb0cec4a4704f41819575db1448df27",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/basketball/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d14d6c01167c40a184f8a47bc186c1c9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/basketball/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b9b9ce898da34cf48dd3e07b7b48fa85",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/basketball/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8bf236c64161484a88db51ac2f6f04bb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/basketball/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "12cd78747332457dad5a29d40fca56ed",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/basketball/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bbe131c66d7e4eba9215d9a3a2052ea3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/basketball/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a0d9769fa9c5445c91f87b34b3c045ff",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/basketball/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6bed9b9c0be242e49d465f0234661cf0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/basketball/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b227552cb3774798bb0e1979a43a0b31",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/basketball/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 215.47it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7119fa9c6a244fb0a40093b8ef460a11",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bassoon/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3a027129f67c4812974a952f789bed01",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bassoon/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e5e4aaf1750842bf80b8dd5e7dd2fba1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bassoon/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9d7bc55fb9c9467b8e9a20677356d31e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bassoon/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cb08f36bcecd4c4884c9e44ce239c703",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bassoon/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f6c47440f74e4728840fcce138511016",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bassoon/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e4d503b343a644ca95eae9683e594a18",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bassoon/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cc2b379d47904010b2314de77c9da096",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bassoon/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "977b31007ccd4f70984705005f701037",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bassoon/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9088666ed05e4c19bbf488061aad4b29",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bassoon/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 244.28it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "90f76fa8c1504bf2be0d92e2a938eac0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/baton4/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "80175f7dc6764db69090dd446061c1b2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/baton4/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1dc3a429905a4575b14f261cd169418d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/baton4/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3b008fcd49014a3fbdd69b5a551c234f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/baton4/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f52d6b51b9f04ac087f207b497afe51c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/baton4/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "340e5d69a537497f95678eb1c087b37c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/baton4/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dcad78d41ad24d0e9792154bb01b59c3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/baton4/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9d66eefed991432d986b71fc38af2deb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/baton4/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ed6aaf42379241cc93a450ccc619e520",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/baton4/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5dfcff9d55214407a75292ca5050406a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/baton4/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 164.36it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3922050f0c0f4c62968e210c3fa632f5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/batter/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e07ec4456f4840e8995a34d0ed655675",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/batter/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fc382dfe3cb14295aea555fd19e94b82",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/batter/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "59d4f64065c841e78a74155ab7618357",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/batter/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e28e3f3b91c74df4adeaab4ba80810f6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/batter/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e5dc776d611f4b13912e3f15be4e091e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/batter/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ed5e493bba084d9f88aac18bd4763c79",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/batter/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f90672fcf43a41df9d212d9c4c83b75a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/batter/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3c7833e407b3446d97249348b9467eed",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/batter/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ce444720a0614c0fa4955867fe759e82",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/batter/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 261.13it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "29a0377b442a4ca6acdcb79570f87a48",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/beaver/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8d7af862fe384a4898a0f61785ac524c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/beaver/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2f97bd4b49be4525a000e8d49cf74888",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/beaver/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d31b35699b8b4c7f9e879f445c392278",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/beaver/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fd4b6b3662e94ccc92973d39e6790695",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/beaver/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "892025cb0da948f28ece81f27e95c66a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/beaver/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "63e6000d89f344c98a551e1ba204441f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/beaver/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "35c8eda0fb974f999e8d80eb4e0ced47",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/beaver/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e7b13e27cb9b4cf4aa9c7513754062af",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/beaver/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "68ba8b91b82546099fade7dc2bd829dc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/beaver/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 138.01it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1f21b7cdb9a1425b8c681cc7350f768b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bench/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7f5699797f8d4c81999649642f0903f7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bench/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4cac4d0ad3774db7ab1f3d133083a052",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bench/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8cd0b8eb016f450dba4e9b68d316977e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bench/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "325c5086f6eb45c0b2f61b5c2d412d87",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bench/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1de87a50404b40499221ec045cfe4aa5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bench/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "292b6c6cf9d94cdf952febcd45bf6917",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bench/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "49da4ef3214645a1b8fb26fd3177b233",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bench/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0b2dbf22aed34e4eaa8c6c1f498700f3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bench/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9dc3dfd38b3a40369ca0b42b8ecdfdcf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bench/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 107.47it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "73c21e65c9484704aa598ee82cc54fd8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bike/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1dc85cb1229f4633844fa82c90741975",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bike/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "701209ce357044088d58c1aae3b57441",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bike/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cbf51d20ddbd4ce8ac6d538e60847d2a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bike/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "324f370bf6424beda792b537c9e4b21e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bike/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c5d4fdcb04494b5896c9dfe54debde4f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bike/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e490be186bd34c39be085790a1491eee",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bike/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ebc020addb4b44c1b6a24d899716154e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bike/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f58e85d6d7544194b0ccbc7a87a02ada",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bike/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b9f476d2872243fbb34b8abba2659d95",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bike/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 255.05it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "85c7966fff8e4604817c62d008646a1e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/birthday_cake/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "81c9b9c18dc4410abb6021b87679b22e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/birthday_cake/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "35ca5ae31eec412083e27c3797974eb6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/birthday_cake/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4d07433cd7b7453f9538fdd61a1e8911",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/birthday_cake/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "78985ca7e7a34d06b6f8e5ff5b3238f2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/birthday_cake/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ecf22c40113c48179dbc8c58dae19a66",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/birthday_cake/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "372439e5b5de4104bec444192c60735c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/birthday_cake/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f45a03575f3c49f7bd2f0fc5802e5014",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/birthday_cake/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1f3beadb72494bb9a272c2b6b43b5b9e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/birthday_cake/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dd2c1b9dcb274700a3b176f6dead32e0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/birthday_cake/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 224.92it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b1172028b8da4f90815d4f3f609ac692",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/blowtorch/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3bbc5111d8c54d6387c97dee743bab0b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/blowtorch/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9a48b50ea94b47dc87803f21f83a0939",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/blowtorch/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "94d672abd4e34d90b3cfc43f6d644eab",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/blowtorch/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "67e3b3fb55a64da0a1d8abd2a48ee830",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/blowtorch/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f585aa7df7604219a72b5b7b5f1ce4a7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/blowtorch/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ad6195cf1e1546fa8724d81102eadce5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/blowtorch/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b73a2ce5d9d345c293be41d3daccdab3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/blowtorch/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "859b783061314169bbf634013f564945",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/blowtorch/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "999a7fe67cb34ed7ac8e43586805c427",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/blowtorch/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 153.01it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "baf4fd860783488d941d4d9d2229d3ed",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/boat/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f7c35927449847e98bb9faaa0fa490d0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/boat/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "20150b11080b40db8b779c862082ccc8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/boat/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a108df5357344732b4b078beba0c9839",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/boat/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1ed9927f75e14194995ae09732f5e347",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/boat/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e9098db464b34407acab1d981d24914c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/boat/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "46c3303ef9f84aed8e8e56b2f5da079c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/boat/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b6951922d373430f8eeb06f436653c64",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/boat/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6afbd402715343b18447124ece4fbb48",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/boat/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "feb80e204fbe429eb3ff3d3547a7d066",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/boat/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 254.47it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0aa4bca396734d75a2998585e4d491de",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bok_choy/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dbc5061166684bf693b5e1bd9ecb770c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bok_choy/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a8eea032b1374602a1055717197f6aaa",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bok_choy/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "13b353256a0a4538ad50ce3daa1652d0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bok_choy/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "309ae69f273c40b5b6e56371c5d547c7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bok_choy/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6acbaa21bd0c427da24d897e8c8d9fce",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bok_choy/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "83e79fa881a74f4b856a7b6bb0077d0f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bok_choy/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f479b669e2114f9db55de92db18fa24b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bok_choy/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2fe93f15d28e41aaa991477bc4dc5b60",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bok_choy/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "52763c4b592d4815a1314eb81e68f361",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bok_choy/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 138.72it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3f6d338124934babb2c31726608adeae",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bonnet/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dc19239c6d234053880482fafca24b7a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bonnet/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "eae061eef8b04c17bf2b2fdf99871b2e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bonnet/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3650c7249f6d4ad59c1e6d5411a6253d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bonnet/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "21bca5136e5f4445ab8a3bad3e8d9eab",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bonnet/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ecb4b4f660d94bdc9ed366854c5b6f7c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bonnet/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "612dd2e0dcf949dfa688e180322eeff2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bonnet/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "63c46ea2bd5b485cb95a2ee49c208690",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bonnet/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9773b9b1d8ec4ca5af22dad60b08cae2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bonnet/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c863c995a4364c57a2b85707b3346dae",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bonnet/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 253.79it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cce7ff481d214e67a30687c399d108a7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bottle_opener/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f7e87eb56e0647b4ac037d9e880a00b8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bottle_opener/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c9341a853e8545888680911153485cac",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bottle_opener/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5abaffbb64014b4097026fe978ba5ccb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bottle_opener/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b2df3cd88d0246c5856eb4de05dcee0c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bottle_opener/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "76cb66dc36af41b1bb9c85dcec539442",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bottle_opener/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5e35314f43c74ac193d795e2e4431ee4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bottle_opener/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "74929801eb06464eb3ea9b2236cab8a5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bottle_opener/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "67de0ee9f8664cb7b1267c80e8b160cd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bottle_opener/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2d9f8acf8ab34c0887390a29214725ce",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bottle_opener/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 259.14it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "aa6dfde7368a435fad27056e1b52f94f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/brace/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d38e311e64f24816bb137f590ac48160",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/brace/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a621b8d02dc24a4fa9377acd6ab65361",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/brace/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5e6b8ac98895492695ec7d630e61f12f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/brace/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d4e544c720c24aba89a3dba414eaa73e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/brace/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7cfe7e80dfa34273881244f1cc697db4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/brace/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2e3e3debcdba4bcdbf52454237c7d16f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/brace/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3d298bb7882a4a849ecf41b58f195ae2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/brace/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "81bbc529da684e1f95a330331d70e1e6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/brace/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "653b11a1e72b4916b19ed3a6d3b386c3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/brace/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 209.07it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c01b83a33c8c44f2a743dac7b5830155",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bread/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ef937f2ac0fd4508b451b79b5973ebea",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bread/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ab362c18b7f84095b69339d3ba82fcdf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bread/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "922e54bb9c2a44f0a1c86c710eda2536",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bread/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "764e7d8db4d945ff92f306f96cd75bd7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bread/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "23538feece124c659b10cf322f6d732a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bread/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4f61cafbcacc47869aba397e53ae5646",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bread/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "767e8b40a66740afb7413438d78199ce",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bread/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9a9fef7d297a4c788a5fb6ef82b95916",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bread/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "199984041f7e468a8f83faca9864785b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bread/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 259.75it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c4bc28c5162e4bdc97bdd590eb784af5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/breadbox/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "50253625838749379ed0e6f29b613a2d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/breadbox/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "abe780b124064056887a8c23a31b4098",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/breadbox/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6a7588c09093442491e785b4d832aa3f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/breadbox/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f447f767607d41fa9fe769d92277de29",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/breadbox/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0db46c86ccb34507b91c44203a0d1d32",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/breadbox/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "256d6ada069941939847180ef6f7adc8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/breadbox/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "875b1707562d46f6b89962e238e95d0f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/breadbox/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e7e35780115f4a1390b4d4f6741d77cd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/breadbox/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c6276e3cb5724c1fa8dc2253589be0ab",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/breadbox/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 254.68it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "23a03e17df42473b907ad6bf06ac2994",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bug/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "77eeaad529a54d968136e6a2775173b8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bug/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "12db892bfeef4847b3695fd69a64d369",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bug/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4551abbd569d4cce8cde728ba1a7c315",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bug/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cc6735aa53884fc08d175fa2cdd39aa1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bug/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "34d50abf28474eca88573b29e780f514",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bug/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "11e5f0209ebe46eabe1d315381d01ec8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bug/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2c949037f86b49088d79b2311590e19b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bug/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e2c51008dd6142c287a01e3e1c18dfea",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bug/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "256608f4327e4d78ab67253b4a0a8569",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bug/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 166.23it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8aad981efd9946e5af28c00dfa3d76b6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/buggy/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "70217f0271bf44e89b51a5ce9422c578",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/buggy/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bfa0cb846ad347bcb54efc5a1400471f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/buggy/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "91384891cba849b98c43abb8ab6ec232",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/buggy/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0b6dd1c55bb44cbcba824a32134e37ae",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/buggy/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e08795b333124dfab0ad9b104d70d8d8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/buggy/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4fa51863736d4a4ab54e88b71464c8fd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/buggy/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c64bdb5fb525409899c1f29c40dbecf3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/buggy/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "eb42d8dd7c144e5383d59d6447966c8a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/buggy/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fc4380ae11144cd39b3452d6a1507ed7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/buggy/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 259.13it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3f0c5221f092404789feeae82fe6d045",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bullet/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fb64f5720cdb40f3a41d2b1c6fe8a1e0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bullet/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0b3294f00f3b436ebdda7b1a9761c6a5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bullet/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9fde771ffde140a59dbbc2bdf586ba48",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bullet/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3babe06c718840b68d30bffb5db5c2c6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bullet/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4f88e4ce70f34fde9cce50abb367299e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bullet/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6a4146ac2e92491782fae1d05991b46b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bullet/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bc0edc86c50043acad027287d148ac38",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bullet/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e412273787334036a6f9f602d254e1f0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bullet/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f2b2fdf09a6d4eae84273bc5b11b0412",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bullet/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 151.83it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3889ee05dfe64eb1a0dc269724adb1b2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bun/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "18d68495c0b8497abef6bc4a97e955e3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bun/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "413f5cb737b3470887e47ba1045f2c64",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bun/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "05a7b8b813b943eb82251a2c7deec7eb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bun/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "143001afda3a4c26901abe562a6c789c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bun/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "61ce70cff913479fb36ac2f79d048346",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bun/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dc90eb93f805476d916d0fd4239f6b1e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bun/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b6a2dc29e9104f199107ccc7c90876c1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bun/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "614cb419e207462d8b1e2c7c2eb3e334",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bun/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4adf9633992f403e93a6e0b804722c3a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bun/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 176.18it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "059f1d0cc5414a339ffc9de00973024f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bush/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "40bd3a073b05455db854a6c6a46475f1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bush/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c12a9e17636f450592dee28e94565b0f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bush/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1890d250b5ed466d9506f13ed1474efa",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bush/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c3f35cbcf48549f6902a82250229408c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bush/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "14dfa87d772b41a98b006814570e3332",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bush/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a46408397c5649548138eaec8b36651b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bush/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e3e56227d4c046259ed6db229646f501",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bush/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a89cd15fa2c84ee7987db615217b7185",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bush/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f6125f393f8d4818b300982e3f666388",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/bush/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 251.30it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fce1935715984533a5a7551c3296f91b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/calamari/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "82fc8f74309f4b698f39785ce095bc7f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/calamari/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8d24ba49767c49c9a97ecea4d2595a0a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/calamari/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4a7b5b5fa38b40b78c132c764e3f4054",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/calamari/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "df5be932fc8d48c78a8d75fb91ce7c27",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/calamari/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2e2d26765b5a4e86a2f23e1835494060",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/calamari/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bef0f6d8342d46119d94724414f5494b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/calamari/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "241d49f51c324385b3dd8b830e3a518f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/calamari/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3c67fe2087f447758cbe0bc6e02fbf19",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/calamari/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bca4219402f84253bf077ae119873bee",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/calamari/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 217.90it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "99905e0d04564c63a2adcfe8b5b4cdcf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/candlestick/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "abca87e30665439ab56e1993eceaa3e7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/candlestick/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f5d22e46c8d94f449443244fce7e8ff1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/candlestick/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "82950057f1df4b9a8d403947fc27cb07",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/candlestick/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9b8670a26e374c8da74ef5209ee73978",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/candlestick/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "714fd2c854c34aa099638b591b77beac",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/candlestick/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e28091d587f54ece8a1efccbd35529b8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/candlestick/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7e68c61e80fc4be284a9e328a58cdf27",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/candlestick/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cd5a756c3c3041d4878badf74f935b9b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/candlestick/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f6ffcb109c6b4f8c97e3a2a860688223",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/candlestick/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 256.82it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d931fe0080fa43768f50d7bec9c583c1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cart/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b0f6d7d41da94f199576541f85b95558",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cart/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "eed7b666d7a14b44bace98b636f5ca89",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cart/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "54e69639b78e4e8e9af6a4c66c77e505",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cart/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5f8cd9a184264c858824a6f0e981febe",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cart/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bb458b7ccd5e477890ce497ffc14bad9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cart/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b45d881e373f495fa11a6c92fe8818ae",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cart/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f62842cc796d493d8fa21fe499c3c14f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cart/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bef1c42d663f4626a02f8c5d4f7b81c4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cart/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0ac452734ad844559026cfc77ad1d6e0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cart/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 259.55it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1501ea63b3344aa09a9a0d146c654e24",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cashew/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cf0adacd2df845f1b198cb1f52f7d315",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cashew/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9675e8c1cf524215829161c0c97c9c72",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cashew/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a0c9a2933f5f46c8b1998346a356cae5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cashew/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8a47c6d0235b44cbb6b7e16fea716807",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cashew/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "477f39cc22384834843182c84ea0530a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cashew/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "556959dc4031408cb02ae6f42d2c79bb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cashew/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c3ccb74ae91e43e6a84bdcd8d7b7e446",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cashew/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c8f14a0b5fec4887b08e71bc7003e653",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cashew/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "84c98d7e25cb416aa57505682a2ee0df",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cashew/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 196.81it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9fc065f4aeaf422a9b874c1b26e4bf37",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cat/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9adf4bce1f4b48b0964c183bd6513d7d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cat/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2641f8d2c3f843d39504f8f06eaafbf4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cat/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1fd301d8b0b74885980b49e58fe60261",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cat/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "204b65dcd8e346a98ffe252b372a5982",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cat/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "de7f259e42844912887b71565846989b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cat/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6ca20ca35bb844588e91703c7eba3031",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cat/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9f1f49acbccf4dc699314ec227d32c79",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cat/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4287ee8329674733a61212b60615317d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cat/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c616476d57eb46fd9fd6987248d9b8b4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cat/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 257.39it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "10f481385f9b4289904db6270c5d18c7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/caterpillar/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "033e9cccc8ce44db9f118739e24ea9ed",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/caterpillar/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bcc2caee2a32426cac58f4c95e26fb7a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/caterpillar/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "982b1d45419f411db03e0f39490ce930",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/caterpillar/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d493b6009aed4a9d86377b2cf1a8572f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/caterpillar/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cb083a3b28744fab8d84de6c80565ba6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/caterpillar/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8560c53ac4a7438b8afeeb8104708983",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/caterpillar/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ccfe40c293c24a559b6ed8e2956365bc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/caterpillar/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0caf2a46ec48445c993a90c4389bc4e2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/caterpillar/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "061a8d171da144f4bece0304c52ef76e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/caterpillar/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 230.49it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "65ac796d442448b4b4583b40f558a00b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cd_player/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cada3588a2cf450fb0bd923a5b7a569e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cd_player/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9f9408f16cd946f1a30c9b3f51c4b056",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cd_player/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "50f9909a056b4f7d8d0ea9123e3b98a7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cd_player/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "eccf52277f0d495db7922c1e9b94b99b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cd_player/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6de1fc2ddd4e4983b7ad0025f78af486",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cd_player/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "06ed06496b454fa584514805ac185c15",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cd_player/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ce4997bdd1014d5a8ae0718112f427ff",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cd_player/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "eeed828ba30c45ab9381d2a2ba8debac",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cd_player/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ed4172de7baa430aa3c16f94c3a6eb49",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cd_player/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 115.75it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "880f08a841fc47028fd388062745c35c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chain/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fd7f8d1f7b11480696678c8813dfba5b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chain/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "957ea3d87d954a12ac7b829ab7368bfd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chain/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b30d4c58d20145bdade06bbb4cd4c296",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chain/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b0f40e2a82d3462bad0ecc9fbd011e34",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chain/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f0b10f87d01b4b768df10c14ab0b21a5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chain/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "12bed07aa0ee4f22ad9bc821d215793b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chain/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b948dbcfc35b4d2ea8108f658fb1f7eb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chain/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b720413553d2433db85573bc04a33bb2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chain/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5bd3a5ef171d4ff9a3fad349eb496ac9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chain/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 253.66it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0b6b9f17844242fdb7ec1a80c5cd0111",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chaps/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "868826fee77c4b71ba7421e7111f0087",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chaps/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ac4fdb96f9054559928812ffb3c240dd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chaps/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dd883c0f92b74768a9c5fa0264ae7394",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chaps/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9d9eb2c8c49b4992bf1ae68a18d56596",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chaps/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d94855d321f14eefa5c94241edf59865",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chaps/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d012a6b060254dfca8ff26f9a5d1e056",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chaps/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6be05d2c38b94ae1ba374b8e5e6f3984",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chaps/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5a89a4226a4549498355dd341056c457",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chaps/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d0fff4c0453043b1a9b7aebe66aa9eda",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chaps/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 197.40it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6e5246db45384419a6ef917f4655a93c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cheese/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "635adb0e6ab846d5ac904b1eeca20d17",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cheese/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a50275ccf57a48d9b406866554bbceb5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cheese/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6f985ee823b645008f3c58bc713a9fec",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cheese/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2c1d41a35ae14a4ab148239c94749749",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cheese/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f77448402e414337a4807e3d12ab6649",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cheese/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c65a9886089a4deba474cfc2209557d5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cheese/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fd36094097b74ddb8e9c7d204f7fde54",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cheese/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e72ba68138e149929a289c56fa062286",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cheese/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8175b2fb6d624136a9d92c40311e0b9b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cheese/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 229.85it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fa82f570c155433f9ceba8bb9b1bee05",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cheetah/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "45769466543a4bc5a1509f90c091e701",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cheetah/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8ee5ca4cdc1d4dbd99e56a5d4e05cf96",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cheetah/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8b6fb8cb256e4d7db5219ede9bb5ca6a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cheetah/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "69acf68f0490420d9deeaab8401c605b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cheetah/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "af6f325f0dcd481a8e02d34511c44827",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cheetah/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4b52d230bbcb4d74a8207aa3ade61c14",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cheetah/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a474011efb534a80be889df3fc81890a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cheetah/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7969c194eed84d46a2efd0468e5fa0eb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cheetah/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "16b70c9764114e6f9a1ff6758987ae3b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cheetah/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 258.06it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1f8cb34b29be4bd0a48df39d3bc96e20",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chest2/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dd16be2c1a264ba89c66f94c9c221848",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chest2/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f263022820854ffbb333537a1e5ba7b7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chest2/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a7c43385dc0a44ea97e616c04a740754",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chest2/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cd22e36ec55440118f8581a9c850f593",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chest2/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6bb9114417644a8aade8e67860d7b70b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chest2/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2c64505136324ffeb0fc577abe6cba1f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chest2/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3a762ff3a24546b09d2b52288d131589",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chest2/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "586fd2ef105b4184ad48c50166e6e605",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chest2/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0a5c250a1bf348a7ac7b1014ce9a1ee7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chest2/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 217.25it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d6a89427227d41d88681ff8a461dc6a2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chime/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5d22d009969d4f0ca60675c819712745",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chime/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8e20d3e0231c438db70b63713765f38f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chime/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "76b3a68209c64a25a485f14a7d5ea185",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chime/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "aa1e3ba2fe2c4a98bc5fe7f2bd005ed1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chime/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5c10b2a6d4f14d43bc8f2c9b48ae6684",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chime/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "91a8a9b6e01448598efa47d88fdae345",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chime/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "901c301971d04e3cad6132fa67fbe90d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chime/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c609e7c103214d2d95f20c777d866b82",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chime/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "49255d4c8d6448de83f984affb124a22",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chime/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 260.33it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f7fc3fd822634b36b16e40f172ac3488",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chopsticks/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b90e14571ef14ad8b5141d446ed32447",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chopsticks/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "33b9825ca5cf4ff9956f05f853e4b9fd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chopsticks/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8995df9fd9a048e09eee1cff27fbd274",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chopsticks/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1da7cc27525b47ebbc1205a10745e539",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chopsticks/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "05077ba4e2dd420388d6734792ef6288",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chopsticks/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3da2ddfdf18644aba116fc7ce9a4581a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chopsticks/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "965340a7e19e426ea84ce08133fa172b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chopsticks/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9653c1e3031e481197b7a33f32760d2f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chopsticks/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5ef0316626914dc489f8642d890e78f0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/chopsticks/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 258.51it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "423a1fe1bd9a40efacb8fee97dd93c95",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cleat/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a50167ab28564988af2db775d7fe2ba4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cleat/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d2fed7a9fd714ec7827d4f786a110754",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cleat/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0ea2bc5b8c4048cdbff3a69d99da0bb1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cleat/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8a0c06f6719c4ef4bc974afebdc07c49",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cleat/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d8475334264e4da9a668447bc523248e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cleat/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "edbd2ded85c3478cb19187bde5e434f7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cleat/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "914547fa975e45cdbdd420bb8a7f4d8c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cleat/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "82f2298721c941a8828999f43ee07230",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cleat/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e1099df2446b4f6992ac8bd0cedee320",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cleat/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 123.52it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "234cae2f5a5340f7ab6235556551b4a4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cleaver/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fd60c2babc0749fc89be1e64edab420d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cleaver/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "41f46a3ab79f4fc0bbda8b39f09a067c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cleaver/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "402e34a9d73c4117b7aad171d59ac956",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cleaver/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "05676d1ddf3e45009a513008acc4ddbb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cleaver/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "88dec7758dd2446389e02a4777cf0183",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cleaver/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dd7094df8d1240e09630f3c32ad06c5e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cleaver/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3dbe2555d2c04b27a454c1f3b937768c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cleaver/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ce6992aa1fb24d4f83cac93016add6e6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cleaver/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ff041e18be2147d791c44007eb5dbdc7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cleaver/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 255.00it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cd83de7774e74d8cbd47f338a17b71b0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coat/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "70464242a1004d2697321315fa394509",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coat/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "652789c897a146efb349e77413f94671",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coat/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "533c9272d9654338985609d01b1d8f45",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coat/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "760c2b6ee2e64fbab4e9206617a0df05",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coat/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "226cfb03e62047aca237e062ce809679",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coat/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "921af1984c5a406b8733409d1565255e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coat/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4491bd81d2d64c1dad0ee1518038e894",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coat/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e426a8a24f3a467885d9b6734267cade",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coat/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3959b3501194463b9cddfa257b4d2509",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coat/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 202.16it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a214def368d04f93b045bd50d4486d99",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cobra/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a8527a33ede14e7799fc579931379e59",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cobra/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c42dee490d6240bd925ca81932fe380c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cobra/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fde2d989776f42f4ac605b0354574f4e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cobra/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "38982896b40341d4b15021628fdd2238",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cobra/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "47ac370afa7f46599a51f90803f5eabf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cobra/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "12dc1c0d089f4880af6efd974810c479",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cobra/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e1a2ccf2c3324522a31afd8acc75fdd1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cobra/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c27dc5c9f62c4e779acc4c6a31f80104",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cobra/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2be3a3ad91e0485eb338c445e45eabf5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cobra/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 180.66it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ec59f3d371ca40138b9a5b45064d426f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coconut/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a6c196ad1b1e459a91cecf78e3c25261",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coconut/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a0ecddb82f974b92aee0b45e82599c4d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coconut/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "322b76ef33a941b3b7148cfe24e34e44",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coconut/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b01778190a69491ea5a68650ad9107ff",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coconut/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6e5167968d2b4bf8ae8ebf040bc171a8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coconut/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0ce4e205e5cf4faead9eb6d9fbc9c645",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coconut/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "563413acfe894747a791a803e42b23dc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coconut/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bba147bcf2654a28bd69eeed25efc1f4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coconut/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "666f3a47533a4c238875f40e32b63a4e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coconut/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 240.08it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "84e676840eff4f9c877e1612514808c9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coffee_bean/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c6313fdfcb2a4c17943f82418b990e39",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coffee_bean/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "db28ff4169ff4cafa28b4b044f606f73",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coffee_bean/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "098d2f96e0674797be973199fbdc02da",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coffee_bean/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "90e314b816824bf1a1db3acdff4832cc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coffee_bean/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "66f583cd78864261a7ae1f0f9c50c7b4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coffee_bean/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d0b0683f0fce4d75a38877f54e669edf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coffee_bean/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "27ce82a58edc4c6e84c3629255e30965",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coffee_bean/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7efbe400962b4b3fa584527831d2c11a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coffee_bean/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7509a76ab66141b480abc9c28a902d8c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coffee_bean/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 173.83it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "58c2a2829b794ca79879ce429ccf503d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coffeemaker/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ea0854c4373a4174ab78a1263762b8a7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coffeemaker/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4515606b186447d3883255446cb52389",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coffeemaker/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ff7d1babdfda4d379e62ab8bd88a4788",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coffeemaker/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "101b773221124a398f7a931e230ed978",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coffeemaker/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1e39e1c3a5684089a6f651ff2277b62c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coffeemaker/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "13e8abb61b4a4c4e94ec111f7fd10112",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coffeemaker/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a40106210561419fb4fb5dfe286e6a2e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coffeemaker/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6f740b24adce4f0bbc04d222f78370b1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coffeemaker/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e05c2dc1c56d4074b6d159e005585522",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coffeemaker/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 259.18it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "da4df0d704ed4ff2b6a49a1d4262d8c0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cookie/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "93814dc9d9e34e1a94b66fc9b1c7739b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cookie/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "72679947172a477ebcc572ef6830e959",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cookie/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d74c3955d57949cfa9b0398062f63c14",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cookie/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "43dc1b85b9794ed8b3aef8172f8b1fd2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cookie/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7f73cdbe520e42119e2a6847a209cc4f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cookie/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "72b0da50ab2e46a3b7bc35b8bb32796d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cookie/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9ba5ebc614494f12a307ccb6faf1f865",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cookie/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7dc307ac1e7a44b9a817188bfaa212ce",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cookie/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5963418934174ca6b07d4b2479cfda16",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cookie/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 259.39it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f7ffd8ba572944508f757abcf3b50c36",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cordon_bleu/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a82ff00f81f148bc98f3209b2bc60d91",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cordon_bleu/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "117a9c3dc477426486deb329988f8fba",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cordon_bleu/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8ccd037af6aa4b259ccbdf49e66a6beb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cordon_bleu/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d5c4e63a9226435fac14289836f2ca13",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cordon_bleu/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "58693a72279e448d8ae775045f388e71",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cordon_bleu/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c3a072cb6bb04ee08404c1d483b3336f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cordon_bleu/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fb7d329164204bfca4e16d3baa13c01e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cordon_bleu/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fd53997c80dd4be18b63f50ce40706cf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cordon_bleu/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5fb763bbccb143e1a50806f33c3d15b6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cordon_bleu/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 178.11it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3bad2f8985ea422582134dce1926a696",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coverall/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "435afa01cad94d33bfaae865970a72d3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coverall/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "236c446f5f1e47ed964945b5c1316554",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coverall/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f0d402850bc949a2ab6a0858857f854a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coverall/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8eecb5224a3a480dac3c5f0142459ae7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coverall/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d671a08e679648a78f7effbbc5414aeb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coverall/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "adc7274322f6495d865a4c6c51f3a769",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coverall/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8bf43cbf45c34fd9badd4104f290998c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coverall/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "93f09bc257fc4c4d8adf73171a678a87",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coverall/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1332219fed9e46ac9e9166535f6a1dd2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/coverall/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 251.40it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6f3708bee4c4435799549aeb89ef942e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crab/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cc366b9e219544cb9541309ef981b40a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crab/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "52a97035cb9f41c09ae607d40b88367c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crab/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ea9dd6336f0e45db8884a60bfcaa49cf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crab/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4385a892061c4543aeee5075ef577fea",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crab/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d7981fc9e40a4df08699ef6646f74c4a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crab/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "29fa6b5f6b2b46619c0afd90b4ffa1bd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crab/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c803d2f262244b1fb49a83dfe0b4b0f0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crab/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c02c886562134741a4f2c0b48309bb14",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crab/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c0c87659ba9c439fa883c4235b1bfa9c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crab/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 238.51it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8ed608f87a8e46488a01009ca00cf1a2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/creme_brulee/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "01bdcf51ef3e4a4db69acc48834ecbb2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/creme_brulee/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "427705347d0f47b6bfe6fc84ea16b26e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/creme_brulee/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "767413c8c51d4bb1857148cdef46e2da",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/creme_brulee/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "98f10560326a436e935ba94438e2f255",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/creme_brulee/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d2bc5123871a4b9e8f8e454f688c8dd6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/creme_brulee/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b95f5a1a140f477598187039e7fb863d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/creme_brulee/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b50edb95c006485e993c70633c39d4d6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/creme_brulee/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b3eceb5bf1f24c17a944ec3ac9e12d0a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/creme_brulee/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2e0e19803d6846ffb8423a4039f5ed34",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/creme_brulee/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 126.56it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0192c8294fc7407da4caefabd0a4c48a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crepe/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9964b6695f6446acaddb82814b9b7f24",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crepe/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e12aa4bac72c41599a9493485a1e2bae",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crepe/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "26cdfc8153f34d0fb3bb03a572002bc1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crepe/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b8970a81d79346b98e8552cde731b626",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crepe/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d09603a9003f4c23b95f4e0ae5bfd389",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crepe/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e38c912553b54f8a8e569db34ad82ab5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crepe/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e1099463b7af4ea69d726b2314476958",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crepe/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "12cb73ae1f9a485f8ecebed6c12774c5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crepe/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "807f85bba00f41b2bf72bf3b92a55161",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crepe/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 246.90it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f453de6b7c1f4bb5a84f61f80ba8e498",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crib/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "45b206c2a9d84027b96b5543ff83c2ab",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crib/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b0865f6ee3d6406299b2ac11c39f6d54",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crib/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9fa839592e974fa082a43b78b0839145",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crib/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "aebbad9ff8dd4829a57c05b3cf5acc3c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crib/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c9e646c19d194f04bf40a240817cb771",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crib/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "786a2c00b46f477ab83701d0170bae97",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crib/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2a444934f9c64864b2d985356baccb3c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crib/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b84a10f6f12d431cb3b27768ef7481ec",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crib/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1cea0a53fd4d4c82834858c0174b539c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crib/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 175.36it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "99465ac16e9a4b158fa214522c0ea1f9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/croissant/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e3d639fb8f434bf488393407e5206412",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/croissant/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "251223d0d7174c46ae47612fb8c64316",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/croissant/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "523b16b0514b4ce29b5d491da39c9efa",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/croissant/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5c0a19c06e1b40b5b0963ccbd704d35b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/croissant/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bc7afa49e2994fddbd4c1a95873880b2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/croissant/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5cf63afb9ec5410598b85cb9c78ce7d6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/croissant/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "abe41e74a40f4a85b637ed600bcda10a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/croissant/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "70aebd89a88e4c05a35e18c738dbcb6d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/croissant/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9ac1aa3317c145d08253403f68a3762d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/croissant/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 190.30it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "710a42fbfcc242ce82df4ab72608576b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crow/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ac891cd71bfd4ba4a717f9de726a36a0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crow/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9c3f7e1d36d5471d8c609379fefc1481",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crow/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c4da1d8b008b4c169e82968c2d1af8e0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crow/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "72e0ce7def2f43299f83d69b76c3188f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crow/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a9066904438445ff95043ad64a232096",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crow/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "92eac1f62ec044ab8a13ba82ac080e0e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crow/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5f042472d250459ca1c7d3715474f3cb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crow/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e1b1627f627d46b3ad8b27582e3a2346",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crow/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "842f06ca5d50459486229ed925e63423",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crow/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 260.40it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9b970a3f5fd149fca139f5c9d9d2559d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cruise_ship/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b9d5313324314e82b833c1eb8609ab46",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cruise_ship/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2edfd1f2c9384347a41ad90be360e713",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cruise_ship/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "146f41888ba14d83bcecc514cf48e7e3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cruise_ship/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "751ddfad7c0d49b4849c20286d7b407b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cruise_ship/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bd66a406893e4e2fb48a3ee1b611eb78",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cruise_ship/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "20c59d146d4940649e602ba3ca34c55e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cruise_ship/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0788b3438a2a4e7985ef543200ec87a3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cruise_ship/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5d5d8d5590c644428aed4cdc237fb0f5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cruise_ship/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "52d2755519dc41feb643a4fac3912d9b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cruise_ship/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 198.87it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4e36e04bba2f4dcd99855b41e5de96b2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crumb/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c4ff777f66c042b9981dc51b1227f5e5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crumb/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f01f67ff34b14d0a9c66ac2c581940e6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crumb/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1a8a07235c8e49aabee41642aad4f753",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crumb/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ca2172f054034313b19736a30ca518b9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crumb/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "46be860ead9c468387104c4cde6d2d5c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crumb/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f7c93a41dd19437fb1c4bc65c12dc789",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crumb/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c1a68daca9594bbeaa48617aec95d21a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crumb/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0d665c5ab5eb4cdeb1624e37cbdf734b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crumb/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "78781ada0a48404aa098bc49519a89ee",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/crumb/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 130.45it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "65bc0af8527b415794f26ffc7876fff9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cupcake/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1e26a2c3501c47539f598fd689d25460",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cupcake/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c43db92fa57e4049a5f6fc80152e13e6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cupcake/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dd524f0a0df646f984f0132b8c7b6294",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cupcake/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3fa25d1f0c0a48c39415eb4d2a3b5c2f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cupcake/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3d21a1522c8c4f4ca5f6b267283a608b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cupcake/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d616f49dd62643a4a713bfd65d539315",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cupcake/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ee10ce50ac9a4c91a103661d0884c59f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cupcake/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d034b02e8a4140d99576a2c4c426863d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cupcake/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d68889b125da45729d30741d455f82db",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/cupcake/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 260.18it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "037f754f1c44481ab1f8cc9e1d1fb96f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dagger/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b494665019e345f19eed6c863240de93",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dagger/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7ada9dc3e4534fb69bfb7727ad721776",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dagger/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0c4d628e781b40bd8171cad6ab2b1abd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dagger/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3484e81fce93491ea54784a66ffba8d9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dagger/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "785bc563c3dd4adf9b9e774fc7fd1eba",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dagger/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5411a6e78b28426cad75ff1a421099ad",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dagger/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "57ca4da154ea4744823c11464ee5a970",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dagger/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "41af701274df4509bd98d175b2aa1c97",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dagger/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fa2e5a0e403e4e5c8e4d484bae78aa53",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dagger/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 164.54it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "260d72be741c419b8e5fce6bad81469c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dalmatian/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1820fa890cf84a75838cac9a4c0a8d80",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dalmatian/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c271121e670f4d8b840c40c92a7943bb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dalmatian/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3c4bdd36220e4f63a76c16e71411f18e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dalmatian/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d608c7cd4d7f419bafb94ece6b872690",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dalmatian/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "73029e57ba19404ead34a4ea90c90ad7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dalmatian/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "09af135c95744c4faf26ac7590121a38",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dalmatian/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "66458fe0fc204947af516cc28689038f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dalmatian/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c63a645c4012478081b14a6bbafadafb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dalmatian/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "910433f7b2b34065b7277385bd807b91",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dalmatian/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 252.38it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d9477ef097e8483ba00fb54aca949f91",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dessert/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "442f729e40c7403da8447beb90b35310",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dessert/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c5a35f6dfbb643359b9942adaf053399",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dessert/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "beb188996de94879baa25ab6d7212434",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dessert/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ae56fc7eb6674205860e263423a04c19",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dessert/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c38c453f04694d04883c877c6d6da25e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dessert/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bfb06926138d4be79d519dc8ee93e964",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dessert/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "046801f832844e50b4923f68bba8b736",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dessert/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f9fcc6d5759b402f98c802c3f943e9df",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dessert/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a265c5f1d4bf437595d6cb74c3919145",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dessert/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 164.19it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1df2a2a225a24747b516070aea8d08c5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dragonfly/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b1e22666eb8844b48fae57d06b856928",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dragonfly/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2d7cbfff6ea74e918ea7b86d66fb5aee",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dragonfly/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "68802b1c8e58464f919a1c97bf21669c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dragonfly/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c1fddfd8ec6c493d9b9f264c528ee73b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dragonfly/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "564a58a09d8d45f387b9919ee725d18b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dragonfly/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "47d8f10480d24dd9b3e210ac0f4b5a14",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dragonfly/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b2e5441b7b3b4528a38a0c29dbb952dc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dragonfly/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "26dd23e44730466eba943ffa2ccd1aba",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dragonfly/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2d1b282c1e104f5097e9ad921e0efc90",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dragonfly/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 182.31it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e9632eb6d1fb46b8bceeddf34f6c019f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dreidel/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6a6003568d5641febcbed855cf314e15",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dreidel/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a51b37fe9f62455282357c72b0f5a73e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dreidel/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4577d096046f4df1a0e55d1cd28c4123",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dreidel/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e5abde1a3e58401b86abd8d21870f9c7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dreidel/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0c48fc4769544eafaeb64771a41764fc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dreidel/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5eedc24039b24db086eb670c7dae3671",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dreidel/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ecedce5599234ec6a1f0f87e93dd1955",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dreidel/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a65f8b650e244819b733f7849d59c184",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dreidel/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "07ac2521d3be49cc9c50c8da7a5f3feb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/dreidel/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 254.85it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "46fa0a8a10554107a712a8ba10bc1963",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/drum/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6ad75efaf0e141d7852619d995eac0a4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/drum/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a88c08bdd066458ea5893322f0ed06b6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/drum/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ba35ea61122f49e7b74984a297ba1030",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/drum/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "416fd21b24954cc083b15c985b8f49be",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/drum/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8a10043434d947dda0d6ec9d4830deca",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/drum/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a76eb1e3aef04609aa98a9380f018660",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/drum/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "84f480fee4ec4a42813b555ccf521eb8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/drum/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "47d973eb6a4d451e819e270c5b5e5d39",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/drum/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "58fd2e40846c47c6adc1b0375fdc5b04",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/drum/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 182.05it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "26b0c240687c49958cfd6bc344707358",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/duffel_bag/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9da34d6f24564ec3ad9e174f64495e4e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/duffel_bag/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2d7f090b5f5c4164a6f5f5d4aad69dbf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/duffel_bag/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "eaef6b195d0140fc8f7d21866dbad025",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/duffel_bag/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f47e3e25fb214934b970e86e6ed6964b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/duffel_bag/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3bbcb9d863104bb1a635b6dc1cad5d34",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/duffel_bag/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1cfcf029c88642d8ad8bd103884105f5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/duffel_bag/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "35092ccb98324951ab831c5708cb136b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/duffel_bag/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7b9e9475f41d4effb81f8b9b72dda2ab",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/duffel_bag/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "94d78d9a7f4540edbb2446c06cc9aee9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/duffel_bag/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 240.10it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "98ea4d616e524ac6acb1c5c7a60ed6e8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/eagle/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f5593a0a0d85419089c79aff9ab38592",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/eagle/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "769df45313474adc9e937807b0ed698d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/eagle/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e2e4b8b5e01d48d28e33738e0720ed3b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/eagle/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e451e27715f44e4385a07fec0fc5bd61",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/eagle/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fc9ed95294f24b6e94eef0ad8204d631",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/eagle/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "353e568ce2bc4ef191e520ad1f9ba3d4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/eagle/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "81033a6bfd084da09bd8ac6d834f9a25",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/eagle/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9f69abab7eed47a09389e849e7dd876d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/eagle/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e7c3d74088534a32a91bd3ef2edcd822",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/eagle/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 258.77it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d08031b1f9a4432cbde6512a0cfd4650",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/eel/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6e1cabffd66f4f04962763ed2b17683b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/eel/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "45291d539a48429da044d289203667b2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/eel/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9d4b7c90c1a44d2f9fbdcd28e198c2a3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/eel/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "622d56554a2a434a890b191701192d67",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/eel/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "764b99c283054677aa710f4e2521a6c6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/eel/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "be2c0cc0283a4f5d8f2b18a4bfeadf3f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/eel/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6915f6950d2b4dc39c989976c9f7c29d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/eel/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "884196de88f54fbeabfab2f19f91b0b8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/eel/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "de6bb65b28d44dfab38a271021d8714b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/eel/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 166.55it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1a58f52cdf464cd98e8380fcab7912a2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/egg/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "648e47ce6ea94ed4bf5dc1ad41c59d9c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/egg/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "67862e482d1b4eda995b45086a8703ff",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/egg/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "659a02fc6a6e4c7cb33be52280832295",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/egg/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "93ad4a06eb9a4a3ca3147955e9184551",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/egg/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3f151f883f5249a1b5397ba7136c79d1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/egg/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c387005cda0140f098df382e8d6862eb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/egg/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ebde8a745a1f4702852da45a1ab227c9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/egg/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b66c3f96d68e4b079ae131fb31e9a176",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/egg/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d067e7b744eb48e98ee8d6333b655679",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/egg/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 247.15it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3738d6c8912841379db531e78dda6e70",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/elephant/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f87ab8735bc74c28981f86c3a38ed9f1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/elephant/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f2eebf7e21e64ff492a9dc3c38410bd4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/elephant/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "49bb1448113d43ec856ca45869041aaa",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/elephant/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c62ff17f260b448fb5cd435014e1a179",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/elephant/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7c47e66e190e4e3c906d1a67b81ac12c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/elephant/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "27a53ef6721040f384e09c4e8fae6ff1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/elephant/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d13e08fe8cb14284b3b316447cd37382",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/elephant/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b6f809ede92b463980571f3a9c78c751",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/elephant/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8867a41a34c44dfaa1091b32b72b259a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/elephant/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 253.98it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fa6f7e00de0d4a1f9671d15e0ccacd95",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/espresso/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9ec860367ae6436f8b56daf13db5d139",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/espresso/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2448d3c2b0384fc9aca4c9a91911865d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/espresso/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2254c3cb29584024bc26b5ba4ed0d552",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/espresso/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0bf5f6ff57e34f5d89e761535ac08fe2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/espresso/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2c7f59a9b4af4951a68a9c458761e06a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/espresso/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6ea4feb1ec0c4a97b3b41ae63e9ac049",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/espresso/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e02eb302f921412fbcd5542fec2e4c7f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/espresso/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bc014f8cbe6640e199045640689b5a80",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/espresso/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a1c0d9bd288247ff912b0f2bb63fda65",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/espresso/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 202.03it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4be8c8ad1b034b73a81abd4e963fc5ee",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/face_mask/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "68ab3fc50b544048bde0f904ad76fa2b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/face_mask/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3d442891134a498f9cf6cccd2dd0f418",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/face_mask/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "eaa1124ff3144ff2b76372b8e2e0ad58",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/face_mask/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4c1c482cca864bcc946b0f16d7f8fcfb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/face_mask/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "17ef1372b4374cc89e13e6e2ec8bfb5c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/face_mask/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a179db7852d84314bbc4f259105456c2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/face_mask/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c2750298b80d4f8b886df398d1a9d86d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/face_mask/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c0a36f27ff7c49d986f1c955be9758ed",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/face_mask/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3b71904b608249fd8c7290aff4bd1402",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/face_mask/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 223.27it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "64c327bc363348a1a6f7db371e464303",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ferry/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "81a83b8574c84c61b389cf27072027af",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ferry/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ee071891e6354c5d875ca96e943e982c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ferry/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "54bc96bdf21540aa8a421ffa45c5dafd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ferry/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a006cdc462c646c4a560e5ece6c8be41",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ferry/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ca62a5eb51a94734893373270679c4fd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ferry/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f80e3688645a43ad968113b50a8a2b44",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ferry/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "187a16b8014a4d71b2cc6823e20e0a0d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ferry/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b8a7a56c36d1452c9716afc29ccca9e8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ferry/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9b69379a4b8a47e59acab98f5768f17a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ferry/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 232.82it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0f1773461ded42f288cdea5c2ae79aa7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/flamingo/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7b6a3b406fda456eb0af54658712e4fb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/flamingo/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0161ba10be974f48b27efa51d92c82ec",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/flamingo/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "96ab2019026c4f0dadd9c22f127fc9f2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/flamingo/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7c3b00564db4405d918b17fd0649f9e3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/flamingo/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9bdbd9ddc73d454d9bb51e2041ee13ed",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/flamingo/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "17620ac9a3e9442bb23d246a62da74ae",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/flamingo/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9b9d3694ef7a4c219677582abe5a6641",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/flamingo/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6131155bab834dc4ba2f29fd59bbb132",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/flamingo/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9fff978605354c9ead83472347c21c71",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/flamingo/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 252.66it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1cd2174b30c74ae1a0fe06b5650621d0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/folder/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3283a47cc83e47d1bf7c5a0b193a5899",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/folder/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1eaac5171c894e5682891b88b8ec97b2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/folder/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "34c156a52fa74025a3ff7fbda2ec27c1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/folder/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b3dd5b5f6154457eb991f510bae54846",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/folder/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "30440ffb946d49e991df3cfb2a4206bb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/folder/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4129c9254b204bc3b21923c246378e63",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/folder/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "117f98d248874b0e9a6c35d424f88cf1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/folder/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f6a269e10a5a41e89ce383026f166ae3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/folder/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f14168af8aba4f3c94fc94473486f1ec",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/folder/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 251.14it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d254f11bed0c4bec933c3fd3cdf6c020",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/fork/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "21e4fcabf9c441eb9bf76cbf2a8606aa",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/fork/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d5da92b96abf4235a4be0601d07be83d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/fork/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bb89c4c1a7004d299874480f79065569",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/fork/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4f3f0452a59d4aebbb48477926e4d7d4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/fork/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d906c99a71914e2f8c0dc6b1cb4b79d8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/fork/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5f2060ce261443398808982d571de137",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/fork/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f1d4406196fb43bf80ded37ca07fa02a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/fork/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a9bd82e559b24b00b48752b0759487b9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/fork/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c6b01f5985774dd08085b459ce851c52",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/fork/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 251.72it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d06b1f1188ff415287632d691990dae5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/freezer/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a4df3fb691d840a2a5140959e33bc4a6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/freezer/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1a0cbbb40ce0419e8be291ff3ef3f4ea",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/freezer/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ad40c674e77a482aa45bbfc9eca8395a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/freezer/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "719e1ccf213a497ca25c33502e4af079",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/freezer/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8930447ba0a047138cb607c7cd5fa2ec",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/freezer/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9f180d0b2aba40279f580bed7348d3a7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/freezer/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e7c6c29300b84e6aa48b74e8491de7b4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/freezer/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "63d4dd2bc01245d6a31f30462d124d4d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/freezer/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cf92db8b271348bcb826361f85cf454c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/freezer/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 233.67it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "23bac13965aa42d28cf8942b8a167f54",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/french_horn/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c7d5ee2971d1438db0ea6c7530b98b60",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/french_horn/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "65bd7b9ba36044e4ad4bb795a2eeec4c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/french_horn/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7f4dbd16295d4248b1554113e9f19de2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/french_horn/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "637503881b7940adb7a738747f8482a9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/french_horn/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "65b8881e971e4ed6926d8a174aced559",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/french_horn/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2e167c5505de466691f5281a3b0f1f5c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/french_horn/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "30cdb862f71049a9a9c6c9a284779e69",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/french_horn/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3c838e131df947529c060166d138934b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/french_horn/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8d760986cc9e4347a3d86fdd2d23a0d1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/french_horn/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 250.95it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2b4ddf4bd2f04778b3885b82e78eadf1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/fruit/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0b14635e227b40b1ad8df147138cb5b0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/fruit/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7f65d3ee987a4144987d66a9b5f4d591",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/fruit/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "92bc88c3e95f4b669983a6fda3f9aaa7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/fruit/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8fa7f4ab8c4c4db2866b70832c132a06",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/fruit/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a96ce3e4ace246e6a1aab6ece87d4522",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/fruit/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "220ced7def6c487c9ba4c84a105581bb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/fruit/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e0517462af8f495f86251b4d3f1f81a3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/fruit/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "97a82e0f921548b4b6a030f140d2c812",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/fruit/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "17b6163ed4bb4e41893b65387c14c89e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/fruit/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 250.37it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c42d256c875440f58742727f3ca72ef5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/garlic/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "018cc2fdec8049e7803ddf078987c8a9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/garlic/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "30d135f5d7f84c378668f24aa5b4c037",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/garlic/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "aa678dd8d89447e7b05c167226050d1a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/garlic/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f29dbdd5db6b4dac8b9d878325a8c5e3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/garlic/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "151e11ec748b437589ec4047109bc7a0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/garlic/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "74ef597ac3a443cfb8125a76cfb8a07c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/garlic/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c75972cdbe6a49da951efa3692b05e99",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/garlic/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "582ca1b217464053bcf3471e57d32035",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/garlic/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6d7acd6c2d5340f5a79db843dc3ff093",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/garlic/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 238.06it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "56559fc6261c4947ba5fa3b108c6604d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/glove/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0a1868c8f8354524980ff1322e325d1d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/glove/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7f3e02ea98e54303ad39353764d383c7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/glove/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5ed5f7c626f6451f9b958e31ef709345",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/glove/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c5263cdfa2794cb3bcffda23501c4a28",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/glove/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5113f2e11c184891b196f261f50df0ff",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/glove/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "eaac6bb967d745ae9635e0e3e8d2ecc6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/glove/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "328c057abb5a48b0b36429e0e680efdd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/glove/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cfd9d4eeb4234a7b9f25b2e1b25986d7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/glove/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "47ecd335445c4d8885f67db5a8864ae6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/glove/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 250.84it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "df6e732ffaee4796b87a7a0c199edd43",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/golf_cart/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a29d0c2f5ba14f37a32b18b729c54fe3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/golf_cart/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "74129f297fca45edb83309ae810b00dc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/golf_cart/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7bd3c035ce7a4be3b67e69384359fb80",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/golf_cart/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f413876594e241748e27e4b59503d065",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/golf_cart/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8780878165a0475989805746cbf72a0d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/golf_cart/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8c2891527d4246c1be05015654433a56",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/golf_cart/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3b70778a3d61492991c2075879d6685b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/golf_cart/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d14be7a0bae04f0b94dd23c31afaed92",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/golf_cart/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c7171cf7644b4b91926ffc009f9618a1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/golf_cart/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 228.59it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "89299d4025c4452c9e421d15dbdb39b8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gondola/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bfe15779e9334de0a7106d5337a82065",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gondola/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e5938836ed5e4745a1190e958f66a8a0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gondola/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6dc911a757a940ae98810c4cd8f69a20",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gondola/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8dcebca5245f46fd937887804c61377a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gondola/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3a05fb9ddf824d2d8106f85f71592f57",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gondola/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "22bf607a973a47b29634946675ce1d8b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gondola/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8cecd27eb3fa44f0a99fe3cf34fc136f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gondola/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "780c45053c294442a7ae771031908125",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gondola/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "105e14a5fbac41eabb14cce0582d84df",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gondola/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 242.16it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cc225d79bf4648539eee6a4c331eb723",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/goose/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3a8910fd35d94023b339656351692f3d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/goose/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "34d036e4e6e5430b88aff6bd25fc88f3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/goose/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "63f9cd56a8d24cf6b5fcb6ae0e408ecd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/goose/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fd84415c4e5847e7b9f6014772f50e5a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/goose/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f6a379bb1d844544ae644f9e00f856ed",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/goose/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "43c21df4678644598bea86bbfa7fa781",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/goose/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b05c1841e891407ea631a3fdd9673b8c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/goose/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "69942e93d43e4e61ab1bc3b4403d52be",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/goose/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e082d65c81fd4c4ebccd61762142dba5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/goose/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 241.37it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9480f1b7ee35433a9aea2efc212362d7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gopher/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fe29f4dfca554698937423635bd57907",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gopher/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "94124e5be7a4400c9c2d0ef1c780f18e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gopher/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "153b587a0c104c2b8c8ce951f3a1bc2e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gopher/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "43d00e170aa24e7dbb1cf90bf9adf890",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gopher/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "46349e1e86544725bdafbf819a2ca78d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gopher/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "661f7f6111754dac85810805e48981fe",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gopher/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9bb8e32dd47145f1bcd3b89a444f0160",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gopher/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "96e1fcd9a42f490dabd086e2ca55c6ca",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gopher/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "89d5fc2c65914c548b9df6f123bb4572",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gopher/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 118.28it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2c4ff95ce8f44fdfa4f653fc68c09c69",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gorilla/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "22a25372c03e4b3080b32ba6486d80f8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gorilla/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c6e2a48d9e634dca9ff2430d835ff7fa",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gorilla/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "950feb2e23bb42a5bdf4fc0eb42148ba",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gorilla/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e2a649da0482496c823bca4af7eaf4b7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gorilla/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1750dde0bf09418aa128bfef13e0614a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gorilla/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cfac799ee5fa4846a2af5fd24e04037a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gorilla/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e9b531bf48554b9b97f29ad4b059c6b1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gorilla/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "22a3c5cb1023409987149d506e4860b1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gorilla/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7d16d5507eb342df948b652c04a08ca7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/gorilla/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 243.65it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a719d986192e479cb712f6ffbfa1c8d2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/grasshopper/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d7a2898c53a344b0ac54ae180a5c9718",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/grasshopper/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f10212a5aa134a6bbed4d454a0d2ad13",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/grasshopper/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a55503b4b4544959a23b6d2557c6604a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/grasshopper/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d9d7589a79f54ab59d18ea9af9a8e03a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/grasshopper/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f586e33b60aa4628a1043f0658b5e004",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/grasshopper/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7e406261cdfd4e60909339cd628acd03",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/grasshopper/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "48c51bec212347419f5e9a698ae98ce9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/grasshopper/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2f0b41ea87624421bf7f189a68c83c6a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/grasshopper/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9b1f2e372e964222b0b389a230dde0eb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/grasshopper/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 252.04it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9e12f3a6a854408f846f6d744c3982d8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/grenade/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a7fd55b402a1416cabf905115f996414",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/grenade/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "14bc8dc7c8cf4cf38771243f74cd5a18",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/grenade/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "33dbf147fe0f46f6a04356d9c4ee615d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/grenade/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7102b4ce35bd4e529913b792f831bbee",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/grenade/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9110f4d60ae74580a21ed54e12a0ebc1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/grenade/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9579e51addf343f6b8cbbf69db020244",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/grenade/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ddb56a1106a74b359ca49394e8157463",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/grenade/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2e95693a216c40ee8f5ea405c6da4ef3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/grenade/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cc9af9697eeb47059dfa59546162dcef",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/grenade/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 252.43it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7f16aeed1723481792c37f2e4ad3d628",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hamburger/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ab736e72c0d7401d9e962419a536d560",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hamburger/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fa8c4676de824ae9b733756582198c6a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hamburger/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9c5829c08c284102af7dd3117c1871c0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hamburger/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9cad813fc5e34b64815609e7e6b4eac4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hamburger/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7b37e137c35247899ece0e101a5769c5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hamburger/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f411f67af7b449129acd8296986b9c62",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hamburger/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "61de303aea244baca8aeb2d21efc8522",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hamburger/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ecae023dfc6d44808a866d899ff25341",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hamburger/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "88c0520b463c4e03904b910e9d58e44f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hamburger/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 255.78it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0aa68caab74a44d2b0601e5f97f6c832",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hammer/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b251f6509ac3431a87e40a40412c8b1c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hammer/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "48a85d35b57a418ca048b5e1c90b736c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hammer/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "37301dbbcd1b4d4691d34328e8a5a822",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hammer/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fc4a5376653e42358ac0184b1315ee07",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hammer/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a8d864c992f2489ab4a785c4ebe14e34",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hammer/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d1ffa4ed8ab0415ab76163087de301c3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hammer/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "48bad4f4da404eac9a27cf399e0fd160",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hammer/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b836ca72441c4955a1889f1a4d9830c4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hammer/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "122b3f038a1c49e7958bf0e452450839",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hammer/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 257.01it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9cd79413c8a24d478416a06dd4676025",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/handbrake/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d38a1e8183604ca59d15dc2545a7560b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/handbrake/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3b9702bc432142739819e66914071baf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/handbrake/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5c9b4fbda9d943249c1d0b352d8316c7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/handbrake/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "96fb066c6579446085aa69951a70dc3c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/handbrake/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1d36a84689d84567b6045160369a38f1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/handbrake/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7217a8f9cad34ef486179503f2f6bac7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/handbrake/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8ad54d1f9af4447ca1b616c63395cba9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/handbrake/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "08b5b1535b364a80a3d940163b1b9d43",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/handbrake/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "390648a9e5c54d209508ccc54134c392",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/handbrake/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 255.88it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "453cac90fc8d4c439da90f4fc521e583",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/headscarf/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "982ea77756514ca298b5883626440d23",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/headscarf/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1d61b552cde347c8a2a72d8e715202eb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/headscarf/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "91e57e741a674465b43478c5c5bd5241",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/headscarf/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6a27156270d04ed0a38724c727a088b3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/headscarf/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bafb8b50c2464544918fc7da79899da4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/headscarf/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fe54b748a3474046bb7b5a9b4b9c7155",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/headscarf/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fe08321bffa64c93907d5134b11eccd2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/headscarf/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "53f6603dff8746c4ada876f7f18a29f6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/headscarf/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7bc81a68c5bd45c9b6c6224178470d7e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/headscarf/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 249.22it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d2ba0a2224464f4ea336f5e98a036304",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/highchair/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d73ce769537d47d4a8e38ff3e1185808",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/highchair/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5a84978fef6d40cf96cf4d78dabb4483",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/highchair/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "005afd67861d448598fab9959cb8d413",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/highchair/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b937d654745242d795f21b9d30eb9f64",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/highchair/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "79fdd930ce0f460f968704616db3067c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/highchair/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dc450ff2b89840ef9e35b3532185fe15",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/highchair/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cfb18e6077b7415bb046c74534288f03",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/highchair/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c4b998c01a594305ae6be43e089fc93c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/highchair/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "029e4344dd37474d80c0ffeaf795a0ee",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/highchair/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 209.59it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b0e7dfe81a4a43dd861d23e50b09a823",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hoodie/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ca47add23f764784b599c56b946c645f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hoodie/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bb523fd939bb4bbab08f52746d479224",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hoodie/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "54f4f2c4a3fa4cef97b7a2d48a35da38",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hoodie/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c2383b8e0d0a4bcc9cf359857caa2639",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hoodie/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b20287770a9b430eb595496f2b77e721",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hoodie/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "24489c83284a4b73b520ec205dd344e0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hoodie/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "188503ee1ba94e2aba40bf59e230c8f8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hoodie/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "06348f2b398a49b8a0485ea24c0d57bd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hoodie/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4825d2514b474cd08aafe489582c8f30",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hoodie/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 252.14it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e15d782631524d4c9af29f542e3db83f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hummingbird/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "967519c17c8d4541978ba64ad3e2baef",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hummingbird/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6cbdedbecfb04a60bc4b4224dfe758de",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hummingbird/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b49778d7379d43f8b936582bda1ce90d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hummingbird/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "89095a03ed904605bf7c5ff5ae1fe6df",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hummingbird/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1b10a85f514740699573dab4a043f551",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hummingbird/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "42fb9536412743969882f8e358478fee",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hummingbird/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1750cf1c2fde4a308f6cb73cc7cda729",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hummingbird/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "91beea3ab20345e89b8fa7b9c574a92c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hummingbird/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1cd05c007d8c4841b4e4c356a67d7408",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/hummingbird/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 236.70it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f2b60fb0e29045388c6fc00f9145896a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ice_cube/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f0e2b38ca9c642168df6070288a75cfe",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ice_cube/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6cec94ef93c5456393dace9640deda5e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ice_cube/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2e5a64cc690841f2af280800483a39da",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ice_cube/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "62eb87078e854cf8a6a9104d46e213ae",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ice_cube/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e9c3f6dbc22049ea8d44d982168f9465",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ice_cube/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d4fb2701124e40a1b116d0643e8daf06",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ice_cube/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "005bf5e2649d4bcfaefc95fa3c64ff92",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ice_cube/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "33f697f6146e4e32b49f86f8b7b54174",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ice_cube/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b24aca5a24284246800e6b465a3896e8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ice_cube/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 242.97it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "902531f0ae574659b010c3fe3a7128d6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ice_pack/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9586fb632a264cd2a78b93cfd3c72ebd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ice_pack/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "15f5c8cc7ca44f57a896c163aa1ef3e1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ice_pack/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "48e34c10baf6490f9a28b680fa9049d5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ice_pack/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cf57375c29e34dfabc70b2786932c9b1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ice_pack/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0ecbdde0db9f4c89b7cc65d9becbecaa",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ice_pack/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "134aab6ca1654450899b361d264faecf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ice_pack/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9d64bf702e3d4466893282490e007928",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ice_pack/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "da621f4c550b4f63a8b44e12f7cd93fd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ice_pack/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "05af779b51bb4620996db1dfddf02577",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ice_pack/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 232.73it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7f065b612f0c498d8a9646275f67919b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jeep/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3ccf232944ee40a4b2dea41a2e5345b7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jeep/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "44f699f53298481dafef29b17d70c22d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jeep/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1eef79da149c4a7487c0404dc5c3382f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jeep/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "99dc5be01f1f470fbde73fb436447055",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jeep/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5c99f6203f3640bfb5959d8a0d72076a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jeep/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fea09b3d90a342d492db8bded6d43f98",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jeep/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4c5db8ccaed94ee7b55350397d6fdaa9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jeep/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "febe3e42acd8437ebc3dc70cff8f8428",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jeep/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e876618f5cc5470da2d2a2c94157ff68",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jeep/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 247.99it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8e612292a4b54293ad7162c3b5596458",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jelly_bean/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "609f317becb3473ba9de305b89a56a32",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jelly_bean/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4d60033d82d241ef99db8a752496f218",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jelly_bean/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0104f90309a948c989ba6548d41137d7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jelly_bean/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "656ef50cf42c4d90b9e273fc3d0ce2bf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jelly_bean/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b632103919c24249bdeb593510f64d18",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jelly_bean/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d2b6c8e7b2704dbe845236271e326d6a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jelly_bean/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0065705beef04a0aa49ad6e9e47ae1e5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jelly_bean/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d2c7c6eeb25a491c8948f71ca4c19616",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jelly_bean/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f76ad46f934e47a98f745704fe431468",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jelly_bean/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 252.35it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "050c4b3d0bdb47a188b39537e2f5f0b7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jukebox/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "236853116c6141ec93ebd33974ea3b69",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jukebox/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2cc8e788132542f8a7a3323ecbb00f56",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jukebox/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "00729d8ff6a44b8a902f23e650af0add",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jukebox/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f2261523121e469ba374b1d6fb56beec",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jukebox/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5110faa4ae1a45c3b36b60e0c5d3beb7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jukebox/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b32411db20c244f89ea2793416a5551e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jukebox/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e50790ed514148e5a57fa2e65fe6bb9c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jukebox/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d88192d8e68b4b0dbbcdb8bf883cf597",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jukebox/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e86475c41c8e4073ac7968aeb20e3c39",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/jukebox/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 255.30it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e6962231a8c745a0ae3915734de7b496",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/kettle/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8b1c3caf672e40c3b3ac103b3814ccf8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/kettle/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ec094725395c426aa60e4f287bb8e213",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/kettle/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "117d0e07bc4848b1842217834cc0db61",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/kettle/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "42b06d226d3745d29409ad71678e5b2d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/kettle/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b017f6d9c63f4d56bfe85edb3d80b9ab",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/kettle/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4d5e965f1317485cb9a3508c5b079960",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/kettle/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ead4cbc8c8624093a88f7ffaa87239b5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/kettle/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ada66279d50a410aad4e32eb045c6676",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/kettle/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "13e4963a1326412fa6d1dddbf6ed4fcb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/kettle/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 242.92it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "df3ee21e23a2499cb3a31835a889ba0f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/kneepad/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "59e284e93677493f86b69041f8a007a1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/kneepad/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "91a4511adf5c41ed849d31db7bbcb7df",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/kneepad/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "341ff62fca7e487f8d4d4804e3d8091e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/kneepad/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1343e2481f204c4482a55cff4371b17c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/kneepad/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f62c78a8d7244f9f8cff5b73fdf43061",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/kneepad/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3a86891a37d748e0b32c231e3fc9b9e2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/kneepad/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7c7555ff94a64766be3215de46ac241c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/kneepad/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a00c64e9602f4fa082c55893ba635cfa",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/kneepad/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a09ca1aad7c94605a21c1fdffa75e5f0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/kneepad/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 249.08it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "771aa744ab564214a0cf5a7a6a80a15c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ladle/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c2d7e2b0554d43c59ab6fbcee47ad975",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ladle/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b188932b9fa347159f45c1de9dde1340",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ladle/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "915b8f73dc794804a6b579cce4dead8b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ladle/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "621183a78862405dba9f9e72fbef3fe2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ladle/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "89b87512a49e473c94bdeacb48be3c2a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ladle/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "92ea4216b2424e979b84b0b988fe1829",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ladle/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "254d13fcd13f4e8e9781d201a208a54c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ladle/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "03463b5ddeaf480b94ec833b0c7c945e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ladle/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "26ce0b5e911640318aa0041982c2d4a7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ladle/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 239.97it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8bd593db88c941ec86a1bba4ba040efb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lamb/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1c4e1354baaf461f9ea540f4444c5c11",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lamb/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b707a2fa22e842b4a25742fa41075d7a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lamb/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "07dc83c6c28c4c22a413ed67f19719ce",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lamb/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9de3a1f88ae148d29183833240410cc0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lamb/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "25f4c861a3734abb8d1fa40d689e0cae",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lamb/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e1209e9e0f934ba4a40da9390615e93b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lamb/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "edf56fae57384b49aa97f70cebd5c8b5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lamb/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "03ffed80e0464d16980ab0337940b325",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lamb/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bee505ad8cc24614acd4355f823f1e8e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lamb/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 236.86it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6015929c34934c5dae9061a301840626",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lampshade/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "879e8bc1437e488c961c66c771fa9149",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lampshade/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c2d8f6a56075464fadc99847c934ad08",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lampshade/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "70e398a9fe8e494fb0d2cab1d570b7c2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lampshade/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "be59103f7d6d458994989356d822b60b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lampshade/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "748da887f3b54629939fdde27272732b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lampshade/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1e56bdd851c343c58b9ecadcc74f4286",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lampshade/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "08cc182f8ff3440c9e08baf82f6cc8d5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lampshade/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0a6da4ef45db4803b67aa78807fb51a9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lampshade/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a56ffd452bf9405f8ff43173b9df95c4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lampshade/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 249.02it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6aae551d84f04c1382467ce966032cab",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/laundry_basket/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f787b5888ca1472eac753b76157fdbbe",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/laundry_basket/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0c16533817ce4d15aedab7bfbb5ed320",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/laundry_basket/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3ab0622ddeab4974a6fc8ef746ec1e8b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/laundry_basket/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "015c12e15d4b4b16b1b6e37ad8e2f4df",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/laundry_basket/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "356433b74a284c29bb9acc7aa8fe5ff5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/laundry_basket/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0c70fc142b7042729559ea8cb3d6276f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/laundry_basket/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0918f009d5c14f2daa9e57f3b06f483b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/laundry_basket/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "85306a4af10f4e8d8a123de86d49ffd0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/laundry_basket/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2b93fba40cba4efa887e71d0b2a440ef",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/laundry_basket/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 235.17it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e29b453620ea4cd3bcbd60ac26fb2a5e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lettuce/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1a6a885ea35a414180927b269f98cfd3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lettuce/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "734b2758ea3248acb4a1918d9a2d73af",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lettuce/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "900df589fbf24cbda2ddcac2256c4bb2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lettuce/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "06b81a1a573646018251b7fd392c1429",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lettuce/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "501cc023fc874e0ba8eabb4939f8e26c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lettuce/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c435b54b8c4c410a832e1398842d24d7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lettuce/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "69a50517c0db4022948dd8992319319d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lettuce/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4e5a5ae9143f45bb907d9017233abb05",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lettuce/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c5fd87e00abe41618a4590e9ecbc3f2e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lettuce/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 252.42it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "05e84bead1b7463a844e1420c07ea9ea",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lightning_bug/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8ba4e61c550e42d8834fd6ee8d2b68f3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lightning_bug/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9f0afae6f61745a0bd9a4246041c5cc8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lightning_bug/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a877c1e0775949918f4285d43fd2d4a5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lightning_bug/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1cd44f319ca3415eb69317b4ed5c3d4a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lightning_bug/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "993fb6c2011041c886057c169299928d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lightning_bug/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8abf4e86fea34142a9b9c01188bbaf3e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lightning_bug/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e320f62b5411446aa7210fa951b1a7b8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lightning_bug/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7ea0c81607b5424d817d641f6ebd012e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lightning_bug/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "caf0aee2d53a402b98edafd486e60a70",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/lightning_bug/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 244.92it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a4903b7612684c65934ef247cb74b8da",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/manatee/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "baa385ecbf0c46fda0f8c60d64554385",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/manatee/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9c1c04b4e81144eeaec5bc6086ea40d6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/manatee/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1c3d8f77d3504828803cbbb7d639d55e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/manatee/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cd9bc39d081c4d49bfadb15293d05fcf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/manatee/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cfc458e701f04f9da41e28120d467e40",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/manatee/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c5fa88719b5945c99a903b933f11fb22",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/manatee/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c0e1298c2a654d3b9b8f25979c877f85",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/manatee/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0863ba81e2c94a0897cc2496b64e4d5c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/manatee/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "44d58c515f574998bf7cba193ff9147a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/manatee/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 253.80it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "780a0b42a460402488672bf37e9cefea",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/marijuana/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "004de839413d4cd9a36142a47a5c5a15",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/marijuana/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e6c4a03448074467a83bfa8453fd45e5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/marijuana/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8d7ea11f5cd04ddea7359e3a461b0363",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/marijuana/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bd82197e85f3456e932eecfbb44984f1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/marijuana/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "55721874bb0a46c0b79445c61cb5f2e4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/marijuana/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7acca56ea30f48ab9138ecfe924ec7d9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/marijuana/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "178a5a337820470ea813a621a76d664b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/marijuana/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6eb7f00948ce4fe98a8b03cb96a862af",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/marijuana/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "29d0e89a5ff44de3b61ee6754170bfcd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/marijuana/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 244.85it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9e7c76ec6a8c4dccb17600df954d2b28",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/meatloaf/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ff38a50f41f5462bbb968c00f9e4c85d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/meatloaf/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c0569dfaf1fe4bc8b626bbc218b99bc5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/meatloaf/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7d35052159164b63969923cc046f798a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/meatloaf/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "db2c2084d6474dea8e01137b9c39ea97",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/meatloaf/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "39b83e3220cd43f4b35563690c9fb762",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/meatloaf/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f0ec5b893d584026aadfb30a5b3b92eb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/meatloaf/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "39a5002e873843e2b7c20b88a4482b6f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/meatloaf/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "03a2c134ecf447eb8919542ae8f7321b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/meatloaf/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1206bdfb6d604d1e8c25c265946e9ef5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/meatloaf/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 241.76it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0d24f0bd20ab4490b9c253cfcd231741",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/metal_detector/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ff29f0f15fef4328ae9d9665297df823",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/metal_detector/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b052860b984848c28804dfdd57c5e4e2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/metal_detector/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "30e8e50b2c084c6888922cbcf8a4c06d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/metal_detector/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "03d079feb4c349d8b0503d93808fef06",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/metal_detector/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b13e1f3c6b9f490a9fc9f97ce1ab13d9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/metal_detector/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7f2d2996018545439e79ad90c562732c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/metal_detector/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8fda898a55a44f718b9ec84a8c58c6ad",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/metal_detector/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7e584e3b753a4c918ef2eb17c7cae50a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/metal_detector/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "29e073a1f06e4117a7686bad86084b0f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/metal_detector/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 108.22it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c9aad30d16f1410db389459b63166453",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/minivan/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "681e427ec0a343c69b39fd53fe2398ae",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/minivan/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ad66272b7c1b470ea786baa5a8ed4b40",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/minivan/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a095f1e205454a8fb03ffe8798505b26",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/minivan/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "31938f60ad8c448c991f3c74aaf57991",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/minivan/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "905a1f22ad3948998d8c0ffe4b29dade",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/minivan/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4ed43a4f57034afeaf91c235cf24246f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/minivan/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6816b830eeeb42faa8a0a1802db55d97",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/minivan/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b1dd46da0619471290bf86496b0d820a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/minivan/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4f91a9bf177e49c9815685f67acc91a9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/minivan/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 248.84it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e2eef8cabac34a06b4af661d2742da54",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/modem/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9c0b2aba979145579164332dd62d335a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/modem/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "39a25aa03daf483181f476d5b8bf0b52",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/modem/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e1bdc28861884ab68741779996ae71af",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/modem/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9b068b2a7e55474b85def50a33447947",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/modem/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2b04b694f904493a99fb1e0b16896d13",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/modem/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d92dce91caf54ab6b246c78aa7f61191",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/modem/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2d43d54e61ff4cfeba8d5221b8589f0b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/modem/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "05556055da5545ab8fbc0c469baee733",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/modem/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "07c586d9340c48f1a88d18fac739ef8c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/modem/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 233.79it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1c34cf81130741cb9df481a770f761f4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/mosquito/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f606406cefbf4b37967c5133588a4493",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/mosquito/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dd1905d584f34d5eb40f62f43a0ef5c3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/mosquito/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "26780161b4de4f8392b0d3ce289000ba",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/mosquito/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d0a8bd1157174f9d8d3adc95852386e0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/mosquito/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ae8ae2e064ac4febb0a1bf6059c16775",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/mosquito/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c2f263c5d68f470aa0edd1ce1178d733",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/mosquito/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "52f8f22e405049c0a7650edd671fef5e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/mosquito/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "61c7c664bcd24ea49e16fdc9833ab69b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/mosquito/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fd317951ae2f44598b1988e8beb9e8bc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/mosquito/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 230.86it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cf7b1af08ed5429e9e101beafa935050",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/muff/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6889fcbf9b344a0d9ed49a6464772673",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/muff/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b76b17b9d7d24a41b05730daf5c879d7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/muff/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ddd001ab0f8b4064a91a968b6cda58b1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/muff/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "56d90306bfe9460c8ae143609f58ce29",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/muff/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5bd901018e0a455e99e626927ea58c86",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/muff/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e4875320d30347cb8d0724055b5ffcf5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/muff/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e9a3d0c348bc4525aef438acb2c84728",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/muff/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "959c059f93294487835fbbee9c424579",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/muff/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b9d5394f540d47f580b4307f9d0dbea2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/muff/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 238.23it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7ac2ea19f81845e2be02650c20d50cba",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/music_box/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "38381044ddf044c29406b8a6a1583a31",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/music_box/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "82dd9d6f42364cc4a8e4d58e2a348f04",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/music_box/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "02da1126735c46b8a9881569d7b4e891",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/music_box/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a6fd2b4c5f89412f84c96b94ce02efec",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/music_box/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e6ba737cf9ce43aca708b05a29340acb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/music_box/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "422067fce21442a2807afb60044cc575",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/music_box/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "07ecadaf5c334e75985e33448e0bde66",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/music_box/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5f54443f01024b5ebd9708f87cbed5b6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/music_box/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3c5e529580a948a1a3b59f339abdef3f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/music_box/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 237.36it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3871c6fe77da451f96a41538422f3e4b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/mussel/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "469f185b14ff401f87f6eb6b95489ee8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/mussel/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3e5bb9cf5a3c4e73b3563a121ccf4681",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/mussel/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b261ecd5623a46b68bc22d60dc3def32",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/mussel/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ba043729236c4405bea85d2da77667d4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/mussel/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9b1f8401e7fd4c259b9f03ac33f2e992",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/mussel/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3b4f9a35c0f74bbe8b0fc24529cb12ac",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/mussel/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2c5f3992c4fc4a50aa8b279bfc608a82",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/mussel/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "13996ae2534a4390b1beae50cc76e84f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/mussel/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b70b2f29f87f4be5a509eb542db37386",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/mussel/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 249.95it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cc730d67deae443daf86241c79f72b73",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/nightstand/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7a5c6eccd751433c96d255a353ed9d3a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/nightstand/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "80935bbc2d4f4121814326ed96835885",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/nightstand/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0266e628733a4d44a50ca4c1a96a2d68",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/nightstand/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "28a2de9d7e2e4c1e894a774b813c595a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/nightstand/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7294990af33941329a16ec38beb57625",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/nightstand/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ce2a6684bbfc44069338261a9cd7d698",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/nightstand/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fdbf8f0b8f0b45a5a0839f331118e30e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/nightstand/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4619314638eb458b8bd0e6da9e6354ea",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/nightstand/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f71bdbef300a46b9840ea9e7b72c8956",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/nightstand/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 246.50it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "830e980a903e4bd489b34d521106fcc6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/okra/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d05e3c732f5449ffaf41eb97c5a9fe73",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/okra/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a6272d061408480a9fa9ddccc669be6e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/okra/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b33c67555b28414b861805a0856fe501",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/okra/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "03e54b91ca214540837b2eb58fabeb31",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/okra/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b2f06bfa1bc447f3a8921f3bbba339a0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/okra/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "712d09851d4544cd9895022e1ef9f6d3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/okra/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d7a53519d51344ecb43908ab1472b54f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/okra/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "03a6c7716c0542d5809a7f1870c62f2f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/okra/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "692f5c85bc3b4e27b97b2158a686bbf4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/okra/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 248.65it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "891029cafb62433b8bc5c0bc7dfe352c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/omelet/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "833b087e263843a783936b656fd98102",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/omelet/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7e644eb088fd4956a1065df7b906d030",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/omelet/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9045fec2f87443718e9ae6a5a875920d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/omelet/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e78ddb4c1b6a406dadf8a01a6e029703",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/omelet/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a370572126104db89f1752e737fedc64",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/omelet/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7104b459526045d9a52fad74b3115329",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/omelet/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0bb2847850a44937b01ca39b097c450d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/omelet/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "30f99b4d03944415aac7647dda24e81a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/omelet/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "624549a6d40f4a9a87267ca7bca6fe95",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/omelet/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 250.74it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5da634f88ee14ce0b49ef24a3cc21772",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/onion/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f6c1f6bcedb34a51a320344993178321",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/onion/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1bedb0d761d04f758a8f743db05f70d3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/onion/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "183e8c7c88a24e7cafe3f38ae7900f31",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/onion/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8554382bc1384d35a1d8f402a4448788",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/onion/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "298ef8b3872b45bb8ac16c9e2e658833",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/onion/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "27973bfa04cb4168a9f76ac4a51e4379",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/onion/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ccee4e272e5d40a6a462d0957da0fe95",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/onion/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "36c58f96c7254a31a05a54e590addf21",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/onion/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "46c5e78eb036484794615055ca1dc3c0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/onion/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 238.26it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2c891232be1f4d5bbe7dd02a642d23f4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/orange/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "341864d4591442008bbcc232818e193d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/orange/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "52e441ed234c4f27ac8076c9593992e0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/orange/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4f710a777d954ead9ba5c5cdaf086562",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/orange/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bcf73832c7204c11b4099c1811020ab8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/orange/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "85f2bf2c6a1c4347bd5e8c2e82b258e4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/orange/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9e5a423d51c84531aa9a1b11ed53cf31",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/orange/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f470792e4c284e28abb161db3beb9acc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/orange/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e5b6a56db9364b0c9844398804999dc5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/orange/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "caad4682088b4912a681b2cff04ffeaf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/orange/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 252.85it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9cafac13f3814af882a21927f11bafd7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/orchid/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "34c3a57e42b344b4b92f03b3b85182fd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/orchid/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a850439b0bc94d61bede516af6dffc94",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/orchid/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "50437be5e77842cdaf6173c57f29177e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/orchid/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4e8367534ae341a7a0b1380e4956ede0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/orchid/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "39b26e4e974d4fe9914222a30df75234",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/orchid/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1ad1b0364bf54bd28591c60148ab22ec",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/orchid/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "90fc2afa78d847fda800024727648208",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/orchid/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f664587a0116416e9c360e42736914ff",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/orchid/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cdec170f6e4f4506a3dcde31ccd497f9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/orchid/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 243.36it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f16355f9827c4e3f88d3a2fb3c01b81a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ostrich/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b821ba6ce5184b3e9c137ab1cff1935f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ostrich/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c034764a35b24ffda8b23e503608f79b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ostrich/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "187accc5fe92411393a6def8a6bc12be",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ostrich/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ce416d1e0b6c4e23aa696d599a9d377a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ostrich/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bb66e835663640f3b4a13b87a42bf84a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ostrich/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "82860a27bb6b411abba24eb7a1656150",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ostrich/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ef64b76263044d9ebc4c4907d7b15831",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ostrich/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "eea3cba28d73493bb505e83325bfdb81",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ostrich/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a7d182628e414c159f56c90e339bcf21",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/ostrich/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 240.31it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c1db61d827004d37b63c0e12bee73349",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pajamas/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a91fdc191a514a53a5d96c799912e675",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pajamas/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b5cc10cd61894462b370c30c2387e8d5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pajamas/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "65c9ae0a689948ddb2a22f2b2e35d51d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pajamas/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b7577ff912b94b7a92d6946be555e22e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pajamas/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f00ddc94d4bd480caa1357719551fc6f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pajamas/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bc3f340828e54f3a92981cf54306f933",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pajamas/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "db239aa67a4f410aaef1a6a6c695f1ba",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pajamas/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "171da55f511947198466258b2acd4609",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pajamas/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "31b83bf02a344e7fa7bbaa96ce2ebe05",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pajamas/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 244.97it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cd6bd68177294a2f8a1180e041d1a8f1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/panther/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "30823efe068448ed87483a73e35e6b1e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/panther/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bc3fe321fe74423b8b63a8bc61d2850c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/panther/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6a8f40eb30584fe4836fde93f583d3a9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/panther/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "becc953d98234f3abe049f959c5214d9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/panther/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "81271a89749d4fb29b0515a314495f0d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/panther/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e80733b05c6442bca937c18dd68782bd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/panther/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "690518703db34b6f896499fa6ef33d57",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/panther/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9427d46ec9424e4c9f3d7db2f028e80e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/panther/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d86fb60b6c5c4e67a783eeffb668307d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/panther/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 233.27it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cfde6ec456164784ac186113a032b603",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/paperweight/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "678c1b37f44043819fcf48b3c962633b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/paperweight/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7eafdb5ec37840c79617dc947b6cf510",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/paperweight/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b252ce0c0d244355af5db927ff6d7719",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/paperweight/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e1667ca26d3f408389bf5e11791e7183",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/paperweight/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6fd1699121064ebfb5f0dd1e381958b2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/paperweight/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "56f8a30d727e49738a2992666a246295",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/paperweight/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "96c2686a7f044756b263a4cf52c5546f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/paperweight/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9b09feb77cd04e4da065dc31a8f06f59",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/paperweight/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e8e9f41d9e4048409fe75cee3efaad0a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/paperweight/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 247.38it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8312ac35cdc04414ac4a5ac38462086e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pear/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "54e7f681f09c47fab83647a9dddfcd57",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pear/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "473f663e403649c0a01d0b9a9bf6699c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pear/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2ddf5366ec8b41cdbe7684fdcd36f018",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pear/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f052521c424e4429980a3afe618d8291",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pear/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f5508e16927c4cf185c2d237e752f339",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pear/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "eb10389412a84aa181e948db8fa021f7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pear/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "322204a992a6468ea0ca052c61a26d6c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pear/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b845919e8e094c43bdfea95574f7c614",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pear/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "eab83a1710c64e269f421ebf07feaf55",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pear/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 241.55it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2e61f3f1400c45b0801ee6b21c965dd9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pepper1/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "141abe74d9b64c49bdc3f5885a6372ee",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pepper1/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "69f9b7074606441284c2862389acd7b7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pepper1/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fc395a68ae4449f3be10a3b76f5435ce",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pepper1/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "874319d84dd34b4aab29fb8a94c9af69",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pepper1/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b92ec189d4dc4c61a6f63ac7dee9a638",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pepper1/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "645b4aab016a47b5a0310a807eae8f99",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pepper1/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f53bb91e99914b4293455faece62c3e6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pepper1/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7e9d78a88e514f2ebf5d9cbaeef3a0af",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pepper1/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "af32c0e45be34fc39887138c0caf1766",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pepper1/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 253.86it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b610ea105563428f8ef5cfa49cd97de7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pheasant/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "829144ad0cfe46078939d4bf68e848b0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pheasant/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "90cc11e50b4048708196656d9dbc2cce",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pheasant/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "47a0732b1b6e4dc48c479c596440f632",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pheasant/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "edb409e068124c30ad629a8ecdd4f580",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pheasant/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2711d870b05e4828a4e44f168d4079c2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pheasant/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "eb6a8d57af1c45b7bc3195da2de24aac",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pheasant/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "aae139e3b336450db46a45b2a00b7098",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pheasant/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ea3b53745b5f473e8f5402954ea1edb8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pheasant/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1542f0b4af644edea121c7bd59f4b220",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pheasant/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 254.02it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bf1365bda1224a788fde528ef94480be",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pickax/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ca04b0d3e2c14959bf8805bcbdd2134c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pickax/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "def2686d5a1b4ef78734c8d0c1baaece",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pickax/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ae529fd0dad64cb4828ece894920c602",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pickax/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cbe0cc9329c7494c811682d013364e68",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pickax/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "73fe12185b2a45e9b51fb59cae53d57a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pickax/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "395ff19df19d4732bf741777df142ff5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pickax/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b82d8db6f997484f8c8f5168d32dd600",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pickax/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6b5b0d7811f04dbf832e7391ac4a0004",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pickax/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9f5f76cf35fa4e1489939d0607e591c8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pickax/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 253.03it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9f08c52785c74edc985c16a04a5f5b5b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pie/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "46dab888f8d54a6d85a7ffadd9131f9d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pie/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3e455eb19c484a13b79864a4936b5d20",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pie/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3d012bf0c7664eda91e581c36b9c1da8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pie/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "40f905838b8541268d063bc9a889279a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pie/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6dafed1a86344f2895471c68c1c84d86",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pie/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c451519c411a4b8fafd108898b3d652c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pie/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c278029d53a0417da48a880418f522a9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pie/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "19f560d2868144d1b0839d14d00d79b8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pie/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "440117fff835401fa74b7632205969d4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pie/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 255.19it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "08bb18607e664756a40293e274fd715a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pigeon/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9eb56af7502c4dee9b55ee10d4f1ee15",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pigeon/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d63b40b0948b482fa2fc6a0d32abd4dc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pigeon/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "30bcd9d88ef849c9885d67c6397a8e2e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pigeon/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cc0c41f47fe0460a9e9052f8ce6c90dd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pigeon/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b791baa649fb4f4680117db548dec066",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pigeon/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "35221c96adb44792bb2875cd105d408c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pigeon/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "942278e7d8884f839f977501c8b9c020",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pigeon/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5057527b7bbe44f4b351505c97c561a7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pigeon/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d253f8a4485947b2ae7c49b03c392983",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pigeon/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 256.20it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8737f86c1e1f46609de2ee335cb50979",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/piglet/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fd08d810e905422186dcfdefa97ba6a8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/piglet/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c6c3f1aea36447a280edb93081cc456c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/piglet/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "14648d227aeb48878604c7be1311732b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/piglet/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4aef4bb8c97b4a04908221373e6d19b5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/piglet/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "39abdf3f4ea5418c9262ed0720dafe27",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/piglet/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d801c93706a94a928c1ad444af567b7a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/piglet/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dd6062a69b9f406185b00651365413f7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/piglet/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0e3ed42f04854918b57ac671ac99c6f1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/piglet/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ac8e979188da43f89d4fcf29431fbb0d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/piglet/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 217.05it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "47db4e3a9cc24ef0bb77efc1c8b4254f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pocket/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2fb8e808f17144d78f5e69eaa9512ead",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pocket/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "45020318ccb54644a03abb2adb3b6995",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pocket/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f955762eb07443ff81ff7dd21ef925cb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pocket/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "52366867a94b454db877d73831d90bd4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pocket/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dedd002b7e9247ac9a2bddd598af3fa3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pocket/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "310be90e1c9b4a569ce051a683eab08b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pocket/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5c70e54663e34714954df5c9159af27a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pocket/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0af72a383fba45718624640ce82de172",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pocket/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9efa1a30ee3542258f5a993f1ea8ed85",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pocket/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 241.33it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d38b66e467c74013a82e40cc96554486",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pocketknife/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "109427fee2bd4125bed065fe28a5b427",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pocketknife/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "04652d0dfb054662a276343581ef722a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pocketknife/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ed03f3dda67944ae83a011d9cdda2f24",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pocketknife/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7b17f46c9602430c97edb7f89cfe1961",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pocketknife/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "16bc0bae369141ba86d5b5d4ecf4d83a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pocketknife/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "be687b0850eb40b79f919b4180bc44bb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pocketknife/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "de5a727d14fd496f85b4243afb5e50b3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pocketknife/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "181359d90e3d46ba9d9185c2c33f80d4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pocketknife/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e658e780399a4fe8a4a5491838e1c47e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pocketknife/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 244.22it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3b509780ded74c09bd4917259f4dc7f0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/popcorn/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ee56d2372f6f4160bf3e269d25a2e069",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/popcorn/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "04dce6e57dbf48e9a8934fd625c605df",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/popcorn/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7bb13650ef2348b08b9fab4eecf5043e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/popcorn/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e6ca0fa4f0e04fb6bd8abb3a69787c34",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/popcorn/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6fe79ab9b2644505836cb9261dcdb7c5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/popcorn/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "76528d158cb0477e8c69200d20048867",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/popcorn/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5fa43e9ecd9741f1b69cafec4faa92cf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/popcorn/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2f0616ff6aac41f09abc9169910ac08e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/popcorn/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fe5a574857c34701b55a429845957cb2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/popcorn/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 240.31it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3c0b8d1127cb414b84b890e94d845591",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/popsicle/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "35635413378542618a1b42e4ce27d276",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/popsicle/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "109ddbdc24504b67a819056b4f39eb76",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/popsicle/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "28ecfca157094a068806c66a1b2829e9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/popsicle/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3d194cb2c2e24112aa0793651dc39709",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/popsicle/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0ac8441105864f9dacd7b86c5fc26e5e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/popsicle/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e6300e04fc1a41b2bffaa819f7bfd848",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/popsicle/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "890b45d36e7c4d8493944c84908aa2db",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/popsicle/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d6cea73b9cb4416cad502c9438c49565",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/popsicle/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cb37bf2853d344a2b9193040451d4cc7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/popsicle/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 238.71it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2b976f3d66ec4c34adc2d7fc236f903c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/possum/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "35ba2c9064d24c4b974e169a5ad5f86f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/possum/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9703b554467e4049af1a31009e603ab7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/possum/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5920d6785c5b4fc298dd77a665c0d0a0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/possum/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "824103f5b7b647a2a5558d1db13686f9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/possum/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e4c55f3a2d224491b650fe2089ac3a98",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/possum/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ae7bbd7a520e46da955c88d1c65951c9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/possum/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4ba229b72da84963b099d9e251994a67",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/possum/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0358a3b9442441b8b5661e136ea05e73",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/possum/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a0a7f602717740ed85fa17733796b109",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/possum/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 245.14it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1bbeb4ddba6c456581cc0cb3879bb948",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pretzel/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8bddb000b2ba4c86b2ec4e5dd8408772",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pretzel/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f1f53f8a8ceb4ad9893100633dc26ce5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pretzel/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2e019745f12042d38e021ca83db0b87d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pretzel/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e7daed26ca1a475d9f3d8523f24bf57b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pretzel/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7cc9be7090854fd1bab2ff3b5db780c0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pretzel/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cf125e5482a447f1bab46be62d10dd47",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pretzel/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d13f11c1834945e7b205bd4b7935717d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pretzel/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a4692e0cac1948d8aefe9ba7b6c52d67",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pretzel/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3ab3d38fc940449eb5d4f2960b433d51",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pretzel/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 112.68it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "29ffcb7be88140fc9d2ec5e1f885a268",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pug/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f308a17114a44c23a233d8090674926e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pug/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4fc3d16f9e6e4608a013d04ada7825e5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pug/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4b2d912c36274e2eb48155b5960ccbfb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pug/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8309e9d587e04ee5a4c2302092ddae0e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pug/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b1b81eb6da954de799641c36cdcb63da",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pug/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a23866472e1f4ee9b2e25b63df5e6fd0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pug/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "19cc10314d214caba91ad1e0a548bcec",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pug/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "23ce9ef61890479d92646590b816de31",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pug/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5e1a4c03bbc641878f33dbf7336f7c72",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/pug/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 248.19it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bbc53d2dacec44a4bfd6b6827d705a34",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/punch2/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d6ad624e3f26448db541dfb8b06a3933",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/punch2/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e1a32955111c404bbf5eb7328de37275",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/punch2/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "47eb133f36b0449785e1ec90af63db11",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/punch2/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "04da11cabcd54e92895529119756f760",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/punch2/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a552370d85cc42cf8f4d355e0f247bc9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/punch2/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "44789e65011b4273a17624d1550676a4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/punch2/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a0a4ddde3748436a8f7fda63e30a6430",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/punch2/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "59a446743862410395703415fabbedee",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/punch2/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d58285e6beff4653a7c5d86de0b45fd9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/punch2/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 250.13it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e716561ab2e2492c9f76db1b5e56fab2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/purse/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "93f9e432aa484d5eb0fb225c1e515c1f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/purse/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2dbd3b2a72b04c5da7f7dff36f509fce",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/purse/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "93b989b240474878967cc4720ca7753a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/purse/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e0b98c23582b4d21a2de04ef26134366",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/purse/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "edee58c12c764742b3d06bb9760c4bb4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/purse/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8cb8c3672c9449c78596edd6144c5d45",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/purse/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "07f1d198af5940988f4eb42626fa870c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/purse/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c78a50ffc4b2483bba8e458455cefaab",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/purse/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4d050652ab4847dea64091cb11d34cfb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/purse/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 250.03it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c3c9b94d9cfa4c16bcb18bb76031cbe3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/radish/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4ca864dfe46147ba96f39af923c3a968",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/radish/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9de232f4f166496ba6e4ca6103e7d88c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/radish/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9fce1f44c26648c99c0406a52f7040cb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/radish/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bba85c8bb5b84a10a0c96ac44cd080fe",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/radish/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2b3b3df96e6b41718c1a98ae798e58f7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/radish/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fb3700c29713457185197473f05c8aef",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/radish/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ab536bdf7e284ca9b0a8d77988256cb0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/radish/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7c0973043cb84722a49274742a09b584",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/radish/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f89ba83b46d642be8fcb093f9693b366",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/radish/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 246.32it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "90b9df3cb50b4dd8ba88e47280b59ddd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/raspberry/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8b9567e3c53d48d580fa0be2c5e31fba",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/raspberry/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "934ff0f5477d417a84adb1bc633f7517",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/raspberry/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f03807bfb8ff4c3fa5c17f0c837e66a8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/raspberry/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "22a2db3c60374719bba81a22309ef4f2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/raspberry/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0eb52e8074244c138f6b0c05fcf5412e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/raspberry/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "62607c33eb6147b5bb922d5f2e628fb5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/raspberry/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "85117a9913e64cd494bb9f88025296f0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/raspberry/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f2f69c52a8a849858488556f6c2d811b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/raspberry/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3851257d9fd446a0a544329886798f78",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/raspberry/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 244.48it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "50def0ffae7043c386a843c90ae0926f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/recorder/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "295bf1b16a2f4a63b60e9135f46d2cb7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/recorder/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d498680668d745ed9907246b4efede7e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/recorder/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bdfc8388b36c49a2a6864cd03b1c771d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/recorder/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8e74d089550d490099fe670002f2a0bb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/recorder/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a8592ba985fd42cb90913159af07c78c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/recorder/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "391a5cb42c944cd78d0790af4fa19a3f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/recorder/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c28bea1ca39e47c395d9e05b7ded2554",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/recorder/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c50f7e9b54b34356bef51187749b0f02",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/recorder/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3aaaf5b214314fd4aaaa9981dd0f86de",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/recorder/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 248.82it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c58f5ac623b0404dbecdbca084ea85df",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rhinoceros/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dcbc04faaca94845a2098632ee55b813",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rhinoceros/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2cdd0c932fe148839ea21244f90ed41a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rhinoceros/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "09909e81cca2430f99785d3ec58fa291",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rhinoceros/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3453fc22fcd74f4c9a48ce6218e52278",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rhinoceros/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ac5b234442c249f79fa56c7de8571ef6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rhinoceros/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ced75b2b274c4b979930ebd7b8834ac8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rhinoceros/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "08e11eecfdf542e09be3cb2375844c2a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rhinoceros/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2c015c5ce33a474396e576822dd12f4a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rhinoceros/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3309beaba5a448cd985bf1688e8212d6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rhinoceros/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 233.88it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "293b2d8f7be042ed94ae1a7559524e84",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/robot/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a20fae4806714e83a8b53ca0bf6bf4c1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/robot/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1c3677de32824adb93d9685bb34f59ed",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/robot/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4eefb2d369be46f89059fef67c15072e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/robot/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e335f1ecb9164d91aef0c628ff4ff1c2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/robot/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a02834c82af645098bac187a2c5c0400",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/robot/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2c79b9cfabdc42c48a0d33a3c6a10358",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/robot/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "08a5f96a0d1643e39dfb680979453bd5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/robot/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "392255e3c3ea492bbae5eace0c7ff6bf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/robot/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a285a9332e0c48ca92abba2b4aec5dc0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/robot/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 246.38it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7352bd54b5f7433caa2d6dd8456537be",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rooster/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "278bf64468634c6796ca8e20243070fb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rooster/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8e3e8c4a4ab44243a9e9913d7d2d2e5a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rooster/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c3e0405bb3624e92ad5504cb3c49a8d6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rooster/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4714124bfe214c79953407aed9451ab7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rooster/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "94a4cd53d05c491baa2f5526e5d2c7c5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rooster/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3f428942b80140e2ad61cf6f055bf747",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rooster/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "860e1de8fc674c7c93e27c8bd46470f3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rooster/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d2a0a8efcb2f4b0792804bdae57720e6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rooster/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e63170dbab69441ebbd557ff8ae8d8cb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rooster/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 247.18it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0a30984f8b8d425bb9e93958bd994e70",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rug/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "306f8784b057489396670dcd0e13cf0b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rug/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5f0a5a5c269b4c668d81251183d96f57",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rug/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4a214a7370494dfd87ae14c5bf21c0d7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rug/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ce576792dc714ac3aefb5cb687128f06",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rug/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0b35beb698b442b1996db0a609ed26a5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rug/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dc3a1bfc078e4b4c97d686ba91f12d69",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rug/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d5d4831c5db44d22a8a51dbf2b9926f6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rug/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "657a2e573d8b45c1851ae78c7130381d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rug/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2b17d399bec44bc394941804b9d096be",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/rug/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 240.39it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d385145d18a34474b677a40b8528f3d9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sailboat/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e48ceddf8c274c4781ff9308a288a488",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sailboat/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "249760803baa4585add93ece314b55d0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sailboat/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "69c77ea836404124811243b89f6d8497",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sailboat/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "52a5772b120e4779b193b68f3ac99e62",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sailboat/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "de3d232dc635412183be55c0408e1154",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sailboat/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b9c1b3cc97a64dd4ac9519393652bba2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sailboat/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7a6cb568e79d4e5e957d9101fa6bf094",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sailboat/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "48439622c1ba47ccb9cf4af8a2db6e0a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sailboat/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1317f1a6b98e4da6879576d5c855229a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sailboat/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 239.70it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f70945b3b37e48cfa47ffa7a55c5d91e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sandal/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "78fd75bf3d3b4168a3a2335d84ed7222",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sandal/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0086f7f067a142acb35e18b078cdd169",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sandal/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "29c656509dbb48d5973094a0b87cbbd7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sandal/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1ee1ee57bf53497aa8ea9abf434d30d3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sandal/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "73731ef67aea4232808a2b7653da9be2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sandal/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bf8f17152c8f4c0e918019e79d32fc15",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sandal/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "634ec2c2a5d545fe944798e287a272e7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sandal/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fe697eab5b3a410fa2b82f3f8b9cc7de",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sandal/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fb3f967dce3741b18f15a42a9d4ad00b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sandal/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 225.24it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a58cd0164e2d4f18abc40360b9327220",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sandpaper/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "99b5093825dc484da9bcedbc15eedf15",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sandpaper/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bc6742f1291648e2b66a68af822f3a49",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sandpaper/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "08583f6ee5504a389b42b9d4309bfa90",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sandpaper/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2192f5e2a13d4c36a88065c30d008a55",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sandpaper/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cf4faa3cee1a41b19c3af46cc0c5bf71",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sandpaper/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9197878a7f034a459d10a967da393c3f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sandpaper/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6f52621e9a144bdaa5d2f22c9591f032",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sandpaper/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "784e56bb1aab47b3bbef26af595f28a0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sandpaper/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0f1ebb0ee24149afae6e9aa03c20eb82",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sandpaper/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 241.78it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d896b284150e4fbe92aefe319ab68f85",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sausage/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "03c1f8d4ab0742028c84126931c9f799",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sausage/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c1843a906a854c4fabd270318c57e7d1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sausage/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cc6d9abcfd7d461a968601b0d8c98d8b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sausage/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1788964e8bbd44fcb9df7b85b67186fe",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sausage/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8e4c63ffc82848ecb5c15b5ef217efd4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sausage/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6822f6f5c6734bdf90490cff7334963e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sausage/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e42eaf0fc1a84789af6df1b2cec1c18f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sausage/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "257c1cdcb7174befa46f8ccf958f0c84",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sausage/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e4a0b98ffb0b4ca895a60221acdec80e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sausage/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 248.78it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9ebb80fa401546c1bfe6e4d63235997e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scallion/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "700439be70254dd98151e658497705f5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scallion/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e21dc2f22e6d4e4a8ab22e302eda9184",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scallion/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c8f7100121b948848287faf2dda4280a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scallion/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3e068033d2ae4a7ebbffcf066f15f965",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scallion/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d30b2df7219d4192a1cb41b8fa459cd2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scallion/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f72538101a0e4ccea9001ec213a21012",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scallion/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "45551948a9024e65a8a9ecce39588896",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scallion/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fc08abe998214c2ab1786aa5aceedf21",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scallion/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "414f6cdd9bbc4e389592d671712efcc0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scallion/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 238.90it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ed33b0c8ce4d49f8ab3780d5eeaf864d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scallop/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3f879059e71f40c992287e09eff78a77",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scallop/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4e4f2c71d7dc45a3996339b30ab0854a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scallop/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9197552a9d47437c9957cac0ee5512cb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scallop/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "88d29975b1ee449f885f9caaa97edfd7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scallop/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d65a208471c042a2bccf8ad6003754db",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scallop/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ead8ec27898240d3b0f5be96b1edf4ec",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scallop/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9aa626215e99474ba905e2ffdd257c1a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scallop/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "506ed92d143249dd9362faa701a25d4b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scallop/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "020024905d5d40ff985a704a4cbe68e0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scallop/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 237.18it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8ce9fe52fc1842c7b7f905fba76599b3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scooter/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a40981a5e1494c3fb8eb84fae424cc80",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scooter/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d1f5771dc3bc43ba886f38d2fcd76050",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scooter/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b4e21e96543c469482afe4cb08045748",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scooter/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1d297e7d449b490cb85693bfde079ae4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scooter/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c388441604574a799764b276b3a3cc99",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scooter/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "410bd11fa2cc4af08b4e28085cd9fa10",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scooter/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e2f44473359e4fdeb73dee5249c2d7be",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scooter/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a3b8f965661e42b1802ef3d4a67e172f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scooter/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d1936aab640143e5ac9e83bd0b05c1b7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/scooter/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 240.81it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3bd82ca9fe7c44a8844eed8471d2f387",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seagull/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "26a943f3897a466fbaf71b9e7a9b5c7b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seagull/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d9c81b2657f0441bbf47deb723ccd063",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seagull/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bc435942bfb642aabc4fc3d7449f4145",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seagull/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9de4982c834f4644ad7e6fecfc6a039e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seagull/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ec5811af8bcd4ad6899479373fd66d66",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seagull/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "26d31be2966c4610b05e620017f9b134",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seagull/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "672eeb88a86a4995a17896403f3d9a95",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seagull/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7d896f47028249bab99f334ec6fdd053",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seagull/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "efcdc088e89442b79fdc80b0ce5b8ea5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seagull/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 242.75it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "39d25fbf73da41088f611eef4bb6e89c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seaweed/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1b7c14a83b6e44bd8a8c4565e1caed61",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seaweed/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a608c9e6ed4346d98237732ddc99c6ed",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seaweed/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5d6d1d595bd74290acf7260228ec7095",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seaweed/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7aa58887f8464c4f8c877ac774b8fc3c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seaweed/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "eb8ab9810dd548408cabf274c13a4577",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seaweed/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2010603bbe3b452bb3ea367c3109b4f2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seaweed/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9f816c64c0724456b4f68dad522b8b4e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seaweed/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7c764d538f09444b84e01cc39c330a62",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seaweed/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cdd98575dc524c76bae35b569388fe14",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seaweed/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 243.23it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "040a3fa792fc408c8c744f5f40ad9f9e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seed/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "505ef566775047068f7e23287509ff37",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seed/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7eb4f81d73854585bf0adec24b9aeb13",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seed/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0ea2754bb6904e97936a79245c01e08d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seed/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "050c5a29f982447295312959b943bc16",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seed/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4d66e3cbbacc4a46a9982e82a6203841",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seed/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a256d86a187b48468bf0589529dccdee",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seed/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a52e16774c634c9fa6e1c2f4237361dd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seed/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "879f8770374b44f3875027deffa095ab",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seed/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cdf24e6adc214013b3f129bc5a5883ea",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/seed/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 226.82it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3f77a0bc67034270b67979c7a39af58e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/skateboard/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "51aec703e8ef40edb6567c76e41e6057",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/skateboard/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "53efcad34f77429f8469edf71e840d00",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/skateboard/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4ba51525f035412891c5e6a73fde2a2d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/skateboard/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "20ceb73cd41e47a9bdc2a92850d53c33",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/skateboard/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e1dfb44bbfb04f64903c1332c5492ff0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/skateboard/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5b62d6d0fac441e79a0e082bd5a3daa3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/skateboard/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c2e240add92d47f19c6dc452a7f4c44f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/skateboard/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f1f217552d714c6aacc76dc28f89c4bc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/skateboard/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2f6bdf7bf70a415fa9daedb15931b83a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/skateboard/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 235.45it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1f5dc911dbc94ab78d54d71df8ed48ef",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sled/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d7bb5d117e044157b77dd52ad32bbcfe",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sled/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4d630a93c4334a7bb882677cbb12b1da",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sled/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7f55bc82cefa4c3ca60fa4347c210a18",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sled/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ed9850917e9d48fdaa324e74d5e1e863",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sled/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "caed306af7674238a6195ae1d91a7c99",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sled/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3c72e8224439414b9de9a25978edb4ba",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sled/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "158c76805d6440faba1d18751e6c4c29",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sled/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9d5dcb6adb49471ca6fceba5e109d564",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sled/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ebf2abb031d14c09a6a528a913dbb680",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sled/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 239.56it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c3d3dc3789474d8b8fe805dbe8ca3a29",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sleeping_bag/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2bf009d45b64489aae44eb9d3b8d5351",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sleeping_bag/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "380444b841b441388798ad1d0af1f032",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sleeping_bag/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ebe31059a35a4180b948a7eaaa71b477",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sleeping_bag/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "93057126e3c44f0a8b731de39f233429",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sleeping_bag/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "13d09f7d9a944d62a80cb208c380dc52",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sleeping_bag/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fc8a659fb5ef486c816fa98d5801c2f6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sleeping_bag/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7d1f2dc8d84742819e43b8a3a3710392",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sleeping_bag/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4394ab48fe0245889e975d228421efcc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sleeping_bag/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "464a472cf8fd4334a51f1445cbcc3c36",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/sleeping_bag/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 239.61it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3dcad8a9e66442aeb6d258134c1a40f8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/slide/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4722a9f716a34514b1f0fa82104a6b26",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/slide/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4430b27a49fc49c9aa630dcf7e739e98",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/slide/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c50a82186a4541e6ad8f73f23ad93075",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/slide/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6dd21b2ae0274a5dae8cbee36b026bb7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/slide/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a0429443fe3a44d3b4fa9887407fc8c0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/slide/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0ea2b93e8acd49149827e11d967c65f0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/slide/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "39dc033f5b1c42b49dcf338521783d8e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/slide/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fc527c665d814636a7bfaa00bcd85c15",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/slide/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1e2121457d594817bf4c87c16486ffc5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/slide/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 246.41it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c45ef31e40544883bc0e19e7f83946a2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/slingshot/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7c4c7a0a4760414498154dc9ec5386f9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/slingshot/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8fa79f212817411fa6135ff83840304d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/slingshot/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6ddcc38677b34486bdb3a94ceb7d93be",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/slingshot/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a58b41a1744d4bdfbbb59631dbbf4f78",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/slingshot/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "baa9b58b85d74cc48e1c28a43c3e600d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/slingshot/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6a2bce3226874536ae1d2d0d132d5998",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/slingshot/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "96d58248232141e49b692f75f3859916",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/slingshot/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7e9a4484f13048b99b71ec6007825549",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/slingshot/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2146539e8de048499a12fd16b004408c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/slingshot/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 241.13it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "739a625dffb8404ca1837343006df7f8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/snowshoe/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8a9154ffdecb48d58a75bd6d38167e1a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/snowshoe/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8f9c64f42edf4293a339f3950c5268ad",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/snowshoe/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "49d37bea95d14032a417b420094171ef",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/snowshoe/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1900e89853284357a965da35a8f3b589",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/snowshoe/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "62c4c0bec8274d37a1c84680ee0a2e3a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/snowshoe/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7c2d3cbcd8de4f638256760e2ae89a3f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/snowshoe/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d623c2e552324e67bd17c2e1eac55b2d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/snowshoe/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "34fe2995d2574a2e968a5473dfe9ac95",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/snowshoe/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a473465e0d6644998964932e3df6699d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/snowshoe/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 238.07it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "88364e7014bb4803a4d66565edda2b87",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/spatula/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2a274038a40d43b8a1a32612cbee1182",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/spatula/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c5b2b297118c4ff2adf5d6196e9ccbb5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/spatula/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2d96deafaa4141809a72995de0619379",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/spatula/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b854815ae949435cb6a2be7017a43200",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/spatula/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f3223ccb9c5b41a0b7567c0115c90713",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/spatula/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f93c4458910d4ca1be3a396d6f4da367",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/spatula/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dbb291d1690a4dc380755741dabe5f43",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/spatula/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f63ddddc1e1e4c51a971d13b2519de50",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/spatula/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c58c8ed41163441d81299b971c5de928",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/spatula/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 239.38it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "97d3e1ec21c74582a456a9b2b5a5d2de",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/spoon/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "daebe7f77e924b2caf36e9d6482525fd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/spoon/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7fae685aff1c4bd5a9437fc109743457",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/spoon/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5d84771237194b5f9eb92dc46efcccf6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/spoon/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3c24852ae3424aba99dc38b3f5b2bf09",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/spoon/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "43373cd1dc874ee1b2cc585ee986b62c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/spoon/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6c21e7b0ec0f449eb890cfc2c37f5348",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/spoon/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1e08a9d47bf54703b820a6f5bf6d244c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/spoon/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "753b14037ada422d8348f5c55094db81",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/spoon/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9d00733b285649cabbae60b1118448a3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/spoon/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 240.67it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "381b97654be345b1a661127787a53211",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/station_wagon/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fb1415c683aa491c926e612a662848e3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/station_wagon/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "21d811396ea84132b2eeb894022f9c6d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/station_wagon/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6f9fe4fff6c4461eb75868f82c5f5800",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/station_wagon/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1c8203d91712407c9332536bb8c321e0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/station_wagon/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "88c85f20b9c5474bb8f37a27e7850a57",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/station_wagon/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6061ea6b1b874d7a91e8291b0742a6e6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/station_wagon/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c19b369307a547948918da909bcf1fed",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/station_wagon/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b29cf18308a8453a968998a8eecee534",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/station_wagon/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fa50c23be19b4cbbaadd84419407b34c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/station_wagon/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 230.23it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c43f9884d70f480f99197c5af6e3ea59",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/stethoscope/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "eaafbe152e9941bd9d2f663a980acd81",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/stethoscope/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2802b2a6905b4d249a87e63c1a71e9a4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/stethoscope/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f5f86a1a9d8246708b852712560ffa2d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/stethoscope/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1a788123df8d43c7a894072bc0abb822",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/stethoscope/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "670e55c773ad4e61a74525478f12621b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/stethoscope/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9dc6b436caa74caea8b9568d27454fc1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/stethoscope/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "37c0cce124c747d0ab34735013295363",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/stethoscope/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d95cbb9c8bfd4df3b3fcff25d0e4baee",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/stethoscope/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "59031cb9551e416b8dfdc419d8c11868",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/stethoscope/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 229.29it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1c82e9fb8b4a4591b577986d0d975d28",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/strawberry/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5de024a2a56a48bb8716aebafd8c380e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/strawberry/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7bf2e7bcc1d54cb2a4eb8e491ed2d7b7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/strawberry/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6c54170dd5384cdc9c8264c5192d8b10",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/strawberry/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "de37e1548e944bb29c0630406fff655e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/strawberry/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b9c12de252314fe8b0cfc9058338f8ea",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/strawberry/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cf33c2e84c324ad2969663499e3993f1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/strawberry/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5724ebdf6b034bbc91b029223b416991",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/strawberry/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "62df416646e94b2d9734c0fc0bdd2389",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/strawberry/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "adc0d7e6fb844aea9273b86efc63319b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/strawberry/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 104.22it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a8e32e8ceb6040ff8ab3ea61c7afcf1c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/submarine/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a5ef986092414df6a24824d7fda442eb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/submarine/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fc8f589df71a4204b3688369f7696b8e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/submarine/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "18b02d05a2614dc2b60e3862c6ac9939",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/submarine/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7d18a9c9ab0646dabc40caebf992238d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/submarine/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "879f390d154f448f9569c79cea9c8288",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/submarine/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dc48fbac44b9478b87ded693e8bf2b9e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/submarine/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f34f2d2028744a00b046f0813fdd0423",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/submarine/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b6b2ba75abed43ed9743dcb37547d5ed",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/submarine/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3df04945d9fa4c82865ce04ab9bbe12c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/submarine/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 242.80it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9b0d6af4fdd54ab6904cd4e8f84c8843",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/suit/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4d5c817465874b2baae6bd522edbfbe1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/suit/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cc006eae786642108752a5414fea3b83",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/suit/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "515efd13a7e1413a8b8816a76c0a628c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/suit/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ee6d0e565d2f4cceb8214ef6c9698ce3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/suit/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "26669e73ec3e45bf95bfce42cf068780",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/suit/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e48caefa916d43548d6e50a2c2d531a8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/suit/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0c45d174a2034861ad28aeadd19af7df",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/suit/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bd28a191208a49349431480c6e6b9a6e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/suit/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "379c9b9cec6a4e5cabef3aa1169968e4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/suit/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 232.43it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1a45a1e1e509487884bb4f4fbdd5d8cb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/t-shirt/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1dccef9acb014e329e731b1c2d7e1c4d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/t-shirt/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f2c063f1b0a94f2caf146539ad0d765c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/t-shirt/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c37a9f7fb339450489fb83d462e078b6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/t-shirt/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ee0252ce179544f69064931cca817eea",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/t-shirt/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0243633decef43fcbcd9b94a87bfaa4e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/t-shirt/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "81994142dc054ac9930187674da1c4b6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/t-shirt/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "411eefee0d434366b9004c617de240c1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/t-shirt/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "227b6e946ae8484da35f74772e6ce8bf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/t-shirt/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "59c5ef2699a7422e9bdc0fbe6309a938",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/t-shirt/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 235.02it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "afd48ae09d6740a7b54e38f800adab52",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/table/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "104d389f4a5549148ee919f0810daf4b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/table/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7687d452d7174cadbfb2bbabb08d0b0e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/table/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e3e23542488c4a3fa47eae0623538be1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/table/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5a4df4c395d3472e9fb7e55adba89ce2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/table/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "46cdbe3077d4469794fb4d6b2fe61c1e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/table/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a7cc31ee17524408961f0b7f44bd1cdb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/table/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b60083f8e15246d5a75864478dd7d1c5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/table/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f79bc00097e6418598243e63e553d792",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/table/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4a249b0324b54949be5a672b50d3d27b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/table/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 248.71it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a336f7aa673348dc9412784f06905e44",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/taillight/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ec028e7ffb9f4fcebc3ef299c6f4752c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/taillight/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "419262f50d074663a06daa4b545ad285",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/taillight/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a1bc9bcf9faf496f901f1e47cd972975",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/taillight/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "478f83e0c90840efb23586ff329c23ab",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/taillight/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "78547532886a4b36a8f251b6eea32a69",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/taillight/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "15f4bbfb49704eb38ce554f005611e63",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/taillight/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "18e0204598b5470d942ea2be66bacab0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/taillight/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ab630526d5f44f3a9ce8b12b260ab6dc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/taillight/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "444331cc3a464400afe0de866246e6e7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/taillight/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 237.78it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b77b7750318145d3b98a9f8ad3cf2ca8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tape_recorder/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "26d8091a474e4e83890d17bb9de8ff1a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tape_recorder/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c6dd5ab3d74a4d62bb068579065cff62",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tape_recorder/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e7dcab85814f49be99fa91bbe5ae4893",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tape_recorder/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "16a931ab646341c1ab69eea4c6f84002",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tape_recorder/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ee27f9dd716e44d38de4e65c3491d87e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tape_recorder/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "de92cbc72fce4517b662435816ae8ee2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tape_recorder/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b5b95f44800649eeb45eee4c6c69e089",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tape_recorder/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "68e73b26a7a94254b06801add94f827b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tape_recorder/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6b8984148f3d4585aa0eba2f0d165b06",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tape_recorder/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 225.75it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ef1feac736c145deb1e8b467c123ebd9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/television/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2bc7b6d8ea7e4edd9aab742785591b18",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/television/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "35a78b14002d4fb5b1e7ad0101256620",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/television/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "89c7cc040f0b46069902219fe5538ba3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/television/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bd713199340f48d5808b088692036051",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/television/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0b55713bed2340ddb019f0cd021105ab",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/television/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "64c23ff8176b42159ec574a34075842f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/television/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "eb44069f857c4c92a0131983517d5088",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/television/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5d388328cc7b403bb6a0e3e7111c2c56",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/television/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b29304506eb44d5ca02e36dce89f6278",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/television/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 224.89it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6af8f43174224dae874bc0684fbd1246",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tiara/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dde8af64049547e7bbea99399f2987fa",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tiara/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e132a23c7ee546019c30506a6f8d0582",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tiara/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0d58ccfda23a44788ee7977c19f34e61",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tiara/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "87fb9927c61947f49f38538b998bc3b8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tiara/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c3d3c845c871431cb890963adb7b79e6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tiara/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "eae074e334d549eb8a1ca3162b1e2111",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tiara/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2b8b2309274445cd94aa069cee1aaeef",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tiara/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "059c5fbddbda4200b82ffc8f5eebadad",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tiara/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1fef736c23aa43dd9ecbeb9aa0a75b5b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tiara/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 241.11it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c1de0539eb6e4a04abd81cb770a4f9bf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tick/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3a97734a97064011a8eb576d1844bcea",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tick/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ca44cd80820146f0870f39d12c8f58f7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tick/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "728378f900c84c628d549e9247e8849e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tick/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8e5b17c285cf4cdea3dee7f791b714e1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tick/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "85ea5ff96a204966932bee62db6745d9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tick/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "35459d5f40494ad6bf5be395a2c23e7e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tick/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "927fc5ad9ac441b6bf5a9613ebf47264",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tick/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d73192476c5746019b0a340a7d8082ed",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tick/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "52c960b1a4274bff90ea65b3028fa684",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tick/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 242.36it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "569eb3b3847a44c4b125f320fc7f90fe",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tomato_sauce/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "21ef0c6a9bff46759ccb9b4ca6a36f48",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tomato_sauce/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e8621b602e444b8795e66883f2f0b278",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tomato_sauce/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "239bacf9bc484648a5ed796eb8a17ac1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tomato_sauce/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c83125ec5c684a799595a3c56f6eee3b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tomato_sauce/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "967bfbe784e045c3b8e965ca9325cfb7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tomato_sauce/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9f63329f91574904be06df50a3f47f55",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tomato_sauce/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3fea190acbd64d11887194ebe7aaa25b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tomato_sauce/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "91b1340d57bf478083018c448ac177b4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tomato_sauce/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6a30fe5774a349ceb837ad75a5ddd9c8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tomato_sauce/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 237.68it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "59eb5d451e674908959985409a5da74f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tongs/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "01631e6f25b34bc7b279d851a18e26b9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tongs/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "da791b2894394438899f560cb6ad9f03",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tongs/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b7514d22d5ac439ca774104f8b3689d4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tongs/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "496045df46524d8d8f5fe1f0dce54133",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tongs/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7f5d481c784c415c8007158bbabdf25f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tongs/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "aa08c3fa8cf747bda3ad01b8a5be9983",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tongs/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1975ca0c8f374c6d93bc3230089bfd5f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tongs/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f5a4ab9640a445bca9c94a47f577f011",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tongs/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "80c358abd94b48589c5a1268d4c616f3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tongs/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 245.33it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8ef4f6f564e24eec8bb69cda9179286b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tool/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f60db85f3fc94eb6bf038500b00ca280",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tool/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bcf42c0dd2cb4f76b8fa22bde98f58ea",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tool/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ae9e888180cc45d1bf40f45593c649b7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tool/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e7ef78195ae44f359d1b9a55dd5aec19",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tool/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8801f5c5ac9f47ae9d6932aa0350e1c0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tool/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f529651ac648431d99dc7b863246f5d2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tool/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0fb36b003ece4784a680e9f58cd5d359",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tool/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "eb7fe5cfb3a9435aa7a3a11ff375fce9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tool/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a8d5de3d8e1b4a0eb02c351649e51b9b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tool/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 235.66it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c8129aaa50484a8ab0264bac7fa7347b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/top_hat/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d1503af92b0d41be92b849ac958a7186",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/top_hat/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bc64af96a2ef41f896c0dfdf58e6e3fb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/top_hat/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "efb2f7863ea648f791c4a73539b49979",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/top_hat/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f8b2f182649544158a96845a1cd9943b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/top_hat/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "83a5a1d5237e4668aa201468d560d16c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/top_hat/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8b5971e826414a5ba18eaf3a3c83f6e4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/top_hat/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8293e35dcd74416da739291768c077a4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/top_hat/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "637584ebc54e4e4998f55fabdb429446",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/top_hat/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6aac872cb4dd4468a474989654394fee",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/top_hat/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 237.68it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f77d47b5bb874017ad54858db846b95e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/treadmill/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "773ed76877e7469abde22df5d267322f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/treadmill/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e945844458194741b049d3f994067d38",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/treadmill/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b6fc9f4a839a40cc94e72ef455a0705f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/treadmill/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6f7177399580476d9ee032ff34c3bbc9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/treadmill/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b34708f8911c4fc4aaec6438e917aa93",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/treadmill/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "255ca33a099d4b16955f01fb704adca7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/treadmill/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7e8e3230f66d46b593a37d1c5a5153a1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/treadmill/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e1284bdd73254fc1be5eb59da32f1d1d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/treadmill/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0c8115a200cc4ad9a891f774d0a51bf3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/treadmill/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 245.04it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c054cc61db3f41c38a13b97536c6d7de",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tube_top/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d9256f6dc2ba45ce8a172186d5fbe1ca",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tube_top/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "58905a7372344d0aaac919a455094e2c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tube_top/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2748cec258c848fa93654bc8883de180",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tube_top/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4ea74fa33e3f4b24ae38dd4fffb419d3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tube_top/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4de5b57b9e534d2ea0b6d7f049a3ec4c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tube_top/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ea9f6ddae99642159f9d483e2beffeef",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tube_top/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ea95403f72884f12b0b9d0d78c2f55a8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tube_top/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "77aed19230db4f958982d5ec21b92fee",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tube_top/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1891a4959526484e8aaa95b1f36f30f2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/tube_top/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 252.13it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "94fe56f62ae842118153210a988f3c3c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/turkey/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "36d9fa953c9c406c9fa3e48360f1a60a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/turkey/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "914b53919c2743239b3f37fba1f1c9f4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/turkey/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4686253d8969415281397deb9a2a4e1e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/turkey/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6bb08f3aed60460ca3636202d1ebf4ef",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/turkey/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3a4ad408713a4fbca3a889324a3e9c15",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/turkey/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0df1f0a195f248e399e1396f5720a8f8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/turkey/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c4b13c6c823f4d9ca5a88ee0a9f834f4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/turkey/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "83e2a061d3624bd88faa3a3add65a50d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/turkey/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "53d1dfc2edfd40f38e123ae09cab3d51",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/turkey/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 235.41it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4509a892feb344d9a908699954c9da1e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/unicycle/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "26ae4052aad4482f9247743c61f56fb5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/unicycle/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cc0864c6e81d496ebf72813e45f4bb8d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/unicycle/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "10e326f253024e5791e373e667918fe5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/unicycle/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e7ee07cdf6a74e74bfa5a6926f3bc96f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/unicycle/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9071ed6ab5604d89ab5a6f1939045e7f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/unicycle/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2e09e373388347c794c5435713ff7406",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/unicycle/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1a78e07e5c6640daaab8b7ce922a9f2d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/unicycle/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e41eed3df95f42dfa2114154714d2103",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/unicycle/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ebdf745ae3f9435fa709c3c84a40bed3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/unicycle/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 236.50it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9e6949a684f24ba2bd4284a6473cac42",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/vise/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a42b069d891e41039cb04b27abd5fb9e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/vise/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0b496106fd0f4898b7accf544f1efaac",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/vise/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "18763a30b1d74d959850d14185e9d9e6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/vise/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "56d34e74db6d41daa6c1ceac62e2cd22",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/vise/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7394de6b25c44b7383b0f6e347248f4d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/vise/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7504d14ffe4a47579e61e6681b9098ef",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/vise/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5b9f1fd31d3d49959df104738fafaf1e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/vise/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0c904abaa66a420d8c9675009f430665",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/vise/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "970e09be3769498d90b90e1375c71d93",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/vise/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 237.95it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "120d8d0743f1432ca744fe610a476a2b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/volleyball/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "486bb93177ea4f87b1186415ed0fd75f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/volleyball/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3f1f4ca174c94caba1b62032c264441d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/volleyball/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8ffc6e1ef48e46f8b700159fc9a54149",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/volleyball/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b10d72248f10430ba7e5e08518dba716",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/volleyball/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ce1d5d34313c45f7b54d9152826d7b31",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/volleyball/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7a2e5b638b744e2a91f8a726e2154937",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/volleyball/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cd3e6ad8156e4be5b327bf2ccd62737c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/volleyball/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f695703af43e4ddbab518c5a83f937fe",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/volleyball/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8414e36dce3a4866bd5232c8f288b809",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/volleyball/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 236.99it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0dcfd6d0fd1949be86f7435a2c6fb663",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wallpaper/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6d328d31d1c344d38f29989f4cfe8c37",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wallpaper/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "94bb34693d1b48508b5ddd89d1ccfdca",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wallpaper/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9d6d43717a0b4a6b92f5e72f92fc7e45",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wallpaper/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "61bc9c55e4094aea93ab2342280fe497",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wallpaper/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "13d4204ba9d9428e897210a1a894bf29",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wallpaper/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d1cebb6e52094a22ad1549671c5622e1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wallpaper/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4a711b9162ac446dabf6c029df44ce12",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wallpaper/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b7379dfdf9a9430f844a033fb88ecd5a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wallpaper/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4c5e609dfc134f39bd3dd9fc4031fa27",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wallpaper/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 242.86it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ba8b235d400d46fa964853d10f099920",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/walnut/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "042b5ce1cdf14f1faf0d199ea63a12bc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/walnut/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2902c62c12014d14861a06f4ba665e0c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/walnut/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "953560974be44fe3a876bbb83b3f8e13",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/walnut/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1c9ba269090048aa922183c0cbc4b36a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/walnut/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4843f55288544f26a0706642ddacbee1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/walnut/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6ce40793ad094b5abe8c4759d4e68bff",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/walnut/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "aa64d190c8e140158c80769ef3dd9e3e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/walnut/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7cc5d1883e1747fcad5cae49478975d7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/walnut/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cf8b8c4a07f44e8a9b7837c95be69de2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/walnut/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 220.22it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "05cd80d1b1a44e96b79c5adec0bf38aa",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wheat/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "46c6737700a040a3bd5bc957603126ee",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wheat/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "85fe4f8c716f4e4680134b88f085a1c5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wheat/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "090d2be2ae274cfcbc5420b8c36cd56b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wheat/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "82449b0e8cff4f65994ce6a99b3929c3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wheat/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "100d6e106152457dae4a7232e4efe335",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wheat/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "07259abb56d9452abdf192ca32855160",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wheat/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "364677b485bb43039a19f758482b3680",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wheat/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "43161811aba6484089cd9d268bcbd998",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wheat/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2313c44e9b1b46f7be32a683561ebefe",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wheat/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 228.61it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c5b4d61c22b24b639dec570908bb638c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wheelchair/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5de118cc059345859f1f944b44f63e5f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wheelchair/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d8c47cc86ddb4ce4b21b1c221e3c1d89",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wheelchair/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2788a060ba874d298fa2bc800f7c8f5d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wheelchair/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "33b6497f294e4d199b1c2f809855ba83",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wheelchair/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c4e3a9c79a374da384d838d9148582b7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wheelchair/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b2c4d8af4532464ea9cf8ee02d7fd91c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wheelchair/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6e94f6cfd5b947fc8dd0c7fc7d888315",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wheelchair/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ec01a415cbe14837b8af3c98468d8592",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wheelchair/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e43ba2e275ab423faa5350ce7c1997d4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wheelchair/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 244.97it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6dd68fa8ce5b4527935f0f99b92c9502",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/windshield/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "68584278e5a746ac97c89a1f4e93c64a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/windshield/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "745ddfe1562744acbfb0db45d498ef82",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/windshield/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bb77e2d44e7c4341966ddcdd3392ef6d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/windshield/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "59fa1a61d2654b3683b459a69527a24b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/windshield/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "336052f91b3f464eae6492397f746244",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/windshield/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9eb6b140ed7f474bb4b379748e0c0073",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/windshield/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "daa6168aec1540a58ce0682b31419446",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/windshield/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1cfe50d081ce4cb8870e543d77105072",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/windshield/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fa553815b6aa40eab47c57eeb034e1ff",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/windshield/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 242.68it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "70fbddcdd9d04dfa8498f2e5babcf7c6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wine/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "de18fd0521fc4f9cb3e83c4b16bf07ef",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wine/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cea54fb63a1a45a39294519e70e40516",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wine/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "11ca6a7048ae4986a029fab08829cbd8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wine/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3e23f8c10ee54f129d7a8f6286313df7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wine/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5cf6d57cda424342bfb569c49f273f0e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wine/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "62c68169a0db4a6293f2ac872a47179e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wine/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b1e8d165a97a4a76ab7846704bb1b699",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wine/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0be4cb2e71944734ae902a9e26bcbb2f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wine/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ebb4478038094dc590feb21e1b9e5065",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wine/9.png\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 248.20it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "372c3b36e49c4c6a89fd82139422207b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wok/0.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e12605f7d1414b9ba570c8ee00d56fab",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wok/1.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "802fa02e3d924b8ea01441427fa1d843",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wok/2.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e2537a082e1e46bda27d6044912a7b3a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wok/3.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "54df6693ca844b2da27401de46874350",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wok/4.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9e1385439b10493585c7d0b1449afe2b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wok/5.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ee1383e49777439e94d15b162689c7cf",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wok/6.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "45cef5b22693410f8905287c2dd0b9f7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wok/7.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "98218e9e694a438dbdea5713c1f82467",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wok/8.png\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b9f3a714db614bef91d70ee08323bc56",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Image saved to generated_imgs/sub-08/wok/9.png\n"
]
}
],
"source": [
"\n",
"# pipe.diffusion_prior.load_state_dict(torch.load(f'./fintune_ckpts/{config['data_path']}/{sub}/{model_name}.pt', map_location=device))\n",
"save_path = f'./fintune_ckpts/{config[\"encoder_type\"]}/{sub}/{model_name}.pt'\n",
"\n",
"directory = os.path.dirname(save_path)\n",
"\n",
"# Create the directory if it doesn't exist\n",
"os.makedirs(directory, exist_ok=True)\n",
"torch.save(pipe.diffusion_prior.state_dict(), save_path)\n",
"from PIL import Image\n",
"import os\n",
"\n",
"# Assuming generator.generate returns a PIL Image\n",
"generator = Generator4Embeds(num_inference_steps=4, device=device)\n",
"\n",
"directory = f\"generated_imgs/{sub}\"\n",
"for k in range(200):\n",
" eeg_embeds = emb_eeg_test[k:k+1]\n",
" h = pipe.generate(c_embeds=eeg_embeds, num_inference_steps=50, guidance_scale=5.0)\n",
" for j in range(10):\n",
" image = generator.generate(h.to(dtype=torch.float16))\n",
" # Construct the save path for each image\n",
" path = f'{directory}/{texts[k]}/{j}.png'\n",
" # Ensure the directory exists\n",
" os.makedirs(os.path.dirname(path), exist_ok=True)\n",
" # Save the PIL Image\n",
" image.save(path)\n",
" print(f'Image saved to {path}')"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# import os\n",
"# # os.environ['http_proxy'] = 'http://10.16.35.10:13390' \n",
"# # os.environ['https_proxy'] = 'http://10.16.35.10:13390' \n",
"# # os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"5\" \n",
"# # os.environ['PATH'] += os.pathsep + '/usr/local/texlive/2023/bin/x86_64-linux'\n",
"\n",
"# import torch\n",
"# from torch import nn\n",
"# import torch.nn.functional as F\n",
"# import torchvision.transforms as transforms\n",
"# import matplotlib.pyplot as plt\n",
"# import open_clip\n",
"# from matplotlib.font_manager import FontProperties\n",
"\n",
"# import sys\n",
"# from diffusion_prior import *\n",
"# from custom_pipeline import *\n",
"\n",
"# device = torch.device('cuda:5' if torch.cuda.is_available() else 'cpu')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Load eeg and image embeddings"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# # load image embeddings\n",
"# data = torch.load('/home/ldy/Workspace/THINGS/CLIP/ViT-H-14_features_test.pt', map_location='cuda:3')\n",
"# emb_img_test = data['img_features']\n",
"\n",
"# # load image embeddings\n",
"# data = torch.load('/home/ldy/Workspace/THINGS/CLIP/ViT-H-14_features_train.pt', map_location='cuda:3')\n",
"# emb_img_train = data['img_features']"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"# emb_img_test = torch.load('variables/ViT-H-14_features_test.pt')\n",
"# emb_img_train = torch.load('variables/ViT-H-14_features_train.pt')\n",
"\n",
"# torch.save(emb_img_test.cpu().detach(), 'variables/ViT-H-14_features_test.pt')\n",
"# torch.save(emb_img_train.cpu().detach(), 'variables/ViT-H-14_features_train.pt')"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"# emb_img_test.shape, emb_img_train.shape"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"# 1654clsx10imgsx4trials=66160\n",
"# emb_eeg = torch.load('/home/ldy/Workspace/Reconstruction/ATM_S_eeg_features_sub-08.pt')\n",
"\n",
"# emb_eeg_test = torch.load('/home/ldy/Workspace/Reconstruction/ATM_S_eeg_features_sub-08_test.pt')"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"# emb_eeg.shape, emb_eeg_test.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Training prior diffusion"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"\n",
"class EmbeddingDataset(Dataset):\n",
"\n",
" def __init__(self, c_embeddings=None, h_embeddings=None, h_embeds_uncond=None, cond_sampling_rate=0.5):\n",
" self.c_embeddings = c_embeddings\n",
" self.h_embeddings = h_embeddings\n",
" self.N_cond = 0 if self.h_embeddings is None else len(self.h_embeddings)\n",
" self.h_embeds_uncond = h_embeds_uncond\n",
" self.N_uncond = 0 if self.h_embeds_uncond is None else len(self.h_embeds_uncond)\n",
" self.cond_sampling_rate = cond_sampling_rate\n",
"\n",
" def __len__(self):\n",
" return self.N_cond\n",
"\n",
" def __getitem__(self, idx):\n",
" return {\n",
" \"c_embedding\": self.c_embeddings[idx],\n",
" \"h_embedding\": self.h_embeddings[idx]\n",
" }"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"emb_img_train_4 = emb_img_train.view(1654,10,1,1024).repeat(1,1,4,1).view(-1,1024)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"torch.Size([66160, 1024])"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"emb_img_train_4.shape"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"# path_data = '/mnt/dataset0/weichen/projects/visobj/proposals/mise/data'\n",
"# image_features = torch.load(os.path.join(path_data, 'openclip_emb/emb_imgnet.pt')) # 'emb_imgnet' or 'image_features'\n",
"# h_embeds_imgnet = image_features['image_features']"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"66160\n"
]
}
],
"source": [
"from torch.utils.data import DataLoader\n",
"dataset = EmbeddingDataset(\n",
" c_embeddings=emb_eeg, h_embeddings=emb_img_train_4, \n",
" # h_embeds_uncond=h_embeds_imgnet\n",
")\n",
"print(len(dataset))\n",
"dataloader = DataLoader(dataset, batch_size=1024, shuffle=True, num_workers=64)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"9675648\n"
]
}
],
"source": [
"# diffusion_prior = DiffusionPrior(dropout=0.1)\n",
"diffusion_prior = DiffusionPriorUNet(cond_dim=1024, dropout=0.1)\n",
"# number of parameters\n",
"print(sum(p.numel() for p in diffusion_prior.parameters() if p.requires_grad))\n",
"pipe = Pipe(diffusion_prior, device=device)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<All keys matched successfully>"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# load pretrained model\n",
"model_name = 'diffusion_prior' # 'diffusion_prior_vice_pre_imagenet' or 'diffusion_prior_vice_pre'\n",
"pipe.diffusion_prior.load_state_dict(torch.load(f'./ckpts/{model_name}.pt', map_location=device))\n",
"# pipe.train(dataloader, num_epochs=150, learning_rate=1e-3) # to 0.142 "
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"# save model\n",
"# torch.save(pipe.diffusion_prior.state_dict(), f'./ckpts/{model_name}.pt')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Generating by eeg embeddings"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a9a33c19ab73477c8781853177d3bc7c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# save model\n",
"# torch.save(pipe.diffusion_prior.state_dict(), f'./ckpts/{model_name}.pt')\n",
"from IPython.display import Image, display\n",
"generator = Generator4Embeds(num_inference_steps=4, device=device)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"image_embeds torch.Size([1, 1024])\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ffd0c3615db44e14b450b803a859545d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAIAAgADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCcGnVGhzUlczKFooFLikMBRSgUuKYhtGDmnYpcUwEFSCmgU8UMBwp1IKWpuOwUUUU7isKKcKQClxSAD0pm2n0uKdwsR4oxTiKTFO9wsFGaXFNIosKwUGkozRYQhphp5pppgMNNpxpppgFLSUUwHUZpKKaZIjUzNONNxTAXNIaKSmJiGkzSmmmgBCab3pSKTFAkKKXNNFLTGGaM0lJmgQpNNNGaaTQgCkzRmkNMAJpppaQ0hCZopMUtABRRRQMWkJopDQJsTNKDTSKVaYDwaCaSg0hjSaaaU000wGNTMU80hpDRqIMCpRQFxTgK5nqbABTgKAKdikDAClxSgUuKdwsMxRin4pMUXASlFIxVRliAK53VfEPkTrFbMOPvE1STlogbSOmFOrG07WY7m33O6hx1Ga07e5S5iEiHjpSaa3AloozS0gFFPzTKUcUCHGkoBzQTSAKSgmkzTQXHU00uaaTVgFNNGaOtIQlNNONJTAYc03FPxSEUCG4pMU7FGKaExKQ0popiG4oxTqKLgMxSYp+KMVQEZpuKe1NpiGmmkU+kIoAaOtLRjFFADTSU403FACU006koEN70lOpKdwExSYpaWmA3FNIp9FIBlFKRSYpiCkpaKAEpBS0UAGaCaQ0lIYlJSmkoENIppp5qJjzQNG9tpdtP20uK5DoGgUuKcBS4pgIKWg4UEk4Arntc1z7PbkW0g3+tUotsDXu76CzXMrgE9B3NV21MrbGZreVE7Fl61zGm+JLeEma9h86ccqT2q9c+IL/xBC1vbJFCvfcea05Lbk3M3VL/AFm4LvHby+QOQQO1V4Lm2niTzYD5h4PFd/otrPFYrFcESErg1P8A2Xp6sVaNEYjHAxRzrYRykVlaXlhGIAI5Q2Cc8mtW20yXTrZhDMxzyQ3OKwNXgbTNV822RhEDkema6Sx1lbvSZJFiBmQcqDUyvbQLoYt9JBKqT4Ib+IDpWojqy7gQRWBaXy6hpbOABIpwV71qadGksACM209Qalqwy+KKVo/JjJByAOlV472GTHzYPoaS1GT0ZpVw3Q5oIoEMJpM0juiAlmAFQSXUUahi3B707AWQaQ0iMHUMpyDQ7KpAJGT2oAKUUwH2NPFMBDTaeabiqQhKTFOxSYpCG4xSGnmm0AMIoHWnYqG4mW3TceSeijvTES00imxSiSNXAIB9e1P4I4piEFFFLTQDTzTdtPpccUwI9tNIqUimkUARkU3mpSKaVpgR0GnkU00CGGjFOxSUCGGkxT8UYNAEeKKfikxTEJ2puKfigimAzFJTjSUgG4pKfTTTAbRRiigBDTTUlNIoAZRQRSGgYhqM9aeaYRSBHRTTQwQmWSRVUepqvDepdY+zsrfjXnV5dT3E7NLKzAnpnitPw5bT3Nw7xysip1waj2SSvc15jf1DxBLp9z5DQc9Q2eDV8a1bCxE7shbGSA1ZEuhpqeZGuGeUEjr0rl9S09tPmaDzix9M0KMXp1FdrU6J/FttNKYrtJIoW6MBnNJa2NhqkNzcwOXiQcbhiuTlaR0iikHC9K0rO6mhh+yQnAmO386twstBKXc0PC+kWuotOskReTcQp7Yq9H4D1IXz+VKkcWcg55FXdQ1GHw/pcFrYIouSoLH09zWIviXWZIT/AKSQc/eA5qLybuh2PStK02WzsUhlcPIBjd61ymuWesQ37zyQO9qOhj5wKwrfxLqwYZu244rSh8batA5DtHMg6hl6ip5WmPco3WvwTWT25Vgw4wVqbwY8D3FyJZAgK9zWZqt4NauDP5UcT45CDANYys8TEKxU98GtFFNWJN+cyaRrDpBIGjduMcgg13NlEr2SsilCw5+teY2onMRkOXRGDfSvVdGnS+0uMqeCuMipmtBooPHPDvka43BQeK5r+2ltb9S0ZKE/MCKl1uHWdGvmFujXEMpypIzj2rOuRqeoBUlsdjkfeFEYoGzurSWG9gW4tG4PBps9vPErSeZ+Fc74XTVrQNbNEFjDZya7jyPNh2yDJI5qJaMZyMcFxqcMjMxVQcAetJe6dcf2fsjb5wO9ak9nd2shWEjys5A71Zi3G2LSoRgc0c1tgRzWna0IIxaSRkzLweavSOXmWXd17VnXFrBHqguvuoTitKQRsUMB46lvSm7dAL04dbYsGC5HWq+mSStC3nNnn5fpVGecy5TcWHQCmyyXaJHBGu3d/FQkBuMwUckVXkvIopfLZ/nxnbiqDRXIjCb8kdzWUDJLrDGRiuFwD61SQjqFLXNvviJQnpmrT2Tx24kMmT3yKyhdtZxRxvjaeAauGaSSMDzAVHNSA4qAMsaaAGLBTkqMn6UCRbmM7edvWtTzE0+zhaG2jZ5ky7MM5osBjrLuTIGT6VK2iXaPHc3qhY3OBhs49qmunimuIHSMISo3hRgZqa/up7qJWMqtbxnjb0zQlcCFYYYMopGCcgVEtnLcXREaYIHU8DFTGS3WITBPmjIOQfvUWmpCaaRyCi7eec00rC0ZRvLVxtV3aM9RtPNSQwyNBuJ3bR8xqa6hjuZN8Ttlj949KoyyvHabN3fnB609wL0lrIkUUnBEudoHWqwJNa2rrNpsOlBSryKu4Y5GeDWShLrvPVuTilF3VwasOpMU6iqEMoxSmkoAYaYeakPSmHrQA2jFLilxTENxRin44ppzSCw0im040mKYCYpDTuaTFUSM7UmKfijFAhmKQrT8UmKQxmKTFPxRigYzFIRTsUlAEZFNxUpFMIoAjIppFSGmkUAcWV3rkV0vg1CxuB6CsCNdsRYjg12PgPTZZ47i5YYjJwPenJ6M0Zjf29LpV9eRCMMpc7fY1gXM0tzcNcOSXds1c1mFzrN4q87ZDVNQQoJFVFLcglVwxBkXOBWpZyaP9mjnVpFvIskr2J7ViCTDY9eBVq2sxDGXYfMTmlJWRS1ZPNM0sjTSsWZjnntSIdyfLx3qOXJXgVKgKA8cbanoWRRKTkipkcFWBpLYboj9adFGcsDQ3uCRCCR93girmh6Mdb1XyN4Q7d31qExgNgdTxU9t9p0u8hu4iFkQ5HvSv2BxH6nY3GhSzWrn7x+XjqK1vAeoyJdPZSn5WG5K7Zbay8S6VHLPEjFl4PcGuJ07Q7vTdcJDK8cMpAIPOKXMmmmTax6KyK4+YA/WoZ4FZMqq7h04qVWyo+lRO0isdvTHFYFkNuCFIZArfSrKnisxnvJGKkbD2OKsWMdyoPn4/CnYRabDHHeq168cUBeThe5q3twc1Q1e6tbWwke6ZQgHQ96LAc5rEdtJaCOKRPm6eta1lpUcOlCInOV5NeW3N5JJdvLEWVN2VBPSuv8ACfiN5p2tr6YYIwma2dNpE3LtqlrHfPEJAWB6Grd4dsYYdR0rD8TWD2V2L62ZgjdSPWtLSRcanpiSHGcYz61LWlwv0HoxlUHuauWHhy41PdPbW+/acFywAH4mqFqfKleAgkqTnviu20qKWXwPeJAGMjSHhepGRn9KYGJe+E757J5JIkkjhGWMcgbA/A1VsNHluYJmtkLpEm9xvAwvrzWz4bu4dO1Kf7dN5MLwMrbwcE5GOPzp3h1gmj6tKOB9mIGfrTCxlQWklppy3pjAtHfy94YH5vp1qzczXtkluJlCxyRh4uh3L61LNn/hBj6fbgf/AB2k8T/6jQh/1D1pBYbb6Tf6l/pcFuWi/vswVc/UmoLnSNS0+wYS25+zli3mKQwH4g1t3FpdXXg/SVtULopdpAp9+9M8P3MNpZ6paXt1FGkkJ2xs/G7B6e/SgLGBpumTaitwIpIkSFcu0r7QAeM1dh0RbeBo1vbI7uSxnHNO0Ff+JNree9uv/oVLbSaIdPRNRgvmuFZvmtmAG3jHU49aoVitPYTafAmZI3ikJCPG4YZ78/jUV9odxb2kjF4XELAShJNzJnpkdqV/KMrpaLcrYmXdCtzjdnaA3TjqK3dde3s7nULSGI+bdeW00jHpgAgAVIzMne81aPS4VV55kjdQoHYYpkegaisGRAJCg+YRSK5H4KSav3ytpGiWtuvy3F6m+Vh1EeeF/E8n6VeudDn0u4sBYW4kkjUtPMrgEseMDJ6D+tCVkD1OXlt5oYIp3QiKXPlv1DY64qR7C6SSFGiO6dPMiAIO5fXj6Gn32+O2htpFKyRyO7Ke27b/AIV2Gh2C3q6fcuwzZqybf7weMYH4ZJoTFY4u1sJb2zurqJo9lsoZwxwcH0p9rpF1eWxuYjCIQ/l7pJQnzYz3qawR7a0122YYIgwfwkFXtJjtpPDLm8MohS6LkRY3E7QAOeO9AJGfJoF8kDyjyJFRSzCOdWIA6nANZW2uia8sLSCU2FvMJpkMZkncHap64A7msMrTBkO2jFSbaNtAiPFNOakIpCKAI8UYp200AUxDcUYp+KSgTQwimmnkU0imAw0lPNNNMQlJRRRYBKbTqKVhjGFMIqUioyKAG4pCKcabQM46dWiTb2PStrQ/F8uj2v2Rog0XbHvWFePJOy7D8q9Kksobd1mNwMsq5Aq7Jx1HLc0tSkt54proNtkkO7jvW0tpp9zoFpYWxVrqRQzNjkVx1g0d1ewQ3DFYi3zY9K7C/wBRsbKXGjoMqoUuf6VMlygveM3U/DUOlPEzTh5OpUVUY5jJNPkuZrhmediznuaPL3RCs7t7myVkUXP71Fx1NW5dpDYHaoYU36kqHnAzUtx8rOKpvVAuoyL9yq56MM1JF8zNTpoz5EBA/hotkJLVO8bjSs7EcincCPWpbl2kjTcvI7in7eOaWU4jAxSWo2joPA2rslzLp7sdv3kz29ajvdP1EeLppLSQ+SxDuM1zFu8ltfGWFij9iK0rDXruzunu5nMuV2sDVtO90ZM9Es7+3n/drKvmLwyk8g1eK5614zdanJLqT3lu7RsxyMGvSfDOvxarp6+bIouE4dT/ADqJU+VXEnc39i0nFI00SoWLqFHU5qsdTsQhb7VFgf7QrOxZZY4BNefeJ7ye/wDtFotrI5Qgqy9qh1nxdfvqckNnIot1OAwHWmaX4gbTyWmgEzO2SxPNaxg1qS3cda+DZ59JMpQecy5Ge1cxJbzafeGOQbZIz0r02PxrpgVd6OueoC9K5jxbe6VqLRTWX+u/iOMcVcZSvqJpHVaXPBruiKjRjO3awI71nael1oN61lKubSRv3b+ntWT4P1b7Hdm1mcCOT7pPY10fisoujM7H5gQUYdjUNWlYOlwcRRXMm5CGk5Bx1rp9As2l8Ozy2zyJdeYyoVlZQTxgEZx3rkdG1SDUNKO/mVFw2a29L1nTV8OT6deSXEbyyFt0SZwOMc/hS23Hc2J9Kli8L302vwwC8XPkPGxz04/HNZOkgjwzqa56QD/0MVVs2tpTeB5WlhWJ/KMnXPbj1qTS9Qs4NJv7W5d1eeMKm1c980wLl1bmL4fRM+P3l0HGD2wR/SofEa7rXRD6WC/zo1DW7S78KW+nIjRzxSA7Qvy4Ge/41Rv9TjvbayjCOptrXyST0Y5Bz9MUAdF4guW0Gaxj00mDdBucLyrenB79earSrH4k0S5vzEsV9Z/6xkHyyrjP54qOXVNK12wtk1GaW0u7dNglSPerj3FRPqtlY6VLpmmGSRZzme4kXaW9gO1DAdogH9g66eOIUH/jxq3b3On2vh9b6TSoZXWYQsCxO7jOeelZOm6jb2uk6pbSlxLcoqxgLkZBJ5ParFhf6a+kyadqQuQhmEqvAATnGMHNAIqXt9HqGqrLDAIIQqqkQPC46/rk/jWh4qmKeILyMKuWCZJHIG0dKzr99MW6t/7MinWKMEyPK3zOeO3Qf/XrQ1rUNE1ZprtEvYb1kAXIXYSBxnmjQQ/xFuvtC0nVI/mWOL7PNj+Fl6Z+vP6Vzt64nupp2+YyOXJPfJzWhpesS6Z5kZiS4tZhia3k+6/v7H3q7BdeFoZBMNPvnYHIgkcNGD/Mj607iKkmkra+GLW/lLrPcTERoenl464+v8622upLTwq8sTlZFltypHqI1P8ASsPW9Zm1m6EsgCRoNsUS9EH+NWL3VLOTw+tnFJI07PE7ApgLtTaRnvR1Ga+oQpeaZfa1CoWO8swsgH8Modcj8cZrN0y/Sw0ILPZpdRTTtwzlcEBfSodP1qGDw3f6XP5haZg0WBkA8Zz+VJZ6hZrp0VvOisUmaQh1JUggDsQQeKTBFyXULS/0+4SPS4Lcpt+dTk8msCt651HSjpzQWqxRSO4ZiqsMgA92J9awM5oQMMUuKKWmIjYU3FSEU3HNFxDcUmKfg0hFMQ2kxTwOKCKQERphqUimEVSERmm08ikxQIbRTsUmKBjcUYp2KMUARmmEVKRTSKARERTSKkIppFAzgFMirkj5R3rT0XS5dRE8zApbqhBkI4zVEzJK2w8Rg81sTa602mLp9sohtl+9t/irSV7DVrkL2lpZwKkALyEfNI39KIQYxj8aVfnVTnjFTLHlz9Kwvc3StsNlJaAkdafbMXjGeuKRh+6ap0IEcZAx8tTfQrqU7TI1aVscBakuFyGb1qbTYxNdXTd8YoRN6AHr0pt6iWw84MMYx0FRWxyZPrVxrbMYwcYFVo4Wi3jOeanSw+orKSvFE6Yi/Cn4ITpTpBuQA96FoNozUX580qr5kUydDUpi2yECowCpfHcVte5k0ZGCh2ntVzT0vd7zWu8BR8xU1WKb43buDWroerx6faXUTruLj5a1le2hityvJqt80ZhNzIYz1GarqpJAJOPrUefMlz6nNSRhg+DRZIZfjeNbYoY16g7u9JMBt46dqjcYhIHWlbc0QqF3LYEhoV9RTljV1561IkINv70yHI/Ci/YPUjaJkwR+GK6rT9Rh1nSH029fayjhvUCudlBMZYdqjw0OJUJ5HOKT1QmrHX+AtMtp/ETWcpMsBic8HGSMV09to3h2UBJL5hLkgr5mMEdeorm/ho4PiyLb/wA8n4/CurtLGyuNW8l/Dl8qvI2ZmmO0deeg4/GkwRjGwSLWr2yidjFCHKknJwBkVBqdolnDYsjMzXEJkbPQfMRgflWpbQQQ+IddjgOYYYZgp3Zxx6/WmJbf234cCw/NeWDE7B1aNuePxzUgVfDlhb6rqotLlpFRo2YGMgHIGe4q1oelxahp+pFo98yJ+655zg4/lVzwppklrcRajcN5YlDx28ZHzPwct9AKqaVePY6HqF1EcSRzRFf++jQwM7R7JdQvlhkkMSBGdnAztAGau/2LIdXmto2YwRTrG8mBlQxwCRWwbKCxi1LV4sfZ7yJRbAdt/LD8CMVPExg8fXdm3+ru12MPfaGU/mKAMC20mI6hqC3U7x21juMjou5j820AD3p2m6db3y3xa4dBbQmZSEzuA68Z69K0Ypbc6/runXEgjW9do1kPRXDZGfbNN06N9FfVUvrUny7Q+ZHuxvUsBwfx60mBmrbWsn2gwSySRpbs4LLtO4Y7ZNWDpml2+mWVzeX9xHJdRl1VIdyjBx606++yW0hbS8Pa3lq2AXy0ZxyD+VXl0mTV9D0tY/KzFG4+eXYeWPbHNF7IDH0y0tJbO8u7xpTHb7ABEQC24kd6h1ewis/s9zayNJZ3KFo2bqCOqn3FdDFpUFjo2oWuoXccI86NWkT5hwMgD1NZeozWd1oht7Hf5dnNuXefmZWGC35/0pXHYqaTY2t1bXlzfXDw29uq8oMlmJwAKntdO0vUZdtpezqy/M0cqAMVzyVPTj0o0ezS90PU4prmO2USRMskrYXcM8H681asNMS0nAivLFZ3XYrtMGzn2p3CxTt9JhHiKfTrl5DFEZBvjIUnaCQeQfSs+ZFhYhywUoHU+oIyK24UnXxXcrcujT7JdzJwufLPSpzZQTeDk1WNxI1taC3+deQ/mdfyY0yShrujWOkWyYv5pbuRFkSNogo2k9Scn3rMXoPpWz4ska/stDvgvzTwGNiB/EpAx+pqlqN7Cbn7PhQsKiNcDHTr+tJgVQacKbujC7s4ojkRx8jBvpRcB2KTFPxSYoENoxTsUlUA3FJinUmKQhhFMIqU0wimBHto207vRigBhHFMI5qUikIouBHijFOoxQAwimEVMRUZFMLERFNIqUimEUAeZxhpHCDv1rUhhKoFA4qvp8GS8rA8HArUEe5kUfU1Upa2LjHQcmVdUxwKuKuXbb6VDCm6RjVyNdsh+lYM2SKJDbSKsQMpswT24NNcY3UyHb9kcetFgE0eYGW6I55pzM0Sbx65qto6+UtyT3arMjhrcD2pyXvBF6FsXRKDjtTYW8wOfeo0Q7ACO1JZKxhmb0Y1LSsNFvAKcCmXCfKuBzSxOCo6Zp0xB2+1Sr3K6FcowlPHaoUXzHcEc4rQXDHPtUUcYEz/AEq1Ilo54KVNwn41Fpsayb95+laFyipeuOzKapWAKxyDH8XWupPQ5rakjRGB1O3gnHWprmEoySKpCnrVO5Z96hmJANasc/m23lvjAHWpd1ZjVnciTBXPpUiANnHQU0IohIqSyGIWPqal9ykKBkEZwahQhJCrcHNTt8vzCqt2u4hxQhstEjymA9KcpXyBnpTYlH2cnrxTEG6HBPFIZ0vw2lRPG9vlgFKSdT7VFdarcR6nqcYvJQnmygDzDj7x965TbhsA49xU+zfHg1TjqQjqPCupBZr9JrpIzNbOitK3BY+9bmkQtpN0br+27KG5VeI2fIbPY+1ec+Wccdq0tSZmukkKsu+JTgj2pON2LY7+x1S4n143l/eJP5SH5omDKARgAY6DmmXEFraeHp4otRhuZZ50O2LPygZ9a5fw7cbvOhHDEdKsPE1lGXJzg5qGtbBc25r549AsbF3yEmZ/ovYfnmtHxVLZXNz/AGnp2ohpmC5RMhlwAMg1yE2ofa4SEHPYVSS+fBVxhhQosLmnDOZJHMrFmcncxOST610djNbTaZdJf6q6TNGYo1cMw25BHPpkdK4ppWEW4HGa1bC7t5oPKnIBPANOUdATLuh+Wt9KXZQBbygEgnnacVNfSW8+n2CJeJuhRlddrcEtn0qvp/l2t9KJjiMxOAT3yOKqwX9uLbyGC7/XFLzA0L66totAjsYbsTyG485tqMABtxjJrOhfjJ6VVF0iTjdgpnBqdpF+2+VDypGaLDubGnTWU2m3lhdT+Q0siSRyFcqCoPB/Okt7Gxt7hJbrVIHjjYNshDMzY6DkDFZV1bSQgNnINQLBNJ91Samw7m9PfiXXLu8jOBJ5jD8VIqpbaYn9jSX734V1bH2bPUfn/Si1iaGPawGTWVqUhhbAHzZ4FNLohHcyGybwrBElyjSxOJI0DZYE/e4rlbuESTq+Mnuar2d3MYfmXntVwO5tmYod9IQogUx7SflI5qAW8lvKZI1BTGMVTmuLiC1Z2PzelVItbunwrIR+HWlZ9B6HRxN5qZxg+lP8uobNzNEHxtPpUrTnY2FORRcBCtIRVGLUHSfbcLtRujVo8MuVIIPcVRJGBQRTsUlAEZHFMxU5FRlaaAjIoxT8Uu2mBHtppFSkYppFICLFJTyKbimISmkU45ppoAaRTDTzTCKAscbp1s5tBge9XUgKAluuOKh065WO0QM2Cw5qaRyTnPHaobbZ0pKxPaxcHmn8K5x1qK1k27yae7owyDzU6tlPYqzzbWZdp+tRRTKIiuOTTpvmJIPJqGOPMYwa1SVjJvUsaeFaOce9R58v5DnioUeS3346E087pF3evNFtbhfQ1rch4Qfai0H+hT47saoWM7iIjHSrVpKVs2z3Y1lJNGiY6ONgM1IBnqKTzMDgUwyMOo4o1ADLsajzwj5bvTXCSJkdar8POFPYU0k2D0KWqyFXEi03Sl32bue5NLrUWy3BHIqTSoWj0xM9W5rouuU59eYpXincT6Gp93lhPcUy9+RXyKuQW6XGmLOeoGKpuyVxJNtkTsdgIPBq5BkWwqkyt5KnHFXLVt8GPSoexa3HgZ4NMvYtsIZfxqQDBqSRfNgYeoqNmVbQgtBvtWyaaBttzmqAumiYQA4OcGrzc25qnElMqkZORVlDhOarKCBViJtynNW9iUKbh41wiDqDk10niDF5oFhqUYA/hYAcCuacZjOK04NWjHhWfT5fviTKfSoa2aAf4fuYIJpPNbDEfLV6yvPtbyxS8ncQBXLxsBIjHjmta71OC2uIJLRV3FcNinKOojY8uCzR+MsRngVnWluLu5LOdse6tzT/ACZ4VedT5j9RSalYww25Mfyd+Ki/QDF1NoI2VYWyB1qmCzxh07HtThB51s7HqCcGqkMzxKyj8a0Wwjq7aVNV0h4/+XiIHnPWub8xi5DcEcVp+FJo01JhM4XcpAz3NV9VCrcyRsAHRuo7ioWjsPoQodzhRkk10Foke9Wx8wGD7Vi2DRwbpZvTgVftXWFGladcPzjPSiQI3WVZBgEN7GhgYoWKrhqpRtgKytuz6VrROjRAEcnqKyKMIteySkqveoLgM7KJFzJnmulZURCyDFUkslMryyN1pqQWKVjCJGyeAD0qeS7EUxjVcjFSpa+U+VIANTGK2A3EgnvSuBliwNxIWduCc47Vck0yFIw4AyKjmnKttiGQKSYzvBhTg+9MRLAADhOKbqV39kt8omXbjFM0yFxId7ZNQa3cRxzxIRk56UragUbm7SS3xcKVP0qDTNSe2+RstCTwfSpNRdZ4ljGMnrWPOHtwETOK0SuhM7aORZUDqeDTqx9Cvxcx+U52uvr3rawOxB/GoemjGJTTT8U0igBMUhFLig0wGGmkU4000wGkU3FPzSGgVhmKYRUtNIoAiIppWpiKaRQBxb2aG0iljbHelUFkB3dKoyXxhjWIZHHfvSQ3RaIbTz3quR2ua86vY1orcNEW3mnLGFGKq20ztCcHvzT8yNyWqLMtNCXeIYgwPOafBbsbcOD1FQ3gJRVHJ71ctJSLNflJC+lPVInqZ14xRVBH4061nBgwRg0+Z1u22qMEUkEBC7COc1atazJ1voNhvY4N4Yc1ftJojaAg981k3Fp5kpwce9aENl5VoEVsmlUUbDg3csmVCRtqUyrt6ZqmqNGvIqeFw6YI5rJpGiJIijLwMc80SRKZcgUiDYTjoaQ3May4JpJa6A3pZmfqpVrZlPrgVZhUraxAdNtQapD58H7rrnNS28n7pFbrjGK1fwqxmtJFbUYt8BIHSprJR/Y6KD9aWT5opFPWq9rIVsSvocVa1jYl6SNFYVEIjI7darLE0LHA+Wp1lJK8dqJGLIahNoqyaG5zzUsTHHtUERJHNTR9Dih7WBGRfweVfrIPuMf1q7tJj+U9qW/h86A+q8imRZMSnParvdIm1mR44IqSP7ppoU7jT1+6abehKGxZZCDVeZcPjFWIsqv404KryHI6Ci+o7XQlk8QZTKuQDyPaui0/wst4DfWzBkByFPauZMDrkium8I6+um3P2e4OIJOM+hpO9roGu5o2TSRJIZIT5icAAdKzriW4vJ9s4ZPQV2GoahpsMJdWQlhng9ayVvdM1KMkkRshxzwayT62FY524aOEwwIf4sGqGoWwtLplQ8HkVekudNh1N1ZzIuSBirOm6Za6pcSxXM5SY8xAkcitFpqybGArMCGXIYHORXRrbWuq6SbkyBbuMc5PWsfUNOn0y4eORW2g/K+ODUEUjqDsYjPXFN67AX7XZesYJpBGQPlOOpqgweGQox5BpFLRSBu/XNPuJGkIZsZNFgNO21kQxBFjJcdKc2vXMbBth3elZ9khUmUqD6A1vafpYmcTzfNnt6VL5UPUz21u/nOxVwTyfanR31+UIJzV+/ghtXARcSE8Z71E+nXCJ5oI3MOlK6DUpHVrlI+TyeBms/8AtC5Ln943NdIfD8k1kXJPmY4GKw10m53Ovl5Ze9NOItSOHUrqNeASAafJrNyWG7IFOsQ0Fx5U8Z2E8k1tTnT57uK2SIOxPbtQ2k9hkGlXdw0TzBSwAzzWJe6pNcXxcjocAV02t3NppVmIrcDzmGMDtXK2UYefdIOSaI66gySB5GZpZOvar81xA9ou6PL1n38hSXyxwKWNl8kMTn2qrX1EOjuVUsANrZ4IpVu7mFy3msc+9JaeQZi04yp6VoX0CWdvGyqrRSDIPcUna9gKcWqX0WWWUsM/dPNdFpeof2hBuK7XHUVyTPgkg8HtTtOvpLG9Vl+4xwwzQ4aBc7nbSEVOp32wlRd2RkAVRNreyTEgiNMdGNZXKJCKYRUiW915Z3AbhVNZbpbho5YgR2K07gWAKQimRzq77DlW9DSyyomAzAZpiEzS4pq/NyORUmMUrjGEU3HNSEcU0CgDzy6tRdWvmKfnUcVlW0jI5Vq2o5kis9r9fWsiRDIxKDoc5roj2Inbc39MCSQFSeakuB5a5HQVj2l35K7T171orcJKvc/WspRakawkmiUhNgY9TVuw2+Qy9qrboiBu71ZsQFR8YxUS2NFuZkw23LbOCTTi8iZUHJNJNjzXYnBU0yJSWLnkmtEiGPjBGeck9alMxVRhuajBIBp2xJUwWwaH5gi0nMYJOadEmW+WqamSAY+8KtQXAUjPBrNrsWmWJFMfWqM0W+QNVuZmlHFVQZA3INCBilSoDKelVJHZJwT0PQ1bZxtPrR5K3Fqw6MBwauMrashq4iKHGfWs663WqOvYnIqS2udp2McEVPIi3MT7wDxxVu8HrsT8SFt5d8Ksc9KtY4471QtLlQixuMY4q8rKRkVnIuOw4RHdx3p8Qb51PUVHHOCcjtStKcFwevWn5MXXQJDlCO9UrV8Boz1Bq2WG3dVKVPLuVkXO1hzTiugSfUnxhqTO0HtUsOGO4npRdSByBin1sLpciUZWmW5wXJ9al2ssWR0NQKCAc1W4my7uTYTmqjJj5lpwGVNSfwA0loD1JbOdTmOYnnofSty48MltH+2wFt+MkZ4Ncu/Dj3rpdP8AEUq6Q+nvk/LhG/pUzutYguzOaSJS+7vVqNijqyEqynIIqsmVfBGOe9Wr5YY3T7MWO5ckHsatsk77Tbqx1/TFtZ2HngYYHrWRrHhe10izluWnb/Yz/KuUtLyayuFmiJV1Oa9M0/UbHxLpJhlVdxXDo3UVjJOLutitzzmyljDo9zGTCTjJFdPN4Ztb2wW50ybe4GduetdKmgWTab9haMNGBwTXNCx1DwxeM0GZLRjnjtRzX2FaxzYS4tbxYbmN4+cEEV2NteQW1jlMuAOwq80tvrFjva23vjgEVzU+rPp9rLbtZMsmTg44xSd5BsLPI2pXayIpKqcjNblsQFSNiCx6+1cWmsyomQgB+lMstbuYbh2OWLelU4MSZ6UAWXy1OKwdQsNRhnZrbDK3Y+taWgyy3VoJ5ARkdDW0jAnJHSsthnEf2LrFxbkvGgY/nWna6ZbaDZNcTEPckck10Fzfx29u8jMBtFcVcfatcMkok8uHd8uapXYGNIh1C/eWTgFs9e1ad1ZxSzW8VsADj73pWfNCttMI/ODMTg4roI9R0uzs0RlLygdq0fSwilJoI83M0kb5HQGs680W6t4S4ClParEt7C8jSKXXJ4BpsersmVZmZPQ0LmAg0vSxMokmcYBzg1Lrk/mRrCmAi9BVSe8+cmIlVPUZqr5ol4bJqrNu7FcZNIrRooHI61D823OKc6kNwKe2ViKsMZqxHVaT4hSCxih8otIOMDvW0129yFXyXQt3PavN7ed4csrEMpypr0Tw3qserWYVyBOgwwrCcbaoqJcX90gDHpUeEkbcMcdamm0xpZd5mO30qMaYYnbbIdp6rWWhZlyyRT3MgTCtgrmsc21w0hgJLnOQSK1ptEkS7EsbHaTzVTVLia1vYzGCQq8nFaLyEyj9uudPLRSRgntWhYX73KkTJtbtjvWNfymaQSFsk44rS00uY/3p2n+HNNrQRfNxEDhm2n3qVQGGQQRVebSZZ7N3bBl7VJZwukIEiEMOtR0GeZ26tc3RUn5M5IqS6KQXeEHA61FpzmO8w4PPFWNTs2WVZR0brXU/iRCXuXKzBWJYLkmiCfDhT0psU4iyu3JNB2GRSFIz1qn2ZK7m3GEKDPORnNSxoGi6kfSpUtwbIMOw/OoY22REVzXudaSIBas8TsMEg96agdeq49qt2+4DPSidGkGUIzVX6C5epTkmUkDpSlUKAg80q2u7JI5oaDaDg9Kd0KzLMUW6LcMHHrSeZ/scjvUMYl2kBsA09XdRg0gsOPmH5g+BT1MgGMg5qKZZHXgVCrNGOeoosBOCVlIkTIPpVm0aNmPy49qhgujuyUyKsW5R5S2AozUSvYaOeu49l64XpurSjAS3JHORVe/twbgup4LVYQLHGAMnIraUuaCM0rSZFbwhkwyc1ZEJiU4BNMgBkjGGwQak3SbsMw4qG3cpLQqu7BcBSMUR3JT5SODT5VZj9aZlgMbcke1WtSHoJLMyxGkS4DW+D1FRM5ll8phtHWrtrFA0RjI5pvRCWoWjh48Z5pJXBlwKZ9hZVbypPmHOKpo8iviQYbNONm7g721NSZwsCjvUURDk5omlWSFcdR1qNVcZK8gUktAe5PGCQRSBvlIPaiFwM7uDUqgOG20mUiGUbogR2pY2xAWHUc0+LmJlNRxkCKQYovpYVupPlLsBjhZP50twBHdIcdAM1WVcxqQcGnySPs2tljjg1PUbWg682NKGTuOcUtrdT2UqzQuyN2I71DAoOQx5q5PKHhgh2D5e9V5EHSaR40mhYJfL5kZP316iuzhntNUtd8TpLGw6V4/KCkuF6VastSuLBxJBKyHPIzwazdNPVFJ2PQoNOutP1F2t3D2rjhG6ofb2rGutQkivZbS/s9yufkcDIIqbT/FwYrHejaT0delSax4is40XCLKx6Ec1KTvqD8ihFoasWBt9sT9z2p7aFp1lcxyq6+hFUZtevb2yKxBY19e9YP2idJfnlYk+9WlJiPQbbUbKyxAJlIzgAVt+dGYNyYOR2ry6z09buQkXG1wcjJrfh1S9060ZZAJdvGfSocewFXX5L77TiY7YWPABpXvIV08QK2DjtVS9v31Ml5MDHYVlzpIEynK1oo3WoixZQxmR5ZTkA+tOEsX2nOMrWdHI68biB3qc+Wi/K24mqtqIv3DxOwKAGqhj859qjFTQfZ5LfDHa4PU0TKisDE3B70lpoBTMOHZG7U6KAudi9asywq0QkRwX/iFV4pzHLuBwRTvcRGtvMbjyxGS47Voz6a0lnvY4kH8OKrwXc8dwbhW+etq4vopdMDZH2huvvSk2BziWEssT+WvzL1FN028m027WVCQQfmFX5bya2iLqoBbqaox2c1zbvcAg4PIqvUD0nStZttRtwVkAkxyppsk141y6xxgoOhrzaCZ4JA0TlH9jXT6d4skt48XSGQDqR1rB07bFqXc0Zbm+ScicbU7Yq2LdJ4mMgAZhgVmXHiSz1L9wu5GPRsZp62Esqq8GqRsy/wALcUrPqFxkXhD5i8kjYzkCk1I29vHHGrrvRgKfe67qdgRDJDGRjhweDXNalcLMplJPmseaaTe4XR31s6vboykEYpLlokiO4gVxehapdRyeQp3A9Ae1aErPM/mTT4fP+rHpS5WmO5x1vEtxAhPyyLzV++QPYDjoOTVFdzorxHDDrirhdmsGU9T2rR73NOljGFuA+7HBq0lqJRgL+NRoW3eWVJrQjuo4YdgX56uTZMYob5k0SeSHytX9N0+bUXaKHbuCljk4rODbjk1btrmW2k3wyMjYxkGs2uxoNmLKSmMEHBpiykLjjNOdgxznJ70RtAIJRIhaQ/cIPSjoO4IOD83NIoIJDdKSGEsfvU+VQhA3ZpgOAUCoPmDnIp4ZR3pMhgQGpWC4vn5QgGqYy7Pu/Cpgu0EVIkKlewqibEUMzbcBelPDN1BxT9iqMA0gTdmkUkN8sSDmhQEOHzx0py5QkGpWCyJg9RTE1fUr2qh9wB78VMbY/wB41XBMUi7QV7Vc3nYDnrS1uRoVWHkNk8jtRE+RluOetJeNsj5PXpTLZjcRlWwAPSqtpcV9bEkjwu4wBkDrUJDI6uD+VNeERnIY04KXXg1SEWlYt88eM45qtOgcjcMUQmSGTI6dxVuVGlUYAzS2YPVFKC3MjlN/Happo3tmGDlTVc74X9Gq6ge7tyONwpu+5KtsQykSIvY1Ys1AyA2c1EYz5YwpyOvFPgt5w6ssbn6CpbVrFLe5MUEZPoTUG0YlOe1asljc3BQQ2spJ6jYafJ4Y1gsuyxkxJ1PpUKS6lNGDAcxDnkVbG1sEjmtaPwDrMr5WEIPdwK0oPAGshQHa3A9S1DlHuNbWZx8qlWJWnCcnaMfOB1rtT8P79lKtPbg+vNInw4uQctqEIJ9EJp+0jbUhxd9Dhy7Bgx55prnc25ehr0BPhwR97Ux+EX/16kHw3g/i1J/wjH+NHtYhys4aB90JViRjoalhCvAzNhtp5rul+HdmBg6hOR7KKki+HmnRBgLy5+br93/CpdWIcrOBLDysqTs9qjKRygYJzXoq/D/TVGBc3OPTI/wpq/D7Tkbct1dD2yv+FHtoByM87KPAxMbE4PUVbiu5VJWZiVfrmvQE8EaYi43znPXLj/Cj/hCNKJzum/77H+FT7aPUfIzjL2K2+zI9mGz/ABGs4MwH+z3r02Pwnp8cXlrLKF/3h/hUQ8E6Rn7857/fH+FCrRQvZs83vVjkCGJBnHOKrxxgn5ga9UXwTpHbzj/wOud1/wAL3mjwG5tZPOtF5bK/NGPU+o96axEdheza1OUjP2d9zR5BHekAaWYbRhe1VW16HcVe4hbBxUia9bAghoMj0Na3IsWbhXiU4HUdaoRAuxxV461azpiQI/0amJNYg5RWUHrhs0KQWGKwEfB5pIpCGG49OlTIbMONjuR/dKilNpHI+9bhRz0Ip3QEU8rSxMGPHaoreWWKJkUnB7Vdm01pWGyePH1xS/2fMHRQFYDqQaaaEZBYg+4q5Zjz45E9au6xpccVqk0AyejAVS05JAskqr8oHWi+giTT7pdPuJGKBieBmtq1bT9ShlfJjnxnAOMGudSJp5F4I3N1NSS2s1rcNGwKtjOfUUmrjNSztLrVHkjExd4+is3as2YFmeN12uhwV9KtaJdyWOpJMuTj7w9RW1Jq2gy6qZjCfM/jOOM0m2gsc7YTLbXRJ+9jiteylWKU3MkZkJHX0pmtT6RK6yWseHPUrUWna2sMHlvEBt6Eik9egzlXnaFcKCM1atZnkhOeTTJrXz1GTipIx9njCJ+dU7NGiT5vIeAE5H3qZgE5700scU+MetKxp5C9BxSZbFOOPWk5z7UDG/NQN2etWdg2e9Q4xRcQnzg8E0pDE8nNKDT2xikMiIYCmiRweVqcDcKBHnrTEM+8alER2/KaQoNpweaWJiFwaQxPLYHmjay9BUpPGaAc0CIiGIJA5pBuGCcirCnFNfntmhjRBcqXi46ioYHdo8nkKa0AuUzj61mzLJBIyxj5WprsRPuSTRm5C4PHepII1iG0ZGetUra5eI7WGQavuXADhTg+tNp7Ci0wcp93bmkRUbIAxTxHuUMTjNKq7ct3qblETx7VJU8+9LbiR2yp5HY0whjyc1a0yzlvtRhgj4y3zN/dXufyrTZaknW6P4a0uSwGqa8xSI/6qPdt3e5Pp6VdXUPBVif3SWoI78sf615/rWpS6pfu5dvs6HbDGTwiDgACs8Rr6Cs3Sct2Ze1tsj1I+M/DUC4jSA/7sX/1qgb4iaTF/qYCf92KvMyoHYUlL6vEPbSPRm+JcIPyWspH+6B/Wo3+JrYwli/4sBXnwpc1XsYC9rI7lviZd/w2I/GT/wCtUL/EvUiMLaRD6uT/AEri80mafsYdhe1kda/xE1lui26/8BJ/rUR8fa4eksQ+kf8A9euWpafsodg55dzo38da83S7UfSIVCfGniA/8xAj6RrWDSUezh2Fzy7m2fGGvn/mJy/gq/4Uw+LNePXU5v0/wrHxRT5I9g5n3NU+J9cPXU5/zpv/AAkWsnrqdx/31WZilxT5V2FzPuaB8Qawf+Ylc/8AfVNOvawf+Yndf9/KoYoxRyrsF2XTrmr/APQUu/8Av4aYdc1n/oK3f/fw1UIppFHLHsF2dN4W8Uaxb+ILSOW/nuIJX2PHK27j1Fe4NGksZR1DI42sD0IPavn/AMLRed4mskxn5s/pX0HkBeewrz8SkpaHXRbcdTzdvhL4XJIEl4CODicf4VDJ8H/D7/cur1f+2in+lc/e6fNfarf3Zv2T7RMXAWMZTnsTQulTovy6tdA+v+TVqE+4uaPY1pfgxpp/1Wp3Sn/aVTVOX4Nzpk22s/g0ZH8jVb7PrEPMOvXA9mJ/xpV1rxhYsGi1BLlRztfnP50ctRdQvFjH+GPiC2OUuxKB/df/ABBqhf8AhfxJZNGI4HOQdxJB/LpXrPhXXm17SY7mZQk2Skijsw/+sQaz/F/iDUNF1W2itoJJLd4N5MciqQ24g8MOe3cVl7Wpey1HyQ3Z5S1p4it+XtGOPp/QmozqWpwHEluR/wACx/OvRovHTED7RDdL/vWwf9Uf+lWB4x0aUbZ5rdfaeGWP/wBCGKv21RbxD2cHszzaPXrrGDbzY74Gf5VPF4gCja25R3BXFejRzeGNSOBFpM7H+7KhP8s1I/hjw3JGZJdLWOP+KSKThc8ZO0jA98U1ie6F7HszgbPVLGadFYDOeNpwa19YuLXUruN4JVTagXB6mqvizQm8Pasi6VG/lyQ8K0hPOTnk8+lYUdxdRnMulHPqpDVvFqaUkZuLjozUksbmBxIqEgjqpzWPFBOl04kQoCeprRj1rZjfDLHj1yMVYl1uK7QI0xAHqoYfjV3ZNijIQH8pBlq3tP8ACd1cWLTygjjIFVtNtLeS5DvKrtjKlRjFdbaawEsjDnDA4FTJvoLqeZpIzDkGnA1EswZeBzSh81VjbmQ8gHrSAZ+70qJyxOKcrhFwTTFzIUnBwaC5zUe8OetOAHXNMVyTzWAwelN8zNMPI5oGMUrDTJEOe9PDHFQing0WHceJOcVID6VBnPWlV9vXpSaGmT9aidzFzjIp+c8imk54PSlYZIsm5QR0NSLg96rFwMDpT0agdyfoKchyahfJTg806M7E5PNDBPUmDjkVDcxeZCQD8w5BqM5JyKcu4Dg5NCVgepmIWWQBhyDWtLeD7OoCnpyar/YhcOzBsMB0pscLYKvnirbTMkmiSOcqgLcqe9TOw8sFeaYioYPLPIqEeZCSOqVNtSk7bkgbJrpdMiWx8PahqbDDyKYY8/r+pH5VzNuQ7berE4AFdP4rddP06y0dDzEoMuO7d/8Ax4n8qUt7A37tzj9lW4dMmmhEgZAD2NQIpdwo6k4rotojiCDoABWjdjlsYZ0mf+8n51G2l3I7Kfo1b2aaaOZiMBrK4RSWjOByTkVXrevW22khHpisE1SdwEopas2loLlWO7bikwKtWrO0FyzbiQqjtTZrYQuFMw/BajSaSIsEcgH070b7FKxOtl97c2PSmTqPJXbGq4wCw6mozPIerGmNIzDBY49KLMd0Moq5b6dNcR+YCqr2Ld6rSRmNiNytzjINO6JGinU0U6mIaaSlNARn4VSfoKBjTTTT2RgcFSD70x1wKAsdR8Pbf7T4rjPaNC36ivarp/KtJpM/djY/pXlvwntg+pXtwR91QoP4H/EV6Rrsgi0O9cHnyX/lXl4l3qWO2kvdPKYXO3J781NvNVo+EH0p+TXaYEjPTGAdSrDIIwRTSecUoNAGt8O5/IvdQsc8KwdR9CVP6MlbPxAiwthP2+dCfyI/rXK+FZfs/jdkzjzoz+q5/nHXc+OoPO8OCQdYpA1cT92qbbwPO9wxUbH3qJXJFOzkV2GJnXtrFLewGSNHR1ZSGQHnqD+hrV8LPHpnjHTlUbbe6D28yZ+Vgw4GPriqN4MLFJ/clU/gTg/zqK7mNrc2N0vDQ3Ctn6c/0pSV00Utzr/H8cqWNn+8YSQl4S468MQD+Sg/jXGJJfL925V8f30r0j4gQrLpksqjjdHKPoRj+lebQvwD7VnR1iXPckN5fA/PBE4/2Timm7iP+vsXHuADUoOadW+pnp2JdKntor0taOVlK58t84Iro4QWeWSQBQMcDtXGTnyby1uB/C20/Q8/0rrWd3RNvRwM49RSYmcZ5ZXoeKTOCAKmBzzSMiv061d+42uxHI+Fxnmocg9TT2t33c9KGRV69qEkS33ECDtxUq/LTCQCCORQJNxoaYXuSdaAvBphzglelSJyOaXQaGjrzTqCQDikNBRIOlIRSDOM0Dr1pgKp29DTvMBGDUZHBzTATnGPzosHM0SkZqPLo3tT0kBO1qmKgipem407kZuQEBqQSh1qq0Z8zgcVaRUHQc46UaDTYoPFPQA85qON1c4JwamCBehpMpDeY5A6dQaLuThZFGCetKz4+9UcuJF2joaEge2gwv8AKCvU0v3l56UtravLMkC8u52jNbkvhPU4o2cCFwF3fLJnim2luQrieErGO41n7U4/cWa+axPTd/D/AI/hWZrF8dR1Ka5JOHY7fp2rormJvD3gxYGGy81BsuO4XHT8v/Qq49qI6u5nJ9C3psfmXYY9EG6tdzk1U0yPy7UyHq54+gq1Te5mJRS4oxTJKeonFo3uRWIa19VOLYD1asfNUtgENaWmnbC596za0rKNlt8+poYFa+b/AEjPtVbOTVi+4Yt6DNU1fdmmthj6O9IGVs7WVsdcHNOQbnAA70wNyV/I0rI4O3FYNbOoZ/s9VUZJxxWMUZRypFTEbFBpc0ylzVkk/klolbuT+lTQTi3JAHPc1Tyx55peakdy6GjnLkj5scVlvICKsxuUdW9DVSS1nubxktYHctlgiDPvSeg1qer/AAniCaRe3B6tJgfpXUeKbhYvDt1kgEpt/MgVj/Du0aDwTbE8NK7ucj/awP5Uzx68kGhxL8x3zKCR2HWvKqPmrW8zvjpTucb5qIq7mA3HAz3NODBuhBrn9duGisY3BI2uOlVLLxBdWUIjh24PVjyTXoHMdYUKn5iAfc0pBUdCfopNVLfW5ZogWIZu9EniTySUOM+xqrLuTdjLO6+yeO9MdgyiTaPmBHRiP5GvXNbh+1eH7mLGSYyB9cEV4Zfag13dabfsfmhvUGfY/wD6q97B8zSiTz+7/lXDiFZto3h2PF4+RTywFJcr9nu54v8AnnIy/kcVVlm2nPXNda11Mhb1t9nMB12kj61U1Vw1jG/Yup/OrYPmIcjqOlZd+2dDT1UqPyOKAPWdVzqHgqCXqZNOQ591ryy3fK49DXqOiyfbPB1pB13Wcu3255H6ivKY/wB3cyx+hrCh9peZc+hfWn5qJTUgNdJmQXqlrVyOq8iup0SUyWrMFXzFQMjHnGevFc44DxuvqpFanhmYmKNc/eiZPxGD/Q0S2GjAEchHYn0zUJSVTwSKyrN7iQuJw6kd607YuV5Ylc+lc8a8+azRo6cbXTJVldTh+lOZlfgikKg80u0djXUYXZGyhccce1NKlSNpNThSV5prKxHAzTuIjLHoT9afuXAANRjA4I5po5PAosFyUuQeRmmecxPTpUirkKRyadIjD+Hr7VPMk7Muz3EV8jmgNzTEY55qQlR1p7Ei5NJ5g/GkYEjKn8Kb5Ug5209B3Y4H5iCKkSTbUBLZpASTxzRa4XLCQzO7MpGKh3vHIQ+QalWVlHBxTt6TZVvzqdUXoRROCSCe/WrClscGqbxbJdqng96sojqvUGm0JPuSlty4bkVGCyyYAyKQEk4PFPR9rUh7lqzv7W1vN08qqyxkoD61P4alm1zxrDaxXEpsx+9ljVyFZV5wR6E4ritZ8ybVbhlB2oFH04r0/wCD+ivb2t3q9ypQTkRQ7uMqOWI9s4/Kueo7JsuKuyn8QNUM/iCa2jjLG0VUC+5AYnH4gfhXLwtcTKB9kuC2OdsTf4V7PrcWoXdy32O4hhh24H7ncxPqTkVgro+vb/3lxpUidy1h8/5ljWccTZWsN0b6nCs2tfZ1ig0+5G0YB8k/1pIrPxPMwCW0ufQ7R/Wu2vdK1eNwtpZ6TcZHLSW8UYH5KSagbRfENzbPFcQ6VCCMK0C7Sv47aPbti9kjmk0jxW3S1Yn3Zf8AGpF0XxeePsiA/wC06/40+TwZ4wjG2HULGRfedgT9eKyrrwp4xjkVDHbvuPLJc5A9zzWiqX6kuCXQvXPhfxZcqFktoVUHPEqD+tQDwV4k7xxf9/lqsfBXjLtJbDPpcGk/4QTxi5/4+bf/AMCDT9o+4uVdi6vgvxCp+aOP/v6v+FEngvxM8m6Paq4xtE9U5/AXiu2t2mN9HIVGQkUjsx+nFN0zwj4kvpTHNe3Nmf4TIkmD+Pah1HbcaiuxbPgbxO2dwUj3nFQP4F8Q4INvG/t5w/xrXT4ba8f+ZjYfTf8A40P8NPEf8HiJm/4E4/rU+18yuTyOWvPD2oaWym8hW2z0dm4/MVNpuiahqdwIrG/s5JT0RbtQx/A81tyfC/xLLw+sGVRzhpHI/ImtPw74D8ReH7x57e4gJkXY4ZQcjr1PIodbTRh7PXVGUPh/4r3Ft8We+66FS/8ACB+JwuGjtiB3+0LXewaLqU64vrG1Dj+OKU8/UEcfnVbUfBkt7bSRJCFLKQD5uMH1rP20r7leyieViKZb17R57VJEO1i0gKg/UZrobbwdqGoIDDqmmEDrslyP5Vmt8JvF8b4jjtHH977QBV21+FXipRl7mxtz/wBdi38hWrq9pEKHkXG+HuqjGdSsP+/h/wAKZL8PtXGNl7Ztn0c/4Vasfhx4ntb2KaS/025jU/NDKWII/wC+a7iPw9dIiqs9sgAxtCNgfSsJV5rZ3NFSj1POv+Ff6yFybuzz/wBdT/hV3RfBupW2ogveWe/Y2zypcndjA4x6120nhy/fOy9t1P8A1zP+NZ9rp2p+HtaW/u8XNtt2FoR9zPc9c/pUe3qPRj9lFaouWk91oHhSwtZYwZbeERsy8qWHvWffa9Pd2M8LIu2S2csc9h9ffFddNJb3di6kLLFIO3INedayrx34htreRk+xyKREpbaDuPP4gVh/y8TZrpy2OS1aMTaVOP7o3D8K5iM7oc9xV+98QRs0ltErEMNp3LhvyrFW4eFWHlP+Ves2jjSD7TPvwsjY+tWo1nkXJY5PrWUL6NWyENW49Ud8COFifancVjYG9NDlJ+9FPG/86+jdPfztGjb+9HmvmOWe+k0+WNYThmUuAMnjkcV9F+G7g3HhGzlzy1sp/wDHa5K/c1huebeJE+za9fIeAzhx/wACAP8AU1iTOMLXTfEKz3Ol4p2kQjOP4iD/APXFcgrmSNG9RW9F3gmRNWky/E42isnUphHpEgIJ/eYH/fVXlOFqvsWaGeJwCNzVZJ6T4HmL6Royk5DpcR/+i2rzvUIzbazLGeqyMh/A12/gIs2maOB/BPMPzjP/AMTXMeNIfsvie9AHWUSD8QD/AFNYUvjaNJfCiqp4qQGoozlQaeDXQZkinJFWfD7eXcIpOAtxt/Agiqq9asaOv+mXWP4ZI3/8eFDGRWYhhi2yEOT7dDWZfak0NyyRqrZPKhaUTBQCzc9QahmkeUmS2UPN0GBmvIUpN2Z2OxNFepJCDKgXacEDg1OUjkBMTgqO9U106efZLcSRxDoUXkn61FewPYMXjJZGbovauinUnDS5nKMZa2NVUhXKvNgjpmljSFs/v1BzgCsaeJpoFW2ilaZhwc9DT7TT72Fd0rKxOMgHkUc9W3xBywvsbMlqsZJYBh22nGaoFZEkbdFgKfXqKg1C4mVCpyAOo9atac1vNaFLksxburdKXt6kdZMHTg9EiI3scal0XGBzTYtTFxgqdgHJPrUg0EC4zHd5gY5KnrSpocMCspuiADnb6VlJczu2aJqOliS3xcjhhx/EeM1J9kY9WX86abVUjEUM23dVJ4b9EZ1jdlHvW0as4R5YsxcIyd2XhAy42EP/ALtPViTtI+b0ptldxwIjTRjzMdM/dq013IwPllUH+7zil9akviVx+yXQqSW6JgyM6bug21Lb2aMu+M7/AFzUthpF5rTzTKQkdojST3DHARcZxx1PHSu58EafoFtpB1K/miaWViALkqgTHXGTyc963jWly8zJ5FexxcWmT3BxHbySeyKTWlaeCNYnwyWMiKe8ny/zr08eJdCt12w3MO0doSpH6Goz4u0odNzH/ax/jR7aXRB7NdzhYvhvqkrgSTW0f/Ayx/QVq2/wrYgefqRH+5F/ia6P/hLrYj91Ax+gc/yQ0w+LM9LV/wDviX/41U+2kx8iM+P4XaYv+sv7hvptH9KtR/DnQIyNz3DkdjIBn9KmHiqRvu2cn/fE3/xmmv4omCnFnKT6eXL/APGqTqSDlRA3wy8LNNLK9vcO0p3NuuGxn6VYuLTQNGgigkupIUiUKkfmltoHTgZNU08VX+0CSwIbHOBN/wDGahbWoHl8yXSbYyE5JaCVj/6JqLsdkdNFpUM0KSxzysjqGU56g0f2NH/z0m/SsdPFVxgDyVUDoBBOf/adOfxNcOuBHj38mYf+06V+5RrHRY+m+Y/UigaNCD1k/IVjDxHcD/lm3/fE3/xqpB4lm7xn8RL/APGqLisbI0qIdA5+v/66X7CFHAkx6Db/AI1kDxI+Pmib8PM/rHR/wk8Y+9uX/gYH/oQWldgahsf+mUn5r/8AFUDTHYDarfiV/wAazk8TWxOPtcK+0joP/Zquwa7uIMUlvL7JOp/Sn6gTf2XKvVf1FH9nv3C/n/8AWq5FrZ6SxSJ77cj9KvRXSzoWiZHA647fhTSTFdoxxp5HeMfVv/rU77EUGS0X51wnxR1bUtLa1uLWZo4wSsigkDB78Vxmk+M9UttRt55bhpIkcMyHoy9x+WauNJyV0xOaTse4Lbj++n4GnMixDLsqj1Y4qS5gtb+xZUJSOaP5XiYowBHBBGCK8ml8N308kyi2lnuLMFmMrMRcr5pGwknH3cEVm7I68PSVW95Wt/X9f5HpTajp6lwb62yilmAlUlQOpPNU5fE2iwhS+oRBWXcGGSCM4zkDpkGuOaw1Q3mpG10+WCC6uoiAIl27CADwRnGOuOlN0/R9VtVtJRZTj7K00RWMpudSQRjdwVznrUX7HWsJRSu5/l2/z0Ovm8TaZEu7zZnU5IKQswOBk849CDTF8QWM1il7EzvC7bFwvzFvTHrXNweHdU8iOARGOE204VXdS0TswKg44IwF6dOalj8O6pBqEc9okMdsJkn+zSS8Biu18kA9OxHUH2qWDw+HX2/x9f6/pGnN4os5rWX7Kt15oXK/uP5A9eOcd8VRtvG/keVBdwtdPMMwtbJywzjkEjFNXwzqAtLcIbVLiCXaBG52vHliM8cEbz+FWLXwhLBcLKssKNHG4ibaW2szE9D2wx/IVUfi2JrQw3J7ktb+v6ej+86PT72LU7UywblZWKMj4yrDscGtJYFdAWGeORWHouj3WnX7yNJE0DwgSbRtJkB+9jHfk/jXQRSxohBanp1OCVk/d2MGfy7WZoo1CopOFFcfLeiy1VrqV2t4Yrb55T0GG6n/AL6rp9Xu7eHUWEkyLkA8n2rkfE+ltqNhdC2kUSyQsignhgcHH5gVg7cyuUtht3q2g6g6/aJ9GuwepcIG/Pg15XqFwv8Aa97HaqgtlndYscjaCcc/SqQtJbYmK5gdJR1R1II/On24LPhUZjngKM/yr04wUdjkbZveEPCkHiPWPsckrQjy2kLIoJOMcV3v/CorKH7t7cD3+QGuf+H9lqUPiOG5FlOlsgbzJHQqoBXjr15xXqzSZJOa5a1XllZG1ON1qcrYfDm3sXMiajLv5wW2dwQf0Jrq9H06HSNHi09LkOkSbA7kZx+FRlqaTWDqtl8iMTWNF/tswwG6S32bjuddwbOOOo9Kxj8Omz8us2+P+uf/ANlXVSEeZ+IP86kHSqhWlFWQSppu5yI+HcvbV7b8UP8AjUbfDW7+cx6xZ5Y5wVIx+tdlQrPkjgj2rT6xMn2USv4W8Of8I9YIlxdwztDvYeX0JYY/kT+dcP4ztUvNfL/aIoyYUyJCRnr6CvRCzFcE8eleceL1I1lDjrCv8zV0ZtzuyZxSiZCWTKoUXtpgf7Tf4UptZO11af8AfZ/wquBRXaYFgQTg/wCvtD9Jf/rVPZv9iN7NLJETIiCNUfdkhgT+VUMGhgcUgMtLO7mQeWAV6fMa0rbTktlUmY788kdqqyG8s5fKKHeBx71RN9dvMpEbFmOeK8ySm3ZHWrI6Ga3JaMRMD7Z71UumkjAVo2DE8AjrWTDc30V43mg46gg10FtcC5T98uV7FhzUNyjo9Rqz2G2Mf2pXR5NhHRsU8ie3OxyHwPvL0qSGC3hDrAzDuMmpFZFbJIXb0qnN/ZBLuZl6BPG4k59PaqEdpKskIt4pJoyfmA4/M1rXv2a4XDnyznG5ae15bQwfZ/mePG3rzik6lxKJNG0kxO6FIQv3QhqnfxzRYeNt47g1ctpIXhHlqFHQe5rPZpZL3y5ODST10BoIXeD5pgwYeozU39o4IBbBJ/KtOG2aRvKhgllfuiJuDCo7rwbrUrxzWmk3DE8sCu0D88VSXMF7GTdwvJMJ0Yc9qSGz1Ga4hhiAd5mChV75reXwb4gkGbi2it0A4M06L+mc1v8AgrRoo7m7uTdQXCwnyhNCSVBxlsEgdBgZHrVKEoq8loK6b0Lzz6X4T8OiymnKpJxI0fD3L9wnfA6Z46daw49e+x/vtP0Szt0xkG4fLkdeuDisM6vBf69d63fIJordcwwn7o52xr9Oa9Q8NeGILvToNQvU86WRVuWdsbQTyAq44AFdKp83xGfPbYqaL4yivkWK7X7NOTgYbKH8eK6I3Df3j+dcD8RbHS9IlgksSUnlOWijHyhR3Pp9PrXS+Hbg3mgWcxYsSmMnuASBXPUp8ppGdy9d6zZ2JUXt9FAW+6JJACale6hS0N286C327/NLfLj1zXiHj++a68W3YDZWIiNfbA/xzXX+ILmW2+D2kICcyRpvPtnP+FV7GyXmL2mrO6stTsdSVjZXcU+372xs4+tRX+uaVpMix39/Bbu3IR25/KvOvg83na5fljwIB/6FXNePZP8Aisb98liWH4cU1R96wvaaXPereeK7t0nt5FlicZV0OQRVX+3tJilkjk1G2V4jh1MgBU1j/DmRn8BWUj9g+PoGNeD6lcvNq13MWOXmdv1NEKPNJp9AlUskfUFtdwXlus9tKssTdHU5BqC61WwsnjS5vIIXkOEV3ALH6VieA4WX4b28xOD5LuD+dfPl3cyy3MkkkjOzMSSxyaUKHNJq+wOpZI+pg6soYEEHoRVWTVdPjLB763Ur97MqjH15rJ8I5HgXS5JCc/ZQxJr5+vpfPv7qYnPmSs35mlCjzNq43Usj6fimjniWWKRZI2GQynIP404n34+tcb8MoGh8DWpYn95JI4z6bsf0rF+JXii5tmTQ7CVo5JlzO6nkL6fjWXsW58qK9olG7NDxF8QbW1u20/SLddQvAcO+f3aH0z3P0/Osey1XxJqRZj/ZXsjWhYfng1ymnWsa3UemwbRIRl2Y4DN12k+nBr27QPA8cMNvc3VwTOyklo32oCw4AHtXbDDwSMZVJM5fTPEc1lcpb6xaLah/uT2zN5Z/4Cf5YzXXSajFZbJZL2GIuMowcAuPUDvWLr/hVrOQW1zKJLOQYRhxt9/94HH4GneCbh5be4sboRtdWMhiDEZ4Pp7HGfxrGdNRd1sVGTehT8YPB4i0trWMTTzMCAUhY/rj6V48LmTSHezu7VzdRNsKu4CjHrwc/nX0TeM4BKrJMw6JEBGCfcmvDfGtpHLreoXV5C9jeB4R5G7zQwKnLbuB2H51pQqJy5Y7Ezg0rs774b6rfXUVxM08lwiAQrA0oVIhwQRk89+grunmu2PEcA+s2f8A2WvKfAml+KrEvNY2SC2lA+e6PlqeuCAeT17CvUM32xQyWyNj5h5hIz7fLU1oPmvHUqnJW1BnvTwHtAPdif6Uw/bOALmzX2CtS4vP+etuv/AGP9RTTFdN1u4/wj/+vWXJLsacyDbejpfWo/7ZMaiP9o5/5Cdvj2hP+NSeTcf890b/AICR/WmPbznq6frUuE+w1NDf9NBBbUoj9Ij/APFUF7n+LUV/BD/jUbW02cb4/wDvqmGznPPyH/gVQ1K+o7pj3acgj+0vyQ/41WaOY8/2iw+if/XpXtpU6gfnXGedqx8SaxDaXDswj/cJNzGjYTp+bflzQoOQN2OkutFtL1y11cyyk8fdA/rVeY2GmQC0t5iTEpLLISSFAyeat6XFeR6dCuoSrLdYy7KABn049K5+/sNSl1y7kYbbHyn2sSDksoHA/Cotuik+pXXxVpV1qNsbe+DylvKRFLDO4gY//XXcwXiwxBQY1foSoAryTRPCMTSw3Wm3TyzxsshDMFXIOcEdeteipp+OXkJJ5IFVKME/dYk5dUbLXDOcsxP400vVdflAA6CnZrMobdXsVpC0krYABIHriuc03xQ2paSuoLcWqyEtm13hSoDYHU89jWzfWaXqBHYqB7V5ze/DCW4nd7S5REL5CyHBH0rWk4aqZE0/snbRawl1JLbiRTcGFpF2nI2gnHI+laejyyXmmwSs2WK/MT35rz3TLGPw1qvlX93HHKludpAYhwxPYDnHNamjaxrlvPbxxxRtZ5G0qvVT35q3GNtCbu53IjctjIpt7dRaZZSXEnIRST71K8u6QsABnsKzNZtG1KxeBXClhjJFZqxZkW/jezuVDfuI+MkSyMv4ZxioFt4fF2qOZJ4bF4VCAK6ziTknggjH61zV54H1OJJJIzE6qC2I3IY/QY61peAbMwSC+kWaIz7kRJl2nA789c1s2opyg9TO19GdH/wr62x/yF1/78j/AOKpf+FfW3/QXH/fkf8AxVbjSEDjH5CozIx9P++RUe3q9w9nEyP+Ff2o/wCYuP8AvyP/AIqmN4AhP3dWT8Yf/sq242ZnwSMBSegrK07WYb/ULlIrqJ4olDfIegyR1/KqVarvcPZxOH1DytQCSrzcAcEHqPSrWn6HAYfMmDFl56cVSw/2syKP3RAOMYwepFbFtcuts647Z5rRgmQT6Rp0zqVDIAeRnrWVdQRW+UVjkdM/pVvzGdgGbBJ78VXuTGfNkX5mK455rFsqxnPO6ZOTUf27YShBPvVK4lnfIWNzjq2KorLKZsOH656dq1jT6szcjUh/0qdUkb93nJxUN/C8cxEaOUzn8KgimMcpIB6cV0cUx2ZcHcB0UDik/dYLVGZps1xJdRQBHDuQFBHevTbMaHo9uoe2iubzH7yeUBiT7A8AVxVjkTG8kXEgG1DjH41ZaVnJJOa7KFKNuZo56lR3sjsZfGbRLtgARewXism68X3suf3rD8a59iTUJUnJPTqa6rIwuyt4i17ULpVs4pWMs5x16Cuz8HsbL4daiA2Wj+0KW9SPlz+lcVolquo6/M7ciLAFd34WtvP8L3ti5wZZrhM+hLkVx4iR1UtDzzTBbEzRXr7LWSaFZW/uruOTXu/hu/8AL0SKBZZRHEDHGJAAXRSQpOPUY4rxWSxNjezWl3GV8wbGz/CQcg/mK9N0LUrd7K2sYwZZHIRnbIkVz3x02+mD0/Kr3FqtC14otbS/tvtFzapIiBlZwMMoPdT6+1T6FClpolpGgwixBuffn+tZ1/Z67IJrO6vLIWsku3MUZEjRj2PAz0/HitZ2EWmzFRgJC2B6cVhWcXZIummrtnz7rE5udWupicmSVm/M16b45xb+ALG37RwRKPrgV5VMd95j1f8ArXqHxUYQ+HbOIHqyL+QrSa96KEtmVvg3ERNqtx2WNV/UmuH8Wzef4kvnz/y0Ir0X4Rx+V4Z1e5PdsZ+gry3WJPN1S6k9ZGP60461GJ/Cj3TwYBZ/DOzY8YtXkP45NfP0zbpnb1JNe+BvsXwtGOCmmgfiV/8Ar14C3Lmiju2KXQ+jdLmGnfCSN+hTTifxI/8Ar185S/eavoTXv9D+E8iDjFnGn54FfPu3fMF9WxU0erHLofRO7+y/hnG/Qw6aD+OyvndjX0F43b7L8O7pBxiBI/5Cvn5V3zKvq2KdLqwmfSHha2+x+EtJgxgi2Qn6nn+teNazdm98bX0shzmUgZ9AcD9AK9yixBZW0Q/giVfyFeLeI9O/s3xTPvXCtISGI/hY5B/XH4VnQfvSKn8KLnga0stR8QTLetGqvwHlOFU5/U8dPevQb3xBrOj2sllHbfabWOTHmPGwxg5BHHI6Vwng+z+23YsNxhnaQKGIxtYEkfn2r0/U9XFtaTaNdShZlI3tHFnjg8c8HFdFzM5aS71PxDcyyyK0pjgL7OgUAjp+dbHhCJ21m8laNYzJCm4A55Uuuf0/Ss6G7uNPhllsVY7iIy7clyeijjkn0rc0KVbXRLy+VgxChFk7OVzuYexdmP0xXPVd42NILUkn1y2t7F7yZ8KmcgdSemB75rzfUtTa81J9QljTz2Py5APlgdAKS+uHkcRliUUl8e5/+t/Os6Qk10UaKh7xjVquT5UbMPizU04+0MR7mrI8X6jjmQH8K5hetS44rayMnJo6RfF193YflU6eLbs9cVyvSug8Hf2UdUkbVU8xFX92h6FqlpJNscXKTsjSTxLLIPnigb/roM019dJyAtgn/bEH+Zqr4+SxcwXOn2q20KZV8KFBz0rhTcwjrNH+LCsqVSlVjzQ1R0VadWlLlnozvG1gH798ie0YVB/46KadbhX/AJiJ/wC/hrgGvLYdbmIf8DFRNf2n/P1F/wB9itbR7GV5dz0y28QyhgI76Kcf3JW/ketdBC/nRJKY9rEdDg4/GvElvrVjhbiMn0DV1/g/XJIr0WE0heGX7mTna3/165K9KLjeK1Nqc3ezPQs1DcKHCr2OR+hp4NMkPKf71ecdZzug+HLnSHeVLyNklwdpQ9Ovr710hpEXYgUEkD1ooC4oNLmm5pc00hCk02imk0mgMu4sY21C7uWj3O9s0YJGeMdvxq5pcIh022j24KRKuCOmBUx5Iz2z/Knc+YTnj0oAlJprGkzSGmAxqryqJJYHPJj5H5Ef1qw1MMfyhvQUDJS7FSUQu38Kg/ePYVYh03VJRudbSL/Z3s5H8q4O4167t7jckh5fgegrqtK8TmSDfISNoya7adC8bs55VLOxfudPliyLjUo4AwIOyIdPxJrI0jTtB0GOeOK4aYTtukMnO41xep65darqEs7O21j8q56DtUCyP1d8fU10KhG2pm6jJYbtZpFkK7EIGRVpJB5rDJC9PrXOWBUl1ZpBHklc9cVrLEVjDmUlmA+X0rnaNSzfiMwGOMDeccg81FpyLGH3sGxxz3FZlxdN5zKRg5xnNOt7gA4Ufw8j3qbILs33trd4mVUXDZ9q5GfTL22nkcpth3YXvxWlLqckQIGfl7gdKqNrnnkrvJJ4wam76Ddhtjbo87SyDAXgD1rRhEa3LHAQN1Y89KhgH3e5znip54mljZQwTcOtZX97XYq2mhO9/as3EJAHAzL/APWo+222P9V+T/8A1qxZNA1SOXc0sZhzyw64qX+y4wwX7QxY/wAPHFeh9bgjk9hI1vttt/zw/wDH6rX2rWttA4WHDuuF+fNYepaXcxRJ9ld5JWbBUHgCsyXRtWYAsoPGeJKtYiDW4vZNM0/D2tw6fqU8ly5WOTqwGcH1r1LwVPFcadO0LiRDcOwYdwxzXi8egXm4eYFVc4JzmvV/h5GlrZiCJ3ICkOG/vZB4/wC+v0rlrzjKyR0U4vW51upaHY6tFi6jAcD5ZBwy1Q0TR10OeSWW+jnI4gVVOV9z7/Si9v55rp4I3KInHBxVS2up47oRSsXDHAz1BrlVV/AnY6/q0uX2jXmbrStLKZGJJPrRfybdEvm9IH/lVeNiTzTNZl8vw5qbelu1axVrIwlqrnhdunnavbRj+OdB+bCvRfjFLj+z4AeOW/SuI8NQfafGOlQ4zm5Un8Dn+ldb8XiW1a0HYIf6V2S+NHOvhZv/AA4HlfDq/kHVnNeP3Tb7iU+rH+dex+ABj4XXzH+8/wDOvGZOZGPuaIfExPY928QHyPhpMvpaIv6CvB4l33KL6uB+te7+MQU+HE/vEg/lXh1gm/UrZfWZB/48Kmi9GOR7z8QG8n4cTIOMiNf1FeDWEfm6nbR/3pUH6ivbviXNjwIV/vTIP5141oC7/EOnj1uI/wD0IUqPwNhPc9r+KEnleC5UH8Uka/r/APWrw7T4/N1O2jH8Uqj9RXsvxZkx4WiX+9cL/I15L4bi83xLp6es6fzFVS0iE9z6IuWw4X0AFYetaJa63AFm+SZAfLlAyV9iO49q152zMx96izXn8zTujqsmrM4H/hHdV0283xxFug82Fsqw9weRWvBpOt3NxNdztK80oA3TADp345ropnCjLEKo5JPaojq8MI2oWcfQCuiOI6yCOFnNe4myrD4df7Obq8unbyVICRvxHu+9g+p6ZFT+Ir6207Qo7C3KINoBCjAVQOgHp2/CrMd4L6xlSBsI3yuGHPWuJ8b3hvbaSL7MQqZxLvxj1pc7lJN7EOHKnHZmTJcWksjuLyL5jkDPSmN9lI/4/IvzFeXS3UglYRyNtBwCaaLy4H/LQ16XNocTgj03y7fdkXifpUqiDH/H0leX/bbj/nqaPt1x/wA9WouPkR6iy24GTdpV/TrzTLW2YvMonVgwZjgEfWvHvtlwf+WrU9bybZkuT9TWdRc8HHvoaUv3c1NLZ3PQ/HWuR3mgfZ1kjJeVTtV9xIFeaYFLuLHJOaKww2Hjh4ckTpxeKeJqe0at0DApMU6iuk5BoyrAjgiuj0bUmikikB+ZGBHsRXPVPaOUkwD1pNAfSFjcrd2UNwh4kQNUsv3QfRh/OuS+HuoNd6G0DnLQPgfQ8/411kv+qb2rx5x5ZNHdF3Vx9FJRUjCikozQAuaSg0hoENJ/lUh61C5wpPtUrdaBhmgmkpD0piENF7KttpU0xONsZNMLY61l+L7kw6IIQcNIwX8Opqoq7sDdlc4aSXzZwfSuitAI9HuJDxiM/wAq5WBsszH1rd1S5Fn4XmJOC4CivZS5VY896u5wOp61NA4jt2C56msSS9up8mSd2z7028k33JPpxUa9KRR30sGOAcKpyT7VKNRiZELSg7RyvpinNJCytkZBGeKxJYhE7MsZYzHJGMnGemO31rkRuWYpTdiR16ZArVsbAk7nddnseaxQjRxgySbMHOxT/M1pwXoxvbCnHApNAjprW1tEheMKDuU5JGTXCxWzmdxEg3b8BytdBHq6qCBy2MYqOMlg/koOFyF96ybaLsmU4EuLQv5s3nM3TH8NWILj/SFeTBA7GqkXnzSkumw9t3FbEPhq/lRX8sJGVyWLDnj0zUtXYLQtNqMJgxIAAeABWNdQRuFktPkySG3HO7irF34f1IRKyISF7Bhn+dSQ6VfBMCIkgcdKXspbpBzpleEfZ8szq8jfeA6Ch2WVgyLtYfw1ONH1CQEeSFAzxnrTU0XUFlX902c55PAo9lLsCnHuZmpX620CxKDuYHkc1tfDzUzDfzW07FDLGGiL8bjnoPw/lWZF4fn1a+EfnRnk5EeGIXuc1par4WsI7+2TT5/sboAd8jk4x3rppUdNSJ1LM668Jt76V9pbzFygH8RyDj9P1qOxZrm/83aQqkseO5BwP1/Sp47u2EEUcl7DO6qAz8YY+uKsRT2zH5Z4yT6ED9BXPPDqMuY7YYxum6dtWrF5WFTTWMGraPeWMk5hM67dy4yBVRdrDhgfoaCnvUc/Yx5bmF4c+H6aF4jj1Ga889Ilbysrt+bHXr9fzrS8UeFLfxVLDcNdPA8fDAKDuFXFUlhzn8asCPjvVe1k3dk8itYfpGj22keEW0qFz5cjNuLsCxz3rz64+F0rTn7PqMaxE9ZOSB+AFd/s56mk2D1qlWktiXTTJvEemrrXhB9MtZQsihQSRkkDivPPD/w1uV1+3kvZh9kibezKMEkcgc++K74AqOHIpfmPWQn8aI1nFWQOmmxPFmgjxF4Vks4phHMJBJGT0JBPB9ua4DQPhtqVlq8F3ezQpHDIHwhyTg16Iq8daRowep/OhVnFWQOmm7lHxxoVx4i0NLa3dEmWQSKHOAeP/r1xfhz4eaxp+vWt7cmDyYZA7BWJJA9OK9FleSVVDvu29KIVLK+5iNvYnrS9s1oh+zT1ZIzZYn3pKYWGeKaXNZWLuZniNpU0+N4ydokw35cVi2TQSQs01yI2zwp5JrqpBHPE8MqB43GGU1z0ui2Mdwywx6lcsvWKNRj6FgCf61lOlKTuj18JjqdKlyTLWn3Qis53U58xgkR/vEDk/h/hXB/ELWVtbIWMTfv5/vf7K1ua14gh0i1MsoVZAuyOFBgKB2A+vX1NeP6lfT6ney3c7Fnc/kPSvQoUrWv0PHxNb2k3JdSlS0dBTgpxu7V2nENpQjN0BP0qSGLznxjgc1rQxLFHwvPTHpSbsOxk/ZZgobYeegpogmKlhE5UdwpxXQ28BuJl8xSIR37sa37eyBMYhU/ZvM/eMB7dKV2M892OBkowHril6V689pFbSRhYSbI8FCu4c8f/AF60F0nSPs4DWVucOPMQRjBB4z+GaLiseI5p1eq6r4B0eRJpLYSQuq7wkRycd8D/ADzXHat4K1LTYUuIilzbuBhl4K57EH607gc3ToztcH0pHR43ZJFKupwVIwRSA4NMR6X8NtQWHUpLd3CrOuBk8ZFel3c+NJuLqHBVEYgt0OO/0rw7wpcmHVbcg8hxXq+s29xD4cmQzOiRRgCNTwRnv615uJj7/qdVJ+6a9teRSRByJWOwHIUkE+2BVlCWjViCCRnB6isDQr65j0qJI4DJGo4IBrdhdnhR3Qo5GSp7VzuLRqncdSGlNNNIYE03NBpKBEGoTfZ7CWfBOwZwOp5qW3vEujtEbLhsDLDkVHdJ5tqU7sSP0NVbCG9QMZ5IUcAbWjXOeuSeBTewGq67GIzkU3NV1EoctLcPKT2KqoH4AU/dQ7dBE0SCSQA81yfjW4BnWLP3B+prr7TADyN0UV5v4huDdameepya6MNG8zOq7RKEMQLoo9qh8Z3Wy2trUHrlj/KtLTojJcL9abrdzAuotBKqEKApDLnPr/OvTbOOJ5ZMczMfenJ92vWYdF0C6I82xj3nAXMJA9c8AUl94K0g6dLHawCB3bJl3Z2kdhk8A1Fy7HHW1yz5DnC55PtUZv0lmk4BLA7QPake2ne5WxMZiHdj0/GtSLQTcELboPMH3mOBkd6wbSNUmzDXUnlnQNkheBkdK2re0a7jfzCyHaSvy966aHQtPFtGk0Kb4xjdj5vzrSeO2KfIoBx1+tRKV9ilG25wVnp140kowWkQHv1q1p1xMZxIiNuU4wK6xbG1TLx/KW5b2qO2sI4J3kUoySeg6VEncpJFKSJ54FQx/OwPzgcg0691a5060LyXQLRqN+BjPHb8MVrK0f2jytoIXngVzPjm1aRZmA4Zt4x7j/61a4dasitsin/wnHmHHmyfQ4H9Kli8aSD5UlkAPJAZa8+TA3euK63wJ4Z/4SPUPJkDeX6g4rrOc3B4zkC58x8++P8ACtWPVxcwL5sxO5QWLHHX09q4vxhoC+HtZa0ikZ0K5G761YhkiiisoW+ZpFUZ/u8DPFTJpK7KjBzkox3Z1MMlpbk+RM0ZPB2SDmgi3lYuZpHY9y2azBY4BxM+PfI/qaq3kTWyJIJAVLhSCM5H5VhDE0ptRTO2rluJpRc5x0XobscFsxx5jfnV+y0FNQnWGKR9x9SMAetcXcTxlTtGK6LwTdTpDeSLK+QyqMnOBiumWiOBas60eBVTpq8o/wB1P/r07/hCT21y5H0T/wCypthJqGpTui3zxKi7mfrj8K0F027bprj/AIxD/GsuVdS79iiPBcqtn+3rk+xX/wCvUn/CIzjprk//AHx/9lV0aTfdtdb/AL8D/Gl/snUB01wH6w//AF6OWI+ZmefCNx/0G5/++P8A7Kmnwjedtcm/FD/8VWn/AGTqfbWVP/bA/wDxVIdJ1Y8LrKA+8J/xo5I9g5pGZ/wiF8f+Y6/4xZ/9mpR4Qvx/zHT/AN+B/jV5tJ11eV1e2b/ehP8AjTEmv7Ybb142cdHiyAfwNLkgHNIgXwzfoP8AkOH/AL8D/GuY13UtX0TVDZQ3/nnapzs29a0fEfiy401Et7Qr58gzvbnYPp61w32u9u7iSbyJbmQnLybh19yTR7KC3QueXQ6xbzxM8If+0baMHt1P8qqm+8Ro53ayq8EHgY/lWQl7qAAH2CY49GU/1ps9xetGS+nXaL3baCP0oVOn2Qc0/M1Gv9X2/vNVlb8cVJbXd43376Vh6+YRXNSvKzArM+0jlWNZkt/qO9lhG1VJHJ61rywXQi8n1PQftcg/5fZR7+Yf8aQ3chXaNSnA9pm/xrzC5v8AUo8l3x+NMgutRn5WdQPc/wCFFo9ha9z0OTTNPlRkkkVg/LZPWqZ8N6GCNwTk4ArjGudQT790F98H/Co21C8R8C9z7jP+FPQLM74eGNHxwkZ/KpV8NaSo+7GB+FeeDUb0sB9t6+5q+bXWpI0kTzZ4nGVZM4NHu9gs+52y6Boqn78Sn2Iq5F4Ns7uDdAPMQ8ZVjXm8j6lbAmaOVR7kivRPBuuND4ejV2OTIx5PvTtFhr3Ir/wvBpdoJ7hvLiUhQST19Peqa3Rt7ZxboEjK7nMwz9SFFdTqmqLdaeVd1A3rywzj5hXNLapYzxucyMx8ze6Y2+2Mngik0hoYi3l0gPmSmMhcAnbuU+3t1qQaaQxV2DMY8FtxDfe45B9O2KkMxdSyMIYh/EeAPoKozXls+UF5NkdHAAH5Cj0GbVvHLEo/eyouwJ86lgo+orRtbprkOjxQyITiQx/MAp9R19O1cVFcsswUXrYx97JA/KrTarcKoaQLIQQA6HawH1FJoDR8TeEYNcsLebSgqXEO8MuOCuScE+uTXlM8MttNJBPGY5Y22ujDkGvY9M1bfKfJlKMPvxnhyD+h61neMfCUet2ba1pYxMikSJjG8Lx/31kGlsM870qcw3UUgPIYV9CIU1LSAcArPD/MV842jEMR0IPSvdfBGorc+HIVkfmIlOfz/rXHi43SkuhtQetjZ02MQ6bAijACCrBqNXEQCKpkTPylCMj2I/wpztj+FvyrhOkDSVGZR/df8qUOSeEb8x/jTEOxSYpw3f3D+Y/xpVV2/gx7k5pgV5OgH+0f60qDg02Z0WZI8/8A66eIZj9zaB33HFDT5dA9RSKawp/2efGS8I/4FSLblpAJLm2VO53c4+lJRl2C67iXk32bSHP8UnArzK4fzr2RuozgV1/irVoLeEeZKsMWdkZc4zXGwXlkz/LeQH2MgFd2FSSbOatq7G3pYSIGVzhUGSa5yzsvteqT3V6jOWYt5bZOAee3NX9U1GCDSJI4LqFpH+U7JAxA79Kq6M8dpaqFuAHcfNlTj1/p+tdTMUb9jJaxTEvtg2thTsbavp3qPVrgljCH3MmAST+OBz/k1LHdjyJJGhhBVvNZ8/McdAR0545rm7hri4t5H80NJk5ZT396nqX0Ny+0s3k8Vxyku358DgjNWU8u2j3LwwH60k19/o8LNKrsUwxUYzVKS9SdSoIB9BXK9zYmkvTIxC4DGq635EZQt8wODxWTHcBZ5A+dwFOlm3yowOBjn3qyDeWQtErd+4PenGfcQOFHHSsmW4aGDzCwJx8ozUlvc71DNnPoaVijfMDGL7XEwzj5lHcVRu/J1CzIc5kwQFP8Q7g+h7itHT5I1hVWPfrWdqUHm37PCNqohLH8Dj8TRCTjK6HJJxszkYvDEkF69xDCZYsZA252n3Feg+HvEXhzSrdpmtjp85+V125BPsR/WuSu5POJEplimh/5eIG2sv19RVK5DXsKR3V4LojO2XGyQ5Ofm9a7lOMkcbjJPuQeN9Yt9b1oXFqWaMLjJGM81UcbLqyPoFP6Cp49HtYrmOR2LorAlCOtS3sdtckbZfKkThcjt25qJxurG1KfJNS7MvDUx3Xjp1qtqF4s9sqgEYbNZxhvix23Mcv4g/0qBzdDhjH74AFcFPCck1LsfQYnOI1qMqdnqvIkmuAwOBXV+CpAbO8XvvB/SuLOCME1q+Hdbg0q7dZ3xDMACf7p7Gu9nzh6t4dbc15GPvFAQPoa6GNQE61wWl6utpfR3UbB4m4OO4Ndkutaa671u4kJ7E4/SpKLgJ6U7tWcdb09j/x/Qf8AfWKX+2bE/wDL1D/32KQGhj3pQD6/rVAalat925iP0apFu4iOJUP/AAKgC506k/nWZqbDyJv9g5FWTcgISrDd2OeBWFrF4ttp0wdhvdSoGepNJjPPvE0hkv45M5Gzb+v/ANesqBQwfcAV3pkEUXd28rOr/MNxIPcUy2ddkoLAElWGfaqqJuDSNcLJQrRlLZM0vKh7Rp/3yKrysYp/3Z2Arzt4zTRcqTjev50SHcwbcDx2Oa48PSnGd2fRZpjsPWw7hTet1+foT7QYA460n2dZBuA780RSBUCnpVq3jcbsKSuODXoM+UOT1uMpKBXrfwdtoB4flZkUs8pzkZ7157qWnm6nGMj5euO9aXhXxTeeFtOntvsUssu8lRtOOaTQHqXxGtNLj8F6hJPDEr+XiM7QDv7Y/GvnIRHGTXY6zqniPxZOGu7e4eNTmOIJsRfz71Wg8JapcH979ntU9XfcfyFCTA5B/lYgV6/4ZxZeErHzuJGj38+hJI/SueTwx4f0yMSX9091ODnaDtT6ED/GotV8UxzAxwr8oGABwMU7W3C9xviLUftk+0HCA1LZy+XFEsfCBeBXJ3F48zc8Z7VpWk0+1ECktwAKllHc2c8J+aZvlVdx/DFVbu7Wd3uJRthH3UzyaoSRSWcI805ZxyPSsq+vXkbBPHQKKaESX+ovck/woOgFZZnwcZrobDQI2tLq+1SQrHbR+a1tG4EhHv6dRx1rPTxVLA7R6bYWtlH/AA4jy5+pPNK/Ydu5m+eVOCSD78VPDetGeGq/Z+Jb1Z7m5u4YLhYYjmOWMFWJOOfzpWg0jxBE02kj7DfAZNo7fI/+6exo5gsLZ3WZlmgO24ByD712ei65cLlgqlQuJI3PDn6f1rzKF5YpijBkdTgg8EGuj0+8dWEqNh8AP+HQ/Wm1cQ3xV4bnk1oXulW5uYrkFn8iMgIw659PxrY8A6gIop7Z8HDBtp79jXSQyPHaSHKbL1TgNyAevI/CteDT9NgiXy7KBcjPEXJrjrzsrWNqa1uI+qWcbbdzkjqAvT9ajbW7ftHI34ipgLSBeIoE57qM1E+q2cR5uYF/4GBXn8rZ08xGdXLf6uxlb8Sf5Cj+0b/rHpxH+8MfzNRvr9gOt5GfoSf5VDJ4l06NcmUt/uoapUpb2YuddywdR1VuBDCvt5iZ/Kmvdamw+cqAfTef6VmSeMLVM+XBM34Bf61Uk8ZSZ+S2A/3pP/rVfsqj6C9pE3TY3cqEs0fzdiTVNdBvfM3PebgT0aaU4/WsCbxffN90QL+BNUJvFupAkGYg+i4X+lX9XqegvaxO3XRG7zJn/cJ/rVmLS4bdg8t2Bj1CqK8xk8S6hOxUzMfq7H+tVH1O5ZiTIoP+6P601hZdWT7ZHoHiqw0jVNGltn1GHzgQ8fzgkEdhj16V5vH4WIbcxkdPYYB/GlfU7knC3UgPopx/KqkuoXRJDtMceua6adKUVbmM5TTd7Fi5tIbSVIYYNufvfNkn610tkJoZDut9iIrD7vQ5x6dq5mxm3SLIz7WHUkV12myy+Y6G7hDGPLCQkdTk9a2SsrGe7ItWuYLfSnlijkUMBuRvQensTj8q5rS5zdwTouVdCWUA9j2rR8TTSRagMgm3VBG49Qev86x9KSS0v7hQcoqH5uxB6H8qfQDsksi7YQ4iCjHOaurosLxN82ycjIJ4warQ3sccGFbHH3c8fhRLqJ75347GuF3bOlWMLVLWeylImX5jwrjoapG5fIOOARzmujMy3RWOT5zu43c4NY99o0hZ/s8oYY4XvWkZdGTKPYSS6Emxc8LyRV2BoyFVAcg9DWUdKu44VeTcC3BGOg9aRLtoIwGbLM23Her32JOntrgpKC0pH+yKuXt2LaOS4Ta58sZU9Tg/z5P5Vh2NyspznPp7mtO4aOaOCMvtZpPLz+p/QVHUroVLt7SYSoxeNSNxUD74HU8da5+5wYpGDAt19P8AIra1ZTKhSE7Xl3KMHBEa9B9OM1kyuHkUxp56RRbenBOPWtombMH+0bqAkCQsvo1KmpiVsOMNVWUHcwIwc8j0qO3gM93HFnG84zW5mbU9rJDtYncjgMsi52tn0P6VXZD3NWtA146azWF5D59o7YMbDJQ+1dC+n6Fer5ltNsz/AAhsY/A1Ddtx2ucbKuFPNdd4Z0SC0gW/vow87jKKwzsH+NMTR9OgmWR5Gk2nIUsMH61Zu9RVk2xsPzqJSKUTYI025c7Z2if0xxUcmkoeVvkI+lc0Jm35GfrV+LUSqcKM461PMXY0BpaZx9sXPsKd/ZEZxm7z/wAB/wDr1hG7nD5DHFWV1I4Gc5pX8xWNb+xgOVux/wB8/wD16T7FcpxHqGPz/wAay/7Sfn94wHYUiaiwbqSD607sdjUMGqDhdTH45oGmXdy2LrUAV/2QSf1qkb3KZVuah+3zZyshFCuyXoaN94VtZLQ/Y5XE45BkbIb29q4m5gntJjHKjRyL2PFddHqrL99vxqeS5gu0BlSOUdtwBqlJoTVzg/tDIclVbP8AeGakGpugwEWuzlitJ4TFJEpj/u46Vh3Wg2xfNvIVHo3NWpkuJjtqkhHCgVp23iZ4YwGiVyPUA1GNCIPLxkVFf6Q6xiS3Ayo+ZR3+lPmDlND/AIS9h922iz/uCqtz4oup8Y+X6DFYISTdg5HrSyOkQwTk+lFxWRqf8JBfdBIRUUmsX0n3p2H41jPO7Hj5R7VLaQNM5kbJROvuewqrsWhYlu2fJkkLH61CpeWQIoC56Zq69uGjbcqlsZAWp7ewaa6iAx8qjv6VNx2K1ugViGTDAdc55rq/D9qXVruSPciDjkfnWFHaEXD7hjr05rp4Yja6dGVddsg3AA9BVWEVb52klZ2YnsM9hWN/aS6XeLIsaSTdSWPMa/7Pox9e1alw2F5Nchj7Tdyux5JyKGCOk8Yy5ltbiwJW1uYBu28AsDnH8q5EvITku2fXNb32+bTtJmtfPjmWZdvlddnfn8eay7ezlkt3uRCXRGwTnA/+vUrYbLtnG6eHL6Zv42VBn61kxzSRSBlYq69GHBFas7FtPWK3yYy2dp7VBDpc9xIQ22Md2kbaBTAvpcf2jatct/x8w48z/bX1qzaTGKZWDcHrVma10zR9KkFvcG7vZ02MwUqka98Z5JP5CsuJjtHtRF32Bqx3Wl3D3rR27NkQgsn0H/66ytdupItQfN1II2AZVLnAyOw+uaTSppIpo5EOH6DnGfarGoXstt5kskaEhgpbaCRkZ4P50nowWpiCV5f9Wksn0UmpUW8HS1m/FcVXuPEdwM7Dj61nSa3ezNt88j2GBRzMLI31W+zgQgf7zgf1pTDev96SBPrIP6VjSQ3a2K3D3h3su9U68e9ZLahdgf64/kKV7j2OsNo4/wBZewD6ZNJ5Fuo+e8B+iH/GuWRtUuRmJbhx/sIT/KgWGqTMVMU+QMkPkfzo9WM6Vnso+TO35AVVuNS04Pl3ZyBjg1yrBlYhgc+9IevFUkTc6FtYss4itS5/2s1XbXmz+7t4k/AVkIxGfekKnGccUWA1Brd67hVYL9BT5Ip55vNkuix6lsdqo2f3iB1OOfStaISeWxKgxCNvlJ5BAx/Wk2BeiRneNluF+ZiQAuMY+n1FdNp6TNMzStC8bH7pXnIz3/GuS08xNdbXtmHzngDOM11GnNGYRhHUlm5LH1I6GpKMjVDmW5kkYPFI5BXvGfQj6Ac1XCLHpWIizbxklupA4H4Vai037bqt7GX/ANHV8N83Oc9qq326K9a3UAJGm1cdD2FPcRv6RpE17NFCm8gfeyf4c+9dpD4U0q4UIqOJlHzMG61F9vjiHlxRoGA6r2FS2V6bVGw5B6L6muFuW512VrGXqPhyKyfEUu8jseKyktGW4CZwS2M9a6K7jur1fMTayg4wOorIubO7i3ObdyR0wOlNPQizTI9R025muzHb28rhQMEKay9Q8Lar9hMg06dsHJ8tcsfwrrNE8TK48i7PlTZwA3GfpXVQXweMOrg/jS5nErlTPJI/D2uQaclz9nm8k5JQRNvTHrxV7Tv36RxlVALE/OOcZOeteotdgjazDB/WvOPE0As9YlmhLKXw4deNucHt9DVKbloJxtqY95l5rrYyBNpUMSflVRz+JPFYk5ZbYwQKwK7W3Zx/CK15TaNbbXhbdw/lfxEfwj8epNZcouYzKgdIgOCrnPbt+FdETGRzrncSTySajV2ikEifeXkVO64ZhkHHcVHjac9xW5kJPcrcMJsbJR1x396tQXaTJtfAkH8XrWfMipMVTJU8rmmYI9QRSsirnRS28aKu2RzuGfpUDiOIbnkP0xVCHU5olCsA4Hr1onvlnAJQqw9ORU2Y7o1fLUqGEnBGeKcigdJD+ZrHguCODKAOwNWFv4gdrNgjv2pNMLmp0GPMb86aT6SH86oi6jf7sgNKZlPG8fnSGXdx/wCep/Ojc/aU/nVLf/tj86N5z1oAvK8gPEppxll/56CqIY0c0adhF0ySHq4P4U5JpUGFdQPpVD5vem/NTsguzVF3N3kX8qb9tnBILR47YOKzcNTgPWiyC7ND7bL7f99Ufa5MdB/31VMSKP4h+dOMwC54P0osBU1OeQqCoC56kVjkZNbVyrToAsZqkbCc/djY/hVIllLHOK6WDT2gsV+ZCu7Dbeu7/DtWPHpl3JIoEL9eTjpXVw28l0zBV2wIcZPBNKTKiirYQojPJtXJGASM4qe2ZI7RyZTubqq9D1/+tVq3jtJ7PeqsJi4VAOmc8t/SnXWk2yaXb3Ct+9kJ3KCOOT1FSmr6jtoZ1tIquQdjDaSCuc/Q1pKzC0XIxnpVCGMw2gY8ZPH+fwq+d32aLI4rcyKtwDL+6H3nIQficVp+I/h6NI0+DU7WcLucL5bnOSe4rm9WmkijcoSrKwII7f54qrpeqXs9+iz3cso2kKJHLAH8ah3uUrGlYabpe9Y5zLPOxzkkKgPpjqfrx9KbcrML2e2yU8thmNDwB2OOnSla3dJ3uAeDznOCpqd7o29jJ5kYV7gbTJwT+VMRjrGyB7dVbIzsIPNRpBPbSeZMu1gf+WrYH5VJeLJIzSRZVeq+orJcSO25izN6k5pWGdjottHrZe2MwcIo3KoPGT1BrLltzbzSR5zscrn1wcVX0a8utMS5uLdyjMoQnHvmrEbFoAzElmJJJoQjQgkPlxgetW73T9R1bTZ4tOie4nUqzKh5Az196z4UdwgTqOcV6B4HhkR7ucgmPaq5HrycVFWXLG5VOPNKx41fabqOnvi+tLiAk4BlQrn6E9arxSGNs9u9fTdxbQ3cDQzRJLC33kdcg/ga5G9+G3h65mMiQSwZPKwvhfyOaxjiV9pGzoPozyKbUHlt1iVsqF2jI5xWzo/gfVtWVJWjFrbsMiSYH5h7KOf5V6fY+ENO0tALFDC3XzOCx/Eg1fGnXmVH24kA/wASA1Lrr7JSovqcLb3OpeHnjsdSg3RYAjlX7pHsen4VshrK5jM0p4XncvLD8K6tLRpYnt75YZoW7bev1BrPvfDWnXMTxJGtt0I8ngjHfFY86ZpyM861XT9FneT7NmbcchwCtZFt4W+3XAigY9ckk9BXpkfgvT1nV5Li5lHoSACfwFaSaJawcQweWQO3U/U96tVrbMXsr7nllx4Bni/1F5HJnsy7f15rFvk1DS1ayuIkROmRGPm+jY5r2yaxcRkxorP2BOKy5/D0upBo7uxtHQAhSzszD6ccfnTjXf2iZUv5Tx6AhmLxxlAOcDnPStCBAz/OZFyWYMpxuHpVvXtFbQ9ZNsygKVDqoJKkH071VTakgkmyWViwUDPB7Guq91dHPazsTWpvGIZo3XO3Jxjjmt+zk2iON3l3OuRtGQOuc/nXPrGZLcYl8sKeN5IPfH6GtK0vDbKpV2ZQduFb/H6UgIr6O4S9uHilKt1ynGQR0/SobNheWrB2PnR/xeq+9aOoQyztlHXLR78j/ZOf5E1UkeOx05o0hUS3ZJ3E4KqOcCqTEdb9ojjc7Q28/eGAAKme9G5emF7A9a5k6jeSMsUdjcNLt6CI1qaZpeqXaM13A8SYIC5wxPr7VytWOhXZq2OvRW9wYZWVJJQWTLYz2z+dXbbVLqOUidopctn5OhHqDWZfeD4ryCIecY5UACuvUf41UtvC+t2lwNt7DNFn+NTWbUWtDROUXtc7JEs9ShDNGjg9mUVEmhQK37maeIA8LHIQPypbSxW3iUu3z/xYbj8qvI4GcMfT1qbspq5FBpEMLZMkrt/tuTXPeMbLL27ooCk4c+wxn9M11SzZ68n61R1W2Go2TQggEHdg98dvxoTs7icbqx5zcu0F7MyxmSaaExoFHU+v/fOKoTzIrrNLykqAE4zhhWgxltriYyKf3ZEAHcA9x9Dj8qbcRtIjW9vFjaFZ3zwWIzx9a6kzmZy14Ymm3REnI54xVQ1sXiyzRN+7C7TySwH5VlEZroWxkyBgDjPUdKt/2fcXN6lpHbStdOQFjVcs2eRVZo812fg7xXa2VzHBq4VJEUJb3+3LRD+6x67ffsOOlTJtK6VyopN2Zg614Q1XQy5uYVKIAWeNwwXPr/j0rB2HbnHHrXpfizxbbak0umRM8tmrYluYwCXPovtnvXI6jb2r6fZ/YEZ2kZgw6nIx/jxSjJtahJK+hz5FLHG0sgRBljWjHotyxzKViX3OT+Qq04ttNiKL8zsOc9W/wFXckrsqWUAUEMx/U1QGSxJ6mnu7SuWb/wDVSAU0ITGa0NGsW1DVrW1RCzO4+72Hc1SAr0j4Y6Suy51WRQWJ8qLP6/0rOpLljc0pxvI7saHpZi8v7Ba8jH+pX/CoB4U0XnOn23/fof4VqBz16f40eZnkuMDmuDU7LIyj4S0PnOm23/fsVG/g3QWJ/wCJZb/gCP61tGTjIJYjjA70hkQlCy9Oh96d33Cy7HnHirwIkdvJe6OHXyly9uCcEDqVyf0rz5FY9QD9ea+i/l67q5DWvAFjqV211bTm0kc5dVXKsfXGeK2hVtpIynSvrE8owAuQAGHsKdZ2Wpanc/ZrGCSeU9ox0HqT0A+telWvw0skkBu76WUD+FFCZ/HmuusNNstKtxb2UCwx9TtHLfU9TVSrpbEqi3ueX2/w+8VMgJe2iz2ebJ/QGtOy+HGtFs3erwRL3ESlj+oFejiQEkc8fnQJQo4BP41i60maqjE4NPh/qMDlk1ZJlHIVoyCfbrisqydba4mFyzAEqoGASDnHTv3/ACr1TzVJ47V5ldW0EOs3jXCsrRsxj3HnHr9aqE3K9yZxUdihaNb2FlNLISbkNuiTqMknH4DrVl9OtZLaachgRGTu3cAjGDTYbO3NvdNfRkzKMIC38JXim20X2vTHhLyKjJ0V+4yR+fFb9bmHQxtwBC79wHHFau/daBsZII6Viyx7WC4AKErWtYyB7UoeODz/AC/WugxKeo24uLcgDlhj/CqWgeHb27b7YVMUMZJBIOWI7CtjypHVxtxgbuat3mo3raXpphnENvbTESbPlO4YIJP0PH0NQ7pjWxlwyLLei2ulaKZD8ynpmrOqWNk9jGom/erKScJ0BHr+HSsbVNVt7vWorq3ZjlwXJ7/N/hXdaloFxJp8k5jdV5K7ec0xmVZHS9Ntke8IG8DLtjn2xTJdA0jW7hZNJu0QHl0j5/TtWH4rsJLC9shJvMctqkilhj1z+tUdLeaO9+0WbvC8KNIZEPIAHP6VOu9wOi8YadbaVFp9jax4JDO/OSeQB/WsvyDGipxkDmtyHVbbXdPW5uYs3y4QkrwB6j/PeqEgDSE9s1cb21E9xIV2ktuwF4r0LwPb50aecn/WSbRzjgDr+tebrnfkAkE8mvTPDTfYNGijL5Mn7zBHTPb3rnxHwm1Be8dMRno3HrTSoBwzDngZNUReqTkY+lMF0PmwqZ7gf/qriOwvuvHIGPXNAKkdVB9M1nNO2Mh1C9+KRbtw5BdQMcLjmlYdzSPPfB7YpnKk/NVU3JbgSD8KQXBK9aAuWsEDlsjryKCwBznNVzK3dlH0NIZwDy4zRYLlhZG6jnHbFKHJ6beneqn2jk5YDnj1FNSUkfeAHQYosK5wnxEtpF1a3vHH7toNoI65Un/EVytvJ5UOSxbzunfnjv8AnXofjiy+2eHXk6vbnzBjuOh4/wA9K8zhKy8NhUGCwTjJrtpO8TkqK0h9uvySRTOVG3DAdOM9qsWZVA8cCMdo3AOOtN8wu5dhyDg4HUetRw/aTMwGAsfBOeuf/wBVaGZ0cPmu0HnBVO7awHPBGDWTrVrI+sxQEfLHHt49s/8A1qsWk/yD/VlXAIJOWBrW1WFp7eO/tFDOUCycdCMDP6UwO5SNWIbHWp0i3E9fQU1WxkbxTZJJEjco4Z8ZUHgZ9/avPO8seTgcjvS+UMgAZ74xWPo9/q92GbULOKAfw7Ccn6g1qBiO5z6YoasCdyXYDnjGenFAj2qfX3qNpCQMHv69KC7Z9z05pATbBkqWP4UmFV+v4+tRsGUbiRn07U1iVxjBB64pjOL8WacltqQu8lIJ0KlsnAfrk/kD+dc6lzIqQtJJ5Tp8rKP4ucfp1r1C8tbfUbR7acAqf0PrXm+p6VLaXbwXkihgT5Mh+6y4xzW9Oa2Zz1Ia3Rn6hapGxPmnZL1A7msKRRHIUzyOvOa2xNG5a3uGII4THpWfeQnAS3jBC8YA+Y10xZztFHGajZafyOcYo4IrQkiSaaAny3IHdexqwmrSxg/ukz6jIqIoDTDHRYLksuqXcwwGCD/ZFVNpJyxJJ6k1NsxRtFFhDAtLSmpLS1uL66jtrWJpZZDtVVHJNJuw7FnSNKn1jUI7WBSdzAEgZwPWvctK0m00TT1s7QYVRliTyx9TWB4W8Njw7aM0siteSj5mXoo/uj8a39xYZEhz7Vw1KnM9Njrpw5UW/NO3gA4/WkE3BJA9aplmJwTSBgprM0Lvm8ZByDSefzxtb3HaqjSYGWPFR/aVjIVSOe3/ANakUXRIwORjJ64HUVL5oPJ4HvWcl6oJyuc/jTf7VXJCxtx3NIZo+ble/PqMUm85xms43xDb+1I2oY53Y9eaANVSAd2cfWgEZ68c1j/2oG+627HpzUbagWI3NyOgA/8Ar0rAbgCqAM8joT3rjfF0KjVbG4WMFQpDDs31H0NaRvWx98jsWrP1QLqFt5RdgytuQ1cNJXJmro5++tBceXLCTIiMqEBuvIOPyz+dLZpALdre6VgB8pwOeehpkUsttbJA3PmP8q5GVYnv9cCn/Zxb3ETSuAjpgnPJI5H6V1X0scpgzTBA8XlEsr7Q2McDuR2qxp84jlweh4Iqxq8bs5NsqNGwAZ+mxvc/Sstd0D4dvmWuiLujFqzOtskWRyHIAIxuPcVW1DS91pdaeeFuQGiY9pF6fnkiodOuwwCk5I5+vtXTCSC4tY0mJ3H5Y2UdW9T6UxHmnhvQJ9V12O1cGKKJwbh242AHkfXgivS/EHxNsNOl/s6xsheCI7XYthc+3HNV5LedJ2g8uFXdlZpVHzMBnrXmmq2Mtvq13DtJ2ytyvI9f60WvuFzvfEFzZ+OPDIv7JDHeWOd0B5OzuB6+oqLwbp1nbO0uoRbrcRnzl6/J3H49PxrmPDf2y3nkaDd83BXHWuxhMltYzLOBEk+Mg/eIHYD3OPypJNMdyneyxTzSSwxeVCT+6j9B71lz/IvuelaV0PJAaUBcrlVHYdqxjN502SPl7Vo2QPt1eSRYU273IAPpXWR3EtuixA/KihQW4z9a5WzEhummjK5RccjOCe9TXF7fMxQsn1FcdXV2OmlornTx38jElynHoc/0pTdKrBw7qBxtU8H6iuSNzeAYBX34ppuL4KPnG3tWPIb8x1j6qgfZ537ztzg0n9peZ8u/CjqRg/rXJGO8cghlJP8AsgkUiRXyjHmDk9NtPkXcXMzs/wC0guMEYHbNA1gRsfnXaRzjrXJCG9J+/wBfbvTja3pwC3Pc4o5V3DmZ1n9tR5+aTg9M07+2UIGGGe3PSuQ/s+4Ygu7DB6pQdPvJAAtwyr2pci7hzM68aruBG7I7c1Mmo7iT5oHTg1xg0nUAh/0s57ChNN1RcH7QMd+vH6Ucq7hzPsds2oLNG0bEFGBVuOCOleYajbtp+oPbYzGCSpz95D/Xp+Vbp03WiAVkyD7n/Cqeo6TqjKPtCB8fdIPI/StKdosiaujKikLrhSNyjPI6insR5sbmQDd8vrRH4f1jeCkAOPQ1JJ4f1luBabec/eHX862uu5jZ9gilaKYqX3IDuzwMjvius0LVliOxNrKx5B/wrl10TVHi+e1Ktn7wZcj9avWOiaxbyeZ5BYNwNzLxScl3Hys9REpU859+KQy7lI7+4qupJU9c0mdpOcHHqa4zsJhNxsAII9OKUTHbnnPsKrZIJLHGe2OKd5h68YpAWUuBj3PY0/7Q2eFG31ql5h56n3zTQTknIx7nNIZbeRidzfdx2ppkBHPy56Doag3kNheR7mmySbSuRx6jrQMsKzAEcegNUtW0yLV7XybgruBzHIo5U0r3QXGQCAepPNIb4YPLHA6U1cTsed3+lT6dOyXcb+YeIpU5VgKrl5ISYZ4zFIPvBuK9Cm1W1ljMU1uHQ9VNcnqekw3DH7HJKiM24o65x9DXRGfRnPKnbY5q5g3OXiHy9WPqfaqZGMGtqTStUhDLbxmRPVyBj9arHw/qbYZwmT23c1upLuYuLM7dijdWkPDt/tz+7HpzSr4c1A55jx6k0+ePcXI+xlM3H0qMv6Vt/wDCL33O54h6DNPTw1OrKzOhodSPcOSXYpaVod7q8u2FMJ/E7cAV6T4f0nT/AA/GWjPmXRXDT8cey+lcpHBfwIEjm2r6KcUZ1LvM5z71zzblpfQ2jFRO7kuirsd5IzxkYpo1LjrXD+ZqHA85sfWl332Ov51lyI05mdx/aiN1wPfiojesTncOD1rjTNdL1OSKjE15nrkHsM0+VBzM7FbobyRLu9SaiW4jiZm3Zc/eOM1yzXN4AAq8+uaa1xd7eEJYnpn9afKhczOskvlGBuBxUJ1JQAeDmuYa5uztXyWOeSSaYZbkH7jHFHKh87Opa/jAXaPqvYUxtTIHAGOgBNcyks4XDcZ9M0eZKRyRRyoOZm/JqbMuP4frUTan83AGB2rAbzmPLkD0HFNxN038dsjmq5ULmZunUdg3bep6j+tI+roBkKd386whE4Jw3XrT/KfPU/WjliLmkaAuIri8DuoWNxhnzyp7H+VPR1u02z5accKAP1HuetZvkPIm3cQD1wKtwv8AZVE3zGaLhWJyCuOlVoQ073LDtKImgnAG07DEF7//AF65ye2lgIaQ4TkLnqMHoa2Hnmu2NyGww4VCeo9/6VQvLWO4t2nSZ2kI+b0FawdjOSuNs7ko3JwfX0rqNL1KM5inG7P8JOM/4GuMjbK4AJK9WA6fWp4rpkID5AHT2rdq+pmen2e+SYJEq3EZ3EeYdrYAz1wefaqJltyzmaywQxDHy+/1rm7HXZrbGHDd89a2Y/Elm8EcUsMoVXLtsIbJIx3walNhYuRTElY7K3wzglT9wY/r3ouLSIRNNPKDcRnJDcAr7elY83iPyo7VYIyTApAdzj9BWPfarPfSbpXzkYKrwP8A69O4rBqF0bmdtpJTPX19KrxZkkSFQC7HA571CzEtheWPat7R9NSS2klmhlR2+RQSVYDufbNROfKrlwhzOxPBA8EZiMcRQDBZVwT9aVbFmkBXjPFbMNpHHEqqTt+matC1UfMo47k9vwrhc2dqjZGEbVUYRlM59qBZCU/d8vb36VstZh/9kjv1B+tSRW4AIyuPYVPMVYyI7JAOhNWk08cAjGa0hCcLnr9OanjhXP09e9TzMLGSdPXnjnp9actiqnBAANaxDMx4JI74yKBGMkMNx9+KLsZmiwUnBUjHcVKNPQEZ7enerxhKkkd+hpywkn5yefQc0XYWKP2RSBtHXoBSizRTg5U9sZrTWJQCBxjv60rIV28fL3x+lFwKaQrEuNzY7Z5pRFjH7ssfw/rU4zu9QcdaXDLjbgf0FAiE2w4ONp9qd9jUrkrkelSbnHUj8BTy0gHQH6HpT1DQri1j6bAMDrjJH40LahOeT9e9SFpV6rjPvQWbHH0PekFiCWWOCLfLKEVRlmbpiqCaxZy3IhSZmY8AgcH8q0hCrLtdVZTzhhnNNjjVQRFGqqDngAZPtQMYyL14/GkyQMcf0qZ41bnnjrxxTPLHAxk/SncCLLdiPwoDEEndz0qyIeM4OM+lNCBiMDPcUhlfDc/Nn8OaBHIynk49TVkxsOqkU3aW+Vv50AUTAznO7GPSo/svGC3HetErnjkVBLA8jq0bgY4OSRmmS9Cp9lj3Dv8AhTngVUzx9assj5xsc8cknik+zvgZT9ad9Q0sZ5twTk9KVLRdxyc4/h71oCAgdOKTymz6j2p8wcpQa2XOFXj9ab9nB+90FaJiABGeaZtZm4Xg+tK47FAWo69frTGtgTgDJPathYg38PA70CEDkqT6UuYLGK1nkYIphsxgjH4Vt+WDwMk/SmNACvzKR6+tPmFYyBZbj0AAoa0ByQAO/wBa1xauRwML/OnCzJPSi4WMA2WDnHX2pPsJ7gY+ldB9iIPI59aQ2YBx6UcwcqOeNoQenFMaA9Ao69q6JrPPOOtRmxH92jmFynPGFj0BoMOfvDn6V0Y08YyB+HrUb6bkH5evpT5g5Tm3hByAPxxUDW5znFdL/Zg+7tPHf3ph0rJBxzTTE4nO/ZGxnYcetM+y89CPaukbSMjHr1qE6PI3RmGe+adxcphfZlGT3oMAK4598HFb7aLKQPnPpnPWoW0K5IOJT9M0X8xWMsIoQD06VXkKFSGAK9xWm2hXeT++bHYVC3hq7bOZWA9KpW7g79jCvbvAjiAwAeXHJI9KdJKtz/qGRDjDehHbPv71rv4UuX6ynFRL4KuQCYpCpNaKa7mbgzEu4YowohIL7enfPf61T+ZV+cY9ec10DeC9X83eksbdiTkH+VT/APCG6iy/MbcMe5J/wq1US6kOm30OYWRk5Bzx0qVLwcZBz7HNdDF4CvFB33kSFum1Satw+BdoYvdI5wAf3XTvxzTdaAlSkcoblWzySM06HzrmRYoIyzN6f54rr4/AUQB/01+cnaqf/XrU0/wlDYowS7mKyfeAA7fhUyrxtoUqMr6mRoeiwQbbm5dXuEzwD8qn/Guo8pSFO3L96Zb+H7WA7ljkJLZJaQn+tXPsKZA2tt6ZDH/GuSUnJ3Z1RioqyI1ttx2g4UfNn1qYxEDKfMnBODipEt1HygH5T61YREHbpzWZRR8kMckYH1xUghwOOg6n0q44DLwpUHvTBDnJDYz2NCBlYLz149+KXy+S20bj04q0Iwclzx61GAMEbgDnvTEPh0z7XGczog9GBJqwdJn+yeWt9FLIv3NykfgetYTjUrO8lmtGS6jkxuiZtu3A6qatDVbzcinT50zwzCVCB+tOwXCN543eO6VQ44IBHX+tTO0YXAXP1NGRIS74LdORzUoxs4GeevFIoh8wHJKjk9u1Sjawzvx+BFA34OWVMdgKiOzdt5/TB5oEPE1rCCZQ35/lTorq0uAdoyw4G1w38u1NRVZdykZ7ZHFReWoY7FAKnDcY/XFMQ9yqMep9+wo4PzAscdx0oB25GM08pvOdgPuaA0IiVKep/ujqaQYXGQwz1NO2svTI55A5pwyR6ketAyMlsE4yT0xxSAErnj86n8oYz0HbNIFU9FzjgEmlcCLaRx69qaAcYLEj6VPtJ6inCPnoAfWi4ER27QOoz2pMei/ripPLxnLYA/OnhQowDQFiAA5oIAHqfSpyuB1/I9KixgkkjmgGRBdx5A5/Gl2shwOPwqyFHT0ppXaMY59aAIowwznkU/aGUnBBFSBTjHanAd84osBUEbHkjP05pfI56fjmrKkHJPFBAxjbnHc0AVPLYMW7fypxiz0Yn6DGamOW47UhhwuQxwKYEaR7RnGKftNKMkHAzSkk4GKBDdnpQVOPl29OvoacN4A4xmgITglz7UhjQnbOfel2YPIx6EU8IT/FnHFH3DyDn6Yx9KQyPYAMIOf60IrSOEUFmPQLz+fpUnBTABqs+lgksjyI2OGVyGx6Z60wLw0i9K8+UrY4Xdz/AIVntG6StG6EOOoPaneVqKIqw6pchQerbWz+YqwJrwx+XPMsq+pjAI/pQBCiDOelSeVz0yCOKXyt5zsyDS7TGpJzkUgGCDByeB9KPIVicCnRrIUG9QH9skfyqbaeN2R64FMRXMKhSRz7YpvkqBgjP5VcO1cDOM+9I6pt5AHcGgCsIlIwFwPpS/Zww6c+vNTCMkDoR+dAOSwJA/Ci7GV/IGOR+VKLdTyV/Gi6kkhhLxQtO2fuIwGPfmmWl1czsfPs3t9v3SXDZ/KhCuSeTg5wp444pwh3Z+Ue1PLE8nJz2pRg5OC3aqQiEwqpPGfbNKqDgbVGetObOdoTjPY9qcrYA+UAnjnmncBjQ4U9cfypCuCOG471MCxBBXAzTduCTz7jOam4EIQk5JYc5wMU4ja55+bsB1p/uvTrjFOWPbkkYz3FTcdhqqZOg46ZJpDGQpHX1JqxhScZH4mmO244DOcnnH+PamIiyoOdwOakBDZBIJ6YNDYwAcn3DH/Gk3sqjqBQA2Q+ucDuB0FZTeILGO5+zgSzSHIHlrkD156Vr+arLgnp6imPbxzpnam09MD1/wD1UDG280d1CJVBVDxyOR7VIU7KxA78GoY44oBshjSPPOFGMn1oDSeeIwvzH3oESurjndz9eDTG37csCDjjB7VaWwumHDIfo1RTW8tuQroyhvXkUDK6gs4O3JGRnBzipGlVQMLz7UvrnAJGOaTjZtBKj1BwRRYLmfeava2MSSXM6xhicY+Yn8BmrQIlgWVHLowypHTBp+xHjO4oyn+8OtU00m1SQvHG0bknIV2UE/QHFOyFdltJGyVHzAdCOaAzLkEg8ccUzyymDl89s+tN8xdwG5Sc9DyaLCHeYdxOMn1xShTjIkPByQBSqWxg456dOaUFg3KgfpQAzEgJBcMcdOn6U77uARnPajcGXnK54wepprAKQPNAbsOKBlktxgjI9uKjCbj3+vrTRNkYIwB3zxT1dQcq3PbNKxQ4qCATzjj3oDE5GBn60zd+XSgNuA4bA55PFFgJTyegB60hXjnGAeM1ES/tzx3pd3brmgBwI6d++eKQEJ9xR1xx6VGzk9eucZp8ajPzdPegCXzMj7pGO45JqNshev505ZG6LTQ2Mlhz0oEPEg2nFJkscgECguAQxAAxwTSB8DcQcdqAHHaT6Glyipkkg46Y60zJZskEZ6GlZ1RQwIBFAxSVDhSQCR60rKh4BJ/CqV7YQ6mY3mMiyRZ2tFKVIz15FQWthNZsQt7JNGTnE3LD8RTEaG0ry2MAdeacrFlATgdgaiJYYBX9alQdfl5654yaLCFQZXBHX86NpyASOPagDPOQe3B4prK57iiwxwJDMoO4eopm+cEKNsg6ZPBNNVssMSjBPbn+tPHyttyGY+gosBG9y6lf9FmZiBnywCM9+9ThwRkgrx0IoHzEEg/j6Umdy5P50hj2IX7vP0piFCPlYDPFIXA+Xv8AWngqFPBpAOXgHqSetAJbhGA9DUeW+vOAe1IjZUZJGfXvTESlnUYyCR3pd5IyeQeKiVmDtwPUeop4fjBB4piF4PD4x7jrTyqqNwGe3TmoS+eQCcelKZMqCE9vSkMcBycnrSck45x6+tN3Z57jtkUgcE+/0/8Ar0ADAh+enb1py5xjjApnJBAyPenspwDuXnpzTAUMQegJ96aSQTgcfrSHIw3Yew5pWLDb/dI5OelAgPzqN6g7e4NIXByMcj3pH247/UHFNc4QEZwO45pDHsTu46+tGcDp17ioEkJ6sQak6nG4YP609CbseshYrjcG68YzQ0h3HnH+zTMEfxgD1zR5hXKjnvwKQxxfJBA5x1ApuAfmOeOBgnmld9y56k+1MBG7kc+tMCRZDvOSCegFKXDqQ42nOCCOtMDHf1z3ALdKYxXdnAb0IoEPQbThQAue1DKjMSkjg+zcflUWCwGE/P0/CnYA6EZxSGNaVISDJOSvocAZ9abb3kF3My28yvIvUCmFGa4wm0qBgq6k/rXEalqN/wCHNWdzAEcjIK8oyn3qox5tES5WPSo7p0I3AitCO5juIzFLyrDH09683s/iJFIFF1a7W7sOlbsGv2F8QYdQWPH8GQpPtzScJLdFKcX1NaW1njlZW2OoJAOfvCoOPMMUm5Gxu2jqBVCf+0ElX7NcwuhOSsqkH8GH+FSt58iK04RmPHyjIH4mgBxkIPO445+tKWYFcElmH93pSKxAJwpIIODSs4YBzx3470wFz84J3EjoT608yjA+Xr3BqI4GSTwfU8UjNjgcDr7UgJDIuNzDn2HNKrqyYQOAfwzUILIoy+c/3Rj+VCsW+9909OMUwsSl967cMB3H9KjDkbg2wj/cx/Wn89FKlR0Baq8kjKSABj1zSA//2Q==",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAIACAIAAAB7GkOtAAEAAElEQVR4AYz9aZNkS5rfh2VmZEbknllVt+6tu033TPd0T2MGg5UEBgspMxlBCIIImGTaXsiM30IfAdJn0CtBlInUC0omEySYgSINEAFyMBhs6p6enuntbnVvbbmvkRGR+v3+j/uJrNsNkCczznF//Nndj7sfdz9+Vv/3f+d/u7q2trqysrLqaWX1fnXl3gBHASrczqukBVzxIQjVw8PYWxCYSglsNQlD4n2klcQA4bS6GuRKCtt7YKuL4sClqaqQ1TUiIZexHLoQKIqtkP5ncsR0QKeIGIBhVoqoq0dXTvH+Ak4gyTlp372uKxL4oH0w7xHYgI0UggAGcLFp5mLmAvPhBrjOBgrHs7T9V3ASlVsMVGzgbMBYB0gnMS5MQKVRW4fLhLQwCUbxFkQqZWQNIUktVJA7RglexpN9eqPYkhDUsqihEZEDp1wMegTHa2KcojGxXDvQ60NA6Vv5HWthE1jLASIJSVacK4F4F6irSeLnVfKWMsgmrqNgsSwjKlJHqFW7DApxwZoxxaeDQoQSQJspKT1Egge5hQBBC3JnZTHP+f6eG/V+sdB00Sj6ButcgZJCGNp2jgjC/Rp4j+ql5qtGQXJIg140IsmgYgmqXot6TY43xrk0LxjWXbquFGhUxlbvF8EtTcOvCpjiZGpqFxPMsGgckljQfi5JiS3JOqOAy5ISKKApFSUt5YKaunDQsZ2ca8JVC5UicuAQpSc3QAhXuWNgsqZzUsMmMadwjlMGmBw0ueRGf28faJNSjij9g0hC0zRJQQy+ViwW1JKWIIqL9CRYe9adngKjSpq7vrKCmk0yHKtEqohHXUhu4Qol2iAtJfUP2EFoxEEr1ihArKgHnoPzg9hFtqtYKdhVFMQN+5jdccMKw8qUrq6EFY69FZVd5NQ50QStppJQFxV9GG9JX6eKiG4ROLEPpMqteLbzHcpQ8ShwDxf7ziCx8lK01tjwik5DAmhNHy/kbeFoyWBNU+Ft1KKKrktRzcsBtILsncB/MixSI6fyr6pAvYStDSeXFl6qKpG/4pNAOzV8LzLqSUvFBApGRBAGFGA9/AuUVVIAl6IGejhNV3g26l7RDNyKJgRBkRmBh0IKrmJJsgg0GRFUJ/TV9ZUwBEwLOeclUDerWf7C1sR21xe6gCYugfBFrlmejO81T/Evrxm20pFYVZd+LVhpl0QVq6OiA7DVA40BKOiaRDXQyEZm1HDFjXHksoSSKDsAde4Yog1cQ9NTTOiAIiueSX9LFJDlUSSeKxRM7wmPlmlN04AG8YXRZbZ7rvUnmt6NYLgsZQlK2ePSHZNr+X04K6QJKgVTfoAUq8655V1D7cnFUJzOot3hTfIAT+krbMsI8FaUB6sqEDZg0AB4NIeBW/zhoGjBLYmIkKFGSqpIHeMXrlKbXgxyEVL6hJfEHIXQsHsUeKGKCSuyozBSO0GjkbL3J4sqSlhnUiBrpniYOqAWKDj6utBjbUvxEqbBCakM3z5+KWQADgGIFBKGAxDmQzgI8TPAJKgKPaNC4jwcZW6zc4lQ/MvIThWykto5tIzt3MJeLZrsBi/fCc5fvFawxqfQi3VkDqaUSZ1v0M23HO0y4ArssB4wPsAME5FbNGlOtESXl1qSjDh0jeiltWn5hWE0aan0hqpQDIKWfdCma1K63vBpweZ8hRUtAhuTomhgLv4VWok20g8LbccEVhw88+Pfh1sC4RwoxhrjD9vs/gexCrldy/BNC7L0y1JCkqVNEVRKSys6iRuHDujX8E16KAQ//JlCQrqYcbuA5bHUoGCK7cK1jahZFagJ/hV7zx6J/mIQiLyDVdSdILiNSljn3SgAPIAEeSm/oksa9XnA4KGICg8QlenUD0KAVCXF0eQqnF6CjSolQpU6fbFKLLkkvbTStNsw0X/jCYLOq1XV1UuI+GVXuMqMKlikqwFQBHxLnS54YBY1HtqSFKCFv7LWKX6ZagOXgT8PHO0I49iH6sMNFm6lnsEUFAuwnMJtdQGMPn8eaQL0UauYddZldBwZFqWr/SYZYX1awfKFNGEcJCnFGRg+YFxYoD+ALSXKBgzT3iaO6uLlvo0ChhFaDM2ndqCbooknaRCY5KSEfUcvvCj8NVRgUQd7F/eM3lCLoFSYQxwm8U7lvOKKwSBaEU1Vk/iPlsVXDvqx6+FVjBIZdF3deC6xBJFa2LlK4i+RMCiAwsONBGSqCUc7R24jSbpJ0XZwfNQTr3BJ7dpAB4z/YpCA1uemgYCEVg0nbDyBKiylbNkR1l2CrgWVdJXkbBteIjqfxshoHRELkYyoxKWXJvTdU0IaH0GVtmy1lIY2UiVrZFxIJYKzFpr74RLuLWmpXQM0g1Qjx3DpygSqLGr+IId3KWxatAtSnd6SkEiRgUgMPbVaCwuxKd5iD/gUa0zpmKa9xTzIQND0QVK3Vl2TGF8jUPRyiCGOplehDZ5MSjEtD8eTIZegNKizkh+KlucgIvIq87oqqlP2JrEzU2IPg+J/Sm63RBFNrqFlUC92QKhQpzgTayJygV0BGnA9ZaMrm1SFyqu4EwxnLZQ0pySLBpDqt0VJDKTFO9SrXGJEzTY8wOgigyW7CC8+pUZZJgsGQxkStcSXbEHJRyAhe4tvOkzA5eJNZEBKTq0bCCu0SmMgTv5NCjy2NIbeP7KR/uFhtDt+AUZ8FBnBIhSCVIbJEGTISGWr/6Y2Hly7QFrU3BaFmlR1e6hAWJgTJSCh8BVPaMM3XHTCQ0VaEcZeEVo0ZBpaCLnZwis4cWBw1RQUTU1yo6+w5x6SL2FV6VIgweO9NHeo7tYlpjY9eQYqtSqlWIJfx5Kr8QFRC8Ev5JjdXdrzRfQqYF2pIvbc7scA6mYVu9IrIOOWLPmQJJ5SG2AIEe84gUkf7ZoD0BbQ6H5NY1djMVxxbagkCQfJUoqJEVaw2UTx1pey0GaxchjvHEKBE3QLSMWAsyS/eFRywYtxD3PtBLmWsGZGSyzqnJXooSoV8tJ+hUGUQeqgFEbD7IWzAQd6DUzWtlNPH64lKMwH2EP2pUs5Jop1VPgC5bZPWjTPqRjKq5nTrKksAix+kNBZCtGM8wuDBkt+qf0yD0MF5kP9Eu2n8ixo4dzvhaR22n4F2PJhED/4qhVpUFI+7AZGbWmjIleHgISmsHVMrsTLrOgAfQlUSNBlRNnTOo8IqGDiDSfhflKkbCK6ri03O2GuqQhjk8Jway4Jriycrq4OWrilKhejsxUZCWtkRvIn7YNSuqLcc41fEE0Zqrpmo7wy2yZGO4qtSpT6ggNDQR0VzUmNH8Tq6WLF75QyZRWLaBzcrlfTUUrQ16wP6pG/OJX8QjbcazEzIxlFq6FfqjmUhgMpoYtM4lFLQQQ4ldICUymHIkghE48YJ6Mq7qE4ghFbkDpXcgQ0sDKCWUnmVJKXp4GykUnReRJu0OTXgxQxKqnwh7NwE+JbOCUcZRvbDvAKWtwGiUoGIo1HSwba4JX64By7HsZxJXyCzqlZIVYF3+IUVOX78y9k3OSUY4Kch+xARBjIKViDTKUl/3IqC4KRjJKIn2RShG3CTZHK24HZLw8oUUYPvdBBwN6yCQlKijRPWlK2dx1kNLBquM1jSzJROgE4b0lH5/JBLB4kSQJm4hU2OkgaQMsAeoXxEkLcjOhQ3V/Kdx0aqk5XUG4+DVQOEGCF+bZcUmSZ1FK9IA8VEP62PgDeOr4eT+IDoOITfQD7emmRRlUGSUaazutomYzoMDGxsJ4yxRNTfyDALBBvkGVAewrQs6FiDal5yYukxcdg+aSYGU1iYSSrB6YNkTg4YFLXNUsQjZ4qV/9cCXBUK1FYMTDQOqkvWIOS5nYnyy0YMQjNE4Qi+ZULIucBK8UmkXNTKcSBSwkuFw8vMBn8J/rSc0EtlM7HK3+dSwVhMqjelM4svy5o+ViyjEdoymyZ1zRpKcn00i4JujdclBDachxA/7tcEs2PjgOiQWn5Sffg6HiBe5K40nso6jWSlgnBUZWG2i4P+A6IwhTvuUqJV2hVuFKk7uECqadELaURyoRDYD8/DBBe8gSr8GBjBg2IQak0dFQj/qMgpxAtc4Iup6WhyOVDMDkOvPgUaSnbNVaiCNwhrgEqpiogaa79xq32IeybIg/UKWcNRKWEDLo64fV2VG2bEbk0VKvOJVUHBpeTSUNyk1rQ7h54aVEZG7EDtwog1BrXiKJwo8EB6W2SxH7pCYLy0FuyihFpg88JKkLcLnQQEajIgah2MnVgLbzScq0yICdrGJuKrsLAsYQUDeIMNC0LpUiG85J9kgdhRRk2amVi3MolYo3HmuRH0QaNOQDWB5XQoWxG44eKdOeUamgJG31RMoi0hDCO9CaiSwrr5Bwhn3WrpKtSiGN4fNF5SZlmIHp0aNXPSi4pwI3o3YjqV4jKmijmqUuwZ5/xH1UoGzgnGyMybPRZ3VDFOVySAuZbGYRsJUdCEAjJDGDTyABAPaZWBnIY72TRJTjoiXvAcjwpLMpAQMUmNNK15GJSLD2b5KEUBVapMxaPNN1gWvIt6LJoWmk3CTAJ+4aTWMHTJi65V0jeyuToV8OlQkGWqgA3oR9DeAjIDZQYFuDAodPIobnnobwh2UCsGFKNEYGdpCbL+a2Kq9KKNJgG3zqiDKfB2OLWwHKsfxk/dEQQAoRdM0xUOJE70RFowwqT5kdgpW3ozCgTkmNLI+TjQaJZ1EhjY0MtsoZTiJILhqBCTQtBLUn8B0dj4kVdv6ZuV/gBQeMYlQSX/5vLB7OiRZI5hbmoQzCQcALq1Exj1zGl/O9xhEPjCml5MnSmCAEUnp5atWN6E61nm+hghcaQRPZA9ZoTkdLkvAwFFPDXC0VjXqhNkUafGAlcu8WFNnBriEN6xZtYLpYSR8ubDY2ai6AcDVSrgDCkXDDUEqUt5dOM60TSS6fBelEpUPYqtXH2AkUXQKRisAIz5wEDMVrYBHQSEVW+CNMVDx64wewEppdGXKOIljdmJSMI8pNdnQx4VP3f0ZvsgWNSNTLYtfIaBoEUaVjIpspAWHbZESWEIzBVlpZIsgU4kSp1CRdaMOJj4wYSCQsBUuW/+MkeHhQ9MdP8NZZilhJtTqOENBb9PgwGpIJzSch42MgEQeHVtU4iEJLyZ6jTipi418ax1bzwGUANhQvyhXvoWYURBBABwyUID0/yrowukTkXDecKwGfJSKbxR9KUGLnh85DxMlw4Ld45JmqKQoq7flnqjT3GIxqUwboQSFF0qlh4VbAgKtP7pRgoJ3qWTQYjHNIkpXxUWG4xkGg4FwYRKWAewiGpYuJUcuEUX5CbgMiTW0tIJhaJpCZ3zB5pjDv/ZlUhh6arF5WqK6YO+GrIjETDXvXjmxLa1DApjLvBjbGXQR8CpcTbgcG00CgpBW9psmTCMC3lBxQWnchK5MZzEE9A/dTmnqxMMGqE4EH+qJowjvB5cO3AXPspHCO2Q752DbNWHpJUHgES0U1RLrGfk4f6FaQqC7H6HADwZIEEdbSiIxlBRsUDhsSHzMh3nIj7EArLfcp+o+Uin4GXPOzVOmFMlkLNv5dg9GtXl+vasLhIDI3qa/0LmTNYjpWv8ILSUlKXqFIeKKXozFRrOuDK2CQGpXQIbiEQNF8REVn6zMwtVkmQe2W81nSZaqkTKu65wnISGB4EYRuUxt3EoJgU0cEkSH4JgafOt/cdregJeST3kRk2hVwyBZQaLcnEjia/kBcQjKZNhzbGHQeEHFzneDszDRKF45KmYXVJDWFIb/5sBhWyHHRZHQmEKXHd8QBXNvHygC0gdAXxnGyVDp4pkz0dSsFBKQGRKrSog6jZHp7NWsOlhqEcRdwizWvGRH+QgQ2hXxQPN4n9cRpwKVU6JtLaRaqgRpgUw1FMSJVHjkAqHFCVhYF9GV3n2BOihywf8ib80CGWoHYAjscGHkNKIRT8a8Ak/SKs2OIu7C1xSxwlxro4hEjZU5wQ8kC9lAYd9W87huQeKKpG0iPNqgfmRnzuSYBN1VamgvzQXu5Mo1Inl4lEmvGlbgR7Cem6mGxOVbxoBgORRljpD5gs2RXrh0mq5xxgYxd1VMv/h6o8DEcDGgCfFFIBlSrL4im7gsk+M8gU3jzxhHXHV8vKTZROlddSBo3jRrqprHtZvR81DklVAP9RtIeUKhjkZIVlxbsmzkgSyYoovASMhj4JPaJcoM0+Q5Us3zhLslI5JMbidtFA8AiHkNnTF6g2XsOsaSigap3SRLSSJeKggNAilW0OA4KWhylNqRDKWgAqE0yba1gtkJHJwy5KlcJYrmoEBRA54E6JhAokIwib0H7iEwzIcD+ElSwRgwKgyAU0iiRGxUiWKEcVCRSxdOrbaFDKyLdla0f3Gr1y6tBi3pM6tF/l6O1V1pVKXVIxU+smOmgDvxhGLEZ0fjpGr3jKXykdIhywdGII4j+hEVw81KiFsDzSi1txHpKNxpXmUSLi+iOCnOadRIB75ddZQUSsJ0qURBE6VG6GOYoywX5KaksOSk+ICqYWR0xkWBIGchKMtVxSjojZCWvcdUMXaOhrR1gGhQQ5YGAYhkaABI1vmJbuHatIgXUeX+P/MNq5PYT18FscWkT8WKHIBFANoP/8ljJN7zBScZGkAT44WUqaIaAMrAa8EIZREYtfv5L0lsjm7sb+raRBL+/uUrRxbdhIDEFFFZG4sFKmXgQLTteOSIJmf8JYQL0zIoaQMthzuAWQKrqVgiXrsGnRlB468UZBrFEja0ZrtPI8cMoZNUJJb+5QE6UqVyZhJOeuXJTSdHrI7Wg4iYU+ulopSKU4Lo2/jyQBt4eEREWKro1CDQR5Yc5kwWKkWsQZPqZxeA7nCKloEhCYJOAJJD0cC5P04lDcPJdczmGZVNXX/0CMW3M+tDOREIAQgyQOBqYAwt5KrtQwa/jBlOnyaJkwAKwDZMK5uJb+iTSBjYEX9TepaVyKmoA+A2FQBHlIMTBooIZQ6bEgHMVuZGFnzjfeAw/FyKU8XxyMx4iABxb6JrhRrDRPUVkyA0Mf1hH8FpaUI64lV+LnQN62spWlckeQUDwaLnjShTx1KL4tdkgyi6N7uJV+gv3FiTJIWpE0NFObQ73EokIbEHpgoBsCD1KKNmeh8ileGklwUC7M63ZSsjo95Dfk6ltOiyAhQQ2LIpOFvBuCuau8QFLc32IerH/jqbFt6W/HiuOStFKRHgVUWkjiZkTJ77KDU8lgJTmYPUOKuJJk044yBPzAJGvBuCa1UHgFXZzmnkbeJFWsI/br27hR+YHk5s+BtGcS1Mr2PYCkVY1S6geQ6phMQHaqkHJMHlsFlohUky0MFVFWYErSEQhoqXFzk1sLPgwHKcLbpGpVi7aY6iJq0qJFCj0cK6FRG2up7RoMoSosW3mo8YAJ2Fsq4A4kUpCAkyMtKWglVqT24+IMNuovMMBlGOLJpB0d16jCjPejwkWSGkbbCaDYssIpfu3eJyKRbsuFaBwgKLnW3DWooMGxOpL1dDEoFU3kQKD/PS+CUSntLF4YRYY2QO+TrrqaX3kTb+lcIHo8wgdVI1JXhdpzx4B76RNxSXkgWMkkc/6Fo2BK6zjyIWyULoWlh5OitLBxWTITu46UhBZU9w6HVWmp3uGUtBK3RFqq11Ligch9W/FKbqmdXmnlLJMTg6rrUHFQCJBeRwUKxTDWwnQ4WtDyS2qZbmJFO1lEDTQPAiA8FEBKIIOjIewSmtRyrkUhIkhu1yoDHX2QAQckyCSs5DyktUBLjypJLAwYhjj8i0Fn9XUOiYNStvyS1EHEL0kDpG2ieFUSR8KtKBTfJDxQX+Sgq2ejahAIVD0Yjn97C8HfrM99IbYVwMDAQB0PGHVVelJ5cIiZ/AsGA3ug4r8FV4XWH7BA15aDEOXehZNzyU2Kg+11gNnSFa++moZtqzwoiG2dpgMEF3mVxkRBkFVPjEtAin/kmyLczSImf9l7UpCUxmKlEMQlqdG0S8mVlMSYptolV1AS2qlE5Kx4jyE9vCMtb9/0EunmaM1fMu0UIVOfNSY8YgtpZVH0DWuQBitrh69YEFeJoIH+DHMeNCg+rVCBBpU4gEFSWDDNiEZZidEuEONyV11DKYryeYuko+YGUBPZob1PaErTjzKRTD4lrVORpmPMfBLUMGp2cwTVr87BkTZWOFhEOv8DvHNp/IurMsXjYr8+R5SROUcxICDC8mipAyDxKBizFO0hczMoSoWZUBP5hWPHrGiz1OSO0AjkZLAoe4y1XgkWF+cPy5Mdtzwm1dJrxh4cnRWgB8FCAFCHon8htSf264DdApW5EY05saj0Km7BQmGSwjpnsUgWw98vHoEGv6QUbcdrqZZni0FFc86p0Hz1rT8l/ZusKubgF90QFZ9jGU/0a6eUA1AeynyA8gDctawykllIUuWOG7w7SlJulLiq3SORj4FWHQzf4kEwRfB2gi5OjMgHwpbBZaipFUCD1sVzmSDfltSwIz3hbikR3gNQ57zOCwkHREOgWSJcm9BS88w81VVSEqzpDAqMRXJMkrYFLXVT4ViBCCwOIOYByJiMfQtKoqaHYA9TA47UAGUSCqVFPmAD4S5J7qoSsyRbal6cwx0yiZcQo0mJE0uAySrveVTwQhJuaJDtjHVhNpVacrRryMkeTCqNPQcpch0TSJxLN7ulR1HIsC6o5UfwhRSLUiV99nhBVqU2SJpSIpfYjs0pBt7hKYPmADxcmR5FXYtHPG6Xa/eSPgmUuSJgZOg86gZBU5yub0qXSQoLg2gRqZy0gXs8SwBKk0qBYbMTotBxQtTcFRqxLXJFgu3clqrUUVgo2imKPgS1VNALAz/AEaiU0XFJLlIYJFkCA2B7K4dB45YSGJAAuegVA8bRGT4AHZDq/IqZAhTt7agsyTpPOfELo4ZttI6kGAxnZaXccFY/Eyp7DfXw1xn3JMyuYgAh/6VBCYCkeCeBbWv1kW7SskoUEk7DqUVLo7Ih+OE1YLVAIVsj5Nb2tMSzqhiYd88AaJYMSQPTKJvYMvTLooHF1oFUC+NxczYCmgEFjdWVfUkE9Wv0yb5keeUkbBpG8Yu2noDGhjjOGzExZb/NcdCn6djkdi2LSUsLcyEcjd+DCJQlg7NPABaRgVsFxIbQi2eAgdsFTvGVsQc4FBZm+DICP2R9VvuEsjEClRAmih8bU8ZS0O0MqUPkASGTLf9NpyjRtXsIk6H/USgJTXzXQrbDYZmO5kUVOFxVO/7PHTlgGyiZqmlO5NrEC5LIFpzrUo4k4ND3D2ZIgQjO0THj0uitN5xhA78VCz2kL4IrBwMkRqFyRvglKTSGZN/VDE17vQNq07ozZcufPLE8hpMkCpWu97MheeUo4jzprM41TIJMO1enu3oymLvIYJh29G6NtXMxg2k1BkCg1lKvyokGCJFvpOakcvFGfChu5FgnWGcGXd6Wouo7Q0DWmhfC1FoWsTAcJQwkVvUTSDHIVH6QRmDTziYccOkQFOmKnaEKRyzCGfeUTjbiSJoxQiJa7LFGMbcAerPUI4s0JqfcgxGvRHeool2pGPKkGwr7CCt84gE1rKawgvkjpZHISt5q4y3TtKr0AEUkYTCCABTwAz2+GOSEEegiy600gLZ13YR6lPQK69+lRqRBXISmq1eSFVRogggpH5isWlCMoEXZpRD5geYpng1RA0Hz33U8UFbuTQ010FfNyMazpwavaSA9hKH1lDxu+ogXTVwICY+HppvWVW08iBfWkCKCbgmi0AdHZIQ7ZHIohRKq8BA00CNKUI6TwIRhIA+EqGElmj4YLm/Kb4pwrQjyaUyluDMt/yaDnzetghoPlEbRKhkZaXL1r+nSokDsGyG7aZmJgkTBVZjhlmzZqH+50AODSWMn/QMCI4iKdNmkNoFZQ1JgxWKutB5K09bKe85SSq445Xl/VzQg0/rRgr3cKLL+QIAaX1EHRHlVK/mh12P3854U5PBMt0cD1MOrnk5KdAqH/mwcRqDFHVbybOSvJhKYVgakMlJcTcIndVErvVSpjFQbwtWYD3djssjsjg6Ca8ymCVY92GFk1dhKNmQv2dW03AKlDJWFXono0hY4eHPRJCFRiKQxU9WhLbFcYMDOUAWq+jaqx+K1xYxFq2njZNLIko2yzNFikSpSfrJAggTS+WdSjGoYjboulS6qpcWDsxQe5rNNY6pbeSZJl5qqef7prMQbA8PFJqxaWkGDruNUqzQjUijwsytFc9wR5K37RLDIGSlkzlCX9CYtBkdzczIBTnjeKPdXg8AtoWhIikzCujFetgFSR+vOTomEIzoGcJJ58jGYnaJFoAe5TAAkqkd0CZhIjAu4Satszc03UFT6cC61mhkDtOhL2cFIgCgBqsKXCpjdRquQFIt4SKZx0eBpE8tBngFHwVDLvHhClpCA0itnwYjlZxVgEGaKDdMWEGYmN2all+yS4EknN30MLcmB3vMEENzwDN8ilKxgyaNKaUkpsbnB70erq0wjU6nO1SAjm6v0FpfZogJd8YSXSUnhxKxBJJlS6AJa+yFzdSktWnJd0E8VEazRVSyKQZojjW5uUFLJIF1iiik0jY0+accQwHhSCwMuhE0aMixcghweSY6/ms+ilZkAjhheui5F4blCclcfm07vtDhS3kPFAKMhTDLWlf7gwLqLhFo/cIDAtTtTjvGRWniYmHMWd4FNzNoZHXRzkiUIt+Qmzd1dBmZAUr70SjOTNJsmJsAqW+nrdgThkQ96KijpwJa9fJItLbfD1+cniZNagXtL11yjcAPnaAhynrTA0954P0qHJ6kClU3vJM8NIj7gGtYlJ3J7XOeoVJy0VOLrlPLWgkbbfVJURVzy8GzkkrNylrk0/SefzqQSupp6zTTNNsARVlIWOWAj5WLx4tleakMWH0jQmDQSIe3o7EKuG1N6wheiQGnCU1TQL9hFmSBsITFYsn2IbBnUXZg0SUArnYxEaTXWuJZ74iSO1EgyU7FL/gXhXMFyYugV3ulaanDCgVARi9SPgdfAt6cgWAeEnmJsP4kn41KmmFp29UvuWPRGSlzWUlM8wQ8T0+Ac62J5bG2yonYzM9g6EGQsU7+cNF+UuDglpSv6y6/VpZNGz4V52Uo4mkSG/IpenPVEIkZCFKhhNhQgWpiBy6IC4a2l1Fip/ZsHZOqdWLYahqSJCiuTcshHCz1SejqWrIt9PFEIAekKyZcaJVGl5FS6RWV5Irex5KKE6FIUza6yL8iFKoXiscYaOREZC+TfQ7iA9huEJH0opiKTjeRqur7GpJJz8lI+JEZejJXcjrT8Fqt0XUcOoOiIOKeJD1tdjRIjCmeIBkvrjoiA6FcS5ZsQJ+krYiEj2EoagUJSx0oRt1Ud5ffgU7w0qDiBrAY5Wvkd3KHiSo2QiAx9Lw4+kYhRCIVIWucWsLq0Q3nS6zJAzWLHIlFhHllVWCz04CnYjXJoVbiGkaCAO89cm60dVtkDkOcP6aIzieEA47p27HiqsJShXA2IKwozZd9MDScqjOKYXAa7setSYpvMgScJFaAsMwFomqabaFJMVWKTm6BJa5mdKgo5iNLOOjmEEVAskpxTeAoMrUSW0ciJDBSPdTIDzKF+QdZEc0e+Xi0nCTdCkXN0a0WVs7hgmxMplDKSdddatmII98oJilB5LSkdvWIm6vTGo12IPwh1OpnrlCVrQx5AIQlVQ2gc1VsK/tQtZhjrR0sXQ+p2FLQZEVgSwz+ylixgq6qyDlX5A2ANK4c4aiu0yY2XjIZUlHDRADHi3kAxSruiSBVNh4DKASZ5DyQDzY60cjKgEErNQcBaADwnvulZsZGtI7yOgS5oDBz71iuFH7mOK6QYLaArfZuWaJtQUhUjR88eam5wIOkpVRCWaMHOKcyGqAxlUP4rozr7MDZZffR1U1kZlasBF1R7YlQq5fi4TnKRAxJAWErXbEGVWnaJp0uFecaPsjObdDi+kSeRUWSBjkcLp1wQUrmEj/42GJ4PkmSM8OKBSjzegZeSE3xOYrfSEc2JQxMe4Ebv8JB5odMHIpC3QExBZniVLLmV8rKNePtNdp0EMAgCMGQiRrYPAkAiWAiHDNU6PDQ4qEkytWIN1rQCxbGOKmMgUR6jQDhTQH06cSgpswRwxggokBq5Su/4hnJUWk15CFCdJBgYIoEkuTQhgSPJcWAji2ZLO9Sz7Aw6JwBaXOQPkwIhgf+mrXrEpNBKE26kdrVKT5MjqDlcTrAhUYowW2oksomdFGGj4hwyOStXLSVuLBs9UasKPVBo7VqkplGo5Wy2yCYqlC4DRGCkw1shTYQ5xl9YFW2TIn6CCjdF/0goOvEKNQ0Dr/RKabTBq1NkF3oFwwXpHNRryKqSrJ2FUFKiKm9wLCWJK4bpaoR+QAjoXZ1BOBgDA9FMB1f0kHl2JLf+QitpsKAuUysa/CHrQjGwGAgMREapbxkS4v1r5rSkdZ1JWJVFV3GEWi2NFA6onbxys5PuvwhUDVQuZnQB7RRqZ2gapTw8hJUK5UxlRR2iZZs+EwfUIhI96kihBzgHJ1jF0iSeOkNQDIIn79LCgBZHuuCYJiT8TNag4QgrVYom9UCrBP40ueFFXlNW0AP2JViA+lavGQb1YFVyURRWlrE6q4sci4vVGo61UVDZ/JtGrQ+SeKFCwa4NIGmT2GBcYB5xzZsDBgFSVU4bxc+ZkwzLlbo9dEa9JaxJm5/FwgIVaafw6lkTIDjy4/MN8jfkNWEvcc0QE0NuHsmKsK04KUWbFLCU1ZJwYOr1IMgUpQiXIp3sQaZJZqIs0unsnGCofJYwZ/QJHrIpnaKQaSmksmhHUzLKSA1KVywBn1BWWY+krXIDP2iFmnDFOUPoQ4dxJVsC5EVcXXqkEFu+N1y5hdcgO8UiqM2CoKgBeLDj0lUJKMnVRzAhLowB8iiRxaHEFFOUjYcwTkWGo0e4ajfIYRGx4UYc0wTmMEE8NIliAHWDbINShKIWXhkAquiecjHI0ZgCAplI7trynjL8FRYXcZe0DRAMTnG+WdKQyoiYhKYiiOMdTWdHdb2Xh6PYSttcgKDB5PJXUCSUKFhCymRBHL3qDwrRpYqVDm0ldR/oKrmoYK5RDJzK0Y6M3oUVJHDXU1BT+sSsvMGq/KdfqkCSTDPkiQPz5eW/fXtrCR7HowMKxE1gmSwdypgdxSKc4EdamJXqBsvzFJGygnNhBC3AZjW4HCoMM+g51xEZwWygkIpQdreoyCW9uBY40OZ6wjJXEepj2ntGQVu/u5RLfhkUM95JBK7xgsZVatxRePKEUZSM0j33mmQ5+U87ahOt91Qil0JRIbWKZ5RdLiOgD5CYowVNA9lYwUULsZRh0fWqeMBBVmiRG8XRcpBTF5iugFEFtMQQqJ1qA7NrwH8zUqR+lFXihCuEBCM9p4IXsja1RIOR0QLegcx5po7lVlSUTs9hyVG1XIt/SwgWekfFgnEmyqEetrPcFHqAmPI4Cjs4XZvAk1D5XPEgy0gKH55s5/Vc6VAc3kJNcs9rLey5brDUGqhatNkYNrqyVJI2oMhbyqhQsEIYPLVTlLnXbPwahbjBb5c4tGkSi00sv5QCSuiu0HUmAyAEVlMzWiRBZU1FeJWuYiIVcPl0j0ljZpnBQeqn8CyQScp8KN8+OjyGrjoo4dDORHPINuoqQ50iOYopNqn6PThQCEmqYYMeSfeMN0NUKcvyCE7pB0ohhy7mhy7RZHhsbzwJR9wyWkKXLAzpxtBHKhpUrPmnp4qmxklUSQOr63Z6klQprTCgrJknejwiTvAlt8wUL/STa/mJs4zyY7inOMkk+KS4aJt0RS/9Cn9ZeDTZFeEsrfg5St8hrWc+QgujkE03qQON6NBolbRKKqHFusv3GszmP1MrSApcKEuCOJW92KAbGrZAfs1q4E2FYAwiiIWiOzDxEHoqfSCFb9qASFBOdBGZiJ4grqrKN7nY5Nx4gKLWISzkoIZCZ4QyeVrcpBWWxw6YLiU0hkBomTQkBudKLKlM3EaFMgHNw78LAT8VQfJTZS0Q6WsXay1StixzVpfSpkKeS46ysUsNIjAXjQToSKUJni1UTbeOyFXlG6umUB5rhIovoQZmFpp6u0mI7CQWfUSYGH0DK74dtBQihB7WgpVNildOzywjQAPs5qBA70uKho5hKVody5BxE9XBX4uHKjxD0FOIYF5Rx3sVWZaqKIfEUjK0dWo0Riq4TFPrUsDESn1Ar8cwd0mFfLNkWSJLO2Ca6jnpkhkkNcFmQ2lPwVGB8Da9K9XsUZESIBZHsItRAQZY0wuEKNVTFalcVS+6YpFz8V7aKA/RHARNQC4WPlCKsXzwASIs8tFWIo9c61Q8rLY1j2s8ECsJegjuNIaKVRIU1jEadgBQlGtJrEMOjZFSBDLkxCSwHsjZVDXP2WvwtUiYCkXDgnvPi13Qbl7IcYbPRMkV0FJtQspDA1t3+gG8ZoEPUeHMicOwP06wqaePiIyuJjw4ImhIwCGh1OZCGpKMFtSU0q/aH3OGeGG2gJj11zIBCvCC0+GlZayPsJJcSJiIDoNwmfjoY6Eon8QZDQM0eZoZSxp1AhamlSy7ymWvD8wRLQWrMMCJ0nIsts0dQvWP8ixs4SGowipWNIVGmENkCdWGPnYW5zhCObeSkhtwJ5AI57aUCkwIsZQ5auHVYppQkvqldToi1BRQU3urL+SFDLwfAagMx9JTUVrFoBKa+YZW2DrlL1zDBXQORYpuKQwAPUgmryyhTVDp8nWN1DM4MUFcGTT9WkghwpkZoyxbnuUtrGEaaoyDSqT44juHzpKJShmOiBncIyOPxqMiUSwpahh+ZsTDowp0l4yCZrLnqPaAYVfgQVL4YAgcS0gGgY2klmhMdXIVOFgM+paipVbIC1sp8mpKBpiCUDJsPCuZbCGrTNciAhEh/yoyIoY6gkKWKNTiQoKWzYCYm3CdqgyDVX8tJZ6DfziohopUDEneeqoQUBfHQG0gESmwnCfbwcwUM6I5KBn2OyqiUYSIcZHSWI4maIgXsFzQMLg0Np2uvLSE6yqREcOQ7twB2tG6H1mULshQciXKj9SEGlvC0Usn2sWTwDs8PrfSkjJ/CgmqZ4JmEBcISe/ZTUNQ6gQnBCECRxcWgeN4dYSl2dg4g1BhMTPcV4AAYayW+Bmv26VldX3EiLs6QmdiacCqyydzM6WpIhVyqgqDFk7hiDKyh6uXaOQ5h3DIIwAE6xZHyTiLQlgH6IHCaLjqiNTINbWxUpr1WihNj2pD7VGI4VSkMOFY8ow0k/Bk5Q/JMlePsBPfcFhxiuQYGVYiC0JG3KfukQcxCMlqaaJ/sZJHsQ6vyrcuQZQwrAsYcBmIk2pyhySxoHUeAAQ4hmiC0JUuI1cmMHamAg1FSVEsdKWCgoBFGGga5CEVR6KGxdBS/xqSoGRzEIsk1J6q1BQXmeiOym8bxXR1zA6mpnXVIMe8szyJC7AmetacS4smFrYURxAAFHuCoKtEThLn0FLokmxaCIbUoBShsCBGFROUoVoDZ4EiF3lZbrRp0ARXzFa0hEohL+ORoMq9fAlr5AZzGC/sRBujVtaCTZ6mMIGZMsgVP8pVvkXbZqeWLIaQmVca2QBz0LrbVSBUpCbys+TwD+fUxUENE+Fihk3qxIEUGHnpTRKLO43YqqesZKMIMGjpRgz2nwHNaMkJEA1EmIz0gNcmLAEVkit8g5uTuB5vRYgna3WFsrP+hDeZoF0brTIJLL4FJzNjVYKUZN05aBC2thspVOYAOrEyBC54v1jIRwJ+UaATs2+CKqyuuV6IhS7gw300r3KD9bVEWr1lFG9A2wubeoejJ+jLkxHZSOzEtcKgTI3U37lXNfp+Nl/MZ3faDDmt3sbq+mhjY32jNAM58HCHHto4Cj4RDCf4y7eU4xI2ANCiUkriECGaQ10TVhcDuZ0tZfGBnAQGt1xrTPcU56JSHKjxTJMoI1CN5RpVAJGNKXZhqb1qHi4NNaKkAq3rT1KpUImwJqf6ob/p9YuTU9iZ8RQG5DtXAcjJMDvOqd1kZua2rCK5mCXnYkVjLqJp+kb80iOUwXigVZLFBSdmKqvF1csw01BzS2Pp2bRtFNIZtGDkokyCkAkoTgQCFMEiVQiphHV3GIeeFNgnn/BBZa3VQUqy/FQRd4inGwSV3hYAIx5SCuXg5JOxQiUISjuLr9NAKUo1gH/Lk/a8EgfKiG5yHjbC1eIQIcWrVJA4PBVGWVTPjlhKxUZIVT/qLRUNVN5yMCJpRYUW0HO3K4qrRACJiVVUhIp/UXp+cIS1mJouA4kIJ+O5agduoFJSTTuUUaVdVC5mSkM6f9ZWyQx8J5YM+fkfRTh7CMsVuCiJ6KS4LQwEyaqEKlwWMpEvHKTTauUEDqjYSi9L4k1eyDpeYYekpSu18TWxHeCnV6F/AHXuPfntaziUapWljkekI+wQpRorQH8OdGjbjIiXG7HJDUe/RYO0p3Fh5yAGasGgbke9rzdwQNsVgKAIGkYS5+6KdvPCIB5sYP24VK0sVpVKlrdMytfhFRAFY7SYzW5u50cnl+cXF1RkW5PJ7v7WZDHaGN3f3d6tr8/WfQZKbxtH2OTZzZdf0w7PIoZ7pBmryK6K+kcxA3irkSS5cMAOku7oZLUwRO8osJeCoMlNHcz5MKgAwFgFf91gStTwREVMXP2imKRNe9SBTp2kgpQkI/0wFlDjJVKIgw9WlMB2ZXY1S4wAaU0pC3tBlywaFf1bAqN0EcRrUUfhsJCj5kXmA8QhGLTISkaIB7rJ0cEAjnWXbjUrFYCpaI52ISx+vAKS/82GzktEfzCK80JYOJzLYnhQv9MEchdJR5QcCFsta4qlHElSdgEWpXiE+fD8iQxqE9DonFD+UgTL8ZXz6olVldTyMd6DWxpiGCMtdiutaaI3hwN8FagCKzS3i8zUSbVMDaWxRAuq9GB5ine1LDic5CppjgQKzbjRwkyqp2DDsLompbK+HhASkHkO4clU1Y9lMGw2AKp/mN6zZJGYZTXiRQnPcBaIc1L7mx3K6yK4iil60eYClJxtSWoiH6lET0SgowTwA6ZSQjx6QEh0KHDQIyvoAJcITdciVpECNE5N2zZiLqEyIjAiSk6I3pLX5FbyoHaeQSWHCwsomAQGQZHxLwy0j2ioZRp9wC8+uUZ6OIDAXQB+1IHYq87ykOUaK2gQVSMasCo8lpiuOiwTSyj8qQ6NBlLloevQVJFfuA6n4BsrwlqjExy7vShKgZivzC+uLr56dXR6egNwY+1uZ2d2+Gj78HBje4sJicXsbgb92jrNaebDw47TUKkqVXu6UYlhWHOMDqt6lsk+DY1b9GA79NsDzZv/VJlmJ5yhQVMcKVep4vIiLzYKQaDOMag6JHjx4Io4iLydWm6JGszCy41WNHIxVI0PG/WErcjub9F4iqIyatKUjByWfJlzwfJmoz23HxQUvChbLW9cSrceDVwMACBVqF8Amh6coOS05GN0oDBrywlaqTYoaTrncFAfoeWzsHqgE/FKNEHfi6e5EkUFbc4zjVLkGBGVqcGzD2pup/dEIrSeJRY7FwImmIS2gAxEXlIMQuDF8g8iwUV2wqDqMWYa945VW7SgiHorkU1QMlONcCTIJJlEzGXZgPRGb5BUKKLVKV6DRdhF9hIkUQPJNkyQDFehoQZKgAaYo1AUZoxDQEWiFtrnL8kxT500USS11HxpGi+uJgTw9kmYbGJakzHAop5DN/rKJyiPtM7yUmL6WI7xJEXCktykybXxN2Cqwuow3yxs7oSFd6xSOMys0pSkAgFMUoMHKYyAgqwXB6KGWBLq7JrSWFLR7pnGQRkL9kvoesXB5eVgdoYNoSxasidZDH8wSoEXM2jM48nVH3FQTLAoaONwDYYpPmwFCWsIzHG4T2BSqU9IlAFq9UxJIJl/F5HTVIjVUsWOvCHbSrxQuJYxhnOQ9uAIOCDdXkjRNjyF8M2WlfntfH56ff3Vyfmrs+ubWx/Q11fvbxaL+dr9aGN9fX0yWV8brSxoAa5vZ7PZ1eZ4czwZk83ygktlrv4o8ZHVRAzuQln/7Lcjt+lCMOEhz6K8vvMQyV+L9oAM9F5JHxKl8DnfnAuRF7gTN1Q/zkUmIHcsHjRdpYLf4EY8wCJZHs7wSl6s2rliIQ0fQ2ELogLCAwEEcHazVoFUPHkuJMW88VCTVjycxlNaUqCNZFGC6GlgPkBawFwwY8rL5pH3DBykDkdCkU80Vtd5MExx/spRSoysgDStDpVVrYAbLBRysz7JlK4ROXCYz9paVxA4ipnQwbRoaFo/xE+q45AxK/klW1QIB8KRImI0Ah/xvi3YtFSlJp+kJk6hzdKw0UwDwpvS0TAqx4GElFjuFVUfcMlJ2kKNlpXgOUzFapbolES9EFaHOiqbhaJApSggbrb4FN2SvtMN13JWotHLkPSwNMmHIw7lKQFHcFLtACNXeZVJXVojkOitQ+dLmGcyaOSFklzgTUJJMUEs2Sq1WAQSud36ShDe0pr4OJww0GiqGUXIpQW5DkTCEK+0DosIslb6gaQnAvqFQ7tSG0d1WHmzugoozqGa7g6CEnFYXudEWt4lRZJ4OOkqVPlKNME6A9bnPCfTGthhsZJ0GZDeKpGNSWXkoDo3djh5CWrpI/M4KwFF6vemfJwgW3pTpFMl3VxPL29vX51evTm+uri8mc1Xx4z40DJNpxs3a+eXF+P1u4379ck6Hff1m9ns8uLuZv3+8Tsb6yM3xtQo+xUcBtE3yjTFAn9wsgyiUXo3wQ9dV75x0J6e7zLUBx513zkx1ad+A65TUDpmhxtXw68dsG/6VUlVq/o1SR0/ppAYLu22D7/ckmKREu0HIQnE2Z1JsNTZMZncG/bBUi2rHzyijDIsLsbsMM8tdrJPmekuiTAiIWmyHwiSW6lidyGPSpEBj6JQD5AU5HbQpW1SgTSmAAPPKWs9TdELlhlVVEzzYRP3gEQu9rrDzuT6b/gxEU5E/alH00KuwR1YiqO6ugC5IuA2eDNIkcZUl0kFm9w0etA4hz3ogTcYTUyX12SCOKRYlhUmrF/lxGHemGJa2s7wTrRCUvInL34gpkAZ6QpFL5EeHg0oSE9gp/byn2fMxjI+klWMK/6ooy51RLUh2KHDVb4KirBYYEhVH7qr0E0OSl1VJ2SVujwDlAGA9lOfoFZKmIhuMlx8aC5PBZYiVHLiEoPD0RgnHnK5xDvFVVFFa4JZPyijCuUZYC048I4T5AqFLh4EPgh02e2aix4nQ+oJwHDkK1STo01YaxTJWKuIqChul2Q2GFVFw3o2rOXoURzBoedCzVyswYArTPw5k6KMpjqXGKK8DiPcg/KMLu0SxYTAAnzq0dnsbjq9O7+6Ojm9evn69PjofHpDL3/9jgGhVXavW1ss7kar89W12dra9s54nR7Y7XR0fr44W5xubK7v7+/SBPAMQTnCIvVHISs2dIg1im9GJtWUIJbCRRRPxYYkd0RJHxxYXoaTziF+I4+9QotSF5WVQdJhpUbwgiWDYmPIIZ1o/hAWuKdiGmHNkiUaXmzZETtLK87SJGsHIcZU38cIB8CsH7SnjCy0ZEvkEkqnfW3O6J+WQpuCU/rIqviXKGlKqcbIp8o60G/QoYcQ2v9Y5yWCktUobBzRgUaUlmSfDkDiBTeeIzqXhEpWCEOZUT8PPDCj2YPYP8uJOltsOYhy5Z80NTWWcl7M65xkkaJNLpySpzCjnak+rTrLoojESEFQRthKMqQZSEy2FTYk6C0kWWBifFEMQFN0eUhSjmJS0GLReXvV3Z15nvlkWSRfl1ZxUpcIXR9E2iGML3uqSvSDYITmVOEIr3QRLUQeHbNxAaiGnHsB6CKDKoWJdTLWjpIdlgNHAkFMHoYK5EKxze5mBZJTy5NuUKE+FFBSApF5HEmsgbsDoAtEBxHAV8kgyUpMBZKkhmHTeIjUj1ZiqoQm12BEdtt2+T0AL8UQMU0oEId0i1vLaqLxqXeBN4+2Q5tiE98YGXSEkUzlCBmVqUNBqZ/to8Nc9yiAWFRoqFw0mEsdpdCA11A1t9Ktl8VxQGpxN79jsc/19O7s8ubk9PLs+PL09HJ6czefef/XOJS10GL15MTR/+np7d7mZHU8ns7vr84v7+ZXW1uj7c0JzwWwzWArjlLdauqVpZNKaDQonyWrVLK04VyHesZNpWTTOWkaGCPlEGs4YbpubtR10TpDZXGKQSA6r9hqvYrBiJSCE4gTaQUqMZpIwZEay0Dp65NZ5akgCaLJA2uKaQQCtV6NFD1DTeWL0nbMlWmxKh5hqhACUoIa562w9gzC4EGtyqWhWjXl1StEjRLb6CDzTx8iCspNpYkGN3gFkJvg3JmGLRrFl1KbgxoHbqhVtpDKHyzLgxDLQMsgrwXEBYAlvoGuVf50C1z/JKUnRZnepIgcOktexm4EBEYSZAlae1ri9Q3AhqJi0gJr7AbtNFhYfuGvlFI6EostipRG1XeJZvJIquQVgtCkOiJeqpIenhbgpnRSSpBUWpxzLFHfhtD5dbaN+3ApMTpAP4qNBALlhAGtAtrxUCWhCh7UL7QS3V1fsOhRWWtyPFJaNs3kAzNhBWmSQl4cG6cSOSQ3+mhRwA5pjGLL4A8CHd5ZN3xzXhWiidq0MPGHelVErBwSG24ZY7CSQi+XAHI1nKPFWrExlm5GDQGJgRZdAKwHhqYMhheadzsWpRAjDVT7Q5wiVl6BlTlENDLDdCCkMWjqhsTaJ7rVOF66BPUgrA6wlQFBaVnmkfs2mmZGAs24ve6p+mfXs+nV9fT88uby4vb69u7mZjqbsrPmymTEBok2QdzMc1qu1dXJeJ3xrtn15cnNxQmN+MYY2Yu72Xw+Y0hs/2BvtLblQwCsHbDwNl9jsgD5VgqItDmxwouTUhR1Uaxorir3lfImJU2MltBxhWB/nJhkPSV2RwU/uMELtfhCBffUoCSiM0muBMCgYbK5Q7tVnEodH/nB4mc+yjTsJE0tRFoxaeckSyATFUiwykAi0ajHo2FjEOSILqrClm1YERWu44znEm3EKz5BqMJgiuhBLp8HRzMDjfqpugHYkWamyvlajljZ5KAoWQhKUpoKInEoAd3UhFT+E3JWy29B4yxr/TjTnhAFo47GCcYSJaYyYQBDtUk+NLyUlNZakJyh0Xg+GpSV8ipFADbNNbP9NDlOTFrkNr0jtGSK00hEUyUOQkXZ/CaGPmzYRD3UJxDLd/gXmVBC4Ici4YGSxCHc0WN96R2+nFSqFGuPO7HG1LcPeHE0p3WlVaexKHGFtMQtqDqKmEsinVWjDpkIRZnoICtgtdIeUZaZEUh4NwFxXsibZpLpYVu1wVAZLI+wjmcGKFTJllAaab4cEJqIwgpCo1iy7Z5ZQsBrikQ5LYFhoHkCIIiSpWmozG50VUHwCp1qtj0FU4qBWUHKp9UdMrQ0SAJh3SiBhYsJdvaUw4sI0HEDyciOYDviKFolcFMHykeF+csKn/4IQXVGhUyqWKuz2fx2enN1fXN2dnt2cc1w/9XlNXxB2RqPdyc7i9n93ZSqf87OXHdzZtBGBwdb+3vb66PF2dnFMfPDl7fz2Yy6nTUY8/PF/pvjMUhU+mrMFB0RtvWyDVhd57UJXyTL0B9ql4PUmHA8oi2BNqPqEreYnctDJNQXufycpBgeuxq2OcUBFp7SQ/2AyOKUdMpY/B/BcQv9VtSBP3AAdpxd/oWmXTufNGwEJCy2D0qnStV/gGT98mhpMJI0CsDKASexChMcUwpDoMEgqKKaS1e4nItlrspRx9SvrcUCEVD9U5cXmUSgGuHnRUBKTIYUKk59XanmQJCUq+/sN1RxjWqyMt0f5xakgq/iW4BGUAh0aZy/NUUZ4a+i8jBegEoB1tJJ1nPhl9pTYwUpNMjpCDUyoHUM6ndAhIRncMCHS876urRu/peXSEFs7mgmNrUGpmHYDAjHOtXy7WKPIeaf9y3YBAFrUaT3PDWx8SLUMl9vl4PkKnXLCCsOglKIUlYE5+FJM0g3m8I7PusICG6kJpdA0ro404hG4TKDNFg1cvGD7blQg2/UeIlSARHDDBmqI10zWjyjXZTLYxTIlskxD7yaV5apiOrZrU08zOCmL0ApZo0tAA9gJklbgAbviQXs54ZjdFCy0iQrUuYAimOQFOy/GRwlDMfjMLDiS2JpET1kR6bABLyMAljRgBBngO+/lZHbqZVDXDZqOONB1vdiQNHupSYjj4esvrKbjQKk48YynaU8CQK9nV5fXk+PTy7evDm7uJxPp/d3N9Ori3M6+3u7W5ub472dLSp2RnvQZ8bbz+7Nsvb40fajdw43xuOXr45m9yf3l9OFe+LFhPXV09Pz/e3NjdE66PPpjEp/NF7f4FhfGY9XOMNKpzVtBk+2cqJBBPXe4CGDHFKkSKp+BwRevAoonumFEwdoPvG4Qaa5cQo7WEkWTDZQ71d9HZ6SABWBIxew5E226lfLJos501okvVIbroSQc7ebUeFhgYyJYQYIAC162MswasaZskvOSqio8E96C0tdjmrM5RKsqAhQXyassgQiJ9p74i8XU6RUumfNMlDpgXYXVIRYA0hveSr8EtiYyIDiFw2XzZuJ6mLngOAD3M5Ssf2AdaE3ZA2HkG1Hu2GyE5sUeKm4muGlnMO+8UNHYSGUItGQNjVIllVhFCUAotbWdURpkXSQsgJWdsNPXEkiybcouBM5uEl4aSYP85az3KpyaciFDpV6yM87Si4cyuPoUspG0Tq8rh09uA8Yh7QbLNfOqBIQCCDEPcGSNwAMKNLDO6rkFklDSxp5Hazcv0lIyRAfIwu/84ltVGmiiaWpOCsWE+z+gSN0nFomiKLdpVyk5hS5oHmNDR3Ha2gC7QTNn6Fa0vdUmVfGhVnDKs1h04nVpD4IAxomREKJ0aBoEn31rU43Te1rLERpgBzDkbjfRCN6b6BEWmCIk9KWkGOxMiILcBBpkRVM3WaA9lIR1GH0YdfNKjthblsxX8zWrdpYlFvb3K/c3txdXV2fXt69fnX6/Kvzy9vZdMoTPwM5NzQmrJW73dkYrcy3tze3tkc8vLPhub/V2ebGYjKmQ7++u79/eH2HOqPR2s72LkNDG+P12fyaUs4jw83lzfSW1UMuX1ofb2xtb25PNpghmGyMfHsMCTqpbCjjjZfh2kBKEvVTHc3FDayD2/EwmDCEsNK/8bswmFe1gT91cPwkvRheI72IjAKvzDNzjEItH3O/+JkfABTh1SMIYvSI+drCXpPLCqosTYD6Bb/aWw8X02BYPJEQ7EgFUT9Vr1ydgi/3iMgJoAmmwEEQPyGEkFLxCG83ZDOeBInirsKGKjqUfCk5wsEL2UQYYnjTuPXECgVcwkwvdRoKOlEPUpo4dzJ1iMoF6ODIAR5OXgiYF8mYuuFIhZ9DVPrZGOcw5uQ15AEUF+IcnkksBSAsxKV0mJAahkOWlb+cSTdTwga6htNIA5UrCU1hhYXUR2LyoHb4loxfJAOtzBckcR4rbSCVJZJsK6C5OVSgBEXVUkeQPghGBXpCp2vXRhpFJYmW8QspEUWSjiSb9S1KPJAHvlLAM82kkFgkwsu4+KbkSKBUbgrJYkiGCWjlMc7hDCeGjosJMngKN6LjvVeU55/ci2MFS/xSRqADjtgcJAP3bHJkF7jRJdIMMVyqdioVKGDyj9nObkj0Kc5q32UrplQVIjHWZKqy1dXNXvK7SoD8KN7zNLXFr9NbhARTYCj35QYVKlnhnUqCei9dJF+Mmd1RpdMXny+mvLR1v7bB+1w4c/3+5o5j5ej1xdHRxfHx2fnVDS9S+ibN/czX6mf3461rmhEmKXndN0sDWXyCdJqI1fXNu529rbXVja2dLShguLe7vb3tQ8No4wmTB9Ob6f1sMRqNeHagUZrNZ7xMPLsdze+2VrY3N7cmfLarqoDoXm6x/GswMS3973OUf76O6T0XJ1adZxYoITmmv8pnDRhifRkMz0OOCrNYezdyRZh5mfTc1eqenklYGqusCKti2GCmJR3ujYtx/2Gb9Yti9mZA9aPRQx3BTfkXMUdjmHDTv6Vw6UYUnwgHv5QXK6zCQXA0HjRLQKToVmKC0fFN40C7OKS0HHQVq1xOatDov5Eqi4iVirDqDJdi3QAFVj7ggiU9Qet+ePlHEFYUFu6dohHw8LAWIcnsy6oEg0umYjZ8bitfs2jSCv7AutIbuQoND+Qr1EgEFnKC6F2a5ppyLlGcD3JRxYQSL1MGxIqW5OJrFFT4DgkEjAmKDyyUmAbnQlpexWpkjajEQtiIUp5FQXDGzRpFVAeEwiiSSlh9UD/VkEGEUs9EsQKGqQnqVbaTGgU0PApHtwJVMO4A0BOkTLqMIM/++H5YkgT/TYuZ2iwycQ/4VMBUgsHp/hiIBqQiyTkWhHNp+5Co0JIXXQD5ja6RkLPoDgEll4PUbC4VSFXPppzBdhhqsYI1LC6ihwSemilFp2uSdQ7A6g2WMiUDOmgy0s8NsXrHh71Z0Tm/oyN+eX5zenQ9nbGNDx3xrY3x2sr4/vrm5ub06uTo+upq2jrkLtrgVnJLmKvb+auTe2aBZ3ckUqUzKzAfra/w8heLRDeOLsfbuzzQjre2Ho19I2x3c2u8Qd9+dbQ+mq2xUREzBptMG6wx7r+2Or29Oz+7uDi7ur26XUwPaFM2N5kM0EGapwOwSpsMB9Sc1fwHqDmyw9/yyzI1/HREKOCVrE0Zg4M5HieFSyKNr9yJ84t7LePGqN6XctVMOH/Z7adwgxHsJXURBR+K4lDSowKEuZqQRKPpISo8SfACSORrhxb8smMAS1OG/FK0pWCTQdQ/qlguCxuhLbXhgKnOpRrXoIki0MgS0KHChGpFEROLdB9MFSo/a6OWV8VD4C8eksKulE8OiRPHRi9XNACQ7UCckHIAe2QdgipwpD0SvR/RwZpakPeAatfAnY0ybEzzriQ9pSm00UDNMKQ6Gy23hQUOviSecw1uAHLrMBjY9hSmKO0oDQEXM3Tw8GxKo0+QaNA6iyDG84ZUpbhoCbYYKZIg2krqpfAoY80lPREVlehBT6gIZTAcnVET17QsjId4sS8cVFaVOHexxa0LKlWKwOJZ2umFGDNwDUBu/IU2OhTzyCinil8qNx/rw2LSwBE/sC1llkglAR6hAs0CFSQ3gzNEtACEq0QnAWjRDOfGOrxiZTHi7idXOA3pCcecAWSgu8BgmAgsHqpPnVyvw9Dfv7u8mh4fnb05Or44v2Kadu9wf3Nnb7wzub9bnB1dX8/uri9uoTg82H/yZO/q8nZzf3J7d/Xm1cnF6ZRV/zf386OLm9sbXg2gMWEsiFp7gz7BbL6ycTPbvWEv1BFsGdLZ2Z5sTZz69dai1Vi9X98YTbYndzczHcXdubF+M9q4X1yfnl3f3Y1WRmMsm4xX1jcWPAlYDrTFPzNSG5MXS28kqqm/5CgsiFNY9YoQmOhPznCv2qakFAeSQxeZKT29TKOxCsgkHu1weUrTpJS0JBZ+ocu9F7JANKlEcU4FsoREA9PrgadUV9+OkmBxHHCHgKJ+8XiYnHABVJtQmR0TIFVRlYqTwqrrKmp8MKCWJJl1zxTk7XPRlZvCwlxRhjU9qFZ6PdWrN0uugYvx1pHsE62EFqrRYhZWWmb1nGPQLVlVMIMUBQT55EynhEmE1uxoZDM0QXlJVGwsNZZfyGHvA/pwa0umJS25uEALXmpXGREemAVBggaKDFgD6qYUQxJMq4tXidqvw3Vn86vECvLwouLLYylNDvLS/yEHKZ0biFuWcAUrsYYs55RtwBHSuMPJLTEVLaZUdQQGO+lKFS/GwBIeFbjIzXMHiRI2xQtsAsDEigAQBpxQK5BkqbiEFXnh4ziQcAlLicAJI0mGI5KJhTjQxilhWFWVITPIxVIVtYg+FQWWSWCTg8Kp0MVqCgMr61IwxAhAjv1QXKwKkyAoUkR+HmVMhb9+Ji24YtF7n6k5oz3nF7effXH8+sXpbHr79P29d99759n77002Nxmpubq6+ezTo5OzVdb4b0xWn334aG9zfX5zN9lhqH7l9ZvTn33y1ZdfHnOrjMeMGDGIP9qcbK+P6bdvzFkSdLc4OZuOXp5ub6zO1q7XNnkuYG5gg2kBVi+hhvMDXMfrjCMx/IRCbCg63uAdsYPV1WsetM8ubub3dzvb463J+vb2eG1jHW85IKWPR+vMFMfkODNBfVGHLoqbdFlA7eylvOYdHmfrEL1DUs/QuLnclTLWmYAjVj+lR5mSGyzBEpkNnP23MrCLyOdKFMy/OMIqOgSMqnDThIt83j6AFIjEgVBgCIsDcIwAYMHKYfhtPstYQ+mA4MVjsolGGhKtIif+iYrRoMil0mTxOidDRqJy4xGWYgIuxKIPDQBSZFMTv5oYmDxgnbavqJphFRkEhnHlTDRJclTSPfjIIzzFHMxqWgaj1MpowsiN1FWJ06A+0Tqa6JgiZfAsGmS37oNClBig4kS4FJrPDQLCy2s5WMaNfZcCXSSA5H+vKUKjTpjTMEKa1o1E2YQnusgqNnAOWDEPjmgY9iVUnAFPPeVQzBpVWBLuFpZyMVsMVFIQBwEXlCzzUZUrpS4PEAWUd0TAsJBz9r/NrqtXVFGypjduUnAU88IpSKWnWOL9yklSrHrCVSba74++aFRvKUGp7CvvFcAzapRo1chfonW3EYRrQ1C+ACF+EIZIhxCIkdpgak7iZiitOVHkOAVUwgY9twDhxDyFsiWERH4RLQ7BKghYa9mbLfhf3N7eXl3dXV7fnZ1fH53eTHb2vvnxs2999/GTR4db4y028KH+ZVzn6dPtxcrt0dF8NGEQZ29/a7y5trYxWdvZ2378+NHW1vhwb+/qbsrePkzk0qc/ePdgvDW6Or24eHVydXlzcXuOjK31tdn97bMPHm1ONtknYpP3Azjo0o/WNhiDWlvlvYHZJXMEcwaJmCLe5Slke8yq0el0envLylF2EFobb+6NV1fuGLFi7yEcfz/aWlnbYHyISWJHRczGeCQFRd8BaE43Ba92iDGxdGhGhr0GBBP6gIk0BwZHVIkfHBFXJcigax0rNZ7PI4UiXUYLHHJVrMwuSUCTFCoLYuVZ54I4VIxMQcq332JmqjoJhUmCXc5wyQk2LSauqIU7nJeovyRkUYml4fE1mzVAmuKvwd4AOQSpbpJUvX5ARYghWqiZlQ0ByaEoSrsBPYEhRR5GHiIlEdhwdP8LMFF3Ks6M87aKW4zrD6+FA6JsvTGEEsHLhEHIZL5smuIBmyBEcgHFVuoCdfuC1nPKzAexYwyLDGRRDgdzSC05pf7g4Eq2pFOomraDzCgzMIBpUw8L1Kwp/jX0EMVLhEIgaj9gQUZlsEsP5BApkaaqRheMgJGlpNIhQC1DiyXzuLSQAYZOhQcx0jZs3WIw0V4wpQggTJsuuZgSHaPucBI5WlSy3EuHUqLTQNrYNkq1eug/U4dZkCVq2Fu2W4eyKx8uRGDBUIc6qEQ9EjUJAtsvyW+Bq0qp2g1aEUFSqeFYEocPJ5RpCJVGvEorSWuzOyZ65wyunLNpG9s3362cnV1vbI4//vjZs6dPnhysH+yOdzZ3R6tjOudnl2fgX7Hkn344zwLXt2evJjvvPRrTBmzzAhdbPW+8996zre0DPgPASI4veM3pzTOAMz+/u996Z+V45fL18fUl4/q0Off3l5fTg9vF/R4rUVfpvK/zJOBrBswnU6/PZkzi8ATB3nFr6/N1PqG2drtg66DVBcNKPI4zKkQDs7pO1GcFvLHGo8ANnLgnVrPVUmquGJ+80VfddO8I/zzKgYWcrAJcKZ5bKSz0OC9E0lnqirPnVhrNFrqKgaNVq/hpEAZkq364FnOZSdk4K7/yrOQ2sTBNgomWmoyoyoEXYpXFdBdAynHEiuSRiBy0GlhLlYFJQoKXxMJvShY8ictTOFSxC3n5Em4qnQNIMS0BgSlMZ5eXAYFRCWZHRaCvQHFq7BpI/qUhXhJW6sdlRqNL4KKFtjFQzINgSBsFl6YqKHKXUE0HtkhtBgqXjy1Bye7mxbbSKXJCENxwj3QFyj889J5ShBWAqIfwCi0Y2DStoemjSNBb9SREKPomK0yT8i1XqnlQ4ERAcak7IrfFFZpfiIsHcZGjSRF1h4rKkWartOvkQLWpCMUJoQFNCCuBsg1rQkaacEP9SLgIQI2alPM+YmSCrgULmzlXv73Jq3yHU+nSWQoo7yWppHb/hZFsO01TJs6LsKhaDAi225QUEJs2sG1ZpQs4hJs9DaujyTqKxAATXQaK1ibYhBcp57eOB7ont4NHJjjBzqEeFUpwIA2sErptHT/amsTuV9Sbt9ezo1dnn704u3DS98Y9+jfGj58dvv/u4eP97TE7R89XL26uV0c3N7zwdXHNdPCXX7765JMvTk4u1ibj3VejrTFL+fd3ZhtkymhjbZchn8k6o0mxkbF+Zo1X5/O7/e3Vm7uDx+/Nr//1Z6cnx1OmhUerp5c32+cX4511totjLyBmfdkPzgZ1Pru9o026Xl8Zse5nZWODJagozGIMXiygD8JYz2QyXsxHqEf+bGzQTtDtxzhqwjvaExedmtJ8FIN92ql7RmeUexIqrPiyQ1PCCkuPdQzJGoq+TzSFJLcZmMkg6BRkkZF/rkXF2ZzmyNxZRXoJrZRCBKMEWNiSx7mVCA1YMBc38ZhuvCoLqoqmQIxSnkeV9ZDYAgVEDA5dCKES0e2QqvAKQmpXIfTEUL/8nMKsOmHR7BhUbOjRAfWUuNRoiRWyipalMRD7xG+2ykrrZaA4o8KGi6AGESpCAB1cAIGaQxUT44QabxF7b1LlJH1ZKRaRdinmyeyGAUR2JT7FrQiYASvOjaT7XPcrI543eM+OTdALl00EaW1Mtm0ABwHxRmijF6HGhEujinHhnLQQSZ5Y3FeJMjRUv0H5IMYhOREFJ/KjTmdTcM7yqF9xCtNia0IVc/t9hkPVT8QactBl4lFmkEggJUY6mgTmC2Gi2abEESF5qHkYcFqmdojXUnOA1L1aYy0CEWbOgVWSY3bKYNO76f+2FQ/YyYFoNDTIX1UIhFRJ/r4J3CysS9FHrGikqkSzMAbKkH8aAAtD8RdxOMBvUg0MR+RZdLyNMrRFTcrqfrbkObu8ZKL39dHV6eXlYj6lH0/tv7oynd1c3m1PeJf/9opBm+u7xd3N1e3Ry7PXL49OjvjEyyV97p0JVTHvCdzxngGj+xm/Z5fntQ3mbdkCgmp4g6ivFKytbc52N9grYrKzevjkzenp8fRuzoKiy5ubL18d343unfBl/Ifqn148+4PeXPOq8OvX53xGZnuHJUPei+Q9TRaTBXu7/O05YsS4ET0EXxPmbQGfTUVyvzOfAajtZzxnWNeiAH7VJ/Hp4DlzqXuK5F8slnFhMqMXtMoZYtIpMCy8YeVeS7UrxTyqcptVyeomClSSJRvbUtMkVLGwtKg+GMEqfVtpR55/JVeHSIjFAthjBwp33U51Viw7nYI5ZEbhCX5BPA+WhLWQ2CJzuSivDmLqFNZYprcCiqKgFGZLDkmFy1nRtqFaINOH0VxLP39Ro0tqTois0BRh81xXR+kltKSJ1EQ2Rg8vDzBVVfUH6kp7SNvD8oxlpegDAY3eXC4oJkiFbdrzUDThFtfgfiQHY1K5AFLozMWEGhPiD46haKg/+am4gbdR195w9c9V75LKjl8Hdm5NW4Uqb8gI2UkXY0SOziLJVxkdI2jSieQpKTlbPKIZ+F1DGcpbDTv3xm2gDxM5mCA0mjxQhaTix9mg1kfBlKeysSjD4MGpcwwo6vaMHSBa17gHFo05VR5I0+iSOrhBaBLKvAqK0nxDKM6ukhG4qT4BePUg0MhKlgkVagnoCsxM7b4x1uiXfOQVlEG0bBXkoxRnn6eYXXWd592U7dturtZup6vEbngWmM3v7tZHk9vR6vnl9vTl60sgjvWwZQOjQzfz+bUfeORv2zX7o53H24dPtg8e7W1sjFn+uVhn1T6Fz3H8em5DrqP6oPL+JQ3D7ezy+oI2hkmDi4vFypQJgvu7N6dX19fXV9fwJQ/vN8d3t7dHr46/+vLoyy9Pdne3d/Z26d2zUIhPx/BOMS8T0Ldf5zUBxobYT3RlTs035u3heqOYIrFIB4p5gJVV9qFgtOl+vthgHpnPUeaNkDiDVpRig1dpnvRqig/8IdJj/RfnGRWgu5Ogv6nAlBWoZZEkHjC4/xAvEJxMaohXZOJEloyqSJtSIl0/yx/RNYewxBUrV9UEX9oqMggwnkTRCqt07PVyYEkSm4CXQiRmKDCZap2VRhW4wuMMVHG5u0LYSAyb3GwwFH6BRa2EOrgkK5C2p5itUtiOjo52dnYPnNvvdhZm6LqmyojlD02AfRQTcxBFOLghfwgvVoJzNM6EK4T0GC4jgyK1lBZroFYzN6tDJi7IorfatIKBQ13lwlh4FKM4HDyv5V88E1RvUFGr4rZsSYFVInsYgqg9BYitBAuQ5dj3/HW/YHmESil5TQAJMkmi52JGQEsqIZohD56BVUIQg1Knlmpic0LDM5lgWb3UJGhBicIlL8UE/HbtHCSXjYeWDYoSHtJsWuBCR1ZVbGkqCzozjfcvhkHVmTfFw9RwMBoQeVgfqaB7VyMRvs2YiosT2WqmPhycw6JiTayKPTjKTYprMiq5vgmsmp3JkibsMKzYxvpmZEM3ZqKloyF13OLS0BtLbdFlIPNqF+t87qaLm5vFxendmzfTC/bwXLhgk76jn/E6v+ZDLReTawoaDwJXNACXtwy2bG5sMg373rPHewdbDLlQPjd4XHhn/+BwD8680KsiVv8peQx4+/YM4qgVM1JPJ57e/c0tTwS8TnBzu0GdpyNXVm6u706PLg/2Ly53fG94ej1lLppdRZmNYL734DHd/a2ddUd7sGB6Nz05O6Fh4cmAl4epXhHNZ4YVbD+fsZ80Aayx4RGALStur5lz2NjgSWKHlgiH0BS52BRKS0+UbjdR7rVyGR4jNX5rWd1yzQy3yDFMpYHOANH2mUVazKPT/PbOuhzdxuPRyjqbGbmFEfhkQc8tC6F/NhikZGTZJbiOcq2yPErVJOIf66TWrRZZOUgnWYWRTDQaKcWEOoiJERogJnoJeY9BWEjBLGo5FDtLuySeNFBBCQsqwhISYNA8QYyKFnjP7YjcwC6vrl6+enl9fUuAaZ+dnR3cBW4VUBWEiJNeFhwdBYVXsQWpe6EL4Apylxe9olFX+QFeD8q0Jwc3ACBRQQvEDNfYhGXV4ocIDTiWFoJZ3LoOxEHpDk6VHI55VCvO/ayMKnEFwQ65Wyb0QA7YytmsqauAAIXQAIDp5H/p7YKlaM5JFrk9Y5jEctBI/uGXE7w0UupYqfQuuomMGv0UW+UcbQozXEkYCCsTwxlBUbau0RzaOqQzxLW4ERW7HwNcxnGokNgVumLkGf2RjitD+vYlDK0ES5qBvrwjepYH4B+rwustNkKKtGsZIQGHdydsySiiiI5kEIUaCzjXXkByfGDtMrmJCgW0scq2X50gKNUc3mgC6lKxQuMMofeRFSMp7LIwp0pl5P307Ip3uG5uZkyqXkwvprNb3tUSI/OoZwAveCxgH58ZU4vMzjJEz7zqeLK+d7D5+OnehA43XfDJxs7ehJoOdeie00+nak1NhZ7s5rNg2Se3DNO7PAQwWsOrYmxWMR4xsbwzvVlcXV5Zy/nEwHTx6uuXV9ubF+OnIm/t7m5Mzhcrp1c3dy9fnO5vb21t7PMeMTO7VN/sN3p6cUpPiF2CtibW//a2HdyQGa6q1wNYQYTXeDHtejq/nvKAg4Y2EaC788TaGjtL6Enk60+fBeJWKvVWPIFUZ0A/ppqmzucf5BmLlPAOPuIdOcVTU9MY3LMR6tXNDCfzyLG9s8FCVTv02GmWmIeI8H7gJmNagwZjytpbX2hAPFPoc8Z/QUEqWGQaBvi5XZ+sLDkc7O3EObHcDYGSc/InIXeZFyNeczFpiVhpUhcQtYq2xSHpSf0aTsuIdNIAKdwwL1Glh55sKgWl3Zb0/adHx29o6sbjCe3d6dnp1tYWjGxE3RnJR0Z8EcbE0tktObmdwtISHVXfkhHpLb3p0BXq1zLAc/HnbCC3VjEUk7wZ7G+UAAqIQhaBEDXrw2owtfJYMrNAxKY9ZSSSTOKoKOmNsi6eoWraBUbZLHnwi6IkWoCCai1veZA1+cHNAbn0ljDgQavMLbEiJaSMrp+GlA88h5OAIESMJApsR6PTJQoSmlNLDuISu1ow4mKieUvRzoHuIXlxDzoIWFbstaLT9utSYJgWP71EAkUoXKVLYHlqZFWMiHhDtQOksKqoJKrD7RfHqHPJVoaZQKwcCjMIS4MmWMlAIj5uIgOjRPMEcwBxobI6m3jk60rEIlA9IsTZJDA5VDBKlZFSdlh0r/TUP9xt9yu82Xt6cvXy6Ozmhsp9wQvTl/Tx764Zdq++A4MQdGx5DRhkBkyoW5mYZbSIHf/H49Xb25vjNyds8bzPLj+bEzrUuIFC58A/Iyx0w/3Svaub6PfjkdmC7jerNO/XxxNbgNkdODwxMKCztbfD52L4541jOoBX1+wrOttYX93dGu1v7x08Pnh8ef3VVyfXF9eXl7cvXxzvrK/t7U12t7YYAWLIiJeM7xdXC/rKWzt4gMcABNKaULOkkNmxdovptdXJZJNNJWR/x9vIGESnHEXWNscbWJoGdHXCGBb6rdfYi02IG6/M6zskKUtVcL317aTjOhxkH/bi5u52zlvMzHtjPWToNb2ZY/Xl4nZ6N8YVox3qMzxjjW6OebFEsY4VDrxSDVMa063dTaax8R4ZxaUOaxunvlFTql6ULXZwtrwNh6UkwJxS8CwcQgtS5+A3PpLzGxKgt4A1vtKSJJBz8R6QvS0aYd0EWFdxrv1YUltK0Z8lvEdvXtNkMnzHO+AYdMdK4dmMrUAYAMThNgK40CVdZCnFSmbtAWrgi6BwhlzZXRHT28/krl6upZypJPHz7BGrqmIuY3uKqNUKRQAoEnmrYYaJEaCtTZYhUcuHMisZwQXde79g5qTkXQfi/iWuW6OTEuI0BcR50mh5mv+KiFJossvaIRhEDS/RXPkgideOxl9M/l06ZgLhrmrhFUVUfSuhS3xAIqgZVbRLVmXmYFIThbrtINBUI8OFBbCkL93Ls6SmPHOJacUCArnl7pIeLrgofqjeW+MvUqGaWqGCteYzDVWDiBEZ8AEXeXU1nwh3+eqswGB3B3bdyDeCJoUFOVeYAuRBXRlKT1YOoIKQI1UZxDi1JRDIQzI1v4WlGgD7R0WkgqKqa+kkJLG6MOzP27m3s/PzCyZXL8+pQm+plxmCubq9BXU8XrfG4/ZjWIbKm+Ed6sQtRvrhylekWH0/u51eraxtLk5WLqfs93m7s7V7eLh4tHa/sUkFukYFujHetMVe8OjgJAPLSl+/ZA8HvgiMJQtG9rcna3s72wzFbO9N9vY2Hx1sfzFZffnylO8HoMrtbHF2enlxeb25vsXwzt7+ZGd/Y0otyq6h59cvjy54HWCT7SNYMsRHxea8hoYbaoshK1NqUZ5waE54bKYMUHNyS7A8aLw9nlyPb6bT7Du94sPMaIS24w0WtrJjPY8qi9vFLdniQiI2Ig2EeQMaLrLXEZg4l23XaBhtG32s8VPGjFCdnfLCw5xtjHZ20ZnBLfzsoBDT60xrzFkZtermdzQ5NqdkMEohdQVj73glglygTgTMfqcbd7SQVvHWR2Qf+QkxjwiM17kt3mh7vO2cegoAA2wYmTyuQuOZKIk55b4jbhFKCTDVYDEOJSUKHqnarARodShyGZSTrz3dUATX0lkBS6+GyNYBEYsjMcqe3ZKGZWrd+lGrdLhj7O7oiHdNXOrFW4I8frHL1D2LwXzVwz1AmD1xda+bx7LEgCw4u7hiQmWHRcZkTURa/SKKlpiGgtfKeQGFXoN3ZZyhVN0b+fpDm/R6VFBLUaNU2OlFbqJ2twQuFdoHy953gEA0nLOQYmZEeI7cffrB1sHmXQdUivq2cEHauYsNv7x0oHaa56HWxSbpjuPjX5xjroFSVDi9lI/KkEhMOPljQZIVkaQstZV/iSkUIzonRzmr/AaD5LbJMqqjKtYe8QpSHV6VX6r0S6hLFHzCESTlNboytiIK0pPNMJd/eIjtL2c91YQS0PllpGbhw5jftBCxET4gKU4wG5jDIcRha7I3mulVOIhE84gXU5ODFuEdMXyLZ6VyNhpWWskRSoEODYRJMAyb6ikALpRzM7rcUy0UxcCbVfdYECzuIFgbWHgkTk8gfIqQV6So1u/uZizcn7L9/t3MLpWlg37sjLnVza0dV2SeXbGpWwahVza3x48eP9rd3WOntrvbm5OT08WKzwx0ohF+fec+oFvjW94HWNt8h0GhlTGf9uJ9LjZ7oAqhrr87Z4zm7OLLr95QgaMG/+TK5voENdnMgXpstLU+vbllMpmhGPrAPPizYSia8iiw+vgeIPX/3tb2+doVleDl1Yxd59gx4uBwh0qSNwYmO9S5vHzMy8a0oxssZ7KLz9TGzS2mk1t0m3k1YbJ1P8NbzFgAY0kr9ffdlK1Ft9hblMGjjQ0cx5sN1ErTu3sqfz12v8IY/vWNrPCsQ11kFE3OYn53O6X654mF+vL68pa27fLqmvaDlmb9bn19ylpW32emvmaS8/LqcjpjsSpfSJ74shssKvtpaddWeA/iis4/U+uuY6VZ4gmGBJaAu3o17RdPJ/e84UxrjU8Yt5puLQ72d5n1qNkWiwb6VtmggMG8io0z8TZdpiWTCVA4AFnVgRU1MBwrfPyaOX7lulm+LiYXxulGpImVny0BohIpiKXM/oiFrsSICJMkeztaxvlXnozu78ma4+OjSwb92BU8D2KbDCxubjAnRNGkPGbwEEKfukaT9bv56vn1FNejyXzGJJLPaqDBlTO9FBaknV6ekym7O9uPHh1s7owtZP3OiWoqiOi6hZv+aKjH8m8DRzD1qYSFKEnY6CmCmpZD4c0PcU7k9cROEpMVoukSNHIjIY5SESFzD11kFtlx0G9hZVr3nhklMhuqU9LMGfNTxWzfcg0f2ZFAzuYwGpW5QqJ3hsM0jhKbsmG0oIWnuiXEFI5iNTCBXRCg0sOF01lYW6YMRCWVCitpOlFxLILyADghgqbxVuUqreDZD+v8ZRQfFFudlSRaR1pJc5Rtj50UwaWKbqS5iDpk3WAjd0ekwparRTjxZDisjfsfWlIIFIYqS+ClxIAERNUTiu0AzEwdUUwKuZaBKrk4mB3KkV4hLHCxPuU2TaYnZ6NoNLTCYOecxWh1wb4JdjLTzzQNB+QGpovErj5MS9qJzJoflsLs7+9MdrbXz9la55y2gs01H+/zli9b9B/THeVlMKrnJ+8+/uY3P9zb3mNjhdndzfPnk08//ermjt1BGdmfUVshwj2iz9auL8iZyTpdNKsuKh4+/EK3bnZyfvHy9cmrV8dUatzpdJCpztGSuvXq9np0N7qZzunXU8/G3xRrahDHxDF/a5Pu+TqbPx/u7R6tn15cz24Xi+PT67v568PLu8PD3UePtncOd3Y2t51XYDyGLJ/dM7hsjxq+vClGb33lfmeGP+1Xzq6oFPkc8eyaRuKO6YvVHYZbmANgIerqaM4Uxdr6De8dMJpPVi+srWhPbLpWeM2Ym44niRHvy9GwAXa9E11Ut0f1HTdqJzIOt+NCnHN9QSt7yxMWbcPm/cTX3ay6Uq1nXIlO4h3DRFM8aQe/7hO8xDNWXoQz//knGW+ixNUln11gKnB0c3WM0qM9XrtmPtxKwSodv6U8egaUusLSaQmw0KE7KEGjtiBMzW2x5mBu/PTkHDbuxcdLGDyueJ9RW2O4xYmGwMJpaeSAKGcyzPuKS1hT3JxqSbUDAo4wLQKVIj0F9eryYnp7w028sbnJlD3bCj5+fEDnnYzG2RRlJ3LkiMIUd74tanVnVtnLJ0MR4E0Bb7ID65gA2tzYZejy6M0ZTekHHz9jS6lgeA9z4B2POg+qt6Sopx2qnnbF5kuswVzjHjLgJyG3ZLwuuB1SxLtNjoZ7C5ocIcHzxhbu4coE2TWCcMYg887Uxk9RIoa/ZDAlrOEyV6YYv6CuNGCUtnINLSQVIjHZaDXZQGEXTmI/ENnt0uQYZaJU0SCMw7Q4RsLAoDRs0sobkSxBEREQLjcBesCy1/r7wUMsVnOLgKfMRqgWpAwz6aBxe8NKRcMsGNwJ9IQkJa0fPaw92hw4Z/Ga+TJvgICIkFiYFM9Qkh4SBaqLOd7yMDrreBFDWGprysC3setzADKPUzNowZ3LEz8o1PXU3YzGM96cdx+odrgtKLPUSuyX6WJOVnPShWdty+7jfT7DYne6auHVxc2UvjvjDHY03fZ8Ptvf2t492FzMtxjyZ03PfIUR9M3Dve39rQnDrre721+tvUHzrd3t9z547/1n7x3s7jIIe3H6msGb4+Otixsboupe0tWdbPP2L11bJmGpOTaar8FYLHjUePHlq+dfHp+eXqHSygTLt9GbGvbCWWh2kRutjCfsJEHvn0pgZcXxGWpJRjrY32djsrU5GXNrPn166O391RHjN9eMyZwvppT/0Wj3gG9N8hhAc1bb6fACGktu2HmC3Ud5BZmS5Jw0Wwwtbugt8rLbTeUvrzqzlpX9STcWC8YVxpNtevhMLE+ofWicbqmJeFrCrb5JwCCYRjkCxlsOCzr/8OFtOPLE+e/xxt7ODk2r41eMoTGIgWrj8WzMBMCN7yprKV/HpNVY0CytbDC9axuzds/+2CPzFEvWGQYhL622KW1U+jwLpKxZVlyqm/YGETQPmHxwsH24z1OU5ZUmrYpsCpslmSIHmcM4KZh2meg88DxidUkupUskDIGZbh2zbwbOYF+Nyc7u9hrT/FJTbK7RKI8mtlvpVFnEw11y22oVzM3AWxepPBkjBE6eWDOpntqBy+uFDDs64X+/sr27zTMOHYJHhzv7u5ukjh/vX15eIpc3+biPRjTT3rm8zUA7bKvANSNj4ZUbHD6gOsG+x1z+5un5zunFCa3xhAEbJ9RFsh3JTUVNR1uJ7qrCz6s4CQAQKVxzswavoDmTqrnaI30ucADc2BV8OOeWJwZqD5pWrsg1mVW1vIokNclW/wAQVrxtv01tXkeF0kLxZknVfyKLXwpWxHZBYAqBLMitjB5FfyUUeuEEATZy8Dm5kWpCYJWec50KVTRleJRiiAvfToYHtAdPw717kFBRYVaJCg2ogP3JlPxvUIILln0oJM/wBlQ0XjGAMD2GO6KG0eaSCCCx1OFMNldYchV6EEt5jmSY1sBmsqOr3Y0Ncx1IgjdLNJBd42WbI43ZQ5pF2bIYk0T2MCGiGLtwmJqnFcpqcgBn0QOgVwghda2TtFQBbM5QnTYZzqnNj44ZXKD/zQIS3r6asWiGVZLv+govNd74jg0376cM9Z9e3B6dTo+PT2+vp9QzDL6vvetQNVv0UNfdrVzf7k23xvePdrd218dXt3dHZ5f0uLgHqVgndPL56srIqoS6nt0gvvGNJ5PdndPTa8i397cfPdnb59tdq6u8MLy/x4CKS3e8UbnzUIkBa7ZqW+duZjf/e0axGcSgQqer7XLNKRsHbY02JheX1AtUifb4GFjHpTv0CDe36O3yPLI72jh8NH33/YuTs0smXPXN/Qqra87P6RNP9ndv75kQ9sswDg042brF1xdnTLsyG4BffXNgbTK/ozq+uDi/XB1PbvnOjLsd3TAQwZDPysaEaYS9bQav6Gg6juzKVvrn8kNPbLED7KARsxA3U75eQ22OdPJs/4Dv2ezS/FFZYhFD11RFOzu4gWLB+tqbra0Jj1MMrzAOBv7l9Q2T4Iw20RBvuNiHtyicdCbCJna0xD4KICxFiSEeS4KfaVs4/uQgFHMcd1v74xF9XOsrxklGPjxgKbWZJ4s9J+m4UgTNChsv6tD11XUeyi6vr8ggxvRoCLgnad7WJ5uMKzBN/+hwe5+xNQboHHXkmWN8zeA7OoGnf+Hkz3ILczICQRT6vLVAkNoaJGy4uaYFZWCNno1fhQCZVpABLJ7z+BbRJo+JTqnc801QBu/WsYIBjdV1HkJXk4/pvLCkirVqZqE3GS0EHvAOgZmdDwLuL7i6ujNZ3N5fjzZXHo+3NmhKUt04UaDZ1p4UCtpp5hMoB7dTb0WyiSSUxWPcYjFJLT2sRhQxGJrsqLR2xvXieYd77tUoqfqlHbqnOWq4iN2S1bKCYWJYQIi8okRDibQINDtBEydxS4AwMCqlGD48h7nYYezwnmyb5iBKDyzmUMTxKhlBtvLUhWsK3MSiH2O2ICdDIyRSiz7xOF9mJoRtIGQCkjxU1WRPJqFVWuAKW5iSjIJVcUoWVuWs8NUtqhBM+cCXBCpLOVsuRCvDuAmLMmzkpFamSZgDyNIfS7ipUS2OkwJWipSOYBF3thVrZxxokQ1KTsZNS0EhYSgw4WdKGgDKMpgO67pGk76eE4NsdkZ9zoIaFj7ez6mdKNkjeo08tl/fXpycvDq6uLhZ0PN2MnN9svdoz6ZjfsedklGISz7OfnJ88an7NVw4Ns5Y/+bGq6PLj969oN/Ll7molxkb2WFEYTza2WQOd2V8xM4OY+oMFkwev371aG+0vTHf2t7ae2efIdbH79w8+5CxkfvJ1nhnb3OXmdXxhGFc/l2ET9WOltxuvtJLRTr6xjc+nmzuTSYvT05OqLzOz+nnsT7eOVsqpMnG1mL+mqESBtodb+G1YAfG2R0JLhPaIbzD3bu3t/306cHRm2PRGAvTyBVG4BkUYbRnxldl2ErUbqP9W95K5mFosenjBk0I1TivmV3zhCA+63KUxC5GDLvjKT9afz++nI6evXPITnebzF/g7S1GnKn1+OqZJcaqz+VMjFHfUXGyXPP8zPF9VnYeHOwxgsEA1B2e80Nm7lfKpCaDE9tb64ePt1c311mgynQ7jcGr1yenpzcsZOXLB7xAgYJbNDBMfqyOXCDFzAMVlgN63gfUdnSQiRijNp1s7O5t0cdGxDYDd2ybN5vbVR85qJUJQfrqdjws0an4oMV1MKDhYkvt9bVNuv8389srGqvbK763ebDH13e2eGCBAW3Y1pjWmlykHOJHpkHodOs1N1il2iYhJR+X1B2YGyK3HXD/aIVZATVil+S7iyn5Y+ODgqjPACZ5f3u7ubX1+Omzgy12gOWdj1MGGunWUVzssjMztLXDzL070Tq5vsHTF6NrVNg2MLzlt7q6u7v16GCXWvv06JjHM7iXhLX7LZQkxsKC67sp/mRgjxaOPhPZeMv3KO7vd8arv/YrT24X658+ZzPCKdry4rp3HCUseYw53oEBJOCdySGCB6gWBg8vgjs14aocTBwOMUJQtVCrNazcPBRVwVZXEK2QDS0h0gnBwMzEgK5r9AAc4dFIIQGEo8QeTUwPWsuZtV2lSra04E/oqxKFqdpiKXH+okaYWdHysFFd2xjRvNFZKlBNI2EghLduJS00UVSV1JcOkWdwEaM5fvWJiOBuTwWbMc1a2KmxenIhEu7yAtJWRQgjzil6BSdBITlE8Cg/lgRzWHg3TS1UD2AyoZCjnUhqERkNKSwjU74GJI6DOjS04BEX3sD0w2fsscx8BRUCdxtjva+Pzo+OTme3dJbHLiwZsyZyg73vqZrpXd6xJORu+5332Lvt5vSaTrEDHtxErJzZ3t8cr17NN6eMMDMK/fr09vXx+cUV/Tg6TBuM+ZxcX708vfjxz55PmNhcZfee8eHBzm/+xkesyOHup5JDszsqYp4pVtbZcJOO89po/5ARoq1NHPRovuDzvVRTjN6yiGaT/j31lN/tovVy+4Hqt1L1rPPNGNbqbG2/9+6zZ88+fHN8dvTm1VfPX5wc8+YBqx4Z/3Gwm/YtznKcw9EGso5F9GdXJ+wY+mj3cv2Wu596n7kFOoxH4427yzucameFLuyIWp5mxt46Gcmzks0PWtJDtu8JL26iNYYF2KOChTs2itd3F0hn7pWm737lgoGXOS8Z8CI0Y0KPnr17SAWODa3nnHKJODKbdUZYzegUFX295oBtezu7k3UaDV9IxlpqOSRSV5LDTCvs7W7yAMKLBuuT0fHRCuPst9dzhuP4nM7KLgTz8ZxPaKIso/n0gl1rSy3OEBnKU/vbANAz58lvwwkVh2vmK6ycMiOoHKfztBAWdapwV+pujDLNT0tHj5t5D6CUiyld/tcvz1fnNDW761srU77jyTvf7KhHJlFdu7PrKts23d/Db5MXKkbrmzCDA9S6gpeu1S0Ps5ToyIAKz/LjxsDP1O+ks1gMPheXt1QqNNMMdbl6xtvVu+Gdp08+/Ogb777/8ePtncnq3aef/fynn37C1Ejy3HdP6O3QOEtgHUhLYEbylLRgnI4sXmc9wuGTx3u4c8zrFzCfjM/Ozk7eME5Ff2KNjUgoETRAEFMMePQko06YX7qdUsT2Njcfj0d3G9ufj64pBdsT+1Sz6TXrrnCTt6M65hbmxh2OAdBu1VQBYnJYKkKCfd7SHbejDkxESr3ofV+SLJn9/gc4MCK9ureUvHakDPIs2PAjsjSACjbUy+oSCSWlpaogybLRp0kDEAacUglxKbjJWpEEb0IFdh2sbEXMIUaICxAlOqQxICovoTKR0GJSuggFjh5qFQxQrCqDaKLG+C9IYvXxWhhGKNs8/xaJUe2ToRitASn0poRJxaHJCTwsO1t1LA2LbTOsUTWl5E8yOa8sDvksGQsRQQ5CdaM4IpcLhUqTS1BRfp1O5RX17ZSb4ZZhY7a+ef6cfXLOcRo9yt393b3N8eIxc6H0HXkKprwudjbWHx9svd6eMLSDI9h0kw183rw8mk1vzpnTZCdl2oHr+ckZeyswZj+je0X/a+vyji186PY6dESbwe5p9Nsno6u7tdt7vq9yfzNfY4yG+pHaYXt7/+Dg0cE+I6x0V5kf5lF6PKIlGbl8aLy55Wwzn2u0005X20cYlGBBkXljBrHQnu37J9y+h4f708WHl5cfv3j16uc//eqTz968+PLN1cUVOmALVb5Vlq8M6Cuyku1FX748Pny6c3ZxfnZ5fc+YP/32xYI14xtTPkPmcO76+tbO9uH2Fp5gD2l0c8wrrYgD9VMH3zGQxyc+IXl/Swt4t7a3vzfm1Wca2sX6HUtrQJqv8ghxefWKvU23t1aePN7ZYrCR3EN9D5oZ8ysdcT1PKeMRgYqV2Qk2p/DjxBnuEZ2s8R0wMht0XjWwnspOdIvp7eR6Y3yxOrqlPz1jkITOOH5nVJrJXUxBIZux9KypvKhsHfqmvbKYMMvDdngXjF9d8dYCzw9MWNPKIYtWrKot1LRUWJuv0nTDlOaNkkN/nFaO/sTJxflseslQ2cEG22nYQK1TlCxM1uLkYAxOH9+BSzrcLGN0oIUeNEcSLNHVW0xLnXuOcZxVitktzefuHksKtiZMJlARW+CddIn/XNeES3Y2N588eoRUew+bG+8/fefHn33Jmis9Rtat8LY5HwF1+h0IYxD7+3s7W9u02VsbTgiw4zg9FZqZ6fUl3xRirup+fHd0eYqpqkem4se7GY+1PAGvUVB5pPClDPw71Zu0DuuTa1YSX9w4crR6/93vfPyHP/6jyzsaOR3SblkDv+zwxoUo9y7UxKxc0ygGvbqCBtvtXQUnacKEpiiZowWlzFjgc4Zhg9KJRVf9Fwiu48DL/FvvES1VDFFuWqo4BpNmoA5pAJpUyY6AtV6rsFRMJYeoEv1rVhGEuNSCUbehce4pCgBnwGzwIhuQsDKqFDGxRgMZOA25X8RNmGs4t3iQl2xMLYULCx2od7yZtJh/zNMCU4Mqr4qTLLgLNszRkPT0w7ix8oVXI7LWi01hZQXHcz+WaYZCL6P0SjtOREK9Tt/n7Cv6MudsxnA5vTs7mzJazcQf+lIbMWZyOpnc3mxdPto+PKADSJXD6sPpOdu2XbNLz5Q6g9qDau/m6poF/r5qxXrH9RGTmcz7Ma7CU/bh3hqd+N2tNb7hdXrGDKQVGU/iPPQ/OmDd5eXrN6+2t8anFzdfvuD939nT9x792jfff/bO4w8/eMJqHOpKyyqD63T2pteMsfAMQrefBoCZTXq+jv9sMHCUBTfcUTwXUAPxms/WFoRURJv0iDe3Hh++/8HTg4+/dfnJ568++flnr169nrGoh8U9VADWLuVsBx6O35z98Q+/oKq9vr1GxPxmtsnax83xtl99ueSZY4OpW2qCTdad0m9lLT8dv/v7G167mh8dn5/xsgPbMPjyMdOyDnPs7jtiRfV28Ii32Pi45B2OpXmk/ru7ub48vbs63p1evzOngk21SL+QklA3O2eqdR9rHBm5t2+5z1dxmPRmoIXhGzSnjmJQgnbQNsAhbip1BmHWqQ1ZOTu/2hydjuh7U6fT3VeIk8UUdJdL3YJLJcywRkbReBWDly2uneZn+IORK5aZnvG2Nl10BsV4zvJlCwbAreZdHgDPBe+58dRgpTvjvetaWkTZYeZ5fk4pubma37rrKm8Zr89WNu5HYxoQshMDKIBU8y4p4NGLYbG1LRquNTolrNhhIRM7qnJX4UALfN0ZYpJhNGKU5LV1Xq3GMU/feefpOx8xmvfoKZX1NUXgCrE3t8xz60SbArzDy9tTlt1ez1e+Or1iNYGephHGTLLchzRCjP5TojcPD95hYcHN1SXm8czCbIHPR9f0cO5wGlPWr16cnp+cbvBKijmvTjx3+MUhXMnqiI0NehjHb05v5jMeH0llP457xNN1WB0fH73+5u/sfvly8+zVFe+DW7aHCmB5/5e5y9u1qg3iSBMrFWhLLhbLiCHRcvMbacysOoAZS71BwGJQRT8gfSXvIidMsFOHkbTgpzajirOT0jiK6fFAMXmFfxJMC11ipUBaIZFs32TQxIkXfrDPFbcrSqriWuBibPFoIS9NJHku+3YUo5ypZcn6SokrgWIS2HSayOdIaYKCBnuxy08RRlwi7TEFboQMdk1MTTppzZgCSReSdg1akE3vOM2EQHAz1ZMatMxS58IMOqfWBYg3G4uec80DRa3ZaChFRHJaZ0Hk889ev/rqNWM4t9wOLlWkX+y0sDPAbMDGavTrK7bevLw62D1k1ePqxfHF2eWFO6fdLRix5mbMLKXd6Cse8J2PK0HUCDzDp7frmiEekdPFZFaNZZusgHQkwJvzlGbhZpPt/RHCavVvf+uj737740eHj3icYIXL6fkpi1+oD3irix7q7iaDratXfEKA5SmXVxQHOmi8NMDEwb0vxPpVgPXNCTs1s94D7psjO30OaqxPnhwejHf339nbeLJ7+/0fXj//9ISKiJH9ci1uZIETrQEPLjefzxhOmVIVYgNfAbiaHjyhA8syn3U6zqzaJ1fo5WKA1S4MHA5nQ9G1119evjo9oWXhXbNDdhDaGeNH2iTG2fD2aGOHx/+7+3Nk3U1ZjsRIMYNMzBIzNnXJ4w717Ihl9sxLUs3aXSQf7GHzYMMMyvh+xmfrqUjwI7UzIwwMslP9UHrpUk8mLEyC0DchgADlqYWOLH5ggJrGiazHXVR8MPXdZJxvUTCzQKaHS93GK3n0ax27d/54RJVIJclMsaudwGGGwyWaruvhLQSbeewZzzaZw2HMnwaBQsEj0BQmk6spLz8z5DNlUe7Ed/LOeOpDJn1unteQmoaXZwBLpzUoS7MIL1bZyoLqm0xnAY6vdbd7Du0JawH6swxnzGcgnu2895SOwnusJOahZO/RIxphmJ1fnv/xH/8YHuzXjRt9s5y1ylDO73lz+ieffEEXgrKEcdwTNO17m/usrbrivbnpbJtmfYNFvTQoLATlEe2Swrp6RfvHO3u0iz7Snb6ZbqxsUljgoOssNbPJjI4/9wLPJKtnx9fHZze+TMDUEvuIo4I9RF+qONzfZu0EXzeioLUKJHdrbkldYaDfxgF6qoThLEKvbCy9QRnubNA44mKu3o2cU4UUXW7PzkBiUayngia1QUuGrm9sk2GAk2ISOKl5Spqk1d4Cl7wdYsmBo/QwvFTdsFKSxyIQCEwJIcpZgqQIeng0dESAUmIG8a0e6tqYShkOdRNChH9oi5j7jsxkADEKRmbpV0RQduVQxqAlWJ7t0SVoluDmsqC/rXfEFZ/Sa+AYvdpJoJiJ6gg5E4v6eKIJKnUeIAdePDq5V8hQqbKh4ilxsln/9NNXL746YWaSWV/yj3V+SKOitj5wJICDGpAe+8r6NsvpreovTq5h+Ojx4wkvt/IEsc7mKmsXDM8TVm9YcEf4kiRSGV45ubpZ27hhOIHbmtd7uHup5RzNWGdigJ1YGAq/fbN6c8xq0en0yeP9b/3ax++/9x5bp9EesHvzl1+8PD9n9/6z21tq1c2DR/vT+/uTN2cXrMq/vmOklmqZVzp5pZ9hCPqpTClS+6epsbu6u8VWX9u7uweHj59uHRz47Zmr6ejmendlwYoT21bcSB3hdJ8lhjMH61dXfDfI4VoAvn725vSA1xdGG/QSVuh5Xlyt3u3l3QEzhnqEhoABX+xn8dOb08uDp0yj3B6/wY8OrbBW1ReAJxPfEGAcfYWxrCyixb8rK3z77MuTi7vVEQta+Tkc7upWpl0y4mJekO3Mh5qJZ2e82EXNypJHmid6so7aMwRCuWAoHG2xgn49tSVUzC3zmtL+PpUqtfO9k+Yjmooxg+HkALW5z1X2fbEYVXwhlqyZsiur41XYAyee4uwm88fzFi0Dn2HjEfCKz7ZNveX5fJqTp3xzgVqQfejoehtfo2VlToF1rVSzzJIzl8B4hw8c7Ot9S8/9FlsdbuK5wZn5tSnbfFC/s2SLMTS3YrhzW4p7drfQ+ir15AhANv5gpe3Tdz9+53C8t0sVv87CBB670B9NKQu7vum9cz09JocparA5ev2G5vDqdPbyyy9fvLmg8ebWZQjMBWZ77CqyN9+bnV+enR0d82Ig67QoFLSe6xur9Iv4ZwjTm5DeDEtU2bH8YJt2hgltVkPzYopFhqclBotctuag4jHfNmIWgbzgJlibMAdGS292Qb2++tkrdjtkU/E8iFlRY9yD+rXuYIuSh/e34WC1WEB1AtzHZh5AQ0SRaTyKE+f4sddsSbVgJdmkklYSO3ur2FT0pIs8SLHSlKLVuw8ZDWq2rnaTsaSVSZNGqHNAodgSKYMWeKZuzNAUWE7S41yJrd7SFAD2KNZBUMEAKsXq2Ek8qKRLVLEAUpYlloCfZGJZ/sLRc6SkJYvSgvgZzg9FwQANosAi3FMYR5eEh5P6RL/CGeAG5OA/rAjmyFVUybxWkuEoZznqnKKAGkdfKQsidVTmsv7qJTshc+/IgJuzqw8mYzsA7SJNGHKgL8ua58na3epiZ58ZyC1GIei8shGN/TUW119cn7O5G4vw0MMJQJ/uGVKEB0PozAfgX8b/0cFenH++KEf36fScWVm9xZ7PzKO9/yvvPn3KS1a7dCWv724/+/zFJz/54uXrYx5E7Lry0PDZGyo8KhjmMOmxr9zyCMLgwZQeKLUl99/6FZ13a53ba2qiBTPcDjqNJofvvrP1+ACV1mZXp8evzy+mjNauz+fr99QFdNysDxCBzZXhnGkZ7H1jDJONDHDzBpezzbQJ1I93TFJPaRFszOynM/vBQP+vfOvDm9XbF//y5MsXL0cvHKnFlTYAtEosVd3ZpDG9ObvBQWjIrAUlhmnvN0enK3/05fWzW94s3tod02VHDZrAZFm5C92o6RilZZ8f3vF1h1S/Z5AdDVyXwtgP74rRTeXk+lErd3ITudvbk52drbzPcc+SG7SlbWGGnEcLqnWmf7CFSpl2YCvm2FKgHsnWxvbVU8HPV2crvMxAjX11e8VuTnT0mY7hVQwmQRyXcT8hTKKX6yYTTBVTq99ezm6v7nd5atvdptV34MYZUz6zwxiMnrPQcutREyfVJpfF95TGFGLk+p8MsXzTsJGZPBasOYq46z53E9arHR2/YHMRRpxogcjt9589Zu+N7cnW6coZj/QM0SCI1+our86ZuWUVgAvafJKw8tjaYF0TI1o323w1+uDQ518eW6czcFg6fHvFE+wab3KzRIJHI6paFho/e8x3SVffXM3Pbu5vLkZXi5vcKStXdytM8LLEjEFCsoH39Hw/gSGvEdNUZjbq8abgi8tbNieBhKfCfgNjLQXF6rQOymBu5x7P1bvX0tQPMMpPD2DLNEO9JjAQ6ocwx1Ksr4BFVpX7wujISePEUbw8J1GyHBayHi4gLBNo5tgRwVo4IKHYJHfrFIC2V2LqTzNaMd6AEUccf5QYXeCzRi4kcIc1K5ZNQHCUGPLYCEdixRgGyFMosFJWUERxGi0oMpTKkqcaoEkMNwmUWGmCDIrLnwjWZDkkh2exl9yjXRqvghVdCw8X1REbNqV/lLXeBqpMa/DorymaUUf5rEXCo8mspjUMZVuaUggzwOBanmwLlF6R9sG6zQjRRXryaPzueztsgUBP7vqGdXsbB4ypu+Bx44A7kH2cGQzY27zc3zw5u6E9oca/n7qGUq3iGoYF0h64os76Xyc6QOt4G6tNpozEU6Uv9jYnT3Z4mZLabMHLYywi+tlPX75+fXbFoE9uV6yGgHWmcGaoF31SN9GrZiKA2qTcY2nCO7QX9PdZPM8ALJ1VNh9afPo5oh12YuCIXX14+Yp9XFxcv8jkrn6tZwK1tKPu6jAGTZDjgAxq8dXiG5q9K2aHWbvD62ZOuNpuUDexHdvmk8erH9289/rk/Mc/++r0/IonJJJoIOhXO/I9sUePDKdJHcewIaTLyMvBb46OqQ9XR48YgKBDwqMMBEx0WIhSGpjcgJSccfzFbia9ZlfjgELX/vZ+yvQAUy6owhQFLmBY24WsNGEZuN/Z3qTiRAKG4TRzHHkLWlEYWqIYCeGf6o7Bd7rfFhLHxzWZ8RkjvCpMRt9Ozy+nvMaA4XyBeWsPU2ALnfuSoixj/KyWIdsZMZ9e+dIyLRnbJ22u+Z4ULsQP1AhX5wwf3SCH57etna2MBtqGmXkUHMsD+TtiatZVyNT4lt3oz86AfrZhykgPGU61/uWLry7O2CQK6pVLhhq3Vw9W98wTpokco9dmSjNbXNOI8mFpF6gy70Db4Ovki6NTxhhn25MNPgzAIByvuJxN747ZZOP6jmU6TGsx08MyABf5zFd5dFrMLu+ubmgE9lexy3WfVxd3V3wH1A1lKTU0IqkGsGA6Zx3DB4eYe7pKC+KT1mzCKzA3tBCuKKquqN7vh/d5Sm8HLK/eSZbch0dKRm6yryWARF6EJEGJYN1YgJw6g3IgXaFxhoTyr5Au6qFqjVFAqYdSawZ7QJPOSNSRjzwB+J92QI2LP1hDyDGUqlgZhRnIE/SmRnOYwEkaNSyG0lPIfUdAFIEmWYbKp8RCArAOk9UEdK8aEBBRJLDgnWLs4GlJlk0w5YYCwQ/LkCu8t3+iBZhz1IrSjX+TpsiGVprEPyY+PJqY+K0pKHaxL59Ha5tVTBVOaeZSzBvnQE2Thc4zPXzwI12fmOOad5aue9NVXWz1x1GvM3rnrPKt3YPDCe/oHO6OpjQTLNef3bkM0wqN0ZfVzfv7PYZ3ppsXF7wltLE4XmMIlg4Xt6PodrXo/9DZdJIWhtyYdPNSlelXflZm9MDX7nmvlWqZ7ufFzeXLr1598sefn5wwLew0AzrSbaMK5T5khQk2WfXP1pxr5jMw6KIDYh/yEOOzeNYIMtPtfb7qY07uOEY8GCVgx390cWEfq3iou3jiYNUjTuexgiFx2w87rLAEjXqJsZSdXT4Aeb96M7+4vvri9RveTuBDYaSnc4dM7ukVtij94P33aOh4rfinP/5iZXZNpehCTV9UwAxrfype/nb9Ks0Kw/hOVzJ6MNnc3+PDBvxtHe4yZsUiHziSvd4YGEeAqptmd3+HXjcrP8d06ukK4Tp2s8G/5rX6M/pmEabrTvtH20yflwqcVSk41i49sye+m3bH5nvojvOnVF4bay6uXWdRAAMwtQBHF/PcAz/spzmiGcvtZgYy7sYKMb7Ds7WJ4YrkGcnXCe4ZGt+kRWFR5S1Dqkz2sGyA7q9TBQ4u0Ri4Tn5ldOMKI8ZtbGxG4/stZ4hsm8hHxtKwhLIyvVtBfzQmB/Om3wbFjgey2RWC3PAJfXx9b06jwtaemzzKrNOAXS2OZ+wywrIyXiN0ZRWFjYWom7QMY7fkUyxkPES6foFtYscsQeaZiuci8pt9Ci9v5zwVq4HrlZklYnuoK1mtrF7e3/Een250esTOCxPL7z1+5/MvjlhG6qJOHsZm0GoB5ejb3/zmn/zOd6Z3fPDuFSNCTKQzccIUFQ1wipZNHSXM25PC5sX7NbH/7lPd0Mn1UKa0wqYo3+LyMIIYskw0BZtnjUWX/AAZvg9iS5VKHnEDdWqIVVYLhiAlIUYmGqqKb7Es+tIhmEmOZVB31oSqwrKeK6Zei1usSaXWFDEJs8wDj5Akoi5leBKG1EKhoNtIUVqKRi7RwYclDjWvo/iSHtbec4E4YuAx0DdpYacTBvmBLPk1ohDnlCSxkzslueV2IaEXrrB6sJQCU9Hm5YbRVNJJhcFdlTYDBc0I14iwJQCr4VxD4rouOtbIpKsUTd3bklm78Q6L4PZ4/X+8NaGevqS7z0O0s4b0oKkymNaDajzbGDNryFIY72l27OG2doa0FkfzgXU6qdyaPtvjI8RFCaTRTQLmEkUWUfB263iyxYASG9l88rPnR69OaJVtQ6wZijDb6FOh28tyPpNZ1Fhnj5H8oENHx5HawZ6MD4qc2FmMOWD8xTgPazF42wBWVMSuVswGQjqa1ajzaSdJ4eERhXrfuij9cdbD7j3Z5umeoSC6wBeXvAx38Whne7HrskvE2Tuls09FxvYVvGjw3Tk9vC9fvKIjvsMuRLsM7FOZWDvT1NBi8b3jyc6YypjlQKx0YpT56dMnh49tA3lfa1ItLJpRCCFLSaQedk7TV2hd/cJLbI7d0PXe2mDtDl1pt7z27S7dhcuvb6bM3lPjMXXM8PS5E/3ugrEyYTgngy7Mis4W1Mt0jZmhtnVgmJ8m19YEbzhwYe3PMkam1d2XwrrfR5qNxfbO1qbT7eQPY9tgoqsVINX4nBHv2/n4lvG38fYtkwMM/t3wHuDChTIcLgDGLTz4XPKExDQpbYJvJNAVUBn7DBZ9jHAhGW+E2BBSF/NOiotuLFnki1MivMTL6k9l4gZWJ1mysHKDRyI2rnC2G18w67ygS3JxdUoBf8JO4Cuji7P7l2+YVJpSlLfXthauSoPzGvPXVy7iivUpQDhgZ8Qrv9PLGY3ENR9+22KRGQOJEekyLL5GusbaqhHTxgwW4gM094GDPsfifrJ/sDLem87XN987ePWPfsxuHrwzjyfdTtwDtOXRwinQS+i/NWTRyM3vVZkWZjXgkltfuBH+DFW6NMbFC1pLb6hLiZUewsYoaV3DcJVn8ZMhIM1QziCtYulQAZRnLkGJqpoQYIfLOJ1ULg1dfaULHjKqVYHSapeTsy0hEon71gqA27LJLu6hr6Cc5F0+CFaEshQChLIDzmpGBUA2M8UVmijUfW1ymdG0lLkALhEGtbiy5t9Gv8SK5q/xLKjcoM6peEAUzGJpc6CDl0SESPcUTiAry/SO0yQECzxvrSTjLIlZpeBCDsRgN3cQyqJApHBHQcWtSlXj/bkYb3AbU1cdHZ/t3LLK8ZC1lyR6i+FpNxMYMY3LjILbJzsKyro/xoe9K+nvMORPLxAhWoQenC031uSMOTOVxtJ6O8VrI/aEeP7Vi8+ev6T+UkV2/DdvGfXwDSKfPJhNow+WqpGqy3UktCyUAIY7fNSgjrb/a8e8dVl9gKBlYOwE2xw/wlIXQc425vQutd5KkNUvjKbbCVVFoappsYoZPN6w3zIbQI+m929Y2fL65cm7h3vXuwwe8AyhaUiBEKtZR/6tX/2IdfOsUUEJXvOlIwwW7DCVQSTY7uwz+syyRwag+MolDQDrhlzOzoiKi8ipx2n4/AcXrvw4W5hQFQeSRJfcFTu4lVd794FRKdHokiXsSc2QvX1sDsQyN6D31pnEv+MV5pv7461NXj7Y4tUr3qDa3t2BLeh8N4FpHPcjovlOHiGG2p/xvm3mDTao99CBfjBPCnNsYqtulyxRZJBhbpIJHE4ak99k3ObWJqUB1ecMC47XmP/QEhf38BhEe8O30nzHwncKVu95PZgWkr5xVhzB1i8z8xoz65Hwhv2SVOg8VVJo3DJpNPZ1a9533tvnnQpK7pjVO8yL0L/WV0w8ewPTXvKW3osXXx2dnL739J3Ndw+YKL9jIRqjSKzWspFzOBEAI2EsRWPRE2WABVp4Gd8yq0LLivtxIAXmgrH//Z2DbbaTM2coSAxOTUlh5mLKqugNGz8rEcs56eTD6dUl24Y+vxgdPHl0dXYxpoVfXeNLZBkn0B9Yr+NgJon3sneet2eBEgKjlwCuulrc4GmtR6MiFNR26z9IKI3Duk7IIkc9QM5/LrKtw4CSUqmQeU0LoKRYGLw9CA7n6GLrV5gmlSgtDDTMm4lgq7QiwAstAUu5wEopfOIeiVQo3gInIvAYAmSnGaLFqeGsAiQHM6RdEJg6v2BeKC1mKJwjX7JwEAJTeihhrgDFSo08Q3VnGsAyqj4VqDA8gmTlLZ7QENdJEkBJqEC0E62Qkw5uUamh1pFaSppc7lKKicQR3lK9aYT6a3iGOntqNqoe3/6oZJR1zo92ylky2FB1U0+mTqWapQ52NRtLQ2k0tnb5MDp3EfU7G0OycmP2+uTiy5dsPMNKQlteDljwyE6XjscLbnrXE+Fg14nKkgh3Mpca0mbwhJqUOT2GLH7+yRdn59dZSm+bRFefXqJjQdzNTD248z488LOqV4VNACvgT5m+o8FxAIMqwP3HGFtAF6ziTSDSrUeoeX2CZ+kodLZ/DB0wWZfZT1sbplKpqODoGS+mB6oH2Ltsk6Gb9cvzm9cvX784ZKxmh12oqd1BsSygk1XgOqv9NsfvP3t6qMnWzVQObvBAU8fnh6mX2e4I9WBNB50sZfe5LFal+ka6vodXz1MLFHmoiT7lOIA/Zjk9r0/PxylY5gPITg1QUWEUo1rUwzSWsGNzAzFRnb3vJryNfHZ0db0xvTucv7N9wHZCu5MJoxxnDNzxhQb3/md2wdLuMFPmkFk7xK4bDOHgkXVqxDU6A8xR4yNvF/xs2S4VLUHmLNnNHnwMkd9cr/M2HGu1aK/oFZjj3kq0mEy0kodrTJPMzthw24cPJpZ4s469ohhNc2rk2h3osNnxpxiDx6jRyXHf/6DpXrmnlX33nXcODsg7X2fAfIbzTunhUwSZg9VvZDktDbviTXmrjydCRqcckNRECyKPJ+usYZpMjo5PWPmJpbwUiT20T2TaZJfpexqItduVGTPuvAZ9fjLd23mE8verU6pyNlViNcCN35NmGYILpxgLovCbhT7a3j/98L2nv3Kw8ensD/7ZDzMfw6S5Jd8cFi+FpoJStfIsoEoUQAsWR2F6ExkWauZz8SYXR1vFktBqxpal/oo8etHkFbvwTN4ZSpoJLdF4YhWHWcno4OApJIKVJHZReeYnRdMrVFUrdJCd6kFWFA4HuVStBWmKfWfWRCyj9lqVohdir+Za06bWRYHyifzqKWGpV9RT25JV6pscZ0YtbYN/GFsLyTsWNaVVXhkQhS6sqGRsQcC0Y0ROEUoOmyFUEaJWzigcBCXIKXDPkUFawcoBicpBcM6NUZfe0WXAEU/BKHSSqdMgpNwTQ+9Z6gPcx2kKK1iZCfAOFR9FZeJAsG/f0IWk0+UrV6u8VUQj4K3swy5dnyl7zXz55cuT03OGlLzVYZiqm96ozNSB8QvvYhY/sHBudssiP1a6rDKHzK3m0r1tttS/OTmd/fyTz/iKC/X2+jh9anSwzuZkYwMjGw+qd12MAi5WSUEgghiss7NmG8TQgCskkZzMk4MsfAeZuos2hYcP3sYs9hnm5uVimjjzzVmKSOMFM9DwjZMKzPry3vSMAQi3eLu7Ykkh74jubbPpDm84YbCzSPKzdhnZRR5bQQPhT51Yl8m4G/uM8vZ1BkxQiv41TvKtAtpGkFKC9bxskp9Ylbw0P8OLhpAahDkY5MjXwwB7JeQTkTqAdpe3mebsOurrY0xnOt/KWNfpOVOW3nzk3taYZZS8hDeh3mfsjvWfGKBIdMZHvBPFW9dMl+PF9vIYoz+UARxoAcEhbg5VTo+FFcygIut9QWZSBMuy06eOtn62iiPL2OOPQXf25rQN56lqbYVpAfQXgRwzGxgcypARI1uOUnn/6VhKFKM7lrqbES8tunUIruChiQafgkrxYA0/7QDYPO3RajmrQ/fBNNc30UIwfQIzlyUxgOZLKotzFv7e+84wdrG6mWFITNvd2d19xIQXMpleZ4jQnYvOr69YMLq2sYff8AFrw04v2M3jFs/ZPKUwYiucUfPFFz97+XPKyGj28pjZCRcxkfH42BVsyU7c551mRE/yLy0x/nzsMUFv2VUhAlJLJy3dVau84HBWrpknB6KCcxXCISJnBeWAlwhEQ1MkYlikGk4BRWkk8kwXjzJiqONFS+LK4r/LIDlBFBqgaYGqzkdOVw4omNJLgAYqquVhGaZLWQWTGv7xjGkqo+oFDJ+AMcg6ojOSP1Z3I63Hcjzgo0Pg07Ru6RXrtqmcTdVSPHxToYeOW8x7DCTQpLG6sr9KTH7ExCdietJKC6BNXuIPo+GTxCVGZSoMOnZ3KPFYwBUVlwdKRGuB3KGU2Ll3AsqxiwAVnVUjNyJ3jWqhIreHvvO1STqz1DL3l5fTo6NL6g6WtjOqzddavnr55vjkPINJ2o0IJ1XXZjd28qBCFj1WpxKdbOSBee3+cHf80a+8yzc3Xj4/Y3hgd3PC+CtDEMevT6kEfIPHQRV6e9apdmrtG49od1AA/dLE0q0nU5ltJHvnNg4x08EfJwCpT3kKwPxoniEaZuG42v2i9FLNzJkOZb0Jh991oZbj5X+yjweC3W1W9WwwGXjp7g7c5u4Wx+J33hhiGb4iFivsdsc+a+++84gvHFQ+6dkqajSomo14bNePlrhsTskULkMk8KPugidozBLr/xRIjKOqst9ehFyXeWsToomcxGvhlEG7GtSLrGHTO0y58LYX9f7ulnCX/OM3Xm2Ys1MQtjOww+bdB4zj85Ias+orbGeW7yczhc4bykx48pTEGM4mC1hptrUEtRBk82iZYCUsdd+MvnE9x6iVOqGfnQq8yxMOu+6zlx/fdaM5pAr2awtU0Y7MUHU5+rS/w0LMCfK28fWYAsg2TX5Jw7FDx+aYoxCbetNxf10EJ2dc2NTzlG97sccObmRzOupaEvjbGLPUElUtNMkA1jbZkffVijFFklfY2eCBCh460i1McGWmly2uNnmxez1vBfsMxBMP2/hMNmgAeNThfQJbC97MmNw7Fnp+xofWJkwdMIh1d2t+8YTH4JXjck6coLxfrXj+4vhf/ODL3/zuY14j5j1iVh3ofV2FcTaDiPbm8pRQnBiQVVAymHOKjgWo1XvCTc+FchIGut+yJhk/+VWZq2tIi1X4k8wtIGYKle2JBUqm/jhkk0iLA2h3mMpWWk9SVCe2RRIuxIBC1aGgBTEpLVExQHNSUT2M1cWYZOpYnCTxKEdJl1BgDbgUEii5iOyomu6oFXLJK7gOi7sQhsAkITOmFNsmvHgUzyQXlyYaRUAIqjngzcLQIkck610glSsFTS4Ali2JHVjyBUgitB0wG9LKK4NLgtjTRVuGQwxdQTh7hE/0igzXbQByqIc6gHWF9jlwhmUCCksEyFa83iR2SVLtnPGm/uyIbjIjNix6eP7V0evjM94k5i6FCYZRTdDloo/Gm/OMHNBnxAfUui5d5IbmGzLr64d7e7/2jW9s7B58+pMv1thlh1cxLy9Pjs6pAXgg4PZjfWO011HIRR86dFS9Fon03UpHK38H9n2CQTyNgTObdCXR3Zlt9gqmQWqeNm8Yc2b7MfMMVZm6oBpm2QZvZvmeGyA+Mc/3Xj569xF3+8nt7PmL16cnvglNVUdPmRX4N6xu5Llgfs9bol99dfwek7eHLGHlqYLbHglqHR97jublfdIYzdCVrjpi+xk/2cjGEg4x82995WNBozIfKsOSaeZe3QiCk6u0xmmaAegjDvCTW/UAxKKZ0Q51lPlBq0Unn/0ZyA4m75mKfPoOUxUsKMLR1kq7974Yx9jY9YQl8Ly05fvU/DOUT/6ToYrQPC3D41Rz1KGsreTDujzMpToDxQMUrKQSp5Z3VnjEZ2poiR2h53HP2RvWUzLPnVcub1mJRSPEoyULfG7JW3TYpjKXlfW4dy65TYYyPkXFGvZqwIuDZyds/Knh8RMNHkuMnNNi5OueNTc09a5RZWiPt8F51IDJ4sWLI2B8s4cBIUsk9tGRp+vjSB0G0gbdsesGO7QeHDC6N6HbA3NGOGl1eMpgwGiyvUVG8UiSEqZzM9WFD/Ei8+RozboDWnUn65mO+uT12cHHDGdmXSu9GXodcPT5N940e1Tfkxlr7nsRlCKKmBQE4FwxNlWAj7+hBMfcTxiKkIZaeAhbunU3zWmxj89yW8G9VEAijgyJGoSTCiCvqSS0BauZL426yNInMTD7MWjUAcWZc3gDbWxVAw/46D7IFzc2yVDZcmtGkaY7wja+SrAA3Q+ghzLEoNstiBRP6ahR21i26zYldxq7iAqyKnhEcgUqnwKNTH2W5NgEnKoI0JIZERB1naU3NWQppnfLIKhAIVIGgAmkmyFxaKOnqCKWTrolyEVBpEVFS1I4li3gBEFc1VlhG2E7dC6AoAKKQDqlxQ8puIaxH7pVVBJUE9zvGEUdy9QxXWPqMJZpcgOwKoa5w9md9S89MQoHTG0JGFCh6+42YXTgaWzs+rCug/qYObOLK9ao3Dze2n/EEqPJzhefPnfr4ilbLPDxQp9NuMlrmAkezLLNuZV9ddRxIQbAHXtKZxRt6SHSSWV5IaP9mguho6zsIkR3jHvVhaF2TPUfNrF2g06ajQgrZrzr6UQ6hoz99aLyxje/+f6v/+p7oLy5ZjWJY06EYcUgMxWY2W2eUpkt+NrBy5dHH7z/lMlg5j37vZquUvLP/l7zPtabKdS3VGmpdtkWwmEJZoZxVwa4yQdtMPsrj1MQAgxAB+ByuzLUN/Q8dXYyFdHW/kRoYB1gYAyN+11/WCfOGOFxuImvyezubT97/9Ejt1llRtK2mTyjs8uFfjaNOJtuIIexG0c/lGNWplRYfq3obEcXLKOhyeNpye/xWK+XV/CrJkRBuhWMPiE59R7Fg1X8+JknNJoWmx5mKlTS3rvNyipfYebtADr8TCthESZiCc8eiLNqn6/uuo80MukNkHW0DMihA8BgERPszGWwEw+f/Nq9HfFmmqM9vKtBs4dmfIbTp0e/tkaBof3hMcyPElyb/3dMHDOWlB2T7h89PmCuHa3wFZnA5DC2EVpjssfpFQ3AVnIClXAHllg2eOLdmPEIyRtj2ZUEp/CmHI+iR5MZD0CbvlfHjaArzW2bH1THa/6hoFI4WVyMY3gcSm5aBoxwrjvYQmVj5SZR3IY00mhvUdAbFh7KkvVaPAAVrZxPgBZbBSDQa+567xlzyyRCilA6V2HRVnDBLJjRozBFAVdkjwC9n1pqgBGYxFaoG69IjIxmU2MQJfSv8dKoKaHg4q26soHjIDwqB9iQygjZeHi7UqwccGx6lNYwwmH2+0BpVhvpaA0rl65NGDYuFR6EU8xpZSmXZYa1jt3QrmdyVgeXLLS3IEVWrlE0LJenQk224Us5EC73iESouaVc4ZlsC3DJBDRA+LMJjgNJpltSplIQ6Zq7zAZ63m4HkX/SrF6cwbMb72v7FF0TKGp2wVhlqDaMMDgmIyL3FP02THa4076jxcpKS0+g2j1rYIiyfPH57fH6H/3kycuXdKD4/ssJ34dkd4EZC3KsIUFBDDUv9z5dphvu1vUFC0doV60SYIweaMEdZd8NzRGtZy0cCkINJNK950ZT5XDULFjaEHkTajutCpE8M2QoiC/MPHv84ftPnj463GSImjVJc+qOndevzjUiL03xoEP1wBgxMlmP8vrN2cnF1aNHu1QMuTGTO/KGMbLVRoHxfTSUgV3PjbEF0voNSzTGseb4t1iYmQlJqmXFR7BtgH06na+AVBIWEA10ut4FuXM2R7ILH/lMV7LC9H7terr/ePfxO/uuAmIZ7Dhb/1frSIcdi/wMnG+98sDGHBET52k/40K0Jz9tE6jHaUe1xsaGZt/xNlREG4sI1FHeptmOOPPPvLjLrk2buzSilCbef6A5ZzDt/uyYL8dRPKjimXb2AWWN8R++rcPrcVesEEDiHpvx8Tmda3oM5ze83szXhWjUsZt5WNptqjDW8LBBKR7xvTqGuXhJwoORn92dvdEuQzysX74mg5jC4bEVORnq83biMdYMuF987ze/+1u//mts2c9IDY+BfnuUKSJQfDrAOCaf2N2TwUBeWr8+OWJp/xE7qGAwL7r9+re+t7/Pd0TZC+/u7HT60598wnwYTqB6ZZnq7HSdTypb21uyV3kyNvPZzWhtghn0AKbz22r/keV0zO3UtpHFtt5NZjzeTKGlftFKMpQmk8ds51Ty2c4P3nnnr/7Zv0In6Ac//tGP/vAHNNLgbK1vfet736Zzw2TVo0P2G88CDN1GXUjOrVyeX7x68zKPVpatXtysl3Mg2GvdUQSsQKpECm9YDVdEvCSXoDU8SoOFq5FFRFVDDSQTgkn3zrTcWMgCWaYlFIFRxuSQRENvD+uBVDH9UhIbSdBLYoRFOeM+B4gDV2Sm0Aa366Q0m2I0sppJoZaYYINaV1qOOnGkRIiNQZhBHYOQJKAxkQQ681YscEAHWKhFmJjkQVND4d1UyYuZsPCORPHVB+riJutQLnkHhf0eHFCpwpWaxO4UnR8rdOsUYDy5U5joXzE6MJmz8JO+FgNGuf0YOXUJDTUotTaVopOYrap3XQyDONyQ8Y1OKldzWzoCy03HYos/+uKr7Y09lhMxYsooKW8Y2CGxLgSd2p/bnzqfLpu1A3UJN2Hqb3tdqIqGmYTk3kIfnEGHCE/4mJ1CRj0oEzPQqQt7RPrPB574BvtsB6j2qNDt21Pnuef//d7hwZN3P9je3ef1Nhpp9rN8w2Y9fAHHnXscrEE6FmE1O6Zd8XL/2SWDyIt7PguGM8ytdsYb1tQSLUtaph9ZYGN3jTFnlqUwhCU/rY6GIYdLMi3EatXSQMUdmOjWn/bfZG5uWxr0c75vyceQmbrgO4sMjKAxjxlXN7OzU0bI5/sHLOC0ZWBMw7pT18GQ8sqnNK9phlnhSpzh+8P9+9G+w/xdB5TwRrEjze1AFa5INBEBLvysetBEdmTZ+ocffvNb3/21x48PeRWZdx34bAFa0yaxup8N8Vgm+bv/7L/9/h/9IaUCjzFjQE39l37nL/zar//m5cnLf/RP/j+ffvo5c+l/5rf+nd/6rT91eX7yf/m//t2Tk2OK1dN3n/7P/vb/ik7Lf/WP/79/8Id/wDolqkU6+K4QGM144fpPfu973/zmrz46eGQDyBMKD6IzVjC/PLu6+NEPf3j0+hVPsIxjUnypgJ3GWCw+fPfZr3zj20zz+CDKjC+lWlswkD4A1mgZS5LH46e8VXZ5dvEP/5v/hl0/KTN0WL73ne/BfzG/ZieqR79+uLW28Xv/4l8x0Y93Z6ONsxnvPeA23ja8f/+9D37zN3/zyZOnvLOB/8mt6c30zYtXP/35Tz/5/FOeMH/rT/z6wcHBl8+fv3jJjlfXtuz3K+88efS3/vp/QOv1n/8///75JUJX/tT3fuv29Pj7f/hDdr9CyunF+eN3Hz969/3js/Pv/+D32ZOdzNjY2f4Lf/4v7uwffvnlV++9/4QHXSazKLwk0W5x4t2Fzz7/9L/8R/8le/VZbsxCeFeZsthyGLf0eQFFbTzEIT6UUKnk0JKD4ylcLRuU7jADB15LtGIX/E4chEBUSc6cZE1RlUcTql4p7l5p0FAnRjRKL0qPAEhSLjUl6eAaqAiL1ny085HIpr4QOh5MgKQBdgo/t7O0msSVO4JI2KkhcHs/9FO5CegHU8AUKVtkiy83bSoaZWFjoLJUeFOgXbW+tCosWUDdDoQXOmyEc+qDT4VB+V2iDLiqwI9X9j0YCMr0r0rBwnrbPjhZRs3sqCt0VJUMsdDBT0XGIwF1n0+gFCWZaYK+AdValfrfRqL62tE3xtuiWPK4n1h9x3Y685vLjcsLPkrjKnmyAWbpUloXWoekOeHsrlp0lugtM+SK3vCIkg49kGspGOhis2SPg9vdiqoqVGzkH2AymJ4TA7vwn2EYEByITOi429maBwX4fMrR0fnsG2i54L0sNpvkZYnz49sfnXzG5gZIi80+TzJBym5jdBRPj05ur54u2G4h9xV8cQKq6Nw4Wklojx0pLZzVg+Y1a/N5IMJcx1t4dNLDPhFoIVzMEfRPAQkr2MIsHUNxY/ogS+Nt6bJlxRGV5ck5n1ok15hiuby4vrikF7tgaJuVkNZpC4aefOaLFxBIMzxnjcubV2e0htu7dszpwPPSl4uAqiCkraBZ9RmGLiirwSwQ6odleeaj6PhUAzfGoP7cn/szj955ZKbO58+//PL45IwpGIieffDBs3cPWEX7l//qX/385YsvvnrOPDDeBw89fZttf4cvINPWsAb4s89//r3v/dbO9o41MC36/YwdQlDh8PEeDxV2qC0Q+hfreej5K//e/+A71Mhz9oO6fvHiJd8zYF+Kvd3dZ8+efPyNb3znW996/sUn//T3fu+nP/3MuS/8xRCQjwRovfjX3//+P/kX/5JRz8f7ByxLYjrE6X5NwrG83Mfj6saH77//l3/nzx7sHL5+c4zVUOGOP/7RH/7uv/6HB9s7/9Ff+9vf+Y3vfP8Pfsh+qM5dr43Y+85Jsbu7f+fP/em/9h/8j9ni8Id/8IOTo9csR93a3X//2Yff+JVf+fZv/onPP/3pf/J//D/94OLof/Mf/8d/8c//5f/z3/1PjqZnFBTaicvzs9evj7/zG3/ig2cfUelTSn/144/Pdzb/9fd/wOgej7H04j//8otH7z49efMlnQKfFNZX+Swfx87u/u/+t/81myHRFLp7ucvB+FwcnZX1b337Vz/48AP2keWbmd7RmGk19eBohdhiTImupHY/W+gCeOtk+bY4VcHXaUYBUFBbMfZ2lCZJKdzBLwC3Tgo83DsPAx6FldGVhpILXL3ZuOelUcZw7VS5zb2TFOuh6Fy4qqJmRrIJ/BNvOoFFJZ7b0oSmnVWLxhfjsOWuVHzApZ4Vsf+pi6KUBPacSj5XD0BqQDGLVKBFrk7NF2CVOs26lhGhlUUR5KISqFt8oxhgyaK5yDmEwDJ7x2gKBFnQQf2VXOWGonqQjCd2qhOer+nmsXkQN7lkgvA5g7vcNeSt7DJjB6fUSVaEpbNMFIdmVp0UpPWRHUFqH2oJUxyxdx0fFSANjy2MlkGVe3KFAs5iTblmQxgLov18//jPKDC2EI3p0Bo2iTaDP7rkEIsBZ6zgDnDtJ+tRGKRSLymsaKl+NXnBRsd/9MOff/Ts6eSjDxh54OvwH330LsTUMl88/4IvSzKkTP3Ijc3SEpRma87zU8DXd4d7bONsX0T+ulVD9K3nKENH05qRg8qdkWz0pEAwrcEQLXWf++XF8zxq8CaSPtEptGsYLS6s0JCQ4eJMzjnkaFS+NL6ObPMS1mTlbOP86vbo7OWUL/OwAoaPwtzyhduN3e0Dhu9PXh/dPzrgQcQOuaP4DkIw2MdyKjba45UAdkPwEWq22N+b7W3zwliWz+JMMgbbebdgccdXBvgEwOaEd5spC5oUBfU+Cm3w2fsdlv+7rcIf/eQPf+93/xmeJo8Zm5r9/uLf/6t/6bvf+S716W/8+nc+//wLviMkTVvjzz5r7OjHbq+08HM+uU6LxsCQ36MQywyle4Er+HoBj5NMcADDVTR9+xO+3/KE1u2rL5//09/9J69fH1GJQ8Rarg+fvv/v/s7vfPjxBzyX/IXV8csXf+/kmh1IyQDKtv0FavdL6sLbm50RUzq3ZP35+viE9Tu+Y2Czurq4vr+6+PTl6z/x29+l4feF0zSMZAxDMteXbCi94JvN773/LltDrfNJhpQE8ou2+Hvf+e7f+Ot/82c//eT/9Q/+ATusU/zxOEM4/3z1n+092v0f/bX/kM/vffPbH336sz/+L/7f/9X/4n/9t9+8PrKcUNlTptbWXh69+Pjm46dP31n80Lw+PDxgS3GfAFELF/M2xcUxt9LF+TFbNrGIgj4tecFj8vUljceXsCGfaT6BOe3EE+Ht6s6jg/eevecDLckWUM4pk7mNqwBb1jh0ey4GK9CKIURJS3pSlCEOhyUyh2w9Wt1UYNVRbA6sDEKV6ybOtP6LZnar1bWolEk43W1a//BZEjScVKxJYgS73YlE1RKrvADkkr59sbYghoKLXDNSYK1vH0NQkuum1oTmAXkZDqjB0Q0TU7JVXBQ5FkXhJ9pxRK7KeslKlmoYufIKnWyiJXnW6swyIgjFtJ/jZfVq+dhIa7jdrjWe4UZwDoAHQ5fqgaq+vilGIbUyno+da6UMpYPqCEQb7lEIDqECaAKg43FBDqoc7aMghmGaltiqEGTlTZaaUFx9Z5jbRRIRdDN/DEnPfeqgQcoLoowBpUEmy5tp1t3cIvaeoUYL/Q7AsS2IqBxFoHagioAtfdd79xmmZ2slnDyNJH0JnIaBcSeGd3/+6c8P93cPDw6odtic+YP3393c3vzwG+88/+qr58+P+YgCE45T3mpgO8nxBu/GsR8q3eeVFedU4VV5YPbkFsCmdM09cTdjEhnh841j37y+ZCPL6EWmMfVsFiY5DcsoNkP31Oh2r3kXwZYnPK1a5A0j/1OqjNlssKhm8u4HT9Y2Nz7//OXnn5wcveHrPSm997wcMHvx8vVsfslXas4upnu8x8DnevgqpyPEI15cYI8H1jfSojFi4OpXhsypY3c26W5v7lE8LGtogpK2Znw/5/JmncVGm7vkZoxVF7Sj4PB2mwaDOVr54R/8kBFzrMFIah8y+Pf/+T/71q/+Gnnw3rvvMayPaRQBdn6gSaIlnl6fr93fTkYTXw7g1b/pzerWLiWGkkZfiaETFhqTs3gKESlmfoiNEjPe3d2YsPRz9ec/++nzLz6ngaWdhzlF6Wef/Zg+/d/8j/4WLza/84QvRT59/cmn2EyxoAGmqIQF5tkoXM94McGPBr16+ZLpngy+08txsvji4ur7P/nJ+Q2vH4tJTtA1YVktr4OwRui9Dw7JPpZIYQ4eoTxf35wc7uz89b/5P3/x4uT/9vf+78Bx9mydTxVtfvdXv3sxv/jxH///Pvn5Dw8evY9v2A2KzehePP8pT0p6kvzGTorw4v749Vcfvf+UNm+f/Vl2d1h6wY7h7KmO26lleEklmzLZg7J91FnMOfBZU8azXN2Qu5Q7mtofrzFAN/qV9z+UNf5kf2xvKVxpDZEibDnjZ/apAKGcl6fERSlEQkAkVZIwb+ThqJqAaCHhyAQGemINnRRLsrGqZ4kEWeXgSwI3GmrpHiCpVBBqyWwsmtRUIqgkLrzC0STqBymJJ4ErvLQy3EoqbNVfGk80/nZ1hRYlYIV7iFPBRhDTkymVElWRn5IqBYcaVUgFdbONcOou5FT1hrgHSNqpgvpVeNI8yUfrdFwiJAXg1bScObXUHrXXgiusia0iSReTCHhUF/qGh0sWesw31tgukTfjGSeJXyw/GiWmRsHBOpY0VLRmSr+WhCpTNhkqjQcYPtaXROjYUrtR2/iJX8bTtb4soWJRD3AoJX65D+3sVvMFD9c6kAQT5FL9mGjLTWnn30IAXDYioI31hcMI8Rw9adac24CZSFcC/Z3taMJsKrhpSJ6zE+SPfvTZ/u7jX//2eG/HHS/22dN4c+Px7vjZO7uP97+8Ojt//oLvqNHFy1jI2ojqn2HlHRcpwS+HquhyfRmNXDjlGkHGszSX4X+m++hIUjtrjitSFyyu5+wdS+s4Y40HrfGclZZ0fpNT3lzUZXQ8NcraJ+7WD2ivi0ngwQWefEvTfUHnfkc+jZMGX14tePmOTd9OL25fHt082t/51V97xl4PVAEs/ecLMoePF4+fnh+d8RlIhM9PWON1y97c+4vR+NCd8+I4NsC5WzDUzhBZpouoQ7Cg2R1nq47VvfnOWlvfzk0tw2Iudt5x5plP/bB0jCZnZ2ePM/10ehzkJS+X4LNbdgBnXsCctcORXY8MIMSfVsPZYSyjeKVKmK+/8a05+g1TPgTNVlFMTlEPU03TXh8cbr15/fnlxSnzEehG02cZh9puDXtmWCZ9RcLlvKxxuH7vw1//X/5P/sN/8g//CwYF7+Zjvqw85bFxZfqjH/zRH/zLP2A9ko8zFBuOlcXe3sHu3uNf/8533n38+Mvnn9F6MspPh4NMoNX+87/zV1ZHW/+Pv/+fWZYpeZurW9tP/sKf+nO/8a3f+k//8/8DG1EtmKHhU9o8cHMj8S3RqzesV7IOt/hwRzgL99WXL//Eb/9Zukp82niLrNpyNxFwmUGifXdXQd5tT6kj43iFn33uKExMj7Cso56ecH56XOw1Nf6Tv/nbHzx79vv/8p/y4W7bMf2I3b3mMN88OtS03G6FVWkmLg+KF4DqoHc64sAqtwpTtmFOgFv26yyQ710sbinAbUyQn7enpKVZahNxCFDlWBN5Sh2iULWVuw4JWqTLAYa/IFTGQNVmSIywUJEGFAcpw/SopJRKHs6NxGoQmF1otRhOhU6SqXUWJDdnDazk0IKT94EJ/ExLxHi5xuYBziSZGMu/btJbdGEBE679kBFhxnKcfrT2T9xLGHpjUWy5I7hZR8wH8k1wdmdkTIK7A1QqIIu9mUHnKdUXvR56HCqV5gvf8EdVTmrG3KFwPIGSBpww+4jxMuU+OynYIa8mojUYqGE7wRSvS/q11fuMW4Hb2iEUZoPttCmCNShqrDssH7ZkdOCsFpHjV4NhhFpQm7t+F4qxUTqNPAzaJwbNEgJ1mhiiNmQiHL0++4Pv/4SXgz76+JmbFI18NWFjf59JRbaSfPWt0zenZ9RRTFxvbrnvAu+HMRKBM/yeeoqZeSNv3O6/ylu5s5bWkWEgrM2vbSF4FxXetEjctux/zHZmc16h47Vh9gdiaznn0zNznVKlh7EJhYiaWbCKCZoYS7CJhaZuDcfGZXzl0Q01EQxSFsT6peI3R7Pj4wueLy4f8amcvYPHj5jZ58Fhk77hysqH33z/+OKSEXuXY7I199X0fn4+w7BN3o9jEwoE0BtgiGbOS218K5js9POglnebHxUkU/wMgyMzqmkra5bkbQ3LIT5gjtpJWB472E6B4ZLbG9QnYN6xk9p0hZEXVYa5BY4RJ3LMLIOKpp1P7cJG5mYsLCNgsWBr6U00YIrphu+6eNPGK372gN3rmIe9vDx79+n7dsJZAgtflMIAuhdkTQ7wqQ1Z5Lb35J3xxsG/9+/9NTeLW9mhufL167X7/93f+TunZydMa2sRSnCH3M+fPnnyN/763+BzFj/56U9+/vOf4Ba1teyv/to3fvv9j7/1gx/94PXRS4aVWHvB/f7v/uk/+6d/+7c/+/HP+Uo1juKRa7K+SzZVQeZlE7YxoU3UlxT8Nd52njPzjG6/8fEHfqr6foXdYymVDI6x4Jf7ldcouWd1Q/zL/UDDgWLoyIzIX/z3/woPeTTFlH0czCokFl/9/r/4/d/9vX9KceQ+KbqUJBik2MLHfONCIvmZoEWsQng5CAEQSk1dkdCYmHvLgPemd2o/fJCDnh4UZ3nmTmkIhqkOzTkSkWORSiQMI1h9OOTi3c9hmWvatTwXh7zFKDvv8ghehTsuGLoMUUqXIn9BVd9QRXoUJSq0jmUocfk39OKh7oVJki4sDQbkwDRO6ZjRkEOlfsTrTEgc/4DByRQ9/oBhCZJFN38pp9IensOXrdX9Xqv1pQLsTOFQu6mWE19o5F3RJ4/2Dnhn1M1yWXF8xf3K8Df1PnUllLkpcxulBtbXVJ/oyMMF9XhyiKj1tqv/ZwzTclfyyS4WbuxtrW+7TYxLKl31jeg0BNwz3vkaClNGKH2I52bGMACs/HSsxWXVrg5K1mgy/2aOzws8qWTegHCtRo0jrTNFKG11KRywQkVtEax4eBJhERS1D6MOfIjmk89e7B/sMT/MZKN17hof+N14fzRivOfN6/PPPnvJRgq7fHWM4RMqWjqIGODgUs8CbTCnuEZPmxZtIwdZo81ayOvbKwaOF+wz57Q570DwUA8unyjwyd1pDF5YJbdTkirTYWnTG9aySZ5ZiJTBvw2wElevbmdvTq7o6U8Zw6uJA7OD96J98QAUFlqy1vDsnC3X2KN4tumKIR8dGPt69myfL/zQp6TxZZyfj8CsnM83T0e7E75ev7mywZACH6XkXT+2a6WRZgdvRiIYqMP3qRSt/HAoh49UZCI7irJ7Kd6NHyxeTO+yiJOqaH0sNvZQNGwIUR2DXXxj7uJA8s3EvN3gnUzRcrLI+t91XvGOM0TeDwwNUTL93Bol0JodJFf6+EkJtn0mhdbQhwJXrTFyY/6AoU+Vwo/peVcU47Gr8wtWVPH5BxY0oCALVFfXts+PLpn6YKUozx6Yh5X6aG3l0ZPHtJr/9T/+x6+ef84HSX040Afu8vQn/9Sfu5lNf/ef/mO64dxcPGt99xsff/ub32Bw9V/8we/d3bPP0Pj44mZvnWWv1Nh8LmLj4oLulKuXLPZKcNkV/Q2+rPEX/+JfoQ2+OLvY2tt+9913X/zgFbP6GMAOFllRZjNmMYhptE1nJ2e/9u3vbG5uvfjqS/a65nkTq5kT/vTzn796/YaWAJXs95gDwwF1AVLwkiRTDlJyIKRKpSXQo4qgycRxS4CBk1akIcmtWnBMs40qnt6/8lATTrJpPNolQAlJA2TZp7QFCwqHFQQ2GaGxdRj4RM0wBw+qX6IhLMRSkHw82qWCJBQ/RZU7DAxHkBuxyuEy7wLTm3ZNoaKIHfY/UuBFXkqPA/WEpBHauXA3iQZdCEOTvCkRZa8UUTICIW0RNZFRos7ppty7iNP13+YFXOkruqvWKnuhrD979s6Td59u7z7mtX5ezhltnLOLGQ8Gtt1cuCP48Ck3GnxlxQ0kayt5EAhmaS/VtTJZv+GyUTuJ7H/DxpqcHQohKfrApW55uaWbuc7wh7U5u4mJyT1I/eG0m5W2zwC6AFydTYB7hCFw63XqaoZJYGu1CsySpR+VheIw0sHpWq2ymSbozJBZOFhOzjMRbyIzToKqR8enl9dX+7t+Xz7Fk+xcZd/Sjz/64PTskleO2MDTj/Uu5jtsyUknH7OjjOogP3YZpqQy14aX7fzjOHhT2VEhWP35nkW+q8WHp/jwAIvXp1MWHFJTrLNHHt9pMX9op/Vx81U5rbEvASWMCuSeb3It3pyd/+Tnn/3sk+d8vMXWzTbHcsY/7QqWc8UWBl6O+eTm+QWPdj4E5fmJsvDukyfHj65fvDplqwOmYcV1dGVCt5fvcEG7z+DRzfz4/IZdppmFZTjr6opV84v1HacH4CUVTwUOYqj2zu7m/Rl6+IISyMJo2Wnyxpu8A34z5SMp0LmGh8KVcR00pJEhq1kg0IaYqFWxgFJmpY49PNLlTuWBhwIJA8C8AMbiG1bnP37v6RcvXttT4EteK7z8zEead6glJ6Mtyw8T3+zUFHKyj4E4K8F8O9giSanY2vzkkx//Z//p333z8g1VK1u4XvLEB+L0hg3fPvzog2SoW4fyvh1Pioz5/Kt/9Xuvj17zygxzJ+hG/tLG/5k/+du7e1t//Ed/eHZ+js06/X7tL/2lv0pjy+vlX71+TjVPSbxkfe7ZBW0eDSBl4tUbNg7CCos7JcpZiXW+a2aP4b33P9re3WLx6NHR6bvvv7f5kx/TsLGZlAN2FkDLXcb5+e4Fuz2NeP/h6ubyH/z9v/f8k59TzOlZM+NCt4sHVu/yWpnB1UrBwsEpBdeLUY6ADQTFGPdSoVdNGgTvEZGKDhAAz4EGw0gOYgrklpQIdw8ixBbJolio4ra/goSigpIFX69WWJdJbgKnElTXRK26kgkWN3FjiRcJlOqNYhtQTKIgMgpVvNaIhJuMHx5yiTGUT+AS8ZNp/o0/CDQ1CyN2UGkGU6UMhUPnIbWw0sF6Rh8CCakJ/8bjAZLSogcw7iwGGHLYo2IAgyJhDcINQPfonXcP33uf5XCH48k+9yoTbu7/S8BC6bec2L6Yh042gbDa9PHftRDeTTwXsF8XvOhtp1uFQ4lRl3DrMZbC9vi7m2vuh0ltRJ0ZQ5Ce+sceGSpgFclOD7CeBD29kfUqJsPE1sJMqQcnCJHo3UWmQkxtxpfA2FWGdgB0nMQ/slPx6S78bN+Bs3vmrDMPwQumQBjKP79mfwuQqarWqBnZ5egxe3tSiXK3UA2rGFsVbTx6vP/08ubgYJ9BETdGYByIhZEpVNRfdirbYTGLDrgQ32GNK6lol+hxc/cxt0AXjAEKJhptrlZv2NFga7LD7U8NklqAdyx4+JBhWHXGeqgKG7ahlG0PWchyl1fH53/8409+9IOfvjm6xFmQR+tkPJ4qLfPgwxrKLz57SX7/+rc/xjluR02bPho92t1952CXT35SlzmMhgkrI1qjnb0dbNnkO0HMFE/YAW2NWgzrWSnLNp7mo10xMoL3RXAZklhQoOq/8c3f+P3f//3p3RU9BlSli745Wvnnv/uP/nB764svvzw9PeUtAWygTcRU6i/W46+NJrzAQB9f/WHhPQXTyn9LIAeLWHlbTX+mzDCAdsWb6gxq3C2+++3f2pk8YaaBckE5P704PnnDCpn7H33yM3Y+4iW/Fy+/giWHo1ps2r21ST6kU0Hfm1qZKeHp8+efUfTmvMC8usJXFdjd1O9wrmwc7u6xXqjIXR21zufAZmeXZ2QgfSgcTZ+CMrG7u/e97/4md8Qnn35KI2+dyxMKo15be3RCNjd2/tb/8H/KKh34XK+O2GLq6OUX5yfPT0+PXk5dJoTZNDBkFGWdLZX81N7tdOPJ/uXZ9c7B/h7N1coaj+fXl7zjRquZGXEKHs2sOc7XPEaZUyAb5m/evPBZO80mHuZu5PUzSoaPHJYqCghO5GfxtvDm4jV+1tcitYt4dQyBJC9xZWBpCOuGazgFtjhx65kcoZEjL4painVDBOBd3RiolHIAVEg9+OeWt8Yw0oLExGjsi17xFnqpTehMi1fRWzLjbxdRWWdxCqsldmnQBChx4FMBME0sdyIKhLhLvIGLAdVIex0FNKnVe+hgcjlmcLUk6L3koQkxvIyvJCl/2VFatRSsUjgLtbm9XArKwKZLLjGYSjsBQOujp08PHx/yAeAdlqHwRi0VBCN31Pi3t/Re13bYK2W0xgYzhL1tFvTTR9tsfEh9wGyW61+RZ6NSlsGbyU4GWCasGtnc2GRXMu1Xb5sxqm7O1btTUtppXGd5ds6U7lDyzx48AbAZF2oOxVfKEMPEOMp6pGWzIgAnK3RhnIixBq3bnOVed0UnnUduG/b84UMlDiRg6fz589cfvvfO7i4P9WlgstYwM7dsOnnFO5t8X317lzWMrNZJXy5FmO5oCfUaGUSpyFEyq6qsFEHf4JVXU10mTt+SG5R+KcMy0RHbMYLDPrWQ4pUSgD1QxXxOKaTc/6ziv/WDDT/7+Yuf/Oizk5MrqwLfmUvJCQ9Z0bCmuAGlkrq8vPni81dA5lO+SbPHFph0w3HYs2fvMmF98zO2ZWYwnvpixnwQncftderKLYbkqOo2J3yGcjS/ZbP81e1HbCeRRQMYzyITNLy+xoW2+KPRd3/jVx4fbr5kDdWbozO2Abljh4arn//0h3TJ7fa6IxCm2yOgvqa1Ozk9orpkbIKazeWlPgExfYPJFgn6BYw7kXFcoSAv9QobvYJ1dz4/frG5/Xh/Z/87394+uzp7+foVr8J++tXL8/NLduo++uEP/tUPvo8vKY0MuFlqkOLOIW4PxzgljBwWv1mdbPIpywm2W7/ygcn5bJNJ79n0mx++99G7H/3e7/9LKglmWaxuN9YxAwUpGLwzUcrg3Wfvvc+Wp/j8zckpjqcM8wEEhpJQ+dWr19wZ7D16v8ZIPy/B8dmgzScHHz3/Ykabypc1tMcS7/MQNQKr9Z3KZ+SMCYOTN0wXP3r8zre+9a0/+MM/nI15CS1l3QdEh/n1IsXGm5bHMYZ5KV90dgC3MlQlihYjhcLygxMtUgRS+Kq8RX6gibdELNFE/kKdcqn7ZULWP0gIVWQSKpRSQA6iK5L0kJqvgik+gL2lK855KOmCOHpS4QCQADbiFcug1QkgMI/ShHJTyIEVcxVINDqI3ZbRlm7ES2OKBtxoIsIkpzCNAK3pTGKXhshQD0JGeimcMye1Fa49lMJQG5SIVC+IAjFcJCex2AkqAkH/f7r+/Muu5MrvxXK8N+cZSIwFoAbWXMWh2Gyy2Rya3Wp1t9vSW7Zkr+XlH2z/L/Z/4LW8rPWW3w/vB+s9SX7dUkstUmSzORTJGljFmgEUgAISY855846ZN9OfzzfOTYCSfZA495w4ETt27L1jx44dU8nYT/lckJAgBR/vj3MPjHLTXYJEMcGDyRlUJ8TBP+YfHA1NzEywjy2zQzTYXMTIwGR/7JBzsY/YKVND8YhJ6+wOraWEJGE7njk1f2plmpkS97d2t7Yb1CkqKW0DcAHrCCljk+OjU+PDbPdj3raAFFRPgWJj08uP5CKUile6Bsw5RDNwZJTHgEj/IpbSz9oLUfE2FBIJgGDVq9IetQBUAUMMqzf/JBd/BFA96DPTCoZQVB1nyHFGOq5WThHBsc/bxv2t+2e25ubm0c3jOtD1ktG1Z9+6u1883N5qtla6C3OT7I1KT0p4TihUW4X8wRZOgpN44XgAF9ziZIRyQ89gPgakeyWhM1FBKH2tOfsmICw9wM5C+jKQofIqKZQH/0MuRimZkMqZDJwwzMZKCKvOvcrOkgo2xmiKECHyJUz6H6399traBuPjnJnLaD9eLTY2ordHkh5js4cHe439tC4dvAaoPA71Ihl+dZSfW2iyqfVUbdYhBLQfFgCx3H5nb3P9zucfnz57gRkybPB3+jRdiIX5xfqj7faDh/f2jtptxo69NEgpBLKBkSqTR4ebjV023XQeE8tNWE8O5e3lSQyFxic9i5hrbAHhkmgdR1DloNfc+c0//rtnnnt1fvUKHrYF2oHpmWeeuvhC49k3f/XbtTtrSLTT/tGSdifIWcjki+sNetEWkAccg/h0ZLG5aSTogCLF7LsDYqfPzr/+6qWf/Oh91IB9YkYDsElidFOX0AyMsNJtrU2Oc2bc6OhEURfkoqiRIe30EYdU9//1v/3XWzvrDH9rdXmgDHoeZ+AQJzQwvUchLZVZztPDdO4A9YV6yCdmHPz2w7f/8i//1xcvPv3U+Qsff/YpXkSAILIgwEUDjqBJK+RnlJ2s3aXdgjHWjewVXx/WnKvcGM5hSxiFDE5A0kqe1Cp5BQK/lczks9EETIrE5p1X7pHVEhZopVpRN41bopcEialYB0SBQw5VNOJ7mVrIVZz8GiOJEjVIiShBKatyEWQSh7hPXiQRmDHhBG/kIY0CyofqSllCfqFELyejgWGO0CWRIgs0yOSr+BZICa4era+8O5ZjtGAQeiYSSCSsok/ScLNE3v1L6uqhJBQ9oVURAsjiVKnFgkQl25K+REmRBcclYLOwuqGzGILVlmLTEp7oziOLzAlB6dKxPRrda/cmmRnZ8zx0TGOWE546veAGanh+9f6ywqhH4ebmZp995uL5i2dZHDR6516r/TmbcOHHIDtnIzAfjhkUnIQ1gb/FLV8YD+UTSg48RF9uWHB/+VEyVQuUBiVGF9sUaCvLJ3l0WvIt6pO6URXMkkkfMuTGRxxMdh9AwZfQI1Epvjyh/tMv6TOnEXVCtWALMrUJa/+xo7D1UeSNBu6UW5zgyFRF2rv48KGwXZ/Nze3767s7O+3lxZmVldmzq8sTHBWlIZvltcEkWcoSECB/wqJiwN86p15IgYOgpjqX1LcNCyMjAYZy5XPoJOrCDGBe4BjTXljChD2tIuACkXSaAAXtijeJVF02YeDsQp2/BahygFIgLW2G3R4KwIAA2Y+PLq8u9GtMkBzq3tCa3Gm19lqcgTY9wsbSaVYhMqOLs7OMIY8xHq7+pDwcvoaaQokfHL75zqeT9RsUjDmRHKuZmZP1kfGZLz39NK6gz7/g9IcH3QaTF2U2fMLZjTsRvu8zMsrUS9Uj/bO0ObgXba4Yw6TY4gxtj5kGk71JCAfI8vLyt7/zrfpI75dvfjb08fqlS2efunje+fmj/XNL03/1g2/98lfvfHLtmkxIB5EmFypwcAPDU4zkAxkhhTMsnzq1MMEsy7nFqZnZhen5c47PDzWGDw+Wz8y+9+nHm3stRFJj32k2tjx0tSgBUnRqafnlZ1/4+S/+AadQc78h28jOch2olG2mjm7dugWvJmqzQIBfx+NHus8oDtaU6wY4LwgrIctxrEAQhzs3LAzBdQ+7n3529dJTH7zy6pe/+c1v3rj5edcJr/COUQ378baitF42mcN06djj+qnVi0wvmJ2d43Q/dsbOPuBDzf2tn/74Lfa8o9gKKokjFMoEcKhn6u68EV6+DeSmvEFJvz9OlXgm8jK4uhXQ5sJ/KzC4kUeBKiz/e5GKXo/vVtuEG51LrlfgDOCl4FIiJZGRiE1y67d613glQiBwIxVbgCZihaKBXEkl/UTeRD774+ug2AWBJzI3YsljkJN0LHgIYnAFdaGZj0C9Ga2KEDjlOQBMOkhdIkvUKrI/tEwVqaREPgjDfMp/kxdOlFSJQxSBFCw4mwRTTkdMh6NhUTsoD/dDBzaas9t99MBZLmyTPjU3Ob+yzAweBuuYosCQl/PnGdXb3ae9wFXK3OvTZxYuXj63uLjMDiaMDTCdpaVPhWPBWRLpFuoehTg6MjPDPvs4Z6i+5GNfFbwgL2YYVYNHEFSh2whxc6kC6oiqBkrIGlaQjEXHWHrZgo6mekEDE7hQKZQuZXStpXVUUSG5U8/grBnqPFJW7JUg/x5EzOg2a+Rn690G5wYfYiaSxChDI+ubOze/uDs7O7s0Pz2OnQ4qw/gH2MphZH8Pp0sfr0urt0Ivfmlxug5ilMNcKoYBR4wHUiTW6mdrtk5ZM+GxXKSVPyZIKkCZ8EQWwrx8I4eSzPxoxThmdr/J7gO4ohiqdWISjnRyoRmfnZ6YmZnBnUe5HzzcfPjA2eKCF0Zw1WxnD4YmO3IfDS2ROc0A6pDpJafmF9pnuvs7nfWN7UcPdhjwoCu2xHRYvsenwfSlpTnODcCTjtbC7YCKOyJ3FkivPvPUn/zgT4ZbjPIevvfxJw+3N2rt8YnZqcXpxWe/9DIH3z//8jfef+fX//HHP4YvKC2tLaayY1mwi4M7e+rnYfdYFuLSFbAHxsxNTqYkEgITgwxz2w55Wk26I9/95j+5cP5i92D/pdemf/HLn25+8Oj9j9+bq0+8/MKVLz3zFIve/uw73wDv3316DZUH8ZWHpMYHx1CQgsSu4BwDOT7+/T/+zpkrF4Z6nNmM5LI59lINmWenuaWRtYc/zha3RFNxgieNOlyA2Owit7Cw9N7v3uWUMDpDW1sbWBjI4OzMLGvqmPKUlm7owaN1ioOCoiIwKhAup2sGMpgs46Mzs3O0dfuNBghSXqIhJQyugSHcgU8M3nz44fsXzj+1vHL6lZde+fVv32ZM2+4jf5m8C2dxNoIxG1stnV69cuVpmMMAREblqN7si9dh27+nzp1bu/dw76CLvVAkDxSUyMdSJ4UqWZNWg6tIIW/5TlrTUF8UYJEskkysvPtWaD2IXtKRwNygQCXjJIAkRjK6wdxOsi/R/FoSmaMvjy8DgkKUd6CAkhALGL4BP3ADYpBLMguxA5oYKQSASzofiEM47OClAsFX/8HKFKOEVihVyBfcQpCSiQHELjiUe0IMFdbJRRHUdoP3FI0XEbI4uZB+s+at4FHIFkBVnAFQEwxgFTYNsZHUhI5FapTrkIbLhGvgA4vZI9c+v7ez3bh46UJtd3p+/7DX3u03G8xOro8OcXI5Wzty6Ef/QR+P5czc1CrzhZaX8ZruGIfRvOE5jkWcnJibQh9N7+/tbT7Y4oRhJk+jWZiHiEwjqta4oI9a5A9JT0ksHT1l3iLTqklw5xv/JDRtRApKEuqzHRn7GE52EYhVKqYWDQjtAzG5STTuQFIYyjvAAUcu2lzsqlg/7A7jzGUwAzXuvmV8pfXpdg7v39s8s7o5rZHLvsX4KEbm5mYWF+fWtzgEDQoO7+wBQxqGO6SjBGRycvmaukEpLIKqn5/cxc2IxPFreTC5UIjMxROPwjbIaAnLAwpX9d1sb27u0d/HjzM9zUInFyRAZY6YX15ZwD0zyRBm99BTDFEQYkBWgRLhgQj7nF67uXnmzCJHptBvQkOix1Htq/OLB+cP2Ch/q9F88HDLhXtjo+y4QF+QMtAl0leE6mPwZMi+lA27KLPggOMFdMszgHLhzDPv/u7T7e3udvNabfro9NLpl5+7DCoXnnlu9B9+nMIya8Cj2jJSwrwavf6yamQYUUOpARKBAXrcWnE0KUKHeG5YwIAZQrnEw7NoZi9eGO63GEUdnpybplB3f/yzmzcvf+eP/4ghre997xs0Lp9cvakgolXd15pTIZnPyit94SHmvnaHxj+/u9c5vMZgMSMe29v3h+qNs7NPYcAwC2hrs+PQLMdaeHpNnMWxK+AmvGARAIfVqIZHh3bpPzb3Ga89f+7cO+/8hu0u6PPpc2O/CIQfEPYA5YSo8B982Jx4aPR/88//BQNG/6///l/JKZo6xtJHxpy9q1HVb7da9EfXN9c/+fTDb37rj1984fkPPvuIU05Lp4+MnalxzF6w9WandXvti9mZRcarjlhcQounIaQnlqUXt26t7e03PNPUY9GQLmuHqChiSl55FbEihn6o1A3SbESvSkKNLsfCfatbWmalvVwFJl95qEAmqqUfxBEalClRHucQAKY3XtIGw8hHvgU/4Q4iaUxaW1LprF7iQZi5JxmCZJQSkgduRGE1TpDRK12gWlILxQ8w9BMIYVAsQVeQBZDHhIUSpjQLEauKU6CXvAf5Dn7FTiy88hRimhuvZlPg5TNlAza+jxKxSkOEkp85Wp6EJz1PQngcjHKzEwt49AS6X1RJ7EAlXknMrq29brO7u9kenkWXj23Uhg5mGAwepnKyx62299T85PguHYFOnX7mHPsBcAA3hhsmXA8j9PSpeY7Kmmbp4cREvzezMV13W66eS0x1E6s7LIK5Ugqa5UJJnD92ehmHoBcLm3jEJUDPmJ3ZGYF2VoC606LYD2AqESMKnZ77vFMEhJ9PaH7NCFlngY1JIyEFyM8pMbzxbvcgcson9jugU8IRNk5QBxuytTqTOZYX80F32J3xFOOYHNluf2QUl9epU0v3H20zYDw9OblIYwflkDtMPpfxkpeNVMHUZ8mfK2GRwpRDpGQKqITJYsyfyEOIioNVyvKTQCJZLlLi1GUXmvWHOzdvP6QlYLSwtd+lPSA/9pFYXJi/eG6J3fZQCr1D1khRqmFOuGENGgmrjAlzbvjB/fsb9HKIPD/CCH8N/rC95egCM39WaOda1+61drprQ1tMmxo+zUg+bQSIOuEE3+BB7ZCsRSptKgUePergcw5bQbnnsfNHTcxm9lSjCbXBdkdoTo1j3i00Z+DAve0hORemLG06KLFqgcNCHZ6nicmEWBsDZsWwVIj58/RCyIfVIWg13DfjTL4c7rY7tz97D019zAmOjeYwa05Gxz68/gULI/7yB9+bn5/6zre/ubOz82h7Z2xiiq4pfKExk1N0SdGbx0ccTvSzt39y5dzs97/x3Ymxhbff+917D2+crZ9bmlwcmzlqdeluIjziGVMHvYleR2NwGmWbLQ7xnSI6tCjswnTv7t35uRcvX3qavgu6H8eRR8p1zVTmyWaFkNwL3xmFOnV6dfnU2U5zj2EJNuOA6XANgwjBsy64LprNOxmsOv7ok49efOGFsxfYnu7M/naD6UVWK40L2ng2KySvxi/+8W+Yv80QsxLvSATJWV9/9PJLr9BNp7MFcSN9RdgKIgoaaOXuc14ipmASSZVcT1xV1MitsSOd/vAfjiamccCPO4XlqdSOxH4MyajBJ9F+P7wEFZkNuaqcHke1jF6WQjg6Ku3mpbYYTpAdLmOclDR8KN8MNGmKSCxjcuMfUKgOOLGLhRN2CYbPlqhcNholEVy1pJQxeVbfjZ7/RDITXx6nNpJ6okBAMJI7r0RJ9BRuEAhd1VOUzT9x5rcC5msBU5IWGIEyyC8xUWSarNQcyof3gKxs+CiFRiLGyKh7CN/fHl/fmR4dZ7rL6vLk9BRzHoaZmses6BZ76poKo5h0/VZzr9ntPXr0kP7p6dNLy8tzq6dW2JCd6cudrS0WCzX3dulEi632DzpZyx6MCLC0IQlFok/tuHHfznX4rEeeukaTQIDynSKTkLGBiXGm07FJznG7B+J4skJw1T2sMr7ALVhUMPmlzaRGMeiBqVFmpGNe+eyyIkbA43rwDUzQ/upJNu969HC7caFJU5hZicc4tRfmZ1aW51CyZ88uYzWPjBwwpd7BjWNmDOK4wpy1NYXH/pG1tT08qphvkCXkVd6WVyhShIcQL7+WO3H8ZwGFal8WfcAc3AOWcuHUYu5IY6cBN7tuKt+BSouzUxfPc+JOfXF2hj03UBkcdTU9N3nv0fb9exvMv6fzAKRInaCbjd7ana352Xn3Kp2mF4FNyYrb8fmFuacuMU/m4PbtB2yLvba2Nc2wL00emCIqo2N7+/vb3e7pxUVmCkEwSwILHPxRwsF1anbqG19/g0H1o+HJhdXFC0uzuPlQ+rvbG5SQTUEwRZhNRkFpFdExDo8zAbN2fG5l+tvf+hpaT9ak72inDHHLYoJQx6lOo310LoRBqHBF9Xf2Gkyxch9nXZrA5HTimc8/v3H98oWvfuXLk1P1V1557sc//RWoyZDYDYUMrBarM+mAEKCwa9QQ6/LGu5yi3BhudRq9vUZ/3RQMs2Ao0gpQTCQf4YFpzpi1IUrpXYjiorJPP/vwuee/xLIJtgj94P0PZmZnWjRKXSZojbFJB1nzFzUBrTyqnpK+8vJr8J3jR5mLIBkdKfPsJmYo0oQQ3VOV1EdDO43d3/7u/e9/70//8I2v//Lnb+KOLfO6mcsEYMz800sLp+ZWPK5Vd5CMgM3YAtxxrjGZz14V00BoXRx1kP6RuQhjZM1XRe5EuZSAkzv5kCQlGCT1m89+gRY8JJJBRZYjwSVCqoNxBpcoJtEgoPolLPCVJq9UqOqbopuPJ+/Vg+zlA/ekwu4IdPKQ5gQG+WCVKGVkjmA+qstNa9EAD6clnioaMS1apqT+b7AFsGmTc57FrooVUpix75YlD8bnSjofTFUVU9PYZ/4KYUKAYGLMfCiweEYYhQFe/oSOKSQvvBUelqQFurOFLRjjXhrZuoICC9MMEbFu014y0ef4ABXTGz6o7eAcoIvOMSHMtu4fNZit1tGa39lobWzsIaMPH2xu7uxNTc+dO8eZem6nhr3W7bT2d5vsmcxGYEBExAGtt0aEJS4jrzTLaFyDkHheJH+hjUWyPVDZWXgISxmgYG4u9aqj8jAYAezAAlEoEu5d1QnNtSHm5QcoW0iUboQw7alTIYIOtdgzwlDgEMa1DFRmCKd3CQ8D3jDUysrKQtzQ5DsyPT2xvMw2CnPnz61wti39EdYNbK89xCNBr39umhNlPFTdZsCCgnJpXWWHWAYjOcUFFSgQ/3JJlsLDfK7iJA2Y88nUmKvpLOMjR5ug35mkiT08OVOfn5xjodBh83j1zOKF80vLC/iB3W8HOLPstlYfnluewzF34+qtHuZqAWXHO7tEbLsJBDNnONIeVjtc7wKH0fHVxdrk6PxyfeMRO9IfsSpq0Z4OyZjE6eRVZgrdv3dIwRnysb2mHYhGscllQWyt9gdvvMH4Pwo6xbE6sfvp59c/xxsu+aEBjD/q442B5qhO6XN4cKq+ghOxG2HW8MYZAgE8jgbG8kxPAh+gKWnMEaVUzqF1tvI5PsKVD/OAa4eOejQ2yu7QNC247E6fPgVKeu+YyaMzCJlURmgwoD2Fkh8CVECwAuoMV/FRLWCVEbkMtpI/mpssUNLCcuRWXiPkNH9Q5vMb1x492mDz629/848/v3adIXhGMjY3Njj8gGZaRpMYoaTqjYy1mvvnz51/4YUXgc7sVSb/ONYCMeG1gzpk4DAAdAM/KEYuN29+/pXXvvLUU1eOv8kqgTZUBxOo6ZjKuGRnz9qj4QYGDs2tMmVuXMzYnmKMzB5AcVymuilakkG0uP3+JbJFiSTu4HuVwPikMFFJ+8RdyfZK1DwAKd+fzKPE4TPMViqrRMbnUcRIUwFKoAAFYFTrQz4SR+zDKSIrD1YZ8w72AjBCufIWxAkaVEG/Rt0nHlrHASPmnQPE8ufH6FXWvOeJuw/kYrZ5ESdR1BY1F941jfxu1GBvqaoUJZFp82TsgBnk4Gv5+jiB30oBiiFXRTCqkMsv9+RX5VU+4QLyAG62i6EqsgkNkzatJiCMjFGtwJO5FVQC9mNG2FGCw2yBMDx6MDaZrvJhv81GYW3nerZbxw8fNPe2epsbO1SS+TkmUM+w8oVDdHF4bm8+Ym9ejEQro7VbE97WGPrKFcwVpg2KopIJ7a1Dok4AOg5sRD4VjxKJIn0DZ+95EcH5exhPrHhFw9orx4XlfAwKwqJNBB84gEPUQxFrMQBZ68P2cuh4PNjUDYajdS5jEWWoTK3tfhCjDgXE1G61mlsbm92zy7qZaW84dIPh1sn68sIcvR225vLI3YPhu7cbrPmcnNo5tVhbOT23srTI6DEz/jHiUqDwPjos3CkcgomgesI65c6vpZKEc5AgVEiZo18S3Uho9tGxNriz4pQ28Ny51aWlOSaEHjT7LFPj7OX5xcU6ixSyvABH0OgKR703WzvtrenJDfRkJRtFCSMDTO1i/3zcNcx7YZcG6M/qvqH6WH1pdgF/y2Rt68bNja3NxtwMdi1ghzhbDJ4f9TiiHSbV0IV4UjxVLMqa9GgrTshaXJ6bnmVDEU11Qsjkdx+8d/v+XQhP2TGXSe2PS2OpfswUsBFhjhbnEMkwOE9N4hfhwJrlTQ2NpsOCwf9fOzhoc0ojHVfwpT/ApGG6yBoFXtZbRoTwPGrzsP9lZkwqiwRE/8ZIAFVOh4TIIOBxYM67Ya8LhIlSIET8aYgw9sAaK+uK64ZSVWJi8Mn6iORVQFiW4CYQv/rnf/3XKyun/uR73/+bv/0btnjiTLFy/BkKHQSCJGc2tFDT/+x/9dfsO8JGIJ9fv1phThebFgewGdcBOU43s0WzFg1v7WzfXru9sHTqwlOX2vt71ipEJVUGZo2OTKW/RCGLa7uSMRJOT8zutp3CgJQ5rxdShEoRy1Jjov94DB65hUMJqAKf/JaUSlP+Qan8q5I/EVGSa+wZVAD6K+G81D8GJ3WCvAlS1eQjtwp0qSFVWOIkqskTGO2fR5IlA24RoQQCRYYa1XezUCNlGEASwkzxgbUkiwaH5DH+Cx4kBoMkLbcBKMgrtmGFGUSdJWLJqCpDlXgQNgCU2EGmYOSdXI1mbmBS5SlgQnkjiCczNZ5Zl0sMc5VfY1aFDTisu2E0A2Jr1cWLjrODpGGASjbaGgHHIObeZ09eDuZu4cukejL7k3mHOHu0uepTTiVmZhvg2S1gmclzbDg4dNje3+Kox0dr93Y2dvBZihYVkqzER6QltzmJV7oj5G75KQ6fsMyZmjFFZcXEQ0BV0xaBqk98tDZvFAED2+HI0JvkVAHIIG8FygMqQPOWeqR7iwhGIcT+Ts7CAYj7xFHJUMN4g9j+d9hzQmkaMTFxctkYcvzZxsYOJ23NLWjutQ4O2G2fnTLxU4MSqUeHsbaYKDq8vrXdeXBwd2p8ZWPh3NnuudUjhkOmJ3FrWDBVBMrEcoigWBeO+06Af8QxqpFKFAoqY0xO4dGeGps6dHE7oK8be+2N+5vd1sHy0sLqyvwcixIWZnBD4Q1h6iUtRMkCgPig67WjxdnJi6szvf3F48P21m5bmPCPFdeZlbjfYcRQf0RBDqy0ZlETI6NsitqZ7o4Nb26ub9M1GL6gf8ndMDjgsLbECkFmC+OCzyAkrHVuMUDoW753/fqP3vrFCusl2CaNif3suNrYdAcIp2/CaW7Uu0OmqXPelgQKFbBmewwMM3lALamoSB50PDqY1pk2R+uEFdS4ocaZjswJwLru+kN4sY6P1mAmkaGdFSiriueXlzQQhkY6bQY1jgBcvCUZyQixGVEgCxKw2/fIFG5IjhjD++66QwLthNovDAtgwriOQtxB0Ihei0iyGJkmhCJpntMesFfIh79755mnr7z2ymuvvfra3u7mT3/5JmvO6AewbIJ4tCNwh1EBZlX8i//tvzxz5iwZbW1vXr9+lfm7ZKmwMikXGXTgBJ+lx0amUJKDSRxrN669/OLrlMUVfGoAe7U4phjwrzM1jQkB+HgLFcxKaWMki7XEm8199l7qp15aZuPIryKI/BDXMK+qVlL88s6P36q3xCgpU/a820QTK1G8FbIo0YOkySxfzNRE+aTkE23wtYTz5QQZHvlYpVFwC8SS3Awq1EphBukJJqpNZEJUP1FBtgjKqYBs0SWh/gOZKCgRs7kt8sEzWgITOOCIFLxzg1EpRhDzphJ7Au2EJ0bgCvvxJQLVW4JL+X0EPyWg+kikKpsSwDulSGp/zLWKmdIbUEV8gqJVoVRw7AhG8++yHtfzM8Ebk5qYaijAaULUWOSPdI2wvLfb53x2Zstjfuh6JhVd7JnpiSuXVlbPLDAgMDNdX1icmp9DYTPJmL2Emw83t3c3tvsd5lmnDgHU2og8gRe5aPn6hRLCm8r1Zn3iO2YzymKChTh0ETgVHB1AQiPKHTEsvBJpvDhUFioyQZlSKCEEmNKTwB4DqbXezZ3EaTRijNvFy5uhiACqLv5Wio/9a5MhFHaGaN68dXtpua2tPzJEe9Dc2eN8xcbqCrvz2qZgdNme0tFn2mt3d6+9/mhr9zLnnD919tQio6uAI285Y2ELcgNJO2FUMFbaLKtZW4b8Ry27JA/12WW9KJpWAw6PzMYjOlk7NdZZLc/Nsr0y+5cyFZcTyyhAoGlyB4RtKvNwR0eWTy25q+pk7dOP1zjUWGs2WZIBPmo2QaLrMsPORBjzUXzSHFt9jA0hpoB///7m+uYmq8aY91hjFQDzhdgEp+6UTQYDkA/Qjk+eUuBOO97d6e5vNo7GWw9hysgR7TqLaq9cOPfUyPT7n95h7R3ZF41JHknobWZ2eXJ51ZbTzd1wCCGfoEkPgP6onUZaAZbukheiiCfj/vrGi3p6Rp45d+7d/rtuek9maFgaku4By8+fu/I00xvg+b379ywPwDJ5jOaUV2DpXCrPaH52FaIxQQnrUXQOvqQg/UFvbmGBdZDs502f74ijllkSye7Yo61ud3d0yC1jEUZoAPVJMjM9+f/5m7+tTS48f+ncd779/eWFpf/09z/a2lqvT00zbB4nVf/C2bP/7K//2dLSsmw/Pvrxf/nPLLKBe7QroElJWV0TPz4eKo5CoOtKcyjN+H/rzhfsM7q6uormTx0gPrFoTLWz2Y5ieWGembSYdxF+GvLxlQurq2cvrt1/xBBP/5ghZbOQxf4qKAhppdp8t65Zn1JpjfH4Mi5vFFOpzkVQ+QU9H0qFLfGERURi+pdUJXKVuAKn6CtwovJfX2KZvPKtoAwwyyDAIJoiiK4xCeKH0vG1FEpETWJvoAAIlUWLD1AJ5pVsSVcegM6fvS61FnDYG0Zz9OQSLeNa4QJHyOZYcjA70lafjJBIBXoehV+u8gC+ih58SGvDZ5+qWEQFslindH7wyt1CmysRckmsfBeBKqvyAZfxcJtjYlnsjsuYnQapVpmAwVS6eF+wUsYW5yaWOLZ3ZKSx376/YURPs2XJZf+wywkBHJNyZemFl86snl5p7DIM3MDaaO+32Cx/H1fIHgf8saTHuTrqekkSpYbcUlFVmVz4KlXKcQxoiFIBcU2CLZMp6u6XYONLFNCnPuRHg5QRN77ovodA6OmsLatKCDAZKyn4lz/pwUOoEnsuxKMkEs+o+StWJv0dEZaGtgHUQxwNTI7q9R892ML70Wp28FKjWfqd7vrw8akVfCxMgBnuNDnqlohcaAcUxfHmJpbmbewKJpCOcoShO+lJBCKLj3l4l3WFebyBkIyXUHxE54i2mgqlQobtjc3d+/e3Nrc4jbhD56nXcu4JLrFp1muMTKOH0YVpXKHZif9MjQxaAGXMvox7ME7JofcbGxxtwglgaDqRwHUDHx/cebTEyWF4kEUOI9v5QmLDpjn1+tIigxsTmzv7c/NTnPjIwC5L9TBoYR2rTlkhwYKETCymhI7Ku102h73YqgIActKo0CDXFpdPzU0uf3rzIduNks0ho5Lym14UE3dovupnTl85f+VlCs5FSqtluAK9DjgiZoRRVLQXmyvUDht49o7W1m50Gq9Ozy1dvnDpja989e2PPnbB9fAoEz3p4337D768sjiHbbzx4P7Hn1zDOubAR2kPbSnjEHNsID2Z0RS5zoAljTQLOKFOn1p8uLeNo5HJbudOzb7y3JXafP1f/T//R9ZUsQsGq1QoP2bDn333B2+//ev7Oyy0G2LphIfX02thK0MmqvaP/93f/Ju//LN/+vKXLr/+ta9fuXL+zbff+vzOQ2YzLc0vfOmZp1964XlICAPwxvz7v/1f7ty5TTvNChtYH+EolQKbC866VA1OSQ9/RvY6nbV7D5ZXz43UWaPvPiLKt+dxs9nUxDCzgpfPfuObP3AZnuvF+ILrn4HkEeYjAUBhFWKBGYmMOJq10gk0/1UiGnpFECRcuRIrHxRd3hSkJFdy/QoQg3/vKgmMaxkRlTwaJV+S6CTwidQCfgxwAMUgU5a0FSjCBiHJpWRScCQgNYtE1n0TlkwoQTUglADhpvyDB8omkhRIzcFVqSSrllfK6i0RSxjxyteSReKVHJNtRd3ErVIViqko/AfKYCmiVXzgCKp8S6YpBrdQWoAWzHsY4FMQzJcCFklixjNbPGBGcZgJ5hUzBYiXUTaXAlNzMMAZzpxbXKRhaPQwwvfZAdgJaRy5geiN1VYunH7mS+eevnRlaWllY2rz7vHR5qP1rfWtve0dTtdmdiBL7tk5zOW4pSjiLekQO+yj2LdZh4jGJGviWN2Lqe8AL717hgNjk5W6KhhAEJkfgDolM/0IKnr4ZEn5nxtUVHuivKWcOXvxpMhLEe1bCYMuITTDfuSPHQgh/CIcWpeIBMgOj2F7YXYz6ebgmM2Nmas9ghl+995Deg1oVRDHTYYRHaIzk4SO+OjeXuv69bucSYszRqdMrAiBW3iKIIKWqmJveUsRxEFapTgSCDP24cP2e+/fvn3nAWigtsiWzhlFr4/V9vebD+7eP+w26zPjO40aG9Wxsw/7M9B+AimdAQdtNWJQzMMjbHRz9tTS9tm9Lc8I07cgTRkCYVR/e//Bg03Upd0vUkAAi2Q7DdPmWVY2N/toY39zu7mw2+IQKwc/C/mJrdOcOQKO7aMAcURMjh78068/09s9tb5+/+qd+8BRmNkmYWJpaGLeJhM2oWqxuLEFmD150F9h44iJsV575+rHH6zUv8L+l8xLQxagRmx1hyrQhBgHKNup+niDJQjHxxxy8Kt3f/vH3/42vbbvfOuN1fOrH334UXuvNzFz5sUXn33l2TNEv3fvxo9+8os2+LLLm9uZUIF9Kd1ZSeoAD9QY3WGyTre3MjL859/72vf++A13/IF/yO3oyO8+fI9vk1PT1JiphRlOd8d+evric89eep5tvI/6E//+b//nT259PMPJkqyuH2E+KhuvNv/D3/3tvQdf/8OvvLa4dP7P/+klBlvo9GhhONqmydNsNf7xH3/62WeflAU6VEDcsAgsAtnpNthDhc4dztr0V+AJjE3P7uh4f3eD85np3c1MrnAYmoQnJU5bFumPjrzz299s3FtfOXUKF6UfRsaWT525dPFSu7VrXVDArA5y+InLmqLo+V8HXR65E8vnJ66TVz+pFZHlfIaxvgDZ4MC3IhorcHzyYZAxHx+/lAwSv0ppCFGpMtYVLsCYlP+DdMY0P7+WS5iiQ4LBo92mkirQjY8r0ERJxw2aBPESYFquEmSFDDyp44OR/QzQCmyglLcqaX4KlEEWJiE4r7mXIpUEBRm/8T/56JigplgRS2zzKyBSXuIZUBRbVRB/xE0Y3ilheUvO3Ohru2MaPgX+MKD1FaobsWr4xwRBZH2sNulsAWjIfB92JAcBIjLzgvrD6p/F+tzKxOL0+Ey/1e/sdjYfcG7dRmN3t8sOhex7pRUP6kOcSoJKhXCIs7oVmqmL1LtA1kWZ8mF2ZWq6LQGoMkah4yhWWUhFEYnuI6rWPraQYIB1ljofxpCQpFwwSNbowikcisK1dS96zJYg9OFGEAXXy0wjSA8bUjlNFChQAgBoiMwE0L1AJCeGMFXKfc6AhZm/gymOMiby9jY7IMgk/tOLEPDREHtH37h1Z3l5holDozSsBUF+FE2rZNhs0dKWgRYBlKC6RJDdJYd6ncPWo+2N2/hfdvegKsgw2c9p9HBu+IhTRB4+OtjZ2x1hov3x0dL83CrTAFHVDAkoO7i88dXXKA//bFbpKTAIqWIVU7NM/tx63cONjd29vfbiLAtptSelhSKUhR4QH9TpFDa7Dx5tLy3P1GZnGDNgMiejl8RBg7Ox9hQbBM2zX+DezHBr9eneYWu0cWFhd+fuo31IiFsPs7nORgwyUEOZU2UOmDrFWi22mbty+dzm3ac+/eDaztbD0Te+PDHJVktjzK6leSEyTTL7c7Cd+Nr6/uzU+Ll6f+eoz+ZHZPr+xx+xPeEfvvb63NTk6y+/9vqrX+816QXAvf3uztonVz9766Nrjc4h59HDaqsE4t7vz8/TrWH59DGHO8gWuwTDmDrvf/gRA+n2eKrmjGGLY3b95CgVllzjV2G7iNZe897atemJOYaqJnDD0+yPLX759S+/+/mHM1CWtjFEw2jC4f+b3/z4s6vvfOnZy89efn515TQ+NvaYbrUPtjZ37qzdvHXjcxx6lJOhETnugBnLMxHE/vkzM89f+fP2kCvRsNcQXvmlCNM5OGhuro+1tg+H6wtMr7XZxa7XLba1uX3+7Jlvv/E6+weN1TrjM5xswZKAldnFpX5zY6TfZPfxNpKKlDoWATC5XBRcVY14T9jjWlWiJe5/das0YkITC/ryz0egSOu8lvo4AAO9n7h4kSnlqhLyUuIEQvVWqdtBYsjBo80Uyatv5iyZfEV+A9ZXwvwCIMtassrHhKmUqkB/LYFpqmj5lboqrsIEPwuW/1VhA6ckSMPpY8mAaCX85Nd0Uiipq2hCg4eJE0y5JS/p6d8ACKkkaV5BkU88AzDPvORKKUS3pBJP4pjlWJOdnN2Iyg1NWO3uprc6YjAXxUlVx1hYj10qXUzTbreYx01KQnHCooAwwI8PmjjEt7a3D9qNL9buPLz78AA3CH15LUUxgNoM1uGfVT8ilLh3KIIE5BO12c8aOSJobDf+AixCjA2Gu8KxWdwFljEfLJIIiKDJAAQQ4AELNRYScCO5fETPoTCgAHHIxZx55oXsKCvaT2KRTA1oy+fEf2oOzgqwd4aGkPnIl9AToMw4OQBLs3AhArqF/eJZh4XXgw663gOLgsBJJdHg6eh4fX3z1u27Cwuz4/x5tKI2h6UPl/hJEYlJRSTM4ouRpYQeTKDF3cymBPv7jZ2DbhuQFgni0EZimNIGUhD2Me0NsSKZ4VGUAq3wxg6HGTAkg/Y8OmTbbixsVuXN4K8am0Gn9Y+2N1uPHuxlsZENHMSRtOI70mi0Hz5k7ducR/7SDpuDh48f9HscIdM+6IxPjHJe+sbDjS9GjiafuzQ2O5VBXPZyYE0Gk69GH9y59zf/+t/O1tkxjW1EaDOYV8/Umt4oLiG04XF7+GCbD7i2wR3uQJD1ja23330PQ7vTbD6494Dh6ZFe74f/5YdsOIQx8mDjkelA8fj46vVbH392nSmq9cn6BzduI8OE6kZq9997662716/j7j915vT07BKdyMbezoPNu2uff4r77sDtrtmpnxN3kUbbBoyJvUbzxz/+GX789YdbUFVQsHBs5Isv7v6/795fnp+cxYk5Ns6hi2xrweLeR5zHwooYOhT97u3bO//jrS+Y/IqKZwOt2hTDJAvMXJqdxRd3wJpJTTfEAG8d5yJMTrSb+++88+677/6WUfpplgsjP/1R3KlIGu0FfWUUNy1uZDzM56k//Mmn1zHSHux12Fhv96BVdKjSAavGxj6+cXV3f4MmdR/Z4LQ1JoOSb6/505/9PbvucqLdPOczs6dTj3m/B7uM8t+7zXJNrAHE2OOAMQVsBqIlI3HUNfP257+5yJXrv/lEQJHmIsm8EAdiGlXWFJR9TXCpqvliTk9cpnkcUqAFgBnYBeUqcSocxLhArwLkXnKPUuE5QEjjAwVFpYiUt3LxW70ZOZknCCAprcDMtLoHtqUqASVpUExsYz2GnacAIF4VtfrqmzW/RM9v9QISPomuSJvSe1znUqEgSf6G+hoFaig5iVlgFqzNNRjzKocAXD6z7QFz9bS9dV/Qu2akSe1ONaITjCqkn33Y3d7aXlhcYLE4U8ujl1EEIIVJr6po7rKv7UxrZ29vd4vZzTQXVi8GoNg+90SpU0ZT0hja92daQ7RtSo3OcT8gJ/2JXWnB3fXQTgL2NZOU7ObHbnckzCtiloKo3P2vHsS5Oca4HeaSujtawtOANf4yv1N9TCJd8KQwM4jGD9pOoYIuRMa0ZFIhE17YFxo9iJtfY5ntEkecjEHetgiu/mQSKWE0a86N4Ycdjj16i5FDBgDRlRIZbthISFDO7N7v3bh2n60ejy+dXl6aZ0UxsOQcP9DETpdpMPo4iKvNqrbj4xrNC6UiD2xUtnre33/wcPvB3QaNLyhp1KLymc5olRB1WzIaN8sOqFGapd3tBucIrt83CpB7ByCElqBEI1PTOHdGu/sH+6wfo+0yG/EMKSwo82Rurz1gIPjyhfP0IsacSQR4uH+8wwYCjTYTwFynenx8d21jcWGBHaKwdGlJmaSOOqGjsbu588HmpkrNg3zYS9OBdVbI1WuskTuqD/f3th+0hzYP2HyBnmianY3NrUeP1iGMeIARKxX7x1+srekh0aotXRVlOEvJoSFHRA6x/JAggGgqwNejIc66ApS8prxwnqFdCUSJs9U25i6tNFTxZFCxZkOPd3/3GU8cxuJgRmoSjGPFcrvfv/1oj0aCZiozQ0c8wXJ0Gg5MQGy0MlWHFgV92x/CRILKR1sPYR2NQfpdzj6AtAqlLRdeeCgygRnE9DEOkgZFbAYaccoGj0AMRtpcKjqksWRg8l9+8StqJ2PNYJ39pAPUUlMOB0KuPtySQFnLIv9GsEu6mxxuhzSSqZSgboAIY/8sm6OzQnsHPYY54Ay5JT5CYyRl0sv3xxcJuUrQk8//TQxKS1iBAjiqPG+EURCvFCjMVfzzZQA23xMnIWKSfwkfIFOKbbn9WBBKJapSKxsnV8HCWFEXVnm+VRGoCgVMAsTQdInIj4/GBTbJfOJ9kGH1jdDHVwCISclUOCUoUao8kz+weCVeIbHKMShUCYmfb/wWDEoegq5wyHdiDWIkBR+TCTeTFVTLk/hXyBf8TMD/oTFmkjAJOzOFcVeTAe4AYoOQk+Gw3JGh5vERFiNuAocWoaD1SQMUUUdddjuNB/fWRg7HdnZ2se/wcuNdtoFFNQWjolFIGZWaIOx5FAkOlKL0qKLF1EfqnY2qUQPNNYb0j2qvFzlBJUipilw2XFqsFpy4rLznwGvbS7wh+vRcVEQPmlkTumlIS7iHvPBMCsufykO9zOizDiDiuM0PddH2KH0Vay9Wpw1BTG7KTrlACWCUgEchu3yATNErUCYHUvFFTL1TtUAbgNs7e59htPYbneappaV5+hIoNVS8y63sqjBTpbO33374gI77HgVjsyUygS046LD/G6jdXTQvO8WPcBwL6UhOqZlT6jRYcYDPiBP+dB3qcIkeCOVDcaBBUIEcAaJPgbMmmf7ZsruHXtWhLDlElY+iK2HsoOzhubpxT3N9bHhmeMp56FJ7hH5Ah3lOHFwZbcV44sN7GzO18VMrs2TImg6aY4rMRgu4zphFK8GdQInCZTYjK7rBjEnHI2sPdpq0SUSNiBZppUBKL2KQOwyFW6X7CEV9g8bcjSY2IEfTRjMOg0lCIlSOqp1cKTYNBNFGcNdwd3Uu3HCKAFYIUg4oi04zrlJPvQAk/DKiYmg10dlJXHemVvQtCzIFmYhUCBKKCdCs7FIgSHzjfyqVaDiOAsZEiInFr0t5ZRsow0PkpvT9WJmLVAQwVCEyBCEtQ+twE+ejQCPGIGr+Mhepxh4o9YBcDc8PGKn9udPCuyYaP6/jHubU5p/NDRIyVmdPb/d9T1JKSB6Kc2qJBeZ/+fHD4Dm/T9yqWEQxEmlFIQzz0QJzgxAypsIv0ArMJKugneQHheV/uGrgACEgJX7EJoECSbTkTjbBk+9GNdvkKAMsJG/++O8kL7nHhZbgk3klTTCMcap+DGVEI6mqiIFl4vAsSc0yccymAKs+BpWEVBlDfuMErwq8n4HAzTj+V5SDDoG+I3hcwT5FKfhY2nzgU3nwTiwEQFAVMhbM/LjGWC2EOYBhhGTFBuebFRWJcqmVzhBH8nrtJraXQ5+KvEDBGlU/N1unZ9za22d+KOO9HBecYosrtQCvARYX0TG21EkMNmD2qKAogTpTFBQ0vheTANlAthFLbhSauqQ20ERHdFN/otsoDOHOBeQjtPGOO5bZJshyXlXf1B1ruAXDg0MwRCkwQUmKKZFBwPSRioLQ0CF73DECwqAiWgWjSdXBwSM6oyIe4oWGRSAMQDmSjn1V7T2Qh/IdERc2LJH0/MAExgY21veusaTgcHin6x7v+HVIzsoJhgbwQDf2O/fWd764zdTZfUbmGXGkXjuiAKLShJbKqs72xmxLxwwdVuGxlQ1LRJmHYkXG/lMIYLQNAGOAqClav0lQPxpquWJPzwwo0tqU1d8kIiX/9OiVjkvcYfrHc/z6o8293tEa7pJnLp3LXDA9TiwihSY2HXq5xjmugVk/6zvNOmOex2PMA8IUcNlbKg4lL2s4JDuuHlCaqAG8xelrzJdxsS7KGQl0MS8lDTpygidJqITwqGT5D2QrVVLUMZxm6r10B46JA8sEUNx9SRlGcqkfXilIY7MWfjCtM7UowJMTwMlCgQO+Em6ucpI772BC2x8EjMebsXUYBmGgiht3s7aGklDS+kpMhd5LIggyfKK8zjbwK1gHDglCteRpidJWkQC+I6VWHRt1MRhATCaOSzFZViHgnxkFfaggWlBCNKjiFIztE83Y+sSLIm21MMQiSIagZ7qCq+BOLoK5wpqTsMFDklg4UxJYamuJzbtFlCjcbRFTcLMwOJKtDQABAABJREFUP3Py8vGJC8x4D239SNKTCCUeqSlMgSEEHx+nDzuATVyjSxOJ738RPIFletEqQdBFqskjkwjEZ0hEoLj4T6IWpIO7QJNN9I4UVRICMpFNElCJJkrq2WTILdcAcUO9gmdKbExD84Xy8oRgKO1epBsgJlKJJOpefMgfr08ElW/gwJwWRMa6R6109x8mv+mNUbacoBB5YQIk1iSmPdKumDDtYfx4aWFyYXFmbna8tdtkbyu3jiMPs8GqxMgj3jCLuAph4TUPiqUGZ9bKQBx1svGlFRWNx0pBo7vImdkRejmSDjxkAFCJC26WHGWXCW1FfLHGmf/muUjhBBJGHP4JgV9DrY5C4JGLd0P98xJwQV8xVetTAusEzRGl10DkzmUKGEmuNkH2QfxF9TtOSiOF3g2fBRq7FqjkC01Nyy7HR482dnESzD7cI+Cg10Y7MRLIPJb62MRus7uxyQm9bdzoxGYQkh9zs6mxI2MvpzaOW4ZNNtjJi/PKNzc3PfNrLP0zcTOyRINatuGur0O6KRQYaroCF5SlOsoRncHouSYnWofSwRMJFAi8UQaM/e3tnbW12sLsFCLAIlV0Bhv/cW4JiB4IkAaqBqJbWzsrK9NskgqOTIlhyEFqmFOqDk1SSEBRDhmpYDcRjyFirrru5/CDjKWSisiYSsXjC77b+MEQK47fnKHrcm7n4ExMdLpD9x6sMyBD6RA9UitROsYMKY2ButYr+FA4ejnc5DE5mrfiIWBZ5lPkkwDRALvEizhJK6nMDKce03uoNQocJaU9MLsCRNUkrmDOHcLSqAKlwDMDH0lHHCQ+NShFN7LYIU5krCFms0T2wFG9W7vIxcIYX6aREzOXICYVgWyRSiQG0HTu+UBcaqXSLOI8gJLMFQHmKNmrABpZJATMgkB5JQiCG7OI80kcCRA8jff7l+U3hN9cRkxAwoJ24a8giGoGJ0nKo+Qv/41ycpU8gWXJjZIvxigwfDW4UC7R8lpFTooqtuUJ7MIQniGOVr7fuZJ7lRPJCS0fEuTHBBQ8CBMTaZr00F9qJ9SY/OfNuy/JGQgBUj4DPp+M5oOXQeWrIYarlbDPRJK5BcoSr4lqXGLLaOMqwoHI14Jq5NUviW6oT/g6yAGVjHGIuKgz0PZmgWDyny4zS+MnRqfmpg86PQzSsUP2Ex599vz8+bOLjBFQzfdwfJKzetD2HU1iRxXsqRpsqhYioGwoNPJFXURbINAHbLGAh8cOA5hWSIGTfykDelRCkcYuM6Wi0HiclHZLiYTrq1Ha4SJfAYMYeySj1HEjH5svsE8lt9zEIiuz4IEsS0IKbyyG7sBfa49Og18DxYLxD15SrelJcFn5SnXzC5clsA2w2ZD4AHPukzXKy1qaUgFQrxb4M01me2efJcR85nxBZg5tKa9od07oHGZ5BRNzIFUMM4RIbNH7FJV7VL0PrDqaYoruUL3VZiINvZC4QYgsQgAWJ3EJx+2n0AAwI/WI2btmywVm+H/ZwwH08APQ1qAiWASlIlB8YApFqMSJM3vv3HvArB7QoE1lgg1rm3G8bGzu4QHHeQLTmUX83JeefeXF1yjZT3/0E487mZoCDhmp5ZwAZpeB9SFd15AwARmNy2gAeNLfUOmMM/qiP6Ns+qfolMKIMXwZ46gydiKkTWIZMbOXPSt4Zmrqa199qbZ0emNj/969/6wSj5mJROA6IRV7l3BCKdvwQyP7bCmTZaffxpg4M0FB0cvMyIcR6ZzxRYtNb4FmlLqQbUoogWKmrDqkYX+uf3Z1tX40dOOLLwhFZigXPnUhpwMd48PBb+TG6knC2vEcNAG3oyGWyDBQL5GBZZVRaEAYLAiAzBhVDM3gQkPQ7Wzhw0O22BwIMQI1vKUodqdjW6qgDnWdDoDrkvlhtjrUmfSSqUwQjeaeQWAG8cmBXHT8M87EODA9RbpGRWKLWEsNixQxiAxVMlEIQFES4fGtJEh4qRdVBEsjoIDl6SS4gB8ElC8VOKP72RsJw5tErG5FOP34OEH1aRAQKhYoSvDgGmQKZQpGKSPxkhX5oqBKvtZaUgX7oB8QprcsBbyCDdN8Ldqed9WDFq21Fq6jVokhb5MydBBwgAuIZ9MnQrIgcWSF0HwypVcoVIkf6OLUoA1ALjIWVr5W8IgLAsmhELLkErClnMIrYJFjYCAGaAX8MGgenChQjKmQqG5iqwuY0U0dYk/52vTIbKO3Mj356uVlFOfdzS22d2ZhqmawUzZxwVrYWK3WeeoSINDRzO1Gd1MJQigsFfoBaD4W+kpwDP1gxF3SIMypkFY2nqKfwTBbdFFw6AokS2gpjAy65oXDBqcTdjiZ8Lk4KKh9RMPAKYwKA0yieiSd6sDVZPaeYRdw1RvmGyFTahWOcARd4Nx50xFCkJ4NmgZH0PlExeMnNrYEpfgAl8oFV+ODkr0evrJ8lNkhMIn5m0TAe+baakxkoZNYhGyPSitISmunrZ1ZuW9zt9ly4IFRZzxJLC1ABbPOipTScMB2MTfI8gIV0aJRoROHxiCOYopPg5abwjOmivUoHYvk2B7wnbRgS0kZlL53f92JQ0NHTGRiV+ZLT63OzdVrdzY4UpglkfH9od1mL5w7wyDw808/M7c0zy5J43XObwFnsiG3I/ZF+Nu/+/ubd+6MD41yvtzk3MzlZy5e++wWa8sXZmf+8I3XHm3t/fBHP9exOFCaFkA+i8yf/smfPf+lKxsb9/7n/+lvG/ts0cmYM6dbXZiZXOpMbY3V6izBgD6QgCQoVWYTXX7mmZHjzjPnVn/25ttM6ofzSpdtw/DTl8+xruL23W1bJxOxbUPty688wwyITz+96/EOeN5r42fPXWYiws7WVqe9z/g1xyO1WviTevvbzacuvHzc2rp+4xYK99TK6YtnL8jz1PpO7+ju/TtbexvQVxP9eOiPv/tPLlxcGmbuDYvFDw83Hj348U9/3mS6FCj5XaEiRwuKEj84Wp5b+oOvv0bb2j1gTIqmtMsxANS5e/fudtrNM8szT62uXH9w7/YDxrrFH5Z+70+/+4dfeX1/d+vv/8vP2Uxiv7WfbjTSNMbOjI/ubSzMLi4vzTFMB5Fml2aZefuPP3mb5Q0s6yNb5VVy++hDCBn65yUaIU1UqX35HCkZJAiTxKQCIrwCMzEMjUiGR1U+JSe/l3yrB+teuZRTIXo9CazgVMLLPUxUWvI6uGsVeZXgCiqJq3CreL4TpOIAw+TNK1RNlgRahSxLgBsfkZFZMq18DuPS6EIikxmg7vBufKFamUyifIbCfDVC7kZNYHlNWAkwuZEsCSnhtLRXWxSxieEXARKCGQOLH++GlIgCDD4+JDNcmgRpEPDKpH2Gtpj7z6AZDQulGz/uT/BEbTx3dvnU6umdve3mfm9xikPlauv3N/d2W9QR8EHoUfBWcV8KkfAlQSAJwD9gqekfX9BBOxclg86lRmpai3eaTGNK3hCKlSws1nRlVmCjgJ0vqDKzmmG54kFG+5saUP5Y6EIfEIjKRXWrNm2TSrnDC4kCskw0IpAal3Fc6y9KEkBkxxW2EeSrJVNrkkngaEY7mqY1SRUbZTec8dphdlUiY7YjIxmNis4b+U46OAjKjjaauVYfaW0uQCFJyJYcVH5mJCNFQu0PcUFSQMSgAWVxGWdSsllwz5arGpVkBYOYiaIJ0Y/kSpCbGWE8JrBADOTEsaGyN4BjB5Vp90AuVDBATUrgIjTH5s0v7mE/jjMcOTZ69vTizDQLqUZZltzcZVoqIJj/4zYVcmWKZbMjncPOcY3FgnVm4DhliV4Us9BnZsFKVvQZRqqfWTp9Z+R+d6i7enr56Reefv/f/QizCYZgzRLfcksASXXQ695/uPXqKy+zEhmBSw20DT9m6In5+xNH7HbKDsfGjxjAe3Zk/f63vgVzWcz46TXmND1UfpxRdTw3OfOD7/z5+qP7X6z90PEPfOgjI3/9V3/99OXzSE299tF777/Tpdvb6331tdcvX3pmf3/36rWPVs5fmqhP3772yUeffcQxd0xoYgwDUuNJffryC9//znekOgRlT5VDdsrd++//h/+hhSXfZ9B+8tTCqYnR6bUt1kq2z55efumVV+nw/Ycf/hDJgfuQRxvAFhf0LcHrr77+pedearV3GX5u0lD0j5ZO1Z5+rs6wz2efXOs2e8+++sZr35n4V//q/77XbuLqoQXn2ILXX3hpc6u9t7l36tRKY7+BwFBfID1TfpaXVv7P/5f/E10DLAY6EEwIuP3FrZ/8+G2aF4qvMMrFk/+pSbzl4nPomu+GEL36kU2ROG6mFga/JBekCiBQefVrqaCJ9l/fSrz/OpR3K2DJ0Jz+f10JD/xIy5NRrECmFnqJVkClOhGxoMwXIyD7Iigxkm358VkAgEIpyWIv3wlVTZEg5aqABRbP+UL2ZGEcEwW9hBhKpeYyvwKSD1UEAgpdfadgBUvDgoC62gFQmIvDhjh2CYmjlkkKsa9glweRRswDq2TGZwxKnCaYzmhraj+9QNyOlBVJdHYAQPv10bHzZ0+dWeJAmBq+6nGOyzo4ePiotcX+AZwBklKhXeOvQEfySP5koLGp6agznRCQ4A/cg4BRQF1RL+F+KUUnSG1Oa4KfA92sl1ZDmzDgAD66SdwtjUjKBFWGMlwiBTDhplVtolHTOsBe2xm0omqWD4CQthm0UOtGzxuS6P6EYEZOochEfCkJNYpv6O6snmY6+BCbJ7MZRI22Ay+XC6otkfHlmPhLC7L0EN2xySmGYNnRxa4Q/635ZbAuBLEYpCaq6IGG6NpmUER0NGvroC3bGxweYz32WZyMd8AcnagELL7FysURQGI99CzHRr1ALJ3DIgVIyQmu5AQGPJIJydHsZCWqrF9FonQ6iBMosU/D5sae09xn588ss1u0W8niEmI6UkdUbWbJo9glLCGfYv343DR5YiTIJeabK23MoNXbQDz6QhzkMDnuzAFkcG6avaSOmixwc3ga7JQWcfXGpTS1Wrv6LfhHD1WXJSJi3wuCsMRuZnqusb9VCiUJj49Yek1D0Wy1mOdQq08gB/U6WxaNNNh3U8Bjs4srHrrC4t2h4+XlxYvnzqzduf3mr986ONIopn1vNduffXb16cvPQo733n2/9un1laX55v4Oe2+APO056EigoSMm6SKHd+7de/fj3y3UZxkzgvbTC7Oc6wgLkJCpiZFue+dXv/ohU+9WT537sz/5o1e+fPnjm+dvfLrGps3hQgygNFEsKJufnwbZ/d7Qr379i7v37iERk5OzZ8+cf+Hl51/7+kvvvvnO2qO118++srS4xKZQiAgrttmjBWfa+vp6v9+q11fxzdm/p6TDvU5z997anXfe/MXXvvLVzuHBnS9u7rXb12597nFgeJQiDIXkheylVKE8lMxvajKPEK4EEEoSWfV7gQOO+VslfZymSkwmpizwvZ9AfBx08iRG5X9SnYSTa8BVgAq0ICQ+YpV0POapRFPUAyEVlNhWt3KdQE8EbgVC9dGviUpogTBIVTIQQxQwqYKCdyuD9db4QYesS24D5PwlplWxQjgxwLHK25/A93vi8KnwlJgQQO0bRFVWiWOGuciVmjngZEE7WakJApYBSBQIs9xwBeP9ccMbRrFQYAzBomJw0Zw/vfDyc5fOLM6x1e7eTqu7te2ZXyg+T0+3OOomK7+GLraolTPaPBaflqleGeuyqpFIVFoulVQ4oe5mgQo4iJHNhraY9qgTqZluTwLGDA89GIM4WNSBpoLwD01RKqB3dYa5Y2Sn/1GppUTQzE/bkmySmvxiiaNQ9bir1CG15AJ6lDXVyXmhyabwVk4aK2WgU0JcuSEj2JaZToCHmENAohEqZ4tCDEyKwC6VtdWVabZSwKLb3G5s77GC2ObL0ph5oEsmiIoCl780UxJMQVEEiBzreIh55rT67mnJIVa05egzo5EpQLwpLhinNAAH+H+TB8RTInCAYKc7TStgTYDwQj5WFdOZ413u4JGyaRE7bWaY3j3a3tq7eXOtPnJ+aHaSvaHYNai9z34ycoc2DOJTfqbSw7D/9Hc/unLlHOefIC4cHL8wNzfJoWmry04DiDQgF07RQStTzLHRLk48sraIoB5ZTxkkCjH4BwJOPKUhk2SQBhzRwSwTYRrC9MzMhQtXOPHY2P7JN3oA7MbMtpqvv/I1ziUla0j7h9/6o+2NjeufXON0Ojw6CFn7sMvCk4vnzzMg8dNfv3nr81uTk3N68F3wMby5s4VHtNVubm5vsQLi0aP7NCE4VRiQoMg2QZLbFTNYUVs7Gz/+2b+fHZ3DrgdB91ICmZFhFtwSi/1K2419BgXu3L37q7fe+su/+sNv/cGrdz57KEloI9WmFJyqcFQfOVicn+SYu//p3/zNnTt3OMY9hkr/8+sffn7j/f/uX/zz555f3d3Z6h20p9hm1iGj1H/Nmz57k3Dk2OrZ1WvXr9qvYxHA0Uhjc5c2nLm77AjUbG795x/922Z7hKE/barUGrAVhPUR2sqTUNFf5SNc8MGr/JY7mStSie7z49AEG916+ftJJZlfTn7M6//vBQbGTiLR4UXeUPm9gmeeymsgJW7ilSxC1QBJaulcARLW7yPDO1dY8fuwy4fy0VTGGWAl7wTjr/CQcalYkDWeiAq2pPMx8atUqYkl0GjCKPDLr8kf0zDxgEksTnzwg2URkp330CW6UCqVrAtkdUcABQfzcSUjlWiCOYxjzN5zwW7r0AWtTFfANX/m7OJXXrr07DNnGFK6u3V/k4OFmk38qnFsUFnjc0e8UheRJAqPbhJ9NBZwfeIVyUas+KyaRVAjrBwOzFGyCLs1mdgGoorBaJgd+C0/RpNNBTPKlWrHHr0ono2HaqJUPTKg3cJOddyXnC0zYxZxn6tG+HNKK/FtGyLcIkcO+QqllKUS0XzDN6IZBnEogq2SLEmiEFA6ghuh0B6NBGQLjdM5n73ZTFOxklC97B/mNR7Yi+cW2aO/h1E+9mi/84hj1ZQNrXZik1D1b1bg5a8o5eajeKqdVZpO6wYBm0D3CMWTGyHguzmLvp+NbTOFjhAX6MAvr9R0ezCS0pJVV6RIHpEK6FYb1ocYmz+GS4c5H50Nsdn/+XBpbmd3b3MDP2B3lLOh66yZy05lYD06yvSku/fX2J4Z/JggjB7EUKUxeP2rr4IBOQKKGQgOaYSvIMwwAzOHZybpNPjPjkekWEbg6MFPYpPI9vpoKL4gSpKJSEDhtCL8T6+9+spHH32EGwoponjYJIvzS0Tb29tDvLD0gYD7ntOKXnjuubUba5yayc6mGM60hrBrdekUxWa3E0glBVHKcUM6WGrPhlkHbGxHo6uOpOKIAeO9rnGGWgyiuHHbZH1qcWbFSbaQP+WQVUwXooqxdd3hIbtxMPmV5uHu2qMHdx9eOLvCIcxfrD2oQVIMB2KTzBXmI+y5+v6Hn95eW5ubn6efRlnJG2Poixu333vz7WcusZVQF1TqNbahldf8JwsQh3iN/SY7eD1z5alPP/20xrGXzDZrd+j9zMxOKab9Y1aJH43QTiu7zgvVrIKU1i4hQXRFoeBiUcozT4TKGIMSgbs6zWpkqqBh5BKFzJQjNZT/kqZAMyR58FoA8VNyKkCqQGGdQCt4mcKkBRs/DiAQ84lkVX4lnyBQFaqqG4FMctkkyJK6oOe3gnF58m60qoj+5C3hySi4A0Q1KIZUXlN44476KwnITSj+BUZe8xIiDTgpiMBJNKirbkgiDSG0i5wiTsGdGi2IlIvMqNMC86M/fgg/bOEDp0qFXGL649DlUA+MGkYSBYtnHauhPr5yceHLr5576YULnOzY7PU/f7DJkBYTPBD3kl6ljZYmO9ywTCaUK4Gv4ir/GBtTh7BfL77ZMq2HGk9lZg0ifU/+cADw7h/YiSBSyINlYLP0eo0t9vkySpdcF1VYAvEFT952XglCv/MX8mhCMtkD4xVMCk1ASsQgBbJNVaVnIwFtJyQxkRBR2hqfZZ9zvdMl5jsj4b2RoQ5rPHnBesz6HjIvEpeWSw+8IwGUDosZlYqCSG2ATBCLvhR7rLpMiXCQnZqoL7C13tzSwtTMHHMqYUD4A36pfPST8O0xvK/fXpzVQeQnZYiRr8oTrRJhDI4Qw+F7B1nAS9SkTwWtNEKoQvUlw820T8wVxzUhlvYk0HIKB38SX7KSTfx/ZGodlhRwFjbDSvXLMLuCH61vNXbanS18z602O7jRALnZE+noqYkWMsoUHUYIXNEtgziws82Z9Zvvv/PBg7sPzFJMjzjBxp8UdZctLvpHq2fOwAk+iosNIPBkDlTiNWyltXMDaORErjqaSx/j8PqNGxzy9dyzT1saygANR0dWllfosLIvNzLFHj184Gi7jft3p6dmn7p8aWd/DxnS8vDsxz5bO5iHOSE7MJE7K8nxXKF4yRA3u6PlSk0mzJk0sipfYHm26c5kG3kK3ewoIKFI6vERE6iQZDfztAGUyqy/3t5tgOfqhXmKAASEmYSwBu6xFSMd0/v372D/QGF3bJRTlJb7kNsHMTzBMEPvoMYGs0klXAAjjf0jzgRlJfT3vvt94sm4oZG5+bml5aXlxbN0pwFP94K5CFEcrtSjsq1eXP7qH1xePjWZ2qs4eCnpoGOmuaC7SA5e+LXaGMs4T0SsokDOkuTJROJbkhRYvPOawvOYJGr1/JGdOZb/fJNBT0IUbkGuytwfMSmBQjZ+QSewElABrLII2U5iJkKFYAVLIgg1pMiTAH0rZQaOVbSgSqCCW0roC/RWQwdkwXIAvUKP15SWe1oQqpBS7JWiAKDU7QRJby7zBHAUDwoA3ePOBEQ1ZfIvWPho1OAuwKQu1WSkNjnj/rGuW3QViUZlPDAccvvCM1cuPnW5NjWzvrt/9fodDJb9VosuArXaf9rUFiotvLN8yAXEgmepukDVcFOU0GHmr971j8rEnsWMoE2ybQQGadAFLcAixOoGLCb2KXGWqoqORKEfUZTl6ASMR2qmeyynmCgott2lR05dlUGoBSttSCVUtZOXmIe03kE3mhD0eAuSZhEZpGrTLuGHkn0CoKjmDPL8Q1EQKpdKwdSnqiH9+dKADhXtKbu+xdUs1dVJwMYORdFMTU9jEqJTsV4BxpdSsdV60jEUtsmQIuUv2AaN4B/KS0kLlmhiWC7yMUN5wx+GMHyAViDkYjUSmbhcWhYklHO5ipgRVghl1sEsNLeoYnZ01Gq07t95tLO9SyakhqY9tmGrxjOMRVisZ+dukqvKl6HPXvv+g/t7jR1UPKTC5qQJ5BQU8Wc/S7eX6Fy4dBGrHEaJYmwc2eF0ZJpGWj0aI+bRoi6xvSWzXks3N+7fu3efOWmvv/oaJyHQEFEiQJ9aOeWuRUwNGh5mp4rwfuTWzZugeOXpy6hPMHWVc3YSpG1DoCYxOrC1nU2GT5TG2I3nwIfpQFOcrFJz5hhKHQLRcNWoAw60gwvYUXcOR48P6pyxy14q1o4jmgIoP8EGINOelAn1Yz/ZQMMbfIb97tHsxLRtpuW18dTp6abNY4xVc+KS/FVjSyI22JuaGD1zZmVl8fzc5OrM5CyhdWgrUHurIMFzj3U5/aH1hxsrK6dnZxZJ+Idf/9aXLj43MY7Pit4RW+pNXji/yjnMdAfl09HQ3NT0Gy++trq4Ms4BQlPscYTc03Ap8WAGQQYyE9tCCRJVi51nflOFUnkUJL4XgfUpLxSPX+785VGYltmk1lP/YBNgU8UD+YkUBQsYl1JWkAIZcMGqABmANxOx9hJR8yyvVSIj+l8sgkvCq4+J6nMpoAkFUuBU0PxWBQnc/yXE2MB2JJNHtJ/PVaCAQgWy5i+vxq4uTQPpEEs0MANUHBEZviWBH4yHdBbCIWrO7kNY+ZOUxq8yGkROXvZEkqQiOjI5QVVkIYtixnAd1ZKdDJcmL55ZXpnBezt889762trdO7cfsNzL2fWHOrnRDtELpRDUFo0GUEItlkJp+jjdEO4WGkAKJYYoYIA9DIaIOHOQO+pMOtgoETS2ShK9DYp4h+k0syW8tEBDsIsN9RQTKRkAzb6FSi0qS4XMxygSZ4wCAMeU9b0UXx5EkfkaXiDZouNFbYy1J+65eMi0JSYIYdCJD6aVYanqUhaBI0uzBl8pV5aJ2cJwlQ1+pcHQ2EG2viMJiOMiwQnMKZkO33L8AkqCqd0U3oxFRmJZEqgLVeCkLymMC3XRC4Ix20EC06BNo3pZZa0biU8pqQ+KkU0MVMIXjQ5GrRJFB5ntilAiqLYCZBMemp3UEi09ZoWJGLMih5xhsiZV18HojOcG71DVVEY6HnruyjM4/fGw122iOTOCLShZQUaE3j/89Bcffvo5rSPalt2xuYpR0e507j9a/xKujYuXPvnsUykieYMgq6LRtIddjh4SLcOCPmaL48BsdMcJuhuffvrZ17/++tkzq9euXaWpOHN6dWZmhnNXEFgIgQanMtGm3167e//uvVOnT+82m0itnkXVGcfddXC9nD178dPbt4Dqvq1Dw2zcxixSNgblHPm/+P5ftTstjl5Z++JTJkMdeAp8s9ttSVVacVcGMC9oeHXlFGs5bFzQy0ddhskPRg5cju7cUyShP8L5zdOzl8+cmZ2a6bRwXjFRSvKicZEeGWFSKxkb9xkK8UdcKnhx1aOdcfCPH7duXf9os/GQkTimk6oykFCrm2TDFwoCnGCKCba4urrZ3b/w1FO7W+zSu/7RR7+7fPkSU5L6I9ONFrWKCbw0IMMLE/WJkfpnN++2G0woqrsJFxjYDEtoSa6wVBIDer5bK6z10UpIjVVz8JaHvFtbfOPGHwjm1QpBICJOYan6lpj67FdjmcAc8ntyI4AvRDjJKyDLd0CUB1sio3jBVcDCmZNLACRXzfg/wPIx0h/R9ispzA0keco7Ny9/CEwGFT6l/Ab7T9okg9z8RvGKeiRccKkqFVxBFqD5lEJUBakyfAL3k8jkkK9BwNICYoApjwkxRkWuExC8l2fvfnTDFuaxeFYjaDujaERv7sL8IjP323uNW00GvhrbW43GPudeKCqR4YzCoTSEoHBiLcA6tRMqROQQWnwGSE4EXuRUlTQAoZtKnprBHd2VmTxwiJhqLy5P+8b/w2ZVnEKLycRQIdtOO5mEjYNj9wnGtoB7etjGYT69PW3gsqplmMFMEckiGH3Bljt/g18zJkjxkGmyTc0HzlVUNIvcYAwQnWZB1JE2ACQosJD9oqD4RlWh1pEeDGgzosWVHpoom0vg8kYrw6ZjeGcZRxkd2W/22GyZfYAVmIpuUlThAnSqHW2JzYiNoGjxHwaQqbCMSNTyBciKOcXnf4BUNYkYWTfkWCv+n94xo8F4ZCKnSQyssAk4tOn2t0hOFloKGrs0UZEULVmYKD8oI2NETP+ne4RJbF8otAOjqjE7Pr586fyzz13AbeFmY673GEF9M4jLFnirZ8797qNrNAYmY9sl/CpQkLmqh70v1r546YXnvvbVL9+5e6/ZbrtITUwRB1jJ7nJj58+cp2H0Cj3IDuMD0QPSfqv98UcffeUrL3/1q69ev3YV3r3w/PPQjKmQNOJ0NFFxlmBkjP2W2RT6j771LU6zpICKKgUdPt7ZuEdxv/SlF9767INu8+B4n1lvoyP1CSh42OMYjMOLF86MTs0fdRo/bu18ePXW8cgE3Q4aCRUFBZSCaPP+0tIsHWr8+TvMw2/g6jlkiubZU/Na6ocHZ1dnl5YuvPbaG0yjun7trQsXUMe0TdUAQDCR04fM6zrsvfTC07/76Lf0HDjXeXVpauz4oLG9i0Bsbz/c3dl5sPXo+q0vpqbmmFg8EAolCbfbyDgL9ZcPu50LZ1eHd+tLS6e2dnfx131x9yb9rPmFqdVLz/Xe/Vz/lKw5XJ5d3Nh+dPfBXcaSaMgK2amePJT5GcgakoUFofBZZfQXgGgkUZlRPq1LXHC2PEiahAMmXwbREimVKdJvHCVaLUTUXPwIf3AZha+PL55NUQLApzySHUGBJyBRLV8S8UkAJWWBaN6J7FBi9SG/JRNA8o/wxE61E6xv/C+BBQ+hWENEYhDftES2sgYId9OWbE6SJf7gzerElaasypefQCj5oSq1SwuMQe3jUwW44BbM4I/5Jlm5C/nkaQzDmi1iOA0SjNA1mNSYJ1THfbYj2N3CqNzbZ3qDCVj/kmNy1Ye8Iha2regjjEwKrX7XHa4u9tL1o9UWrDVvkie4oKLRpBp9XCwioyRgp/LB8NWNgjLVJFfzqUgFxQwIBzjJWCioQCwuFbRDe+pH/gE3Uw0RWOYAUc0RbOekM1UPMBUHg4MsrrDR+JAvQJZm0ABL244IIagERzVIgn8d0yxRzFMGCognawivBqI6mVvtzChBkU6fFOoUq1CDm/IQiTrNzBlWzzYbHOk4ROPKVH4bzogD2UOy+LRsbzxIVxqm1IWNqH+nVEli8gRPqEibRZZqfyqn/SFnyFMsDEjEBMyxSSlTKbOtNWhVq0NBU/xL5hZVI8DNsCh7Gjea9uOek8MspZa8fQI6HGwCyqRQ9J2cYmtrCypJCJGgsPaDD3778ccfoXhxepMH5v/XvvZ13A40ABitBElGCoO8wSG0ZURge/0R6mnl1MqXX/vqm7/+JZwHlAIgFcb+6V/85aXLT+/t7lA+9Rz2Cliar80u7pdHDx/cvHHzWSYtnD5DK3v+/Dn2MmQHPXazAENO70JcwquhO2tfHB5+g8UB0BURsuEcr31+6+aXHz4k91df+uo7b/8WI4ZiOgoEFccO3vzVP2zc3/3n/+xfLqycu3Tx+d+8Tx+FefS3Ty+vwCzoSmtHdqyNvP5wbbg75mL3bLFVr03OTs1yzAFU59Ck73/7+xwjgw1+/eq1X/zsrX/5Ly/Ozy3QVWJfJKtmmAH7ERWO1bty6co33vjGp9ev1saH2EkQy4YelaNUx6OLS6emFuaZ/buz0+DcBghhvVJ2h5iQfOnKs1eeexHRWj19aunceebAsmsUjN1u7G9sbSwuXR6fnN3r9JandYtRV2an6xu7W/u7tLLMZLbCAwnxUjQBnXqI8MB8FL8PHJ+Wbb5UL/AuiMMKL9IgBJEHZYIArAkS+uhVSXt5JR4s4VnGcPlUUvmWy3ej8VJgpKaaSaLyJQGPI4tBwIjHINcBqBKthAo02Joj0PJeRUjBykehVVn7CD1+H2qQT55JK2zrUoqSl0KMxySoUA76RquQTerkWwKCEjlSwcunICIqsScrF5NgsWNQMcnLz5YjPwXPJDMkYIOoVZr4w2N7LaaGUZFdKK/CgtVuXNztDjNhbQfzkckq9FCnOEXW7r/VnzquBtJ1D8kwzuN3qsovG1XcANIqwnmjSBKYfzwBzuKr/G0FcFlljAQxpH+MewGV4p9Go24HF3OOjLrBND1cbQ7gkpwcAMp3lBviS+F4YTSZmqHmGzvmYAOllHFb+xnEdrZTTEWfUdziy40MEF4oppoCPY1JAlSmmbeE8kG1ULF0AanlZT9JUVqgyzOBYAQ9EAzJLSqwhEg2YA6e2jGRaMri8UizdXjv3g6jAGz3s8OGEPqB7MzIPEjhkIi2N5BRuHJadC1swdvSh/ASXxL4nhBKblngIcUDGwYfwNmRDLzYhWx8wTMGYRlVdHNjCA3fyb0ACEAfFSA1pcDZuMdOgFlBbUkPbPpWbH3MxQA3zhm2E5BBRHChcRDGy/LJtc8nazPQCQc966Lm5pc5OJNhf1qEcgwDXiBWBrgVECPlUSHb21tf3P7iS889/eqrL968ffXBg3V2+8coQAb+9C/+yRtvfOM3v3l3Bpf59AQ9LpAnKxx+IEAOnpV50L36+dUXX/rSl19/5c7afbYrevRo69H6I4sxMsohyUgkbQ1O842NdY5WYG4lxaWICunI2MZe4+dv/vLP/vS73/zaH+xv7d/84gZlIhcPh+B4yO7wR9du9//2P/wf/nf/+0vPPHXh3OodlsJvbsxNeq4v7IPD8G5xduGPv/bV6ZEJjHL0/MT04n5n/91fv9/idNDhoaWlGRyU2OLXb9x5/4MPdw+GfvXW+9/9/h8vLM43W+JJZ4+qoXiOjrZbTdqf7333T9/4w2/f/eJuc38XXsHTMfJjJInxs/HxqZnpDz748Fe/epOdpCgJXMUrOr809+ijT3/25psXz/7Fi6+8zIRjd3tSI1Cdj+/cu/vcs5dX5uawMJCUXr83NcVmoEcPNvb32wdUa40MOIkdodBbb2yDnfVkTxo4HhCSi7gKY6lMSo2Cb0gRKIkLBAMMioIafKuiGByBS3iSGd+wpBJoeTCQsPJl8N1IVQ5WPi6+JMFJxiU430oE1Wn5X6Ja64WRZIGQZ9IV6JA1xUieA3wsC8lyJ40P+f84nwoPA0IV6rAybuUqqQIPIEGHcBEwrGDCk98CNYiY1ljEhyMl3EhGp6JGgZkcdIX4ZB6m4q+KXCCjm2QlPQD6mszfQE1QmxxSQ3n0umw4zCqvjjs7swM5C/+Z5swZE8zxOMadyYxDFS4ZWxoE3yZe5HkzlAdwHzQDWvSapAQiUKBfXBxgjAJSQ2q+ily0JD9UuSi+ovsQPWxM1gNQg4TipZSBGNXF/rsCyKOQA19tjhzjWyAauq/EBisaAawkalGUHvnYFMCWAlY9C1j7NdGkSVggA4hly1KaQiUJNEdr5CabgpHGO9hm7hBlTNOkNwj1EQPd/jPb1Y1t7HQbLcYD+uwnAMYWwMYB0kDG7OMyzmFTblzDjsmUDEqWYpMcgnOhIXz2Tw5YtJSSnxKBomg1Y6w5LM5QNjOA7DOKPm0DWCKPTKqEdcKr2gf5p+yEVVZ7m2f2tqkaADsYRGFLJndlgkcw0EYA35w+N+iNieCQDuBOnTm7vHqKc30ZX8KZwdLxV559hpPje53W7vYGhjhNHLvoM6SJAUJ+aHFKg6n+3nvvPnVhle7mn/3J9//Nv/0b9lyoj059+4/+4I03/mDt9hcfvP/eH33vW0zljGKy+MEdFw0hOvpv3br16OHDl19+kZlWsHVj48Hm5sbU5DQFpwfAMje6XOxmyjBMo9GYnT0DSRRfEGBb0tr4pzdujv+89v0/+cu/+ss/f/fdd975zW/wppNJrTZBEY+HazfurP3kZz//wfe+8vWvvbCx8RvW9C3Oz9JydGjHho84V5X5XVeunEFVDvXZ3wPu1mbn2D9jDEcNknPr9s2rH370cHNrt8FGQKzIrd+8/eDy3fWXXniWyVG666AdNHYBwfRTl59lRvajB2t4aBcXF1dWljrM8Gf3VzS6ywkZ7Z5kUuny0pINtD1VO9Cwtke0zu69hwdXP/n4a19+fXp6ikpOr422AXX+6NE9aLXAfn7TE2w/jkXGCo2x2sHDB/d4pT5g59EroilyAB9wyJCQqUp0uSQUO5PLZCfy0vI7uYDwIkiFI2LzxMXX8hZxffxBnkeMq9SWgv/eDCeRD9WPQQVMyUqgRVT9Yswqk/JcUpuh0RXpcoPXA8AmSxpvBZiFEpT1ovwroKt4fhPaEyl9HWRRoT6IYSwACy4/1D7JExAVQF9LcQgg00BKyUpFDjUqLJM2SCURyUySPAZ0iBopQYT7UHAJCYivpJOGhggtEKEZc95Pn/W86VTD5KNjDoc4ZGp6n7WF9GGHp3DAU+Gp64J0Ph8SgNoWHVTd4SEgABfEBEsetECxjKNWiMakanMTW1WFlrWjYUFEHy5gUfjRY+g81bJVOcTQdEYRAkkrOc0c+jJX+hIuFdCCpX6LT47pAjV8oKaJORwNWwhLVPvP2HUhuwxBwdlM9DmgJHHMOBMapZ26ntZCVagahWxWDPKxgJw/oKkPvhTK4mi+WXslNH/WZv+5VScaVHWugcYIQRu9Xlq/UkgwDytlFoWvsVpVm5ROAw2cIsBX6Ce9AQKFRNt3cnIg3Bz17Ks9wI3X8gttoS60sU7DTUp9ghiqPTQ1z4BRNARJFIXBbhlpafnH+5ztQ1INU4oDKdgBk/kr9lvY0s2uDVa12wcyrQfdYdOC/x1HzKUzmBbDzquBBEeLSyvbHPJ1/9HnH12nTegxKZKzTTgbgIZdxWUGZMOEg08+/ej1V7+yND//F3/+F2+/9fblK89+85vf3N1m7dIPcbKzQBddJuEtDvtk0uYwIZ7ZMtizQ/vNvffe/+2f/eDPz587x0Hwd3KSDBShycQxgrribHh4yDB8e29v9PxZPmD3QgJK4sk6w6PvffDJ6PDUd37wZ699/Zu10eF//PnPWScM9bR56OAcHv3udx9t7TwgW7KnLZmbnaWNdL2cDdjR5u7Gbz9fn2Xh2/To/Oz81Ez94T3Gtrdefo02+PAf3vzN/dv32EoDFsZ1Sg06eOetd776lZenZ6fx0dt4sj92vzs/PwOD/ssPf/jb3/6WfsTMDC3aUoctoDr7jEtTZqYA/eAH3794+QqrMeAbfFAmOT8ybal9l/7hvft3X3/5RaadwVL6YZhR7L2xfX+t32nPzc1dunL5zo1r7OsyNzfFbh7dTgtt0O3RvsQfQL1nty4269OuQbjC1+PhNjFcaEYb4H69DFPP0pJMTGh8WDUQogihOvTkUswUSq4SydcoiSKAeihLZAOpaEoh0i68fAjY1AQ/V5cMOUlXwqrIgFesiQukYPRkMqNShfO9AlVQJhHxRIlgEIWkqooElYileL+XqfUt0JO3OSfq4DfpB0F+KdFLCC8lVT5Qdv/EhfdkX4Eu6arIVGQVD58ovz/8I5kJzTuQvSW68QwrKYhPQBSB+gxlGHsNxaL06uKx2AwJ0CfgOKoJjK86fghnmGpWKwXkCB/QOszNx+QgW7BwhgpIu4oYPcB3r9igyKV6A0UmmtZyFSbakKn61iBrVfEZKTC4Q8AUvpOGfEBc/QpafDBANPnj0WU+7GxJLUKH6JmwPSPci3tMlugIyUBLQCJUl8wwQ+IozzRg2P+MGlAXXfALdSgKEQBMw3jkgfSqVyADgDjMzbacRNSYH+EoTf3jfDOtLlhARVmizyQDJpQeZhBmdTDFICmoYh4SnRYHnWPHgo+gDGoQkQxr7hLngLxo8iDDaNJQ2GlFU8CqsFLCfXDcyQ68+C49+ChfzJ42QZrAZXMQnjSHeqAb+DYtNnEEFiQggSWUG5ImXi9TANHqYCsjj/SB0YHEb5ftXZmmbivI4dI4TPRCcKrXr9/+5dzsEqrr7FJ9qNtdm5z89XsfYTVyXqgOthYrGFDacNp2EaxAkvPFoOlbv37nzOrqlUtPX7504alLlzBg273uf/z7/7y+cf/M8sJBF78ZBTF/XWUUiN7pQQeW4w0k+y9u3uzsN+vTM+sb2xubm7ASwlJMRkNYddHE+2WzPPrJtY8szEF/t7EFMCniEWycZnP8m7ff2mi3vvbNPzj31KmLZ5dptziPB47SFQbJVqvx2dUGZyYzBH7m1OKZ0ysTX9xudTqMpeK3v/fw5s8+eG+kN3182IH7LOB1iUx9CjuAwxt2tnahqvv3wS+oKDuGN7a3f/6rd/WHYm7LHnTpCFM1Bdfad5LT2Ehjb/P4OO5aFlg4a2j04fr9m7dvPf/S84x2RNIFR9Jms9Fh+yDm+B8NffLx1S8+vzW/yEqxuo00inxsZLvTvb/OvKDll156bnvrPu0NHqXdvTbCznnGnvkNEwsyTCxXEHXbgm10AARmOTF9V9ayjcFApjRoArA9La2a2kGhsRDKuk9qBw0XGOVLFc4Pr4KsVKrImwA+VGN5AOVbARNIgV1BJzafkpnJHmdbMueLVyicJ2SXXxL5ICLJN9iY8wCQoPiaiyKLs+lKaUo+JXUCSRholM4HruBhIuP6X1ilYH4vLE8otb18lmSDKzB8MSwwSgaD7+U3sEvUUhDjFwy8W1EFLpAoApGABSYDqSQ8yZORKzvxdFgzgAlHUHysC8G08SBGN2JAdZdm0BFFFBwuVJdwhpAqG3YuQelFMzgugMBESYNKVDc3LHPVLXJCHQM2ZCcdb974AoioLtDGo0uFLR9zRxStmqGZ5eBVU5Zg59VVACknj/RRNCQsZ2Arl2GCZCMXdJiflWX+Y95KK0GpRg1U3lgMgaZFk0s1EZERkcNABrY6lfgOlqJwGBbNAgQ6zHS9GWxMtwP0IvTGS2IrFVXH+k2JtcTQzRyUyxArji11mV1t4DnPiiW1bFHAiZND7HJw2Mb1ppp2dwsbYwko0QIa4LjHdHhBAAw3MCNnLvkiKQBnoDhrA5I7uhbsQtzc5aGl9M+YYuw/b4QIywhgDYLSTfA0YZyxAsVpVD1nMuPbyADeHmJRut393V/84q2x8Ul2s1mYGDu9NI8z7Pbd9UaDQY/hGocKjA6zLzSrw7qTk6DDdCgEj1FUBGx9e/Mf//GnM38xt7x0it2nHmw+/E9//0McFMwrPjxso+zZFAcKQFKLyB2Vym5H4k7mQ7s7e2trd55+4cX7Dx+1Wx1KAFEoMhto05ul2wYFaAQ+uPrJe598AO0kf0qsBLG/Bit1e51PP/rg9ufXzyxOoff3m63Pr91qdVSRIYoCyexV2tfZ2emlJTaN0CajvaWnB3pDbeCzKngEF1tbQ/mYjbvBkl7HQacVF4tY2/xkfhc07LY7HiafOWPSF/JrDFAcxQR1jKrk5E6986phkDp2myNS4hntchykKpZkeGq77a1mYwfO9Tho/uDwfne9d6Ndn5pZXDw1xsRqXPu10fv31s5ceOrM8nmaKNY9sCVq56BFZqzAYJdyJrdq9GP50/bQwgvXigT3qUcYHPTeWMLDJF740WnhNaJZB9Oof+RPmfGyWpEoNS91LIEKFf+BpHSFO4nNLSXA3FTiFD5iGalURpV5UZYEi48R1CEkS0ig8CqY6maafE2Ysfwr33njr4pY/Zql/xKvIFGySNSkq1KZe0Al0JcTyAVCCq4yLhj6lTcqm6JS0PJLihroPKd43qS27/yrMvU3OZIV6fyeOCUioJE/5bhKG8gBZzrAmVdJUGIlKrcxlQJYERfVEAMbBrI1DvMv6+MM+7AIFgVBejJGYOn0IefO4ENtpgMQ67dSDMDBJpBhMp1/tCWUFmNf/zmhso1crbcauapk9QovGXEFeDwfIIL9W5N4pFZ1yjVLkYDYi6PYIByohe7jYBFs8DQ0KjjHsEAPQJTMzKU8apkHFRg1gBcxkMo+FOOWb6BCYSk8MA7sLhiDiCGZhQrHSkoQ8VXrGfvMkVWyocmkCHYBwNlFn8z+BgQ5M+CKHmfhpRmj+3OgI9qdg3eZi80+R3QvoDPCwQEpxxiqk5NANTHqjvVA0EcVb08Ncx0Y/ONiwivBLEKglwEFFQGlDKxCElAPTItqmkzygWtoQ17B00ConzTodGlskQmUUn6wovJDULkZl3SMvJAf2eP5QEcxkxj1gQXMSiWIDmyG3mms1E99nIroPjako51gYNGNMw9b3drEaLPdYti2xR7HzRY+BYQQDOgo0Tjevbv2kx/9+JXXv/bZ1Q9ufOGB79iux6OsfG2K2/hE0IMJuDUg+zhLwKAO9AINlqRdvX71DAt9d3ZQx3gsUE4UYpRV5VOHHgrQtdnu9xBNNsORi9KNxFg1lJe1MbVRD8ButzaODjg5+fKV1SHPgd/FACIJcSIJUIKX4/HRPpNzZLk7ktvKcqAANLRfSERFkp5x5/ig2eKjXU5whNekAQz0UCbJn2eNEptV6IA49+jZLi7MI3fGF00bAqQRAnQPu7Q/Z08t99lvtd9V5uxIIaT9xvbDVmMPQwxMAFqbHJ9x+tOk5WNLotrQGYrUuLn3cPX03NzFlXla1OZeg6xr9SmHFiaRx0OqipJsC+XkbxGzoiggHmR/PIkcEocG3B4fa1pogZmsUaQJVCiP/6hk+fGXB/UDxBOYMa1txcqS7gI3PEkTIFVDaX8KRH/LpcwmD1IaIq0Hn6rHvAOPpOoOs7SxV0nBOGjjl/wNUpqdHEk5CCSi7V/5zD3AqruBgRuceQnO/J5cJaVpCh3gMbmG7+KDekpOUTDmWyVUEvjgVyP7CF4mSxagV5EjBSgR+FSQDEl4BJolDkh//UfAAMdBXog8dRTaKX8prtvuo+XH2afHxh9BDDT55uHX+kHQuV23R4n+ZngLzQUIt0kgC/GRgiXvyI0FcCCY5IApjAopFHgsB/3yOGMQ2VQKlZbAdZr7EL8rkq+5p14CP3WzR9jAIRoX4NNptOdh+awKfDkEHoOT7BSG1waFSE21jYGO1uDQFxhCV93bKvAVjWtVoo4VqqdG8W5fpmgJ8JeMFlQlT/a8kDt5pAFBuKkXFMfmDXVIDTIX0adY5AjkY85JY50Ntv44mIXXlDVFQEF4sDgGFjBci8Ow47hKSteaWSscZGAiZtfTZImLbRzfIBCxpL7lIV/yE20Y6H+D+YDxjtuDVgZUwNP/SECRgUANQvkkTNNRKNCJzjJ7yx+a4xrAhyZHQlIHirhCPllJfiLMwHufHeukJUzhL4i5+qTbO2JAc7/ZwIhVdqASeMqDscXl6Y3Nez/60f2ew8puTYWl7lyw2iRke/DwAYjZ23ASKjMqpzquDeYzHThOVx97sHa11/kyOrDRaDrNNFiD9DMvXqyNNq7dYgReQtGbhA4QRyGg7cEf3+vWmXg0McnSYTonGBOT06jQ4YucCXBpf3PnGl5+KCK2Eg5Lv1+nB8OsGOnE0NhQr6MXi9ZGI0RVw3gWy+fZhnqv2ao5fMq6FmXK5kHeKX1SN7oRIvAHJ5l0xJadvedfeO7W3Ts7O3vKuvOeJCe9ZIyKr7z2yrmz5zosJGm3lYMgRLR2sw17ecfbU5saWZrCk48owhcb6YmRyddefIU5n3d3Prr09Hdfef0r77zzK1BAwul/IijMB+p04YFeUFd5MC08XT9wpfaAK+SlxaUcNLQMBToG02s1G2TB0aQcl5ANHNOmQRIqpLKHhCEJ3mkjomuqHz4qI5JDqvrCF9+9RV/loTyWr0EkQOWEkuqlWuTKzV8elGTFtbp4MjIELvfBF3KUFVX2VOASz8iiLGpBkTikLPlVQAMiISX4yc9Wk0QrKPIo+mZtteZNbUQMWJaIhHKpgowEAY0kYnA8OZesxS7pYLClO0FNLRC4JCGwwrCkFKAkCWheRIw/sqJD7E+SEkHJQiUzt4FjgkAtrEfriw2kwNCkmVfXqqki2070pKGwowia6GuzwSbELkZvWkpuspnM7X6Kono5eoG9arUiyZ+uLVMBiU6xot9jUCGD+IRYNYu+0qqlXyphiEFfu8sMCSChJ4c9JAmiAhtQIoKtGCRTaMxy5UQuo2gJgsiQWYkhpkSJoPKZlxCOzCywDRTanCDuUCEyAiSFCDvPVQZ6R2VSCISLTE1igYhiz4XGQdILFgQlgT3lcVY4M/8RI5quDlWIEomLNSq7hI2O9/qs9XSqFcOMHAxl38DSoRiox1yA1NoCXtpIqzfopgknSWqshRF6SgjuZF/UtP0P3QrHdPbBsPhRYiNX/iJKTBaQCVXnE5dF9Nk22jYmtSjNPpio+5z1ojSiQkFEXcMM/ug4A6FFFp9BflseggDdH3VTmsNDLOsiytjdM/WJK89dnJmYev7582u3br/33ifoN4bFGbw1ydDIqZVVZGh2YvzKpWc7y80LT1144aWX0dLspBZnCWxmw4aJ2UV8LXduXL8GxbDn0WSmPhx54cKXXz118cPlBz9+98PNTpvYmhqQidKx5sDlu10N2RHGp6fAFuvhz//8u2OjExw5+cYb8+vbzavX12zKwmJoy0LmLkskLfPxGDuXjE+dP3d57fZW/5CBHE+pnsb3Mlf70vNnluefZQ9O/Dw2IVryCB/tC8TWugATmwLgKPII6HGr2WEBJofMfP+73//gw4/WH22wCJm1+ijfpcX5V1985dL5U4x4b+5t0vjhVFSU/Y/c9466OKFsAE4vL/0f/7sfsP/o1s7OB+9ff7jbG1846AzTRdg5feWbBwf12vQCXAdTWyKKYd1jOpdDHTqBsP/tCnDjqxLBM2H0hFgbh8AdTzpXWa8XrSdNH4fN92g9WezhAmZLFcGhsNYAM4h0KE7kEzOcKOoHxcsKYgJjehHKBamtj1WYP4VQxCawCi4xTTAIABx/VbrUanUDCTRLVJYWyHy5LJ3ReTHMDOVFWEQojZfwK8imNEp+SkKfCzJ559mPhJIdAPOW8lFUaxfULrgkloWI7gp6JFbt2YOGglJmAClZhkYEZkZ8wBuBKKovSVjhWT4NWodE8SYqBZMg5by+kCKJMYqwe/A/jE0zXw4IVgqrFbWX6QAgRqvA9iEUCbsvU0L57uyZEM+ajRZT90NSrzEnHzvXWH2r7jZvtbEnwTCd1NkbLJ1Xe9NWUA2MjpHI5Dl66DxgNhqRHLHvYAkwyYtYFsO24YAOiYPJ8FQaqpgId4GBQ64M4marAoriP+GIfCFUdJoMB1RFjEKgBIEqQiLOUYdSIZjzCgroM9kKNFhFsUARjawbB3WTOpK6KFtEWrxNFgx5Q1lCRbZUxRfCWSE1UGY7L/y/uIPYWs1KbCNLAXGHTunY4dxZM6TgGochuIIL7tZ6+mb4YfRBoVukr+WBGlYwFR+RpA3lFlFx5Y2We5g5qVnBTCH06ljPaTGglDqO6KlpvFOVcUJLqkiYOsulueDpA3wnoV+PhzNBkMzIYJiysf+m2t/mBszxCDFsKHsQKDjLiO30VH1hae4r33h9v9F96vTs6dmFmaXTw5jgw/3VVzmD7sxme//G7fvNzT0WtTI3aqrORM8PR2qLr73x9fPM4ekfd7tdVvbu7jTwTBYRGZ+uL58+s762BQYsNCDn3b3W9m57+jQWBBI8sbK6+NT5M6TqsNwF1lAIIkE+CMIk0dEenQoowajmyHCvubm7fHahz1GL48evv/7K2r1NHFYQwthHQ9Mzs0zXeebi+cP7489evoLGXFice+nVlxob+EQ6R2P1K1cuP3Nmpbm3/+nV3eu379KjOzri8Bz9kNz9g4DKLUei2Q6l8oMOC8WbP/mHH7/yyqunz5z/o2/9Eb41vFKkYeNeBuH293Zu3bh2+96t2sQcPivEpTSiNMDsqLHfa6GeoeLTz3z5oD9RmxlenRj74ubtz+89muuOzQ4tXbry3db4Sgfm99vM5zp0k0D1ghxHjKn8LNCJAaS6j2DwlSIrZmE3DK+xBpzl1fUarQWtGovmELBup21/dYhTpFwJUWRR8YNc5JE7r0Uqi0warOwYlmvw64sy53fFixhW31ygkjBewjjRy5V45bHKhZeSraHmFO9unkUL2AkOEnkyviwpCfmxxp1c5RF0q3SWrXyskOM12D6BNN/NxEbWS+QJMAMzLBHzwDu8V1epNwZE4SFRwyCfbEcEINDyLThUmBjZ/8nNDyFaiTyAVGLQAAjFIgBQKxKvwiysg+lgm8afT1YSBAOjHquVcNp/lOuQs8qwyjMjVEM0wgPyRhV/xzSBg+q3LOglcFLDYBbr/0MTINKjHDGMRkSqik3NJDNOCsQrjhjaa4UcajjbTEEJmoXqdr3VU3gG0mwgjhYYRxCaiyZeaGpQfU6FQqp+okgLclbSAYToJJWYAYEAYxEPijhblPJqo8W5D0jrBgWggFihmLI00DSaARl+OWmaofPxce1dkNcZJBl0dIG9OUoWF7s51MbsyqM+s6wmJqdpeNk/AhJiE6NYaUNYJEXvm27UxOgkOw21+7rIMV34CoaM3YEueVM+mgT0PkjRFCEXtLdEEE1JzWVhuPGX8pKWllnucioUSz5tZ0gNQXFCCRMUCQEygOlnAJYihj0hRcDSAg6jsGAC+7I588eCgT8dQ5hjQ441jGJl+jk54wjrsdXz1Awz0Rl9tblRiDgdpffhJzcXlxfh2ZmVhYXJ4Xtra4219dr8zPTRIYOTDEVNjM++/ML8nes3H23cHx0/bDHFfW9ve+/+9a3G4q27w53mqeUF9lSA2/AUukE1StM8ONpZ22I+jJOThuhqNP/uP/4vLzx/cZRd/dsbbCyF63xqmgNyoRnufkpLI2DFo0VjlRNctlJw4mb/+O9+8svxiXfYS3RyYqxBfwSzBYqhb/V8Hj149OiXb/324xs3dvfb/7i59atfv0N3FU9IvzeEb50m9urahzUnPQ/vd9iHtIuLSNi2mzCIHGivlWknxhmsvEI9Pnd6h2tMH938+dLiIttoswCYRQN8pdHCxY/fjMUQ1Lrxehvlm0qOCAxx3FqnP348McdwCa1Yt/Wo3UHE+r3m9tr9taORw8Zh6+OH9/f785yhOTzRbT+8c4TPCgSUAu7ICEreXpCiQ1CqMkQEOpgi1HYbiZvt6vD3IGv03WE8+4SzTIE1mEgL0wjpGtDTBQKlg+E8WFX44Z+/3vyJheLnKpQfouRbUiVmQcVPCCOX7+Kb59x9qi7eSz7JRcCBntwKYChuSVN1uRGjwqokLdETFkt9AHCQgfAsS9IX6EE5gUls1YOVtFFUIr6RXUj7BGYS1nKUu8otdVWcxVgRE6nYlxVCKTYhKV0pTuLxOXagqOQqBfcRPAKN2GCgivYhkeANlzOfxU3h92KFIfYF+spkMFym23BhJrmXjF35fNHgVU05aUX1bOvGAJ+/lslUvGk6qI+IDC204knsn8KvuDNO5UoC/UgokSEmF7OaU/1/yAQDI4JuiiBEdTGWSlwcqryimkJD88WAUj7VWSJER4IOwtDxRJ8RP6JKUXteFsbmBMhgYQJ5Kc789y24U3owj7onljOzTaHh5h9p2WACHa+5DQKAp1FEzzN31hOyqD/F1aFxWaFORKlMkfDhuuqfA5w40EVHEOSo1RkkDcNFEn2ANqZjZN09Op4ZH2szZtlDMWhkRWLlJ6DFnuzdcr+snbBG4WOm6YW+TOAjBhwpGoJvKSIFdzIMHi7n57PQmXHawwP9wDW2YAJJGyvpDexKN5IrsdIeSzLbsNLNQh/a2SI+PZijob3G/hcPPqfdvL12kzi0yNCUCT6cITc8zN5r0AwwsMAsHjza3vrp2+wXNzUz9aXnzt8dHbp29dZOVzcXO2HCNQaY8Tlz0CPDUZyhdvnyEuwbHap1O1t3P/rdZz0mpA3Nz01TZEd6QQDux+bY328NMxbAOoNuh2EG6Png4drm+prnLwOtzsgRa8FGGYpnyzbVbkSCwkJTjsPoDTFGreXCuCzD14z/6q2yM6O0QXClJULDSBn1CpOFFd20HewcjYcNmWbs5QBVSUk0FMahOHbSCKcjY6gzlkZ6lIK+frrLugypTbblDkko8dBeCgOEY2g4tyXxwY1PYCCP+Uik8eGaG/m4C6CSZfUeuv9wne4Z/XicUPduff7rxv2p6bFm62CzgfyMd/YP7ty+9/Deem+EseujSSaWOftAkdN4UuyRdhtR5VAGQnLH+fmEZJA92ZEZHKH6ox54RGQY1EoVKrLBDFHSW7ftTFgzFH4KIRAeAOw7/6WlpfFfoalhlYSXH16rhABIMitpokUUK06A2uOwgKte+ZFoSWGVsd0uIAVmpPIp0VWXgg+waGDzJJXImcGg9iXNE3gAWThJbjTLaORArbLgOYgXOAGYJMICxdDDZpJ32RlMnoARAhFPPEwSZEq8QTYlMPBIWH7FAaAqvlzAN2uFiXds1kSQ9/j3PREQrqKkMANJYB9ObiGRqC2cnagt6jkKh4rtAK7qK64GdIqYmZNFQH9QFYmJIYBr1fxU+xE1hUwj2gFcQJHIrGir6BEwfMUiIVw/CI0Wd+jBjaVU4AYMcOY/EhlljHpVuownTJBFnkSDaNQ/OsTkgn4ESVqvUrtIXagMkYkOSlRTi5lWz64fL+FUhRkf6IWEIKg5syEvrGeaGdbIUqEhYvwnVH7OATkCTxpRdmyn/guT6u0tlElj4QzQMfoxFJWpGkAZZbsdxn6ZyogyZXUw43/9GYg2xv5ltLwHw4cz0yOt8X631VFb4aV1sEG3HwQHX/wzqpwjOOiQOq2SjBFlme8VGSChSkWe2fgRxwaaU4AcUMXvbCScUQxfIgmumAvr1cSSDjeOEyjJD2hYqfZXPPtMekMxMkGXXbv24P/2f/1/oLcmxmYsO2kRn6PDVquP5YoQ4pWzSygIJwixQc3Q/kG90X7q3BI7HGzudvfaeLSLAUr5lOLOAauN2KsSD89Ek5VSbvY01m5sIjbsW7m1tYvMpi+KQhS4ooMrqsssGvccP+bkUo6IgXUeeWS+nu8g1pYE/cYDRKG5dP7D8RBbXHSOjydG0KHMmaFL7Kxd9pWia6pvkWErSa4u1C6iFtRZ6Ev14JHc6lNM3xpjw2oO6+zQEEAVSUMxHDBAgklo74281a1BI7UGNUmdGLX1gdpRQbLaekpGhniFI4CT8wA/HGJpmBgyKXViHH+aW69y/lqdZMxjwy1zdOs+yh/3PAs28X/hfq2zxLPL7L8xVkQ7tZjia3I4n9YySCdUOvDhObXRBp51cEq9sJ2JS3Pfr+s5y+wNEoqg+oXuF5rBgqAaEFB7C3LbGs9niBA54QeAqhw1TQopGhRRZZTCKVHlsrCSz3dS5LN4lq/58UaUKsgPIFTeKmBJZki0stB4MZK0zeW7QSV/CiOtTSDRS4ykSc6DoPLBe/Utj4ARweCQtLLQ0iWSiPIJ5kB1vghQJMg6LUAQSgrCC05C9VEEAyfwePOqsPPT4Kqe/DF+9YnX8uhDFejEMDjrcCW0Zf2Ovgo/iqJTGpjfBi6Y7mgmR3vt02GGIhp0BdDBmB7wVi2i8QFTncvNHujYtTGONQ9SmZ3HrFRB1YgC2ZFKVJAUIpNcB4bT6kGazFXx4iGFkP7yaG5CsIniSRY55kpIEkFhY5IiN0xWTOBkqpecKpf6Rl7kKBRzkfrmZE+8KEyS2OABwgzIi4yc7y9QZ0TIRyYXERkRHzvE/EGhE8uYeiF8oKo4n1HklX3/kRpcmPyjKiMSKzahupNhHPjoenA4R2IRqDbxoMejPo5wapM603N3rYzWyqLigpglQJVIH5CGjdKiKo7EkJAgUNXtQhcMTxoP+cjNvj5nf7J7PMiOYOIOj/eZzRXiCspIKDBbZyfwaLvSdMGiKl8LqESDJHghJnQIejuHDF30mCyuOqKNgVoqA0AojpaPRCYMHBQBmve43enNslcPvjOGkcEbYF6htglsYlm+ezCuUUkwabH6wZnjBKCn8gFkU2B2YFj4L4qUnDHJmSmLtBFFtasSJhRTXacV6otyggb4eHMbTrZHpPmdnYLzDEA7JMyoffOYFsyegPQ2L4DAHs+UZJz5uIXenJqaXJxn7TzzYg9ZN8CeP11G2m1hRIcyT47rpELm6Qp1O06NcsaOZoWLDuUCTUZapFAopJZMRXTD/sIXY8mgmGIO0NHvnGInX1t3tPMEEs0UK+Yp0JvGoBImUzfc+edw7PAgPKQlglF80k5AugAJTN22ujjlMKVlxyTqNE4B2lgkDDB0dmwEaqOTk/QynEduF4Spr06EU+ZodnmgREATdZt9KJyPcNZLXUelsAaEBdDHeqPJIMfVOhQ9F0nLM8gpGAIYBOWxRCS4SuBnBcF37iXDIGIUFYRB/BdDEZO+3vhX3jCPijI24skV8Mb3SsTymNdBuCQMGEKTfzQYpcItYUBQUhAqcgCIBIlJAlWPOCctobZDpEjBRVzslefkQUojCyuffBMY7+XmQ4J491t+BiGJQ5jjNPgAEENGy6ZqY4z+op2wAAhHqtilFrVPr498EFsNGOqLtmWUN7uu2Q+E30GCeumMO57NjR9Zahsrt0VCexAAiQMGcADRp6WgdlM29hfM4jND9IOroVIiEqrHA8EqqnQRP9q+3MzMvyrjuICQX2WbcDIFReTQfktqlw1OSRPCmDBJVS3knReoD9mCNWjbjy3lMB0F8lDAqH5NaoMoKz1nut4T433sztFeeh40EyySpFI5s4OS4Q2gyeAPFKibNAPup9AbwmFsZaBhZfCDCCiaVvdocpzKrPqcoqqzgQFKkE4VNHe0WdsaTMkG1QoK1jXfKYLE4i6JlBB7+VZwQ52yBbr8lzw8SByQq0pKJABQWMFIDud3gT1SR3x1mXlIaCJYiLyVfBVsRETbgBy1LRglkYjAYVkJ5iExbH1ISFTlCLehsNh5KlP9kQSWeoGlKCsYxhQH5lyxtor/POEK4+xiSGT5KBJvhPIwgveQ1bqyDCsVOUNWAcVaZaYtM7Eq3TSlxGLbAtvfBCVzoNFVzFBn8fagK4d7tVH2xgTTibEJmgC2hSDh0X4rAhziSisujo+fOjzcrqYApAcNNihGMpETCqIdUrxNzJmZYNCnXgcD2Njcbzqo4HoO5rJRODqjXqQwkWq/kIfsFH8Iws0mn1ZOlodT0NRuBcNHjHjolqEbyvS6rq1OGEaqA5pYvHykdaknrjPm0zJ5h95KaXOkBW0ebZeXeZH7AZMS2HqIKf4sjxs/nvIjS385SvkAitVqR7VxfXqQG66TCWKekXM6G/ifxM8yKNOgKMelYAmlFLDHYz4O95m3enRIH2bKJkXpNX/uRdOFIIYZChDSJwhwgsozsRWakysidfI2eEhyE4gPv0mQkiq/ZpBv/pi3sQzxOnl4/FQFVVlBL2NZj5TIkqpKl3wD31zRRzFATuKQzOJaLiQefKzXATBAqZTbBPwndvLgmYjGLB8ITyJvgUaOIQ8vecpnAfjV/95YdKqQ0dFF+8+xadYEa9T5Z8fVhmB0HL2B0BAbpYClRX3QfJDenMaFF1uDDF1trRIivXA1N7xFjUlHVHBEGYHWMZgXUqvknZfMuQPW80ghKm6IkzGwIKjO0UqUQPQkQP7bUbFUaCMfQFK97otEl/iWDnhGN1jMjG6RtJ8sLm0x2omPRCeEFGGbOknYBisPqjYggrx0xkYhpq5QahHFVJ8CitfyR1mhATU5h9lPcGCHZp1YEh01ErM1VLdyo/tIDnVcWg10lAXg0a0YrsABNkYV4+G7TLSjrqJLaRFpXfQhsGWNeFBG7lKVOuNxDsoCWENOrhREsoASGPoJ0nORbXoAEhzK+AVGkwyW8UJimI6/RGLIVHLhjsiCgaS12TA8JyyqXnANSVQe+AIzERHKpDQQ1/zFxlOxuMsAs4QdskWAEIl3jlxvOr46iRTGPySe9DeIDOJa3NlJA6kCC6vPEcuRsF5RN/QypCgJxOO4w2Y/EIPhH0tKKhsHxifxK9JcEx+rVasDakBrZwqku2/Zob9Te2mWoSWrtHHrs3McGxmBK1Y7i/MoCgoPrU3BoyBIRIk5uILdSY/YREdrm05czv4VTPBHVPhKEpqb9jBdFtmEn53c22SDh6p/iEeFAqBgXXuPF4/5sbhDS1cbWoWKcAEg4ZrEkzQkguYIA29Swf4M1Yli01+zc+A3ejrQj5nT2ein3WaTCQ5C5jADcD8ajRZGox/0mPOPnQ/IgGURQq/FRqaNNht3sDmVNdnm8YBdILrGPxgbZXc5FtnBZbbm0GFLGz8DimyyirXIlUYcGZEzOJWRCtgNss6RcKEkuw65txEtysEBth/OJjZWwjGlxCh/lly59lUOGSbhI5zeDChv5SVhiadslRhyIc/8SrLHsEuEQDRGiR5AySnvg/gEB6K3EsZnHwq4klbpTrQSyFu+w27ZDytAXVaqFyxUlQM5p4jEsTh8QMr9ligQgOfC9qQgtiSJwjVKhKACxlviJthbFU70E4CkAVr1yoRf60CN+QO1MeZtOSaJKBFIC4914GbALryFJ8yoY4aFClHFTs0lAk4jKjYoW9/D31CHG0U1FxBVD6rFE0+NkbLkIz13zVh8lZZSlNQPKEs6EurF5GWoHXfrs4YeMYCBDpFaKGU0pmKVD5QzBDZzP0eJgwRvgeZNXyeSjAZTDYXIIiN8oAOWIjmMbKGITJVKHDU8Nm10JQjROmL5IPTY1mTpV0vggy0l3hUJaQkKq7SHoYDERsnY3SFraEg+GE7UQgDh9dEnK5IWgPrQFQOn5DmlApVBXdZ/ACAAkwQcVcnqY9snAQbD8D80kAqpczbdULLPKjAdPuM4+LH00/mqcDNmeIgSx4znRQLwJ262/1JAvIADxREJZg5BM9Ss+BTq2c2xDSKtNFcOTAYaKF1flF4+lcwoJm4/NYQb2HQ4O764mMhcGZQcDIxK46NOx40WUIm0LuBUq4+MT7jBjltYoco91Y7JVTqoERNyT8eUneYcWILojNFCXyb8MLeILanNQLWELMDK0mClsDIRiroDNppurIP/34EEALHiDO8Nh6qj+9qtNDOa9YozPJElR/1mq4V9QQpnIKBxZb5UoH3XFQPPDo/2RzsMFdgOWdeGnPMGIrS5ZDPmAd34UOjkMEXqqKWkQFkFDYwhmjQNitBPftjisviK4Q0eKQ1xrNCWGHkgJN0K6GY384AJFtjqcoG1hXTrkCpiM4LdYQoBk6mH6LtiwkATEWa1MTOXGOXCAUo9d0Ro+KDdbzbV2jQB+MNGRjrjNbaNOXJ6rec6jAw1u/RCkEQmieJMcEKUFQtEIAijO4go1Zu+IGvIgd9tsgEeE1fpUtBAsoBu2N016G5QDourzIIvH5VEaRAhMjhXqeh85JPCZqQkynMVxx9g8BFKqg0C1TSILYQ1SOlNvOoeKAWc0IErOvyGCdVbMk1I+IyMS/bEMAtjV5jCP9kWCFbvQbgxfJPHJaFoBtGSG2w2If8KpHw1tcnK5UMpO+9GJWdjUy5fgBP6JfoABYPJE1ZZyzXtsWI0vohFGahTo8yWiJMOySEvbAPdM6O8kAyHHUNNagviwxx+qPVIs9QUM9C2VHyk0Y+2w47kg8jxgLFrZbCcmH36UpB0AkyryxszxN6BXHWcod9zogk2hHNDqjLyazPJsgP7DeRF7ORHmuh9dTkGh055tRXHIrK6EgkzEZUec1i9CHxSc4/+lEaRBOJoEKPqUH+As1xGU5EpL6g5QIskDZWlLmyrpC8dc8YNHQQEc2oaDZWjkBKl5MGPqloNoL7EZYLBJjklm2Sgo0WOaC1LoEJlzbZo2GaILumgL5oxWPlOUpSydCjYSGVp4r/gLTMiE0S2vKVTIkxxAxQFE4hCHC+Qz+FKIa8KHHy0MAUEHYDgrgcSNWWkWQNf/lI2dCwQCj6CJtPwKByUuyIDJDsfqE42o+yio8kFUuDkonjqMmlBIUc7zR4b+/SmsVIURSYOQSZrdDbiRIrQJtC732Ry5BA9Ca1ZBLiHHkSnsXkC2pC9OPC0yVO5p8qWFLx7OC6MtDMAPUDBdp8x+SHccEjg0HBv4mhGyXEjLBaadT3HTQ3bafeYjkmjTt0BMN4MPCaoSwvm3rQ0TuQje8iKixEfzj2mAaBN0V6POUCzRYnwHqIbmVjJRzbZQ3uCTYvjxGg4FDtRM9OoGHvfyg9q14MBtAoiGSBOOM9ljyMWS0IT3Iv0gVDAoIUoUXZAUa3QuzRWIKdUIchO2+0dUl+ObQPAmXxBrDZZM4vMKxvj/Jg9OwCML0B+LCWq1Pghs7bcGvKQZkjT4RDPAdOAlXiwCdNR7zTF7PWHtcNoAlwFM/pMEIFsQJjWibaAMtGjFX+sEgQF3KI1FGmwUaf4E2HPAxl6GV4ilneDSl0jwskHRMHwUJMU6fuSLNyyC8aHAl+ogexrqpPyW10nHwXFS+75DSxjKVV+I0CpSS0NC6OZC0WMF23Jq5GQcVMhJ1GnVm/DgxUoBPdgQ52CNuQKeO9mU26BaBm58p30Kf1JEKRICSktEo8Y4K2D95iXHs+rLsCitk5RXvDCIwEH9HRHk0oEigSnyRDrgfgEKIcqGCCWbHnmkdpuIM+Km7MMkjqIqSPQ3c6Ic6iUU+gYfkTbUtmQGIebgDrGbBSAKvBUIju1FlsdAm5Or9AqdcSCio4O0vwRZdWPWaUEUMpC4THHcR4rFv0OYtQ8bibkAkf9E5YNsXekFY0pR9APRKbKMecTRGwqiEC917InvvnwBi2BZv3XoxCyqrHV+/Y25H8g6hmRwuxNwOC6ypH8kr39GXGA8GVYrmgLNAhtgHuKyVRRo9jkaZUhhk2AEla+ggV0obw2EFySyXxNKVm4W7VdYZhiKGrAAlHbMOxRt/UvZjGNSGCWzykD73wVrOqDH+ii/pRlyQNihH6FPgCKfFn1ZAoJkSN1AXwzUy6g25Mgc/xp1nnUitIAYJZdky7DzyJPEG6cLidotmbnpjgChX2EMEoxK4nOJ+x1dsc82rcNoCUgBWoX9zTDt55vh46zsGztwKwl7FbaCd5gkcWBGIqeUsyDJSeEyzjHOPFH8YD0G222rZudak9xmHrWuU5OargTk+2Mbt1eW9/Y1KVxdNjBmw1nsZ7G2QR7Un6wjl3jH8MJxBA81eDwDuIBI0biS0G0pQ4jyUwT4qwX5n5BA8XYLu/xcUdBhEBIsdSqcQQAEgTzNQ14RtdSlKgW1pNYXVURNM8Qlw68E1txgHncGMvPtcpJ4ayCJFXRIr9Yb07pASBcUgunBaqj90lDXG0yu34uQKLnwOwrdoKVhUpdKpyySI8NRMABRPkUsVMKQSrsRogwrBjGhyPKEYhM4NZkj9Whow5zlboHNHick4ePidm9nCGhrNnslfpWOAMkHhC68kqO5Ml/a0LhXhUv797ylR/SBWeTyv2kSCxT5jtxBwGJRLQqG3/y6eR79V6SJBa3Eps4FXDeJQiJ0Q+Uo4IfuLxbGC/zz11agWZUmElKVUmMCpXUHeIWClim4GWWQql+k6WvZp3K6Q8veSeRupYfzUzYq3+BRTS0vdQBzUTqOZUwio2ITFdXV5pF0BUtJAl5lrHByI+kC2JmaTXOa17Il4RBJoKaGq40qBFweSvwUZVUBITQD5QdEPpPqTsHdA+HHcNSran7+S8tCdEjIDKuqiIbW7Vi9Sv+fKd0LFY0LoNtA7IEAr4VBVPlS087lKPBk3PVm1iThCpNnkg56gzwNgOWlW9qt8i3cIEgwWgI+EURO0Bhq2Zfx0ITaCguD72cbrEtGDJPfpDR0hEJDFRr/jGGKpc81qwihvMwQ0wIpmNRGKgHFB4jeKiIVF8AyYjCEQsjM7gIRu1ROTE9ES6wIoiESBv9FZsp7DINcLZYCz34QJDFFalIMnKApaKsEUsuEEXNYDlU5aInCWyktGmkS275zjd9e9IKAGoJ7fcDZtosLM6ce+q028r02hsbXRDV4y2KALI4UoSpUarZNBdQBJAFuCLg6BMiAUoEkhKlx9qMeoaUbIwd7sKnj2xBLflNsW0uoRr+Bicka61DTNvW9DfJmZOB6UN0Of796LCx21xZmqWlRHXOzk+zsw9eGozWu3fu7e3sMyWJEWhNehoXxgCQWFYZx72lWa1qTDlwRB0y7NnEQGb/CkYMIC5MQ6Uz0QhfTmSc3ioOFxtsVHWf4VccNh7tiZjbXcu8IwxsCg+VYGkMDTvV8li6E0SCaHEVilyBxdRzz2DD1KMVQAypaiKl0T1aw4lDL9kP/JFV4RKTtZlgIJttbBlIwPobHqpP1SfJN3yRNVnigxVJt4w9SvEMK4ngEOFBlcAPoLJkgpJaLrEza4Z+eYACOKbqtQMOImyxeG9vv8MOR63G0tLSFKv1kEwAReRIQnLvKaN3v5xcJ9/8wP+IWfWcSApSgRFtqGhbCIEaLbRLSmPZJ6CwSNMA0knakpHRSxZ5F1AUN8kSk1BYA4wAhh62ZeGQEUiZ2hcICC2qRBPSUMzAI7ZUQRZsDIhARpbIqALMa4Ab7nWCmbFEpFyFBUlJwoAun8zaECZtoEmGjuADTQDdbqQfGdSsVTV7gRf2KtuWUVusJAQpmsxVybwWSxW0koFqwgpgJY92tCoSX1OUfnehgDUUqHxQKRItlQ5k+ExVRSfaOSBSSmIsMmVAi44CGGr2pnRGtRR8d90UiDjnkK0pCANXzW1A5fgXvsoao6bYZIr8WVdLHqIDw5FONR6XNUb1VF55sTx2Ozj5IxEkQvgiPAokspar0F7KEkZ5MCRpmbIpaphPfc2FQYUzAo1xgpnw/OdNokkUd1pjFlZL84yykXOhCxEgCkqF7hE+fVxVpFJ1ME03ewtpQdtCQiAegJmXiElUtUUr+aHZKYuiBtlRfbbD2OEIv7sfhVxEUPq4JJP8DiJEtsfjamvbOb4ahzSglvH9kgkpDAtJLC0lxJ4dZtaHJqq29+jYzOz4pSuLZ5YnmQ719NOLrPPqddAJ8ING3bRkCXdw+LN8YjhefUiHp0jbmPbKusL8k/GJXk3vPd1JreORSebFT9DfwnHZZweG7EsRfpkMPGCGzh/MAwqPxe+Rd/i8XdMObkVa8Z6jwLHED5gDikaenppknJJjKVmWsI0Xm40oOGsdRw00k4TOhLbEHHPGClmLTelhVyUPVoa0NrQWnMKIkKKHUcC4/lHu0NUWhH1AnYLH+hJ2jS37rmPiIDngSylwE9nthTzWtrRb+PFxqCC3dD5QrSqTMAJ41FOGPSQ54sF01jqVSNmMi019o/Ta7aYzgVVOGVJ9PJDAnsZBewhPEX80L4xVgB52IrIIYoz1xm0UVxaTPtxDD/VPe6r0QAbGXehWSGVyoPWhsqepoJUBG3WlS9+RT9yd7nR+XGeUZrzR5MibVmuPFXCHHILGwWWcjgeOihiXpMxPVGgRrYhp+cZ9EJPH8kJAEc3onSp1vlL6Sjj9IXYENL9JpOOiEuwS//H9MUJiZGIypig+KrBWkgSqsRLseymHH0qM3Cv0+F7MT94lmqCMWWILwidh5NeOOw9CqO555JbXJEvd50bK/C/AiFBlBeVZLAVD+XOlopgPLieCwl8dIkg2QgoIhBM4MA9Z5cE+ppkVspkzGYlcNH7QVLwof+RKqZQq1BKaEM6XY1qy8+tJoVrUOEABKdisJPQ4uiRDOyksiA6zBugr2kqRY/KwDQhwqwaypaip6fWaWl0RVHMGgBmLvnqVchDCZXEsgP8BKlzpTnNTXgBGeCiqu8U4Kh1+Q/zyTUwsUhQrBytYQqykXPQI9LyCO5TUicJn286gS/8WZWtm0agx021l4Q2JJSVBIJXFmJSIvnomTQLGNhJwjH+yJagRQ3viW30tgFApawHidyko5kAmCp4mqIsiMEJUKJjY4jh+KlX4r+oFV5AJSxUlYEtFwElNqFBdxND9JtGMBJTECEFNI7tSNwLA+YKoG3QFf+xj1t3t4sZYWZ6fqk2wUerUDAOvuxkIoIzmyB8g7TkRjxOqss6L9bGM75KpwonWYb/jiQk7BcdtVDYEmZqsTc9MZqk6MyJZS4elgXhotSAGksQ21a0EpUPkmTaF8cj4n+1XSlVKQ2tGF5Q9LY6O9hrN7T3yGl6enF2cmz3ocH4WU1mcZARWwIj6tnUmAwbSzEW6cEUOSxtpILmrc1H0U7hExjl6Sa9g5IphAThgEuSEcWcMJJsJDBvO+8V/yMxN6oCI2eGgWJzVygYZDPEKFGmnI2RPHrvaISis/vpkjSJAKgaxsfJEFJ7IZrKACExJ4s+6QqYUATQFQy+AFhEnFmsaWqxZoCsgRYBRmx5zvpaFk/eOZdhFpnsBd6yrkABAGXUYQ5HII246hkrPhurg4L1qCNoTyn9YXhs9rLNCm6nAkrSztQ3aeMrmRmfAW4ZRqFAzP9KoXKGWgibLvJUnRcd3ixvl5otXwokKlkSAMqSxbCV6BcNQyCwrE+J70viQTyV+QcpoqABhAbW6lQhJBvInb8mKNyIKXwUrHjzDX3ETlv+5jEtA3oxsigSaU5IPciMiIUDz9/cuQRhaPppVYOaBHiaTfJmoDoEUETMHrG73mKEeP2TFQYxERQkTHWKgy2QrIfxXpkjtH4ymHOSAVx4JIZmOFv/hmWUlplB0WRTWAx1ozBrG9NQcRgqzjtxJClGUKPEjZr7QBWGqGRPSyFZECn1QU1RrCicRE2y+aV2owNICvlpO4/ESO5hQpBWNZ02gpQ08fRXENzqYxsKunkmKSVi1Fij0WHjWlHACoCkSSS2QasPuE0mES11mPiJ5D41hsaJpaXFP2iTKy9hd/KZQPkqu4kzFxFQaqgoA/IpSBzfIDzJEpzwqeq1v/BtKspkXJsYqBHEiFTkBQEoVCNS340PcxmgyiMZADEu8wZKYGNOkib8X8LbxcBI9ARInwGW2pbe5htnEk45VPtAlFBFpqGFbXV0ibSnB0FyznRE5MJ+ksdeenGQKv85xFt5OT0wCBZOzGmMiFQ0BgsSWEGzMPK5Jz/li3S4Jm+AxOzcz5dEsY9jKLoJmi6EO/u7jaeeS2NsCIU44cl6/fZvIqfkPYb9Oz9TYGx8NyNBNi5XDcDA9TCLpH7QrS1QqAo2hssYQw+b2HmCXl+eYy7+8sIQ+xNvDrnKaFqjBjOtSVrOhNkA18woZIKjU5aO1ATlQF2P+OxkH5LWA8LyQgLSqUAmJtU04dQjNAJ9RygistAcZB3cZ8mB3IOblM7+HygVgxICYNm1wHHOK6GPjdIDqdIGY5i9BrAbJhLqEX4jWk4XWuGjIkXbOtgO7hMroxqWOWiO64k6DAdp2FMYnJmmx2CC1TggDU1wQECRpM1LRLb0kxhYhlT0qZIHy8SddaBo8gqbbazaysJsBZtClczTCVndjbMd3NDRx0HdMv9FsD2/sQNmZGSaosxIj6QEBdBsZrghcdJmk9ksRQR5BwzdDfchlgNVciQWYcltFE98Cx4jIAuCMzcsAgow0Q8PKl/zI1uRiPBMZz1iJzqtpCuikFHFDxJcfy1QgCjW5kYKKbr4FWCIU6AHkB0HkLv5VXmSVcMGVsEAUUMlB3iaohOggcRYNmjzigmggQMmCGmy7PYQNwo5/SCaqCpIxvc4Wny/sFQsQHrBM4TBOA17Tt4seRNzgvU4jdI+2iDZrLuSBvd6QDNQUtQoU8GVQcVBwOBSUA7Gn7skgs3AIlw6+HpjgrsbnIj0XJjljBIxhqVgR65JE9pFZNJQ6EdtKQ5qPALSIADayD0HRCLYFuhOI5GWBjGBi0FSTup55BK8OT5TU7K0XxnI2EoDQ+ZresbBIbUPAK60dk8o9tgmmIOtyPKiSPm0liFkngUe+AlEbU9G9wKtkr7eEK2HKVMgUzywllXNWPhKLVAWK3/yzUICUnkRVPdDhYxqsJcTv23Z2jHThPzjCFekTNBENajUtBoQOavmSdKkkJgIj2wlKb3UKbSsp82uJQAobF4ojk6Th7q6Vf5+5lgdH9x9sXb12d+61Zz36dmno9Jm59Yd7mYBICi4KhsCN1WgbxtjKGueRo6fbO009y45R9kcnJCQkc3YMU4CY1cbmbU5d5OwUPPiu72X4AAHDbwgLJibHlpdn5+foNjA2wG4TSOUIa7wQAnUWSKvv3AzDFrewWZ0z0u4e7u6zaIGt1mqTU+Ozh1ONqfbW9g4TKSF1GGc3TqLICjhi59krzJAefpGRhIEszhTe9JBTD9HODtKkHgrOdBhO9odwgMr81FV6zxhTXTb+ZHVXv7WfY3xprRkFIYkypjiO10eYogk/ZAEYIceBB0T0LT1shmzgLcOwDPUSg3rEOZLoZQoMKAYukFpmKCHCeIfGJ+KEAlcm+tfGp2emmDcouTgHwKF3Wj8B50rlA1rEwCqN0FkS/otC+N7ZZf8854wypGFzkhqRoUVG74fq490+U00p4/5+E3pAveHZaY5qkAbKmFfgS2YFy3thlSTLZ8Xdh/JLmN9LEOF+ymerSHArAQVVxNlc5JY/3JFb3ixSUpWPppNNQhZ0PhVUiGAcEoJZ4OdjuVUhpQgV5sb20cL4k/S5lVoAHOEL0cySV4kkEv43coVDns07wSYwpIoejHglmDriCKoaIXXXcSbdqDZA2AsUjhqFqYK4YkZRE9Xu+GdojLMRSDhSYauQUb8BjMjAdJCyF+EobruNCzFUtB/AskTDEUiqsXVlDPdiPIx0mk2JGIuqBI85jxlnF9jueAlPJlKLEIc0maYMiiJAAsinsZIyc/NXcopAdB/PVEu9WAMWQxBy1EtDzTCevKZxCwHFwsBk551/Gr9Coxg0GWh4ioR2ACDoqzo0eKyHKCXQy8oZWg+RRFGBoKiicpw9GW2RdhdLz/6CWSloKgmi0opAORlsI5uCMkaLpmAc2daGBAQLmPil1AQUbueBogiNBMbkH42lxYetsAhXetRO6c+RE402xbOYxCKmpWE5IBtnlsT5FMDgBka8E4PiUBRyIKlBqhzaErRSUlkMmYo1wG4EnCKpFYhqycCle6Pef7DbeLa3tMgh1JO4gyYmHzTb7IFtySgKZUfBgCgGL/nQNrB4qNnpojybncPxOhNLKte2k2g0r0HdPliGCvAAuZUe5jn4Mdo1NT0+Pc295uY5NRoTXNFQEZFHLnSBofqICS2xvg3TG+PZZ+CPPtzZbd57sIkdjA5kxHNyiqzYFZVOQEQGZK0m4S5tuTKlUFr21ApkA0KFVLhg9LzANQkXTmIlgzw0M7a9YtojbnE8gg49MfveHnaEp4gBantvENOhEudSW2mUSJhFJUQycdwUCwTweo0oGKIDwmCBLe/SBrpa6auxlJgegHMxKW3POXc2fjQn0DZzhhySBnt0BTrBsd6MK7uUcwxd3WFXUZhsNhTIK7YQiCkRiEVsBJouDjntNhr7m5u7zMui5at1GVOZhGfgIokRHUbyICocxPnGkUHoA0oI9szApbNivbC9l66IND++5K3czNJM/cZDeS33Ek25SnU4iWH9OolXUpbX5HMCRLjVlQSUkWQmNp5XSeVTqS8E+ABRyjey5SFBhkBleG/iolDEbPAcWHw9gc0DcavSmoVXRYOCRQoWjAZ4VKkjgTLBrBIWHYd/rlaHr3AW3iIWTMoCEstCkKLIoeaSdjxcIYRWQd02TBoqNn0A2ouQ0hmKFgts+WcZ5RgqzMHbnjLK4bcmtaeJUBIDXYvEaj6wk6MMRXtaRdSA5O6+whYHDeIYEX1UNryMbAef8IjSRDBQaUJEK4uNkmdBRTi/Nm2W2YpGJeIVaaNLo6iGMHxMzCBvIGXXfQFQwJIrSoEn4to0BS+TANX5FwyjYADx3ZpCwUMtIVrTqZYML4oZvRSrOhRAT1ORnH0IPkHYtgY1j6tNnxx2qOgi6OYpPc0eDD2sGZNdNaWcqGdSyUCVemkaclU+RJs3vuYyiIsfw7IvExB4JF+YzvbV+AY0gpMbXJNcaVECkxyZT4kys0DWbcvoPB8VjhiaUIBSRrAkLkqNYhFVPAlNZMoB11VYYI4ukTdQZ5jTIXd2WhfOMBt+nN2gWW+1z4FcOmRkKbFxuO9ttVBXDAaxYgDTVM8zqvrAbTQOxt1BCIq5/RDoM1mZta3xYLDCmM1BmbETNYrWoyehncMFudnss8l+N0Z2Fa+tlD4/ihBdpImucMIbCqp2gwsH/fVHu3Ozc/gkcJfNL0wsLEzt7uyDC6WhsFBfBsg4/sNjoWqrxLBBf+t4p/gMKyDccIz+Fb4c8dddCgBvtB00ASNu8If/VeIJCvupUHSMgWM2c0BJ2t/hgpjFB805NtZmqAs22B+4sxAf0ZBzkWUiT0IGbHjdZLgDGSKhNiLJWTHQd+SgDBfAVmcNWc3tpuAKcDkQ1QetAQ2hNngTyUrHRF5X4kUR2I8hO1CSIuEgUcADMtNU7De7eP+gNyseKBOHrwGTgQxECSox10heKCKSrnfMDGAAH850u3Mz01NTE/gDAaysAfmxoPsyeFOURQqyJczIg0vipoeXL6kVkVpJbLrBxRdfkkWJhRDwLi2NFpG3BjyRJmmT8Il8hQIH/Fd9L0l8j7qoWiN5RHaBb0b+T6GSquBoIE+gSjxjV9GCg9hT7nwp0U6QIy4a0YTlg6BRrXAR/yD9WaxVR/aZk6sCAhHkx9nHxteUR4qdBAzhGM2PcxclIA9kMBpALQW7+CF7mzldB2oyehnoMuCozuA21V2XIcDBhr65TnXaFHULrUUae6qgBh+izs5kEV6cpQgtO6xFHVd8siS4MoiG7mJeTSRNlCSLeJMLWUJOqgLKDlvGGgAS1ChyRwsTWQZow3MntvS0JtnKkPOAXBacmMYgyAi5SMO4qd0XRstUdn5n4W4pHlVQi808MXX1UKigIUGKa1GJQC5gQWJhMa4+dpB5/+RAlWBgG8uVHCOv3Fyl4FQo45MMWgJX1vM3KH4Cw4LyiXsuymYu/BgZFoOA6OiIYBjQZt4NFMwMXMNE+Q5Xs7QW2iiYAQFb1YVgZpscoJbNCKG+DZzoSEdKb+egrBmuaIyCAndQoA2UZFTy7uH61h6TaZgNSRWfmZ8c2dxVYGwF5SObcT68//DgoMVoMYY4RihZ0YM88OjEcc5FJ4va9ATxUUDoIVeNsZSLPTk9d7iDiMA99BbLmuoMYDqtjZV6fc40b+6zGLXHRB5GHrVJNJplFBAjWDhp6szEZFiCtQgMbFKyxn770frW7PT4/PT0zER9eWluc73B8IC9CO1mBcX/Nn78+gDz+IH5qFuGH9CvjrgEGqqWikZxdLfgDc2ktlKHkXpJIBG48M4J2PqmjLP7KDunyHfqCiQFTgjmjE/yyvRTNsq2cYMXsfKy6poKAx9gDlWKOsWwGxymgC4UVoFT+ZQGqyyZoOSdIgiGYkIKk/kDwhYSQPgJOb2DkSWWoQVDBQ3WG5+4yhKR1AbphsEXsgEOK96Y4cP0LSSZtLqSbKYdcpfyOiHoojAVFYwPWTBMoaw1Q0dTU1RhN85Q8EWkXCLD0+MAH8sfqZ4I5mVQQQZJI8a8AMOv3vKmTCdlPiTUQhtPwTVu9YVnY+aNNIPwgFJt+H2Qi1ENgJ3Jq3q2BhGRtBWcwU/eDUaG82yyACOlQASeK5UcGcmLP8m3oOPjICTZ4gKCRy6aZIoY8yjqbMYEw9iIxN1D4DjRK6tILQS/kWBEGXmjgSgOEMTEuqU8Rgepr/SzkjNnoWvGom3ZNJB9DOxMxsfKHV7rocUix7As8g3HFTosJOQVaXNUyjYFFSNNFKfoGHSHBqQUZp8vdqnss60aAqE+9EIzRMf5FuEjMSBsYigSD7ZEOizVT4gpb2Rk3SptiJVYWCULGyB5QiS72KnJIoJ2t2lR6R90QSgeGWKi8YnKJTwgkoBqjVRDIiawEy+YF/0HNYkfXUP5qLduQmaraQ0VHRU0dIcGvquPobauFcKhtzSvfoAKLKs1BESDJT0I8s9SehGkQk5vlDi8ChZa05OzS0QszS4uaQuvcYBYDgoOwW3pKQz9h0rD0bNxEwNNBZWxeZBVeSTE1hUVKlShmV3KZQEdnLT9cOGA9oZLAo+3tjEKO4uzHLJbm52bxoCIXUyp3FoKOKjgra09GtxJDlFjfssoUtTHth9r4Y2Y4qJVgDog5U4FCG7Ki/v6YGy8e9xDl+LLrnOoMDtBMUnx4LBz2Gtzrnmzm31Y6VqghSiRPhMpxQYQ/f7kqDNbUHrspQwV6IaipinPxsbW/Czua0bIapygNzczsd/c18RAthydxyaCFZSYB4kJHwCDopybnaTRgDzou367Pz1Lc4Bx7WIu2OZ2CGhAKGN1cXi/dGoBAn1tVFPPwBNrCbscZwy9cjgGuTjJCUDqXSfCMXVnqMP22bKMtQROoEKXY1J4Lr2zGejyscWstQnkoBdcBk3gl7YErqK9yRHIpKU00lPmM4lDsaUVKhOQ4S1puSAdzZcyh8CAHMmJH5xpMkgN2YnlYoIjZxPRsjqbyKELnQRsKUS/DbJgTiGaNh24GnT+jnSt5ixocz3geActRWNXF3jkqhJtCKSMy3XkNgLJDeIQAtUUxMTg3WgERfy9l8h+LUF+TjJilnglCeG5BikEyCXoBA1u5sCzlxUwL0YCmSBWfSOoPBkjnB0kERDpKvillFVSmJ1Y3o1WJfGnApsQX/nG/8TIJ/NPipOIrEdhD0ssfE6HQJ6c2YngIhzGHKYCOKWSVeMwVK1rrVYJUjOREwXS4kAh2KxFx0dsfSKiNWAqOUcAiMcoqaNYxCZvdDXbCSKX6AG5IIYhDT9eShfpwQvRYsZASJNZ/uptUAA56igXnQbsJjaHZDAqPXeQQz+mChfJo1JRixBsrTo7suSRhkJtqVRLEsJQm5qjoFMagPKsDcQfyNg40zRRMAoHasAAZmwTtH5meJKNlpQWPUUiS1AhDVaPbQe9G/K3wtEkWDSVtFhFmQOCzKn35Ged7bPTdKxFOgmMvzgtJXhDOtfTqOuRfgqbzEIgWeFfIso/Clb+gJxGJniFS/lgelss2KI3j53Bso2YECylE+2B33GpgZJTOjBCl2c2RGSPlkVMIwpSLNlDACY4pa0VFKGiS9FIEI1ITJijqcxlWSguhyDutfZ2m2eW5jkLbHFxgu0qiz6WZzLUHSfwFG0OHc4xzDs+xsbLeBI8PoKTvY4ncelIcHUfAsqQOFpC7yZ0YD+3docztti8DOVmc4qW6XIAJ8YxFnL2SwAdhIFPshAjRhTpEQ3hOhoeR75YKm2nFhOVkqPmWmCytcuC1UmOIJ6cXFyYYTYm09SIwBgxxCFfRNw2ThmjkNrgU5OcLIbFVWuyD1rHvUKwjzi3xtmR1hoESNkiLQdBjxyoi/XFQHxrip1CvTHY5/qKqJMYTDQVtNP2AFzO5ZgeJVTmSc9XujN0FMYZ6QUE+03R63BowCKgT2ny5QHMYNkhW1tDw4kJ+Eee6H9yRG50WvJsR6FUMcUGNMmPQOKg09XabCnESfaO7CjIZMee1AqXjScdTJU1dcJ5q2o2RhGc0+vx4+TF9hE1Tiyg1zLWSj9A2WKCChWFtQTwhrEq0soXKy0Sm9USVmYwiBwpUZF5RY5w/lsD8xCMypPfUlNMmqjeqxDCSvWgBNRMYRjdTKtHfqpnQQe8n6LCjCjE3IyfvE5Snrz5kCTlU4BU2QIz37gJvECoAvlUIJe7Ucr/krlVygDKMgACQQpGCaqSJZLP+WZXETHFP033THoz5U8TB42DmDAUpHNfv4NmM9Ct+/yp3HgkJ+sNDUYoCAKKDAKAhQUvgJXGIM4TVRVVQcWI9CCBgAy+wRLYKmRFhOTUAcaHmQbAEdis3Hd6KHoCi5NYUIqfijR2ihG+I7ZRcTT5EJcoUuvUIISSB7KMjlb4gE1I2i1VEQimLBICgBouKU0i2MhFGcgGpSzrFdixi7pvPfAzX0iq6Wp1o4bo0VZ+Aoni2IshKeW0SCjB0qfWFNKOT0GhBxQhC+io6EATlFYftebMDxboocac2ZLF0XYApJYqws4MGJc/AVqFKZQ0KsFpsHgmhXfwkDt+9WbuhHknZ6tnBk3BmuKBHfbhSLPtxCtGXPEjo86hJPaBAIBIJAlmjRuQwgALAipykj95CrJ260qpbSlFgn9EisYltoB4R31sbe8eXjwNEVgCyuwU9v8J0pBQmx3FTIPZbR/1xscXF6Y5jLfZ7eCOlwUuh0NyHRxFZGHF6MQY81R4QJtzuC9DtagmJICt3aB956DTZiopzgjsYEqHMnMlPHxBMUKU0hLAM/eoOYwHCJyRTr9bdgo3jC+bDagdQZseZTZqx2VkzHcA5hFbAinKtu8WDtzVg6PsBD3B6mT6fIABA/ICjckesz0hAHJEAHHDZhXQMDMipSQYxf6hU6KEI1rQLgSk7DGrtA9sJNS3WBDKFfNqGZpGHCcma/jNUe7C0iJDhGwg+VSqR4jMRrx6oujUqGH5h3jAGb1YSSMmlgkUgxDbVxEHNKQV7jH8Ry0KQ6si+swcYlIu2TGEgLeudIPkevmzbzHGymEm09LA6UxACtJ7QZ5ScusP/bkjlgQimWgYWwAIZNenXG4HTv3QlUt+ypyk5qZ4KYTV3RCvRPKebzyIpzUUZE1c4iU9L9Lk8SUlvEz9xKNR8mr4kxFOwBlYJcj3wS3AZTQPPvsrPoiK4sdDhX2SG8mv8jVxYY14GMl7Lj8Pns0zEJO54IzOXxXBzwE1RsPNkeS0+bAW7hGDaqJU6Vh0UEh7inqj/udfGAUaqdgwDTVOLVHtSDEbZnSgy3WJIBhnf2ISoK+QFABqHOr3R16xCDFJFLXgFvmyhEAwJ0yK3dYQpgMOSbjO5BFsL/3V2vcZIEoByIMLqaP7X2wPaY8vmyMMhMQd8xtFppVJQXJReMeiSZhpR6AKPZRWS+p/f5KWD6paiqZ6Zd3OEKOLEtqaQHIdxiRA3zhXChCGAMw+jJ0GHmAKmpBaoR3l1CDrLq/UJMoZxsgZaapGhtROvBEJprfGTzphMz3a4vgnzCe0MTQEhCktQ6EXxp1WMvSlGJEIuZUWiNL5a4nCfn6kGVkIwSxFX0cCdxAHNK0nm8V3evhS1EgoH2cHgCH/JQmXZQOK7VZhv9IVceBX9hsFytEhtFuZMltEk/LZ2NLFyAgbdyehb23uYUOiJNEenG5iCwKCRgZAEAYEUjY6PjkzNce2kbVRegCbG/v0HlB/HiMs/zyrBDcLZzPQoRIWp/se1OEUfTzUF1u5HbR63XaXEkNkJBwWewhzDR5lH2ntfKQWQ/uY/gEDyNjdMAx1r+VsEwDeliUjoe6CmZ6B82pgQ7eOBwpntlTW0KDyUGDaRlf21hl6tZ2iMnBhoaM5Ox1WVclQ6kX6zdQknDn8Jw2uHgqf2UiGOloGvZAcFCwMgyAUmcwI4p8WCZUWtO3X8Jn+Bmvi8O1y8Zkk/OEgss0nQxvFCAANSwQdaOFREUxBxwyXs1RDrEHL4gHS5qUI4NJxXJfmlJ18GHWBxvBKOSdGOgnWJhhtew/2oE8ldkDOBks6grZ1kVguNHA5GZBV7kBnJipFc+s6iqVwHnfsB+kfHuMUHqa+4g0CargBNDWVVa78T6UyCy+lqMifjxaTMiqS/IWjQSbx9LwOrrB68MKvsSR1HosgCEpg5Gtw4gySUaqShmxKhOpeUDGaUdQFuUrW6tMngEmafBVGIlpOk6QUfkqwkPzMf+KLUz5V7wVgiSg4MRpTTqErSieynykaqGZ6kaWjSKVO6YiLDAQ0cktS2II6V6dzqonCrlRCd2QCZNBhWCbK5cD8YZwBuZfgoAPn/Y5ikJmGKAEYeGzDrNYCCBAZukPbpiEB7hG9cJJRJ1NYJQYl405a/T5WFxJjPWRNo4tT8KVaVUEZEuDLUHNSbzG99DuQI3iAvPShNEC0y6CbRQ9NDBbuiGkxmqQkeBIFFU9jZvulZrd6A0JYiCSuUg9X1yZRv9O/pkAUreID1eK4ruTzjRKTK/iY2lbfeAICJggBlOE4DpVlqseCSymZzH7IAShHTWbsSypA6483pulgjB0GcENn2WoQxiUh07CBfnIpuYEuasIweFFqMs6fY5CncoIDlLfNZll+/2i/A0dGZznjRj3uNHN4Rp7KD5QEYbGAn4AEnsHkC1YaylCYGfc2n0bzA3FU6sqIZeUiQCooWgDa3Nrb2W2Mj87oGCYrQEX8SGNq9Q0JXbxUnjFZoShmCgOYWN/Yk8xrmcYfPzU3NYPTw/1zKBT4sBqW7iz2qep+otafqTtu30Gl231V6EY4VEvVBBWBpblJniDXH2KlFeYF7+igXCBBr0a1rO8eMqd7urvbYPGUE2tYmdAlgvInXxH1rPvFWeR4MpMduwo1mhyrHM882StayA2AkSQutB8lMxc705IcR4g4coUBdil4MiJ5UJfgAyRnFEMc4RzdtbHR6Wn2ZsDFpLcd+SQOE3WgPFCsRJRBFqiswYoIVWWUVSIDR5DnA4aqIZMa2Gm19piOse+ZtYl6p/HTsHMnim62M0cuaCwzJsEkWa0iiyTrlYEi8xF9dAN0jpcHGtolwlsFfMgJs6x7NjnMDigTvuwzKzx0VffbUHFiwq3+okKsNRG93HiEjFYqmx1ZKw8ifD4bp/A2wfmU1tlEApLtXjKuxM1jAqobX/1iuDdj5osibXoyLQASESh5HVC7xC4piMBHIijqpjImIBAYoCSmUQTpT26llCVroHiVVOW5IGFIMEugGFQw/OBldogQC6/pSdGQegIvUZjtzHwg3I+Qm6skTNpANEylZb1AJbhgeFxXMfqVMkSvJpXoCxalDBb+Kq2YWUgzbTZVLGgiG1oBWHpopLQv2p4OlMYgctI3Hhf8qtqwzlBCQBEeLJbSYJJrxhvcdYS5jCxl4cLaxnrFsiEv/4s4drMnbKDahGBdVh9pWpA1yk7b0DsNQUxXGgq5TyzQQ8wJRPdoZlCodHPwe9tioIdRctZY2cyNBRJGYs9DetkUHY1tU0lyBhNxS9g8SGhUCARJhVBDGhPlmg4EmslZ2AyBeiDVwoQLn/a6I4w0s5sNzYq85A9lr7jGVqCM/FI/mUUDeaNGQhslyTJSWmWMbGQ9f5SXK1n7DYhgRVJKQhPrISAsnUVjQljnwqMzIC5MdGaXmamV5CmP5VeiKsU2sGJnpuhS21wURJFnNUDoZJQwBlKREDIABApsbzcerm+xKmhrfQcLHW0DQ8N0qSqOWB7QltHTLmcuctJvfCndg0ary9HzHFGCX2h0mlW8bEMPzjpDZJItNA5y9By9qA4wWCXWO6xLjKaNCvIM8s6F0HTFONWakEspCzmiCUE4MpVAC2cdoTGi5UfvTkxNYMw0Gi1A8xFjALmFqQp/eK3j31MV6doeNZo4n9gCj02Q2FuoblfYdlUppxK5YZsnYigc1DNICDnZDJHRUIfPCBNsYaBISpgQncToxxwFg0XnBu9Ddaobk20y71UXpIzmirqRczzYRDpY4gWFgKS8krtshAxWKMcLWEvBEda0n6S3wijzRJFktFTOFUIZEJuFegwsDjHdlkbF8QOomRaAukjzhGWDRucEgoDpDzGMjlCxF5O+HXfKo2KICJXDvGNByqBC/aF2G4MV478sTZhgFMGhCL4Czht/1l1fgxq/Xn6REYkUxoYQuSWtcQp1Esarv4Lx/+Cex3JLcEVPZFeBN400EZI48K8S8wTxpcDiJ9HKu4mTW/WdxEmebPxEeaygiRYAuZXCkDAsAt6At0kHJmaSb3mu+FkgA0A0jYJGZkCXtv2Y+YYu+aeBt8OKhlVfUG9KyUgSxASgBKg7mAgz6pa46i4rGp6f0oskW4F7s9tYGgHeaAEAoo6hkpHEYlm9qcY8Yi5b1aGHJoY9YGsE3NbxS0PBxL2obtUwwO24kjVoEp0GiIEM45M84UCPAWWXX8HCnFae0BeYtPZ5KZuibYHAqWCbRwroPgDUK6I5i1+9FzZgQSGG6hzVoVqNlo/IfFSPAUr1QSntNWEzuhENCGlIWSFZdoQjhYuyQhM+QUPbJBpFKztZ5dwmvO8Y8p0hNjAbW3T5fmo1S2ZoLoEjLVBamqSOk7FlNOROMVghxcqg8ePMj4AQBWsKAXDjQB4IRVoKT2I1H08+awPWa8cT+P07sqvX0U1HA4CGYwKIFLC1UkElDfewT4HnU/hSiSjQgE2poSmAVSbyIlJN4+mjZKfPYWJjSyL+BM7WOmv31hnFfLTOnJoOZqyFK8BSLYIsJjknVXVYj4qB0GLnsH33gYaW9Bom3UmGvREIqrOBOIIGxRBL/B8oFiYBcRAWrnvN/qG2upS8I+nEzLxlTgHGHKZ5kNkRdvhp9ankP4/BXW2IQQ1zQX6G+aBzs7v7rM3toc1DWilTSoZCY+EMgkV8Zp029puwZ25uemF+GgNdGRvCNufHszFEGWajdLG/kV2wpBH1pDIcTSyXYuUjXkYzlXQSFzLDg/DBwpCpDAUN7gocdDGuIsob8TjLEbQpobJPHJSoMqwYpZixn5QamhorKn/QzC41hJBR8hU0gC9ZXUhM5XXQnlpm1R32DDUf/COWJCYBqgaPV7PRZJwcfCkFbjoyADmEH2c00jaCveP0MxoyeGBZlKKUlWcyYGOi9Bbo3rG7Ha1Myi6ziIeQoz2s4rxidfFMMN8UH6UMGIP67ptJTu5+zGv5kFcTmdSg3/vm2yB6Mg9o8xEg/K2Sm84XoZRLgHkuQAtUQ8Sv/Pg5UapfAFiFBMmdaCYt0a1rJ8CJoUQTtbqXJFFfSUb6kKTEowHA34oCZzBM0xudwTHk7MiHQGBvhHPYW2QJRITAKzkrA+6iywwHM7M+6QpCcrXpqbcY4ES3VScGKiA2YBKDGct6R/odkwI3GKESbeg0zp3TJhrkrmpFONQ2IZktFNJLUyMeSi5uWnw/IQlkQO6QNRC0jQCgIu+KBdxETiwGHJHwaNBUEYqHCuUCfFoYuhzILB9t7wAASKdZZIdF0Y9lrHsIXAr9KKDUCGFoYWxnZIzVDI7QG4IOOCeZb24jcDxMD3x+poZRhnJQGVNaykFsKwzKFT8VC/xTKsAo4FQ5Kj9KmygiI1RuPrGFGRPksjaVGE7TEhqZAwxuobd5sRTique0IGrxrBpAkqBQFXUjP1NdqMC0AfUJqjHa39MQsfYgKOywsQNgxMBC5zJh0KEooCRaAVx9DkKmKg8Fl/h+gEXBSSD3QYmU/NEsUNKj443NPWSp03H8ySgmpDggbHyeyIVxq52dXTQkrN3bozOAbqE4ngfMQbWcx4kMH3YRa8Gj8TjPhEVfIiZAKaMzX+OFAoCgnVc5FcN/FFYxz5TFkCgbHGrxi4GJkij5LFBQwUXZ29zZXVicGz+m5zcyM8MeyexERAPgTCNMd2KSJJJASpwkTk9lIhPLxicn4bnWA6sYGDtmfQEfyYQBW5wrkEMsIQQ9D/WntKUtsEl2mquuRQKpAapiYiJDpvCyVHxTZNHsSl/hCy6c1GHadDx22hDaRBZGLsJtJm1L7YgGHEHjGwhOuv61WMBCh47sUmhZPQQksgFLvqHpNR+xjewkZAmRCTRYNP3IyCbjuMvoC2su2PEHj2K4cECXnVUebgpCFaVEEMyTiqlCFBr4YqiYgLXddvA56Ay19w9azQ7DG/jcYLG0tignHNbuiBq0DSBv+UxFMFaIBImRJkN9N52XxCMKryFnvhFURfO3XHzwmwAMg9WRJCU0ePilwDJpBYZAURGe8p5nQfrMveQe+E8+J4BbpejLa4mgdAmlwK8e+EkGQqyCdBWIF5FLEXiLsUwDgIfDZhnPIPpbY/sIaWbWQ922W08+zFQRm17VIR5Q1gckg0DXTyqWUFcbHieSX4wQ81aLM2SRG8iQtQKvggdzKBSpJICHwSGC+FF/yFzjL61Iik72KqGAQJoQdwsJSLB0llBleiuaVgYQ1+wtihHESE7hAZC9L1ICKyikolERLQWVbCkCZCMy01yJTT54JXE4sMhXP6X0xojVDKZiUbRiYEJLG0CpZK6BYFrqn77sMUY+PDx5qhyTJ1loLhQBBNyJoXGsMJICAEgqnZRzOvmArThtsXim4rvkzZM4i5e0P8ZR43b6Czco9oERII5SqRTLNeBJL++KhaSzdsgnAtS8fKaaYrQx/trOOAv6gEqTnhqUt1QASlMOjUmjsKSC+2ojKmAv8uRJ2pKdEkfGup8IsPPFpAAKbrsCPFKm5VfVQU0OKD3Y3WMuIWQ4Yr8dOJNOVAAKTWsApBC53Z7rewFKY6DmYOhlfHSS3R2mxyfZWY2o9G3NbWiGo06Rc4id/h+RWfnL9m24tVHHCAAjyc6R9GgMs0CEY7U68VAZQKpleIqnBtSRQtlQZrjyb9++z1jrudOnmNyJ8x9dTWdElwqtbmiCN4MRafQmudNbYPcelDh6iC4p48Zd3Fa4TvpOeDvoHIAilgqTMCen8cwgHPbwuBAi1CUKnaxjF2fAIAwFFxQl+CCB0Dm958gOJAdNKrBjV5jmDGGrOcGQ3hA0BJ8UlxvhdjRAASC0gvRX+qybUAI8aFOZBDb+Yh36MB2QWt/8KRXC0aUITE0BSEUM+E79ZYMNrES9VoQAhC3/2McPdQ9agNL3BJE4dL7NTF7I4VAvuVgNrFkYZZyMAHhaPmYi22JC/1rfRd8aAft7zZj/DsVruRFKHOTNnjFdZyoAjSUNO54pMEAGRdBnIIW1vhJbfvKYH6EQJyFP3BRq0/GFb74ZYCKj5xt109bWGkcekDUJhJR4AkuNgxYmTzD0izSV10h4PglmgI/fuJJ7MhYeV75HcZKuvJjWzAZfeSy5WSRhVkjzA7agDpWcoav0OHBEbWDjQI+TgzHufU8yotk7ICnx5bevgMI+Jjphdl0drcpsv5BPU0FM7L9LCeqhz1iyYKEICdfCKrSInl7UUcCiGbQmoCgWLm0RDg1Vj3kHnkzTEKBTaTePmuIwHCt84mQUJQ0xlYRD2sy4x4Q8HDnmNBhVNcy3bxAWqUdV58olQBA10AIpnZEEARgLyNyw25BksQVrV5WFvNRv3nXkqKkZSCcx6axGprExkwT819aivRobm2bvMH5Ca6BpiqhFqR3WJ4nF1EDqrPSGlJYYHMDF2mkVjWtXnQwF3cSYma+s3cCGp4Qe9FsaOZoNavkBWUMFxQ281PVyjyzJlD9IREVRqcFN+0ViYvmxPCfHR/ZFg0pPcNo6ZNT2yNKIDthBCFJKSojtnd9wVbKSkwwznD8u3/ifZhLHBrBsyCgGQkMs9IO+RyGIDDp7n8Oh+l1cbWPwkHgxZwEBPeia0nhQWA75ZQsHkBFPVfbY9FRtYWFyenoCMgMHnwnCg3mIk5nlRCSn2Wh3e41We2evxUHkLBVmqgxNvluQ0jhjvGvKoCsdgYIUThu1QMgmAeG8fCZAkkIxKNFo9G7f3Wbz/JWFKQoxOzWxu92ggpDS2sU+u+McIZBVVCDAAZMxYJFe1XGXg09s/6C2PS3WTiH/cHWsq1c0Tj7Kyzr9TC+AX47xAhrp1U2iT1DegDQCApFgM58phI4pdCVREC29mQi+M5rYZhmscfiXYtjj5N2prh4a1qY9hLIyzvlX/GMtMZN7iMyp9+z9g9wokOQje8EVVuIndOTNZklZw9hSYJV+RkbYpYOJ2bQbUF/EaFScWka2KGU3IOBAYRZ5dTkQlBaQvnzSQVn3oGSN89BQfaw/Rcs62mp6jpt1C4uJ6sF4GXOZ2KCbDUMOjydYTTCG0QZ54LxbFzNaVmfal1JepxVhHASfRnyyZmH115pJpUA0C3fTXEZivZUHIOSB33Ip0oq7b96qDzICQKkIVagx+W584MNk3hJmfXTlEiKm4oXeAaJKUM/yzYTEJdEAfkK4VdmZdXnknngVmuBALakiBpBEM6BgA3T5S4BI8d/Tsph2BSsQnU63Re5YNP1RB3xUpGoRmYcKR0XCfT0MiKDbbAFFJQLVUbiwn5ZEEYCNajQoEhs/ViuiTfmwdBAwUOSOzIKSTQ6Bntakdi+lxzZAcFWClMUEfABVCaOeYJaPdQb+WRbyREPwwIWo8cIlf3lA8FTGFh6LjNk0xsU0ISsLBxB+QTmjFMbJGAaFJAXpGGvSbkQRoPIYwSPMnShACsQIof5gIzpETF+b+CBHTsQCLgqAu9TQ8kTx6w6yOy4zLL15G1uzRojD+t00cBBxFKHTVAlGzWT7M4xczTjgEgE3ktBsTGjijiY0q/GuovIECiWpKmBFZuZCOWyqNB5LjrJe0lKLgEeWfKlQxfU61ve8Ec1PPCTWyAEFKYzQY95QAMsqfGFxSePyr9CbrNARMkrNz2XmpLGBR3xwv6hBKHcFwU4IUFDvFIKiArk02US3DdBUQTFg/41P4XmojXD6bn97r+3EWLjj3Jv5hamZuf8vV//Va+myJeh5y3uXmduec8q0JSEKakECSLVuJIAQBAHSvX4cdaW/oAtdEAQFArogSFBQo1vFrupi1TF773Qrl/dGzzu+3MUGZ65ca85vhhkxfIwYESEi0GJsfoPMn+2Nw9Jg3G6dM/tw9+gar7OLQtDSWkqUNP8TypApKQEot9d5A9ITYiQ7VKk2gfnhfbw6jDQsB27YhUKwkZWLi6s//OmXx4e3x4d7ThjV8MWFiGqmJdq2SNxMsK0dtwZolilABGxD59h2CusQBiC0YjgDOn3MB+ow6Igc2sfGc8+KluDvnSfHOzf9hVPKl8q3XoDXUP/WOLnHZU7bAVYDTElz8+ItOfTWoYYvOc7Y0o0gr3e3j+5XSJkymkSHxUwYeBLdhkMcX/Zen53UTygx5/x+JFusuasWoJGpNAdF8mw/Y9Rlq85btepsvzYUJWGpFxeodWkyNT0RV9+WSeJE09sbgD1biWZnsBEkANwqAk+LtqEMBKRzB8lNyyGcpWZZM2N/BfmVtXdIwJT6Z652tt0ktr3H5DzfXpy7KWfHuUf2lezs7OKHdRE+uFmUQ1KiUraNoMSiXjH0vOmreQ2Le4dU89bjoVpf/kOR5Vl48K6aiwAu38/7X5tJVHpc59Pi8jHPk5jUu2+nHm6ssZr8h46SVy/FepEgfdVQOmjK+lo9pPQgg4czamcGM7VGlkPVqunx5v7O9sHxPlrzxm9vb8GA8J0AaR6VSaqTuBVoeRi1pbFULBy+OEMitFEVFNPCr/CImWmvZL2+nCZGsIHari4RRS4LnkYETD5NAbxBjIs/HflFxlj7Kcl24K+Ik78InmUwtWi+qP+chjhP5k0XTnMxcLxsCsIXWQE+DlVvq4odBwVpzL76GsGoZZwQZhU0OPDYvmkcTTr6TPT6luCxUYashmdLUAhLzRFD45QBlrtqplyUtMvTMbQfxdPQ073xAox2bhLwYuekrdJC2OuCANCoHPTjBMQznOSrjrmG2uT+kdJm/vC7a8DkeP2lNLzx6BdHvdASYCH46yvmIFs5d7pm0CHMtbf5fGDyVererlPH68uydA2Zgvykno+ubp4VMBltX07sJhJoDZVBB3uNybP4bkQrAEMSdCpQkdHvSJ9xq44x+q5gY5++noVnpdNtU8xA+CLxFmallhgdV/74jZsHty8Pmql+Ob2+f+TgbbsT4OiQty2IZMdvG8FogcNd+5/2AHdr4fHGXS8PLmT3hvZvwX2y+N08vdeByPzEUEIF0luH7da1Nv/6aKEBasabiSWBiCBZ7d76zw3neEr+Ud5Z9m9PDl2KeHZx++X0/Oz8AqcLbfBuTQFurqXR8FXFVk1eutUs6rPisOsFp6W8QXATLL6qH0LFBjkcgZKcg32SJ9zj3+3m0/aWGwLo4NR6G74cXbG148Ac/0bA4A7BMiobdDE2Bqilj46KazVcXRzpJDyBUmvvV5cWp626d0as85NQy0ySSjVK/rSp2cP9V7PK+WgftkPc096p3XgAdqAmimUxeSfPvHeM9MLrZ7HE/Z++fLn69OXs8vK6NXgsLlwZHeCcHXTXTeyqd4Ro8ZuO4M7NlkC9Ie3NjVMiWlzMsTePmQxTosQCCbvZhWASgqjE4tEOvfv1nbt1E8mbS9Mhjd+RQxch23xsHe7tmyObSEqNDYz4bngzTvV+/i+8Oo89mR4bZF9/ff3Dd575vi+nKWXGGMa8v34TchaWWdrtU2oZuQnYyECtDiBNv2LO5RXzTeX5mLBNuwFSi9PQaJK+X4YSlKRpwggKeEfYpt9pY6lXiSoUmjixP12GIoE62JNsKP8b35BbqjopjkNzl/WoYSQZ5ecOz05e1AaDn5CkzUemQRX8KXCs0ZRMtWb3HH/PWjJoHNRLCWM57aQIykwETAvwkyR+Ho9pfaocwfVtbisUrzLz7UNMELG9HbPQGwJAqFmY+miiPflF2jaW9mdxtYqujhAHj3bVDtj5C5rmBdox8rrP3NR1mOMnAjOrEgqgZLiGgrZgZ4CeKhRmsjB54hh4YQcFsTRXK+Sk/xOPMBZaKjztjTtsHVK4am1Vosedr/Cram14qWReLUKWTNJsVl+gUtc5KWWI76zf2SAge6epRSZGJDkdG2wB7I0P3gwz9bzSIQ/CO6EoZV8VQrdqxfRwb/viRoC8pgwBlNBo1LBUnenDUyPONx3G0IHWx7rUfJWC0W/DZDC+TvAHurCKfsGT0cgWiaINLoIETeiC+G4Bl9ICBouRImp+sL25h1mV4N2Dkj7a33UUzjrFcXFzCVF7DmiwPig7pQwFwaK7L+eiPvdcXcaLeaLFynzvJt7Y2Bs8w0dp3R08G+t7O5v0iXRNZiMQZ04RcgOvVYHCVYNF+EFtji1v2elm795sOydU52hw9uUs7SYkcnkDSe9ODmxwfnreXV27tuOB7gzxLcgaXEjjSFsASSSYxPIw1pgqgaKHlgicx61gdCje8nIjrRSXcvZTop5vbNzdX92bExVKzZ7GNx7bavsgEn/Tihgbw9FetR9NzESnZpZtSqMo7eSKQTbWKU+yEa2JWRR9dVbq7eo9bd4EhUA9rW06muflDhf7AYoySVnKYYjWbK4lhBsHent264i9V5vvPn86p/49RAKbiNktqKMTZsvcqiMhEGQ6NKhZ5V5fsS0ZVxl1wqPxHCE2pwEzvGTOEFIEUchPUou6yHF/2+1TWNJw2ZImz5beLOyv3Bv41dWtdOHjo+Pjo4NdeUjx3shE/BgbRo5577cuejQC49tf/1ZyOH/+xPx9rFxaJc08n4euXz9Oqz2ubdw7b9Xs79T0dtE4i771hVbqfd5M8a/tarbCQ+Tpeb4cVPhi+Xae90sjiidv835gm6oQmorh0Laiw+Xk8x/u3j1vQm14jx8UgPu83JRBbxAiTbS718KUQLwZ1pjer+1/daFDWXqtf7FFyo/28EL+7EWdcpr4bDRrbs8jnBiGpQLDyvy4M8g+/IKbcQwaStzboEc2Jkki34c3VgIO98SW+vzwAnslzJkpP7lUogky7ZG6xGrOjdPTywZMUEixrakArxJbpfkNqwUJH3WkjFayADlZIMdIwjwwONgI0rCpGqZneNSpj5IyHbciwtECxfIMswrgT7UGaoi/UgwAX6nlsRbjYoLLA1BOIJp3Su+nHSzscvtbotieaJIW4un86zJ5fDHkoZQMK4EgQIxQ+Byw6lbRKDiQ69ig+7301Yh9NkBdWObc3TVNXp9ZNVR4VW84gkCHU1Cih7bohNGZWggjfoAe/CCBt+oOCPM44L4W/PpFFIO91mhC9rz6zPRHXe/S+K3Dtw8NEM+rV1f3+y7/3XH+2r6Iv521vG+EtHeB/35jldVcdmX9+aisc3VpZpvLuJ+XV3dwjGl5HRLIiwlSas4jHhgwmDjKMEChpp29PUyqzadTjBYgC3TMd2yAtLE06Cgc30hbenJBzW9+fBaOtgl5b/sAzP6ddeUNJmOlOn3/6PBga7cCfJizM0OPCyGllmakHSExWcub1w+gLK5tj5shzdl2TBXrr1mhKpbX6FBwoiGd5k2bq7zMDsezBGIsahoy7B42KW1ba83wW/xrS3CRMSOMyozlrUlAGbpZpfEywqAsC6sUsnKeyqlD/5SCqeUIEaWLph5AJTnzBowWVDoX426lQ1pXOynIjSCCbw7d094iudS1VjBPucbYin8zdsvwsyyxl+m37RSmB8+X10+Md5sIugknfYMjt0yZQ5uCZjjtlMv5+vpKluNUMytiWWzNNSa5FnTJxcWNDKKrS1OlN2/fHh3u7LIlycJIid9f/0b00ex98w9iG4/3mofhNMkY+vV0vvWVv5ikCXck8DGxmIf+eLBMeYO+WgqlQ3ofWyU9SxO+924+eNP38/WoqYxeFX+thid9qJMRnApOlak1fU/tnvdJMdqDsfV9qwCrL5ut+ogUYptxF2COJDUnG4ACEdvzxZqpkR3eQN+JlKd4AqTXeH0ZisAAUeoztUmeVS5XvXdt4CCH7Y1JlcCgW1FdSHfHtMcBSEn/UL59i31xGZMvhUAYGefjN8P3NN5tDcoPAaYnAdBiUE9t+r9/dNNEjzrRLE1dFHrUEAyP82r0xWpMfBoLIlHXrWmkYY3Bc3gyDyltKZGYcTXIkSmNFM8xTvISsUGLR4mUpYoYIMxhg1w61SEssIhXHLz8RB64M5kS3irCk+i1OGzwQAJu/EXvUoCmIt0GMK6O58MBYJIqQS09q8+xju/RDSzeQCMK+gz/kbzH/gFrvm20+hhRrkpho2yNk3OOT7Zvz5mysddTHPIGyKieybH8k9mgyr5y63QwNK/ntGaaJIMUe4d3fSX0DTgYvbAY3LUMDPSKgGJiebjGu8r4QzOv66WVpBVa/tPZ5dFRm7nevT05Odm3zKve09bm6dkl7XDzKiCDze4vL1p9ccBJmZd5xjwAOOJDgExQoemU5ik4XarI0TaWSVZo+rXjRKK7B/Hlhzs6KkgXnOkr8AN+4B9eEGiQ3X9+efXmYMd9NpuHa3c/HFxc7FipxkiYFH8yEqjvXiv3tJ8ebgtKlXfjETqmQqJJKWedkAp7UCKIWnIemipn7VYj+kRhQRRuO9rQnGL1JAfyKiN+3wkYeI8r4sTNZBSKxZp4O6q/pJL5DSCiIge0EFwZCMrohv/UUGSJwTww+BlvslYU+LHi8sVB7EGoMREEJAanrvmRa5s7JpYKOYOCNNxfWWOwsY8Kp/2NchI49FNt1ral/WI/ug7Rodk0JlIitmSrpxfVWXa+gCKJ/JOTlByl11zYpg1MVay3cfLz4kZwGUn2PPOQlyao5t1Y5eYQFl/0ngoTLfym1YaFcVEBSKpoZAYdtAvlo/jQyJthgfn8D0DTAuosrwVdSeE8qoJGfDetLgz0tYf5br75WnxaD+uxg6KhaN71ZGklgArs1Nn8VnpKzpPg9nn6+wrB8nxoWJ1fX7raMCN702i12EXsHBXoxViGH3/hpOl9mkykEQZTFLYOsAJNZbtRx1mAtNX0tTBZINTyFIZHUE34g2sqZQiDYc/yIwuZTEUm2ofcWvadMio+FjfWHPrw0FekOeJcTI++4+ArWyV+zbNjC0i0lqitajjw/eH1eu3Blkt6iqzhHW/0rFnlggzYRM88Ig3eoJQYqEN1qBjIlOECmSjk/QWdV2f+JGQ42P+QniTHnelgFjReVwiko/qNtVf6Rb86HdkJa6g4vCvMvfW8ul3m2uJWj/dl1TnloFeNZ5MwrbqhZuDA595CZZa5iUZ/2GjOo++DcIYY5FUAcL9rcWk3CNQLcR5Bf4Qp9rqx87RxfSEATaaYtFkNQXzoBkSt8B+o01GoC9kHTGMxstrqJ+pNZ2kShef9lItwQGtkBbe+FjKwMK6Hgm7mKa1lNXDO38pDQUaE5FyKjH/z5mT7m52Tmcij6jV/YXX98Vas+UwshYh3m50NwA6HcH78q1tFt1utpITwBx7MZGsdtSyiPo+DmbkLyIw+vRQEwyyNZyhgRIuL5nMcHKAe0NTY7/bxp5++7G5ZheaOvnTWELQy+bOjgDY6PTvnJGAz6DW/ExcUn8gsfUUWWYauFBOUR2IjR4uZhItTCA3R2Nx80yHtUn5sez0EIgQEttMmBDdUFTjClLgCNUTQTRzYgOurWzEg6s2sqfxLaT9Z+ARimNdojG9es2xrkLWdq2es2ZIIAbHjM023+dwBlFEJZcpAxa4rl/d2D08OD/a3zOJvtp4uX2V5hmtUrwNdaVKzpg39k47SojeZHSYx8PwEMYA7t/1EHZfehxORMcVxaXRklyeWa+7RSL+yXFOMkDErEonmgiPOyKh7fcpNMi0zASGoju7jIlitgJ+FF2Ps3vVa3jX/zawMLyO6V9/0ZP4DdvmqIr2mbBK7tDAfvz5biL2UCBeLIFXJ+1oZEZl68x7C0PV/+oohQ6UaEX8BwFuf51VbfcBC00mlvepgOqpun1a6+fNOkHFnS1E4pHUpfQY2/iMlSFp0VjVEDzSi08rJ86MK5BRaFJxGAwU3anp+aj1FYFqWD6ytFcnFsjlozmCeYtFea69bptrmmWOrYzJk9ju+w1ippr7TOkUnBFTLmiMoC/bazzzBUACRWT3SzXj3/vX6wY7EVcahaEahUaHeljWpsOKK2a9BQ3oFSCHQP91V3egC0v9E8unVrAXHGFFjVgODzsDp4zTZIg8kMe3bhqxmIZixBJ260myj1r4JgD9+NOOnlQVjy5G3fd8OCXP6zgyQykey8DnJ19jI+ESsCBlDgoMXJPL+yQ80pW2IcEbtiQHtYofAZx+AvHS9jDC4exYQYz8SfP9QPZVmUdl5ahtbh1sCa3JcuZwQnPsl5gft6sLeUl/7wx5+DdKQaEZa+8uz+lo+QXY4m87n2dQZ7m3FCgcaALXLZKKjCSK8pY/Lj4WBzmVrimfx8PVJ/uX2hvVVaoKlcDbc9qQWrT29K/DlVEqOhYsGrQJbctxYu3PmAo/g1iLBuTSgK76EAenakN1meHORuaRTQoPwNnfz7lYQ3hizq4sVba16GCa0exS/4NBCZqE3+nz+dGFgN493liRs7CqvHt3yBwzKWuvTJ5fGvK4cH9kULm3p8ELEypH9TUG0hxi9lGQBBlHEQ6TUSkd3p1BQDpBABbICFM613rNSqsRn0WVfTHtnm722VAS0ZMTMsD2JmRFr25V8koPopHf2WD5WmVcDu3Zaikf/YQ+Dw1bEL4tVd50pJJ+qg7VxQ0c509F4/Fn4i5I3Q4asCCf+tScItufk004+wt/u/M3FruGYjkkxLoKva01jKtF/7fvWFMUPJQOfVr1gL9ETQ5tEh7CpOofP7COkt0Z45yuoYePA+9qCkChvKyMTmc0uhBi1dOUNMWvHx5DmRSQNzU0y8GyynwuoYIAuv1XQzfQakhaF0DMlesXjGp+3fax8A5wmRjJmwIE6hX4tPHWmJ7+mkb7v/zRY9V9r1J76X/vydEoshafNBVaP04Y1MH8WABvF/9hUxYOtIv73s0E7WKa6vr2hfQTNpxqpa7UI8iXnK4bD1NAPsojU925moHL3KxnneVUL+nQR28fBDZBGgTX1HYqDz2OQNKVCEQbACgG4R6Xty3An7wT/9XlLmHLdnhFcFWtNH3EykSC2iy5JZeSW+EhotJRUszTmyIL2ZpEdjwMs8YPSkMOMvvA4pT3gwUV9h2AYLwJCanw2RlTnuy8jYZKEBp5T0b6yguX7TlLHLR6kdEPqvMrsSNjun6WjBABxHvAKQzW9yZ5nzjggZCb0TW8sG4mgttq3zzHsWgXoz4y0dSr4/FLXYymAMlBrFviLwILZm9H/2RXKLCDZqxCrtwY5eFYrUENDYEcMOiII/WNX0j5hUlbSoauvrJpZJnQ4vaQUDRgC6upL65F5WqupQaxhUyKZ4eQpAPUxc71hgeDDVJFdB8GngfpfJrNZ5ax+o6QamszhQONuYQZZ4iT6ywxIQ/5+ubz56dPn4++cxu8i4bXC+rsraycvUhroXn3TejzfZhK7s5lLpoNtX9uvm1uUPkZGDQ7sI1ddtEEUESm7JNgppLYLnJ6bO4iPswohZGZ5Ia6RDOaWUTcSL4ZhEu0fXyQm0a00PMakGZOOFoRUgyVuzaqkIAfA2a3mZsNHTHrfFWb9C19wsrwiUotsWxsSF60r8AmobkXX1x8Ma3u3tQ960/BowccHvUf2ne1MZDvF87LWbq5uOCK43fwhfSg0swPryWPglklZNMYYB0JPO4MojgH9whpRIJ/PmUW7ezu4TReUq6zKvf1to5d/c315d37h5plquZPGBZnMkG0RMky5KYSaXR+DGTNCFh2AzS2zlxKV3w2yrIwWOtMPw7UKnZixcDCCUDymPrhGrQmpFTWiHlNgpkWf4FHvZHPt7Driic0wB0JUwgK1yQ5Wa26rIt70215Utwm51OHLZScWbW8duoIoCxYV0CG58ZcSMN3RAPx6LcZgUXMJI06YIWH5OlENoEvV+TKi+8JTVRXw7bTel78KT03M//kz6K/O8gr6OlpKBNsI23TSp4FUAxUL5mGzKa7cwDldTtE+VvsrCHVrDu9EAXiXC/z6dDsXutl7PgtKKD+6EHNXo3YoVsxji4D0nVbUfZZhTanlOSSbS4+hKVwNUPl0pKcn5FeGz6pMX+57ved3R5kkZKiTQ4U4m7NP2NEuhR10Ag6zEqMrggIs/8FNP9ZHRG0rmOl0goZQKQx+C9o1PChTLMUTY+CjeBur5rdzvtNloT9gexNzzMfFSycitGnAjr8jSObLSDfE7vny0rMvML1gq30DBbozHjDJvwgCusactax+83ed1Hz8oppBwEMdpY+xvDYgxMjlgz87TlMJqpwp5IWLiRTHgpUGNVp/Rtj4jCYo4vF0q08KYvWK6UE7DVqJXsagNGw2atIxg4+SEdP33Z+1wZ0U2TAEanDbsMECPkgunj5j1lMdLa0O3QNAfR0ZaN3N8CrXuP2ARVPqJN11NZwZ5Lm0bERJU3QWy140zLa2gNVOXBQPqqhpUZ4vX07fv98/2t8+OJDUx0PdeiXHmxu7OaTUSoDwcPQQvS3tdh2jaPOreQA/M9CQQTwyVpbYZiPxnnnDfUkkK7d2DVx6kyFhAMAfp4oWanIRQx9zkRMq/TRBbeno+drVlrcPPnL5aW2F+np+eU/vMAywkM/+yh+NE2X5TJvhQy9TNkwdbK+dHPC2N4Vd8ILoFyHb3N06OALpjtAO5qT/nzabKIfImQZGI+ZS5A77kQohw8hLCQE1S0pAXmy+tOzmfgVMmSDVaQ5EPAhbTckip+HNO1XKq7YaZXvdfoEmxlWJ5/0ti/KFeh5ewLm3u2FtnhW1Duy/6rI0u3rBUnOEi/fJVHMaF9BKQpepAQZ4Mt8NM/ZL4HW0gigTMrwAKiooWsI6/hCYxupYhQHUVhcdUGIPdyaL25IX9h3Gx0Q9+rK1nwjQOEKcs29jwATNHwys2wtnuD4/mV/JCNvbA1ooaNDz0mmfxR1XXq+ll04erTIBUyt911zVroQRujAI+jo0dD0M1DUSflOX4b6mfeyzD1/78kCNX3/3vCLThQrLN/qYyqGCpfIvev6Pr/ny3/84TUwr/Yrf/6HzeodeXqeEEzcqlgzWXotmrKVDCCLorrP4wbXYb6yZCCcDeIpkcnFxUva5nZbNpOpQJ5n9eov1i/EIvtHcPuF5n5SLokrTbK0qFI8jY75iIIQZBHkNVYES+WQt+LpQAAWP4gvKKi1GEKZHvEUQE89fh8hXd0eUm6M6Mqx9QLOYFpsDxoV8qReaaKEXMDIP2YwYA6L8AyQlPYudU20cRp2hcUzkP45LiMua0EU0aXFbogkcOpdaXB7IOWY4rlBOGWlJXyqQJpDWs1CZgRi6zsCCjJWxrgv7zQAEXnLyWhjMiuUEJ3fsHNah38EDmjTqMPrIekOIwExzR2wbWZ97qLjfMR3sAj4unbJA+qra5mEAFUXZ2bX2Rp0+INpeePA8XGkm4Ee5NZWJCgSX3tZQRKjhZhILtWBFTUNIvyQXlYk5Bs9kxeelHhHEG1YvTaNoNoyIIuopkBUbELJW5mRdJX/74ecPbw53jo+6zZRfyT+V4Qk50E6VMBLAUpqUiqZzhoUIcJmAhAMp9S7E7MqRciw7h2dDBue33x3f3W///P7sy+dLEQZX0xy6tXFrXVBIpvzVtWfAMASmyvBjcSOakYZaRDO7yD5+tRjG2Y/v6HwzHBunbhzvzaJGgFAE1GyLMoOXlDWZNNvdoCVhlJ5yMYMrbEwohGzW7GY6PpIDJc5Ee06GaJgX1360pGcxrA2KhDFsm5i4Q1PsKFbCgskynVUulB3GuVcu4iHIhgIFGVYSRhlytRSP+wwNkGvWYKjy3e3Ng90tIayTkyNtgPr27uZx51HamCmUQJx5WNuGt3eNyjr8xcX1+dXNl89XcrdG4SQ6RuS8QndzsqxfZcdEzA2dHREEJXBVmBQ4g6JQZ9KjZh+BH+fQqAyAi262jg6kEtpSsFmKUOJJaXT2hmDS5vaavRdkn47BXYYPY+1L9iHRt2ukbNHry4fTL1c2iVHkLpFImv3XTx3lSXrDobh7XbmxqUEILHJrB4fOtMQFpcOu8XzmJromn/0XEGAMGU6NqrVwvWYXwYvocU+/vK/hZXiV8AqApeh80/vlX9L1tax3Ko1Ez7OlzvKk98vn5L23v7b/618hIAfnSo/ZkGk2SdIt6dzFvusdYZLyARn5Tv3UgNKyMh6ZDkRKfedsQKkQLeI0UG7iAmZk0mPPiBrTHWqgE19G4tLRRF2qVMP0Tstx3NvVVZcrNWN1IKakTVglLIO/ceNSaB4Gl1YGqeQNHG0SBnD2oJMSDrdXHOplYQmEvG5Bla7ZijrmAdVeqJz41RhBAR0wZ06Quum5QmW8MH1hFybiCB0HHRYVqOHYgK5pcvuGBSfB1BgkrTjWC+Mmg+I/+a4Z04bq67SS5znqsS08B1STI11DlxahA0gqtt5RvFUj4KfWGoNatYUKgRJwhBjWAKCt/LyeeFW9CT3NzPbA11eu6MkEf6KWD4geBUfO0KhNrKt73LTNEs/DA8igpN+68KeGvNPd/PVWK/NVIEXk7GoDC7qeGXImK7z6PPjNKSKPvqSovVFIv+wowSvxf7YNx2JTqCaqmeNNvPDhly/nP//08c2bI2K2t58RMAJ8W6CgOQRFSCXnm4Sj7MCqy8Z2DCfN8DLXxaee7+6ed3Y3dw4OXBu/vybq0tYhsZYff/vdb749pPhu7u8/nZ//6edPp18uEYqm9DKc4ecwA3asXqdmmj40Fr9mqN5WIpuNN/SFvyNsDeVZKES+wJR7EU41ExGRk/usGHuBE6g8F2Ye7Vv6ts9Bgpv0h81HB0JNXyu3XXP/cCU9Rn5Wc4vuLHZkKpBeHcNJD8b5ZnXWilW3PQ2HbV2751Kkq0UBdMxZmzkn3vQT9E3CskAbN3QelnAY/+aWNOF1ARlJ3NuPjlVdedrc2dix5rK5eXjocmZHnOLkRvnly7WbPun3Gdwy+zY5SEtHjBENHWvKonQQFAiEQ5kIHYjRnGNRn2MPYvFldXeWwNmaLjvb2nx62hQ9ury6sZX1+vUWHejf8UgjzLxglRcDpgAZpgtraODgwc+fL8sOdg3R1iFXEv5BllhnL2ci/vJqk/mtazxvLDp0ubQTB6MSaWbWlWI94K0aiGUq89B5tsJ9m9vtOhtrbbAxwjBFbymJ/pD6XlCtfiVQPdH1pOLLF1OkzwoqRkP0xLtKeBPv1IbHU61aX99V6tey/Z3n3lRL6ETAU56V06BXb90AHFvKusudg/o8gXEMoSmeplRi+k3b/Dr6B2M0Cqqyf2EN+9CKEycJIj8jEkHgE32T99ioUZalkRfMYePuYX+zNTPRgFmVgY6A7QiAUuvzjoSxC4zGY5GAP/qxMdVoyi8/Zog9QiNwsbnmSJj97dU9F/CVMZQwGBfgxLu4y+nwWCBfK4zAOciaYBpWiZahEUxp6jSKSqG38UyXHlvcMBKTAKVMTQJWHq2It5aLlPBY2H3Lbtt2prI8Qagklm8BKwOy6Odq962hGpe/6T2OEXNZ3qoN/GPT6ouioNCaSwU6LKYH6W1QxC/qN7hGU4OpXW9iJ4UbAZW60KHHjXDKZIb4xEyBYU5NLcX6sI3RX/YONugrc4lQFrnDv9c03+95AmOGtDxXN/9K+/18fRjXzivwhmn6VouDZGhu8A2KrZ2l5imDO9YtCS5GuYoGOHYinEWgVWHc9+9PxW3oaCc6WKrUjzHBlsQR7OT0gavrawDx2ayn2jVAfYlSmNYzDI5fs3n33tT3hUOyKgJxe/2Af4qAFNx83tvb/vbbEzoXGt9eHtti9j/8/ftPn8+X0RieIQwWloGGDiyfr92YAJ6CSJEOygAdduZkJz2gsy+SrJisMUHjaGDhbhtZ3OFOLpydhkQbtPnx8eERfcdAbkibVsaqrM1i3Z9K6WhGa7mdZMchOF0GY/rb+YBzWQsCNaU4eXdwcrBz5Iw6OXX3czLjQ8mhUi4HABDmooGICcyAi1DR5s5W9WHlVexe83cjoc52tqThOG7riJZgsMqWMzS2dg29Y4QeX53W8fnzjU28wzqY0xKFV46/4S6cIGNriWMlH4PKxCv5Mg2I2RSHshwgP2xKGaY1RQggld6I9VfWju0F39l8/9mdQtd2/41TA9mmp9SzCrUGkXoxTG+bUAzPatBiycdfXhg1m2LbFZVfqYuU4d3t7cXFucU88WjWWC2hMCe/smDgbeedczvMNSJbLF0QQpeMLdo9PN5Io8u1XXEklFEDuN75Fnag+IK+GNYIzaCM/wcrEybAP0oDomoG7PfXv0lQb3sAjSqjUh+C4Osbj+usb9MJyVqvvp2KPXIITzNafO9kQ9d/x6oe53ZZRXx9Fsx4db58y281FzKhRBzzad0G72aKM2YVNNrknX4Lc4tSSwB81G9a3yupiHIeQAWon5iaFnYkZrkoo0wdR7m7A1SmsciU3fjUAjeBCrRrU4HqBgofPzkxlGGiMUpuA6yrjBYiSg4X4RTvpYhtJ0D8iRDJzxktM6bX4EYFxYqpSKmiOnBuSvwVloJ0wdiwzhQeOQUEpupMx/YfUZ1YBlvxTeb0wt6OwuFtrR3sbUhf4Yhx3LtdnVCpjkwl2cKQSQS/vYgwP316LUmDOWhooxNpbgxEjJUohdYLl0Qo5pEGSURzPBRKNy+E9zW9Tr/Nl0OF4YCvQ4IpXzSsWA8/Md4gilEq4SGp6kBGQXMWerHsFdLk0o5q+kiQ6glIVQxnQKuZwCTmvpwXcdVhrLc04mECrJDpDyRoyczJVOP5dZsDgfDDtVSFVVuMidjIkoUr2Bj4XtxMMcWz85u//R9+oh+lMRzvH6qC16T6iJqcn11dCEFcyCMvQmA99Yfv31HnnGa7V/gfVnm7XeD82imkPOWrqzsxCwCcX1w4GRtpTz9/vv3x5N0bW862pbWwzbYU3F7eOFKitOmgMIxgm2GGlBwgMHChImg+UcQtKGX4sdlAv8hLZ/HC/lAAa4VA5SUC2KHq0ALNOULaI2nsZiUn+/sn+3syTjvlMLGoSavs5jjXDjiSOWaf7cuKo732dzfbd7znJIxyn2yCM481mXVehQXqo92dA8EyaUXdW7Nz/3Jo9fZCIamrqytMqRXm4o5OOrqixKiIqIWN7zf0YLuYTWodpAoLXxytp9PXl6P9lfU3MWKBu5Xni8ubDx/O5cXadcWPQXoIipFwVRw6cmS02K79aG0QG0SGi+QYy6ckIAPlGydEQWMUjwkgmY/vbgAVX+x1ZqFNBfYlrjm86/75y9mV0uO7RYLBk5ap20RPK4jlMwyQRr2hjXE6YMoMYs9SQCdyV3GWWMxMblecdMPm7udp7HHoD/YseADm+vrK2VImRYJRdROZ7ZR2D/OxNfOzjUuTErJtL55Tryny5kQGZtW5CZxwFDcrWAJnnINa8Mppg5sADpKBRqEpNqDHMaFqXl//LB++/l5ET51w36vfX5tYPvahSZgX5WEFAGnpJIE5MuqQXZmMGA0oYpHI9zUIAi6uUYkw9nLxETrsqT7wLrMJoXU8dscHYpENw/IJgFaK5ZFi87iiciSoECcR4X1T6S2ava47rIWpWUxjwcrcJMezOwGR9uZZ827wRRFSGHBrlAUh3WeBAcQ+F/AgG2AzSWvDqyH4RmojXkmtZQM89T+fJr4z/mTPwc2tLAO5ABdwf0XdcKyPqcoF2WrINAAuXWQ7j6wS9p0TZN0ZDMoAwAR9e+PleH/jQQJpASLnTfpqMYEOKe2qL8saYlOmkMBo0mxIRAKyk4ra8UiVGMLmZGIRSIYAh+imZH4N8fQmyaj+HCOpAlhryiP4MXVSNZ06ejUSRbWEI6veykO22VPtjjqq5/ZH4gb8LRMvCloObXYQZuAuTNLyANDdr9xYl0i8wF5L01CNBia0NMepgQF34U6FNWJS2EG+Okg0w+KsFdmyxZIQH5yCzJMT1Qp5dtS4HIwjwH169W//5o9G+N03b7la2Iok2+55eurMYOrafWG0/K2IoCQyut+lY2rSrZYJ//TL6YeP590/yoI6qZ+K5CAf77/97thBY1r5N//mbzbX//mP370VIjje3/7xm7dXF3efPjvmYVI9x45BlEGBil52o4wpBLfDEHDv4CA+xKoRDrZiw7Igh6w9HJaBU000ehGGdtMyv2gy02yBZHrZvJbedvzRsoeZJwYx8I99SNT97cv9jb0w5m3bNNTR8aE0IX05A8GgwAVIe+9dnCl6U2IpR4ND0QUEm1tX90TuNpleOdzbk0xKLLhkGxtOTb3nfHWG8+wRlYpKTwK+Cdb905eLK5tFCOORDW7ljJNtbu/D+0+nv//JgRfXuHpksQPBpPgxzs1EU4ZxSiw8ipN3GBpiKHxHruSbQ0wSqqwIEjvkq2HyHAtKwcjQx3Gl0G2Z7+3xrt2LR/sbpzubZ+4Qv6fBnAo8zESkUWMa1wndgylD92Bv3jM4PODXewEfIaaUTGmpkGtN4+TNcbPLtR3NJE+tYQhQYSOmloe3TYyaNYzJUutpl+/vJFpGlDAaIbTLc01sDU/k4/FOktKTCZojOfb2ETsyAU8BdqvrjeRl2WsLrfUHzPmd1Pz6L7GKc/z1599/9WQY6evDPiuilX+/lHY84xGsOz5XvMHFFDZd3Ln/M7XRNA2l7L55LhKMbIAfKFIQ1JVDiOlIq7AASm1UaV71wTVJ/yzQ8QdHWguxcOdnNY5FLN5jHUGeDxPgP6lPvNfasSnBaMZkE+4uWPKJYBFTxCEAoSxanaAVKRoIS31ziYXw7PbLllUbVOIzzYtHB2lBHfyeM6OBBinIkT12/G94pIFUoYypniFUHlNlQ1wI7U8jbVwqlZZk7RCxuPa0Gvvm3r6VbdOOGL5dnp2KtXK0KTpZnpVdvMT0odPMDTYbEyhapjOKVVNotAIeS1t3+zwRjOPLH/UGVK3qpQvHZwA5aXO0WAA5OY4R9aixgLoOSqtNNvgQas+/vhvTYBxK6bs6LOyMbkZIQqP39F1MjNw6f2KTb9DeGSl2wIPbhbjTiEZ1NEwKO8QXXNUflGVSArAOPDDWRVXSFArSAvEloBBwcQHVreS89OJDyXm5GgoOH+JHQUJ1kibmSsDI2bQvHz+d+3x2cXWwX6aPfaeX51eIc22NUxRdDP2xVLc/Sh29vLbxfYvdf3h0BOYv77/IB+ehgQ6LmsYJYGzuvqxfO6XSOTwiy4j8b/+X/+Kfff/2wETuh++Pd/a3P325/ONP73/52PE2M74GCoBIibky+TRXeI6m5gFgxSiK9oLj2KwXJlCsOTSC9CNsQyS90Yz1J4uIVB9XiYrpLEBJrYW6hLCiAnKRA8u2vrD5iz7ctmgzQlUIr7B0Vw7slPzarEq43BqyZQBt+DKvNB/CAT8Sps06MgcMgIVcBLM52ul7m5dre6/7T/cOKuogUtJ/fXEj4M6ZNff69OWaWP/Zj0fffne0s9fSi7nIhy+X/+4PHz6fwj3vn8bvOKzOsEI5lggp7nGdua8R5NKI3PmowdjUT6oGS+jDGHtIkGcOlQBitr5W2BJGyR0rm05723CP6f2BDRKPLgr1LE1KQiAhpwUmX219KHyBDHrQzvBsbEj0EUQ3Vxe3TvM+2t7OhdgOi5huY23v8MDRSfR7rm+MFN/Za4HZ+RIvcDkMqlNtgR/WsbXM2seDvV049kWL4xKrpVA+w48Dpp5EJp1uZweLw2meeDAjmjSUgfKARc3sWkmjSU7qJumt9BBYB94Q0BgS4F7xwSJgvfH6+tjX6auq9XSK9UaB+cqbjQzb1saedIjnx21zxehFgXZkLc0BrPuC/dTImNIQVWBBQIMPEXo0lFmEmPT0uKq5f2Nw00Jhlkix76MIMGHuvoRotqMcBhQtHFZAbPVpO/qs3m12Jhe9NHvdm04zGLHBMhJYZHjG4TUrFLjtsBWbTTrRPYPpZhWg08pc7rhgzDhXFtgmC8GRoAN7xHWgStyII5UZTVtSwyp4JrQt/5NuI4TEwPB3yEEYjCxbFhYyR7Nexuq7pSCtllEirNsOnCkNbuW+Q7LGMWTq6N2YI3ZEKENnUUYNSCB1sSPejxq4VqkMztJb+AQAaADiGczkzA4EirHNhGxCD1H8mfqOtwzOT0ZCY6Nhi4w1RDGrLLyy/sN+OjD2WjYiQIXGOmtHNpaJH6Hz5YzWdCUYtItNarOfON/Xgyb40mi3BcaHoa265cjq0EAVhHdfJXtmfqX8MJo1kcimE6vZr5pvNpLQwjKHKSaCoUGd55AvFP7h0+XlrQ1iGwmwPkCcRyoRisqBKqtzD/efn1bPbigyY1JEXNFlwubycJfONsfZpMVeTy34rl0AEJHEpX758OW/+f/8zT//x3/2F7994zryb99Y6dw5ebvz9tPh3/71T10FnHvakFCKDMeDNu7iWhSBl/wPc4/GFiHlYPoOSPQf3aZCCSp5QqigpB7jNpeaicwW7YCjkh8hi68k0cY0Het56bC1i5C6dX93IYa2CYMIbmgPJvC5nZSvKuOJty865S+rKZ8qnkBa06GdlU1bv2+3RGRpoUQA0r2xWEy74QuWwvKcma5DL/y+Kvjy4nw9xb797vAf/5Nvvn/LTXb0xcPnj+c//enz6Ueb6zKI6OZAOkg7PmzhmCOvqjzDtXtZOuxLM6QQX5iXT5a6AFcT5sKbLdL63DPALrOEuAXX9LAJgW0PW+tCXpjJoairNNoeug8OYp72ZVPlOIZnyaSAydjU9104iO8ZJtLq2Kh7Z0Yd7uwcaEM+ULgWObPQ0txcufEPM0eceCt79JJOrcyXaThcGD96lYmUDHojxqKi342RL7W2yRjciB864fX5BXYpYCbBxaZYcGtjt6PE8o/ZSOZ2Feok35HIHVvpMkgBr0ESAQfprcycBcjptl+9QgqIlqJ+47qvD6bclKkA8EYzZopx2cHe3tO1U9TyxzBQviTZLm3dPUHJXg36YyBUnNfCQ9k4gSBfY1YyGtH9T2UR87RLvWJrhlIB5fKF0ySYT1ta5fqv2e1CJlR0QKmVkwfJqU+yu1ZuykFoPxVFN1ySXskIM1p3Vu5eHJdbxGXmhADUFE1lElWQnYGOsiLLaVtVwKU6XMZW4PIo9QLFZmEc0ihNyvrGf8+Hk4IflnvmkdcgoQGoSqpjdC+f/UqaU4rzn/lZb60PsugI5fikodDiVakpdFn6T5sGAHfa0ghXz5SdPcXIWMEbI7DeMLGmp/stdweEYeTJ5sQeCzuTZTD6r5FpKOOaKs3z1CkAfc/51H8fQ30SZ8Aez8iAtEwHDG7BUCPPbGvFaUvMVgeUNgLla3beD8XhfkGNv7U7sA1yGyBol6kCpkKKfMmkEPj+hrRix9AGIwk8IGe6jWWGSAuldJYfG89HNsWjyNiQIm7PKzdXDw+WNtdWZCvKAAYPPzGqGBXN5rBVOtnuJMa1HLTER0OkE8TxFyWcoh4nzoOWH/WZMT/9dPrfW+pc/8e//c07Ow+2t/f55jTD62/ufvrj65cvVgO7iAe+NRJWtMxf9DB1Fq6pIbtky0eQ1G+yzeQIpOA55gdk6ma28gWsV+D6O07R+gq56LQ78bcmE+UxUWj+6muEjYXLHScFQ/msWiM2EaFrCz5gdutfxmf4QqpIOTIHa8k3vPs/TDgTcy6TtfGuVzav4rpR1SI/JB7JnZkNgfZXWgURPsMzG6vfv3vzj//yu2++OZFaRVkLx52eX51d3mQFK57ewMzvjvffvTvGja5jsypRVqhMXGWyeQbXTWRMJIMQsmkdnoxw8fjSi7RDZzOlMlmzDe3hoWNF69fWjw733r55KziPzcK6f2mXeK6AWAagq2NtIGbMh6CpI8PXtRcrgN+GBCqUeTFMtvDY4GqkHr/i28RdTYvuXtSTvvBJ2sUXuly4NfpbChK1Vl9FdXQEDh6hjlSWxYUl7edT/1as8tMZhtjbNQvb0ZTXouJ8a28EHnFALduNTfSemwi36hvtMgZI8aZf8wIJaL3tzf/0ux7/Wiwlj5hWtEWCpMfxz87pzqZPJldzciYu0BEfNh2hYrzXRC7k18dIKNphXGisYfBR2KS5dQNFwkVSQYNyxwLTmd1kz7/RXoqPKipXR6iB8ZQb6kgpTCGD+bldM8UDU24dX88MIpLlFAoRQ+gS+pFmpsQz7ExSPlPk11+bgkhU4l8zBjHsEeHRDX4yadycQVZvG2ms1PDSHXGJbtJYX1E8+I3NmidqUlFVuAt+wAcPBpvfaaGA8aG05P8FB14PgggZ/YyokH11/OqnUYAEDthLIyBIxs8AJHg2vtsZJvmRx9FEgCiIPPV3MQPDjhS3B8YmLFVEyHjiUsNtQgwu7A6EtKJiffzKSEM7zYaXhu6XXmCAeTBReMAqTau5S5HLSycVW5rqQZhc2HAwOMIRBv1TUL+802rq0NhGRvsOYrU76ym+DoyBuOp10iub4rdvlc8gCdwVxItWZg7cA3OW9DggMZ4/m69uiKRQxdzoYPC/cqK2LPGsXl8/OYABMmkehJANyQEJ8Uke7ks5hIMGFjIYZ4TA3ZfXtz+///Tm7cnxkeitxA8NHKENt25/+/K9UNHzs8VBmxLc7+jGyhEjJv+OuciKrvFVN999dywBR7aDdYntvR3Xmv38y+ci2bxjLk+MRC938AVkZoE2HaWwac+ULFUCQn+Eh7Aag9GV5PX6+ppCLmgskp8pcTaWhQKYRT7iQW/VrAb5o80yoKt/6dMkvVV1hsCJm2I2FLvtvjQXg5rJx/dxeep4TSysqJiVE+HNna3vvz353W+/++G7N+5j0LCcF1WEv4tZ4Xlob1K+5qqcN28OLUoDAhg3212TQJtnJBTNFHapA7vmqmRpWqZrFxfi0aBK2/kdxLmlKE0tQYDYmFXYtsjJSnp34uIfmb32hdxYkri+vC+zKs4Fu0Bx+x7SQ46Ej4U8HhRC4Bx2o/VeocA0ERulf9G/rKPkIx4IghEcQDT1oglwnHneOPp9GDmr9aUt79KQ6695eDNjoWJgI5dMLqDs1QBRxGzIhM9qCtF+ejItsI8bvbSi125cEym5vWrRlfHw38QxOFWtrclYAgQMpncTs6+ji0kG6OUNcLQZ5mKF+a4eRF6sk3RQh9wAn4U/bztXNl3ODGN8OpcwNR1IFEMrgNTXCH8FajAVbV7rTV2xEXcCZoNj1n1bzkqD4Ex23U6vYOfnLUuytamuGouwGUru0qK8DNo38nJmdWW8Ma49902mzkYh6dx7upLMjhHIMifH5VTSXbmS08IApKTBEkLo+lXhAiUHUR8hR9/V7u2CxkHX4GrhpBA6pJk/NJYKs8lDP6gbefFDEMf9zNpwbX4Ung2qIVAJrmZcNFqiDEl+Nfg0aT8mKJurOysb+7I9+EiiQE5ot7eoXO2iGqjvutMWGhJmWihJy8P0k1WJG+MFZQjxMOZQI2wERMpT3CASpSkYdx5Q6j6aohxYadaw4EkyVExBdw6Mb7HD+Pz2KNEIU4bmt377vNTzvp9QF8L6KqvTByieClO1HukrZigd7vvIU2PToD/1NuPyp2dwVYOJ1vzPJdMPBI97iL7kxGRlFdIK1ppBe0L8bZXdOdp5+80+ZXr66eGXP336+PlUiAXGct6yHJr318d6msEZp77QpH0U4EBwl72cX91+++4YqwmjHB6UNn50ePjdj9fvzi5setpdeT0+OKAZfvrl04cPZ/Ql8bdYLCPYaERQtH58uH/oKnmqYGPj+uHBisL7D1ah752XzzdMqNIueJW/0/qmDJNj4WTHM008gYwZsgHmgrpk8f5JxmU7mlZe24O1tQUdXCoOCS1sADjHEGF9ZjbeaJ6UDuZCOTNDtlyisKOVn/506WgMK4MQci8u3NS+9QeHT1DQdhNYvdSb1csffjj5J3/5m++//eZgb4eeAP/Z9f2nL27cFFfLL6GwCAQ1fXBwcHhozPt2m3YacAj2P8yyoa37r5nus44bVh+cOSH+wQrdnNqPisucImNqXiX/1TIo8NrG4DBw2UrW/KXkdMpzlzc8XrOskmIphxgjPFJKyoNwGNHfBC4dPuxYo7guAVdSeMqVQV53sk/EjmpF5AH5QxOxKPVIg5nNntPAif3CnAZVn8PmI+mN03eJnRK9dLT4VJ5QHohsRsI/3tzfP3q9dgmT7bjOKRWSSSJ0g1K2WeDD6dbJZpsFsgRIJGI6sHZn+/jtoZVolA09oM17RPTpsP4XaLybvgecHg7+Vdgw+/TljkM8VteP9tbWd8m2y4Mwwa0Rsgigf3ro9OdxIwxjGcPgz9jFF3VNxRHgVnuoPC0qzH6a/3bhngu33ea0xMQaVrJV9ZH+lppLZwugwNZWq7G96V4nGEEgcpkMN8eHtQl+6ixDg8nyinKcl4qhwGNTiLoBm6bhgwVBXgGeLlNP0zab1mM/FVmYI3Jp1xg97L3fnjUqRbSLSzyoD4qT+9QCBQNiTk/Pei0VxxfANOUd8VcasclMzRWvJb0iZk36YRSU/sCEOtrWDHALAe3MMsaEh1lMZ3g1FYA9AsknKEkkV1DFDsBQkwRTYpoLY5DjV758loiVY5YghBYAPdiJUNEudptNVq5mirlPi8MxoRbXgdjHghJeLAaxolcNJSsb4pY/jawOwwyMNgivcFgTQ87wN8+TN4hUYvkNgy1N1J3/kK6ScaT+PAr/wRBy8qDUfTET8YljW80Km51qmgkIUEgUgV97desjJ3J1y+nLudHS+o6P3dzryIjNk8O1A0nDz7c/f7o0ORinmpzqGeXHPmmFEewVNkBAbPPc3Ehx9/Dx86fv3gk5H9rNRGeVFX5os8/u23eHgmRuHUGvGwHll5fPXxxReqtlw5E8I/hLOdHyJ/u7b785evtGSuGOGeLhkUOtL/7+Dz9fncuYNIQIrV9sN/NLlJVybSW+qffk+1supQLaOfXw1OKHwIaNzZ5yhogJUiGxd6QD/1JYJswmH8QohgBPLsIiIJJNbKld7f6/4kyvFje4FbrXXpmzxevCC+zka2QY1h1F8d23B3/+F9/95vs3+3u7KCp6fnlxffpZ2tWN3U+6SDBns5eNY1YxMWyzKD7E8Fehrc0dx1mI3VOhTJpTCLKpW2YAzplcO6AKuT7jbJd5ao1esIiBLyxvPiQzxxEg9L/DJ0rFUdecjjWlsEwvcIGxjhgQnOYxddEqcCPHTtASdeMvrBN/IzLUIJM1DAs8jB9P1yxERZq/ddi2Tm82u+HHjo6zokIOmy2Mohh2qSXojbm/ioF3w9nJgxCUk03LHsMJSqARi31sxyNwNzfcWhfPF+uL1/n7RbjtP7ap5dJGdFd1LfsMOyeDQOzub/POjsytuhRZf6TZFFfn/TAsjXAUoGdaBFxfLX/nrYVW1ZhPhe2bNbyVE7cp7/A5QyhJE8cxD0IA9MdVBgtd5mGtxxCWlKmGaW0d5U5qXTlgWMQPs4IXvAGBh9ZxU4ZgSneL/qEBG4gp6NGa8jtZryVthz/eh8Yj/SyzaGG0RzMg4+G5xpRSQkZmQNq0fSFGXjbe1dkonrDKweNOpSkpdq170Iva8mM006/26Rlt1qvWlskgXfm1iNCW3iOu7GPWK45KrUbyWvA/hT6+rOikUFbb90VRcVc7d9qzQ66gqUyRVmKJm/fwGBPrJkNRCEji8apVcUTQRYIwXkdegdUNiptMco7CoPL5+sbBpECnZ7A5prlQeqNRHtThMgeK4WaeKaWBu5AR1TDzlGxGY4tp0r8jFRrTMn3bjZ5CFjqLmSNS5DdaWNN2yA6pfoWhsZ/ZENKmTFirvSouAqEMzQ+aevFmig35h41qSjVQxAxNN7U/dMKzSTFUR67uSR7U16luM4KyAJ9e7EKCvTc2zdJ7ULrmXJCd/d1D0vfu7f7db99e3j+eXz9oHs21DoZGMgNqMLkAntR2gwqXtnQ8OHzimJ/04zeOQ6DBJ1E5L2Rn60BEj4m+upUpnyqnFpsQP/N+NqzrNfqX9S+nl7ubWzYSzWmZZG7t7dHuaEsJxQ8//XzqLFKDzgpIrkhf0cVddGOTFU1JGNve9vR05XrLa720tkT7GzeGtPGwHbq2wrBOVLsQ4Wwdp8Ywf9ofmTxCDG+SlR72vxzRWF+ykORXSuryWt5PHsDGruNLpdjvwTf33dEPlhW+//7w3Zvuv8R7BulW96ube4EoifQ6IDowQv/Tmjz6gnWEGUaoKHNPk/iVNUsC33779mjCdHPOCf/7Qa4RxxrDyqI6FiXR1tOLEzjOzm7Pr5lU8Miy2zw82j9+c3jcdIdzj2ICfaYm1kJEL+RZYonufRrRoK8crNupfFQ5ckbfrz5y/DPcF+d4N3R2gcTTxw/nDwepUpE10ywNOQ6EqWPCk7qXZ0OjfI0OBCFyGE/LUKstPS5siKk8wFI1Huabt4lTueNeMxqxjDTnqr5YQAH9ZEemS+1B0TrBcBnQ1doq3GZWzVf1EffrMNn17c3VpfjizvqeiZQm4BAMGk9bd1SHhdWUGIrw8UCziCccJIlmXzr1vN+2TdkmbuPl6uvBztpdh2lKNUuxFa8VuuGJWrYSRObF4rlsKnXI/cJNoa6i+pX5mOJtlpSTURpL/qYCtJWYK2WaFdAkpBhMk1HDGuwnbeTRew9pqEyHf9KZxZFC60Q96TyOYGamwekjACiCrEWvxoj8FCNuSN1gvrpEa0dfkHUkoQb7grdIxIJGwQWOpMAoUqq6aHIl6m2GI+tLd9MaLawVkGqFVIfW1EcITYs0WP2YG+nHJrTE2PzDVJH/JOKWY2Xni4y1zFdh/DFltQR6zWmZkpXMmK0xF+72PVnqhWp1HfnrCaKgpHERATElLgG0YLSlIYNLp4YOX5iBgNIQUrjYgSmkm5pV6ICt6zJuB6e06RQa85Pi5tERhgZZLJgjjt3y9PTi8O4ZGcRrLlhUadSQHFsNzs0uxyYAsUIg0xGYKwTOIVPAVBvCB2uLzckN4MLFEOL6LLHSEzCMb9KJLCgAIS2TabCgC025KgvYjRwc1xxHj8ylHF9zsLvtjDJxAwFph1maAaw+fHJEzR+a+IO6SNogtbGANWgbv3ZCmuIehf3V8/Obv/qbn79c3f/2Nw/fffPmjfCzFD9atwOxrJAj793PP3/+0x8/2X5G72MP81czNkxA+3WRyeNHhLOZ1kLG4V6nKrw73NjbeHu4vvHt25M//Cw89YXAp7GcSXf/vCnb4ZTL/3BgVyG2byJop5sdzqVZUqwEXABHAN2WVG6qBBbm38RBdB3IlCPUASPcN7CMit/w3g/8RgDXuHPTm0BoiY359i2ihYHtPef/uE99xxAFd2SpYxYPeOIW8dJB93fX9/ciYzY9EXtSwxnREi6zl82HZls3N06yEBTgjBP5XHh79vbRhEpFbLFNnKrH9Ax+OoHSHI0C8Wc39zu7T5sXl7YViIpa2qE2WeycVgnKKN8YmRXeedgwFlxZGDMebhce8S+cklJRLXYND3hQG3FPXy9P1BEHOz+/fbiVw4cP8T5rWha/lRuuRlCWxsElMsvxba0QLcTSegKFCfNrdQaS8gjCBL+KhyXF/UkCFRP/YIYEfgp7IkiKtfHbQa+3j3eURtfG7TsDVq1tabvrZ1erF87opHhp1RaumA34iQKSmzpg1nynwFF8uthae5fLaZYH2DzQU2IdtOk9RWCB4mYf1LE2Lrtjq204jBslteusvgc2APYrnZYkR2onZnhoVWjH9j/JqVzYKCgyxjfTOPMAF/4nkYBJEkl9Pmy6O23ffRLGFRu2hJE6g3wuwuhX/eiOZZqQg6raATPFmXSyeaYixMbcq4j7MHXqEAv1GiHNEOm8mv5HEdqzUNaESAx8LtZIBVYPJHGJsvm8+EHmdS3l/mY4cy8JRhhoXLENyRnWGpWBtIBN3/Rds53epO0KhRlJXLaoqo5+XNvZtRb1elson/1iRvJ+cBSZWfRYrohqZtpzGci2GzpFOC0JNqMa0W0a85Uaekrj6890Get3a98MpKH5WEPAUsY5SfFmgeEcPvhyg61UMx8AwpYbqSE3hlgoyudnaI19kSrMK5EISMDmLHVpJV+Niy5UquEQM+VxXDYDfbhdFCC/ixCiMWPQwAwDjGNWAp01zUNiCyfSFMAmjINtcJQgUDB8DG4slBUcM4WOXjiL6Uod6M5HA7fSXoQvtpCrd33biPjn5IZ3QkG6JN0BOZfn56zC6uoFtAyBhhUaFSCx8WLMgItIwGyU0ZcWf351dpjkUQdQmjFv/mika5K8ybO1zzL2t7ao748fz2z/1JZjk3/85ujN8YHI8udPNqY9nF3e3f/9x7PzO5eI/e77d9+/Pdw9bJvxj799d/Bm/933Rz/98uHDz2dnX4Q0hM0hTxBj5fxcntHqgZsNdp1m+Li7v+/wrsXGbbdzS3DLXtUNZ2IQK6NwTXFnfZaq2JJbgol/w51fs3oZX7R6hlihTxCoTVptC2MUsb6wAtfLQqsQFFWJy/d2X15MBZIbDkRnQbtNREenny7OPp8bNQbQF+QpQi8iRslv9LO9ki6PnaQMp4A6yQ5PEGYH6/Q1fWta48IQAFlU7HiYOFbYiqgLcr9u3N9nPJ7wa5mZ6XPXNjjDpvmvSBjvCLbdIGYJ2jRpPMvkNcOX15Eq6H/imDxGTXw2ywnkFA8xy/FpSgottbCsfm8cH598983+8b64k3kfHBLbvKOCQmhNfIaHRz3kmhSmbtSxKd3gTgmaOv6MeRx4B10OFLJY/7jFYX/ZNENjJPHP5qGM8dULeQqPL9ZyGHvDbzVkzf4Gq0evT9cFiLwmCMYkm9MRxzwMw+dZjjFrZPiy3WQ0Qs5rBoP5Fm1z3GEzptwuHN5sWgioHXoJYDqIsMr8edlzKaDlKWlgzXhWnqwFtSxMy5FsaoqoJyK7BHZWJFAkg5sWJXtFG6B9uKrDGPTWNCw6hD4slxVLVKmkhBnBHN052tovHKEDIDXr4BlkXnSNBewxMctz6uxm/pvmfBVlF0uLqtHUS5uNmUrRkXFG/45+xTUYhma2QKETGk8pwCUHQIM5Y+NXMj7688To6eVhN1KUeuJl500AEABe6gdxXOtR6s0XatYt1YU8lAkG0+O8XX91IrEluZWHlVtJrpm6Autpt3R01g9LZQtqFTCv22ur904bbOP1imgFQjVxNA3OvAdCBQW9S0isY6+Q789QKYnSdsQB2AKyL/OeRAjtjRmwOv3JyTDwTHLz2BKXfoXeOn3ZWjM7fAVJey9arqMTaAWdVMzvcfQRzUUCNpZ0tDJkwr11IMty7IbAYY2Fz7DrNTibXvIwGspAqpyOafYZxOJCZFgTXV5WpoTkMq4ZfXBWDMyNberjRE2gWuNYXekIX/zEe701uSXXD+v8RzKHe9qAGSuk+/VoIjXo3PRB/di4puILnQS+h7GydzePNz89fxDhDBPr3wLLMTjobN6+T+P/5t2bP753HA6R+eaHw//5/+y3bw+O5T7+8Q+f/ubvPtiZfHf79NPtGZ33/MiL2/xmxbVlknjWTo4kY2+/O9n/8u31+w9nX84vZKZLYxJqoKzMMhwFpKRlOxu+kOZ8LcW5bOxqLZwCM1mlmp8fLoVy7h95n0f7XXMAxS8PTnyPssm60w5IRepw1FMWMwzLVC/bxEy1EH4+7hAGIrySsZAgeihl6PHuyhzk+vaL7WCn55cXV8XxobwoYkar44MeMA8Bf7RzaN9V085Ea4vyQZLlFKN7RwnduZ73zrEdDEVeQV6XcW5vvTgiZuvxVYgNYA7neLe/udXJdULT5eDbR9Xa5GTcWRG1U9m0iINC//rkL+rlhSfKCzPHL1hsXiPALfrzFJIps9BWWVPaXAwmYBOnxVgtHN7tbh4e70UX9WsWs6oT6gpC5OUw1EX1LdDikmQiKyTi5AZQh9LMDmken8DacrVZl4OuWsIBNn/2eXU/C07wCSWQnUcy+Qj8a7ycf2PyQMfjsThav2R3c6PtaoSw2XWUwbK+SAk08DuF1cjYyLtdWXlzdNCkqU0t8TZU0CL+uhFsZQ83uI2t2A2hK6hoTDxs5XlllnCu7Pku/HufI+38KWAao2BOnmO+2uLYjY7pOXDgxy50nGTWlMVgJ9OwQcAmMlfSfOkeajKNM5cBGYPhgb/CQzOkK7ZR4FM+so378FXahgUEZBtxTzRZktTKQmU1fRiXE481BJ5+qZg6yxWxD1cnkbY9SjggHR7AaaNUUvijVFJ6hQJSDzjra8KpqZKcuQpUaemxRtTvA2hGDemhIikQJBv4em6qgMicz1GAIgW462Ecr47VZhoLQ9BcjrL0R86JP2ljSzPrB+zp+uu1fIaXbXNHjaWX0/oRf2HteogIA1ggKeHLFFeQGVADBFm6LdxzdVKoOJDfohapDTMgYQhVqeXq+yNI1dQBPZ5fbl+fNlqO4oFn7cKoMUb4zKeIr1OY/NYl8O9XbWrbuod5ejgrGSb6s0AKNKKQEJkHRAbAxhOeg7NfGeuwM5yhnxAUSJ5qAvdXxWdgeJdYxlf9m454QNzkx8vL6/fvP/34vW1cDjlYcf6P0w2Kz6TO9aRqNE3+w26TvCacJqwwle1qpIqg52IAfLRB+OePpznMO7vfHO8e+dsGK07Pxp//5ofH/9Xjv/pXa6dnN98dHbzbPzk+cAOYuxh35Xj97d/9cuV2xpdX51X88unzpvx6k6XnJ5k+6jqJZ+NwU7z56M32xdXeqbOU22xsYI7a394/lCezk7jfPt1trz9IYrUXqY0hlosgkcEE8uP51fWZdJyHZ4bCrMTU0+S8CAT5X1nb392z7GfpzQw8BR/yhtikqahFcpqvOE6crxZSKFKxsGQm7mr168+fzx2jdn7pJKWuWYclgk+PQabxhMsRKJ+wE7/1zcmBE42GebFhxvT2+vFqiBEDxBtY1YlcazcBoP9VgRHWK5O9uWpvh8E+WbdxXfDN3Y3gBX5uw1+KPzjTlQMkvRADIlxeZkDjUX+wVIScwXozXep1CscDMYBIjpt6KIAePJ+efqFp93jPUnFLvUimtRBHYhCngd05EY6t96LYhOOK+CjCVTLzEe01hWuxxOYPYBaKCLAUic/iBDNp3N7m1HAlAkm9lnmcAuvmM8EZjVg4NAVIqyQaVBYYmamc9wymGR5fpsmy+iHesNdtszMECr0lUnEoTnoWJC00MJqYiK3OoENcmpKRMk2nJ+R78UtzlXl+rtlpY5U5n33BEP28vvu8ZubCOpYGo/XCdvQgIuMzXUfhgl8pqcIckdWHHtDKm+t0QYaJoKNG/oLaQ5o0REDnPbcUjj5kmt2hgOVBwnoMVq49Agf6ICRlm38DFq+hLwbOeqFibCCLlc2Y+TAUWOBWmXtuJQHIiilCFQ5aoQCCp9sGWNIejOQZFBnPq+El5wT6gtsLoU30gIoSGkhUFl5sKMN0SgRU9jS52m6LuQMjYNiCcCk9A7VZR0qosBYIjMZOcAZAHPJ15XBTBGPjTrjO9s60NUI4nEdkuRgTN6QJUywZInszKBjkeqjdDOoQAZ66V6QBivdg1vxkTugL1w34aEvCtBP/ihuYWTQibUKYHY9OFNgWmta1qS6ZjFR0ZTVCEMZ3mxZt1jGJ0gdLbIdPgwBAO/+UbLRAqQ6g+DuZ5iUn1RfxR61NpxUzmor6CoYxKdLJq0r1ezySiOcBqJ3Gjz/YdY9MtkP+DKTwq6O+nn56/+Xo9z+JWNrZ76jes6vrT+dyr7FNEWHQ6Ghiey8COsdH7KwdA3dnN6g/+7EXmxKQmRb/6ZxLTv1PH6S57Gz/RnBGE8S/cNDryl9++27lnz98vrh5I8pv28/+HvyIpO8c7B4e7/793/38ywdbbp4+nV4QDAt8jlx99/hyYhskzFrFlT23YeLlaNvtq5O9z+8vDXvHLoOd1DOX7Ob62rkFl5fiPDF0c2ppabydwgUPjsS4OJcJ9Xq/1TySTrax1OynVUdnzHUC0OsB1tm1QSLj0U8ShVeTsZh59BTKLi9DS5bQazKa6F/HvTno7ZwNoK4sRtB15jt5LAuVYQjiExYaR8KOE5a+EXTbh6XEjcvv6GYFHh+3xBiiHgCGd8kylU6xojLOdjCF01staweBtQVRvK4mdvaRRbQYpiyZFD+OSyyBj5FQn9JJAeekZx4MZHhE//2Fs8aNjow6jq3/lL43tC5mzayurCHx7//0sebX1r9/dzQbhBMyUwNcHRO2QmjB372YT3rEYPwAUydTTQvivDxnDlLtojpm7hwA2hkpOeekv5B4YdJaoBL400bdodaWfFv5ok591RK32d2opQwUM0J7AsF2DVK50dSkCIqTSzT40Ikdq3Nj3PYWu/H0gFVMBQqsza5CEzvlERgrFy0UMHrpuqdGYvQaZnz53WYZtJ0lq/SFjBexLaLC9LD/E3k1xbl/eTDriGHNxWB/BCPZDNf+DNIjSvbN/5Y7zTtklGAKpoRX6gEdodekn7DGNegFRpLMpICB5odsjqkSY14HTL94Z7nTdYjuSbFHQ12lM3SzKIpt7KaR5+oJDJWU05SqkHenTFKydBYlbu2lFSv47RwG+tGEB1QRB3i5ftgkFPmQ4shFhEYsykYYVt80I/MFiFJefgePX6GXT6HgY+G1rR2ZCetXcsJuzASJINlimUIg545SdijTzcujmCy7RaE4fpwYWaMz8b2+lSDb+jGelF5SV2M84H5QXrfTafCQ5mAjFJ4mXm2byojn/Tu/2lHbei27GV4EWiobubxy31TB+jBVWGx9RZTidmvDQTB4AC4SoSpMv2QVP6U3PGtPTY4ogzmN63l4Q3tDIEhPgTKkTc8mqqaRAA50/8OHz708a4xIkRkwAjZx2tNE3w2ww7vBvFgFpYYbSFp8kZiW0fF3v//Feuxvf3iHl6/NQTlOW64dzZ5jLm1YD8GGIPvxcO+Ht0fndw//+g+fpaCA04jq1ws/RdYq8a4uz29+//c/vT1spVQQxzBJF0/R8ZR/8dsfv/vmDrfv7++PL2K7+9bblaP1P2+FHzv+6ecvTpMk/ncFh58ejh5fvzvYPyi7kYhYeXnl4xuCU4weL+5ubnjBouJP6+38+vD57P0nW9N4EOvbAWgErfpQStYYL+kQ6frORXng/UhCk7lvUiN95XnvMJ5mjMYFHD9WbQMkYxga0YcCeIeygX0l/I4ZYnKOrZSka7elff5y8cuHU66hmWtBG0fyFGwDIaOiCVVyZtTpGoPDA7sfnNLEh3AkQG7x3RIhkAIJLZt2LauAXrmv/msoZ7ZdMnY5eOCqSKgliPGddMxCPh3yEd0qubxJn+BoXMHhAnWu1OgOw2kcw170DLiImfhQgkmV5geUvuhx223y9V6axvq4snFxef+nlc/WdvalAVlhqfX0Z4dtTfe1trJiN4Q19EnEskJJPvfudrdYSgi0RmsqU6SO/aIuJ74mgIbtdlxj4XY3+UWWBRwT53htB2zQrJRyQUGe7IbRpT9J7NDIwKm952tqzEx8Z3Vd/j4BFXKTu3UDLydHJ840dcISEl9eblxfWpIgjvBnYp7znK4dyQJouqG0ggchZiqP8SMEmw6JeXFTQpov+ejsVwwQn8QhCOjUjY1nV4Y/CXqaVi5TyciNEaE5vy9FQJkWYUIM2ZqtS8dGyEIeYvKcBCMdeuhKgEfFMs1TbNavyTESpQOALzhJTeOX6UAn8e1ooMRWUwga1ZXWjQlM3+t7jj1kprxWt/gv0EaXz0SPOwkyQ8sNSnzGlOmVZcgS+YuBGnadGT8o6qB17QEcefIgNKBB0KRnY754cH7gWUONQK+hGlONvnfg7s7OCwcOMbkwisdNXuPVNCMmBDg4gQxlubnuUFh5uSyA6JSu1T37nDZXdmEqLEEHhxwG6ntBWSvvDADZDiXcw5pZXkSLHvWlJ4avgRKC2ZtM9XhPPfSlKeTY5qZqMElW17q2w+SgLInamw7BiWZxqa7HLwJEUT7CC94Cj76GHRmxuKGKoVTjBA10CAW5IatvPKkP/zWXRh7NgPmpRZzbbGD5doBUqFqqwL+/NeJJJE6oAzxG8OXF5cN//+/eX1zcHx7scope5TnUvfIIM5PRjHpHaN9wAqzBYd1g9hoBMGEvc81gyJs+8wfYgNPP53/1139AlX/yl2sncsiJO6W8swsd4kOECBoz8cP+yTrt2wKixNSdn//0ESvdnN+er17Za0cUj98+Hh7w6sywzJxWreZdnV9aO/z0SaLNnZVlvqSb7T99uDr/YuOo/WgbXRkQH/KcuC7t4L13j9ssmJDmy8uiXZ2MwQNae957XP3Nt7s2Uo0vhXtoPchJ+8O3HmdyGFMPUofdK8QVietN3U0vPn2++vDhi0UGd/C2xBDjEHZ6Bg9tIYjwQN7njWMM2rNrxcLoTTWtg5rOy4NUkmd6ee5cbQdAphDi9yFi3fjJL8jtBJMJgeky6AFlXMajq/laXuI4nlHQA8w+Riw25jQZUvAPr0VmZYzrK2dpGC1jJZRJJ0WfLM4wUYJf4wZGXVxe3P7886eI67abg9Zj0LNNvpPw2oasw5lzxpCUf4TTprwscxeYxcFULbTIFNvqymYewDrHnXne2RNcarHlK7B1C3DHhUph46eZdhc9Y7nliSKJYcSOkcxWqfRx0Xvr9asOGkF060XrB0fb5lvQJWzgbESew+gRmIiV6bkmP6mrYraRmRia9FA5ZnJ3Np1a9xWboE/0JP5rs8iGFC5eL2WdNkKwmXnmP1v3MMd0ghZ+5gAaHEQOjonreJT8aDEl4EKK+lkAQxw5zZ1iTClb1MK3ohNK6Kcrno0NlOiTLqdu3InhNNHxWSPR0HXkHd3IZ3qhQWUyKGKgGteyBmR9yRcF2XeEukQZeZ2PkgcmrUqUyuwZxHgLw9HHgPLfGQJbbJyJSIYqyaBHZqIA+ZuUMe0FOh3qpup+BZWReuHVkSvOhfUbLcIFXBtH15PlJO6u7NnmTeqt72P+x9FyCnJxY0QBgGgDEgxJtlt0Fezz3ikxludh10AznuKkSmFcOOyl9cU3Z7R5M208UDva0F5mXWY56S6QBii9F/IbhdFLHitSN15TArSQyixe2K3dfK/7LucxjATL0JRs/gRMyDdf1VqeAg6JU4r/iHPC6ghfdYxI8bQfQhJYcLQ2QHkYtZ69SzzD5EJ7eNO8en0xj8GkQD0vjxa89y0Kz6OxnBhp5lKsLXQAS6TLFP3q6umnl8vja/st3QPS2nQ0+Yq9UK0FhDu9vNu5cCRVyRTYskFlTmKuWqsQvPUwiXpZ+eXnL1JRipa+inPQiBJ1IEXk2GbAFp+g19ywmbLBbG640/cv/2xt/3jv6GDr5z+dkvbb6ysG22bW26v9+zd7wkQHB/t0QcqdtW4itfr+083Hs7JTqE9BYioh1PFem0HnqPiI09Nrs3+brjAeS7AYQf5u7tzq5jdru7/9XXelOo2YZobKCZKAL7xjBqON82paw2jXpDYMyLfptIibi7MrkfGbq2t6/+3xwVvb61gTyT9FY1yaaD308Uag/p4ni1pwxbO9vb6AybvHDbOHTt4X/XTr8kwmS6dmKaMv2GE7kZmMDb1b2xiXIZyDhK7Bk0DMrMZMSXuvRprM+2Mt30BGSyrBK6fVs4xeqsSEsNQraVsYTevLj9rTETA63FfjRg6Gh6ez84s/vf9wcGw+c0LlcuOnmeYtIuyLgxCIta9Zqg4RStnwV8e1j6Uxjbi6mWdb3laFzuSntVfRXmiDoiqDLi+EBQ2STYdB5WXOK1HoayLOs8lLdlvWtrNm0kzOfdLZ4SHt4b4aW8N4szyY57dH4BeGEvgBZF2kOQxTT4Td04Scn59FtensCnNBlnu/BpGUMwzmX2DBuTbJwj6Wvpkd2ixLxVCYlWMJnPdTsqPWAzNZGUz7GpcKCChoshKbRm1AJxMpJ6qdaTEZNvbSBc1DKCrr1HmgcpDYECEpwc/o22uwjDTN8aA3ynozLGB0ITztCCipI/R9afdeswCSpoAwHwCrTnVZJETDoTU8O1niDZsAaT4lh4CqZ6wyucY481MoS/wLahoUhYDWHhg5/UydWPOJUwtqaYQp2fTXiODJ92y09Tx2iJb0WT0G0OGDXWkwXQbxuuUezRVskgRiO4TqXnpxFNWYxgKdQ6L4md9TLUNCbuFgC1GmF/Cs1YiuGhtkj3tK3DxSlQxGhibQmSQWkNZFiuGR9GhhMx+carfSTct3tlk1RhwLecOLOWFJYmGkHlJGyQGysT0hORFIRDWjN+ai6ULLSnDEhMB13waTEuprrw9+Lx+9KzUYir+SW/vTWl9UEGf57JVRhttZU464vpzmUtsyCbHX5WWsJi3CYb03d2vPN0ZeL+GBGs2krcvW+PTxDGN3qCCalXkdkU2pkAJZNREj671KXKLXT58u/+qv/t5U+89+993bY6lG4DXsRA12gTjA1IsHXDb5PsgpoYcO/fDp9POXbpyFsNULJzp0DKeQMv63NVcslvPDCv/88Uz6fyFJmG26HNVCeYsxIRGrm5QzCFFlhgPQYUt4zsve3OqGIsr2iUuGaTr4s1dMC0Rsoi0unHcxc6oY+Y2DlGKDu8dbK9Knp+dfPp8L/rx5s/vW/ZQHrvftiEBhaj8PL/cXVw+OQhLip8X40PB3/eR2nvu1m7vLhxf3B5gcUPEwizTMC35zfE+kbFSjdjFE2j9jlkzyIIGm/F3+a2Md/a4wrMaMPkZF/wZ24493sEW/dCAfoXJ4fjz0fI0Mw9fMff30z+chl2KYBk0HMR63ycClwD9/OG+hf2PtR1eAYYfBsA5C1ix+xH/xZf9Lz0kq0hoe1lZTbEpMOteKtRxJmWm2BjNAsuTNP+TZbDieW2VjTxfQS/lQOL+CtSzVomOQZI6JSJkP3ZNXWtp8pT3BmZZSgXGdRydlwIlE3dMujEZJvYKS9Qh1wgAFnkanYG6ptY9dzchalpIYcz0JQFF2RkplStyHN3cHU0mcVjKWDhmZgTfzIrDmFjN8MRNiGHXxo5n8x0rZgQhunGlSlk1ewroEXPzDPRAlGVYTYMgcNj3nwxZ9nehy5F1ITKNBUJ5JeIJwz3PyB/U+DBEESlI/aSDt4HbQQ98EAC3WIUwGCuck38jAoi8yymHpiKToloaPJ0NA5K6Fhm2kPHQMiaeGMJotOJQWihtbhYRArxpVIcxMQBEdOhI5/DvcT2rxZccuAnN8UZ05istEp/PEQVBjNC+JZAfYWr6+KXoNpnDjDM+dfM2/50eIPUyXab8CRvI8DQBoBohS0GHKNnluGlVGzF9G7bDDrN2jju8bSRKTy9rYLFdYMglD4Im93KeY/PouArMvxoypUAGhIhroQlIwRHKF4n/PBzx45cfFyaGI4cMLprlhLY0AwAVziVVVo+4sog91tcyvTVD81AYUg2Mhf42G2+q4f70KmpsgZBsr1PIligk7SB6RaX1ysmeN6VZCguEMzOAkdyYRJeq0iNemP6sv287k2WYdTb9sh24VTMMhNhol9kB9/8tpa3ZPN+t/+ePhrnz5nA/uHmNQ1LgOYpeGEAOv7DsQgUPuZFG3dJ24PfHCTtqNndfdN1at6ELZIxxEa8htCRHDOTrZtu5qC8LNzbOdwI60sxqqUTwxE2/yJOZWaFiIBP2iQUhibjf3DoW0Nva3Nr57s2vrcUpAPAi9ga9IMPWLTHrBUuQwyJLVTPmgUcNPPPcP77+cnl5I23dBzXHTFHJPWXdulVUW1+C6he3s9Lol0TYMxmfSH1/li2C853s7YFr1Si6Kufc1FCJMR2h7gaeoD4giPWz1p6XSnoxo0ZPVqYzvoHP54/vaNITAH0arlSS1Ah5oYr61QMqZTFroMdkB5isYvI5gTNmYKH1S/z6CqHbJ74us1/fvz4523f+1e3LMJ1jSLn2bvalsXfXHS28DQM31Rc8A5mNzcCLG7y28bwC+ZZ476q3TJd68OTACytK5RqYhDhtnlDEovRyQQLOiub+5z82H+3WnjDzcX92pcnh0IAWZitc0eHRG3juHUHLvTns79K+Cj0aLuH7A4FS1DIzZPBDu4et1ZXvtdbcLhLoo2NaOtFy+p1nLJvfx9WHlWqrs+NDGOxN4fybAT3TTVz1GVDAMRpUNP20QgZMhXaa2gYhJuM0OCFv8DKaH7DmEZIR75LC1Se5PGYeCH9hyLLvBJudwRA8WcYVPxqoJfa7ByPiwxpTJrvaoKQiWg35cR5mqEvPyXimiGD/S5QakM8ZAFQAUc0wjIlIgxEO6S5kxogXfEA/52RFPbJ0zl/IlnhmnTB386AHViPNjiebreKpkFQlx+61O8xrjJN/oPE7s8O9sYjcmZLeBoZswR9sAeUKTxC4eVUKwMPIlytChK99nFmetHtaaeZSepYOWv1fMHHQT0mrYPnKqvYlZItivlCSGBa8hQQcDbZYH87Q/ydmVVsRmIRglwhEoyQd9EFuLeQBa8lLJ28QAfmbsmkA1omgREsL71qC9UvnTBPxAPX+gjct9GaIxsLmq7kFde6n7aZxYexO3TbTqtWNjVUYXOyesFLI0XHXNDESKSYxjeogAXLlBUeaDnHqfVy4exHpSP6rqkGmbbqQdW47PCDZ25/G0YWftsZOmxATSkjUfUHEBa/fw/PH9qQ1LvCgLwLIeM6UZdX0YeYw6RaPySGjng75xCFfVn9futr6I2a3IHtldfd60xlOURrTA2xLZVvfsNXvzhpd2ffVkm9jpF2lAF6IoyGcbmGsezUytC5/Tv80BmC6GID/NsaPf/PCGRCfa2859sI8k2uMIsEcTIhF/JwheQ76iEJlvDOZEshsrz/enZxenX6T/2K26dvLt8T5Lsu6yIJGdB+d3frm4Y5/4/tI0a5jI00XYn+6FgwQrI1Av7QEVCZOFArqRDRPPR6sv2HIkDDRDOGxCOSkSe4M11mQtwuKC+OWLmKaai/b3rq/TZZVK9w/L1HHsk/vfamxZ8XkdUvISCZVUJDvZi6GVR4OSJtZa4yqfXVz//ifLwfyGTTlNkkdUSngW2IhAENaaL0Ad0NrLSVpg6culwAisT/3onOgB6eR4D8i2fbhC6vXD+eln290k8g+tFmtmjFtrewcS1TZNIWFCuj8VqgTtfGDpGLALOcPHxDwarjzRdNSA0eyqw4gIGr2gdyQUAjLHhijjF3Q6xHfrLy5zFkEQPOzow9l2YIGp60LzZVuUhSkcTVroqfymqKwRHlox3Ube6IgwOcBlXT9geBS9WtagEt6Z6t26RE6O/4ZLiLgS7X0w6wBfdUobVR0tDFZ7hAW2PJA/wJHv3mIGTEnDpe0WrQFjFl0QjyWKNRp8DGhGU050B6Sb6lanFdkYI+kctmF4IDP57FFnaeUmxGex38iIp9OdX3kxA5UxDrPNWIs85fNNsRZG+fg8M0G7CZZQvIUI5MLJm6TrW9gaZWKI7ITsvdUtI8x8NigdAFdbOXX5I6Zx3Bz7ND0axwCzAI9yl+MKqzO54rdOYMnY2LlQMNuFEa7FkASs4Aaj1FQutZgXSXKJaobWYESIvuaoeaLpNTeupuV5EeZ0quXvJ02Dr0Uq4/lBHDINs/ndGOZjtjPe1P0IDqQCPC7xpnGG2CEF7RSF8JK/U70ZGFLGUbU3El2ZkN5Kfk0jflZUAhjkBwWuMyAPdaqkehqGOnF08zCJNyy4rVUUXTmSNuVE48AgBVwe+p98aYfAEBa8Y38b88cX5jemMhpYtit0Bj2HZuX0y+3zX/98d/v4/fdvOhFhc+Pg6OA432ycgSkaZwIWMScOe3JyKN+TR+eKvj99PP/93/709ujtwZ9/By3GVVaas22KXVha3jhZ3Xo6enxzuHN8uPrx85qYDLK4JMY5R4ILZZo0yUU9pwZJUC9c5bi6b749Ee5ho5oHhwxiathFLgZVjcT/dP9CiZ57sOqcB9cFyze9OLt22LL9ZSbIu64Na7W7KwJIlQREKYucu5sAAQAASURBVLM2Nl+5kafwTnNWVhww0Os3Ru6mpjsxv5rNjaBRtjmVUAZOGZ/wAZFDyQJTKB17DOaJZGZs9GDCCULA5hxozvzBOMYuJHBaR6++6WdKDE2HjaqYqRPQSgRAWGYGrmgNtkohIDvoV/5g3DdqJ4kYxpBi68KDP/30kQVZX3t36LyGIgXDprUcH2DTkNsiIdAwJEkJLm2ZN7PJbLbucuplRyAH3a/17OWGfd76adH3VRby/dmphWJzbFIGtAbrF3Fmv00cbaj2pVm+rHrzrX5GEzbGwY/fy0v3QDRCkBroc1y95vxUG8HKFqDgmEDMYFBWuQ83195IQ+ZBmAK/vFzYJ6pyOfDo90xnWUgVkZx1StFk0cV8WmPu9GIjScEMnfiwI3uUbB7HIsD8ztYYMnnlKdn81oJPm4jatOmLkC5vVhgrC40yG1ssFbLAQ1/mTUCmRet0T9Kn00YQhn1d14WYmzd005iTNNHB4BW05c3MTfA5wVIzXqkacmkrYuqMbIQnY+6VEoTjCBah0KDOg6fyanAosa1e6wUuMoZEMs1QOI8uwWC22lIzVNXY5LKZm4Wv7m6/2OWo/2FZDWsmHR8DBg+gIL+I9pjaZXQ8OPikDhjZmI99THYyfcO77Azc6Z+0Q1o6V9/tlxEaSDPgNaMIMDQNQ8a8mJb41vD7OkFrTykOKRbU5I1q6Q31SozJZ+xsCepBWFGVhgAa9QzSi3yGxUCLRiMY/sIG5vN9pB597RsVIlBVYa7BwBsPFEo1OoKkh4JxdQQhMUlziPjcuAdxtQnKOk858CEw2lSpABhgSOiPDRCXEaGYC61eTALcZ+vmlIvyTlSFxDQC35tcsCCaUjVfEX7Npk3atrfuuGisel2B4ddOskPQ69gG21vvfn5/Wnrf+sbxm+O/+LMffnCRjFs9NJ0gANFvSARX7s6hkwaO5KGu316v/s3f/nz6x9Ot8lR/U9LC6tqlW4g/XijOlvA7hXX3D3dfN45Xd153zrasVAtSyexhoB7uN3fN6+WQOljmRlK4Iyvu5a4c2QFgRmk6HYDD40xDsppg4rPg8N54QpSvwhjX6uzq5uPH87OzGxk7BQv4p0543tuODBhv7L3lRjOjQUSo1ponwDl2olspLnaEFN0TqibFJIbzx7HzmxKNj9de3Yhlo3ZpJE4j5icuAps3EWPF5hBG0Q9cgz2tJcOQOEzU9JowUjMYAMaadyWyY2NVWOgU29LCDtC2qz3ZNEV5ocNwGkuE0Gr64dJ3PKL4ZjyI9PgoJ0of7qG6fXb33MbWablA7w7tzqPDhwf0kghjWh3baXjXBomWLWfruamQ3JnCj45PQpgMLm3uvmAJ3nbPQ7fJ/5xvZxim1fYFyglmw02r4co3nvMbYfXAvWXsrw9i+JYAJQe3yF8kCwza1fKMGNIbfA/DVV9EYgPv5jszSuG1AkwC9bE5tSI97Ghn42jXqeISEJ4rMZoNIkhc2n2mUBpJpC3Lvm7kgOuXvEMW5/+1+z+FBvQEa+tUnSHmudPrPqe0+fsQDXyTCFtT5EbxgbuywW2hXdPBBFI6on9tIaUMWJgYFAN4qKPomOCD3MjyapEPZJgB+fU+QdcYRI02QKfL6rrNyZiEToQTrXhBXIzCYNApY/dpllFco5Uy0+AYfCq9sCBHD0hMvMzxnImxTQDWDgAzGF2z2p0EqfmUku4xVEtY+oGdllRSqe4UXVm7Y8BCjxLNUZFfgMhUfbKeGqp/sI9DnU9hVCiICm39axDoCv0UPsY3fsVrDIT9Enxo/QCAHImyDGAMoAuuCnvZjskjaTNhTDJCA5WphFeZUMyGZeOFvhJJsYmoYzQevgp7RDvjIBCkWthHqqQuVHkMssBPsygMi6lf/frYpMzgQloWtXJeS4UxsZ6BeHnUV0poVGupY6pTo0BOA4xK7Z23Wc2GlVUcBRIHh1h8zA6HvpFlXLEizOqxq1aoZl7G1b27uu5TUrKQJ/nOgvcyJQQkEdArLDPrhM+cYYYWKqLRgGI4GsQDNuXc3l3TqEb28eOlM4BufvfNb3789kiCnuOR1cTPmagsohHgzQPbfHfslT3Wxr/+N//ub//291t7hvJu83nz4vT2vUSj54eTu9u3b+41QJBMIW0sezpsJp/0jng5s2Z/n99dYg6lwABcnJ6JZEkV297V3KYZpn7T3ZEZKsAeAbjDQFowGjs33qfLq6vPHz+/f396eUX557fCigAFLYGvYQNLQiqsG0AuDdzHjoWMnZ5pbaMjisjpCBBEGXTsELVjjqhLSyAZDYc/Ya6nWMN/BaZGUEVTIoPow1d9VTOBjFVLS/EudywR8D5+Ip5jR9gGNevKsGM5fmyhYwfubtkNYVJ1c7NxdfHqwINoqd0xJPhk8jeoN2wvPDHWBbhriOtU8HMGRAQrHzaFPSppRqUHJxIJhJ059akVWtETi8bszPP1ve0ctw/XltVenNrkwB8xxrBIKHL42usj5Kc9Gy5gz9GFxY/WBpnmdo5sc63Q9jrt33GhDbezhii11xsoM8Z+vPBWqJ0PX9/NyKAtK+85QpoAW1CyDGtIkEYvSV3e51wwNd0Alb8qPTyUvT4645am8zxhT9JoFU0Cjjpo3ckX6fhxgWnosBWNjEmqWcJDH/CVm/4XNS5Yk7tJcwzf4Ivdbevyhb15aRwnvo+TkGQRWnMjzakoKNKFZvmAo2qF7wgjQDIWOeBaHy5EeimP7cvBpySEFGeS0v3EW4R9rDY84XKKQZtsvVCgbodPjCZrFxtaq0hh0YcNWBszLjMTg0yttXyey2/8cAUuCJnVV4wmSrac3ljUQGhGsNYURLsdUAve6KH1zUIuxCiJxLxNjNyUDTGq6FSrepBCDR4rz1Sm4cC2DlWULDUvmONicdstMwPDLZLlC+J99t5nU0UYx9T58/ohtmyYBwacu6TncDv6WMnC1kBXpXVeX6B0t6u7A2eL7wCqBjbfCDtNtv0o1hoAMDFu63kIUZLSTNGMAnUWiJFijCyH7nULxjAxfr1xhesM1CD6Kw9DTwU9n784X8MoZyDx8yjd/AKspm9aiKpzM7P88dx0oOLlahto+dgzev2nvJTadjtr5xepc6esOzhEvDj6uNBuJiOPwaDBq5A2gJMEf2e03sz7nhgQKQhSFQoITVdPdz/9/sPF6fn70/Mff/vd777/9ohjHDdYqBDDTGc1hnjr9c3x1n/4H/zAoT69uHKK5vPjISo5aobn+Mvnsw8Xl99eXx2e7DktwgzXwTgCDGhITPixrBZ1tucGFvnnTNTLy+3DvSx9i2y7NuNa/dzYk+uL4ujoBOVgTHnZvdVcNd9BY2mQTsaxIn1lKmPBHIhDwg6SUCQqeKMFii5nQuf80BQYu/CQ1RPO3tpO31IixkYXI7SioT52bpcl3k+CirkPD+Q5WUpMGSkSxVEnFoGW5jR6TUY7wqPmsnupwMqPIDKlDWx8v3FmY6LOKVDcPwKMOxSBMKPkvruOQBa+Lnb3rKWvrlw2EwgYsxzNdsG4IzYZD9SvpnEpFtevrlqb1VRAYZG35gGUJvphxsyUn3ZB3N67PFmkwC5mhzWQScem2sB8f0soRPxBJEtiWPCBQcqrKBALsgyiBaqdd29Q0mPTqa7KMdr4xLAWQoF0UAEqtK7XQB3cLAwVMWPHKlWlN4jbu2Qwo9TLQ864vbIH3TtplmFitPLIeL04s2xkuflRSmKamLaR0sQsbeeMMhNDWJ31VP25AqkjcOMZONO4/6BToNgy6FtpQHax/sAjVcpAnjQccxoza4GbfXtHdrZedlbxrCtG545fl0IgON9Hu4kKoiAY44OXhL/IP1tIDmgSYmXAxSJjMb1DjW0dVjke9ZzrzQbYX1tqs3SRrYdOT/ITh03bkGO6qqk0O4tMKcdc+tRcX/iraV15hj2SIpR8EAx5Mg77ZcRC11auRQJpT6toacLwuslbgZU0X8qiCYKEjRfnsTdHGFcYkQE9/ehGZ2q3Qc8TAQTTi1LLW4AZ0kI71tRv4qvVZrlqm1ADznsC4/zRzpQgMM0s/Uu06GOgmys0cOY4/3FmXQoOB+OW3lbe37rRttF0bOyKiWdbJuEfbh7vnmU0jWEx54vksMoIjYrXU/YVt0S4DJov+BUtfLCbWbZhxrR77ACtWcHeRcPegSIuGqQbg29QKZsx7l4K17BhR6N4AmeHgbR26kh1IzUkt/PN3CUJKe2DLjGYal8hyevawcGaxNAyY7hhG+vOlkSyHIYGr44ky5KCDG8M2VcAQQiZIKnQaA8jqveFhPF1ekNXZ+e31/d//HD62b9//pd//ubELemdZ4/YsIN7TdI0YtX05OjwP/wP/vL88mZz1R2T+UIn73a/uTv6eHH14aMDIG5NI76lGuaG4faV76ytbHMNxFS3aDSq3m9opFxCxsHO9aV5nDu3YLDdS7Z9RoNLRxVEF8ra1tH8K4OJBZY0fK7RExv49ps3LjC0F82Rn/LAocMABROxOdu5lh3nonUaJ6dm9GGGwD62vMh8siSgOLOgW2VzBLmrVhXFP2BpMnAwUifME0DiPaosonUiBIVua1nOL8R7tnln3+RtG2VBkhrBbfCeKAa6AZteo19LZJtCoWu2RNsyga0W1ipqwtWVb7PuWNh1d0XACeG46TRmJ9wAgXMsWdaRGc2Pb+42zs5XZbTGhrqs23bOcxidsPDLh8/DoMA52pcX5ZL76D6wUTcgp023tqlvlGZWePcuBrpedxJU9zewoNwLu+TSMKwmAwC4GKKPhYPeHhkSX7Dzn5OsSKR1mu2B/fbKmoqShNk4HoDD/JUcCUoteKxOiOpbAzTTkmBkHXgCT5ypccx33MnpHMd6EfZFaqcWc6C0mmwaIqli7ka2ZrMupOaKeu7ygCyQruqWW+pzRwMSqzhgaJ6g11QugKcDVsLecAGVHSRk1BC0hTthbIsiDqdO2LeeNtJ6NG1b3nTBydRYDoah0f0KkbOUWUmcQKgyjRY9qbmBDapSHiStCFGGFgvlQLEQzfPHxMVK+tAEfmo1A+M1yfuKviyZAZCT4sT5Jg3FMPAVbYLn7IbAgrpB2xx92kCRaOWAhLRmC14S6icBAjyg4HQuWbvNyiEbLlLK0obhHVn13YQFJNLwOwxmxe3kjGh6Eq+IBeRLDcHpV6Ay8T7T2HOEKIkFMNWfL6YRPYTAmu1NGNKfSCPbz+3PJVQFAOE2XCqlHO8sFoOscJUGHTcCp2qev2NdIuEIIBffdImBfsMpNTMTGR2mbnPSPa+pikQahBizO8zKqGCBYaVhJ+UiUb+NF8YwR3Izzk5DWL7XzWCg35DWAkm01DNADaTH0OnrRcJm8DmaSGjB7cbehuftTmptl6b4W+u81oWd3QG0iNJESK4QQc7vbVI0MOl98KK9lH4LfbhPZ/Cgf+DFnQA3cjLrVJ/LL7effjn7Z//0L37TfQKHxF45L4QkLLrjjR/TJ3s7RLVDFgxZBg/XwXd/83J67RaQ6xys9XXnGh3YKIDtgNGhJuXq0YoPD7egpj7pLdr5/PzK6A6Pn3YODpw3cHtx4TQhZ9GTGjrHVoOC8SRGcGHGmjbhM6zbV3SwLRJtYWFbZudoGThcg66OA8H3CGnyETXyxBJF7Em2CBen12P5oLST8l1ZljSGttAe8qguqgf6Iw0u8erDEDQm4SlirwQgqaINJiCx4dKW5BO6vaJ2Zq4302p60h4iwR2nUdFf0aTDopUX6Nvfn2EuCjVvxHmMzcIgcfVw35UXVrNH9pyxKs4lbFZO/SeHXc9Rn0AjH/GSkxJuH08Lsj27sOXH7+6/f3fo1jkBb9KOs9WWlrntAFfX0DGkE46QVmBt4HrPgeGaKxUHBoxr01J5lycgA1eAhSZb7FAHS4w69Ji8GGyZerp+6l4G6cv9Y4euHUwoDdcBeTc3IGivuWEr/g+vEJUss+q6nM3YDrG7b5eaMjBOl2FDFrkUbcTEJn4kgVJCo0M1lyPVEZqZJxLhF7ZUdd0sqWNaoyolkxpA4wJn43MR9bx7BlA/ownhZ5ER1J5A7gJDmiKwq96htoXl3XK3QiAj6o5rlbgETLwSE9TQYMqJ1OCkNsHUAM1YSIG+G38N6gI8H5CIeVi7RNI4ADnKwRfTp0hGltYyrW8AgQ/GKVOJEGOw2iH7jSOVoIhEm0RFdUjSiomH7QGvMoxXnjatkpvSUcMvmw8OZSmTgT5A96LP5AdP0zKGCufaxQYMVJaw8CunafXRRz/wXeIEptKJRimIsuhC66APa1UsIga4L7z4IuLLNIIAmU307LgEw7TtV3c1Eio4D4woxQhHQl2s5kKERBwGhtchwPigmTzOLrW+RAk1gWo8G7PkoQsjI9fI5Hlr+xiiUWfztIEW/uCRPn7tNuwCGEdkTsc64SRNewZEoPnGh6heuSSfiYUHsiJ8XkOVikYcAiyJJCkBAZZCt8MjOkHACK6tOtKEgfocD3a0g9WOlefr0Ksjqy/cBz6xGfHzPfjzJLCfIyIorEaGwiEKVPr3+9VBW9ZngeHsIGLWqDARYJZ94EMUxRHw/vb1p5+/2Cv75cezf/pP/uLtyZGLUUag1NGeok7/M1/UhgkHx5yMAfD5H/3uHcCcIicp0/6Ao70NuYDHEvy391UjWnL2ihTeXyFPsaE1F4y8XJ1fuaQeh55+/vz8+Yy6FlB6uDFDjbwmED/8aC+rlP/Ho+MjPqphjbiYjlMkW86dAtbDrk0J27J93LvLrNOR9ANy5pT5DNtmh0SruRQ0k/6UO/JY7aOc8sHT0rFW3JkwOQyxvYyhj1WP0rEkFk++h05hYqg31KrWwiC+H+Ma0+gsPtEqKL2HBlLBh7cq7vDVvY4hfXy5BCVV+vbdnnvMtnf2TFKg4elRCI0vZTOMlUjspdY2TLrhhnGiffb21e/GJrOTF9cztDcv7feVqyfT+kLi072dzs7IOPr2/tiRR4Sz3WKr61J6juqu1dvRl5L7XlwiJ7Zzc2nXxMMVhb76YF8YWk90O1+enZyJ9apLfkwfNEX9xWEGGIPgbgb66fLcDTlnTjQZRS150iTzZfOsBVDziTlfGpdz8UMb5HezhD0Yrphksh5WHTknKtw+BFxKsQAwiZ7hDc5FFG2CzNyDCB34ZKQwgaF6CuRLBnCFcCeH5COR56fVsrxo0WYxCQlIC8XJaXRORXJvttf5uqmbYrIZA460TmMKpBxIqKQSPHmcnSOvr9XjbWdFAb/TwW3ayHS20LtT2tGKrQvlJ6U5+q9ZihFAExRLRy+poXGMr43AfKSzTVOGDclnnKpzytqoZstzAcGamJ0LUiUpibyRVHOHK6jSgAUjChOlgNKLtKfUgbSqJPS81A580aaBr7g64+lGICiVEHTkoOktPdQB9ZaJ8Gecb4tUSAgo8dCVR6as3YNhW4MwCQsKUE56VKbHGAOH4rCwaAnFEIGX7lBQuhbNbH0oa7wu39G8DMBGRtFXKAFsaxm9SBuCtRUR+efa8EPjz9CZgQy1vkyLhcqLuXWYgsSP4gna7swXLiNwiyYxwM0JxEoTdhgBUej3qfEnDvBiyJ4GdoytKfwSJ3oHyik8v3ybm0Iv1Ebj5BY0+YMeuGk3IxwV3mk+yoylbJQ1BxJlQOqQkcnP4lCmuvf1kv6hjs9jO6VDlA4NZn0/r+65FiO9EIpkorUQJZOx5sMVIICjgEHFNWuv+wf7b98eKW2wjg1QzreVqArAcCZfYEa7lLlwROMvp+f3v/vNj7/5szf28OMXRi0013zjZeDUZT2FefaF+TYpk513b99w+jhyjiZzIa4NADIqcZ8T03EqjXB+TjnctrQvg6sUvpduLOM+O47e5b38ValdiAsbzvX1jXQDWxGcJbArACwgQIwykWZPcexogNvrG2MNVeYxrqeRo6WJgnUpYf/KQ6RhoDnY7Ud7XLtvBBwmMwM4aM4Usvp+0JfB8hOWciprZXEUwudQPPbM+Fketv+u/RdJd9KWicIs9E1TBB/9VDa2Eepd0lCtqGIC25431m/BC1No9Oabb4TTcYpTN66vxx3jnZYtUcqYpdVtmYdmL9bp8QnGsoRLoYvArEvVGG8PmxohqHFJQ1+5u3v+5aMbiR9Pb5/fvnmy/8NdlwZkrd6eXPk7xS1n3FzP/FKBRKGt+y4KvQ0x8jidukn+zRAknRfy1Sl8O1o0R8T8f7ocfOiSibjn759duCj4luerUTl+ZjnljBYiXjk5epYkukUfNamqiswjPGyXRlOc8TJzNIqNJPmBh3EpUkYDi+tbqDwFJyUiQY1kyBJhEsaiby1VQlGEeHEz9AtLtemSh4KkkQQxKCjEbOHTaFC7R9jAP6/4xJ/lveopYd9i+CVug/s9JNwVbD4nJfnRXWRFDRUO2BF3gwMcOtWZotMnH7EiyTyAjQbHJIv6hh1VyTSk9JEBTcPb+rsm9RS4PoTtITPzBDVoY06WV8fywm+cSxkgj1rYZfzN2feQtgdAOzfDDgyKCnnGZYc8aYU4gS9PE5ByLBJ/NUfhJYqG0LdaM+BsI6CYUCwGcKQScdJaB5UNcEbXSmxJJNThiwMkiEbEUQ03U6Eho2fYi2vbELE1X2bshgJAjcKhDFpwGGHR9cbs/Gj8Y1Rj2xYq3Ai25fBg59R3nAAMdXuRYwly9PspYXIWfnAM/tEdjkRriI9x9JLs0DKJ8JDekGIr30T4hRNCdqwRdZsrxAB9VqE6vfzBW4k9TPAdvUKJXiplIEi5eM0+gptpsDNRSbU0CNvgaNwNt5Vkf2FJTaziCNPcFsvLQqSSnggAH9l+zekfmrhmRodiqGEswQNgTtHGmp2ZtAe6CBpc3fCoTemiGI1Yy3lDQw86qjEAv4OSfvpw+uns6qeP+3/559988+3xycF+yWihCUr8V2u863SRsys45VJwdm+P7JrHjuXRtUqJ2TkSDy5efPr48eqDY+OubyiIe9dOxoCiyeIeTTevr5iAX+cnUFAo99mh/msfSnZm4A+fXH7r8ImZfSx5BILNPHjXUqIqv61DJcJTQYaGVTwaMNgXIYcE8PH6fGcf2W0Ywn9Ydb6nFuAcycfmhnHDw11UM29Ss+71xTW+yEhPuaF3Z+vzu3RIx1D95tVQmBg2x9TcwsYwlcXVJnYXXbk3TX5tHzK5g3UA0k6u4qEtTePglj2AaRedmKVAdsrwRYZIG23Ej40Grtzo+uBgEAatSW/gVDNNEmG1r3vjpdTdFWqu4xoGfsDNu2OBn+MD1zUUikwj+EepDjtj360t4vu8ubPpuOnrszuqcXPbAmJLa1YPlSJrSbatN+sHKy+W2LiG0M9v9OrsqGZwgaN1GC6WWnCHb6tIKagnL++cwdp10/Skc6M6vtu1nXbx3ViiXW3jiKUS9TDiiI2IYXGJiJh3JN9/fceZFVxOQiGkbj48YqP8RBvDOqzF3M2ILDVpjkOe5DfSSnHPVu1tKZxPGHGIKZT6bS7XD0pNDCGPS+F0f+Q0IF439JhcqMStoK2SYwTmNqK8g089NX4aT+lEtIXa+R42dOsn3yW1kexCUD32Sq68g8lNJ59Rr6N2VRUNFePQiWYhcRrTACBJqxM32g0A3dYasmHghBi/ICFVapqQoqF8dYaHcn0oxNdm0ZlSrii3usZK7OFytBhVVsOLtKAdJ/G9umwh1DE5FuXcDyQc68eaQtCkvOJsjfoIOn6FeTP1yxEvpZZVq6MQyrAlhxQUrHPNVly1FzbDXzETYpvc8mwYFYNQIRYd4yuTA/QcEDJO3v2DeblUzJUdPQc7W44wHK3pigygubA7fzhfEtGgZzyL7M0oSrCmJyEQpozDu6GZiHZgzodRGcZmdCE+F0ENJWOQ+RURFmVbUwleJilNoAFP0B25/Q8z0T13E4FiQacTo45rgcscNUg40DiJzRZFtlSgQ5rqSXVtxHi5BikDqrMIQts9fa3pecVJvPRMmd5HrhfyxEQKDSRMe6dXidTTaFyzZiDNbvTYCXi4eUrCw4ozNf/4pwdX1rx9d/T9d+9O3py0f8oF9l0LPlxb1gkeojtHNpvKbWL/LuPtxvnmf1qjpE8/Xf/pJwe1XY0TGQ1U8Asz8sijUocqomgIo1oS9tWVmzOz06dnN8zc3n/7zeHzGxPEJsXQSHMKkohWESCekgaI4OwDSUxSO57BLPbVmX9mK36kXuHMcv54ZkgJtZlenI8L8yeSl5FGrLUpadWJmDZnvlyvM1omlGaZ7ZrDhXZcp9o0TkkkPpl8ni1Kuzkrb8w6pLKmSlFPERRsGiC990rW5YNkXAGv7sXkHztsg1EUVdnb3+Ign7w5oupvVmRsFuORMitAjKFQFtIcQw0Yw7u8uHYitNGHTsjUU8BD5SyYAbQhxiIMDCN7axPI5Y1Y0M3RHpoeH7uRUdi2Tc9qJQOZAgNn5qwDP/HiUy2mI40VexcwLeeyZBYPnu+3H2KzAmzMPBt2d35xxSrhsKOjzeJ5eIg9gPXXlwuHmN9qR/HWPu3GYCmdM/Wlo8dLTYGNaC/wZHYSTCO0tBjdwiUhzAQVQxFweUHbNNSdffPFE3sKjjwswpPj12IFnZV89xKrF/ZfvCQLohCpBx4NWUxgNtztWkZMEVfYTKT6AQG2gtLUhkaJB6/ZeNswHC1I9ei9wZy+PEvMMzwe5Y7hLT4YJZNXPLoAKzRvMkXJyGkYB02VvsWQkOLd0g7IR/9RXPqnSofVErnYndfoOaGtgTisMEcaAQjeTxx8AJmDU4K4NXCMn8lOs7AJrMyoU9GVprC2wJU0TWw33drsEhUcxOcQtR8tBXH7O12txQALbbTKVl8QpXuw5clSDAa9suVqIZZoxd2q4rx61BSYgaUMmoLUP++zm9ZJhGugrOOAeLPpfQNLZBtZdbAnqbYpFtfFp8xKJxfKSSswQddISXFtlS7kNx0dbhGPDXUKugpP8eDqwzHiBgK65jYZiNHlMgusD9iVp7YxqQP7i84efjO6qJTaAQHgUxOgAgZH46t0xy2VWfRhIgnqcRcVsCs6U29QucQNpzX2cu2zH6EAoevCG38hxoQSvZooVEAUAEWxNqJxjLVYiAEKEgrN+jXdj9bP7RzXc0ZhmLnJj5si6Zbnpj0FsHyijgATZcxGAomAE+tkzz3d4ht2Rj6/nl/cX99+csj+8fGBpdcfv7M0cOg+Yf1DApYJOZK7qGPXKN7cSzG0P9cJ0bzv0sMduXN3d3Z6cSn4kwtprIYGRihuquuNvroaUluhT/+UkhhAkx2ov7q4JaME6en1HPdKVby9cktNgVJpNKZ4tnkyu+kB6rt5H6wkEykt/71LOwZvYgOACAUMVwlNkmmyYF6KnN3PGpUwXt93qI44+dSDYclzq1IAUWIShyIU+WxEUGkITvJBM26H41zzsprekko9RqOGbTR0JSeyRdaMb/0EkRjIw9Mln8zN9hp7s3oCA14wa2nD2f0xARTYnqMFx9Q0cOvlj7KAkC4cTrBVHAD4jdR4od43BtuAgCMi9Pjx1JEcCOR4/qfLh/vDXQe/7pvoRI2J/maRRVFd+u6Oz/0dsSWNYRajpaAFa25cuyEL+N4B7GJDX/I86QE4R1tsTgNZFTXjhOaseE69EUI9it0+PJ1+uaacxeUO93c0LeonCQ0v7jmH9nkfLZOa9n4I87USA1kO990WG2QDpANBse/N93cfHg9345IkBJJ1NxJkeZ02iYRyNkpUIwLJbNYDaBlkxOI+kd4GB3s6YyHaQY+iaYbMJk6KBUKffwidE0dlJKwFdfwdvyeHBap5a9Xepo6Eg6K3jtFM2ek1/QoRA2IC1nMdWEqI5ZCXgSDdpV8CVuP85tyhnAxIparwaJT+VSdRIm3FVK+Lef1Wf2DHdIryFyhBowY1/DsMptBKnU5QUURg9G/NEhKyygFzPFOgBLRfVgo2d26leQDJBFAWP70Jk/pN1oaphdTj8vImY3dru1lj+Rt5PuJ4hmt4gCEIad2iMMS04RVRbrBOlzANVMbXY+zDdzSApSSntZFsehxKf5vUo183m8iO95dbbuCCBymRVgZfbe5Q/cVpZey0Yfi0s3GzZW+VIyObcouYC883TZokM6SiZ7h3Wkj7JLGR3CslacxZZDLUY/wCXX7HJ3MwQBDi9dG2hM+hqIkq4POYeme8eDnGGWW9eAyZQfXqRAAhxtCBqTxvQfupBd2iHaDishCG5xKlWDKypuX89aM8uPpSuV6ABnVMydKX0XF/cdHvyyu/CIW9P8CnxwiZ5he/SAv6mV4nowlAeo85NLv6IkRL3XBUr29uTAa++ebErGt8G9etcOiklt9++XJOy1/ciO+8iAK7UZEiR9QhW9kyWy6Mw0khKFFILzl8CX64/lyrLLalSNeOu8dyjx63CiUwnK/98jwxIhPRV2dI+K0mJxuQhtCJeFbjyvXIjiUHkOHbeoauWHVZ5QjRiW2S4q3BswB8sQSnCUM5JnR0rcdsJXDc03RuXnSH1e3cXbW7DSNCCfIkIsEIjDmVFq2rbYmICN1gydVVWtuf3Eb/lIuxzK46GNWzCU21KpUrCB2Yy2qimPtDFfnD5lmqyGc20aHxFYimmlmVQWSZQOiHP8R9Q2gb+7dE4VxpYyuCEBsExVsNc4iK22KcRq+tmxumg4pc+XJ9t715cbK/LykIKihlSThUuOmls0Xt/nP9p3X8PYm4KY7OZZD4ftomsrLQPl245QWkKVzjSiuszUHebetAhWQIIFho3gYAZWBNePU6/kNEVrt40cvzwcnu27cn3BrElcJkElBcR73RAI7FAK64CEOzKtjo5N+d4u0up5JXYKdPukLT0JzvFOnID4VGuSS2VLS4GQn0D915TbREqkzzjiQvvJ7z4KgLUR3VXA4RsRK2vNyaoFGtw0hGioI0KAU5upjYGWlyl0LHTJ77Z9ip9fFwUS11ShPgsikNjNEGjyPb3LCkGW+kIBN4OoiOK3yEUeAWCDFKAjq8AmxcjLat9BTZliNnYxbdhkUUpv1rqKmL7RSFOtMYqRvaq1qOqrAPi0UVrRhWr33FnNsNcSP46UaOf2679mxKHI2vU9jwanDtKkSB5j1VYbwyksCacZpxIYBY8Ou6lShmglCGNUrH3AHbQlqGLnuABXBouhfaXTeqKbRXJICNJ1XYtjX04Z8YxvPrngmAZcISPaNQi39tixuPHJpJownmvV0zTALvcH1vZ91u0/VPK5cvznYF/mAEViEmNis465R4PcK/QbXsnGXvRXcYEu5OEZa0oHp1YusqylIdScsXyr6yF3QyzEERsqFyzMIOJpT+j/LrG6iKd6aX2tMwj9vL4/Tv6KmYQvxXMU+1OYfvMILYmEaWHaXl6SjxTvPl+wXfwnBJPc9LggUpEk0YzgtDijJX8QmxNMoAGUgaI9UGl2vOD8RQ3aFpD6hzHCxQPr7/w+fzD2efvz3+7vu3ZgJ0hP61fu44tk9ntqFeXIdgu0PKt9+Rdy/xY7cx6F+qMdWTZ994SUkYyYDlqMENqOQsHb3ZddHi5tYeX/f2dpsNSM2ZMBny3WOZhazICBV8F0oLfExq/T9dY0R8lKy5MaTXE+DUT8MbGcok++Q7rLeg1Ki7cRcwyXveo/QVKSnY72Vr+4AwzaJ0OQgzSxAywssGUAQTGjWHFbXOoKzuEZ96LsRvrjb0qetonF4OmviKOIwgE5lGH+2ZAerbCUdoZF+W7d9K93UsFhtqjayNIxsfxiQ25+9sWOB1BB7n/cvp+pmDxfEhyc3j0mEclQoahaYnSxnW4m9MzdfW3z+f2wW07QgNkWZk61K2tYMjU7yN48OdN4f2WuzYO0G4QPH9D2+wkjnl1d3D6en1T390vqrEf4MhfqEVgKiPH8Am+iP+kwAH6NcXBBJmyyUTi5DnhOKbR4f7zgKXxOzIsJzL1rrtC9lscTu9Vcjvyd54Lj/68Pyg4c3eTjMgO8Iw/Ojuka+0v8HzL8NWHfuf31jUA7VxPFyzvyUiivJZvSkCrhhRsiKFCQiyzzFCwhMeqXPiYLFx8ujFogtRQexIK/mC4rQzjbfGK8cQUrmyffonaSn1NF8coO+J+WoXQKBB2EW0mRAINB0xGvxBTQ7L4mRLabWTFoK78Kkfbaod8TUU/FZv8GPqQZgnDBj3eIH1aExL8VitfnLyW94d6jh8tKzQuvCcmAGUydURVaIcYWAq0EWPdAUCG7wXV4YPlNFIuECWlqNRzML1liUEF97YIrqJumYB4ydWglzNYct2RUUrYzJ50FYRz2W1LUkRB1dTPDWVxrxLFQszEYa1Nki9acyKAhHxsX22vlMGlUx8SleEHG2LdR4fyMC+sl9HtNEAIi844rFlsqIVvDWRCLFsKEC7CoAZeluaerHgHzfS9YkTJIxu8gZS6V4onahh1IWMMMM5whLmAFE7JTBYgRi7CjIrE0eDbZ/7WgVkoYh4k2FoMKs0fC2LB7Vs2NODQSgTHmFqhpKT1ykgHeM6wq89q2hFUyBFi+Ed0hlYo9KskjCpdt9oGdnH7uYtNXTu5+r92p4JonbWLTy+nN9cn13ffb6+fXdy/ObouFjmy+vF+fWnz5dfvqSeVUStAsXuLJ9c8/IjmsTl0LSImD2AnlSD/qDzgTuUQrVF/PVWwG7leWvnSHDCfpGVp04G4+fT62sdZeSOwMI7Rge9EAdbiUIA99zocDONpSN4eZXO0nXblYgAKYSIMsDYFyn9AcEt3LBQ/g+zEY0OKGQ5Z30Bi3L4WV2OBtHSBoynwelh78Z/suPkQYyF6DGarTA5opWpEHgMq4AdTRKU4zClpzRkQh3fBhCqNBT9PjppuZ25rmE0m/Id8QRiSTetryVJ/P+GM4AAg2o6PHLB847NnoyeCbmLl7P2CXiIylxFYWV7BuGwr0/ywcagwtbNTjd8iDeN/O/tXR4f7b2sHBvb3t4BE263b5fBWSXu/O/Ng53HI1mrmzt/2l67bEtbKRo4GRJNgYwISy077KB7ecFYqNAx59Yhgbv2O28CpdWD+9fb50uzk9vbO4Eus4oNx0dt7/Jqs7cq8hNuHfAbu8y8CeY23WS9tUsScGXDaT1q6QsqeR9ZrPHkzSZyOh3ok1VM3SAzwgLHXpIMcVih5XIGSBPRCspRq7AXAhn2MicVezSBzh1rvjG2Rtm8X4oDctN5xreQBovilnTqeIg4ZcEFqLQ+khjEUT69jZdGK6dCk2n60svYPU6WqVcNBosQmd4WnZ6mpbwYXMXWX3b06MdENtESUTcmCpdolIGScYIY2McQYSfvSM9Ban6jpAdmomaY3Ptsoc5oNTvyO8A4wJNtNSqb4gQmYjdmNIKerAJMjwoehyiCxbFwVjcKGm+F42MfWkqQLulBjlTW3wkSKeZapX9Ry3kUy11pyLwjMIzHdKph01DoDijw0yHuhW9wBUNpYk/XWpiCm83X3TbEmxWsuJBOcuH6tflPc09YrbqDO0K1YJQc4uAa/ZI9g/MwVXcxRGtAkavLKkb7pHGaiJcBaPhIbIeUrgKpscJX4f5ZXUpx142X301x5FzFHmNKzV/LaPBMP02W9afTVn3pRcOJK4JkPEfjjAoxYogMxPg3x8P8hb/aETEKo47eQmwlge6aNr0zsdMuPqHIBtppPrfEI+Fc05nYeCiNJW5vr9TekruRB9BJfOdf7h+uLy8+XUvV17OghDzOvB70DSDdT+/GP8zCI7LaaTDhBFiR2L+EAg5VD8xyiG85PIdOlHt9tuYc2bbtOHs037PmY+XPXY8CBcJCGT2Dhxz7N0OqXocRwlUMJ8JPeRqGCa/egUHxjUAPTUBAQZdVoWzTz2HK5A1hPAQiRFJtX87EstpYM5Iemza5gR0UmlpRylquBe4nu7dsQiqklRgQHlAttITJXIMgHt7Ij/RtFiQ0xCz+kyAexsr1/fOFw02L85gGWYow01IeCVSOLvcb1o7V00LKBO+YFYneSEJ3xcL27l0nQvHQBr3TIbaJAacKGNDMTmBT6DmhRQTP4f6BZkjGjkqm5JcZ+y+rK+dCeQ5+OCREJt7OKt81H7QEt/3NNwePD7evp2zKsko9OkqvTf6NBXjDsrXZS/czTIpohTURW2OwWHPZYe5W5nZC1dHJG0rFZmjYWTuWz2+PwP3DebO11kMOBe/pPEF8u08dPHTv+rwWVWKB+CHVqcBoyGYBRWU8Yd1wlxuTSsQ1Th6H666fHve3hx74QFTOvJXwxPdYWEgmNh3pRUt06odCQnejzYOxztmkr2LYnaI0znQcmL2NfWa4IQN46ItdFquRrRiy55+qRUVLt8JZVU6zNJZ+jYknR7FMw2PKMmzdZaQFXo7hYd6VzWXdm5HTb1DoS5mmwDRNrWacOq+1wDmvNnyVKNq93AtYzVZzg6iD0FDcTUUEbNEYbB2chJv7N3QtblOgQIMkjnc4mCTMHjbwEKBEYSJjMpJBhrFqBc9qJUQ1MPRhfnIvrMTIqs6ri7N1HQ0Cd32nYz1WtiQdWFp4dF/JYF23HE1eVe4V79IE4aVLieCXgh4VViKbIBbHM07oSEGLwq87dEKnLrMp4GBSktO4JjtrNKQOqSKGZkJWWkHYVEwNe4g6OG4Yd5nfO6ea4QFbFGeRNOCGHNuijJhWASHouw2hVZ755HcjH2ns9gXLQzk5UQGSdG7sLQynrcaYpdzAN69hm9iATch8jyyoRb8pgx3jXwDTiquPPEb8j4ZqtbggLieDy6SycTkCueFj27q0+0+oLKXWZAERDXwJqI80uJjvnv+PzZSxG9lePrrcWuYVycmyG3tCQF2b3y+UFhjPIjWRorbmoMtyAbM3hogFYGBUYZhGh0VZaOvxs1zRewcYWIQ82NujxmyH3tlakSFDRBxDIG9NMc0YjpFqHqfCXhoaFNkBXYdlErKd/U0xwQLnujvp+UctBFWkTNwmIsnI4HiE2XewmGhyC/lqNtMJ/4oNtusHegrRch4mizk5VDMGt5+ox9pNJRtRvKcNr0xBbQYc5eq97uubeEU01QdgnCgftI0dNEyrGraJlZch/wLeFPPI31mz9KlxqWweI9l/7dldjgnBqIo6GcahdnNTfL1AgOjk0qoJTMbe3aiGPmMZLaeL/BwffP/jydHxgRK3tzdnp5cXXy4+vn/ZdT4wXDgNdH/zzcnx4fEBoK9Lr8A3GGc8GMv5wDV8PIQyWMZggDJMH9FNdFcfN1funSbCziAGG2y+c3V2ZaJzZCnY+eRCzoYve9NxuIC/2diwv4Rv9XC/9rJrJlgIBj47iGP7ycKHAacKRpXpDJ4hlRZwzqyMeE/SJgV8bNcqJqcg63R64foIm+IEu5wHIgRsycc8IDHMv4oD0i8pIrzQQ880ZaRuojDsyjYTScKzF4mgl18YOl9Hwfgi7Uc+MAM818MYf3CNNDPvNJ8vmJZY4Vc1UEO1l64M3HgsLQ6GahqEFUdPfNB2nKFtNGiWHY+RtLEnwVsVRchnGoUbEVSeVs7b9DTOA0OqYuz0MtEKgmGjEQ7DSb/nHMW2JKquWac+Wvlo+1VMylCiCD+dMm28FHGIxDkzFr1O77G8ZYrUQRhMWEbzeJx09CsZUYeZwf3cEPmH8jIc/I59qRqOYMOCtWweHQzvz6a+c7jx4IrYS0fFOmUXwX/yqHyrVBYTyLEAkiiHF1ImBFCKd6gPXKBiOhjsSpZ40xQUhqDBklfaJz6xkm/kxql67JEs2I5KCiK+Rzin4IWjqZZvQ7nWG2NeSb5Fw11oNNUNo69ZJovbqS9vge+7wTeATB26j1GdhaKlfNnyRPVCdYAqnhKX1oy3WoANjM5Wa2xUgBW/HMTpduFZZFlCm7aHdIb5pG0ggubilFZfS8gvDloaXWuCTfmTrFgEZ1qKbD/eaJN5omdJWzE8wvoPQ7VHYxn31xyMhQvS1zNKbF4OqD3JT/JNbu6utruZ3Xrn7o5rcqzZ4qPuI3NeFsz4JX+hoLRZWAKSUTCoJr1lzUpgB75Jvzik0+h24E+e4sWXayRDgQX3cXjcGWaGCmE7cYNDvpvJ8cbK7o4D8Xcsx1pNWRZlQRWHAxdy2ACaUdH+s3a8lSzBDNrooRYf6AMs/scXuqh5YkNIe+HOrA31bXbD9xr+ACJ0q0jRl14eG9Jg46TyjTC1plREyovr22bxAEK8sur8f5bmpOrSb423FJfVxZHR1XixJpVQGNBhSgFm+fXN26Pf/PhDU+/tuTOOVHO+Lbe6He/1+fzqzo99guubn9ByFi0K4ml1ww7Azd2iVGNSjIymMwIYGOIuQ4+J9anivXPd7uwRuRaGoiV23x59+/03rqDY5bfc3r3sHzpkYazeytPB8zo/i4Kmdk0P5MIxRhhvLn1+3YktyH6bMpLR1c6yV9WarWLGCorcZlWEyMpWgRRm8+XsUkLti7xzLeMjfhe2UlalFEa8ny/pLXpgW5Q1mGyR7pA7zwUj2KzrLnT5PB6Plum76qK6VjgMdGTKCYnVqZAvUgDEGGC5SpEDfT2GLf2nACptPNWs3VHe1a5QykaGfll4PG7M00KH2ZTJB/dBkKREcTV8GkbkZRqKXjSYv6N+jF/HGmq0elv0VZtwBmtWofsCKBLPTZ2aRusZPCQse0V942GIpclSjZpKvcNhCFR0Wqa/vVco0a833xWQSkdZSNayqCF+bpZmQQmLM1R6hH4IN3KY6QACkxAefK6nvT+U2nJqG58CXfQ3I3PanTP7nPuoYOgXVOH5rEsdLd2gcYIhHNP0NoHoE0fwBlkI5CEhKO2VihuvFM0paF3Slgzcs90IIzuUKcyFmeIB4ByWCqU9h94pFa3RN0QJSaMVlkj6oaVpsqJLK2TCm1jBj+emqoimspBTbBQ3MECAm+S+aioc0m0o9c4QnlpRGP73MUHlfPPDzHXj3GYsjGi2sFRa/3BMOglpYm+oojbgCu+DBcSUVwyPa3RS16i+InnRsc3iG/kWOCb3zRhWHAgpBWtyYcSJ8v5CByegUl5+p8U0pXC9jmJDNGET33oTjPgBY4nHWcah6SZkhC4VA/S92O+GvWwQ5U4Q5wztixB1BOHTh89uA5PjpY8SwVQAVB3DgGVy2RkSl/c2BbVN1R6eHbDoHjEcESx+++NNtEwe2PVmOfMFPucPsB+QxI21M0a0K57mKmYAGliMrjsVjQuSRmIIIMzRRznXOggFyVld9Oo36uXOxQCGDl8aHlunGGHGVk3JVEl2nDLQgbf4UPmmHMUevEGX8Ke7m0tpjCk9lCs3lLWEh2Q69EKrJxndgRlpglNr4xYwpbJI9K9hYsUKAY/3w9qpcri3tf1yDD57ImwCev/p9NP7c1bq6hprFVk2DqTVNcaNWTBfmisXLn1rQRA25xdgDR2juN3Euo6tX44jt6qHjrtv945Pus1HlAUNNq7un98cRES+y97W6rvVzetNsUFPkqDGtOQwmAcU3tGu8ZGfDb4A4SycosvISMKjzvwwe4q23hvmy9l7uWFtO5/K/exP5Q4kimpGF3Wnw1FbMW/IhjgO1Ghm36fjLCLlANJTzc9CNUooGTgRORukU4ygrrkgdYXQ+uBFamFaxbuVDeB55xMAxGiodchsOjU4TPsaloYyefWDxiimYd3SD+CQaoEhtlxnS5tkzBInAHZf7MsTGz2hAqjIGasWN26G27i1Xe41Xqmf2K9X+NSWcpyezEDgoG4MjMaYA7y4IWVC6HETn1PgudCEKs2Hp6WltZBCSZGh0iRCzLAN/du8KjMOc5KzGmKaFDDgywcdBhYrK0yG96npErfawgZIqAgOeBdp6BiTWVAwjmZFC3oGh4rgw3CD53laZthbzkSSs5H+JKxQz7U0yzYksFKwdMsETPh8UCHoPXiwlUQFjjO2S7dG8UUjEyK8OnbJQ7jiRbpSd635Z4OqMAiMCwWgBx+FLp2NDiIPDFZaNJUPaUmzVsCtOPAIXKhMsMAAzL43Ee8eXk2PWtBoqO0q0/tpOPWhwrghlFO6xU+yFEhZWwtyYPIJuXOmIjLY+Q2ZPfML3hLbLh7evUHkcW39tjBac71ce2TWX5amT5O6G9QaZFFaKBseH9YqjrHh6tjSJRAzUUEM5gaxqA+QqqGmS3uTSV6UPN4ru0pkyq44xezt2zdH+wfQYI+Yu8CvHGWM6qxHDGOaw3dh8OGirBKmlIseb+rMmlNTbhExkEFhrB8tZhZLNaXuhyyGb0WTf4Fondp5434hHMMOWmPDjTAN80MwZINLXBzIef70QwG2CbHVSY8T9XrqM8TrkK8M7X4bbyYb3SqXlhxCaw2akm20y5p4mV4DQyG8Mq/QGq918APPKdPN6kw/GgFvsqrPkNOKNFgjFOgc1Jrmb4ETR6/liwXYitO2P38+FcqxPGujjUyvwwNHR2zt7B0K8Gzul1vx+eMFyIjPpiMhCGQAED8UbMY28+oUL+xhbCPQfmjwNxRkdsQOhfQldgLefhFxPaRbpi4aFmtt18CDC1xcLsHN3HZ9sDhJStEAtQsdxgYJg3wDjgdFtXQEe3g7pTGd1WXj9ye/iW4q8FqySNv5sET+DpVBJ1Fmg1ew9s/ksRsnnbjU1gJspA3d+kGjeLwO0t2RG+pCSSSMxvE6WSEK3umBIqANnWIUo6tc6/0fAVEruuizqJlvqWBNBHeNN8x4mesxmjQ9UTeq5aaNxzazP5rUSGbKkkWMSwMq4jfGRMy7RV0aKrACmKNWRwMTQMj6cE3f9PIcwUiVbvUi8g1zuac99dXAMZACMp1i0PShyhxK4ppSzUYYqSbjaSDnTyJloytU0oyKgi8lwFS3KAB6FIXWOQbK/+VKRNkib84pHPKVOj7BWMDP2n06QxiLgEs9tTgxMI8Q6T2qFY6GvERM0wYUS2GJRgmZBARaZDtYY9jZJGM0hcY23LX0erPiqFz4Y/+qCG5A528ZkhdvTktqtIlp5VkyQ9gDl0IGYdCF43Pm6tJIysbNQwBJa9dMSB/9a/0JEdoENPrEo0w4hDeIolRhUbn8oZ5qr3wtkwUWNynsuMMIo2uKIp8gJWtvZ1QYkoXWiteS5qaZliKmz2FuQkJFxGEzAxM7YA/Noh42JUxn3hkJNlbCH/6j05cwHdGkfga9zRB9hQ/9j/BZrliobYwDNrUBzxOL4dQ71MgqsezhTBRIaKjwpxcMNJg1iqureztIt/elddujtOFczDkVwkyJVhyzQV3rJrBDC6WEpnwhLV/fOh8egtLug53EKgQsSql5iUgdE0BE4It2S8nqtJRGctU5CCkZGgMPULINJr/IsgSWM84ZVeppLE2yBqFLV5ARQRp+3s/wBqJxuRcAKLPoMJghWMGkO6+EXNUGUntxeFNlSITGkGWeV3kle6MZshOVUx0+Dur7uq+qPc/LNcoYOLGJcPJnCIF1URygeTb188czLost3AA+frP39sT+errYVKrzE/YPti/PN80PeOrmZA5mzfN+fLy6vLuWXhq9OO4oF5vxj7ChvtJBjcZc/MVJcYMlY+YhpydIrZAfDXfnqDx9EzC6wMaEzgDccLVIioP70YpPfm++N/1gRyoDn35I8+BDh/NkJ0AwzBfe4/h01ciMY/U6Rh+faZF0bt6R6GHVVuxGN/kdSnkRm+t//hc/fvvdG5dc//5vfrbL0TDGF8dhWkWHqmp+8Jwjs1TUm/e95muy6t0o3EZLb/S5HrL9oIblpZHEchyJSI+Sqf6wOEzQsyqxqxDAzk7iUxKC34cFxuPgl9Wxx81bczGmddJBdbZu2bKjEuTUW5ps+q4FLwAEVRa0ag1sGYPRZtGW8YmAUSXNd6CeRLFKsWYBRhhETsim1HzS1jRUU3VRlRmH9tl2oXyWk6QLyxkv+IkBpUtM2+JHr8FNLpLN9022uDCu+Tbylxaz03bWI2fhgnaClic73nkH/FWEMZfI1YN3K5wmIrlGzCMjGK8AJ3yCo7/JpcUYH3CiUyV2LTZ0nhIRa7tdcV4L7Q4enlBAg2Vx2PHMhje8nyFd6NO2GQyShjzEyrcewW7dymWYIQIXpWtNIHy7EyaEqU2ViYgqyi0aaplPx7tRcciffsewo3fgPscqOk/uYxGQ9C09Hx5rxZdgX2shto21UrwzaCrhs6HDELu5AmYLdxA+/GNkBtFj38UTveqLU9xSbnzUnUiAbYlGeNnciBZEAvtzzOEi+yIGxmREdEt9GPFQNbZIkPurpexmVx5cUQG+D/iUeLha+AFiW4FBen7u1u2jq+dvt+4PDnepIYmh2kfqhV+VimtiIXACWfxug+73kHofA+ppbAEUcNZHgL1aUDJCyiNeSx1DcPi1foq+BY5tW6OCKj8OILBNB0Wd/HdfyKJJiMZ9tkEVCFiGECf8yg5ZGG2OsQXfWKHMs05jxgDGlv7rLoTpzrQ4R3WMN1QmQcjTeEhk8Hj1Sd04OvEBPHQoaQh9G57n6+zi0kcTegzn5B3HymJJ80RG1+D8v7qm+rnIYnzPdgBiOazhmB65WaAXe9vd3bi90r2Z+vq3hwfWjV0c89P789///v3d9YVeo2n9xEbjmQRkwLRi8Xx5ceOiaYOgq5UrkAwDzwJZV7IFPrtJ1B2lvr6TULH56neiSLMLKRQc7JxinCrEX26UHfVRMePcYzo6AhlxKG/cXnG8+JXQcomFtp0TT9gxd3EGQpZ1cBSKYkiClQDt7m//+T/68c0Pbw7Ots8+u4IUdxKHZGzGYmxYFSXVHhZf7FzMMY+SF5Tg6QaMWsgQhC6v94r9PeTWltEZ4YZ/uVDUe+zhXyQvAzXVNZNbWDUSFCJOWgBqvRWsUDiGMWgYmFEQv1jCx0aXIVEqBYUvoTvywEHdkVXauiFoHOjTQgDEYMkn0BoTKI1pWh3tbxEicAXQ5Ve00NrJchi3pZTqAn7RQiEWEGpHjEFKo0t7ADUgYKNIQgaFoixM5QDCpEj+TrYqZvW1DOHWc0FlA1/ZRuA1kFSaTJ9O4WmOTx86XXRJL3UcpXkAh0lHyJTxaKhag91kGZAGATMaHZh5oPp0FovpX0hZSIV5nKH4JOKhg8wq4FJI0E5vjnYxWHQxkWkPFOoaD73YIjJGzxhnysw+kRxhmwcAic3LcHqHTRA0mKC68H0Y6aD5ZU5FHkNcimU4uzUdLsjSDLbUCksSA2itylE3W8RdTIHw7ywzDNnrLmarbqw5OPFOt42udRFLqQRX1cYfuGCHqaJ6zi24dwWcLX6v9myubTzdy9B4ed15tczqDqHb6yJpNAncdTlg4m1204J6SRZFUGM3qB3ODP+srFigWlZ+QBqrYmV0ZVT45Nhbr2Clhub2B2fg0EySRu5u9hIBSiRmh5DEBtaS96kTW0vw6wZcNwPqygH8eUU6EHeAY7wXeTBEOXxlBAxODb4YIF7mjOJt3vy8sGIeG33vT/6wc8nooHDTeufoKWhTASDZxaDBQIA382bn5RLFOEiL5WeiBkOjPrBHAGZNR3/lIlhqwOIYo+L6XSRagz77jeJZ36lAjLQwMqc5y+/xkNfyMGIMJT0BScZhdY0vJc9WTNgR1MlM0pplgmsqHxUSpec2xAmBWFbg/3735oh73FFSYLGn5sm3QiivByc7B8dvN/eOrJHf/qGFcsPr1LqReGAlSV3lwkya3z2Wrcj7ztEHSN/mdoDDMQoO8vp0vnGwux/FXzes6WEeHpmqgx0ZOC+b+Xb8nU0bgVlUCEPBxjRTxkAnATF3ggqv/rAnzhKcqcbMEQg5rjaNIAiDOL8x2QiXtuIr2NQwAopA7e7bSHqWziJdcabK0MXaljed6tVMlUOfJNE4L2NJFH0/dKl1oGk4W631wfXQj/rLy6yFZDYLE1cEQwT0tqEQZkM0MN2lvEYVaDUbWt+Nk14Z2BtIAI6V8S3hhgFYo9hAg2cBF4+NyCThRqYnuiBpj116RZ7a01oaqRO74BD/tN54LWSDc8RJ7TzgyStfmKsoDUVTW1PxKxDGPHjwFOj9wAHicSUBJ+Q9Y1JtuCu6Kc7smQY2S6DRKtAKA24hWaRn5A5JgIn7DVLKDheBgMVXnUEvZEbmRAbNNky+OMjcdYtAa1uOpcG8tHTgYHtUSvE6xvRVTNmFu0AzdKPAmnSQMOn289qdHNlIvahXtEKUGtR7rfQ5dhKbCoc0sljmKDt4BKIG2QBFDG4QrFTXWFr55t3kmzGsjKCMVG2n7Kh1wgqGGV5DtOyr2LKcV/ee+dz/ORDdn+UjOCCZdAmxlvg4qxccWKwAYSMwQ7FKt3ccqmFt0RsA8UHZYYy0Kdwj6ebWvuQjaJcfH4O1a481uH/edJs5pSZpxDle7nJ+YCiJL+/FTUHQDge0tzy7hMUpUWlPCpF240F3bDZFLMsIj4nlCDCR+bWHtTsHI0rmRywsFc9Dibqd/objXlf21m4enE1/cHS0I+1q+86ltpays7UTgtgsO5rupttaw+/Ugeyxvtd2OmelweJg7Xavl1glnDsawOCdNmaNQyRWyBbDba7dO9zHxRkACKGsTTv1LVNBMUnqcI2JUBJE844V/tDtE2NmvspfHSehSJEwuocqAR9gpAYIxdmSOsWMzZMkDt08hfS+NJEprqmL/kfVVou9Yrb0TAnOOLjhYDFGwpHR+P/2UZ67ipgN0dN1+oyOQ91hmBrzNaCsxscYS/PYO8ajotKnpM95HI8vXy5lm97fH2xvlUJGL7fc6NTF+4trB9KJ5u18/3bn+nfvLi5Pr385hfB4DaocMMbWwgqoh6VhHEdJ/DDYkEkhbbqH0ujs+9swh3z3zb67YwwXA1oFfbnCHetrMycYR0LiqHPK4KnBtnEZ5PgbTTIiG2VuU9r5lKkygyodSPpAu77iOyfi2mJR4ljWGQogIWWdg0wBowLVrJZTqE5Pz7b2t2+cuXdDWaBvRRAkOvWfOTM0r7QQQ80061F71V9QDU+wAIwIqFi6KY0XN9dQikOnCeVoeeENhUZBUBeVpOjHQqqNfBmAXE9O0uhCrdXgorI1HgNlKPQ3nSmrRkmJzXufW1VJgQ8ze4QCeRI1mgpJ8htgQMaBwzs5HlnVGo/FvAdYJ5QVDQBhx//XCu2AOS3sOKfYutJMtEKwNvsUesfLaEzpFOMShzYU4McW0dk0LWzxlMIOA0BB+m4WwTREsyaC5FpXoFNIU1SJgqlDFxdQjsRKXxu0OREkre7Yo5nsOxcpFumMFBYPnucCr6hAi4MzFQgUCop9W5OZ1rGDojO5AlSwMI1GsnoRTS2PjTpeZuVpDx+NrNaCOa0Kc9sdO8j5C1B4NzaSC6jIhiL9Ee9u/8Ych9T0DuhwzNe8zyF/7Sw9nRQiwN9cAHYTgkZ6607ZOAFSdMJsJVQxYfydZsk6OT1Y8GeiuCl/PWpeL8riE68Qgosiiu5hHnSarNn5my4w8X5QRTEbXcmI1JyHR5MB57eURCg1U6YlzCAk2wuGonXln8vL4DW8rm3xaSld+AVfCOS8Ef58QlO7Z3vo+APQ6FJc8f1VZ6rRGSVZoIfBjFM0QSy8GIoobhfTOrKzKypaAF27uuTpDymDH9/Io31FNSvWUiulguM8rldKZyZG6YMNRwxsHkmKl73Jys/AxTuAUXLgaFopqGLm0IkM+a0xM9zgsqai5aSaZuJvY6ELHd/AHBIDZGuCgWtDG1w21fcsbR+reBBpcb5Om1zl9yUMJYPSeipSN7jI4LQQnwWODIGZMRVRQFJxDGfn0WdZs1kzj8/Xdpi5tc4NNYSACOEwHzW9G0coc2XyFDcjPMYYKJNoRQtOwBJTXdKKi3ivX1b+9PDqWCTSaDtFpwBJ43t4/HB69fby8c07sdONH795c/G7787OKcw7eXbbO9vONf32eE8+89nVteFeXDY58L87chmJldfdPf71+p7DjAR1qO27jR9/96OjIPJ88Bofzl7l2yunPry4wwaoLDOPwDFFXIxG09R95tthLN3VaPOgIL5hw8++S5GcIoTFLRC0JAYnPMqUYCRFG4y4jH8QZPyQwiX563/97y7Ov0Ds+ZmIVxOWJESl4V+SoCC+UR7GD/Z2XPV04yIeIddiWz1XgmJCZnwJqx6k9pjuOopVQ3bfeUs7VgVzRKpGNYBqQCW8M72qQFNFM72nTyApkvqtr9gk7zMVMPIyY4QI8E04wvMaboD9Uj8s9TH9rtXpPUD88w0wq1CTqilSeSyp+nhNEu1SJbnjcIgWxvvq2g0zYmJWjdS7bhCk5b8qIlN+UtOvjmENmjRP/GeCQURiOkRMMBTXQHH2xpsV0iS3LOkmGJnW4ebkajg3wGcU1UTELPIj7caz1GZLl7kLGee0gfewC9mBNQKZPKQszFITNxmEtKqIiGo4BX55eXSUwEX8qnfCbBC2JtVxLkCq1w+EEo/nhw12xGktEF/0PMcNxOmBjADBXtlikzIqoOL4Vm31qbxbTI1THc34aMLrX+qyiumEPIJMgP7JCRIhQjiGtbXxR+EoVJWCZY5mBlwTgRuUsKfgvEXb3kRdjDTWffBJ/MInJtJHVKQy3LBEIdeEFzbNhXVCA2aVztFu9j063Gn7et3mQ29lLG8naGO+3kl96IeokqqQUIRgOdFhBNUTqgxxiqpsbJEelLELaKZ5AkkqCkkP7/mK9OSmsPUbLxs7TyvbUjQNzXEFjw5veLD3IworbQ4SpHQGRK87pSArzxKJMVJt+VeOF5NsvrHGyuIa/lt4xNDcfzULLQl2yQqDjanjCaazQGrRcw62421bA1UTluQkSPJgHFd3pnOUo34hHOthbc5w0UNeq9zFTWqBC+dry5wiQ6hj7qtTNxjar0ZGYijMbxKb4S6oauI7Sf6Mb9ozgYmSiERktpvgYKJYk8YTmeoUNdF2yto8HTGVDClJJDbtJc4Zk0i+cNLFOJqoOUWgM8XSx8U3iOorHVR362R93TSZiBVs07Mz4MwpgVe7mwdO9fnzP/tBTtbHnz+YWhy9PfnNN0ffWiFY3fhydX30+eLTJ7cCieDdWV9Aa0OWzGuPxe7BXv47X85mgr0dWT9FnFMxTjFdfXG27O3tiuiijc7yUkXvigcyt6lGYOZFOhif1aKI6GmiGtLHw3KuvXPykNkctYUwZ845zqV0DuCPaksYlrE24OjuCQF+Wr2+vv/9373HKWLKgz1YSUHH/rjDS+84UrLw7taPf/YdOn16f/bxw6dO20suNRcmK5fa7w385r+lJ9P+lMWUm/a80/O026D00+iiyCjIHhjqEEbJdMpUaCSajhXGsGggWar38Bh6ipA22gHa95nJNF6v6jaKQYL3BliLPW8ElC4PFuQ+BRsN1uTDhlg8CwJ4t1s9Dtd8mZz46fnZzXKb3B9gZHgCq9A8aArjAIMwmkLkI0IQtadDUTmzSZuVumbMuMFH1oUP0JMop/NogZA/KqkwOsbKuQovi2ryyIeoB9KZ5CF4QQAi5rR/CmjGpHhkDB2UUUI6enmIQKGzCnc4hIdkAUYGWs8bNmCGmNlXMWLbntAvdI20JrTNA6IPpHtht4d7K9VOMDT1So1Zp26bxmIHQkPnrcp8ztUs3zS7A0K5Z8TBdbEtqTIDBQNgus3nmrEtAttAeTRG2njESFhEL1iCTzNu5iuSpvmai80LtJ6BWOkwFLbi9ehoiFCXVm8u5T/44SKejOkxzOOLCZVy1Go9d63JmkvQ+KA0rLPEmBsxnJWD1e6f4aiR5a8RIIORenGwLkVdkJ8Y6tTuf23uOy1u7rVy0IOzAXbkhuqDIpQAurW3ct+EaWV9fyicwiRHzBmAdLi2Y4ImBHltxrnvFKvN1+92duxYan+rkw6ggX0aO93NC0UjnhwjC2yRRzg4u3n404fz84vPtxsuPSWfVsqJibnnBp833VumFh0FOYQt29T547BvY4pG5HErwPSuPKyb6XQOf8dFukT3aef1pFyTV+sj4l4Ywy1rzuLntG5v7Dr337kHD2UEFC42NM7EkQWTtdXbZ0dhNK0mbiOhvYtkEXgoMeSKcEbHSkW8oSOmEzqTsIy63P99J5huo7/dsqenF1eXV1WpmbCbas+cRkS8Sw5NNaeZ0U+xUxZrekwbjjOjbiw9818sCo5cZ80KppyeQuOZbKCDvW33SZvXf39y5G6Yg8Odt4eeOa919+h47827gy8/Hr3/5fzT+092ZAsNtd2D02S6XAhZ6KAUlS+fzyQV3WMe4GAHR7g0SXyRRt2pTqJDO/a1GLiZdoYQ6IHfmHDsAyOxODsZurKzDERhsunyOaw3WsdJAKYDo5vHgmDwr6+UKgTkdi/aT1Rwxrnow9QoToLlugszQME1tjDs2yiBlfelAGIYz8KOqj7kO47jgAs9BllbbSc4Y4wIOZ1pS2sV9nB0iEFFdfPfBduJAWmlCnBHitPvqtSI2os76EPOjZoTvABEvgJWEXXrG23Wk3pwviiDeq3PmECD0Kanr5jNm5omQ5AWRhOF1GYaOJfZLps3CfH0ztu888hpwk89Bx39DxxUyo7FtAkwmLS8wF7ddc4bcHJHLPPb51mOgYzMra3OYtuaQHZa2/SKRDWqIUHk9UE7DYxuwiMG14/GAYJHHBR5cSMUICBTniaMsz7pugULgkZUvjbCZZJFclLRXJ5n2YXyJbjVmaIyzFtm4IJSB61XMwVFCYp95W9rgyah1rNRWMC0vRkSdWouoeHFMPuu7YQT/gqTs0xQiFTyP1HE+ZS7Jp2SLxM72JRK8edrOx+MpXzgQKsG6dE62QRL4wV0eizNHRgGj9GLQSEAFRGZIrNAeEpcNmctmHJZ86b5TFvZ8ixtt2zGLLIxijPwMIWv9cSvq73y/Abdwg/lSucDaVWPdoJlifRmy1iYrWvpNwIRqmHcYQJfyztktDv4k4tAyWzuNvMTrQJfazNjfOgEcV8EEfIJ4FDRavqwFcExWlX05S4iQ2VwQj/VHHrX7U2P5Ud3jTcITY0fWTTnSEA7yP67/+6v/vr3H993Iy3HPNYSbqS0xThiXBiaNkNynWI8GIMgeKLoCNmtKJPRSDBcv8/PQFCzBm45nWVuwcvWpzzXZwcrWzDgJxUids37s/tRHMLj2EynXG6tO9YyluYDUIMIRUiJS6kRCzWNiRuQDH4FAkpgh3VXBF6SrYQgtO8d7DqqFRCSfMRLWB+bbkCuQKiLE3UkwGBhw2aOdnP0Va+G2W+btYrdF81MTpKO6g7mYzdFhp1DyuXF1cdPn+3O29w8wSjvpI5u7t7f3qK/uQija02dpVCA8ZZL516BtasbVHMrzvnFzcrml929Wxv4nTkH+2eXVxvnzqPBiPyd1nqK+9wUIMkWgZV9B3dAEbmJDaYIx52HK8ezwFoTLuSywcH4kwW882ohm2/uUNkONYkTwlj/G3FopTNgdZRpKqW43owbQ8OKYoMCz6pLDdMv4XPFMpH7lx8fr+9ce4rDCxQOKgGGWQQhM0pkBjOlohg0ltMsulLJ6oL0PvhEhQ0NfOgBpm3NCmWw3Kg7V22k/PixPYslfE3Sl+Kp6fxA8laKiwZY+2AfT9zWDwA0o/ckmYK5TFgtBR2nTnY9DcjWzxRBN6ncJKBy8V9LSXXsg94d6WRCTNWY2JAcJEiD0pihbtAIrohHtgvdV6+h+YOIvA9DgUnHhtC6/UDP9qsbJxz4AKQsW5v+t3kAXuCic1EmIzOvNFFKS3saLK+UdiUbYB3nAj3KgoRuAyC3Tbexc4knAJtVhdUHGd85v2PUewNK6kk7t+rRerurFhJwhnwECniYr85DbJoZ6GG52Y5Rad4IzV+xJ6ffeVb0IAXKQqca+bZxDrybtGq1FTJrpBbXFANdzmsIV5RuZbu9a3uB3hyggkPSKZkia5W5zbnfKUWMVk6iiFUOCK1aZ7JlLKWaaKfkc2gVoGn1U9BF2EWxsFXH2CbmScOpGRfhb2ZBV4r0CjO9HWYbKsKxz3RqOKODQ0kP0trehyq4nI+GHLOG43A3OUyRwFx7RLXH1exXAwiJYGHvYBgzaRdvBVgF/MkFCsn6IiGwpdHAyP3qW1oHtoaMOTaE1hdKmKjRpkzaD7t7/+f/45uf//Cn//qvfv9f/Tf/jh0Sf7jfWL2/uMvTb5ZccW3RsP7ppI6xZKdlcJQysmPzYdtJ+qJMGaeUDbLheZ/DZdlaY3CtW7hPEfpdptwJBkdPe064lfxEdAZ39G7sxscgBThZrATcot/s0PXdLcl0ICucWjFKrWiJwJIYaw/NRTCfU9pEVA7NqNh0Ex5psl++nL3KhE1FDoXIG6xYrXdU6sbeIv6j9IwulEGdfBEHdpr13d7J7XdbL/TxYTFEQgIrUTIejBZM3Yf3n48OdpgUJodDSK0zAOa9x4fWdjvi36lcpY3Qxi464/9LSxM+cpaQjO+H15397aM3snpZKTH/x417w/Hj4K05EHiHPRSHMXCko8gBn7TFgDBCreYUQ/nItEBejv8GXPM8APd83UnihQgEEuSB6RizWHVbGKXx5tZGorGj87lPpvOiv3mDlVHAM2UavGEnHPFDqu3F5dR///d/xJ5GiP6L1xB4bB/hw6YkBMbo5OyLSOSIl9bBnduGPabhoYCnuhyZ0nMmHsMuM5FczzomXgRMzfSjsglqdBmGU3QMTvwgvTqUKZSfbjT1OHXqQI0aGOn1kQzF9CPZIy0NehBDEjThCw14GB+pBG+T2+pYD/e6UKgUOLjMKrmJmD/QlB++Q7pGCwZPY5+shzrcXoEBC54znxvvmuUtfMTNMoxiTGwO4VxxHzWMhSx/a9lv7WgRJ8aeBbyWbMI8FwbPUKpjmPQUp3BUNwrkm4p7OCl0FiLMlXz1dUI56B0eCasFtwqFcxmchBuC1kqDKJjoPIFsgglKywH24hZJTW1nAuAW5BC0/rC+dtOTEMbaBXQ6vAUFGvmAlK0cXF4/nz9dPbze7R7uHB07CQ36eAv8bCdjrbiI1TS60/dnCiN3xkZN2t/3ljIcksTfwOzozFgV7gY4OInGOO2j4eE8svaC/9GEEWLhN0w5H+a7ITG1AnYUin5jyTW3ID0SGqQP4bbIBwSj/TCDx76IM+MStb2BZz0tNi/u8xqB6ndNrkrXweNLZ/E9iai1QEV6mPQMnXWY2xa7LnAhdiVpYK5C3WZrYuZekRHKB+gEAw/1YaKWuQ+1xc8VF/rzf/S77//pD0c/7v+//sv/ml5xA9WWRWFreYJahaOyTmrqP+pN3GUxkHokdbS9F2+QmNEYg1RC4Pa4GXvmdBAYsl+vIKKPM4RKJ4TZmZen7d09oZLS4OjL1Ht3wozoWrtC5vWT18PHd5jvPqINy2uRxEnVv3HbJj0Kik06H3cXRt3e3fbkyE6trS1XMauETOqak4lD7W24RmbvVfpUp083CcBJ4bdRuCl2/fDQ9Htn85ov+CgDCLZiLFhtEpcWQ53ENcfD7WyP73/5/HjzdONmSJdBMi7399tb2z/+8G5/65UtedjZPXeBzPn12YePZ6dnUEf1z92WVP0NgwBZD3tUPuNG2NMkjKy2+SZifVSauB1dluYl1dICIjGPC/G7uJmfYHi0CKSxxiv2lbTVnPZ8LrGv4oHO3wM/JLC3oxxqJXmByuHnhT1jsbg66saY6a3UZ7wV41M1MdYoFi32epULUWzf4pT1Rg+0RxNI/NbD4kXl65XXaIhiX8U06iEeAl3aU7eRqM9W7prfqEocwIJnAtD0Oq7TjLEZlNLBp0YjVJacEN2+yrVGyYTPrk7DY8mUDmyMVyBGx7U0qMlz8ZVRppgWI6BflRbMjRbAj2BMuc2I57tUczcKaNkyFMvHAhCquIO2NQrA0QBsMj53lqfGYaeo9AgGXEiaEEcsiDIS2uqPMinAeknBICJ+cAZ6Vq7had2bmBUfLXOZxueV3lPTdyI1SFxvGIYzAXAuk8Om09ngcqshZ0ulSRbKgNywQgQuFC1KplgG8Awkz3Gs6fE+x/n19PJGgoVyPA88FjmH3vz1MjNSj2ArZXP4QMKMgDdgivl67p529zBZ+HLa5fdHrp49xqFfTi/un26P3uzZgLIvaS09YDXMtJj/Xpx9cgjDDSyn5gdQKU0F3HKihapQ2NCmT8VipOFOnBMiDTZq+J+d7G/PKzU0Hl0KMYUK1ev36FfIUAMJ/I0TqxJ/1U1tLriB7d7Xua5zcJLVxKqiKOuLGlBAAxoEETSNQGK+Zi199xWoRgGsaWKWogNRUwlHnB6HNOtAExzE7uIV77WhYQw6hZTj5Ckcz/lG44bnp3JYKZhEfbpRzj60//Q//l98t7n6//zP/9vz2/2b27UvP/0+D9eaBltad/GeXxqc1sLPwoD+KhFJ8ogbkNG2dUxfKXtVE80EIhELT9WEi2mTrfCWryM2seE2Kky6dj8RtspWtFNdm5wzCjPylGKzPuZds66s2dk+3CU2tQ9jSlN6pssrt3fqcxaOjo7s7eJ+J0dO/9/e3D/aOxGc39l1H29OW6CaZTIBjmTgoD7vbq8c7a64Fmxvj9Q/nX66RCR8F+Qwnn9KVfG4cRLpFy+ywPPw882nTx8+X11dEplcE0c3XtxtbUrStS7ijr6X5/OHuyuLwFRlIf2YKfTk1rv0zRL3jLmF93WnOyFq8+ZwbsmRpEkog5NkPzdzRDmswA484dEH7XLaV/e31qQfuc5TIeoWalr0ST+m3Mao44w0n97VHFosn4Yt6xADxjJZ94AqmqqdqI+m9b5oiuCpeGDBTAy+8Gp1KGGKDcZmtw8kKyLIxbZ1tgTIGoRGgTbc4ZdnVaSpFY6mI4Nx4ETXa7IvUBpITUyrkFmv5/Suyoxi0BqhP7kQOENWSP5hgFrkNC7Vks3SdYp8Ql86sFlURyzDc4ihs7Mly5i0721xGuRN+w4udWtpqzlYM27G974zHbxp0/wiJDQUzGssy6DtiW8knElHtFmcf3U0MPbO0qIxJvFeQ6ea7pQIas5wsmTVBaLRG6UtSDBS2HoEe6TGN8SBoEZ4IRPIynjNGBFC2UAHBISaLOT/00kMgnqBolJUjhVtOlm77mDR1X0nSu9vdvfn2qrDyZ1YYaYDeR1o+PzsnNGtna6HJZmMP8GQjrG9w0E1M54IS1uOxToP3YYhFGDh6ICT5bqZ9VeBUQOGSM6b2kV8ZJUl47qKSY0hiOdtHFCYmayyUs3Y9Q4+/I3B8AVGUXDYI4mGydDoB0KgOM+y3Kqc2zpa8Ob7hM5r0FtnHs3/KBgrwre243g/ETme8FP+TECFON1P74NFjdegLtIcfev3VFio6zOAlzaB7FNAD7N7uqTXpJ6mjXr6Vd4wTsH/YYNCE01xjRINvxaPl/Lz6XEdhjZjsLaikebRXLNYY31jjzco5C+B/F/8R//i4eHy//7/+G//+Ld3pz//ZBzmaNNhIA/+6yhkIcoQpvczzxrl6Jf4jqQegUbSlENduab76fVUGDBTKqHAOMXyFChSD04y6+CmhxZ3iFNjhuDpDBPEZprqpZUEKyFcftVuazNpP/KsC+mUOeKBBrtHR8fcpIvLi8urKwZq12lKW0eckJ3tLbH2kABWy9O7B7pwZ1smyuUyT3fH20duB6MPbtzXUu5i0Az9QnLzAAiXpmtyvOVo/ZWzL1df3Ad9c20zgmOCcMLl5Q1f7KUQPi09/hQNAzs5i0YxE6papQhaG4g6iWPnuMiickSR9bfmmC34Gl+hgT4MF/KSy+3M4+L4d5RdQYC99Y2DrTXXXAqxmRQ54hHtdR7jGFh4R0UE8GSkPD4Y1YvhNEMBTiHmapG7WDTHHGuly8EaFw8nRsb4CPE8irZ9ZXCQVGVDSKOZoYgxI1O4w+8GIx0de6GkslwAiFB6/kNBHVBp4yr0CSv4GVMwLK83PTXnAVRNVlN/jSpTN61pGXDTVv5a2rBpuFKqpQxn6pqjorg6QohCLG6y0Hf/NYrGIdqQ6gEa/Kr5WAwV+HkYxrNQEhUGxJx7K6UlUtxbzC1KybR0EgMp87CD1rSSiUPLTAK0gD/kNgjpJXSg3RwoGsBprmxkblag2BqEgO7oxnqj7Tn3cQWuIlp5MyQF7MDU5AhMAGlzNi5EQT2OmQSaRgkhiWXD2GWX5uIh0zMdJb1AMlnakhQ9k5rtja1D+c7r70RpVvfNrfedX4hZeesa6RS11Y0dd5hYtBam4bh33TnXvXhT40UByIY1BiWWB6ReRhKc/G7vJErQqSDVc6ON0lErfIFFDYwAR9pCytwhqMhiNXv0oUzGKSjIaC2Tu5BsJUG29iAbyhLHRQ7y0uoI+tDXUQj4RkuUbxo8tvBkYayZMee4xhnBUcmAayF/yg3X0TV9GmDpi7gqycokVXw8LxVZ2vhqxuhjUAVC3c0+d0WntM4880ubvYA7X33leUBCp1ckh5UQ89WYhGkPoLgyGCoNjNavjO3+4V6LKGlMNNsGf4kRogvydddW/+X/+n/7r/5/H/7L/+K/YsgbrQbSDYFo3CEHl5Oy8d5At8A/8jHomUGFpwSbXs0OUOcF7XiksQWeyNUGrtVj9lP3trw9ZmkmUlxPmf3gFx3Do0MMv+NlL88VnM8A9gnXIb5ffTP8oVHlco1LXrJVYvPt28P9g53jmwMDchf8m4MTyUuacVfS8cn+xk1CUeSIYBfLIgJw/XxwsHX47TeI/eXz+Zfzm5Bp2ZnEwvTwDuLS8vM/d0mgSaYo5dLyeE5E7IF+WC8j6CGLZKYEeJVgFWmzwvMEdQk7VUnmhM1xTSL8ukZrQLNlMkdRqUGLutSjbf9tJiw4sDxMwDqgsctkxvLiYpGi2GwkLERDS73GFjBHlgzEh0A09Jhu8bfRwIPoHXsMv8FHDxRRD317nrJREOJHFjyLITKNivk7D5SYjRv++IxGcVsSUFfEmGkOrJQbsKYOkMLOyJEvGYJYAMgwGNwVjD/0NbVq2v86CMaMZCNp6EmyfnpaqESFGEZFMC81PFAWZPDoJ7oYUpDMwAcR9WLsKGpesbQGMaSBGo3lctf9qRHP6eJ2kxMBdu4RZxsITtRCI6h5PwwVfWt1dCL8aLmEayCinVMzzGgCzUFjCHydsaDNbGwbFLztS7MZ81A5GGngguDNPcJsxgjJUMuY6RiwG6+c+Id7IY78XBUES12nJzuI5pZGvE+r72xdnks8lnbwtL+18sPb/d23h2+/PXi3vXG0u2m7Cq3v4vLCrJkM1+ToOephVT1rOVslsBB2oSpSG64CzeYs3eVeZNLM0GOTuLblLkWxeixGMrSg7jSY1MBmdKU2tZy8wDCm6WPLhPlMBcx8JrJNOqFIY3E7Vwkc3mvQF+oQhuY+QIpRxozjtHBF5NEEw5RjDcLMzkzyybuCaE04fdGMWl12xwhmeO7j9NGM1Efpp2U4lTsC5Ka5VWxoVQ3W8FQjwyaNOMQ0Bu/CR2yVHprnmGTKi/F4GBKoeJNjhZWDDjiccG4zn+ZCUInag2zl+XCwK6bc8+zgm+39/+if/vY/+Y//2W++f6sUpcLVrDF8Fr3Qaec//d//y//s//b/zleBA2MyeM8BHivhTF0mL1E4bZy1Tq/4OOQJ4TF4jN7MqDxkp8/fIJw6yvjffAD7COPInhLB2d23UXjjVU4rcY/nzUlc8Yjyz7d+1Zf2pz86g0mJoIRgdFoiiF0GIoZjyucOIXXCroxyOsUO+Dbvd/Xl6u4qZzlUSRkSC9qOZXIgulvMbWME1DqzCOTx8aGl2oOD3asbyWXjiEN64+DDY7A4hZRLNMpvsmjtkVyGCE6k05VezWCan8S8UB3VYayAv3ZqiWbIMPQiy/rV8nA01N3nPT/f2H7cvnqxUeeDpn0ZUvPOOV8iUqMmMW6RbNioTH8/+jNE3QdxPUW2ocFQo4fgG56O3adIBIasAbWkC5XwAtHzCBHBOjTGBKlIX1QPC03bfs9bf/BrjwxrIIq/AelVGY8S0xwKAGiHTAIEvnJilQiy4bnkY4g9T8eAhLfY7tehBEVPaqrXdEuI4uHpXQG+KW6tn8BKRwdGXyM2fehj9jbHbb7rKwDh5ikJB0GLpjnmHjW8xqJc/EAMNK/r9rvyeO7kJSwSpMSjPWHltcEg6mb9B4xOEJJ5japmaS33ivg522PJZAlxGggWXSZwuKgUpvDjeb3lAUNPkQwPSAVZyLCkfPKz7Sxt4aFvcSOVUZM0oZNzsIXENL/0KoVw5ck0nDC+sFdvt3/47sd/+b/553/x/aEgj4ipuK7DDmRZP90TaOaCfkHzzjCo7f7HZn6R2/Rgqp13B8xmyT16lIQhnYNYxbpykRZYtEOIMhqp8/Qpe+Zd02rMG6l8rf2aCs/JFJORxaDFjd9QWXZSaMYl9GaLvnwQO14ctc0SUH7+lF1Kd8L6bNFgSWAIFAywf5xZ8qUUggkIKGaBLUXbkhvlqmusNELbwLzBatHAelSMaDx4JEaJmQoaxhWG2keYx12ox5TMdA5LZYCj7vAATM38zp/6HHz6PUj52kLNaH5pLpRMu954nGGtWp8iLdyFKL/9gEjzRgBJsQHIbI76//7bv/6bP/3d//X/8r/7x787of0yEqnU6iKirJS/+Mt/9H/6P/wnl3IGXTWISUpdiRYwA0/UnZOTb9woZ+XK6kG7hX2Hl8N2J/E1fP1SdMaeWPqQup7POEZD+JBTdHv9IPv05uncV/sbu8dC8vs7nUW+voM8V49fVuXAdKYCr5lS5MpP8tZE/+N3GrWGTTL89U7kxFxH9frScSahOS7ZpCwSGID6wsV6o/GkS3TOs6aUJZf+///5+rNny648vw8783zulDOABFCFAlBVXVM3e2KTdNO0Q6aojpDksEMO+sERCuvBT37Qu8N/gcOvdvjB1pPtUFiizZBE2pZoNcnm1F091QSgMCWQyOHmnc98zzn+fL5rn5uJZlM78+6z99pr/dZvWr/1WzNNWTowewi5tuIEUAsjvQJwzgEmDP2S/UBSAVGabV1S9qggYdCK6ZasgIX1sTtrhh3dRU9dcFjMPWTIBv1BJpYeuIa2o4Rwx8+1Zt/R6xarh6DFTYQ1Js62ojhZjFlAg7eIpqNK3T40u5aYDiSYiQuImcCG0VmESxY/iirU8qJOwHHKDDG8hAlgSmH5giJGwY1MUjRbpdGdo8hgV3hmQIIfriJJfq0xpKM4a2qrIUpZ2ADyEe00lo4yqcHClprFgWcjC7BKYViKj5pCGK0fmBM92mk0dRiuoPamlKy0+ixFQVpwkbF1nZIEBQ0yZsHMueSmOIqQvjTxCnriYP78gaioyTidRBLACDnAZ37VfyiVlWozeZMBLNIeEEG8ME2BZKcg2zCsV0Z1MIDZjXT7kKP9YPTi4KqDBfYD5cb4YkEyFZ3OIUf16UGBtdKWf+QFMZh7/luYQ13UiD5AXiQUcfggYcz8oXyZAdJgRhrLelEzzZ9kWArkY8oMvJlr8LZMv7ALrL7hsKF/7/d+7/3v3R3tr+cvTlzjioFc4oRAmePvWEgcJAp85q5UbCTDqLMqjWKzEDqarT2HaUSmzsEcTzmsBk3HPlP6mVgK+5h8TvcQ89UYfNH6anlBHfAUDnVRzsNbywurfJiWAshYa46r5Sy9GW4ZE+omnH7MNCxWnur3aNlJSvaKXlbgxEYPKMUyAYGp9rCoenakR5WjvrJkgBl80oRxCYMLdpICDqhW/Mr4EhZJKSRjSZ8x+Z9o3u1Tok+Pz4BWfaL4vCJQ1dE8+I9jYRQVMb+mTz4Fcj4lxCc/RteSyJgSVG6QHgimDgQygF6sGAeNuX/Zv/qz599556MHR98cHgxsEqG90EvBoRjasdb8D//DvzM+7LoJBZYPaWIXUjrCW7iLLDh1g7kznkPAmbWrBTNxmJ+DH7y6nC7mHGrJaSeX66urLRK6XLBnjjsLWEPgI2gWFTR+/9GdHs417jetVzrIYVN9RHf6/vL4xc//9OmSNgBTwCl3FJNS7mJ9af62GWxgTpgVQ2oCawn8YmoIxgIs3hRPEmP9UwXYNNR1i+eEN0wM2A8l6IyGiagUSDov2VqDrf+pivrDW/u9w/GQheUM6qn67K9I5eTIKvZRDqsBerE0ckCcQg8cNvrHhXH3P38dzQUDLTyZKDGKBIWDdp2NSp9hOC3+/rC1N+7ROzddbOhHauG2RDF4qLMjCAfXL4AIPU0WW3AyEcu+tTUpDyAnobSmqACoryhGtBvSDNZ7BT/IVY1VELQtGkMSKyP+814KB3qp2hCgSoo6pUhRoRXwB93G30hysAYXCxHBUkVC20O+5Q/NNl8YIkAjkE4bpt8DMINMZWR5AlrW2kYyFLOmvsKd4n+l2tTY0aqjtBETcfOqTlvSgpUy5wtKoKg1vIKCtEJUwcR6RlGLvV9TMAoPQiuECU3eEAkjyQsx+QUYkBAbxhU1w3qTu19CGz9WBtgOCaImrs1RvNghTCAY4/9p+SEWg6ihdpiL6e5O2GXSM4s5aABzmpOeCPoLfugdZQSAECU5pU6mYS7zNWuUIWud6G4oooxiZXTn9GWCu8WDoQ7cYWw2+QIEPJhSz39V0nYBZUMvzwMTO/Xf+bXv/foP31w0Z1ecsbeqL5jDj9A5nxvPEMOK6rpxm1OXWaJEnyNeEahkIT2UuYoN1KnnEB6TvFyIBIFsWs8CLgYa7ZDA0q/nVgyXgAGfBfupGRU/nSVBWHNmxLr7PO66xylSe/BBXbCrC9shC6kUYJWihEGReOQlzfJKTUPIFDyYR3+3KkDE8hUuKFHEpdyBSxoKrvKVrSi2FljG59pFrHQzyhaNMAEguITLj/oRbRSCZSof/SY0xBIdUpT8Mx0A8pUnlSyfAyFfpcjPgVtCche6GXnTBiSXXaEqYNQ3M0gXR7AhTZpobmXMzJjpYvr5o8eTi6Ph+IHIQKSFBmBExIGs7R+Os9xTffdAT/LTY/B0p4rryiEck+NBg1dFo0F0zwFqaatq13fQtuKkX1TqxSXLhC7OL9lZmAM22b3unM3U5m6uaiuCNgQWk0oEG9buz2sDJTjaZ64mTTGnFNtPisnDKXE3ttnluZNwXDNoVz/oo/m49Gx95eQDfG4uNzViLpotN7aUwDo6B8EChr2hAFB/0GBkvTnEEcYWcvU5czf7/c5m6cK8Ezp+OHLnetMfjfYPMauQTzXFHifMhHaiItnCexmOC1NWnGnaKZpRDrSTcWnaDBRDihGFIs0ptM5X1Bo7O2zu326/fmtw6/CIvVVPrlbtGQsL1UHMKEnYP3rLhDuXrNHFg6tF/zIipPaws1RDC1/iHVvLEwaa17iBSBMYSCM6pT6USx2pFCsalNpPFVCb8kVFgD2wJCWNBJE0cqacRJ8xIryBoAn4s19LNeA/l0m9yywLgg0LFDLcI45eNBY2sS1e7k0mYYFlvFBuXRFfTGx04iCFmpU9ZzSgFnDgkSYFgDd1FD74w4tVk/jAQTkRmGq3wVAaHvgapAoRgqN2MW54YZpQaB83BEgSH+G5UsOs8VVDUQiRbi4BmwGdMUjdPmLiKGfCcH4JR6DoPi05ZsUwEqbH2K7R/oXZImDvA/4y+YAel4yVE8rZmW3ZDhoymddhHYmu4Y1koBmm27kCI6G7wkpOcTIM/jaOuSDRdIblnbyTJVt0fRITy46WYl7fefON3/7d76+ap2dnx9eLy/XZmQfXrVd4r1ovT4aiAlCp2EJ9wXblcILGgVuteJIrVh7gvMym11dME12yie6WBaZztgZjm3NXvmL82T7WLgWrS5BHYwGMTqQuUzqao5grLEn0EA9J/0CyMEFRLQqeekIBkUnQoiB5Upy234gIa6iY1CCjqhTGKvdd5IpReVXqAiCOoAItIab2teRif44KXWCaAo3lEzdfcqkEfjewhJuxUEu4hgDNJIG5JBy9K69FgQJGqFWa3fsugDTga2ovf1WG4EUW5hK4FG1e+GdxoyJHQZiXizeKCbuYTE6v5ncsDLJVtvE/lDA83GnvzabnTL2FbyiwTBQquVi26YYIvuCswESSJxkjMnzXweCwCpNgrhByLJF93jTumce/YHHWlNNt6ANaLiYLJuLPmAM5W3DQMoZueTWfMsdhdrk3e44mLTccb0RDxJk05Iw73Vt39jnlk4oBH0aXgbOzrnEq7C5fs6z3/FJmapSwQhh8PJue+5tj+jH5rELEHuOC2V1kRYB+Ye6w/3HLOlRAM5ZBz5uq7GKG6Wdcl9k0+4d7KKT00cylL4yNQVz5umSDIJ1VqroV85c4ib3LVnYIeNVscuAHrVs7f2jd4MTTRcnpAs5bsw4CRZbdHd7bf/vBwesHNDmGTIPj6OzhPvOHUHjQh++cmkGh044jYffuJymdxpgqmIIFYTMq5pYjYf427OTI2n2fLBL8Q3JyH8fGOgdZabkrxdGCRItU4YQZX8OdHhADsSYq641O6SZgxtSvXFF6WUK5NDsiQqosEjKXQfki/Ki8RJlLgckTbNcZjaqCNSYTnIlMqaclFVWn7tPOueGUiU1vTJFHuXLnwcYYmpkKTXkmfzhNVDLjsiaIVeFZ4kiI5vqNrOSw7UQgWHeq7KS0qlF8RLU2RqcYVbHDFAT1bqyZQIZcBCa5PvBODcx28B3cYAd5IYkmGuMz7MmCvtLDjaKmlwMZpH9QlcDZZqdXPppxwRjwoCUuCIL5QjpVyD1yRB1kLVFFBGuoNvNJV0jE5E9KKvafkm+/GiQ1wQgDnI3Zm90Bq7DqrGGjy2t4b/y93/3Ns83i6rPPVszJny8uLqbn89V0zdqW1QxNdwtEDjxhsQu04zmxdsEVmIyFUh7Qax6pAPBBuImYCgGGNk/DZ/DlPxgSjP7iT/Jo6QuNUEqrNWQXc0NopEMjA9kp6sJdSIUwrb/MMStVyvzgvZ6GEuCTephWqS9JKytVF6JE6kYEDq9oE9CqL+IcsMYnqhmXp/wItyifWYKiyQDgzbjC5u9luqQqMIKaYz4FIxMKQXxJb2rjSYMvOxDJ4iUSJb7Rq0xkgTzhgwnz5oNmwx/BqwrJFrOYUfBaZ8pu8iiRazVMYlzQsgBSAq4Xk0n3YLT1UGVmRqzgp1LImvzUxhaTpINXZoLgUVQefAYX8+TS0mEVjUpE0uCzt8ejcb15n14f+o6Y/E6R0LNhtgv1wXw+IeDJ05M3j3p7zA+uc2gVjUC0i4ZjfTJdTibXU85smdY4CHm6RLlcwMXsAqLk7AJMBfv2YTVn8Uoc8WHT1uVyNoU0qiDOQHdIwUHXTFel2LjOnBGGstcJnhqT2LZMpW+2lsfX9eMrKjFaNZR/bDn7tmF1R4N+r92HpRczDog/XXBWCl7RdYslLX2Gi1kDRvuA0QV60Wgk0x3MdnsL9pHjbPkF2bo5BJu59voH9/dfe+vOm0cHtwftwcGQGQt7k/nT52eOdSg6+3yZxslebHbzw0RY6JocTAwLHNhHa5sJIdgsTEC6L+jvZQIcfEaYxJbv5R+2C6Go/igCH/nzVgxfYqZ8xnxG0hEkIlW4ZJ07CZLMN+CqE1E5X9QbNchsSz+NZiufxT0RyFsXrig95jp4WKXwPx6tplOwQdpgcPSFJpyz5s3Ef4iMH3FIyZfMEs2mF18LdsYki4oCl8pgAU2A41qKi9WZF5F4wNyjRloWYIsjlNCdwmvRYuwTbggLB2hpign9GZim9C6HLUICUVVru2HLdbbLwgmmE0UmyfXEAqB9GQ488tjFWQILKQBV2q8d+mqk0EIor+VmhMTNlpAkW6TElju9odpbPuIF6MHY7yGhcELmZEo8bzwre2flseKX1SGcY2Fn/DWre5nVgzv+g1959+hW7+ziBdOgP/jlV3/+4fHTF1csTZ/Qgg80UMG2o2eOo8FJenMwmxQCnWK5IaesLrHp5MXlHYTLt7CZR+IXWym3DCQacYo8oZkkJDJcreN/SE4WapuJ8j0f5JFZ+MH4wNJ6+qhOEMqXvBidKxDy49fEsaIMBiVGYgkKIMI1hdBeuW6AkMw8+CtIR2lM+zIyb5UGFlBKNNCSvbgal0gBKi+4vFWZ8FzIlrZ8EGL5WJL4IrACtnzJawFecTSevh6kEaiGW93R9ca9MFFqczNjy4a+MSfdNBcnFyeT1ZyZxSzDw82kMyXMDcucjJKCgbChwDnmlCCKv79mKwHe9DsFr+tG4wmD6/wz9EZfgXYuI67jLudsGRHXh/QCQcXuPsC8T5aXnrLovBBG7Wlg4nlfszssTZCr1WQ1WTQuaChcLS/Pp2fr2uW6tbqesHmE087dubzTZyct1gOzoxZDXOgr2zjb+AAQfZXUDjS2xYMcmccFVox2EM2V5Z1B58Gd3sBtG6g7bNZi3ak46azvddnibcRu3UPWE/TGLIzst9kQ3KFxu3dqjI3jPDGgRm8+hYUgGghs3kx5pJRaWOnxdcVMd//o4MFrd+7e4njnwf4hyxI6+O+sRKOxToUkH3FIHdFmj1VwTPFD+TFVXabv1ps9B0boOdD7pqeBBhCGLRoZ3z5KImttGqmTCIeGPA8RD5JXoVRzCyTBadZheMBQHzxZxs6lxEWkihsQ0kAS8gL0rjwHSFVoBFygq5dm4RsLFcgHVMXBcP6DMkArT4U0GDd1URQLLRgV8nJHLXQD4vPBzymgjhMSU8cXKIBBd5htkaarVaJp+CICpR8wSkYSKeEiQ8lIZoAkGjkQKA+4UsHgReIbWLvRxU4nHkKBSXCLimDTpWYCmM1HvpsjYOyUZBEGIls06/R9q9EoEdl4civn89UWOgwAYMTK/i8bOFhXx8GckSmLAgccJTgsF5x4W1W5uaP1Cp819/pxvEQ3MLDAJj3lzo6WUAdOliz7hzw7l6nYVFv2w27Ww8GGdV37o/aPvvn67MkXP/7jn/7RTx5//uTZxYxCa+UmhxQmtEcwLlMgX3CBQVbEiUAVJsvIJxIPztyCsFGDht/joxMMFYSLdWKVx7wKwniEmy8po5N5QDAqTgAmL5/KX8klSb2RSnkKK2ASLWkNLBdRpCNxqqDyQmqimnmuXZzdu/CrT/lNFiVADhgmBYa8jFmy9T18Shqi+BuWJcsoasE7jzsU1N88lxQ8BvouBzUjXEh2vhQ8IpRKIEVCfos+j9hoioNF4nyptUXjZa+WkqUD//LPv/z7/99/fHd0hBFleSzdKKzJHrAhlN6yc3/pJ8JMMWEdh9b9d5hPzD6VzKrxNZGIRyS64R0yo6XXZXKWBcz/AKAqcDoZlICtrWMHHS1EuM7vvj2i03SzPtquOUWBYo2TC24UEZWb3R9wiuvMA3CUAcNeZ5ud8wlb6VzPJ5eT86vTyer0kibs+fnlhPPTjk/PMfU4SWQ6Z5yJQkIZYGcRvCUMg7PJ6r1hfdhtnz+/aDV73/rOO/cejI+/mjL9f3I1xV5DNgNalHIbIuvlrM+6yEmPTdXauFMbVg+POt3h/rhPbUMWoNbsPz8/Pzk/mU4v5+fTzXIOFynajBtgqmE7+0yM2QGVIWXMinM/2q4uwAhfrwccOKkvlQ5jV1raVmZ6g+UPOTEQzaiWE7AJgCN2jjjVCykifrhDmeexqAwsI010UWuH7iFxlUVTEJOdN8Wv0dEsEYH4ADZa0WK1FCML9/RjA598qZGM4qW6Ib+i7VUakuQLX6lryA9TZnLc1LR3d7WU0YsRETkMHloQhY5BAaPosnfwsobmH8VTbHkgCzudYCo+hCiDHSvo2ESyk6hWGuIKSBhIMpAiN1HzqgqcjzQO7P3Jo1HMKNF4IjdzxVYzuxEPmHCxgxjzBoxbXmAMGX0HCT+4sSOK2uNMt6W7nLMFd3PB/uO0IegK3NAHCq0cFMImilDo4A5Lca0O5ZXoijOA+YNviMcKjHJEvn6wKcAXq3QSWiaKdE1AUusc3Hx1nmgKd2fpeKJCg2VKpLbkrInapLW/eeevfO/TFy/++T//5z/+0w9PJnQyOYJGdmCRNpm5eRKXIxVoDggIWFYqBQOCluxMkF8jqcLCRA7mREg6fvJQ3fMagYOuEcqdRwlSbypRJSARDC/feUqaCFNkqmQkTf0X1tykEVAFn4c8V99e/Ylu7SDtPhS4vAHZKz8Fgix+9QpPEiV6hAjCKWKRvbpksNpWmFeCdzD4laIkCYZis/toLrtn8zayMYNBgSbeBucWQBWDKnqdljjqMuGrW2v2aNQaTz0mFmnQn8bVfPvpo2fT0/Wstnr/V9/76vjJ8xdX89kJ22eiPZQfSoKA1SuV0y7O9O5RJDDlmP1en512OOC8MxrSud0dc436tw6Ghww8U42w6E+06edgyYiFFAJtaNMvQ699YzU5+Xw+P8Pa1Ztj++4dRUXx9KM8RoGxwDWrE91FHKw5gKPTW9wdMI2ss13fatUP6VyibxVNxzovrplAP2eryulkeXVJN8zifDq7mFy/OJufXnCAwvrikoHe5fnJhKGug/17/b0h0xI+/eCJpxIwKWmvh6PNbovt7gADIIOYTNtoXKy30ym/9OTqFLJv98UFu+63b+/v7+8dnE+m7OI86rSG3X32guDMAK1Qhy4haq8t3UTdvkt9aYd4roLn3+i3MlJHg4NDRskQkVNG2S/CrVVhAGWZzBnbHnMksQMZ+GfAxPQ7KIrRjMWIAsQEkJyvxKCga3lhcplhouohOC4/OAckrWbZGE0iXkxIkQpx/IJ8MQqpukkrVEYziY/a8FcZn0olVEfi0AltBvaAMQrJI3FL1qgKb2RCRuBogSxFDR1AjTV2pZJJz6+BxDAtKMdj8y6WVkk86fZbAUqvSeyoB44WWdCEmJ8uMACE72UNwnOoLgWRFwQMVmijGQYrXjHpvIJ9KsYgA9o2XGSlyxllol9RFMdvAeycKHfD5FwwdjGb0rnJuNCc+kAwAERxATFLubb16xAVI//2DhtFrVZ3gcWYj7nwJBG0uaDRGiiEJC/1JIRYlcgBkmH9aUjqQ0C/bVxgQ3TUCnm7XowmIyiwBzXDCpOjO/1/9cc//Wd/+PGMYWImA5mlPILB8dBkHem5U5HH1KQGAqaygvGiWBiWiASHhS9v5V2xFWqSIp9JFvAFQKD4WF0KKND49Rk4Rjc0L+UGauZYhVYfSlbJrnosybkLYQcCSoVbLp/MQXhc5pGrZHmTbwmsIFRRXg3zSwUiEG/gEKl8gBHQUYENT5JjxZ8dyCodSQo+4dTu49d+dzEMDEWFzwpNvuywoVhQcFt9T3jGruoX6FVRjCruaVfWteenJ8cvnh4/fXL65MvL2dP7b772J3/2M9gy3h8xS1LLqn5E61Am86M8WWh5tHgTRInPGAyY2yDuNDnzim1EDvaGbD33ne+98+D+bV3i1pAZ0CBgT3xGY+mKx6P//X/y0cXxI3KqtQYjtlF2rRj7hjA/s9PlAK1Gtzfc7+5Tj5A1aSkAcztW3C7RobLaekoXDw4Qhoh97eiD2Q7btduMK0IeO+sjfOoWG+VLTu7gtK/L5fnp1S+fXvyn/8UHl5yLuVkwxVT/vOtKafqRLHtbTopnMbN7O+v8ytpiKZjzTScNudQYZ/h0erJ+fEzjmYENNhLFNPXogII7y2s35+yOuoNeZ7/v6aI9V6U5jMZpoSt6n2kEUEtdsj0RHUBMe0J1nOREHWlPNGPW21qfkxNYtiYdFDungcZ+kx0XdkCzUHRFWWAQokF8o4K2ryG2FxGhJdhZJAakxIcjVHK26IvxzTeNnPprqbcVJ81WBBhTM9TGm41X7jc3sMOUg1s8UwBDjjFhu8ICThSOWOrQrojkNUqk9mAJSWMtoyapV2aPpoKO3gCi5ZkgLb53B1UDDojUjUxhtnskqO3oKLimohADTCSYkH9BB5SBS5xgxA9qziMRBE8k8pNcJlFIF9jxRRaDAVcEAH9syGqKWTHF2QyN636H+QJslZ0Jwi7wI3UGaYmIA8OsejbSWbFavcMprk5nlh74S3OCmQYAonEs7zG8KVbMa4s3JPuJIoagSlCbuo6uIU7ZZQVPZBue6baEMYUuqgZoAT5sEN5m/fq9Yac7//nnjxglQ9mtAK0DKR2y3MpFuiGIH14YBvepUo2oonLIx5voxJSrX7vyWuBE7n6M/plUoGb0tasKTl29g2bmJVW+Kr6kr2Ds0pekeTNCwTni84s8E1AFyaeb9AnnLcnyJdkp0R2YkjbfXj5W8Su+vJK8pDJxAe272UtRRf8uUQlFua125flLJEpuX78bSbiGhqY8lLeb94Agvx0wPAQ8KDZMs3Mf78FwlNdUFk2aiK36F4+fzmd1DrRi67+9vfuLeft7P/gBRZDeByaSquKaD4wbE4SZ/o+pxYoxOdPRXHtlmMlGgcT+WkYsLRgM1JbNl3vdF3/20yf/4k+f/w//+7/93e/cancu+4N9bL8eFbVRVJ3058vZN999cGvfNTLnZxjp2cmzi6+m7pXm/tAdjjpoYljdeKg9cN4+9RKTPx2ew4FhnylqOAbUNFn6rm4exyiGf5SJTFBl4wt6apgT28aHXh2sV/fu7j2Y/Tc/fno9Zzug2TH9NtfL4d7eYMRG/dY7wGYNxWx9Dp+Ab0saD5SVV7Si8PZoImAZXd3Mmbseo9FqLhhHvjw/uTg756CbKd1Frf6Du6/fvnPU3utT/1DS4SJTK2g6eCZaq8YY8WzqyQX2lRe7hqffo0sNC5CtOhwUZ5CGCXlUd4zcAQA7phqgSZhvSiyh8F1xAoR3JKDxxkJAewynQi76rVpQ1PU97RSqwvkhpaZWvYg1YL4UAtLQuisxoWQFLzOxnBzIMfqVT6QWrgkAgRbb5yNMLYsqRnRVArVLYAwrwaX8lxIhrrzH+Gl/wceKhxlPGDn4rteJhcL82kNh55l1hVos3OQcFogQySVF25RcvFlX+JM/USyIBgCPwdeX0GGA1ldQPJiJ9RlqSqWZUUcFSSsR8mwmiQPfXTbKRji91prDfSwWzMd3JnzYBaxUcKzDwuWnvrKCD5Nwr4CPk7+mssiKKifdsoS402DxPM6I/Cq42B6QBJQHTWQUzgEQPpG9S0HQB1s/YYQj4HbeYfntkUqiJstxWT1Y+873vv3JB18ef3GCf0LdpPLtRFNSF+mFMhPCj/AGJkK3yICFVzjjjWf/uPxURMqzD+WzwWGyv1wRYHlM0nzPrQpEkDyVZAkKDToYis4QoL96vfJmjGRsrMS5gfWvpdhBK1jkTdyIF4AloKRKgI8FZki4CSsJ+FJSRAXDhx2/Kqbkg2xxcJTYSs9eVkpZkhKtgPfXgmC4ISW4+mbSiofJr7wTx1hmETsRXvmJjfvZKIxuZ86uQbXVAhQ7pQDjoepO5+v7b7z3xre+M+L8h4yooWJYOIoWJY+oSVLy1P1Ru1E6nBsHdzkul83wZ5PJ5Wzm7sic+kLHy4zDGZerKQO1bIK8Wv/hv2p8+1t/fdvsXq9ocQ6r8g42HBC92f6X/+jDzz7++I37/XfevvXW6/fv3D66ffvwDs0Hu8eZjcE4GusHMIPsTc5GCawLYKUK+75RnCDHlV6SQ4clnfdYjtQ+mCErgXZ9wGbQeOJ9XOkRR0Vg1+sNtuufDzqz3rB5smgwceP52cWaozCeTLBDdGTRGmBIeeAsH05lxE+jwGoMnNXS7HP2GxbabmBGPzjKw+mLa/ZSItHw3huOBG/d8df+DtpXm8Wwvdcedpm+Op9OmVt9ygLJZmc4ajIo54l57utGmcfm8YfZs3VRG9kOiflhPjhUYsCsAFAI3DZLYjGYFnI1J/oBC+IbFmYgeWSbb8RC5QgwpfYmSRKE0ugJaKM1neWV70bhRioVhCdaBVhU9UH1qcD5UNSCzNKeEBP/G8eIJhBrctaKBn7IMltzQb0AkhogDzE2BSkYoPUnh7gtZK9iW8FgzzW8jP5nQBhbSP7p7i4KTfUhOSKgyQomAVwsiOyzbJE/IP1qJEJCc6KbyL8SxXjUb+55K1hlhWihjksSHC6WOlBU59h4OYYbZIiA1fZjVZocm0B2HEuET+JZe1TWESbyTb2tfWf8iqlp+P4MpVHcZCDU2v2koPQ85J0N+bCawQW8EEZxVSGwA0t1ALFTwC3wazRK+V3X3npw8Nq9W//07/9TmsxKTEKs1kiAXkmuFMu3/CtMknzy4gtgiOQL1BoTrodJMjBY+u4zyYOd0MoXIcg8XxObG1ne3POY2BWgRLpJH6ilKgoeJWb5fPOcJOXtv/NuvKAY5HlMQNGIl5/ytLuVJOWt5Mq9CuRnh8jLwDCwivnya3CHC6ps4YulSmfLcrbLjN9SVG5C8lDYtYsElFd4VoUGIyMrHYVEAF0o3e5hs9FnZAdNVOVlZEo7vcrr1WS2pIOIuSvW9xZ5Nm/XdOlDFdJ01wGmPwQFwLQRCjinOLZZ3Ts2K49LxCa7bIvN4ucTDhg/OT05Y7/M1fqP/vwXv/nhmz/8tfcwg7jG6di3SAALZ/it7771YrU8Pp998Ucvav/iKUhTuDHDe6Pu4eHgYJ/hhNH9o/3btweHR6OD0fjwbg/lpkRkMjjtEjrX0XSdMLpjmYANABbVzjetq9XmhZv/P3Nvn0bj++++8+bdI4oRo7y3b+3dGfXPT/Gdat3uHsucPZuozoYX+OXLs+lV/cwdhhjO5fx3WhjsCsF/bAt1Kcso43FhFt2QhYkSGOye20r0qDcou0ej/U5jMFlyXPyEJhMNCkYSWAmPH8n6x/M6LQR3Y2RDUGyy8+gAbOtFgVG7ANG9xSInLIPCqv4XqSpfBFGssaVXuRjDX/50/ixsikqBqSj887/NOWXpt1Q6KB8PRdaG5yvJgK4u7OKYykwI5IE/UqkdwPGVSxOY1MjGaO7JgQ6ViFZCvKBb1KJiJRqC5CJvOZBE4oklIzSd/v5IpxWfaYoHbpoyxdQ0JrAXhRySjuiUJ8ykTJKfRgnK/OYhSBMmcsbwslEUDDScevUyyGC/E4s2Ep8TiMW2KGBdaYUSIS3k8tE517Th2E+EmWLqaNvTP2ocfR2+C5iGNGhSJ2TXZUTOrjwwy+XfaAoZ0y4GE/oZLWJ6h0FElGxbWfNDIGFKPNTRTMRhC/5SRiRyVqPCY3FnRhbbU+Dv/PpvvH22mD96MmX2sByXtMISH/0rRJcPYFHyDuHQDz/UK7nCs7/eEiePvnrlq4iUV++KgH+GhKH5UjLjLozqUz4UoMrjJdxK4QirMqhAlQQBW0JyL+mk7iWEErMkl3O794LnDbLloUS7CSxx/+KdzyVePghnxxqfoPYGVsVaOOo/U+V/eTS1MUXXZ7+XlHkxqFwlh8RJCp6SZ776VL1VmBQBMvGXTgx8EnSCLkGNlnoSfxL7v7lmWZbF114G1IKPlkidzp2wQwqmw+EoU1Zo0qFYPRbHi6SoJ7WNRnPAatqDh++8e3px9cuPPtwb1P7lT794/0ffpbR02NAGn4U0prek3rtz59vf7rDSS4Qd4atziu0cU7ycn19ePv1yPvvwfL14slpM6AfFuxr0G0e3hiymvX9v/87t8a2Dg72Dw/3irzMF0wOW6126jratfV83nDrRrrV+8vGjf/gP/5t/+2/99YcPDq+vp+zA+yvvv318/oya5u6tI7tDaTLTpuGUehY1UgfSq8WgGT1d7Ptj+5xtUegTwZQvOMjSxkGzZYcYm9mt11f08MJF+m8GA3qSaEZw7kWn3ae9f3l+2uaYGBcWpbe2Ub/iBDG6ymDyijX5wNTB1NKqAbA0u/1Qczt0qAbb9kjvDPynZlA1MgSoCnEBiauUIYo1HSYKrmpW6t2r6kb0R3BaPV80JvzEavBFXUIr6POL68pHTAcJYn95QzglAY/8izKYjD+rouDgnQ/+WQ/grwK9IIdYraAd1aTO1QbamwUyhKanwyyCYSk5aIi9PbF2ydhhiNh4EYYvzlQyDankj09FM53dZLDdZykRwi2oy2GfYLVhVSDvoimi3hIs1OpNcnBXwDotloyUAlnR4FVAC5WDvfNctD+7/LG7JuNAVlraZQ+gxe4LPqPhVIVx99G8PkvR2c7VztZ6Vl8x/2sF3ph7pFihJFagK+r8T1OL78Gd9iNlSYYQmTk7jjlX7Xsbbo6aWV+RYaP2rW/dfevNOz97xJQ5JGBtUvEAqOWJu1Soh+Wj2YYwcfcxMapo0lsuAriMsINUwnf3VxLE+sk5vhnsb2FziFRZqquEBpsd7MT1c+QapF/GJ/iV3EuWgL/BLZn6VuWep/IaeCUiAeV6JV0VUrIqECQWSBXmX8/XD/njXn0pwEzgRaAiE0IBkwfj8LqL6td//doxZfeF2JWOGxKV9EG2Vrkwl6Tb6PbZUowdA1h2rjkp2epTYLUWyxmHCKJvdi64BT2qovmo2BQMRZxEgtVpDw3WIObEnRCNRNSwyhwC6WNkFHVIn3mrOWwunz16enWx2hu0mQhDX74JzdPelLsH48dfzczXKsgixVnonBRU2+7dvXufIiQ1osg4GUu85u70P7n48PPFj3/6CWvYtHDum9nuD5u37ozv3rl9/42DOwfD23u3qYYOD3sXJ2dH44Pf/Zu/iT/+9/8///x/+Xf/thNVr9dHewzONhl2ZiIFm1fHkjLjkmkZh1QbodlBDVx1BvWsBximo+28XOHRnbHXFesmV8zyZBEYq8kYoGDngvViPpvi5s2bF43LcYeqoEPDYDtjDRsFVyKcEcJWhjSwKJT0b9NnQGFzuqRKgWuJPYSn2kp+IU0XEANHh0eDNho2h5aBNl8Lb3GS48bkoSiAWkZdjR+prbAPQV772QhFwTCRxcGMlSOtuWqvVGpsM4YE86oFL/GtlsEFFPkosBR1fqPSJrfjwQ8EJJdouH6E4QKJwyl1vFgIEghILh7FMPHyojJpgtQR4YUX1h3WHlx8BxJjqvBQF5t8cWzkjuygMpUhyStQ/CCI0GLcPEipWVQYhXsFiMhwBa4PxKRnTrvMc7ChA4j84Wxowc7ajwKu1Ga8cGIYQ/7MR8OpwgBLgSJOJBNQ63FwikvWKSEsIrO51Vw32Q6FbYXYqR5PZNNgPboThM1RHLycqCa64gdE6x532DaIMATtQLdsSAhjQShnGx01/+b6N3/tvenZ4qOffkFNjLMFt2VKolrCJFkwZJP2WGFaARYh8YVSwU2uEU/UxDVBeeNReEQU1E7weS+fBEH0KopAqgtEwOFrX5NBPhOt5MGbWCfQyOZSXl7+CFRhlLglMzEuV5XW14J3KIJp6paelhTsIgdElbA8Fw3aBVX5+7MLunkkZBf4EseSQL5QLIwRdCpte4Wwl9BePiUqryTbPZaP/1qAkVKogu1mSyc45o6D7BjIMjLMUZFQHmTHdOU1m3RqaAhNEVcWjDepC6BKiphCHmQtf4RAQLTwRi94s3fBjMneYH4b9dnV9LNfPp2cLtjUnu6OL796fvTt1+j5YPvn4rwFzOZwf0w/PFJgxKI0ULBcAFCXxQkN512Pho5RjnfcY1e72l0I0Q3C6DIgvVycHD8/Pnv+8S8f//lPHrO5Awts6PEf749H+93NbPPa3fv/2//N3/2rv/mjR5+efvDxZ28/fMD5KXtWjeyYslpeXo33xpRyiowabecu45+iQI98m0YNVZUGMHefWPXvPCRrA4+tZNoHKLA1ljM+rhdz+oWoMebdi7v37x7cJh9dvjX9AeySiH+tFlvXAYlS7MkYBlZFVyGQAbznSW5KPYyQ69TMlTSQjhwpVkWjXDQ3VYayM7H8IRZ2TMFHggjIlBEkaTROqciJahQ+aAuUpiImolqAYBEBYFCRaIGFm4t7csAEAzUW2OhBNmhrm5Ug+id+RiaNUBNHosINqcTWCWb3WfNNXqLAL9Ghm9RV/iGBZ91qZaITrqdrHGLBTGovUeQLdBd11faQkDgI0MiBHL6YKrklu/JmbkYhF4HgnpRWmN3lGgxAga6VhLUSXkoWXtpH78l6HMY4Z9CfNYgMmJGbIIRXkOSR9iM9jAiK9gFKQycmqkH7En+HbUnomKcWASqaFKoonBo2CQ8ghAdca3eIlbO4BSAEP4J3JgGz7j+KIaV3b90a9UZfPfmSvdhoWTNNIgKUKPkavkFqKhghkca7GmimQAjkwhCzMFii5FDuMtZY3H03RuFfSepHr4SXx1fvRXSBWYCnPhBkctilDhZJl2Cf5OpNrrzjLJFWWcPcfAgeJQofBJU0jMU1bh3c6nUYV2TbltX5FdtLQ3iIFvJfvEhV4VMgisINYrvIAjCUj/z3QYklWlAoSeSQTP3alffCgq+F56UA+3qGu7Aqp1cShcBgWd8OGci0d5tdackSNcLoWDjoTEC32TB0tWZbGksLF84BRTn1k5hUKIJ/UXhVHvJCVqInDwK8RKd6FxUD2s37r925mJ1w2BWu/kefPvu1H77FvHtnl3k+JrJy/sOtvRGWwFJlvSO0QsruJ1joIvvFWwwmcUQKUlk70Grdf2vYHh60W1/98K1vsscE/4FO/82Lk1Ny+ld/+Mf/4B+8/Xf/g7/9V37jh3/243/55sM3Qa/f6WKmOdF3evz05OmT8cHBgMFZDLL1Iyd1MP+H3iznE+FmMWknLWmMrr3bfKI11alTFWlQNGRuu8KQ+DV7Rbhb9PXqdDnpDKYH8/kRg/AdJiDRIcy6MhcN2yOn1RBUizngwHL+HwYFcyO9aiHFOjqD/qh71oTs/OaDkmE0wtZAbAYhNh28YKBpicJNw49bA5cE6w2GR4bac7we2Eka+lqYnoJa+IyN0p57YWQsRwQJ2xqAO1gRz6+JAhKCIIfkqAqJLRGteqTSjPgpyYyatGqfD0lJCp5E3RQ76AIsYUCIbfK7dBm8s208agUxhyGM1M6mjVEUCaGBET9m4VW0XxAaGVKJhhbaj6/EEyPyEiWi0WcX/oiyQQEGXg6VEcvuF/GIe490qQCwsQxF0UuYQH0KWCtqAjBX9MDdn2gwckQiG+xwXgAzPdkQkHaDi3AaXQ9ARRO56LGBzwqHSwaQPzrnrs7CQ5dAAxECDipSj/BkScdlYoX73/hr31kszpk+xNIT8KFtoTIoSxkqgbIW/8I3pM0nAwuV5Ue0CUrkcishss0LigyuJA1cIMP4hPISeDuQiR8ihHhziUuyMG//KThuu7CbiCY1ar5Ig/HIih8tnBJVYXQD7C5FenwyMrcUPdFiKuHR4Yhyx7ZHg8HgcjpXx/knsJusylPJiPx4KLlWIYlHHMMlPr/cE8+3EpCPEmJA0Au/XtLgl3/9eonGKxj9d0QLItImg/xlwLI7YP0uy5L0JfQQ4Asd0nzDu6htJ1cYK95KWYB60YMMc1adCx1mGZ8M7GWOqsgdICEpaO4MUIWeSODCDMaD23cPTx9/9OD24S8//LTR+A1NJf0gbGQej5YicrCPGcUWUUCUojBFQRxuRGGOXJobcZKzBTnLkdPhEPHs/OLRRx/dvXfPbhfIbDDfqHZ062gxvXz61Wc//cXnFxezhw/v/dG/3D4/vbyz74R/Fgifz5m6+WJ+NW0+fcLiXlY7My7NTtGM5bLCjf0rmr2+80oZ8IvfqA6Jnd63TLZGsAcHhnAcPHgxS8oN8NgTdTFjL9HjF8dMKz24dac3HLJGjJm0+sMdz1ll5Q2TC9maUV7SoEBEyCgs1lNUGLBdSnOTOT6Ew5R86gCP/oAbGjxwifYr2oiFX8IwCsBORxJv9hdzpaQDGYrsN3DPoWRrAn15TT79bclBjKId5khGSL5kRGSzMElm+8Q+mnNiSwVQgMQ/rRKpdC4iRIi1L8fMxDX06WKbk3dJ4Z/EQnNQLtoAqkURhUQyY9JetReEqfRSxPxcwlyvpbbrEZuR1oDw8pycC9NMJ9GawjK6khCRDEhZHTETXdWDfhCxbhZnzbLk8kWbaZcb5hwiMC71xrCL49DBF0HbOW4EjOmRKckBaveQk8BoQca04z6sm1QWzve1c4u6ncVkS1Y4uA86RCbQ0d5wXycNnAHNq1hxK21WUYdgOqwYKGe2Gu3tB6/fuv/awYunTzng5fMvv0KzLUdQLZeFRxqGCUIs6mvDlHzkDDEUA3deKhGENXKSCLnkREnrJyXMBXxCTes34RQoJaoxjCxIHxKJJ3XBkHIlpUkT09srH3gh9i5qlS1SNFI6QFmJOu4xXWT75Pk5J3NTgvnA9l4s4IeU6WQKBacXF+jLbMbSTXfJzggLBAh2Bzp5isMu85sszahEu4kj9sqKn2h64t4k5KFALg+QrS4J5eVVxakCvvaWl5chJS0Rw37hVJB4BAP+Y+bRnL0xI7Jse49xYamibiP/7GnBl2tsZvReLNjqO5t/6OICj66JwBQ54ERI6nuRjfka6FuFg/ovAuHRS0YV+dcOjw6++mRFp+ez58+uODW32aZPnbmZUQ7AXI8GTn7XHyKLkhw0IMA8FXMcUHREyvjD1puZCIkuThF1Cmw/uH+7+VEbn2s4HNL4EDlQtR+UXTtHj754xmYR+wdH919/8+NHTx8+fH++eba/135+tmbyDhtF4C54RLBO22Q9uZ6o8BQtDj91gyGaA+51QUQW1bE+osswM3Yfm00GDHPgp1kA0b9yzMCaE/fkNesjNufnk8lksX/vNgMY06sFnXJES9OC7Rq3LS2EThnHw7jqGkNk00DXHdts0QjdolPKCSEyQl4ZyxfFKUPKlzDPQMRvfyimIgIKPwQvZ6OhFHxBqbNpJwQGdlrrgvtPEaFfYksnVUSjISfHyohjYQTjOgaFpaCwkHID2KTk4HEUSZupwhjTOyyx30bZkUKCkrVWXjNHXLv8uIKsxJuJEQOjRCkJJS2WWDaTF1FZqc3WSxxshUCwtkxrA2CAkbz8EqpttOIAQMCDT1SqRCBLmCKwIM1vYTtECSKch1x5qt8vLHGjIyjEi69Tu9wUhR1pnZTGhlsu1aXlC6ZO2AFbGqfrXout10iKmKfL7XTupAOQoiLDOcUwEZvdl8Ej67UIhD9yhH+IH+5H7xEc9TerJYAED3T8gQBm1svAazRef/2IqqTe7Dz66hkr0aywQxoxRb1UBNbPckP3p8toEwVBleKPGXWUjcIMY4Qz+hlhPiEqjDIuYgmP1K7CuCovQqNq/CoR/2SnWYoB0Hz1xiexgsV5qkL9KZ/KL/eSvnqVeOrflEGK1mjUPtoftq2P2TGe9hhq6xkI7EwAh8Vk4zwTOos56QQUkCaMEpegVqCX/G+wIDCX+SZzou7wLCGVogT9l+hVkXeAAwOyA+VlfrwaVgRc4tzgkqglSZLtPgPy5t20N28JJ0SrBSs4C5eCrIoWtVAm4I65R4dxRBinRWFLdgJ5iZXyCVN2OYV3u/wVkfog4oWgIBF1UH7RrW23z/4KTHtfsW3Ls8esNP4Gyu+mcOQkz7eDTmN/2Dw9ZYUthYlU4CdA0BCsiha4JcQ5FIRYRgu/+YinQ0ifHTdv3eZ8uDhDFoT8s0HMmS8X59PT45PXH7757rvf+qf/6P/Xav2IEjZgNXHtmhn8nWFjyAllmDv8H0qr474sMKWTn73P6duZoOxk6QAsPT+uEGbTOX5RLkbz0Kys2+FwJ9YfYHooRbHh/T7VgC11tipi/e9owAx/OUwB5z+0M9ebLmCQ508bqGnkn0VC304eecER3gznRbZiezSWxitf82wqGiamwAIQUSsLl5s0MsgCjip2/gxnJpYkkdCCjLeg1RBeMhIu3I+qgFHCzJpnPVQzIJWYEOgbcHVwNf9AQ0g84kYqrSABvkRUvCGQNEQ0d0L4FPINSXRj8ud3Q0rUQOAznxLoIxPtwZ4i7TQsV4Ub2ZFXyKdEEzN1CoZBFCtGhrQQEMgAi203mCuUk60ZBQ0RJDl8JEBGwkPy475E9WxdSBpxyaEosMrCKHqdbQRHbBFL14JYKh0SywE6+rc1FuAgcc7KwAtwM32PAaKjSbbqW5AeRXcjcmYVuUpck158NMUGQOZ1yCAESpOBtBh8qI0Zc78QpMAeRXx+//1vUd3Q9vzq2Ykz8EwUlEHFS/qc7yXP66/fu0uT3DdwadRY0jKj0Zql6SFB9qitfFdvbcwBnMvhjkiBcBfCwZ9gJ3jKOVhWDC5ZejdAvpkxtzzJ63wpuL2MxdPu8hN/YXp5BJ2STrnjQuwN9mnKM72d7p2eZ+pp+SindnLFfrDck3Lt7hfMHGedDseYXE8tCeqCuEjnX35ph8rHoLi7EZTHf0OiXfCOzhSfXSC/VXb/xmz/UnTI0PBd2gocMMRRTxkymemClWK6mUUzdFEoCoX43CdnF+wwYKdEQV+TgNIoaoIS0wKlunj5QG5FlsTy4SUG5anEJBKvRsZMsrp2MmdPtt6nn3/51re+ez69UBAaA/41mDS5N2g9O2aztRvWArXKMvmZC3CTY4VIfrilwOwUaG80Yk1a8CTcjTXNgEZHp8n8oWc0gheLew8OGbidLllZ0xhxFjaFBjXYsN+thhtT4l7RnuxijlFmqsgVre1r9gplhRdbDznwzBqvq+nmArzitmPt2Fm02/SIGWak0pXUp/eVHT9ZE9DoybVOq89a0XV7ZSw22mvWZxP2y/O8EeooWxI6rWLMpRj8kQZNKs/mhFwAVd2LChEAIyleVl10Q2smou6kt9yhBWkR8wNIa9PULLwIRx/AoQBzM0PLCagYrmMqCsUhh0n5HhkkRXCFrvwDVKwrNk6EbGRYA2PBAKHaCEkMhKkY+cUok5/EaGn4JYyxEFmQaMmPbI1rMtOJhY8qMr231SPx6Q1j4o0d7vqjLZZiO8BipslANHYgxA+IdBDxAyRekTMRynMqPWOLmGnQkPIIPInG7tlHQweM3fAY4NTbYObJLVIY7DHHHFraYB0ith5WsiuccSWQjGzUso04CxhQNnQPLx51ZIKEcwvifaN/2ROEI0JdIkBHEZv14F3QuQRvWYUJGJQI8TKgxn8wJXvrIwkCB2+sYNxnovSD2yePn6/m62cvLqUYJCWDfHySRCsuecreKyxkSQzLDVrJxHHGr9IBGpYYW4EonPLk3UdC+LVqoC6yYkD10AG1l7WgL16cSURYanSZ7f9AKgEJrW4FfJXLqx9IFKmUCAWPCp6mX3tQo97tsum1vWaO0TA/j0raHJ0Y7EgNj1KvLm1Y0mnhY7IH55qAt0TcXDyLY8kmrKpUoopRvudF0hK73At+VbSXP0J7+cbTKxBK+MsYVcSvxzfSy5CbJx/KC3cfLDVMM++28WsHzMyXa9AGfZYJJi9CrH4JkwIgkVKvJsCefC9akTffvfiVDVHt8u4XlMyM8iingFIlqFhmIDo5Hu+dX04fHHQ+//wpWdvNiIfCjoMmQbnWdw5aHz5iLILSjlgiLr7lEu3ksHsv9FVkEijjRQ1jtxnv7z/98jEBNs+FIBFkgD9Oc/2zR8ec9jIcdw9vHT1/djlgy7r+czZspotomQMEiE1xQzs81ztmUCPK1FAIW2+7dLjqJ+M5XGNuOIeApgFLB4r/405vV7P5xdUVG28w4WfduW52Du8cbe5uDw8Phn32OOpT+Cmz6BuFCwwZfmfU2LMnyQAkKeCwM4SDiRKzMCsU2V+4JaWaD8pZJKpI4aX4IE68O0KZX0JdItuwDKk+gEUWvGMffQwwOe2MQw0TwI0Dw8TOPATkTSamEsAMkoc9DVYGSWsyEaL5bLjTC5JA3ECI9AVM4ISwZGwSrBg/oshFIgokhpLGmvqpXpFGG5QvPApeBMMJbnzmm+FO+FeFcbk5bBFvukCU0MIjqQU/XhKd6sFEWAOzAICcCrfyKtLZwifx6VsxmoRBP2Sbv5O9aNVhkeE85Uf33g3zmaKFcAOMECRAWvpymGzAYC2rSkhUYUEyIXMXMqqG9dYIwxCLqBaKNgBLeFQuZhyzoZsrAyEfi4XCNJjYEedEPsiYXUUXxgGTC78EMrdvPHydzwvOMpqen55fxQqCLsKxphSfwmoScD7RmPWO8koi3asVMaZGVxHkXz6AXaEjLJIhfiSFDIdmSMeFYJgL2MbF7dmenp3X2WO3sHz3G4jeXrmIsQuJtPMOislfhaq+8rgL5Dc6TZOISsA2uKNjiLS06HnwGRURP9hFtWTzCJ+OCpNSRwjnYTFNgz4hyE5OJZdiE0XaPygsT4KReTdXPkip38Xr1Y8hiC9fDzOi6QW6i/7KYwXaNPwZ8+vJk6QKeonwqwFa+814OKhzAl13rPdlkTBXSymWQZ/3mjEAe0pDDuJGeuRldt5IU5EJ5woON7QVXlZoWQAK8SJasIjw/U4+o72jR0+ev3Xn8Ktnx0yot8Ds0hMDD/3WeFBvTmlBIqPiGZK5alwhIEgAmk+h9ia5jiZhVXcug/mcV4zaWmQtTrrPmH+asKt665Mvn5YjSe/fv/fi+bOjgza7TXBoJG72HM+AfgtW5UqJ2Emp7NL9I0hcmA4Efvh7XRZ2aZzpsaHt0Hbgzp40Kzam823nZnfd/OWXz84urtoD9tFu3ToY0xPJTvec9+tAXg7hxCWi2mg5Pg+2MEJ/RdaDQ/6LDGKTkvBXrKSK4i5OPIAhVZbGVv6bWnWmfgAzbCJaThyTCMoGAnYsMSmlPMack9R8MHEaI60PpHMnkGROBNL8WXXoKcQGKhhS8Gdauh+ICsdtNzCwZHdEvpKxqKdCT0TiCwR42tNcuuwkJrmT60FT9eS/Kc1FLJJbqdELLJELZMCAEZlR9I3KYA2VBmaXlSZ0pLCpEr1fIOMlC8wXM1zodMCF4i+SfoQ3IkJs52WhjKgOaGDN4rTzyqkuMhEG48DIdi0+Q4ckTTLO1qC3M7WwHGFcB4Nk64QhyEWTvkSZYFb0zaMDDEuWQXzlsEK1yI5WKAIlCr2IWXBed4906pdrxgNqG7qJ7LW0LlIGIi+7gUlOZIXjUlaLCB95tBrvvf/G9dU5rspnzy8WcBKUbL0AJLJTs3lQnJCJS0Qiv0WfUDMkKY9kN1FIlzu8VxdN6BUBCVOZEJh7+RLGOkIjOxWtcZN5vu8gvPwFWDCSByW/gmCgcwO6d74RQamjNJZ2OIA9oyji8TkDywYxjby0u2gHW17hE7DhLh6caofmwDMZotE3TLiV6pqBuZibGPhjxr5VGBg7wUZNYMGd0MKXgqwJTfnqFUCWWqO+/Pwylk+vvFWP/BRUXk1DoFjeRIEWy5ETDa4f3OrTohtyqjjjUhgdC6YWBXTJnXLKyFOMZDC3IOjiCFAAYLCDCrd9rF53T5WQCAaYLMi/m0h8luEbEBgzMZIOt1OmRk6miIfOQqIHIILZ3tljoLU2t2SaiKabXBYFLViyJYOCQxVQXuSd+Ukx/+mMhwQ2I+KoX0L5qHbgh7XbbO95/Ox4cvmidndw98Frn3z4s8P9O/hYLFdj1zdyYwYGXYQaMSH5XwyS+cuMIy3QwtFJd7PKA5oijX67goolPQMMxl63fTGffP7oGVtiDPv9/fE+mjdoNxaOw7MZaHMx4cQ9xiwdf5FssKQWk2D+JB4M8mduiVGoVEH5ky4f9CVR9JhyUMb90QrrbWJ/AOGvhtX//hNZ/xMYuIREF1J5SC1aodHTDFhhEE/SjAWtpfiIDnwqHbsyCHSJk8Kohok5kf0ttsBseStUBBxSAgsrq2QUahKLLAEdppLWIQTKtfzlq3+oE1DNTpCJQqDPOp0tj07jK0ZbtSIC4KlVk3VSBI0YolCKrCE1oPwc4453RJ+fh5z7wfld9ONLomgU1gMXa2xlh6Np1UhtoOyQBeyzyxk8VV04BjKuImNcmtoe7ugmYN8ZmBGCdYGRoZk3mwWUQFNRf5uWeBy4AQq2Qf1xoJgHWhaZ0gWSvPFBpuHL8Z9xESr+1Avjg/Hrb9375IOP59vWZ0/OVSvZwo+s5EWkzY1QrCZ9mA7/5qtwi70Itwx9eQWEqQXDXwEXTPJiBgk3CSqKr63fLaZm6c+/fr0MLCgaI2kquLA/WcqflAK0HktBg8WALcMqaFQLgbBT2JOTGV6AE62EIaMtJfAX3oMLk9AoJhv2B6Y/V44Qk83YYYRZ5y/4wdRgFcQLSaU07Ci++SUTMvIuOK8856l6qyD5gf9RSSlTqXKVTG5SfO2hADNiFfsmsvgIJawtjPVFJqF1t4/2sH2MVzIwopHgUtqkcQMrerSZliLBckatrVI6ilYwEzvik3PUxLzKZbY8+13nowTDXUuckZMVNyGyP8SQHJnywM4JJ+dXhwd9XKzkZUxIGIwGOMhsSkrjwHnokTHWuDAIIIEnzJvHHbcTaHzRxG2iK57N4vqDjGMVtJmRQSu8Vj+br46Pj9/8xusHh/fW1z8GaI/9pnsdzghwRiYegGfGKH8JIW+5AAhp5IecClli9RIhadWa8ZVOYFoMGEbq3lpj7/Cw8eQFeyNNL2frW3B7wxaPrD1mXO2KzqLLOf4KoEkT7AM+Jk1p6LtjE8RHSwB0hGQ8dd9Jr+BCYIyGQiAaCk4sfUswkq2w0tKRXKxUU0sJisiyLWbFX7sgJAizQSxSuq7KDwWW0jVngijGwYd3IhLAjUi5YWpRBXvexcP6ogQnx4AI1zB0mvFkII4mj10nnQntzQclDKE//icZtAcfaCD05vK55CeGdj+IMwnMGg/I2jQsNR4ffCEkjADL5Kg55gp5JqZgeIkEZhUsCoqopUyDRpKZRE2HDl9ATuihi/4c+16o5OGG2ZktRplNBVmugkOKNNEWclmQiOMf+AQo/pXmNx9gsbov30jIInMrGJaXZxiB4WKm8tPqZFUk04JAAzVC7GBKg4bGLuqiUGhJ1Nj7893VkmZG8/Ty6vj5BVkBXmJ3BIOoz6F+OGAFfupNKAnrmYPkx8K5ivF+Cqn5LbeIMN+lFqpe+SbozKiQLHhnhN3nV58TltRiA4bVc8lWppmuEh2gohDKgjETjbhfKTCadUajL+dTOIq+yiGLJzgla73f6Bk/O3DwoCQ3L3jHP1EkuT8JUo38kAg8JLe88pTkCrqArgoXCQucKnJAFXBGvLkA+errLvwmGOjg9TKKT6LLb9CLeqKF0iB6MEZcSMRg4/7+kDmLdnNRB5NQtfKbMBi1Z0iUmQgJJZVQd3mp0kQj4i4/X70IfIkMkYKHio6BgvQAUNBGrfCmN5J90rpsEYo+H5+8uH3nDbrOtTfGIGGNpudep3ZJqbnWJS6gbLYpd1CQuTzdZJxMzUAZB0luiBnPdTQasM3+rVu3KP6KxKYhh5cx54VJ183nX31Vr32/x45dXY5dYWP25t64//xkSve7PTiiI4OqjKTVf75WQdUPAYZJ5w1fDAGAmtL0OO5Ob9Dp9zhl1R1TF9Nll2Vjnm3PmdrzywWdyOotFQCGG+FAqh0MXAiz2BnKdEiSdlGRqfAX2cTuJ+fi1hAOYtYUYhyz447FJKQmowuZRFxYGUGIZQWyqDAvdhcYGHKwN/YPcslBcvROqnBaWyUaCYrYeRSmkIkYXEW3gCtR/WSAMQPMvj4KpwgrNCwpB2mFKifvM7yL0YIdQbcqiNGsaLsiV0W4lVx3EiIP0TV3OCqa+p0VboEGEpp0+w6qCKnm+VbmcwrY+N5AFY7SpwNNsjLhYT4CCmbETqVMROmyLnAMl6V+GGGusJGkjs2ygf+YPamw0Qz2rq7ZItETxagIoLRN3UDRkHsrWsbXzN7BkFFGtm6sBQAcm75YsYsoTKKST8cWM5TlDShYEMQX8FZgzEuTu83Or3z3/QkbkG8Xn33xyN4mNU4+KIyoDD/lgUxGAw9TBXxCdD4sQtGJRJNC05WreoIF4UzgyqJg4UfDfSPNnDVWRORfibGDkegvX3iqvpPO2CQ2+46zrhn8pvG0umafMJ14i4rMs750Yo/zZguqBEaxyHenbzDHR0kjjnAFnjtCMh6B/PilIM1X4xX2Klfyyysf9IdewRyUASATgnHyNAKX8PKxPCcsQdxCaSC9AquKwU/Bo7xbpoxUYgeoxd1Xca/u4XcoNMSLcccxpz/gQTTrbGMjewDF3X86itnhhpLOTgc2hCsTEcgBC0jZxT/h3oQTkEyTd74pbFveMk0GVhFIVlDHBjO7YLGcM3Py2fOz73z7LWEKxdg43ozA3xm3v3zqmiiECp7IJWkLfB7ztuMuaZUWV+EAH4MnpWMwHJ6dPEcZcF4M5Y+6sM9paJQShgGOQarLeb/d/eVyQ/EajYfrDfHdr0unTe9N5ZJ0DFOIwVyENLmSS6AiJD4iQiz9jFQ22HW+AIsVZUwIohTNPZuYZWGLzT7DDC784iwwwFPE6XdtLWic6b0GpBOSanTg6LtapaHdZBZLKcFKIuXYAbo4P/KPlHyi14DxTbvPsG9af/1IKiIkTFHBvBBIXDU56qzVUrWFTtI0AKUcaqx6zE7yC4VhQOhNuEjln2hKv5ilajCVfyTzFwEkBjerphKSz3C3wCcHybK2lxSQxad1hCKDowFubsLhzxgCq1DnN4aTb1pB45mHNAqKC0QAu4MQRylp+cgnzAb8lNEk5g8PPRebzQLLgXnQMnH5x3f7xWwqJUnBWUYCS/ZatYgQIcEAKxXO1/BBuGgEDIZd5hafTVbn0yn7/jlg6QwgKxpSs6CkzAUweY3VSa4MsJOQbdQ5aWnryv24DjU3LqAYh3o4BWGYRRoJAGheN6lz7r8+3ttrf/Rz9sKdfPnsCmpEXEaRUG4iAJgsoqliOGYDxvEeFquftFdoUd+ogNLj4qck8kVSYfTXL2EIWJ4JDe03w1ei5aPJX02tfuwgmzAfoY8tkw4O91jG5HQn1mwxIG5Fx+gijtWCZSowttfk0Nj6+RXNKlQYY2TRBQAw4ZIY8hJkdtiHypf4kw/6kCgiLncoyZx8y7w+ZkEBlX2FZ7Ta5WGBJfQdviQoqQWRz7sQfqvchcpHyBAxkan4Y8rqL3FKxMQ2vth7VemrF5WW/77ZDen/csloitL1miH9XrfGHCCahsrVRnVQw79CtE7dZYIW4Wo44CPLPFgSDSZrMk8e/uahysV45mgMrGdBLvwmPnzhWwErdArgcDycPD3ZHx4+f/ocH4j5LxgkIgEEtaeCv7/P2ee4NrqGJsH5oHSV5mzyFBUJ4HqJQ0GOcOJSieEPDEejJ19+HrywSBpl0jkv3zFRpr2yp8O83V4OR3dm0+cDjn0fDWg2bzl+JpM7KIxgDl7a8SKoopc79kqeMUqomASdhIYdBIR4sq6PhyMP/VqwOGHJ0bW0TT1JoOGRIXaVwDcK/mJpMYYqvBhzZlzXbrDwxopA2oqFMqcAD29j8PR0vTKRhDR6+1gnMtczYvKJowG69MTR+IVIWI+ZSe2m66jJkunKQ1tpLP7HQIIWCi9BualDoIau6Eir/onldzlQwjRKXDI+us6Pv3KMB8Lz1Uf/NLxCAwGrX126CBIs6InKOCwRjBGwSh8Y6DQFm7gll0CCQGP6/Mpl0sK0RIJAIqmhZUZ4VedbDUiqRZoWCNhys1I0QHtvuYeVZEmPixD8L000tcCHPInJ2CMtCZpTsJRgvCzEQZuGnD0Sb1vfY+UI3lCXSQLsCNhaLvVW6eeXySnIUkB3pOKXaD0BMDSUpQDMqWY8gVYCZ5+apxWlMgg69To7STDzlL6mpaOctW//4F0U7/zi6uT87Oz0UiWyz1xemFhCpcLay0U0HP9tadEDIBDMQUJViKJHtHLej6Z/9TL81fc8G6KswjrJKa9J/0rs8mi8go0PQgt2clhEqYNaa7q06RKjJBOBAutuS+dLpv7C5C2N6g3LFV0NZJqCYmQUYD6F4PIWXsvRoolmKC9CBIkFEW/q6GjI5A3qAJwAnBIPmGUfytmSzXxxUp0CQLpCfMnRvBMg2wod/lRxfCrPpimEpy5OOO+mVTqF5TdRAvMlrsoENaPORs9MQYVoSRcgZKCpIRUU912G5DGlfBCsKozZKUUeN6GmFeaLGpALYDZdZUTQF0lyF7Ll18zyZqEzE3gVbUkKeBEWEsW8vHslFIViQurZbNntDE7OTi2D6LZ31YNndkccDFix25hPXUEZGxMyIDbVG0HgT7ksUhIwj8qN5PwnG+iyFDMJHyWmcgsiMU/MiMHLMnHj2Sl7MU/2xr3BaDs5X7SHA0+ddI9nDha2TiwKVqBKp2TqC0gLFyywVNy8ypQq/5e/QScM6A/6LD8GHU4iPhhz/vBysDfG34NEhoCZeYbfx0IwCqadrWwS4WRAhQu9lFWyTbdaUcqSuYIQJzwgEGO0UzZwaW4oseJHW0a7H8FiruQQw5oUIvw5LuFr32IKET6/KeuaOdQaSH6XsFIWJIw4hIRy+KSpIsBapgo0JHqkpkUo3PA5Y7N5kkt+EYL45DUs0m8tKWG3dJT5++qW8cjYWVMM7+yQAiQRCbehLwbCJSoFEn4AgU/mzSefYBZ3NYDcpR1ty0RHTKfIEiCAUt/zIOEKoUIGaZgQIw6eRAIpEVG5ohsqlawRpwILaMiBTFKLkIWna9h5QQVPZ5BJGdRl9SMnQM/Y9NstnZG7lTBwxNk6BifXsQREohwgwjovOXgGBU1mUKp7hABKYtb0YBrHAowA69fDveG77799+vyYScnPvrgglmPhQdq7vVK8hgz439hSEHiRbZEKMTxkBnshuRAE2V7wQijEzKu36slkNwVDhuQDH4Nf0hjbcHPlegVEHpVGSRa0/A6cUO46Z7rKEGDsmzU/R05dnMWPNDOkS0Q7MtKSTDKVDYoKbGQNuYFoYHIKFiXHkhcRdENQwjrDp4MHd/Yoq0CwIHLgCTJkCSttuE7vfLKYUd8KoRATcsJAeCtMdXlHZOLllmiFMuFy6XgFTAXHEgMARK3+CN/ypg4X5RM4ioShUAiaCXjD/0rRpa0wcrsZMumkce1ug/ohFic7NgKZs0nQMQ4vxVMAYP6bmfkV7htYQjSshagSrRBCNHEKe3m2LFUUCiPYhM5CQ6PG9rcc1g70KZKbzXrNrtZKzmqImi2OAa4fDJsX5xUaFkKUB17wz3j2GIDRLhtzr3AsmQVbcsOCNztdPG76DYlgCkmxmQ3J51eri9PL+7cP2C7iyZL9O1kL5gZwdL4SydJXiSi5Jgv4Ho2QrgAzZwjmnaeKNb4kgmiYo2/uxQ0OBk0n0N5kEuqAKUnMOGZKX9bxiBadDojBZU3UNImtsbLcOPPbJ8ngX/kfGcI2kEkdEUUhDrg4MiYI0lDgsSFAi9OKSfGD2tbTwANbJImtPqnzlG373OE6xPqRbKURwBUSwNVwxk6ZjYq7EzvsEMukyw/I8U4EMiMmgEiSu5nwKIOIUZ7ywOfyj0SiAwGUczRcbywYkgjGiFY4IfLazRg2qQhZIGYW4kKIJps/W0BgTksrS951FkTIv2JhwV/gMfsGiwB/FUIyDFCltJXPZuLlG3cwqUJUIf/DBkowf2XZAeu5KHKbk4vLg73esN0cdLBlXfDCncf+lrzECirMyZ3bSR6nnDyqtg1frMJhPUOdnJtBOmPnivWjd4ijZmj8fe+tW/ujxucfHM+vZ588fk51ZLzgSpoiC4GKNbhzch67oocEolWchAWgIFd3jJBeIwmgUC7Emwt4JQtCymfu8h+9qaCXuMB4mTwgw7ISifsOYnn0zgBZ0AM5uMMcrOWcfgzkZceZbUH7oBEaKy2AHaNR5B+aAs9MA/kGdb8ZvaKJt1Be23Ak+f7eUMhO9iLZZrZcPj3l1EN2TkaJ2OUpqXbsE4UAMe/yUOVrpvmUnHMjSBqCC+W/iMXo0TZA4gPRHcf6WHrG7bhgUt9yyfZibBnLbiH0WTLTz7EeeBv20p1TeCj22kxKEApS7w8xsyzCzUFg4RtqRZmkKkUv8RIZAmbMVdeGJlWxZABQlSU9yMo5PgGTd8uy1BkHAihaeAl0o8tpAkklGVU6f6AzRYOo3XbHE15Yq9nYnF9eDI7uA9EGs4aEstDf7w3u9Dds8G+PJ6lKUS/oFNlrl8LxIOVtl1eVvQFAw8J2OaQyFQA4iARToujN1W9YLE7Ozrb1d9k/hdU1zBSh5cGy3avLGdE0FgVhfkACJhaCwxydjKBmPmFPKR9gUWgmrsYmFyJA9VEVerfgG74/8/dazAVfrekH3izrbZYgeFI8s0DxAGUcSq5RlSVYfoyWU4ps4NoEhawiB9VEmhy2hSLmiOv7xg0gNkXf2eToBTc8YlFD1HQlUEgQX7ow+By2O1cyJpoS5eQRu1CgjLREJxNCwIqAZAkk0vMidHDl0cRgHPajEIRrMmSaxYBg4wvAfEzKB8nKm4zWH0bhw2giOKGjmH6RsajpdiM2jBt5gUzhFFaV//yTPNHgJvzS15sspd8vECEv0sQCpgcwwFbgACE8lEJJKjgFc9hgtQAOWh1b2BCrAQWbchHNi3RRrwQmoKJQBiJ/qhyRi1RkUr1Ox/3ldNmk3dlikTBd+tfTzcw1BzTIIFAvB8TpMbdos0cLPEBI5EtabuBgT4fcF8M2yLmFOui4igI9ogIAb0rQ3/iNH128uFosN588PTtb0JOGLhTjWCgzH7AnG1DG/WfbyGQNUVaDeoyQwDe5aCxJJ0bFALEEEO8lxi64/EYe3rgAVBL95RF3EEJeohcQ1T25RJcAF+ZGCdMNxzdnxCphigPhcCWTuCxF4lddJIdvklJQLl+885dQv6I/Ki000xXGcU/OnEmJI5zm8+XV8moCd1kp1NhyVkMhroJhQqELbvdQwU42JXcfyyUhwUfMuUjEnzhEYenn2mPzbs4L6vQpizOOWNy210u1AtWkpJIfDURHwyHMjNBlICjAAhHVRtPZ3bjX4KyhHrJUpfkaTLVRxMX3cMaF602whmImJ5UYsQqrDAyCIUsCLK/lRbmmT4YYAi+fxCYUGTFCEEe+sVkOffAckrhp167OT9knmtMombaNV440+U6ZfP32svYB/ZhmihqKJSlJnSeRSYi/YR9v/Avf8s2M+bftdfusNmDfN7PWoNiKwtXmDBd6R54fn9I3gdGHa+TNMAk7NxSa9ThNkXx4ArSs4LUUAQppcEmWO1mXGIkV1sAXYkE9sChBVAAclcz+oJyWzFjf1cXl3rB3dXXCCX0Pjm7PNyxDoCWCMadaiDdD8aNcWgSBqY02AwuRgEUJyATRp6F7zRYBrlvFWPCdd1C0NthRYOJUFZowqxDYLSCJk1mYEkoNqm6gWSZX+UuFoCaUd/JFIklDMlyU+NA+yvMb/hiDt3Ipf9Pb9wBGmu+EmDsGia0aABRDSarkpaxFIelJoSYU4SFllQQAgtFE+Uk05YghwQGk6WwRCH+w351zEAEVjA0RygnuNluyUYIwkfSwUKHR/24VBnky1pTwXuOqYgVnzQdoSqwEGAlmWYDlijgkHd9MTRkKNrwZEHQNUsup7anLaAZyYATNVE8Y7cGE9tXCfYzoBzUHk0GbCJAPbj7ypbqKeA1Sl8kRgeO30Yzw6FAXtLntIPkx6Wu9fOebDw+Obr84fgLYTz97hEVzfaK4y7cg5g8PRZ2GbNcFU9QBaeAOG1PjJnrkomwkLSFV6oAoz7v7K595TIoAVUol89BXRefT167du7/SKmsRA45CFVKA6BOk9SuysBUui/RNBQ0d4lFBA3FzL1cVVl6qUJiQzPJqvyWyoUMMXiph/dzNZjKd0RalOAYRkoegCig/BJO8QLf6UV98q3IuH4xHgHIQX6EpSKEo8MRGhxn0ttw360uGJjXyoJAzfBw9Qpi2Dh3kidEuXNK629byjei8oTN7jF+oaTUrDyvIG1dSFWdkG2+U8m+1QmkjQYElJRVnzMGXKgCcg7iU8QlFtOqRS1Jrei/uFSt88iMNNowM55J2zxfbYatzeTpvNjrMi8eIySaZ0aLv/3BsmXWmtBKsyEshCxzB5jKfkOqvqpH/8FKMiN8fDE9Pj19/6MG6MBZATLUmIvyB20+fX6xWMJzRMvr3rnud9XhEBUAsY/Cv2ty5kok5imDJJ3QGPSg3d5GSemJFtCUgQiYc2ru93mQ6pXwyYWHMSPjVZa9d3xuPbx32744H1619KmCQwUDTvqsAqnpqdZmDEm0pKmMmkokjjIaIWTGn1Ah2AafMapu4wllCMPH+B0WyAFN1TvsVgdmbwJNjjZJOphoCVCWn7JpGeqQeO6rlVMUkWvh8kHAZx2dzKMLAnqoUhW34tUbiFQqEW/L1wRj+SIO+ZoVWoMpcYwiXT7pddsQHdcHnA1GEzT96UYRNCow2tEi2GOVr+EhHi0QnM/ti8JHYjIQOIROFL2Eemkqryr2bwwGh2uyJRww6wLQBI3bVZfb+5wpXodfqFKAKVej2mzmx1aYESl2nFUwhRvlwuttMwWObKnawmK1YHpJlfCZizmPKlCaNkk6lRRchRTj4IB4KP1B53TLH2zEF5pLp/cNInhe/8Rvfm88njDs8ffqUc062zX5cZpACV5EtOJNRVLSGp1hZfz/bE5pmWjSMEFO8JLkQK6hXrr8YmKz4TjJKi4nDk78kWhX0ypevP4JEKqeCAexW/9E5sTIXQ3iCHTDHoCr8JoKxXgFZkC6RCgzlewOLB0brnY4BNOdiyFS29J7S+YMqewmBbyJUpdtRWwXswAVoooPBSyyMJfSavfNuA07jzQv8+Y9KYrWJvqCSY+9WnAabkRR4Dg513m+H7mrOFZnM3TZWVIIiefpm1nKERa3dJjud9Rzbp8OBWSfUAXS1uye2NmSNvkw5ygrHoqhpwgVXkCnohpsgJUhRDIH8gDNlCLnABlgkNZGvZKo1lhFh+ViwcnY/g7yT6fXBXvf09IIxfXSSHhDh6ifR3zW6tXfSZhYkOxWF0QIxeVDylrjehAyR/EJ8CFLFLPdaqE1v0Jt9Cf9U5MiJSp3OVPYnnrEL55Pjc3YudL8cu/Kue20YNTQTyhXKZcNXaZXszDPCSp6SWQgtYBOLGMGSu6wtREMA4pSOLk0Mel6obNcrseR7o/H2228T8uXx2cXqGUdnMkccngJAWNED1R6ZC0JtV+H9ryBkCyrDjAcQTduuoIXLpi+E7iAYgmKpJEuJ5LLiAj4QiivAkCjf0H/A84hLDkSy4Lv4k0bJ8+sjUXjIOIEBCZJcUqsBYBsWalEAU3x0qgzhBXPHM+RdbKuPUipqBCq0vGvVSK/JtJQHpqLhj2jlPwkk24aFLVBzTnT8RICKmCAAxD99MSKgp7j8uOA0AJOXdQ3MSKOHsu6ZZfBT1ImWsiJngMRH21dQaFaCNrjkIOoilcCQmccgDTKYELgl/0kKG3RjJQFNoDdwNlswPEvdDxXoPuaF44TcLo1pDHT9elqYiWALIJjDjXrQ9tfa4/85AaBiB0F4rLTlWfWDglFbPLg//sbbtyaXl5ezxYePmFnt4HHhjGIVnpQCQGprjFPh7zIsbRSVBkqMJhn+8sSHXMYIRRWxef0339QckujilgzD4OQTOAWrkj6gS/wdQNADgmhwVYEwpJRRofjfdEnLr1qD2kheQqtESsiQcGwXt4K3g2v8EgdxwVALkOxRS0CCmYPMm6QE3BCeLAJEyDdQb+ARMaE3ATdYlmyA6vbUrAZnhyTpQ0t093BW1GcngrMUHZcBvxltJxEiE7NUTE5LZe4gU179ECTDl2CsbGmzDPojBqtZi0ROtF3kJaFskVS5bmxAuLng1Dp7vEJqcpBTkbugoA9YZlFRGomRzm9Zn27m+nuqqaUn2ZhCpSkJy4O2rMU5kPPL8/qd4cnFnNmntTUrHLXYioZ5y40hqIx7rYsr6iRwsm6pMq6kF9GafYWUmBmPvGw10JABEiZ8OGKrV3pWmWnKBDKZBCjMPXYf8pnKRa8aW/PghTFdjmNZGQBjZM3hOHcJYW4+4o9GSAhOVZAJQwpCIiBKsRFBkY+7glKoJ0L+ceYT+3ZxHDP7PLLzz3KBmZ3O2fOCkxiur6bXj58+cSsIpZszGQoH5b55kIF5qNbmIGhxET0ErnVwHwGPj6fyQ7Q6q1CcJqh4qb2+FFyCPKCZRsJdx8wBVuPZnGA8IRwP/qGN+PLaCMqTm/ZZYFYgZIzg9ZgBZh6a/WQBnioZ4Mor0smTtIkLnMIUk0q9hkDeU+L8lD8J1ClIXOFaM6m4RhUBCyPWH+ppDFG7x8Q625ImCoyh1jFHiQwQsZePxCbEPPjnf+ICAq4xIRqrSzZMjqC9TxMbG1s0mmlakiq/woPcJDk0V3KuvhThgKrD1tBqpoV3UqQEaXMiMpogswUdktejUY+SAasQqi0PZv2zQXTD2Vo33CMfZSU8Fo0bzN35TgEtFQ4H0vfF8GCLE17/6q//LSaroMtPnl0+fzFjORiVnnjoEZQrvwEFuOGgD7LkokppTOJJVdwuVH4tGS+QH4i5VR9vfgjc5ZMnJeJHBfLq9ZclLuIpsYTzahy4J45AE8m8KIKwtTBrF675/npmBe4Omr+kNEq58yQDVAtEZtXNR9Xbz/i6OdQn+Js01yu0lLCbgJsoiSeEKpc8CpgH5oc0G/1ma85SoBYG2gaeHoOcZS/6a7bgtu9GAykigKI4uSLDbW2sKaCx1KyBb4TodirBVJNMAcWzxC3IbmHyDXpcZKQeUNIpgNvTKUWJmcPpRbNsOfdXR1BOvEIvKcGkKsb0S2ggKfrwSkMR1kW3BAEbQdKyDT/LK93S6C6DEo3G5WRFo+NqerlcHHcbt+nHTNnVFDVaHOO1vLXXPL+kJ0RmccGplDVfBKjNo3gXefGsU4XVRvJ8Jo4tKrjpOqI6C6/6Q88y4TvFIQKyFF9N2LVzvTfGzeqwtJLpk4MhFUBnyT5t1LsYALbHRh4CLGyNnoT55amgpC0M9wmMAOBEpQXVO1in+4HJniyCY8SdxfyDXuP0xeXpqd3A3V7//t0HzglFzAjBDjHEow4IO8Kk7sYFoPMDmNBgd6jxNHDQrzBpivmVJDJHydk9jISkQDHCnsJHkvC9qBQZ+C8RwBsBw8RE44F02CQ+UxWjQBUEoKiLfIbxmU5T6CyQwhroJazS2SpqMjcn2SFPCSA3tEcjKVEJ95PYGb3wVXJ5gSlqQixwkHcaA8AysA3SKKKtUSs2LUAMhPVngZuMgUL2xrEmcZwEK49Kwz3qTvMgKdv3UdPQvnb7ZZrelY0lVuoezKKM1EuDBHXOHIM7AWqnFME24jiiDpHaDyNwwdIUYF5xddRQzq7ZbKeLa06vAxbwqIToFYB7fKOGs09WZTAvwGMffFY7hCdxDHiYCX4Po3noQIPjCQZ7o/feeXs6OWWE7eOPP2bTCEbX1uyzi3oJKrgLAIqFBN6DATPV+PLqLWK+iZvsqs+m9SKtScrFU7D6S9+LRMz6a2l2cf/Nv9FDPgsaFpWfkquQSkiSi31BWS0qmMKhl6CJvENRrH2B8t13FXgXm+RREctUIClFFu7dRHiZaJeE1FVW5SeAg27FI5U87zv287vtufLC3YrY25VqnwW7igTnA8m5BA9dcv5+6AIFsWEpITqHtNr0FAHSpqkdBn7lsgxLO+qJNnWZY9BwpzNWixAYuyJRm9qCAyKx32QyXZIEFKDZWk/tokR4Wp8Zm0p4XGQbfoYAZiK5hSaeF4aIsSt7TMAC/SroUqysm1IUWT8BLlYwxBh0+8cvLqeL1XRRn04uuvt3LEXoovxg3eyAvtDbh50PH801OxBDUQOsEi1oKCaFAoGOV4omLMBxwsITU0bIL8o+m/8M8LH6Q6kgGbylioE64M6ni7Pz84cPb3Emy4rdKWqbPm2TFlvWAqoi2d/CADIpOflAKOwFBfs8jLq7YAGx/JJLDHxRGMTs9ruT+UxM6a7ttBgOpi3GegXfZzMqAOMrACQAIIQFuiKumWDbPMklqn5ykQRvxITLzuYtzK7ytUsPCCEDlGA7nRckcqQH8WL8pIMQ/2lgGQglqZnKa7PVIMpGYhTmoRvkoar5DkkYQXklLmJldnYsEV9YQjNlxraEpHwVgeHkpqLw2cgmITNAEgBF3uwqAYkgFHjxPmAQ9GKwhZVciCQgBgYQh/yAVie/paonuVVqQRCaLVmxgFrB6JQTjIBMBUBO2FDWvKbNwjHZ7lfL2DqIY3NZUH5NBQ6l0rArbKKujQ8ZYYtoyYJQK6v5B6/yzRskyWnbXuwTIjQYyFyO7FxD7qCX06hhNNFxQoxCGlsMMk8JMcexlMM0AISZ7imqC7myrc8W01/7jV/ptDfTq83z52efPnrOkICoGBWOKFviKYjCxOyywCYtYXckIkmKmDiSJ4eNS3peDTZTn8qv37n8kCsJqnfi8BrO8+0mCg+JtfutUlY/JskVORc0TVpICHKFmJc58ZQYJd0rYImovKr8yue/GMnoyUUOBVDRsISXd0oYfXNVLkm/exb2q5mHt1VIyVUMQm7YJUdIwzO1MtvTODLEbB7amHTtlFFAlZ06AFk7KGjhQgV0F1SXPNd7DAXTbYhDZDy0lPKl0IQbxeNOrq02i/voU6GX20n/tGgZAMBQZmc+otfnV4vTs+k1O9g6ULzmiCtrkO329PQEJ/PgcF+wLgXH1rdwtVVSubXtDFr7h73ZRMDkvqrR9Gx0ONjKmsbWLf4T2x7mOGynP1LUpuvt0cGw3R1StE7P5ndvjy5Ot4f7HbsyYxDIq9nu09V5dx96IByzDKtiK8wz+gdrUSeNhIWWKoOCEmOHDaAJYJ0DPJMxE7Tbmk2ntaMDEnHJKGKvmDhN3bQ+OX7ebL3X7Q2X16ftFp2uDSbsT+AAh2akbiFLy5zFxBtYBjC/AssH8vE1Pz4YiVdyopAiAROUtCDDImf2wjP3dOJtZ4vF3njPE4vYHc5CHVDCSp8YIsUOyG5KOLYL5ttABLgGAf7YS4H5p0/LOoKpaSU/gOsnagW5TE84hsWiHz2XC2ESgrNShgT/gWdBnbXYIUhbau52+ZPCZgfQRE+y/KhuYCM1RcKUAPEzDn8KT0YoOguhX/kPMrbYtM6BbHRrJWgQL9OHSpJq8xLAd4DnuaSVEL5KoSMNvFDHyRLLDlOkocoMUcYqD2NCbwkmAxIJrzCZCsCESAYzSqWg9613BAcw2HCZ9jhD4Ux2hotmKhVeeQnjCPFFUrh2tKi8Vi2QYhJvoCcmzAyz1UcJD0EMDVOj1jlEgt3/QUVznhoNhkiSFZYXCStGkivD1H5miDjsSK/YujvY/tZvfedicsbeKh999vhy4kkXeBF0balCRUoKTXZDINhxRi7bENFuNigyBdH8VxbJt9x5rB74yTd1KRFeuRnlZTQeY710BeR5oldp5FeV/iWcBBbwgfIKuHCeT+WSKy+zJZkSrS6/RCK7IN53iO5+b/JOGhCoJIpipfdOgaGJqrEeseO0UUzh7q4C65WAXTayN/ZGXhTxlFiSJzJ1D96hJ+VyNmfXWQoWI7NggDrzxn91DFk4dgLrxIRbipxjAyvmkm9dFg53sbNZxKR3JBsr9tgBQrUyHA4Y+uVIt81yTg84ZwnRIFyx+Ff7sTg5vbzEMOPqABosUP5Ggy6pzx59drB/xCoEZidyLBaaT2TO1GIGEiUCk9UYdE4nWyoAOouoaGbsc7NdMorEAetseEjfyQB1pvhoxq1dqN/AeD09vxh+htG5urw8n3bn16fXtUm7Poj9gt61+l+v3xojAOrc7HKlYCBJ7sECniIUCxHlFJJhG08RXwpDykcis39Uh14XvyonUmvvgGtjudE5fX4F4e3+GNpBtseebT3XwSQCczQ4Ko7jRItF21mqCE9JAE49sBzdXOZi+bJQ+CFFrPpKlzvd/JmgqJHSFm2ZF6oVjd/vuHxkbpmuFCauolmIPd8RkXHQFVf4Ii/7ujBTWmVdXb9CCkgzr4Rd6201yCOHeGgvgikdJeEXj+krJ3u1rOIuaJs1ObINQUwyL/q/GCejBFQxxMSLaw1G4G1XPpCAU/QWwSc7wKn8Ak1FhoYmxMzRNftZRQNIhZVEg0bNJ+ZZxvhMrlCH5baRAXz66+GY4w7CrQxjhsYIqVss9H0w1hJJKmBrfYM/IXhZsKvgZK6pNMgJCLATQqhNlYp1NM6Ziov9D+Zgb96aTMUGEMEoGr8URvGtIlLKt27VKQNFQyLJm1rFLyow2ZdgAqwXGAdGZEzhXK+X1g2kZVQoa1/DfeiRHLIWUQETEgRoAEs3OxsvvvPuW4fD8fnJ8Wy1/cUvHrG83tYDGRCZPHgGDfkWUCpMbTxm23QQf4mXkUxDIv6q39BaYc1XUFDRc0/8RPZmnN0VqLRyik8lQEP8WkWqfv5CqF/Nu/rhubAM8mFcgRB8rUrRph1Y2QNxQKswJ76JRTR/Ba9dbgZWeQBBxEOf2lb8D7G1fLGREeohKIGZR1HPAi7gicnHfC2h3F++JxmvhQPOWMPzb16eXQIYaFxMMGJTVx4wQFbNkmqqqIb6SxDS4gsewny5ZfIwLkSfPeWnzKUkiXBEUERUSUrNnaPx7cMR9hc7zqQDhoiy5LCDam/Yd3E9e/b84nJBA6SjBbUoo9stz57bNpmoxqbN9EWxdnc0Gu2PD1+//3pnOL6ur9rtWmfQvbxc9fdhEK2Q9XB7i+qRjOk4x84xuZlBM8qOcxOwUUwztwKgG3LyzTfu/PQnjZPz6dnpfD1bbJdnze4B3cmQSbcCJDY7LAe76vXgucyEIWaRQg3/sOBFE9KBau5FQFEAZAYSoURFYGJF5+LyCq2XtmJbEG2N9YMLFgBcXDyHCVQSiLfZmAw7zQEbJgEiXU/ptMJAxQ6Bg2pQOWEAs9jIa9VF2OqJv0CX+7TMKm0zO9nibEO8fJjAbCx3aQHuYjoTX9CDXfyJeXAVFPBjNuwKkUgwIwTDQzC0V84aWQHUyJoy2wVyp37tiAK8MRw9IJJY+SfKQETMAAZfnXGc3UAtKWh7MRRD1Y024GM5YYBUphM4NhGh6oiQFHyFrSqDsc/aLMsLoKscVWMV0z9lKSA+R5ljvYTKV0AEYdteMY5hJ/FNGW7KGqLKehFP7w34wA6AAYBQcMuxtjKCxVP61FYuJLFnR6wFp+0jMgpiHpYbijatMCpIcyYpbhfVU4P5OczEAQ6SEzvzZ81MDi2VSonxbnqYBciIjVgimPyShUTwLTzwRz2JHAxXEAKWbILtCoTcDcdCMnW7xiEETJyD6YaaXRhLfYwlAEnlSnodSORFskbt13/t++zwzn7ov/zFp4y20Q8KaCmXdi/hyLFUAzV9Lg4MlGgZUhUW8hFNo1fJ/FGUhnjnD2xu7oaXK1FevviqhhW1MPcS4Saa1O+i8ytnBFwy332Qe1BuxEKL/MoLwUjTN7GTP2IuboEL//mVEB9uLjldBSSZEWB/0RCEDU/x+VR8FQjJaJSBLCTSGV02GLJ7C+zdW77u8gxq5mZiX0QSjNkYmdcQsoOVHMAN+QjbMmFOiR7vI3U/mC6u3Rh8b9C8f3d/Njud0kLVJghPzQNEjdk16/GeG6RiU4HGrHdOHnF4lAEAJpuwBdxqdjKpTaZLJopiramjtdtURWyut15enM0uT4+vprPDg6PRcH/QH+MNsRp5sZjN2A8Dk9Xx1FsQxXcgD5RHCYFD1Ij6ALmz+T/vzPbB4F2cnS8unt/pt9nU79mzyyendINvmQYz3KOrh/qKoy1opzIn7pD1wuNB8/iMgpqqncKseSQDpG0ZxZ8gF4yX+UksYRbQ3SXXuBgDPz07o+1W7ILmHEbASHrfm83ZfHJ5Nu12x2xBsV5NBz0cZYojVQynArDYO9KCIsG/1CFzqyQbXQYgASnyX9exYODNLIFCIW63utStdCdwp9xNry5ttdvI23gClHGjUxX6JV8kqYpT2OU01Ge8pnh8Wh7DgyIIW+lDZQwZhFAJa5q1kJgI8QgxsC66TXWnEXB82ZaFpqRUM3DIaYMV4okTywiZIVVrCx6au+RusAWIJL5bYKyWNYOSrmSSOcJEUAWwmJQ/azUbr8w7SBMWYCYDBj9QUan/ruTwlS8QSjm1LlTf+GWdrruwJR/yzcmuzjoAVaCIqthHTpbzvFBn8NEFGJlDWRSoZAfQwljmXPbtoKM6dOqlRdPWGpWFDhcEe9cEESYeEk1K4OZSKBbfWNuE5kYa4hs1scKoDASAGJNCN602Pc7aHokVNqmYdWH73IJA+yz1QQWbGORBzb1687U733z4YDG9ZIf3P//FJ7SxLBkCUURmLZ7+C5cJ34zYKoD+H+s+sTdGdVUPCboJLN8EJ9hd1L/wW0G5AQZkBjRLbMvsTR4VgILeDkgAV19EVeoULE9ix5ebj0miAjlqQqix+CUvKLPQKhp+84m3HRIC4rUg4leLTmALwNyApEuRDLg5/mUdv+sKMDwC32EVZhi94Eb6wnkj7q4IwVzIBBztaNUVUwfAwSQClQqrGwVXQfMjPqBVt6OYuifrLdsQ3b09BLNOd8tZhkv29E9RSAZ6BTiyB+PWsMvUd3aBZQSbskJr1m4DTiZnXSCnmz87n6PVMcDgYmvc1WV4mDRCp7MOx9HZWUEmeCSLL774lC18QMLpbZzu0mSOUZsRZgy/fU+UI7x+285NN/mUSFhE1em6y+mczpjJanpx3b8ej8eN55dnZ5MpnUhMfdbyQLbUA6LRZJ3bdtRrPi/UWwyqYqJU9e24yK+YiColn2AvArMeEpgiZEd0omJyKeC80trXPPJDU8hhti47ArEXy3j/YL2eMLGKnXZx+upLuomSSwydkpSnABewePJgoAQW5TFE7DUB5dpFlQVG469ZZycMdkCCBjoUmZ11QQPLZo5m3A4L4gpAWNwDS73XeKkfZshnrLm6nWdetQaISJPAJCYocLCWFoD2IimIgVTDDw2TaU3Cui8tmJWqjUWyoRbA6qn3okJy7SPtaxOYEZLkh3wD2Jh8JdzqRPpSNbuAD6dZ6Vf5gliIEJj9HLDDmCgoZcByAHg1AEhAtB3Ia3JSo8jcUKEZrUQGoIqCW2H2ImkSmsGNNSNVvAgspR5VZmzN/AtVPArfjKVKRAGFhvMu+ekF4oVvoEDdiAmlI3LTwT/iB/7QNir8I2fHjB2+k1r+W4nyY8UhnWm0VrRsykazycYMlbCXZPEoJvyZLTsRgotz/CTKxaCinP/YfqSV9gZRoNvpRh6bgZ6SGyqw+Cu/8V2r/3r9yyfPnz47YZ3jjoE7PhYWkl5cCNyMDwbVKLh4BAvDxdAYucpDQbkKSRDYePnDR7lepSyRpMgnwUqnUi+Ryveb+1+Ev8sppGtKZIIvFThA5X+hAfXXdeSQABgPi7BHcBMzFE0TPXXVvMlQrvriD3/+hL1VMHylAGVwJsTJD7K6GQGWhoIGH0JNoajChMjhRqHVN/H0KiT6Dh2yQ23x4rH8hMCX0RMqQWYjnv5oalMoeGDv09l8ifzxYOh0pwcptYa1BDjhblIQb1MDsE78mt4e86TE4/trJDpdmolMczud8HXTwU1nNzLg05CQWRioFd/ZwAAbj9P/5MmXL86OsZrgF2+aQ0f3j+7cae0P6dxhwlKKsdInb9iuyDAx4g15FM06XTHXi0nt+pytD2/duVX/+DHnsM9mNF2ouEAOrPkjPfS119fzw3Hro8csBrMalkVyXZb4XN60SzEoybWKQCGwpBPbuIw+gAoON4bRUP5TrFCRZv1qPmW4t1W/fHpyOq5N9o/2Zlfb0aBJNaCAGCina04zpCdIlvYIS02AF7qUJE+huEJQMqqM+PGyJHEXJQoraw7cF50WkXoEl2ezGe0zXt2jjjhSW9DUs7S484/8IQqkMihuMx9JMxeEeo3BG7w2XknIKjvqsPgooo1IKDdARaikzkIEdYFPhT82o2j2U7b0KoOkqTa2g0TaS/rkPGj7x5teEC4vqTA7KZdhKN1QnHCSOkJGabsDUbx94CYLSCAoipmAcT1KR3fIBJdCL1HRb7RHWiIMwmVBhK9yJSbC54Fwcku95negy0E8mBCJfyUHcKvTv+gSKpGBsZIoQWImJnxAW7DpdJKav34HX6wUgICGp7Wje0Mo21npSfHBrhn4EDFRkehowFFxZchQR0XwOkdiZv0a7iCw3UWVIybJCdBl+DqxHIwSMotTwDS6gXLSw9raNllMwtwRGephD0T0kMj7D25/79vfXM2n5PnTjz9desq5iIXQQm5eCMgFWIr3wFMyqOniGQQv2CgBpqti8kNe3MOuBPqJP9mYy6/kpWVNSp/zRLigi7Bkea6XkHchJXx3J7cSRdHgV9JiD8duECAZcYxVmM8W4vAXSwJLImU0GUSKPQgs3gpJohq3QbZWGeYhUqAY0Q1CFaCKe4kHSmAHi9olTL/wyxdh8gJaFbqQ7RPIJp1wE01IXiXchmIVHi6VnEqE6h5ll4PG5H+DPSGq7KEYMJSX5wykOvmDo75Y3MTQIFYAXwBmo4XN/rj75ht7dPZcY+q23OzmhA4S0lhgutlyPXvOCICKnO4f+hxJKIoeFIaXzGZq5N3u4bFut1eX/CCI9AEDvLWa9y7w7NvpvhZriyLMAQGIliRZIG+AxagvlUqnuWIAYW/ICHGDCfGsUqSQ0J+Er06mqDNq0ukcLLaN125RRZ3RIcS8DCoU4ECSIthBRhbRKy016CM2OrqIaI9BZGLpxP7jHGP0wCt2gPYFCSnSqwW7Mlz0u+yYzL5AV/fv3ul1GmMGAZgm1WRZPuWXlpCGAgwh2fyDRH4VWnIxUEmr7D7upGrccskS0qSoYiwoCWwDQ4sKJEhCL9jeHss0WOqn8OBeas2IPPwTav7IQDsXbaB/mnFeDARStW3NUkHikJjxSg2XVRacVBgaL82u5UhLRuHgoyYj1pOv7pAjNZYjTKWlNUdNFSuAVF0y5swETWlcMZCkZmYnMsRlKZEV5I6QUuSEgTCxmOSZAkAGkIFNNwsRDKMw8oDjUVGq4IqZiE6Iomtf1qbuBTPtplfhs4U33gwQSkXnV9ltUcB7dm2h+FrM5QKNzPANe5q5nCiJsiJ/Iwgsie16iX1XNBodWlEmVF0wAagErEhziUcmPWjU5Jb0iCL38DpZehY8nNAMyV8YIm28iDz/DQZFmzgiXtJYBtLjh2/PbKQNBz3ixVB7QA5bujfeeevO/fuHjd7ARvpsyrRiDri7OF988WLy7KsX3//ed0b9wcl0enYx/eSLF/TYhkyhywdvXhIe4aIDe3t7sJ2CLSnlczA0WvkroaCVENUExGWdH0JLeeTNIJmQfMgiX/NWyOO7SPC5MDxPMrjKORDybBTxDCTLBBNmKJjUdrLNeOq1uakzIOXGyECFEBQcmaiD9hATKwISFvlQVaOzCgmZkl4kk0mACtcKjJle5ATkyIwY6gNgoigFjjFF38wLRgFPcNCSP/kYEvPJALMiAglUca+CPHcQC8wk48anfBQ+caWJWKqOq1qjZzh1czpq+EBHB4tqQRk82TcC9aZWoBd3XR+1OecL68KCs6XnTzOExxEKEsl2nPgx27NzphsQgoVnJC/GByAyqunpJavVaDxigiin7sASGG1dwUp19m9rUZcsFhQgm8fax9CTu9ZnzdTPSEnG0ee9XLAFIt0tDEPUxnsDOEzZQnUpgtfLFX0XomH5wMPpsIHJqC8NGv30XMUCoLBhgzwX6ZXratEEvBfWUoNas8uRQDIpsoHbTgZhWh3tAkLMINJGmg3OgWYoYzmv394/+ulPPlx/7wGFfTyAUU72UwLAU4fFKbIpqqIwAiWCsdIrpAPbROVeKVV0zxBMBYW5wXEgVC6MPTDAhwJuWHs/nc32Dg5RbccuI9iIW6g8YKd0+tFnmW+2/tiqQciY++LVOguQWIUpdByb2DYVOavE1JDCoJNIUxKljY8UAhEfyOkRa5f5CGxYFcvqBEqRZvF0vjIBPYzVMhpVHat4aoWmVqmspLFC5gvRIMNExo4ACKNcqqgkyOpa4viPCBKqv2t3lpZTtmmg4UOKu6FyxXuRcioG6EZUpSoScZoNUCIxpCIj0DL5ihPUlQG85F4y5U1IZKDjrq2mfmAlQGPbBjRaDaVIn8aE/aZixCi+q7XpoZnnlB1nYan6dWqtDKmEoTLVccQgD18LE8Bb++U3jgegaxLqLHPqtt8kjOwoiKRAuA17IpCtQ3MdkBuPm7/yK3dfe+3utjWYTlecA0ARxhHg9Iw//eWnB6PGX/2t95fLKfr70aMvr66mbAEpWJmQFk9sSDIpwVDdHO2Ngk+lPiLg/3CZW8HJ0LCpJBbdyMLX3UMCiU7EKjRkEwLbcC+l2y8Cz2/5KdFLQLkLQ2bwz9a6StvutYd0CTseT2ogBT9Eo3pE1FjU6K31GMKNOiJMdkSix4POEFhKvSARZMITgnfFf8m95FhyZa4eGaof4IuiUOtDBytCeKYNbU8AwqbcNambnRgqdwVgsAQE8YrKG0ap135U9twoA1Yq9NGnWWNm/LMMhvbEVH9Aw/h5hyweyCbKQgr+84315GFse9BThLV1v9d9/eEh3RqXk/qt292D/a6uixcQAAib7LRkng7zgSYLW6b2EIg/RsOBNM2LEzDpInbeKxtQS6Jqqjp6oeM0lBezORs7tJ3J2uW8eY46QpstaxvOzOGaXE2pBshdOZVWRqMxc1I1I1w4J4xMMA9nDg+YdESnDCNYct1CwY4Q7f0BAndOVNRQ9JCqX4lkMbayj1LBU6ss7E7FQAJgEnRGhVAA5zQZSKwYusDCCeY8JbajGI73r+ZzpE3lub/fhUc0JVArUlC92IQAGsrr2JuiErKlQczUR3ItCql4+OZX/sKq6p3n/GdmhrMxrQ0sjHTTta4mE2Lbd4NZhEYNDtA97I4c/A8ekAsXkZWuoIFYKL0e0IHpSpRI0SAQBTC5IS0m/1HZsrJU9w7G4hGVXPmGBROQ5ZISCk7Kl2QmhP9l0qfcD8VgBRvra/TfmecYWWJKIDeNC0+aT67gxIvssbKGAZGCTOPdMHgmTeSCj81L7DG8psMt1l6ECyohRepUPy4sqiyRl+Ygqn4BmBjJOUs+ehFMrDtjiEWjpIBpZIFdRccAqxYFSOwKSoWaoLLygq9wlosolSrAQOODNS2MljaFaRUM4UONC2tAgbqgva6z3210xejKxppQXmlWhCyOnnssyY5nmQ9JwAtkyA2kqT5Te9Dfw0F+LgdzZQMzOnqsHPn48y9GR3uNTYdOX6rmPqoz7LHh79/67/06W/5eTi8A+vMPPg7JKEw4pb7CoiINkZESToulh7fbtmyKYjhLsvCq/FR3UpSkCsBHqAKCkhAuWRRNKbIpiQog80qr10AzfeUimf++FlZebpCwFsSH225Akv0U25ymoGrs8pWgaIbKRsup3ZxcORoKUJWYfj+sEidjXm/YE2kxu6BTm4Zbrzdk1G8wHuN24eE6dCIzrHcReJdp7LppvNDzhmiZDuOoKDVMd8jxDV1KlEgxUOBUjvWUZdyiBEOghofcfIEK/it7ee+zjRNwJjllkuFGx3ciFeDJTXLTCBA1BZIAgwQa4QSiclLf1RfMSKqfSMJDI/YOxq8/OPgbf/0dGgb/9//Hj1977RabwYGnm25mngfISSQqvV63e729/fF3v/vaL37+fFU626GWYs4oVK3V57h0CwMlgr2arUAtwFyKmqqixjovNrHjpFv0EwO+YFKLsrBzgX5t9mFmjpPekHPEAUSG9CW5boH5QzwwkZTh5AkSYVLrlhM+mRHv3DbJg2R3zyTPNEzS+yIvKn6IhapTcFHpwBpbms1Tw081hDiUtu0aaTKfAtQ1EJbmFGuZSFdMfX7dGNXY5HUaQ+D2QZTTlHH21KKbl/ObaA3AZ4uypbNky48SBSB6Bwb+j5DyXcSqB35kCrEJkvmUWTjM+Ir9eTCMDaZ4IAoTWGi8pJeFxGWE1L0KYLUHXqTqtnIGCky0AsjAMbhix9GaYCNWmfTtvtdAsR9cC6XSkQ0Vemp3ZoszxRAN0naFe6KJqKGBZlTKgoqqT0A7T1MmBuidDRcQYJqUNTsRYA4w+SEK2cg8EzhfhmoDrIKpktBEpg6yyoCdmkm6np3ZYm8YaJIc59vNMkHHCkoAEqzVLyhIoOGogtJwUx0/wREqPEtpG2D28mBvrfWtUMlKlVf+LgABGGw0CkoTtvAKGDQUoJR1QIkLycgg9UvVYEvbArlRFLTaNpDcwTsX3FDHVXSMB9C9FIr8V75WY9CAppKUmhREwE82YgQghJ5Vaxca+DQm5BaMJ7Dd6lHSOPCw2W32e/2T09nTr57V+3hqLMTpPXhw9/X7r/23//j3W/3GN/7qr0Mfm3N99ujJsycXuL1UMJSJqK9Kow6KSC4tDmvfe9hHzBjfuCx6BetoG5xNdftKEuUhryQloHiyPYj5JbJGmH9FJN6BqouhfO2f14KYimCl6n9laMYFJ+9CFD4SVNGs9XE+6IKoT84nMkz3HTxLgbXrEwpBmwVOq/aS2SMeTEI6TBqKOL+eTpfn5xfXqymJ1IPt9nJCdXDeHYxH+3vNXh8WiaTGrt7qMV2y2e72Gc9iovx8NT15eoKWsis/yQftAaewXG9n9jss6CiyAFMU6L0FyYI09MkvuQspuksGYPGw91i/FfUTu4AtO7QzKew4O+gtXFL/LRx01VtIdIeBQHGVQTyp4PYoyj08DVjjliE7cUbNWELIpgb17XJ6fT6/c3t/cXH98P6t4f54fnq+uZ5TOil3FDg6Hb04P3M2GR40/6P/6Nd//x99+P/8L7+gsOhhKQ/awUxYwVGCAt5KOYLNooJYrZTquvmSnFcYS50ZwqHDQVcWJtBohhumIAEE4utwYmeNBWVIsMa2OxN316BxtbKvE/Kc2UT+FkB2SOo0aM20J1cUFkwaZUgl4TNRtAsEqSjClr8kpoQbAieNYFQ/oZ4d9t8JCmo3la7+VhBiYhKzP3utw8lstnK6e3PITnQxCpzEM3XJhKphdtIu64FPdpCkWIPAji3AVrnFQEaQv+95zTshuHE6j226gDzF2v1OG9PplFpUBcZsmgLzFntoVmCJ1bXu5B+vYKLMGdx3rhUK4Zlw1q+USqyViq/LZGceCSSUbWONoSEHZwO0atQEDn1gwvgEv5KPuBJVK7hkJzwcCt/VbZXSOkT7qFKWLhriApSkqq92ULqJapVUXosVJBU5VFyRa0hFTElc2GQLlZxAjNRmQr3lL+wWlDWTSYwvT0qe/hb+m7G4yU0eqUss5ZQZBGo6bChkIjMaNNIeejUbfLPYAgdgwHLyL3PdyNbjVwggAjYES62nHmwSbzPbLiESBvIREw0tRAY+8EhBqwv9AiUpVTfNCN56Zku6lYyljmsUqOGxvpQPjHDqKZRYVqnmXP549hOlvTdoj0Z9pmawo8jJ+YtHnz47OzsnM/SDpaP/8X/8v2Je3yXN/nb3Zx8+QpvpNmFqJ2gQAW+YIkXtp/BlrIqM0HqjATjBFzhM9enUOKgiM7mCEOSL/0KCCMkS7k5gpGRgxNjJkpoLdlEDlNlfcpJY6qNdaTzRhbbCEi9m5CFAiJIxZCI0Hiy5u6BkCgxSaxH4lEH8OhtaX744c0GG+iVSxMwN3gUgQtCAbeYe2LJC3omH2ar3OYsJ06hCqPBU0+S52U6mpywRYtSHhhZAGZ2UXVTe6I8WRJ4wa3FGiW0z3Z3V0uypyfFRmxlzjNk/oNEe0LWA1rKHKiPQUEpeaj7/kTtgWKgF692RhjqmfjWRA8xvwWmusf08GMod+EVWGhrYo/sShw3KlUqKPYyyhIKSmOEw6ashHIyuTJQXMhBgtCuW89XlxdWz5ebJxelrh32312y1IY12gEp4zQpgrC2++/Xp8YzmzmDRuT3c6/Q4jlAAokRGmJFBt9Hp1bTyWnwugrnAKpmz/Pj6Cn0j+6RQhjzkBk1aGlTABNBIeoFQ9bApEUWMAtZlefHqinmhy0URo3JOAkDadIMpB/t9ljO2R1RrlFouoFOLmZ/oSLkpzMEQjJzlmavoWcCx/SctGQsZCCAM9ce5Hs7h8EyOBaujOaVyzWhar9PscyZS5mNmVANVsXmc3nkNoPovkVFfsTCHMAZM5BD/K34EMSKIpsihD8agHHLMw3Smp8h/vJb57Jx2JCqDSACMCmoai/7Q/S6eiNU6ojAe0nTyaaNh2SmqZWcC7DVqDAshjWxAiwIAQ9B6e4vwhdCa6Dk6RMYFU/kHN5jeTg8G9UGcZDSFwkzfXWlW2NT1HXuqtqVcy3oIlGiJ8lKp7DTUukIwoqesKqpYFomX/+pBSYwzUz0Z37LpO3ySw6JHVtBMeJWRH0qBEYbfTRGt882q1ZrQSdIQTkZkjp/kheJBBHC0KOZBGOXflic5CQylcliC4qFjjglMW5RJVqIM3sATLySD92UionnGr89gibLrU1Qq4G4kOimupQay9ipEAMFqKvEgV/ycb9YKPLKIswziJMBtwa6SgNwxyhTrTp0Z3wwCn5+wS8mWM+Sv5hww7Wkei9XVD77/5jfevM95c5wT8uJq9ejL416fHVd6tByg8uLF2WA0RmQSH6FJsU81jig6P3sxu7paMT53vTk9fs6oHixHIMWMW2ZhENJVbARSgGym0EHMfGnERg3JHmbYF/cxsA1Ok0xuppWFV8J32TyZXl6dXC4xfMDRfwqzUj0AI9InWPz0cnQA5QA9xQAC6FB3cDmfTYOFHXDaF9ungpLNYJcwSjhr9/BazCJdbmqpxRI2pzFGFnS3os8eH8+M23xhPN+1k/Z+KFR1hVS6HrS6aEitWHfLRr6Xl9DNeCor8xgUZRo++FG7WmEibDUp7rslgYIShsErcGLNJ7PoGfahs5BN3hqeBoHAbQVEj4vwiYZbr5zUUBmukYB/8sUSxAO8cnorTQS6otxMWfJTbDbj0eBqOekP6veOmv/Zn/z84uL4iJyv52wCsWQ5Fpv+0+m9YV8EJnf2Hdpg+8CL+cc/fnY9GTFSCpGyKlnjVAyGY84qpO2pfoYyuAJXRcX2K64SjJH7DBUTiFCUo8KwZCojOzZTriMhAFMgWZKF00IqOlGJTg84xyChuvS/MxE1Sqo5gMtMcjvcay+Xp2x/lwIoncU0kCvYBxOtK5d40MKIx2F4PoM51TkOiooC7yMt+ErnAm0UKjCO9pxMJs0W211c45WzIzoWuU8rkMYQODDzm5XLFPBcEB9yCknJFahWyj5zIxZ34IfcIlhCKfQaOzmnHuKKuGKOZjfD4nvjEX1BjIG7XZ+uJ2Sk+CBhAGh5SIgeYOCdt0XCeMfqdt0tHkXUYog6wDxPG48CkVmYrKjQZOo0OoTwMTBfHh1oYLG6komdZJ6h6yLMPVhCgVhrxijEBFcMRDkRDc0O2xnGhc+aRogEUZIgB4oAVFrNCI0ATKotkHCPpygFeDJtK0C0q7rjqfbUH/TSn3ARwZtHGK92SR4YhpHGK2gYHzH5gtMF32zN254gnBLk1hFJjEIGZ1BwXFdU7YBhOJBgeA2/ZaBd89Ad0UIaOJAByk2p1niRFxmnUQVepKIgUJKDl+gBUI5oAOCJg70E6LrG+ZAgayhA2HeGzVRYzjeT9IKzEwK4tBsig8JSzwz3+8TwTDm6nkMfisZa0MX16ld/9KNem63cNp1O7/MvPp6cX/XaIw7/uDg5Oz17DAfoG6i71ZtNAdXTLgURvnpxNjs/s6pd4A3NZhcXKGVlNqETfREPbvCDZ/kGI0AMqfM9olHpiWBbBJ8BmhG6BTRFFMbBVIRv+WMYg7FC2GKc5CKP6PLiMjWJrDcwbmqZekLrn6U5rf7K+Sj0xvYRJtOBtIzmCQqiZYZgCNg6E9LrtK0xNfmAKiIN/svY4GIWwVPk0ZYCxzaBIJAaxcjC51QKxEN5U58pXszdprxpTXTXmLq9RIFLk5wZZvZVywSgh1ee8MZoRa2R4QP8vpwJTnFF8kCnrYkMjEzxS7UEf/RRUN3SglYlIIms+eUCO1AngKY/XjoLE+UX4QCSPJBu4OYSeTg4eP3gQX3zZXOv+8X5ucWavUWml+v59MWLFycXL9BZpsr0OJuRHcKXy2ePn3bv/JAj8lA3JS171I0hw+7dwXyCw0FlaV5cMA2vhQ1sLdkWLTqznYRMONnYC4R6WFh8MH6SICEuwBPLlojVBs1fu+oup2zWyRoFBsXQAKZqG4duCNxVsr13MN6sH8MwjZflhkyVt5ljHQEvv0s2gExZh0MEEypK6VxwEjVcwPXCr4sthiT+80gTb8lBDODM3kST24fUOrVBzylAkEArZLVa4BEAMKwp/JE55VL1/aJkuEl5PhqBvFNA4GZ0whA0ihj4Nfh+8Cx4C4MsWk13A9YoyLtYenakp2aMbkeJacmhIPFuASYkc4AEbUmKD2GwH9q1JcXTRPFJpK7LEIuCiiUTEJBgfaLfmaGJLgLTalPjwWDKDwlRwBDiA7hwoa/8R5MFK1BfhMF3dFgzjssiSlALOwCmq0PaVAzx24AF6ng3eAEAKwnhToEVEUuE3AQ0aCFqkA1HJVmUjMuXdFiZuWXLBCJFdchvkQWIAooii4l2XIK8pV1SMCKaJQJEQqXSQmf2KXYS3FRmW0LRn9LC1wSSP11s2u8oGj7dhjmyDGvRDU01K0phxXXpcENAIkwpgQZdW4n3Akk5p50HJmxwvEd9iO1wU1IlBHFUUzTs+v32/OoSSzi7pt06xVKzPSV1z2i49/633kOhS/Tf//0/QGPZ8PBqdrXg5FXPtejQ4ShYmWhLzVrRgrRlEh/NGPo8oI59qfDBmHyA/UP4FjFyNxnv/PoWlNVdMbbK5PQaXSQ+42kBk15c5KIMVAAotVAiGkWlnMkXmIhS8okNMpJnQKUAeA7ynaqRDerhM7Z2e07GtNd7HZxNzJfzHhGVJYhk6olphYQMBa9cGZKhOreqAodIAHygDTz18nedznwCmv2c6phyABRwfJJMYNCTTXoGZOpzZgnQaECQG7qYwBSXFo2QWKsxf9nHG3UjGnxm4hZbcNObwWgNfiUDz6yostWwWs/b9M2gjmx8nIm+co5qr6N7CNmoHntGskYK0VxdzTDsajT/6TpBMzX/7mgG9xmQ1k5wzni7RptkbzR667U7k+vZd997688//uLkavHV49Mma6+uXsC3k2dPme4CL+n1ajSWTIJcTOgsnL31hhMlKQVyT9kgQoYTmt1+Hz47SR8Xh+4m7UssBqzMZUG03MItJaqvRYieEjG3bhgHx0vMlDVEBb9dlba57rPxQr2+xPGm/0WTwbClAgUcCLAYABN272hAo0jpRV0Vr/CjnCqN8csNPQaBaJKqaX0OLRZqez6KD0Iwyobvv5hT5VhrIcPJck5TFoKZNVer3cYpZb9SqjjSagUoi+6xAZSAU7El1d+SQdAtQUqIPEEpOuHtZdwkUUXskkKxKbksr2PXC2cuTOd379+nvbvsaXWwCCg1fnPD8UjW57k1PIqKzpKpDSv0207X0E5NiM0hXzur4CEOvpZc1kC9FgRjBa5IycYjtkRy/MPa8AlzSfGCNbEPhZ3AMYmlCovhSyiLrOUhRTmFSi5r6kNmlQWLkyzqApcRYBWDGEHFiFvwi5D1silFFmRwJ1QDpQZBp1lz1zAmMoyDDIIARAINh2hBB1QbHD0wQZSRMioJRvcTSoT7KSBeoh1Ye4t3vhuNrJWLTaVtq+8+nZyjSkzazlez5XSBlUf76M7QMtnQSvb4FOCAu4I2IRB7jykmZKKPY7PMbglqQfgUBLkBBURKenjnE14whMQBdNvRVFKoCg4SxANgSQf69eL0+IyzXWfLGXXA1en5YjqnJNEe+Nb7D+/ePWSYutdvn51PP/z8OWNL3R6b8c4vrq7QYlg8nVx6HmkOn2JMDN6h1EoG5mP5C5QVAAEAAElEQVTFzZOKjm5QoK/0T/qcDu90cxeLx7jRl0j70m5GGQUz6ZmBfbTi2Tt3Q//pYMQ8QKbrMN1CpUYoDNziSUNsbCXVIauQ2H5AfVTOsJv1bHoAzLiljWqdg85bR8qSODBoghZPxccLRcVV4HDQ1iyiV4DmoGRVDCRG34TjGNZsWHrHNOrsvMXRibjwGB5HOllUwHTvVptdK7tsg0Hr216aOUNbVLusnwUGCzbbHQ7IXHpqNSYXz6xVZ8I89FMpkBl+L1tw2hQDd1i0an1xfMrcS5BcXtG33r11//DWUfetN+68/eZRt9Fi4d7haIyOcDwXW+1gqekGt2KnFufon81cm0XZhwOUKBe1zafnSHm2oP2EV4vCLddYZcYjkIOEMXoKmfS9NZuDIaaKSS2sD5z1u427D2/tvXZvvF3/zq++jx1ZLecvzs9h0XQ5O708t0nF4r8+erm6Op/0RvXpJfM1Kbf2jGkL8UDDUCNZ7GAtzPaxFDt0IMUzJYwwvhjAZbklAboBot1ON96EOmMZY4uhJYNnqAi7iq7YCAEwlCgGQYHM15R3zZpuBKbjenu0z2kGziA1byjEnaRgyaGkINiWQZW4YInpKfpgEn0CO55IBhA0jlyeffWUxi41E1ODqG0XLKSpbRHKBeMZngNaO9wfCd3udHNytBTjhNZKgtRxQY/UchEzr5qeIJnPflMdTZEAblV8wWJosCex2GhakyVy5NS6N5yyCAGntrWxM+661icQRVhsWvMNez9RBtylD22gTzs8lTrMKTlpSDQ7uB7oN4UKRJFlipEm2lIXdigMHT6KvlVKmOlIsiQRBAQsPFaHDIBAhFBILgpXc0vlzOxzyigRzN+slC/cTm2POvDRHh9toGBjin3nH5EAU5gBArtOQkLIjThyk3DTWVsRWf7BW1JxNx99DsHKboyvn0K8QRgJ8zAmMwftly+GWxkksTlzhXGhjXqx9CfwBUjsHoXatpzK6XaGzFB2oYtmmJnNzgWq0YcK9QAISwIYxJlQ7AoCXXVpieZAuFYLZFF0fjGl4ReEGqR6yAEFxY3SYGSKuuP7oIUTQmXexAF5dvy8tll+Sm3TrM85H/ZqfnF2gd9E7w8m+3vfZ0PzNhsMkslXT19wzF2PPXlrLPusDUatxWI9m8yaTrPDWKwpdNLHnlScRc8otHqELQbBbb/dHt7bZzo5/lDv4IDFGCzEOejtNca3OFDkcIyaYXPANLMynYVqr9agt+1wbq1HJbK5Mbups2SETm/no+CjZ8lRm0MvFJ6SjWic8oR/bkhGUVhegtbQIc6vI2FqwoY1RPDFCgBWIQLUMlYQRVShqLn0WrREVEo27XmG7zb21WM9CjVEnbJOpseV+ZrYzYvJ/KOPP/vgFx8u51ejgxHQmCXaazIh6PDh67e/+dbReDDeP+xTL3CyJsaqxhb3dkVhLKgc1DwlDFx6DldMOaOsda7XHqX5xemL//wf/Ne/+MnHVAeHMLJ1zR48bLdDLcHwceegzXyj/gDb2+s2h+7gjJNXYw+AYY39lZnCAGALBN3YtlAYtj462qvt0+uFTltv0oFGxwl8hm1aNnW5VBdkI6rs7IbOwJDtevXu6w/vDfsXF6fkCf/r9eHZ+QuqZwYV13P67LcHB6PTJZ1li+99/7tXGKH0fMZgOgMC6NTNXeYgw3TrX5hKUXPOnSznCgZwmk/yJEHaFptYdtsxKRSHwOJrdWLtDwhF7sY/VIeNXmtga4z1Ykxxs3SmUAEuYlMj6s1xv7M3crEbjMdlBgedqcoE4DpyWZRNQTZc8MrxqmgMWaMnVOaJxA896JRgFl5h0fE95DLlSoVjIV2T01kAjGbevjWmief0J/SPOXJZtesQl5cZ7W4agcqqm7007L7tPmi1chlP4gufGL/FtEJQ9LtBheRYdG/+ZbexaLW31/MJfgjLr9g5iN4gNrPZslV1r8/iCI6SXF4PVnV8E5vJ2lg0ntzxaK3wlFwMqLkhNwQj1hoZkCNQ+VFwmX5CrwVr8jTlSA1DYGl0aBPR00ghnTpuCuBIl00GucxdldToE4n/WjGtNQHacMXjWtZ8xvnTu6csp4TG/osQciNjkSUN70FTXMiKpOg/6gIk4VMmRB/MRURGkyI0IXGyJ1OLOaVBUESWmgC0q5QpOVBV0vJZstJajM6AD3gCK0FrVjRiTsjG+gOS0Xlsbo+lIdQFGGPG8eARDiJfzDnIyiGLASaGugGXTnMKUPCRCZAmGaAu4qqojFJu3Au6WjPi2Omk8acesaNevcW6MAf09OlTemsmdNZj6XD12LwL5WWAlx29+oNf/f53QQWvHOeFTcEuLs62zcX4Ngdc90ZsgNLqH/QGdLt29ro9WhDNJuOpe+Mh5owJkBRv58Co5/RImCWFl1YPC4RGzWWjxkrj2uHb9zkyb1ibkcN03V2wHlnPDttOGa73G5jJ2kIFwZAyLr7pNxlCdxYyUqASZTYly/pxX9xJjw4L8oABmZlAIsc85QOMSzPW2RoAtjLFbiAq7BIMRCjwMzrAA1zzprXxiTjWregvQokqoD38V71sT3Crb5nbsdfHt+cYwt7t24PRYPNHP/7TDz54cnlGF5P+ivvzrjb7t5u//p1f+ff/zt98+5tv4BVRr7JNDn5FJseLbWYAU9HEzaGhwzeSU69cXP7+H/zxH/6zP31xfEFv1VfPt3ucMNvuf9jp/wElud2/fXf/9TduP3jzHpaX3g32k8X6wXmaa0gTXFcLpxXgBwya6C2iTh8XDFGVlJA6YRFDVdQjChT9NvTdz7DjDFYuOFp2yZDON95++M5rI04ShvbOYECt3NvbGx3c/fnPfjw5O7Yg1Ohx3nb7DDpupnN6RBpPjll4K4stqFBGOULN4i6QLUPNljEy5g+WIypxihJXN2QDS/AaGerS9KN2eVdkoq/0mKViTZzizjjwml2GSMWsixmbmiBFOss2tEqES5F33IgR+Pbm9bvDn3y24HxsDPFytWT8p5XT1ZE6EUCKS3y4K310R/YYwF9wZqQGzHgkDOgYX8oYcej/x7Y6GrzZdDtNuoCIguN9cNCHDGwQVoR2DBtHI98CMCoFHMAITGSrF3524QaFbj8GDePkqyiIDYxyKIT/2RLOZXPL69Z8eY79XU+3tOspPxgn5lpYQKjS65Nmh3G+Jm3JRfNwSvW17RXVADI8lcPmamnQk0BTYoF9zTdQwRDLXVSAoumAC8KWe9bbVHyAwd45/mjvEhVURO78dEgznrZLYDzHYpErEiTX9OJQSsNfMbB/RXeVwkcCNNac47mTJK90asls6plcoJXKUGAotiUbgQkXxZKNippZbOQmrf4Bll9sdXIwpm42dxnCxcyxsADRG5UwGwsQIMaQQBA/2oxSOZKznZjJydWVvNh9AUTUtucJPrV2t9Hdtme0yeSOFVugEMvqj2wY7SAhQOzesE8HyyEpQLZGETUsk1IggMSokBsXSINeFhkhB2sajmdlmFrHp37+4mpyeYWhoJuFcEVLI9C5X9id1XvffOOt+0f0aqoq2+27b9/+P/7v/9eXTy8OexwP39DJvLi+vpydXW0ePz1/+vykhYNf21w8fYHmX9kHXGcoganYNAqZANGl54GlA/R9cEDwaNjsrM7OZ8OL06sX58PNhrGxbXMw50TCXrMzHrEbMCMNHKZ6OducXTHBEQHbs85kEqcaYJ+hmM4luOMGGyBM015b7AgFzEFNVQs4rtGXlUiQCDDEKhZuKXvfKTDwC62AOQ6ZAIRPsDwOA7+84ydQbajZCo3WDukpA7aCrVDUCzSPEUtijQ9Hzx6f19c9NrjvdYb0wDKlnd1/GWW5f//N/9n/5N+9229cHZ+dXl7MZ9uzGeeuT6AUXtoN6JpStTF+BAA3l1eL86uLR58//eyrF6xAY14WLSjCzy4b0zYae6nIkdonj4Z/Tn3NGe3tIfaMI1YckGDBrad3MBhP/c1+YP127bA/+O57D44OR3gOYl/UnlKo8sM4azf1UpIZseJMaSzU9uqMxQ3Xp1frb3/n7Vuvf6vf7uOF9YbIDf9s0xv0fvjrv/lfH58y4jOfnGwuF6NxY7lYnV3M4dWw3wUG6q122YyWRMbfuzRamu1ZjTPjufDWWRgQ669oQJcyZEmX0SkDmAoEjdelA0kQ3+R8/ohlHYBobavQs0E71HH1Gh2PdHjg59rWUEGSwPYqq6Dmyzcf3PrjT04Gje6SHs3JdNvrDpkhqkg1Q4pBBOAHWYlldZl33s1f9YlR0IDsDfcWewtmlJkFJphJqatlp9m5uEJpmNx1PRq0hqPuxewKGNRlqBd1RK3WA5yoxQgmy5KvQcRUv2BEUMlPYUwVpCSDEd9RURwcqh+WWNOF1ev1Ls6mmK7Wl09nsAPPH6eny8zlrVuYChxPr4NuaKJZ1dxqLrpuC8VYFCZXutF6fzBvXDZ/FKNIFcyCXZA1JGypMMRu4XtYZIzM+hfBoEylf0qC6EK5xl9gdywk5FdKHSxXpc2Qf0paMaAyKLCVlgWdV2LbLaKq0DMSAVEJERa0yJSmhIXfghz+ibOShGACIJaqmq+0W2EdNgAQJDGRQDT9xA40TKa4aR5M7Z38samgAaqEgR3236qh1EPygcRJrfoSBXKtQVwyKJnFalN4rIEohNRnqCwmB7zrrB/NHiwW7Iq9Fg90AF5G2ai15Wv+o6xWTcGafHaTZcVKxskhWQBos/bZCcI0wLvAPH7+HD+PcQfpZraic1DsWsJqgMSvfP8dvC3RcAXclsU1v/Lw9upO5+zJp2cXT0+ePdvOOIK1+dbdgx++9+DO/e9dsSnj8nRzPWNEszf0tAN7DzgH9bq5YnB5Stb4oSDRWW07FI7ZBbXP6Wefjf7kjz5+/PRZf8jJAfSQLSd0GtPRRLldTKfzOkld3eP0ENSDbkRqVhkf31p1EHsJhHvxWqNCCjJl2JvqQgA8Sf8GMYtMVAU4aXKk5fiq1gZmIlzFZzJKJsCNqTTURMJz5xMvaqziNx/F5GyZa2jvDQbEp91r0u2aaeC/8zu//drD/cnTF5y5At/aw/56tmwtqX4xE85eQQaUCMe+6RnAaafbqjY/fnrxmM2YFnMqcCYEKE98iJq7bdoAgQBsPRN2F8x4pCcKlltmIaPbqnVxxBhq2NS/86377717f4/mVW07YkAFD1DE44zrsBGN/MEBJKDJM1yp+MmdHp3pFSO6eKqNS2RoYwBmqMjm7PC0GwXQ6/dbf+2v/4t/8gdkOOqy69kIZ/1iXv/q2YuDN+9sWVvI/FRYQ564AQwz4HAta52cFQ8qdphsMFv4CvKfv/xqc3j1Sm2tKkuyAYimSIepi1ps2zl2zjHfCLfjasrcYUvG6fkpCsNQK8dWYOtwZRjbAhlnvWyXP/j+w//sD57RSz6ZXkyd4MUCZgaonKet4PU1AYsmpCyrAoRyQb3henSuO4N7/kN39vf3Ofz9808+pT3hXhDM7l1fURJm557WC0J0XxHnKw4LS386BNq0hee0kqNpahkXOSW7ZJh3NVR0uFRE/++iiFb1gm2h6c10NbW+tqHXVNebObBnM4lgPH5Q94RoBoWhlh4HsLfYMOnDLC85tr7R2WvUDqif6IuwbYhOwEgEgb1U2YBHiGiSggu64AVvRLFYZnK6PmTMKKbRUqcg7UslFDKRo8UNqNhnFBaVpQXnR8uTQCyTXmaenkHLFx5KTCafQLcI5qa0GgHgwNCso2VAAik7PvUnyCWl2PoaksSaSo/CiYm0dJOtZIifs1YgMBkUitCvcmmGJFZTKdkgrEWAFwBK4tzVkiSHJ+anyw3jzIUxwwIepaWNwg5C8V7VcJpNgsABZy43fdb0b+DMpr9Kb5aPmD1RhULrChlMda+3S4bBihuIEjfIGSwmVuHwjlcspxDpQQcbCsaEk/zksfUQ30isCWALQDZzadd+9L2HTcf98Ttb7mFA42T64ic/+clnf/bJ/v3e6cX1i/M658a2n190GrNm+3Mm9tHoXUwu2DmGaewsdXXVJhUOsmd+JSfTO0FEoXQHAzYu72/bx8+vfvLZ+c8fPf38+cndO+M9V7Bjx9ZbjAcOL1NKWi1aC1S+TKSjMcFIL2XOqS6A1elGibYsM+AlE50tZfIClw8LJxcsG/a/hC3QWbSUeEVq7s0J1XTkoRZwiRTRvfBboavX8BHXnBdLCQznXSNFOJ/1GwAbTdAYNGvduiPhDL8SEc0HJD75fLH6v/2f/6/PP/n+tx6+frA3ODzcu/XG/uu3x5M5/SyMSjBlCo9NS0jtj1eI60oH9v179be/+U6nu/mDP/wFDoATWmx4AJVeHlvSSt6uVTpZglAxM/JAaVO2seB013z5xdMfvHP01hsPeV0z73XFbq+lawv3hsYhvr/WSi1hHx6GU+lC2KwnTAxjlo6zRes//ujxrTdf99Ny3mkN0BO0Ci0CA6ik/5w+ud/8m7+1nB6ff/lky0GhWP1O7/jR44fvv/P5i7PXD1rjPqdQOCmaxiX2eXo+wQejpbLUEDjIQOEuO3XRloIYZgpABYEISHYnP4oAKMKDouNYkchb/lM46QcctLvPHz376ItnC+qzxfXxi1PogiiKDYg6JYHZQcs5vW10PjFUcOugszjHRAGRjhlWqjCGjD9u0VH6hEol99z8oOHXBPjdKoq0jKUx+gXOHGFTm28HvSEFjRKAuABIBUC1CX68opYco/ZzoCFOlpX0WjDU6R+eAkJu5ORlvuWKlpEpYcmQT/k1Ag/8GFdVFEeUwq7pGYLHFVmtGW6iHFCXty5nnJtM/891d+CIA6sSZot5t+uEIc+jbTRxLaiGOhzwsKWzWpMBWASCF6dLat8CxGqy+SozrYxiN4OJdpDvQZdvysvoeB9yAU3FbyGcaFaEkJ/JGZBMRAm3qCBZosSOym7NLvFDYmgM2EreRAZhdMOuARCxL57IGBhiqRT0AMoRNzLCfOip8CWcEmtBkRFhu/wJU9BAxbMUFFFEM2yVwSqRAHkWVL6Rs3lhytHAEGgCrhiRYoxQPVxs5MEntSDUA4f8Y7spnpoewolAHUCVAM29TocZGrMlI8DoksULFMIuGauVJn1GTAhVvVM3lPpfJoMnaCIBstNdhhKwdosxJ8IQA9VEL+gbhRSrQ6IDB44aE//ywWt7775zBwGisthtrM6i0fqDf/mT/+Lv/Vebi+boXoeNfj89n391spqczi+vJkxqvtWvPTw6uH0wuv1g2OgM9vfH6yVD3t12rzE7Wa6YKnQ5uZpxTAdn1jHM27k17L3/3rfHr+3f29RPFlefPX7C0kNWvuEM2BwjS2Qgsuw5wRO9qVuXp3jcnSYeLxQ9pBSBsIKQSIwAiaQBYyplafYnitqlENEMeWnCCJJyQWy/8IDZo5aie1aGOeqOThRlN6DwP80lkAIaAEpq4NkQ0f1G5awPxIOhCi422abl3Rg5HP6zDz9BXRksWUzm4729d99/8xvffYsoDJ1hrymPHoq74Tz2zWbEql7n6bBatt0ZzJlwq78iqhYLD4AAPh4at+ijFb1miXBa/KqyXc04X1Tn29Pp/D/5e//kV3/z9O133qatubmaMcps10jRdaeWWqVKFNqywfPfTBd0W1sEjl+czWvbnz1bvr/Xe3DnW7DGvR9oj8FueKaEzBRbwR7Izx4/v16d42gfTy8Ht/dmy3P6nPfH1xwKhnmdUe2jBgw9XU8ZJ6VxgjVhORT9OoCw6tOJp0sMfMCECE6IgqkSDn5rTuTAa1VysiGFED4jPMUPJs0651d+dnp2zBoF6rN6g2F5lkI5n8cypq8LwgBC5xmHhrq9Qedi2bp7/+6zJ09t7yw8xBFBh5HewlCZ6wuZIF3VR4lzgQnfijtozC2trs54bzTNBCDIoO3UZJdqDmHFmpJjrXbn9oFqqOZAWJM9R6nwOow9mFqAUqQQNQi5AFyC/eylghv0yrNc4M9eTQ0Ibp76zyxh8mFKWetiimY7fNpv1PsD7Dpdz9b8AMHuu6NBu19v3mJ2UI0oOMF2UmOL0E1LlyNssluTSxJ4AO2WDLGgPpCj5JceU20c5caiYP8/1ThVABQbgX+QjWS5RM2j4+y6AaodLWmIAg3F1I8vJGHFYLKc4QH+Azm76vO5YzmACkZemARII3hOj7PCMwHo2CFMSvs20XQLqLYgTCYkaKYprOdj5WkhAxVQzQC/ORpbmYCwz94LBOsn3hIdVIEAzmBoFH+gQhw0ZDRPwd5NHABsNII1zfhgRPKJ8oP1Rymdm+VAusjYqrBVrtGi9YYRYe6QemOmXEDnE0oGSjTz1EQR1wiSPUItla4o8KfdM2Ni4GEz1TKaB+8z+VTE0B4qd7lHl8QPf/X9O4cHlKsIHUyYFT5jyOvf/x/97f641x/RPXMx3S4vJs35hOMD58vLCUFM6NzfP+QI2PHR4eBg+Py09k//xUe/+PEvnz57cT5ZkDM2o9/q9futW0eDzqjx5ZOfMZFy1Nq8+7B5OB6eTOaTGXMaNS504bqAi16ZWp2KUE8V9UpvHbMXFa4dhhArb6VO1cQg8Whb08lncsjKEk1n4jnkM3ncee50mTgCYmML357WwWy6eHD/8Ic/eq+LlY606St1Aqe795stUlE/qJkZAKUwYKowMCyDtS7D07CM6bsXqdDBoZoHMwWK++EuXVmk40GgzKk9bWyenF39yX/+z97/6ScP37z75mv3mF6FTwoAEmqI0SlQY0JPbf7Wd+/f/+qrp1++ID/1gYxswEKY7X26X3q91ngwONinv30IQxzbtlBAIHVB7ZJRwKvlvLb+4POvHrz51rvfeNihl5cGIE4wRZDmGTf1XPWz5tTjQKNYHc2xXaz3mLI7yNvvNteL5j/8f/1ffuev/uB73/sRjSqH4RhrpsKj6JKGBVdz5pF0+u1RA7u/nlxcLZgL+/jDX751r9fu3Vkdn52cPmbrpPlq5h4kzCrX+9RPo/kBZ2ll0Rvi4GWpzOGCU0lsnKG4SlZDgeAsZlh0YsEkxay9sBchQyTMm9rMWJUMYMogrUOWH2YrUFgLcdhH5IXcKbGd2vSNo95nTDdbslL9hSMy1E2MVNEho/Z4WYAtTz6iZP5yacAs9S4osRGQYspXzByjej1aA7R0VL75dEnzGSCoH6RRRO8c7guUJICQOOaMrgao6Q3w5FDyRLNDYfIMElXhL3G8G0quOxwp2hYI4DNu6KYXouJBs/BwQxGkdTABjcmaOWN09DEviOqh1hg0e4d21W3bV05gbaJ6XJRnujQBoCkJyRDIa/Rb/mhoocBiIxooUAxUMZTF9XTQBhaaOojKfsyAnj2WSCGCulZdSwhDYGvhvBD5ZLyoAE8AR9mshamQmVdjxx9mzjAmvbFf92ZLR54KYe+m0bAFdKjwXTCKzA4ouzixvOiuq/SlQu2yanfBOC+Q5DRJUYaZmheeU29hr00A0oQAVtSoVpG/gVBVxq9QR+JpdaGcKNBI5kYyNaonPgClL4NKCg8dTdLEwCsTARcCSSVDBQK93Oi7pfdW0yViRgQeEMidviBxQK/dXNG50qYgEwoBRQVU7MOALBr8RIJGlu8vcLpgsFafLNVhVNbMegfD3/0bv9uoj2hTO4TMjHRWlkwuv/nmN5ZTivkl9q/BstBNb29Qb430Q7HNWEsmwtPA1+l0oeP6oD753uHBt371B7jUGIa9fTZDgYoOw06Q2MbDoNe1RbtoCcI4KIs57mFtsqhP5szf2EzJcz6nI2K+bFxcLX/yk0c8s2vFm998bcw+pYx10kXFVEgMPJxv6UPh/TDMDCWUJqYdMPKNiTi8fTBkchIz5WkOMvzTaY763f/29//wH//jP1QP2/2910f3bu29eXj7N3703qjD/H1KNWxCVZkqpVVU/HgPYSkfLPqMGMCdmH3rEJQd44VCIwBUi190EHVzWb4S1OwIokNZYDSeDo6a2+izRNPJcszK6fURLBIt6k8JQa70IF8v18t3Hh796rfePn16fnY5OVvQg5NestaGDoTBoLc3HB+N927t7bPIqMvkrHarD2fcUcqWOl4vomGnCNjNqoIB23i0MJHX1BoUDuyPpXRtNQkJKAmW3yRFO50vv5pNLk4eP3ny7OTzR08ZJPzgz/6cw9C/9d53MKFUgo7L0TqjyUDvSpaZUAuuWn32paMb8KdfTb753ptffPrJ+fSL1YRTGy84Ap4eGNvXDh6wTt6OEkc72DLZCz1ziV18RAsbemK5CcuRiSNycFN9VptRaoQiZ9FANqBlhYWzG3p9ZiNsrgieXqLmziWztCYRTTVcW80Crs/6+v7g6MlltzPsP+t/dXJ2RivGisU6zSIKQgDXoMb48JygEkDBxzvwUuQaDyJrH1L0qEEp6OzMs+wNGRGx3pGu2jWuD7vkothgTz5oGrpEVhKVDKqbr5Kfy4+86OV5wTmtlYkkKyjyo5nR5064pT8HXXBC27b1zv0D1vY8vVh2+hzQVl9tmQCLx5lR/o07nDSY68HIm13T2pSoup4ODyAqcHswyNQdMWQJ6q33qpupAafQO7CM9SBfY8MO7TxaJYsqbsbc4k7SAFXRiczd0gR0SbQ1YIXgBSuFxr1IgrTWGrJb5WFBfI8uaIoS9VitPqW3LR15HINA5bfgLFDUhRpAdiCLMIfp1WQHl6iek8oGglME0CW8IFaIkxnQGdRiG7bQjH3ks/SAKsyR3+IPYQVVUMTcY4lssRJU9Fi89dZhj/IEFBnyndw17AkjMk8O8LpXDrxEPyh/VmjoDkibF5wDH+sKe11lpM+FpUKU32gsxFpM0jUAdTziIZacfU4LAbSt+ZAeHGQRLwBZ3bNtMQNstN+eXFwyxQa6WeT113/rR7/y3W9SptOeWnepoK7n06tJrd6lGmL7M4cm6KigRe7aJwRYusvYR5CpnvKLFtmgUxt056+99g5yZd4SmbNLYfQGu4nOy0+EiaPNuk18CJkEQ+K1InkIgg4VYbOeLtcstXr0+ZPpgqVG/cOj/WGPBuuAjPHZ4DyXSoFNVNpufNJw+Jr6jDoVhiJxpO64CtYOV/Pxl0+Z3/iDH7x3TYVGPqm4Hv3yy8Nx++FrR/cG99nFAx8CrSZ/2aYI7XNXBLAcebv1hChX4o2PibhTcUsYooEcJa4eA6DoNRNZGCGIMmCAqWE0IdgkxKflcKoA7DPT+C8WEJjLXoTAQC9o3QsL2Pwa0bLo2IAOJU0me8hoZtEfBd/UACBbl9AXbBXEjNTZlD3SUHlng8MSKyXkEXvCj7pJCpdRuUaB9O3R7cPx0Ru3rk5vv/bo448/enJ88q/+5INa++jdt9+u1y7ROObak2lUHe0mu+ac9RvMI7iejfYGlKn1/OqzD87lO1sw8H0LyzeMSLMMFTKQEPpAnRQ7iEPQQNbMIAUDagcIl3EghjSJ7mhHSgXbKuhwrDFaFDVO9GHIYdjrXM2vv/+j3/7457/45KsPFpvrzx+fTJ0Ihiohe8o0cJSSLesI9N6t4eaLq3bfIzFScVPsYo1IwgU34GSsELIUCUHISJFSpnaS02QyFd8iPDSOB7LA/0DN+lS6qhJH3lvrYP2ZhXX1mB42VYMBNpSTuEiXS1QDxIfgnV+z5V0LU/RjV7qDQ1CpvkIeQscFsQHN/H40mDZQ69aIbNgkEEese3QwopUId9iekqWZ+JRt3DNmYNMKvWakD8RcNiMemEQ7ATTqsSkYJtkgUzQl1tO6zOqbPQ/WxXxC6QuihPBMsUkS63MJIRRrSxeEXY98hySieSW9U/5Sy5falTQQSSQKutrPaSqbZr+xGXTm48ZZi4LXYoYCIc32nFnsTEUcE3na3E6XGIgOZiRCtHYpmWj0kT31mUYcU+ZwKCYCWth+EwPilgvcU/ztjdFHBjU1VyPrmBhVpx4zGIo2Cgk74ghY4xkrrqPWAm5YsjGJxgtbggfANJwwII1VtZwXOjwIZCEJCQQFzj7KNgymY30y0AYqJpQ8xUkMsFU2gUniP0WQhyBGNKaPAFfWQxqNGzvEaLVfY4vYReDe3VtMGWR09XR9QYvi1371vf/F//z3mteYCZZ4WavhldMD3272yajeXjNAjN2n3aJrq5GlZ8hdCqxY7O9jLmZjPVvYq+3cj5n15gKh4pq4AYM6b6sJvjg4dDVbnxxjsxj/VQ/A0gKvCsAnyWC4g15St7Losu/cHl7V+bx2eQ0W7M9MfclwKNvS9pn5AFkTLBEPliiY0OiCYbxcWcQz7TPYVN+8+fYbb3/zG+rvhr3GZCTOu5Xu9Ry3Gi+KypGSyZdIWDH6pyBTuMsjQfJeAEy64WvEi7YjcULiHanSqj1ZGA44IQUICflKLIuUYxLIpbQUwB9+YQIxqBgfPlKdq0jyCMLsxVNHKRfYLXsakDyco0RGyXRoqCvQ/XgWViZmZpcuowMEw1d0S2vIA70xtP9o8aIl8T+sK4BMnQp+jKFSbdfY2vreW2+Pbh/defzVpx8//+Ljj5dnx689PBod7ImBNDqlpDQk+W2tNn/zt7735r37r98ebO4c/ad//09/9ouPnp8zO1hlZXyf+vn18Yg+CkZ9HHN2YhBMR01bbKn94sWVYozyW/jAXkbB1/CGtWcsQmAspd5hSx/WCGKYmEk3n87vHA0ur74Yjmr/9r/1Nz74/HMbkYyySq2jZvCXokMp0uCy+fZ6fnjAEMHxZnMLAbAUDofB4gVnixqSBDYpWIsPHFXKoVObZI+Fvc9srAGP/aphsSDT5cIvAmMWbYd5prT3mkz4arPTCh7JeDxar59Q84s2iwUp2OxXhPutfKMv/KgzXuISSVky/J9gbsQmfmRk0Umh10byiZVYNBOZfcBkLPcDuW71esCv7T/Y3zu6T2P7fHaxT6XZ7rBZB6M0tAjomhz0eqjQJRuKM/9gdU33Z609ZJoTnjWVKCvFELJtM55BQu8KHtCmQfCIFGGon04nQKuMI9Zouq4sVUSkB3IUGiSBy4HHvajTo6qvVHo+0P4YQpSAOgYK1XgLGbDgNZ7ymtkLK2qAbms6ah4f1k5xQvEXyKHTHB41eovmulvndLr1tM3qt4PZejzbDObV8QR4T9ZUgtIpss624qEkaTPp89H6WsV4IxphTuABtxRpUaJYU0+4pQ+RIBFIUlpIV0EJpWzCAfpkII2CB6g4ecYnMllJjTdyS8nVlFs9lFJLAussC7Zp7bvTxedFp56yCHg8bTkli4Tjk7qEq8juwWBICU4m+Q4xAIHxRgUkGtdo7d+7c/7J9JoZe6POcFCfTZZ0CcA5Rnr/nf/g9xqt7ovnFwzFXS6Z+MfEgd54OKA/1x4OjZIEUzVpley5RTtW7FdgreSAUPsaY0t1iFh7DDnZwwWadmYzGmc0do9ERRgWw0g6fMMkI1hNvStbsEMokt9kCM4dMZwjC9N1mTF2EMJuaWSL7UZF1PyoirOblZkIUg/MYbvzmRwRJVP4r3iIAKu4wRG69rFUVqUmC7O2Q0woyNkcI4wE3GP7E8N40UczQoAQkP9SIlByIxvyMhZReOVHlwxNQiESmsCiP6oAHCObCEd/CUC+BRC8QDsNtHlNdkpQ8AkhiTqItpkVJtyORIuWTjLGzFRwBHW1HmAJ6HKzZA11w6UCLATDQLSXrjRGdlgt617TqWDk7q+9GNSFMoZwRNAbjZvffKd/MB5//OEnTLVHsNgDqvPl9cQ1UK22M7jMBXeiOWj1Dg4P+od7v3r0zbe+9e3TF48++fiTP/748S+/WjxZOBX++aJ+p9kbALdLLw3MgZQNLaTxPl1Yqyv3skcMNCk7dFEgj8x+YMyYs39be9hUqjS2FSFGBlpohnBiI1PNhv3Wclb7O7/za2+/dv8/+Xv/79PjKVoAaJlCFooTivBO6HmiP7CFsZydnXBe4/3bd5lLEq+OEVCcnNhgJaN4KHeK1VcrT4sUGuCU39rFJe4LhgHtUBhKhJzYVldnEiEsjvY7rJaYzDyaBp4dHoxgKiKBauwm3Xxs4NqlySx0kcuD+ZYHUMcKKITUPYiKrJIboeZmMmoCw714Zzoenm2bJTj4Vsy2pyHiaRZd9ghZsE6vu7dv+WSDqNZg6bqEs0btYgA/mptmj21+l5cXz/f2h83W0Xw9eDFvTecdFocWzwXTqeLDgA3bs1AjMORF/hQcyoA6D8UwNy1bKRBnjau9qFRQCINqhJavqrmpj+y69WBlvADGKOg3YSNBlJJ6msIBPbjgrCHSvbVRSB/FrHE9G9Qu2rWpA9N0/Tt3BuvIAIBbVrFYiAxhNB7dsOPU8fWyz35WaCpddspf4wJePMJDa1AqLwDxlyFWDQ0EWdJLcVeoqoJykc38NVj4iQK4kBuvETzJm+JvGtQLZNwklZ1GuvSw2JSwPJMYEJQZ4soFEtBryk8soX2EVEieN5PKgGqmpGLnqlYrzcnsxWTFlRNXIVJ+iCMFNh1XZKEK0L7igYrLagPFJGNAEk8PRQLGo96gWf/q8ZcvLs9r68UYp575X73WUevWfue1+efzj8+fMAsRCFBKiSLVxeb6HAbaZ8mfTWnyBxHYFrOEdZMgyoUkkpM5b5nuR8Y8UCsSgQIMBPx/CnS9MWSAMkCQNLLWJ4B1UAQIHuSkHNc5wBuF0Ljw5Eqhm2Ol8sq+QPADOWJ3ppJo0w6VYYdMNjCjoNqug+RI036TIK4CBGHSxtEHMaAEEtQiziCtzFKXFktOWhXHxpZfQNIyaBD/hWsuRs1Ddeejwidrn5ICEUGNOVgzWAgK2uQPYKQGM+GhRkec4KVyNkN4i6/goA9YKE0HOs07tj4R4Dtx0DRxQlr0MoRlM/bV3t9nlQWVIS1FHEN7Tym68YLc1pOcyQCriJNDiXU1sVwid6yYOZCXIzXdwWtvv9EcNM+PL+h0wZNa1jh+BFdPQvAVqfJ7tBFrq08/+WiPzSbWD3uHg/1e9833vv2b3/3O/3TTOT6dfHL++OlF8/MPzj798w9OXjxBmDZhwB2b7LaBbk4AA/CaLT60ERxF1zPCDdiw+ywrV9lMiy4dul7Za5OT8ixuXfYu2gwOt4OjzpK+oMGwcfe1/W+tN120TwWCCq0SNarHwMB9tmrgGB57I7A82/po2KGxgLYpSEyFCMl4WYqCIhBNnMVO5Xb3B+f1M5MAh1kVx1lW1PTCOdeIBZc0a5lxSd/00eE9eixZALO+OmYvjeGQMQqUFD+UokcNxpY8uO5C5UbGSpCLm9In3FYFsDBmNnB5JBCZKJ+iKXAeAOSOwsaFtIbH85VUajX2+YGqZbPNsANjYEzLHoAynav0vNWvrzbzs/XybEJclYflIttencG42mDQ7Nav6u3e+WqwbextG6N5rcs5N0zVc4BNnyZM0qVGzVewpNZg8xE6CiwGtg9oUvGFXk/b22SmDNBnyMf5b7Z7aGCd6QX1xRHTBbe959v1xXICk1noH9vKaFlv2Gfvk2mtiZsAR6fN2qzNNOv1NQuGIJCxC2wUE1FwKycTWlie1MeKWva07+5tu/Ut3Z/kSoWQLm39eRllfSTykS9FjBBfY08sPtF+eispQehfUMYpgL+oBn0c7IeD6lVaJQyHupWFCLnPhnv+OEUAa0RssjEvsojcgE8CNMaBRPvHwyOMPjaXfyIIysTXiMNKKgUSMliPvLISNksY1AGcPgq6+omjS3LGiTH/bDDBeDFIdNtbZrW1ui2aye32Nc42u4Tfv7fPvoXvvv43p9e/e/+gP27QV7iHm824ard7eHV12hqNZC3YsQmQ9pROmGua3HBBPHSQrT2xHZYLTQPPrCZUVWFX4SKapJeWWQlsAJcxEXxTixDjhdFX62C8il6PYWHKOmXcEuS8CmsCRGQLiXNk0GCNOIWEoQvAQpFDO/RPIhFzt4RQpC048eBTTQLDT+DEf4sMmSlJhRlzlmKmgSReyhyPyol+ItMhAajnn+04yLToKzdpjHxKEY2sAj2hvGpqImZg8ZK7PQwISCCiGVNeHpV0AEOIFZEGikRmGcrkpkks/PJZ6xzrD66hk1T8WgAJhhaiAtMX6a8qlcbxi8//9L/6R8PD91pvff/O3YM7g0OW3WEimFgJY7WzRCUfpM6+ahndxmcc0CNCxwhlI7IXV7BttB48oP/maMp++whzObdHz3Znm877/UFnTKHtdxEN5yZfTNaPTj/jG5vepXpoHw5br3XHb9zd/+277z9+993/3f/p/3DGcnSHzJCMfEbcFKNmg7H4JtMG8Esz65RVWgMUgbneLKiqM4Lu5NHN1eL6gtOHWbqKhRp3pmwnxhzTYeOf/vJny9Pp44vnP/v5J3/t195vDPuwSPL404LbxKZtjMIcDNZPriaZYcEuOCobtRY1IkyFIeoO3FceihL1QbSwwDLPBJ4t7SAqpC67Z6G2ODK0kpnVg76CELNa97p7T44fP3z4hu1SxiA5abWx2RuivUgS443AXbZN2WbSFV1FtEBUKzUP+eYChSBOWVMDg0nUiyjgE3OmAvnoUimLrhMv7dTEi2u1GL2jHTfrc4IP+4vUaYbAuAYbFbJPO709i/nZcnmxml2erOg3p9ObvSvccoNSevvgulWb1lqXB1QZjRe9vdeO13sXF1vXuCGksIHi3NwumPjU3l6w3nvTHSM7Kmd6hjRwHC/jJlwrvNgmG580uvYYQXe6rFmqvd3OB73Fa731fSoB9hOct1/MF+yWSFuFkSgO+WBVM8t269eXvcZVpvmeOj2OiYr17eWcaWNLBn9YvocWsq0ls9EZU8Q6sCsrc0Q2iysaVtftIY2hZrvPksgy+IyW4WjDuYxF2nNOEySDMVTKfIxDiPco/0EVlrK/CoJRB+hNQEbW33RE2vqkhsU9EYg9XlnUbhWkKTM9bRClqUVBkwBezA0fGxxbpInsIapYMb2vFHyKDoopQFZTk3+kq2GI74wT3a5zgAuTPUb91qjfHgw7B4PueNRk8WmvzXl3e4iDBR+cP0HHHt2sjJFRr8MWJ+rEt6HM/62+C9CL3SyK5TxsNIpT5SRyqbHBQLCkndYfrxgePUW0E89dM8Qzuql5gjrKFbhDtNUt/1BRajb7etB1PXi1OhFRUBsXMWJ2SKGUgEGUMWM8p1OGvkXLGlsOtDmRHGZwpgpMZ8gPQTCn0YnVKYjMprB84NpQwdsfhf0UB8qA5Z2GOHjBdnClXGv8W64Dd7jHekwPRPMJFdSaiItMuUgCDOs3sEFPbHdIi+WYau+mMBLTiialT4HbdWBiJA+cZE0/AMnEFvUgOeTnnzFUCr8amScIIAl/hKAABAObV1UBwWmL7DcQCaKhL8DFzoc6yIXHpKTWRrfoIcP8UkFiM7t4uqvVnc3qG3/60bNP//wf/uDhg2+/+cYb77zdGN9FzVfT8w36MjoADv4s/gB+G579s9VjulVv779hPWHFA12sIkW3oZHdwOeDbu/k7IWK4Za4LEWm4mAlw2ByeUHDHCsIIkqBzt7ZZjZpzhh13M4+/2qKezdoP7p7i6MlRi8uX5yczjvtoW5amEkbsd0d4EfZCGYPkfb69uHe++++eXjUZ5y31Vo2MUAMqOLRKEH2VFBGFKztekbDcHywv7dfn7xAiW/99u/8xutvHN27xz4T6ElXGaOgDru6Sz6GBHlhrp4en7bpDbGq4aAWNmVcrP2lbQCDAQweFkyS8YcsogDqK4VpwUK+xmK64rCjFvRjYezMYNlXez0+OKLsrdaXb37rB05UWHJ2JiOvG85/dp9XGnDpCsDSodR+ngNSKVI6YjQw6WoSYQheHeVb6iAwUfP4FNmrr3C7scXLU7dw/t3vn62NaILVOEO5dfcWmcLUQZMD7Th2jhLdwEQyVeuqtpxiuJEWx1TCEKTIrpCqrvK+Phr10Pdt7Yq+K04+HR1uOD389HIz3bawp+p6Y9Wpzw7H6/HmjHWAq+3dcXeckQdX97mkg36S2uRw38lptN0mV9c4//XO/sV28/xkWetyPM9mMbv6bHU1WbYv1nuMm8/YWLzZYvIUFE5nV9vNZW9z3uxMt40rbLoWl5Hfa9TAIsqGtFPO0EBWOAbwmxklWAOqsHYPheRs0np7iKXFbHa6w+tWOWWCReHUGhR4zNuUnjD6jo7G7N9NkezOrplTRCcpum5fll45DMBu2N5SAqWPtccwFEV7tej3Gvi3bF/DxFQGqK0WiYPpoWmJYlJPojBQosRIAKwiYH2uGxGiAjTNEaMntevbmlKjRO9Muzka9zlRen/Y3Rt17t4+GO+ximo07PYHA5x71ncMm+wkxNncWiqMg5uhoxiqO1ZHa8W8mDqdgm6WowpBDH16PKvxaBRspJuYG7pDxxbi6XQGjnazoc/2ilVpWwaMIXKAscO+kgTrJHpaHY2RWmfFSGGhTEigmUCguiMtxldEkm5LRcUhhbyQbAsmppaaTzMmu4GHw0iBo6lJEdVKWg0AAYKYAEx7jhTwdmQtQTZ8hPf2XGAXnXHhAka2Q5FgoRFKJlRF1HLs3cwqfRLhhYEJkPkCw8lONGwfUAdrhUMR2uV6ANCOMwgYoCFKMBVvf0kvRVoKPNPUCX6lK5zWRnYq07pIfwo37CbfcI5coETI1g3iADXMb4niyBPFFu8S8Li/7gGEqriLGnUU+LOImG0brCOwuWR40Rj02EWbrvrrFYwa1NgHrTnllNy733h/NX928ckHX3x5vGwdng+eH11O95utB8PxZNtbLpkOBlW4UDSb2aiBQ9nuMzo7WdEgPGLpGlnIK9BErWABuc4mXcb68XX1EnC6pvTtTWYn12cnrG+mp6BLg6zTuDe6dXFBd0uzt1pfTC/nWxclUJ92Z+eD5npySTOb3RqYaQCvbGTDzTQCqYaa19Rirfr/+O/+W/+DX/sRG/yzYSJuqlxxrTJuJPylZ8G9HboMc24mdrwzH5yJag/bs3qPCaHU3PTwbNhUEPk13dSEc08xGDJsU2Obo19//+G/83t/++rypMtWhVR0rDdnwtqK8sI2XVhLFMaSZSVHg92xVZSbi4kJBKLi52x2eLXqcvYMm8oxDel8gWRXdw9WP3z3XrN28v3vvnVwhCw4n3JGcwm1Z2tz3De8X3ZgAwDNDehRj7CUlsU06YABr1VyiwPahSlXG1T0dJmqsGoQ+qZCyq3akmFdxhzYWHJ93WeoudE8YxcRRp73WOyxWQ96+OIT+1ZWE6o2pMk86tr1DHEyHMLRCSyEu56yOUyDpTo02Zi2d8UaRltP9Renq8Z8Pmw/o3x1m6OGhx1T23c5+KPDYQObq8bmnOFZCKCjhhGQPrL//7P138G2Z9d9J3ZyzuHmd8PLoXOjE7rRaKARugECIAASFCloqNEMpfGUa8oliWWXZ8p2OVT5jxmXyyMPRyOOKIpDURIDmBCI1ATQ3ehGh9fh5XDDu/menPM5/nzX79wH0PZ5757w++3fDmuvvfbK20/SFy/+hQRXR7D7g7iTViAq9oztw98bRrKYxYmBGOOn3Glx/qknwsnW+HJonUIZ0KR4Uhxb0S66hk1ySkGPAAH7AouFnpJpHNs+1g6OM0QnGBXPi0IJ32IYdoZKtktBNxYco0PCTUzGbYbkbwH34bAZJriV5NiBCcGq4Csz0uekW2/wsEWmSjA5aedjwzIrFEITwMyzgmESjaYjsYgSThrQTWg9sIYEw+6z0cCpK/gTyoRihiWKqVrUmJpYOiwgh2joi9gjyC2bESdVI2yHCKSKpSOxGMk2Q55YhG+cnhSORIOxGKl+g14WJ3HlONkIEYNDL8mQOWAbA67oqgxYon9UjAhqi1RUTzSFRSW6BoPETVnAUCNofxE+KYWaUJp3eY2wKQ6ZtCrnXeOPhNZo4CJXG8o6Nk8JDPznH03IAKBqhJWimCIQVE/HuMQNqjIXPGEyAxUzBfDoDpIYjfOk9GY0KtkZeio9re0HumVk20QHUWmoNfQaLR62TNYLaWshtJALeB2RaIgE0gnGGKRGMvEDTxMs1DGosqK52CQk8iEkaz8PReS0g03KMbQglYv6EBEFeWauQFQ+xXBrwxNFYigSASTmQ675E88JvOipRgLSCwJajbooCsYnHTwGBXpYmGtaM6DoTSkExPDTghgEiqtJTSO7HD5XAb8iCjQeORR2O6TWY1sj2w+eTiN3owZZm1SboXrPiz4vFw2HASD7TaB3Y7+3P1qMr1TLV6JxfxhbeNcTX227vvXd+Chz4SNnH1079Xon99p6bbvR2r97JVisjhrF8ysrM+dmHv/U47kTa2yNQsdRL+KJjX1h4klpCnshrBw9knxm/kE+X6jdLIQ4HQLKhNmwh+DBDjUu1WtDTrdBicsa7XcG7n4qEYwmQ8SIDXo9sgQ1294q4yEumJXVGZOFjdxUTAfYIPBLtaM3BABJk7IsdAmSa48bXaKiPcHBOCo3Uh0kAzqabWlEImoWfivgibr9cRSZclUQi+CatCDnrEU8GHAVoz7Ebk44cNf2tlnSTKlr3EoGJhn/MJGeI30TV8jLAEo7C5VEFcJTNxwVxcFAMH4oFdSUx4LyonElzBDenwN2Wm401UDIE2L6/O5Bp+sl9Rrp38CDYQ/ddhuuhAWFt8Xy3PKFCxeI89aqEe6wQkyUMxcOBqPdQNgjXT5qLUlglGHAsC9yv1P0mTZhZgutFeOHH4Aqtnt+ggwGvdL+0dr83LDT29srhpPqJEBDWdaV8ppR4GZLw3gIuTxMUa09KTdHzbZMpXgMi5PxjhuNLvGFbne408XJSTwSecoqRw20ziMNnFPhEkEvWV96BBb6sG6zM7nD3e6g3W7JlY6IErxWhsie2uWI0RXhBs2J04C4hUMxjo5zd0befpvsIySqw/vK7874+rkI/dTigat2BSKkydAY2fw7PWCCDkMkC5D0hyQgGPXw5MAWjUOHLO4Rj5tMA8wTmzPj0uEj0FHwddwm93aCFJPuTpBg52gAIcPVa2APoRlOwBwgaXRlC8WzPEUi4iiGEk+j5e9OYn0fmj7NEJsJHQCvCe73TfpEv+CDQAKuYo3IRpISQ2CHJMOCmCdTcy5vSkd9A0dollwjHAkam5+2A+0AIBMaMZ8vk0osnJjJphKJiD+RSELoOeOJE43AIXSJUGrOuIDvAQitLqSQtPtoWGdJv4wmSJ3S5s8grAkqlV8jANJuJWrDBU2MvsC2i9pyXVycngKOQiXooogWUwAtRXsGG+Elcur2nYPbV/aKh61ir/XIgxc/9eyTPokWgrNIvZYYP7RaqE20myqphg7RssRnNhWRQFa1LmuTsDLcUHtcQlUIIYelZf4oqwIi59BTFdcmY5epgAtUwkAoxJ7HsqNhWbdEtC0Gg+XDcmGNqA72P3YSBVzpSVUjCq31o27A3ppyimh3h4tCnQjKoHQx1Rs6YCrwu8k5QGQBYKNK8WV0DFsly0fuLgZB+gggHPODCgAX6W0cMAgJxakxBGgK576A+rjn0XOJqOgXjESMmqTCBhHYk3vNGzvjSpU4i0bQvfXjN7PBZLnccbW8+XMro+ywtXXTd+iqJbOl3Xv5LvjWTFeL6G4by/NLv/2P+9F+pFtxv7fZe3MzEFzc+cF33Z5eqbn14Eqq0Ky6Y3OZJx+4/buvJjY/6Hzm7Ogz/6y+//Z7P/3bqMd3wR9/9qVLj+Wy117/cWO2El34OmNnoaCRIZyvy8g5JwJRFh2BfKJZ/OzmCB6sORlju2QxYpDAD4xm42IKRhHuB8PRXnuE68vbN3fuvnZvaX4un5kJ+Mn5RogaGv5UyLsIHPYO92GIhS1QfiaM/0JPmzitD5hGbywYYxOPxPANIq+9bNfkK/MTtSpuDiUjCc8slADlttwMdFQAjv5gy2DU8eCLw/Rxg3Wg8y4HQyhUv8KuwFKCpvr8iVqtTNByMjPL8kf7A6/AdbEl4ItQSQMTGy4uhl0WbBa7ADSEWOyK/CcBgeY35vUljQuARMOG4iUjfRmSEeqdZrWElp+ACbCUjhcOt2GzfDjkyBdNYiPoRUOG+tQPtoP2UE6tWFCKARgWi2EAQipmK0ZH4wRCtEI57QFJATLtmpyYnd+8t1dr3YzEpcokHTSsnZTHeHuwq+BLRRX+EE64rAFY7E61zg42AbwE0YVQJMNqMhX0lay1POAjKaM7AJlrTEgS6Am24zFXCJ0eWbncQ9J70AYn2XUh5DgA9wf1PnZdBi/eCBt+ZzAKdTpyHzeWM4a2esTRIhgPtDPCWInQAUxoNF7lPjxngQlnDbJPMamEpTCNQ45akLETHY2tZvhtmPMeW6ObE6sJJ2KpkedKHB+iWIe8JJNALEHClSzrrtltBUmlKJa/D9HolphNBCcYS8pzDgbJDFjabNYQNLBpnAqRKMqbjnpQaVWIf+ohIojIEj2NAT8VJZ9Bx9WvpbOpWtNdPIQvCcU5YmfUY3NHmG03y6E44EXVrKP7UB4wt+APKZhIFhhLRTKZeCYVT6cSaRRqvMijDy5KQgIWSMQjPMaGtRbLTPyH9PfYOYLMNVlVTRHBaCHxjv8R884yQEqhEYDA3sfEgRD80K4jFsYhTeJ3wB3QACSCYZeSQcTK/ihkOVjGvVb/zp292xtb5RIqMawjhI0H7h20BigFWP8SIhgScjboarsJ6Os0De22rYQpMHpND0BSUUAVoB+iwppnYRStS4UBolsn1HMtfR6AzIPmlOZ5RsY2zlK2Uuw57BnkTmPG5EKnaCP0AdrtaAAOnxbgGWVYYLawHvMORZFDs2pn4JBp8VBUDX8op3gJKrQEW0EdLCqIknyorFceXNNE+KQRlcYB1xmz9YOZcEAmaTJbXbwZRCvVlPo/hgCxCEFMT5iMKyQ9CvKzcVRBIvYOq4Wbu7Fep1HlQMX18fVbw87IH83NPvrgzLm1G/+3P4zVDr0Lufl//rXRh3eDjUF+Lt8qDra+85OVB5dOPz6/k0k99LUvlP/b/3Y0txb+wtcL//q/jw0rR1f2qq9eXnzpMXSOpR9d7S/PeJ7Md+rvnl47vzOMbHQC3pNfrlz7m8zHzrj/9xeb/+F/GtwujZ4YzTVLnPJ+NuV/5lLKteJuejzR0UL/vd2j8zfzZy/1uvUw3hwejK4QCKAE0qCtwDag38YJgWQMi/PoZS+y7VBIQEZqOMxcOuL1Ra7fuDG3OLv1vfe++7cfJMJYycgsSF1U4/cEyPsaTSCbD1vImGwmkCb+AJ/YT96kT4SNIY80otuw1axEIvBDKKHJDc6cNQlX7CuiDXEQIZvDDgA3s0YXHC4HDKOvzneHiIJLIqtiinAeoAF0JqiYSAwX8ZdKd6rlbRQOoAAOtLAmQli+6l2TShWiutqZDDvUEHdBZiEWgDD9FV0Qpqm4lJpa9dyVa0UQRUjdEbXFxiAa9TqlwiGYqvIUYpOyb2rUFgxXgQM/uSwyKvxUL6x5sFU/+aECukjvgJp6ZT+YEFEOWE/mCFrI1i1eDUaStHTUA9wANnsWqvJobJhSCtowtsxEyptJQKhhl5UVCwmOwG1IJS7XHZIuBhHafLDdnOkhwt2RSQiqhPm10ycaHHaBSDJp97D5RMMABk5B+UwYbyTAETzsKUggOI17cBjCjKc5l5SAeDIu1/ANHmRI/SiFK1odaBW8Vb/R6LQxaYz9nfqATTcRI0IR+iPhmI7WoCQ4j/j9kbhv0FYqEjABZZugIHJB8DvTCSbgYtprdJp84w67ofnn6CQm3GU4CHEwmBBcKsO1G6sOCDXxx+HBA+FRK5YIhmmo1Myk/MmUp93uBAKMik2uv1tq75b6G0f1k0v4akZZKAAaAtNuNqAcqKEiqUBEBw9FIfczs8lMLptIpfBqIjmwQMFcS3aDzmGZMDem6fxBmTlsA68biJlYRXYpsAp2B1YCeVz0nal2kEA3AJVGSXX8N9oOZrFJaEXoGggEUYVOSXpi/mkUXaTUQVBartAFXlDbTqd97cbGxtYRYlyQ4Lpxl7/lTOyJx0+GcBcRloKFQi8ogdaH1hMN25pF8Yk9G6YebbeVMYouxFSjIs+gBM+LnTHyrSbVYdVCT/mubnATqDBN+qGlB1R5Xjs904dOBAIufZTClOU4ZAVh7gQGWQCkSpAOgV+SAvBw1cGsbF1qWWal6UvwhGOVc41GQIsSLUEQkkJiCUPGRELutRt1svJzniXKVCVPlRg4cRE4KQ8VbOy59AxaaSgREyVR0+Npk7kZ0dofqO816js73Xvbvv2Dve+8N4iMVh45UbvWIAPquX/8cuuD2603t0585Tn/Mw/Da7a3D2OZRfdRqVPAsSWUPX1u+K3vp186l/uVr8e++VrlX/x1jOa+8Gh7XArduJn9B+dvld70DZuRE+7z7t76v3/lxFPnULnUNw9mn33WNbN4gCfvsJT6lcc3f+8vHj39YGtvJ1y5u5U+PxdZ8ty6/VTnWqK0uzMKj+Kz1fn5zPx8sTrzVq/5XLPS+cmrufxZTygivgxnu1EX4xJSKNpVcFIglO8pkwJWgWMiqUCNq8JClJnBCDn/2t16jYxsxU6hUIqyOlmSzQaEUOsRDVtnjKtfz1faP+hC3wlF5CQFJklUUMSfpWF2K3CFihWWFzrYLZe3t8Ih6IBLcUoDeacJ40EgmhXiwNvoq3qm/hhS6nld1GqRMYkiwi7uswCAOVIq+3Qylmmi8CQfprh4mofyQDtUGX96B994MwxRlaqMJp0u2JpTu1plusFXHtLqgL6h7+HdxUGe8GjUDW8HXOkEAgTYqeeoX43xEF/4J85My9ka5YJu6Jcq5Ta/rFtO3+znMRunW0YIdJWHKE6L2l3RWGiFKf2X/F+MNABmKYUVmNP3+8eZVBDGnmymEBsuM6wwYcReNyeHIv9hF5TKye3CxAolVVKhUaDX9+JG6mlP0ITUOdyWU+y06pg2AOGrtgdlzi9F5kAxLm9HxAtWJh0CnaQXgl9SxPdwRJ5f0lLWOUFk5CtwZIiHfKoCNziHNRSTMZUjXvTh59jSUb1wMCCbKbRDDJ4HlqCIbg1rE15ZsL/gCBsCihIpJD2cpyHXBdrSWkaHgjujLITopaSkgqwQiDj2xOJJNkPJidQKqnIyUCjB7MXGXQxKwUA/nw5OkBPQYiK5kcIXb6phAO6P2Q2xA/YaiIEAKMxeP4ng3QoFm5vLPvfMozMcvscRKGGEKiaFUEOmkXEo9Tt6AMwutMdkwviEofgaknhYMUCiSZSFvYXBMULLpEpDIlQQMQUpheHMs4P1thD1oHg0obiIu0iozYgoJX1gvLSsjVdsuJQeWsJTjJNt6uHHTj7yyAo9I6GGyKc/glUQ/RDCIF2RTEIfjcen5/pm3QVt2duZ/FoRP+ER0R1SwNCwsFwLWxjMbR5Q9xUHQVWGzKpCcHeQnJvOdqBu8wfAIDQ8jZe3s9opKcnDIryYCIyTUu/Dg9EfjXQsuZb1DoazmtQaS0/KHlY1QBNg2d95il2EtM1I4GpIGh6Whu4TpkDWeFkq+/3NjZ0/+96bhEPMJvNoJBjlxIXLShX3ZJJIlKvtT3/q+WdfeJBIHvS5VIR1mc65O903/+Rv3v+X/+7UqBP3p32nT66GvAfXrhYbtfTiA+nPfzb9W78S++PQ1g/WB5Vm5sJqMtWrfv/V7LmZ7g6AJGXOJHx2ufwXE+8HO94HB7MvfSJ/7ea1b32YfvGXPa1IaxCqJ9f623fTrbnqajyWvpv5WXfnW6/MPZjHmIUCKewLXHxw8bDUWfrolyr//jv9veuTdoX0F4FOYiY8aeIejW9Irz63mr+3mo4985S/ehBu9p7+jefPVDevb9zZ2ds/deYkPAnCUEAWXnwTWZqIYuyIOJloKmWoxO1KcdYo6SVGATmhMYs2GO516qw+NPmHhYaiBLC2cS6LCK5QQHIsriVEIQy6Mt8yT1aj+RszU8wai1P7CvQCLGx1vcWGvMBhJVm38saCi9PuIFIp2qh/NolcAzu0LmyRaGFp+rlPAeaYN2Gdits+oe8SDMFKCJVUdKwZFqEe0zP21arSoPlia5Xrtgj5eVzSKSvQcMm5CkzwNECG7NBjqCxLD+5BQsNAZICFZ8ZbiqsTvKwuumqPGyXXD92x8WkYKkxx67Zu6CXU1YdDDVTY6ZSQ2nkUQ52PJIsQO2zsoD/mXbh0ZaGetFEJoUHAoBCQZzmGn1G5KTcm1k46HY/FY3uHnAZBVl876tXvy89G+zu9PifcDPA0gIqIILAUUesnE3EwhhQieOVgRjwokjYMI/qEaGNt3BN3Qr7QcIc6AANHIC5Cw2E0FK5N4igtXTJ40xvMzpz8GUinkui3SGQdDNRr1UGlN8E7q0Q5HXg0SQQDc3kyS7YPm/AT2F49mVgcc4WSOPo8WBgQ/HERkCUFLyOZnLqNRpttAVYYkURmQc4hZJagf/J9YmfBbQqnpGBWI48R5gUkI2i9kEwI4ZPg6UcYqWOOc+NaMKk02rlUYjYbqFexcLS0pZPudexpdziHwXv65NoXPvHxs+eWTetHK0I8KemAlmZMtkg0yfCJAh+Ob0IpKJv2XjBbah32Pn6bhEC1PG8ZK5hosVyAjunltkYILol1Asg8Zhu4aVpQq4lEMz5kE1YTBJp9E28lLCq1KkeWE8XCAmM188/wBdhg3MEHCMYa+OAWwZ6KgwJ+QTjympDOLIE4MvSCeVTMcOi5LcfxgKQ9ZHukQW9TnBaV0ANUWypLOxSzUfIGmtMhyQaMnD5wydkRtD8I43lxHz6AIWGlRoFgHiLsJFJgIffzOJ6C8HXwbBx9hQXdasEEAhJpA4ToY9NB60YCXGlnUEgiB0Dl2Yt1xA3uRUyC4Eqd9IJtk16KlAFTVMXkO63VdwoN/kOUG2N/vdViHYEqmPdQH2JACkSCP3jj1YsPr2ZiEU6mh4xMoFDoFqL+j/7Kr54ex/p/+j9tFD29f/JPh4Wfzv3ZsPb+1mTj5vxvfmaC83I8nk9N/Pvlg29fvvyTb0evb8792q9EEpFJ+ahb2IvMxQORSfzewd6//aN7yebajVvz0f7W3c0gsrcn2/DGsqFU8KC6/M/+0yu3vpm9fdi+23rjnVdON8Lt2p4/89TwVDdSLk5Ck+Xf/I2db/z1Sts/2HKH5+Zin33pYH0z0OrlI/FeIuQ+m8zsvO9/5co7m+35f/5Pd3cC0TvVo+gH5x58cNRpwvNjrh97odEkSYExg20gX7eM4ATZmUnPsaloyniJu2YnVjyJOxb3cS5Y9bAKzUZ/C1rC3YCMKAwUOwUWoVQFYOj3gDizKg6CuRR+2Athj/miSV+r3q7jH95uwooYNojEgXpG80AtQynRdC6LEWcW9aYrmlG+q2/2Sx/a/rUKNfNsM+xApv8zHKWw8xz7hD2kd/EQx0SakeuS4bx9EZmnACOHi6Er1hlx0PQEYFjjNMp4Kajtj31AnmGgo+BF5eqylgdlnXc1pzZ4s87wRb/tp67zsit6hAepy0bHZYr/wpMO/WeU3CCUFCCL+RH05TxGf6ToYCfA1hpBDefHGjypNQblKtSSTI/+aqeOOI9wW+/1Zzn4E59WjhQe4YobxjDAaGibvRNmGmV9Nh3H5olbIkJGS9aT4LjE1kK6XE0+OysyQ601HgRJ4RKAXJPohGUI/SI+nVQ+HA8LVZMvFNTZRchZMETewrC0IPgaJ8NYEEaFw+TW3aMS2hWSmAb96XwykULRjkv8GPtEIhxNxVPyeDWwRNgAYCVQySNeyC0XzZALZxoJaczYWIFkuIZinYHThYsZulrBkDuTJDkJ6ICRpo7umLgClE9owShTr3YgoKA38incvRJAjrxIBK3mJBaKY0TG65TUG0hIoUgiFAv+2te/dnZlliAGJokJAPJGZpgN4RNzp3chBWwC5N2QCRZVyhJJA/C0dECSgNFvo/R4agkvwSGeM3QCxSiCLSOkQbPBozthoLik0pyCrYSFIAm/lBoEXJF9AKWZ5+Bea04aHpitCCxQEKygbcNHkAiIyaVbIg30mZkhWmSg8655Vv/VHf6Ebtq6ZLzgu3H5/EBMVEIVGdPQNIrGm7JG+GcRVWK4GCS7HyS6jQsVz0CSZWKkgFYNhEHsCGPlHXgzSGbQTrduwyFwxFhvECDJF2p41jEd0cyI9ITEHMA8YIgPyFpINiP4cuQY7YVUzKbGupfWnkz0YlaAiGCMwddZrmpIWwJuwRAuMqdFoz4w+satm64bXnyz0CaxbWDI1VlLQKk5vv7etZs3Np556pLtvbRCCyyvYZ9jtl98ynvlbwLVm4PWna13P7z40MMpf7767Tf6V98PPHL+cLuGD10rPM69eCno6Wxu/vH+eDATD3jK7vJewbV80RXzt9Eb/qMvLl44OXP3b/f+5FvJx05e/Td/ucLBmD3X/PL8Yb8c8zeXPvvpy//P/9epS/n8ygP93YPI9U7nZOng9ih6w138nT/uP7MW+9znjt7/cAanm8LhldJ4tDq/7B/ksVV5ObdysfftP4hsNyKR8xlGV83ODlN79651eg0OJ8A5WqhI2mSsY1KUCZf4AH0FIzZQ8dP6bzgOldNEMeNsDpFocm11ddSp+cZ9zkJEzuUhtl+RO4i9eBhePCs84sXk05JmkVVAhRRiYrjd65FBtlZpoZwMk9ZA08XL1pFROyqkIqOh9Ac8BD15Wp3UJ7fYYJyHnA8V4D8zZc5c6j18jD1HT2AUeOlRClGrVTX96bSsqzRj/7R62eEYDToDHdgpKstS0KO0oX2AK0Y1KMr4uCjuRAuXgTs7hnVOb4KOmqKHttGovPgRvRiIPtQt+/ILbzSmHtuo7NPp3BQWuiEblzoG1yORCm9XVKGmsoRGQM2k9mRt4zUDvcA9ATLMaaUEtJEfY35udiXkDXvjkGOprVgwSrcaabVcaOc58QmeKNifEI4E0eEocJ36gcXZFcIGiy2AtYKpGZd1mFz07migtLwBytiNXxB7EPTKmFkdqkBPIB/k1gAQKGGbqGzcpP1BTxiMxiYJbyxFTHK/U5xgkPTlEylcS7GNZsFGtjVvCDf/fo/c8gIHewkIBCADiK46F9QVTSaATq/eLpYL0C24RkwX7TYOPuQjHrIhZCEY6RCG3Gq5AZcJQTdC7G63OSzHF0+kW4027CPxkzISDIfEVYC/teaEw0TbreHK8vzs8vL2xu4jHzl/Yjlzam0GGkwXhOrGp+toBaG4UTPNlogrVM+mFHyC8uCGi6DSbbfYyNocngIwyc1HvIUUMqx6VGcQMlglQvEktbB6cDVAWyG/InYPuZ3AwaN0AUtoFEIqJplx4LziQfLGUkEy3nsHpVt39uJRsiIzRspLO6SN2nALzoTn4OJkPZV1i8zhyvOCeC8jB5QaFYkIrKipQCQWRPsrnJ6YvSFnYfBTuhK8AOinCD/riuoVqaWR4nYFmhHyoMT8+DZyeeyWKyuNcCgwVFbauIkviNWRVUWiKlI0h2KxJMBHmUaMKE4m+CZrb5G/BWuJk8c4frdDPA4S5ogURhxpN45hbOIURLQSIX9EtYKJ0Ug0mpFxB58VElVoP2YArCdGLwBMhSotCO3EQGcum7s62GEjkzwiy4MLL3EOEEQoxjUX97Sfvf3ho4+dF5lhSWvVy5oQQs+3EBk/tjZ884PZaq357o3Js5dSX/97pR+9WfujP5n95LPFUjHrxmzlfetH75xuuFKXzg5zy82bm2n8+PDTr4dwVpuQ3nm32rryl/tv/3n9qD37W0vueV/vytXQ0Zvhj7wYXk5t/Jvfu/B/+OLK89GbP/7p8//sH+y99+Pyd95LDPoZb7Dt7tz+4z9a+/x/7V5bCT7/9OGbr5QznuTTT0RPfq4ejEaXu7fbqbmPfj196uHYzctPTdwHe9+b/8Rjxcatw56Sts36k2SSYTxyu0ZqBF859UAGJUbJ5CAGh/CR1BVmWhYvvYTe7rbfEyPQdHExUq4Hs+V+0h+odRWtgXoXURHosNNLAeFAXOtDOWComT/WCGDWNqMNw0NUCkhc41wVgqgirCahj9Db+fcLFFEk0S5Sh0i0GrIr1GuIPX1zPuwuLWvKpZOXpIlpcfqQVWGPWyXTurR+jUzrjkqygOHA8CxmsaFdZ09kGKxvA48VNsmAC04P1Ai+ZagrRAi1S9hINGh956Ur+mUvo/7Hd6xh9YYHoePHZfR7+qx9012nFlUGKFUeykYp0BexHhsEzGAAIsJNzDsiIJg+jJPDhQrFu05wdRHltLycmsvn0V/7ITViCDmUiAi+CZGZLX+bYAm8cqtVHE+VTcrX7MdGZAFjooblYrdNhrlePxIKc0ryzHw6m01iDW62m9jcYfxZ9wyE5creCX2hZ7C70ioorY+LM0WxPQ5aw2YP7IOlI4FpSBuMb5yaCcQ9scQoyvqKEoYlRoI4dfYbCV2wisEIwOe0Wdapgvx0jcNA6DW7EP6g8LbNDucRJTD4BgOVajVI/jt3sIo63zsOQ3jgLf0u0gd2cVfzsxtBk+Rai1E8GSOsL1ZvNbUjk5AORzk8TdtkIWE/dD372Mf+/j/6X//4x2+889ObW7d3zixnGrUi1IsjnUAxiQvoZCQGyg4j7yZICECFYOo3Oe6woUPTGQe9FL0i2RCpFzhpl+CrMboGP+5zsFEAi5CNDpqtsSvigRCzz8GnM0Ood8Zka5daQ9Fs4BjLSuEdsFtjbPXI7X3yY6CR7fWXV3uPPizLKqlTQwoolt8fujHgz8QAJmLwYRDkAYNtU7p8kEqaDXzN5QQtTZcoJT5g2sTRuNMglEFOgmweKICwOUEfpbwfumJsGpB+ksTLfgvmKqErewPn2wboLrxHy+UnyR9Zg9HIgdow+8j78OmS3CQtKAK53RhsbzRanYLSaeHKrdPju7EAbqB+fwifQpIWMMm+hMQ+WSxZWeQ+A9uxreOY3Ce2BMUrxjAhG7kk0+ncQizFqTTkIiNQlrEDKtEkcV1SH7FsADBSbGduIRNLhsrlZoiFI7cutmqtOzZlvAfIkvf+lauHpU/m4imuiMAxRHZRTicnuPTRVVc4sbw3W9/2+7sD75MPRL72S60//9P2G7dS3uy444n6fCliob77E3e7m/76b3Qb5/u7e/XL19d+41fHzz042iuW/uffb+0eBFLj8SMPdXYbKy+/uH94E2mVvMLZr/5a940fFd7cm/sHv9R9eqd9ITX/T19MtorBZy6hxJ0pd5axb3F2T7eb+U++dnRu9twnH++R8Mnt6/bqoYuz54KxSu/dZtLlfvxi0tt3d5rdxEryV32f5zh7Ir84MkzuU5KI4Nf4BD4GHYbIRexSzIwoWL/bJ0sr6wUmnX2bmUa6wuCLd+TcfD6Rjm7cKr/53g7eTuNwFCQn5hstHYSTiWWGEae1uwyhnQDdYWLAHcVjkCeACYY1tHPKURahsdRUGXkXnEW+1QWwRpTTeaHTZXpAUN1SUX3aFd710y6xxYhmMBTYJgRuxmf7j/h0rlOMR2lj+qHeqiIjttaatJ5ilvCZVlXI1mIATBYRktMh1cPz9hhuc0ga0kryB56zUqXjul+lfZn+un9VlXGNP1F8p339toHDWNFB9VY9Uxmnc/qi1p3HAIA6g6eUKeFQt6KWMZWc+i9LJMwbw1dmCDgqVuzcbGI+FCLyiGMLkGr8PnI3StYlkg8qQm4BGFmsbIExgYN4PsDDsu2NiTLAMwtCwk3SzoRQYCZCuVQK6uhw/KRqCuEa3Bd3KEWsWAnvoAYhoXXYB1fHUtzSJ7CABU9BhVHhQYDGlehGDrQgatDSp4nvhJPV2bWyPvEIB7BxwgF5bwjmRu+ECyULAJ0x3r6cWoGOimyhCF7sXqyc2YU0+bkZSDYbRa7ZPaiOqm2STYSgfK5JvdOucV4F27SLg/PaZJ0NhwiGmJBFncCrcAhlAnYNZFwcyKQrx3XqhWdf+PKX/h5KiB/96E0Y0rvX9x4+f6I8U8vPZomUkBoEt05ip3HsbHYq9RZeIpZvVbsAXjPE60Mv0Z6RyZDUIjUOmar3miU60ut2mrht4Y+CpGU+miK7wgpGgtQmMx1zrfTUsiizjkAHYTXdRyRi3iULwMCJPmvVghNI3/ho45nmYdfpouiAi0OUoITwBv2ZODEqEFdGFBdoj2eb1gZbMcFx8DAKihBDweZMRl283JAThHSUMRYQFJMzHII8tTJ6HOp7cpt3BzUB4IewhM2BYrK/Qu6lqgevjAmhm9Bw3GsUvKWZZqfQHgQLkMol52NzYjfFbdEa5BnPZBR4MLQK7Ga8ssn7OZaP+qkJvMVfgfN48X5jowH3NDIc5Hvt1ub6VbA3EomncvPp3DIIj+ezdmLCrBgMnZepHPOZh2was4vpw2IJEwCwYWO2hSdpjmVGwUqpduPm9eef+ajsPVpc9I21BHfSiZxIrz3on9y7lsx1vDOdQLaW+y+/6D4ZOjy8cuH5p7c3zo7OLJ750scii/NX/+bH3pXJ6sknD258eP4jD7nPz05SX/VXDlJ1CEZsEB0EVxZQwo17c6v/9/+m63d1YU6eXV392Mpo1Jz4Ymsnzw2GzdECbtynOfnDNfQP40ntyqMREetdXz/w7JODYCzQQ5YjajZLbm+krATgd/uVBX0yjvsS8Ebh3AJKermVo/9FnyufM/hzIZZtAoYLLGmQgEBfr79cr5EJrVJrsq1G4uGU1gqqZVFqeduht/G5vvDSxYPS4UYTdkiwDeMSEfbh4C3uArM1e4mcKrzgO56dTDuxa5AvfPLB5HAg+uD5xa+89Hg2HpTSWp2QgsSIragcHdEkSGYQGmpqdEG35OTC9FBmepVrQmgVsU+hPHLzYIS4i3OR/Mv1pCafl8i61ejUwFfxzHqGy3aPb/xTnexcPCiKw9rkigrqMespoIJ7DuBSxtYoSyPUX5KD0WbrKo+qTqd3fKWP+j69rBtiTXRDxXhTI/puHdAA1WOnuH3R49OfgAvGH26d/ZaUrUwmy0eKVP5LAaSVj9RCql4O/o4kwhm8HQO+TgfHeKLaIJ5wOgSU4YpJpCSVs1DhRgex0NCVwfIWOyriTjuKRUnYEkBMh6PzoSGIRjiCKRkivnzSbEHneBZeDX/YEJmmmF9WfjxObCHBxpDBjrhMmGOZy0fjxiQREUYShEgeemX9YI/yxBD5cWCBkVYWYEynOBMbpSFbNRFS0JFOu0UgOyZKFnEoHEfgRDnAvPZ7GAaGeGnimJ9LhPOQFvT3IpGoid3JDHIKnKtr0EDHM0B90CFPLiGmqO+lrDSeVboad6vdwz9VXkoAV2QSXcMgN3P+xU99hS3v7uYdV7eaX0zt7m2Ng+F6rf+Tv/0eeaAOy6VGo4EvJ/Ze8t0BlpCPJMlgKzpDBb4Iz0nFgVZJjZlrLKkN4WsDvmwiHQuzV6EeQZclTtxETr9lXhfLjVuRQ+BJ7qgjsZDR4K/dBCsyOp2iCwVF5GEXDBAKD86INuFWzxIFo5h/EEgSPgsajFGOBCV55kwuSXziUKDwbpgDVgiUAnmRyYW6W58h+7hRwVLAGYD9cMQy8rLVoFzhMuuPJ0BCVHqsA8iHiIJaYitGoS/Cj/8IxIeoLrqG+MwtQAtF1+7DXXSriEUEPnc5t2VQXl/fgSTBDrCVsws1MOSQhUTpnVA7aUUQEI4xI4RHgi+UTERTyQC0JppIpHD0S8SU/5IErHqFJmFPXNlXsG20i4f3iof7HF2ydOIUqBAORzrtBqPAToz3G/YE4LM8t3Djw40aMe3oZ+SZrkXOzkSHhZyT8d2bN5974jHiUCBMEg2kEgMenf4kEfuN32g0spGXvhw4kQzsH6Y4iPvlTyxxZJEvfOKh/00PX2vqeO7UhWcvdD2TTrOz+r/7T3u5eHXQCMbjvrTyw46RB5HK3YMEujl82FjPyLTsyVr5A7IOaiSthpIiwIATWwk1lCoK52qIBfEQTPOQJMuQfOQzlruoBfv7UAexoUeDKGl/R6WldcFKpZ42CYR6rTLeQgwDjSt7BFNKe8wd/MKoh+00VC4UjvYLbn9ke3sjnIiw1lbz8aW5JOpKEK9Rk56Ap4lq/K1/8MWdyvDGlSvXbx4Q/Us8NxpbpMpGq0Tn8RMJBmMRUvhMPLmEN8H5nPlcPjZKxV1rq/Nzc/NQDJysgKtQjFEbFYfqMTp1CkQy4qj+SYKTTY2dglK6LFQ3iqpNg+9GbHVFwo1QAv/2kBSReOxA3KQuYYlP5D4uYitC/AuEXzuA3dFN1aEG0CIpwzEglIlIZm2kENWuQwjotOxkrKwBJ1ggU3KWEttisKcoSCPcDrFWX7WmeTnkm+Hoh8bLFUZqw+HTRvDzD6NGdo1C9EmP6E3d1lNAgvNylWxL4isri+Uv7kg5/2BPKU2jYAVmMxCJyJaA24+ZF8KBxReskH6io7y+BGR1SdWA3bSDAy92D28iSq4HDuYapxNxNNQkH4IWIA2Aei1Y3QampJAC8zAAMB0yOONBLYZRjpm2afrg3VuuOqH9yJBdDvWlayIDzB0WKIyXpEhiIIQBEkbFLorxsUNOJbbrCWFJQfMpgoOFKMiYQLysyBFBZNLqS2WCYxHUB3MPpIJcCyA80iYtQIREZ1wjDmjjFoEQ1fH4oEIcsSga2ixUTrEASVFGeBZBDOkS+hL4OpyctStiRsSu7Y0+95mXYsk01Gww6r7w4mNvXV73hNyvvvb6D2q1dCK1uDj/wscuLeTTiSwpTQNybmI2WGaoClGv49VPThewW5MmlISkYMoFhppGobNQVsyUpt7OnjZkFuaKP9cgNNmSxuUDZD7aDA4artA6OBooehzFq0yzBLWicYHH9yDsUJ0wSu/MCeWZH1Bl2g8U8VyGyFFYrtt2Q7KZnC9pGt2SHga11EPWiNATbNM3IKVFyJrUEMQ9ilvSgBCY1SIF5AzMF2tTMoeGJwjb47pjsFD9qlbMARuuFjJzxwo1R0AoEaILBN1S+/TkukbGBLZ8NJxkVy+Vi9Vir4gaocfmgKdyMBaPZrP5VHomkcwHwkS0ktfBHwwnR+Qk4fjJRmdr/VYOoXV+0Y8wOI6RzLpFDlRiNnyeeMSTTEVLGwXyVkaVjwyCyL4FUUQUk6B07fKdqxc/mF3IdfuVmFfbPOuM49M8k7T7DHiHLJL0oEOlLwKChuzFDoJBv9dP+Eib4sOZAqaHbCTlrodYfo52BGx434AAMFgyisvWKBMeChaZbQCXwCxmnelFgme71k4L/PCxoKztv1roLDTE7gEcLkSNrVegx8qmbRcyhxwJ3HC4pmYPfB7Bl9okWeXEqxmPKBJmLxAJ3oMWMECxN7tLnNvSapVrBe5fvXabE7+2744/8ZFV0h2D7tAOzEVdMkR4J5mMd24x9pHzH+l23O+8fev0o3MPP/7k+tWN4agcQ2gYoufMLC2eTAWxO9CXMHoE16QxHHCiY7vZHZGsRufvCkPBAf74acihhQA8Ifhck5sD8qD4bobPFSQA/lgQoBwQh5PlGvgEAhvCqxLpILHVoQH1Y+IIyyUVag6hZE2hsVS99qd37R7WA0NHwKr1qT+pNIn6F/svMYBS4KjQntv4FzDnpEoYoL+AMRvjz9wdQcxIesZqF+47CE4DYPm0MVrVdX3YWtOW7nRGHdF1KrV7dFALRZfspfqsl+qpfN1UnPwbQ3I8gCrQEzFoYvnQHotXgTpQBPoLv0jYb4lkQLEIC8lPgg6SnfbRoMKuyaCnYByWN0iH8hnSon0XxBxG48RmwZfAU4wJdVXo7siF0ABrNhi1oqEomn1nMdMDGCelquObODk54JCz0tfH47AP+8Y+Rbgv1sbhwFNBIiC/2mSUiQbmM9loOkrgFp7D/SpPK6QXDQaYTToIOsmo+Y/jBosAnrbdbNIikwuHqggadANsBuSRx/hEGbBEUcXQDCXg51Bk5oi5QUIhYSGKXeoiXIBFxh4pykPVcDJDd9MOEETlQsoH9yD28if+3vkzl4iXHQ0SR7uhV793OxH3PXfhgUtnT0bC4zMrS2iPDBlQ7pskBRbg0EllkGykQvSkTJGIn64xsfpH20ydbth8avp1RfNvtzTf/FTF/ANfuSoNJginIdMxFRNh15Pob3QX/IGOc40WRThUA7/VhoM8tgvRAk/yrFBWVmVqMCrN46qMp8SC8d1QTB8/r4Ih0DBdsEtWhkGJTukR7gqT1Zr+0UOJVuoHkgA/VYy7grTz0vagBSqJQr0CPk7FrBLILhoeVMIoCNVT+EcoEmfOyBOBYBWUiw9cikOgUWAwAJC53kKK7TTblYOD6u31DYj4KlkiE2nyAMLIDPACU5RBp1HpNxu1QDCmoFAlTSGXAWYSECgwm09sbB/CfGCkj5ApC5EQuJPVMhol6gQT5+//0bdXFk68f+vDTz3/9K9/8aPkqqKfxLGwU2OEggmTvYee29rDtUgglI0ebyGEHym8cALglARPOkKKXIUOadxIYT4yASGewZXyKPsxqIt6BtaG7QE4sg7hm4QOpACTVz5zzAKB24qIJ2JjIZaTsfiVYt3taaGoxbQDY0Qp9gYoKOdDmxTK7oBRzmbKqIgO72XG+afdFimb6eCL8WcjyeacFjwYVkkVyCSdnI+XG92Ne8VXXmu//NnHULb6gh64SQgirUJ8R656jYxfzfaNrQ+90bqn2SNCZmVRymavL++O5uFGe6MG1lQsy8MWNAIvvJ6ELCDAHiJLBJyHrQuwhk97CWv0TyiliyAVgxF68ycjofTf7IcMEdTG7wsVBfpd+EvyzbL+oXoCAp5qo2K9fNjsJZLxDNIH4W5iFkEow00Dg1CcChFSDY1NiJUCHWTQWSuyoIGc4LAooZNtR3kA3ZyKB7/NjktQHWoJ8qEFwjFfnQOZwhgQIJ70XVivQThIrp9aLQxJ86EC9FGX9NX5x28hIFe16LS8VEKPTBeRKpGcLQ4B8ypkC/8jch5wMYoPhQcWBIPAEOfOcJjsM0SBBUQSpfjDx9ljZ0Ap8JU5AfgykfZG/jDbGMHubnAD3V8HZwiwgoxo2Oz6Lk6/RFGC/0yIOUOexb2/2XcnXBBWui3WX70UWwgKItH1SOYxUubJeDIChFC8+FDXS6CzcdDhiTviCzx6cnZlLll3jQ5JOAXxtSUEDqMQQOhGTwVtRgAAesTu4/MhLhAPD3RSkH2pnbG5o3nC1VQ8rO187EMopyEZbCPDtlKXIB0BErnbkG8rEiZfH1YNtMbi77CaoCEu9uqoP+LkySA0ZhRaXX78gSc+Se3NZuvalfXC/r2//6svLGTc8QBaJBT91WZ5v3KAvsqXzuVg8wOBGEw5TlHaUxgGfaIz8kFzSDY/mDB7cQU8dabbwCtwcMl2fXgTQKgtQxjPXGvtC3EELQFBOCqznYA4RRbu2n2okRVwiL/gq//6p8fu90CtsYCoGnTWu9DOitCos1E5P9WACjh90dSBbYaLqlmXjfRTyilinVbH6A2zrKp4iC1KfTA0P+6P1aiRUZo1pD1C3/WmYdNZ6CADBGdEmLiCZXHS297ZPThqwpcip6HXw+c4lQxniMTOJOORQGomhTmXRFTVevvgqIqvAoHlIRyGlW2CDUfHNZFojoPo4fCRD8ggCOnKz6R3djaXF/NXb+8dVZp4yPZ7dZROA09yZiGLYMEw2n3QefzTN6/Wxr3D4iF8H6hGlf0Ba5/wxC5jBBNRF6HPoWpNEFBG+0BQKwdpQLjFv4ph49Q7mDHorOyisvMAJkgNNi+bY7Y07Y0ADQda9DE0Ao5iV8SFisWIghR4dQFZF22dWAwaQ5hQyywZL7odudsDSRYuRjXAphR7+PYJpshUyLxgH+wNqjeWNItVUgAlSG7PrqMZET9LfhdELVK8+DmVS3hMaC8+/vOzMzP5bCgWYZnag5oX4RCVtHF+CfPIs089hzdb3MeJQK5yqd8KetMpssIQZQ31YThShfKiSSG00EKt6sv0XR/CD+uKUFD/bBExKvYqW1HsgOAMhqJ2p4fujggek1tItuhPRkk6M6h1cP3A8GTWmn4fprVULe4duE+Fc1k//SS9DdVCMNhEkAYAvuBCL7Q4pFuVcMbIdJIFikGl2KFBmRxZNeggff44eB2ZNPtdNh8c0IAVA0PyDEOEeX7sC0Kn8ChHi6uNg91GiC0xAPYGZJegbWMTk0NHnPVJGa0w7U1QMe3HwEKETcMFYPZFveUyCxKaRgHcIlC46wtZG8jugIUVxp/9H6qPj2YSC1sSeycUtI0di4zAZJ4JYhJrkWmFwbNPQL7R5eJDAp6SqlCnPQB0PMiZLmpkXGgW2DpCbCch0lL7IOWjTrja8TUb4M+QxPesJfAa3QdyEpCAISKqFkLLQKC3iYgbXU86EWK37hD5qx0bPJfWs9IdNg6Oah3k725AqdKCkXgcjRTl2ZrYmfwDd7PGbgInhJ0PJlXxxtAHArJg/nGuJEaY5M9wwdiTiTyQAQHAwR0rjyz4rcXGfoBGFUOTsrrQtvk0CiU54RDZfTipcmaAjlPyxPFCCcUe/6Wv9hNp76BRP9rIxgsPr5KW8x5CE5kDtveb+0etUrnO3oRPust/N5UJLy4uYG+Me9PShKPJlfiB7MlSFVKpccEUGMvBWmRRGA8uGdozrVr+DvZN6aJDD+0qbyqrqbYXn9wV9lotiEHULjoL4RFbzw/Wpcqoev5z1cEkVUNb3LQbxl8bTlprKq8Oqx26qyL0UpWAg6JLasC6p4WverlrX3URFKZha5HaqMfK6tn7LxuNesQL5k9yif3gOqtD+wa/rdPIzlTNmhP7dlCo/fjtK2+9eePwoHpY8/TRdVg4AvkL0NXp4IRYeHkueebs/JnF0MlM9OTJXP7c7M7uBK8wfEbJoo5JRsCnAYybQwWHy2UOHgnNe2o8m+ZsCvfJ2VC1UCOZGPmc4sHwL734lcPW1p27+9UqZ1hUoMC1WuOhC2tnT2ShYvyE80TiZ3MJ4H3NKSWoVmCkWyTFJIWuGFyJV8ScwEWhsmNNiJxDkmFOcGdtyS8MlGDj8HZkdSEUDwqO1w2lSWwl1oSU7IKueHy0MqAz/hnkiwWbNaOoipDAsGXLTuSFTEPXUPmiUmLHQ4DBqiSNFLsChm/aAiGAOC77OukP/xBmCiTVVGgOAI2MKKSug/5RdZKdj2y/rHRIAyYrZCWUqR4iADgDSwbdVo00AtSqwEGCM8hSSBLbeCA0aFXYeMrN+sJMrAG3hX2PVdauQuiZSuZX2KlpF7IIaQ3zuTbFb+7wzfBCxYRvzks3RBi1tuk2GrbA+zeKP37t8ura3Mxsjo14NAnXhoNQuZYK+u5ubJ+/8CCbMB4BsYTYOjzay53AAunsRiTNZM8Oi+ZTH+KltkC6J32+6KwxHdxR0IlysaFFVnyOXiwkj+uoAhNSlS+1PMYJex0nAq7l2RbhL4gxKC7X8tkPr1zhOKYYec84QwvTEo75WpnswEJ7wCJ1MEpb7Q38SepgdLaseKNxwdbWMkualUbn8KES/gBCAyVdgTMe45aPjILcKInYgz0PTSpy42RA0rf8XGx+Js0AMVJwrCuaN5yPUVUBw1gYp8Eh+fRCpACgC6L4HhgdgI7bio4Y4wtZxvEe63ZwlfGFSWBLv90+RAm/P5VNpnOezZ1Ss9uByELrEDhQt7DxwPdQBXjE3BLTOyJ1uKtHxlJMMGHfKJHyVJu+gzpmLQ8aoRZOPocVJCXYJSycUVcPHw/aZ/MkGAdVGqgMASeVDqZNQNLGVQL9przbxxHkM257RpgHgSmGEHCx3yeSB3HY1yQ36rCHhYqejMjYNxlj7VyaQ/noLZfllCnUkrZIwWsYQcgqNOl5cAT1xlxPPffRc+fOsoWV9tb75avpeH9YG9fGnneu7l/b3D0q9St1Aph12nW1AQvSi0fY997+/Kc//uLHnpLYx/lkTJm2fNvAxeSAy/LG0adIq2gr74jkpkUxsgkeGGW2N3rHL9FTe2l18F0FbEnYdV1gPVCVc52f4qaNLkPhaNQpBmYdryJxIdwCGoi2XOW7diEtBVuSVhXAZPrBUqiMZExGIizVytM2oCeoWO3yZ19tv1EPuc5KdhYwo6XvorWUs1tcV2O6r3FwV+X1X1itn9Bl06tSCjskvryN7/34nT//2w/v7dSIMpScGQkvZuJxbLfhJE4kzV4Nb91yp713Y+/y3f3HL6w8uja7vVP85Cf9S/MRkm826iyjESKvRiZ4CCrGSNFOO+Qfp72ttbTH2/KszHq2DyLIw8TGJ2Lpf/0H/6raLrKeGVY6m4jGUmdOz/7Gl5892r534923WbxNrKBQDHQB8FU4x7gT3RjCo9vfYxXqvFCSxEA0MLwrNxXBVsojjkoSn6k0zoVixTlTiygI2ArgK68nSDNmO24gBQM1WYfwGha7DKkGlUB3KDEKSqm5xf/xHA6VaGFEmQRl1h8rgzkDqmJsYWEN+kgWEDZ0SuwvhpYSqZkBLXMK2QSJ2qiUdUeHMHJbTAV0ny2u32rVNM0SJoiIDPS6Laxn8sTyoGwiQSMJItkW+tlEABfZ3YMWBC8/E0JpxVRikKSnYJJmXetYO5Na04uL/HSwybmvH/eRzG5p7niBf+ogzGZ/WCh3/t23fnawW/jqV18ORTLbxWpt4C2Xrrs4/iWXJl9Z2xVrNUpziWiFxIvBSFPxUVCbXfLxwe2y9DQcdLZwlXIHETURaLgqvQ+BJTpFTy6v2qVAfPQO2JMGG+ubN27vLMwt4llWrA+KTflJkgX1/VFlr9Lf2CqmA+7zZ8/+17/92ZVZklgCb7yT0QNih+d8XEtkgtaCuRPy27D4oFUmDP8qptQwlDHyFYoAsMRASNHFsjU2G0YCUiyJBAQZVTtdXFcAjlA8n4nDQcts7RqRlCwR9abI0SOuE7cXPCgRqvHYkZoM2VoZ2VzjKOapoXwAaR691aA9xLudFjCdQTlbZNIPhAmvafdgR8gmzEFj3hi2szDZkLvhVX+7N6zVWpUyIhieKuRplTGLI1ToPSsWnGcHALO0eTAOlDrYIPycZhFutL0FNJajiX8QzGqbHfnhyXBfQ5Qakr8IowU+JHQSl2WPgjSDvn4BcxadkJBBFDKGHZ2NrIzaMr6T0g68MZuHlETVegeHGSQJ7G0casYyS4bQ0DHdhB9bPBkzENGBhaiB2+TlbZBVjzgOT25x+aOf/jWyYf/0zT/xVN/6+KNr6Kl+8tbuH/5oa6/QItFsOh69eP4sDF670z6XiBZKtWQojDvG+nZh90+/++DFtUtrc5zLq3MItLpscxdx5E8XjOkC6VkZSIGsAuQ4I7Hia3RWjLztbaWwI2ipgycsbIYNupirnK0EioCpRrftm7N8xaqzRuV6Kps8d5hjWz0i35QxnNOTthh5Y3ZYUhQUBvIwAOYBEWRhHvwMzULUhWpSosF2ULNscaqAPw1L68MIiQbpkBTuicvRmrdCLF3hBPfVBatf7A5P0YoUPeost6AmUE32eJ/nyvVb/+oPfvT+rb0eh/5wbEJwNJvP4H0bC4LVsROra9FoinARmA/0cdu72zfv7N+4VR67Utupye6fvfPlLz2eSWQ5IKTRbEZ1kJxObpEEjLoEnfEQrxzFqO8XvbvlbN2f8oa74cjGQbFUb9brlZrYK1h0Ti4Kx/Pp2U6/Xtyv3V2ve93h9a3N2Ww+vrAYDmfQOKF2drljfY7DEy8v74WJv0cECwQUKxhzKIICH8IAaVIEFC21TqhCZsJdAK4FEi5hgHmHT0ONAw8OIguimG05J0NAxW7G6hGzpt/w70wn/CBmXtg9zTHLnOvI86jFBWAmSBjA5MATQnxphoHH2NHhtsQDiO3lPzPDkhWvAu9PFbb3g56w99zA7UI8gKZOmCBo0zmMbiKgCu3GRNdGpEE1giGbcL8Jp7ZQZcCFrBCPxExZhO+H3EywVUNdqcmQX9u+4aNwgmvqsnYi/bEeROvpvCgjZA/cADd5CX9gu1H63r1+u7C3r/UbIFEzuo5BcOi6s7E1KdTW5mY5OGKn2Nm9d+g5lU0nyMyRT+dc5eIm0GyMY2kkGzQznFnuDYdjKPY69SYShKgojUP7xcHK7xnXaJCYF8YLacmKR6X3P9jY2q+TrWYuG+HIhAceemB+NtnYK3TrM53xXj3NuSyu3YO90GAZXxOUlPB9lllEiWSApLFQYAWQYvqEHzZ3jFryrpCFQQJ4mGrNoJNUDjFO1lzYI7z/NL9ma2TO0YMkkinUN+IuCaWMhL2pZBLPSFzySf0Gx+0d1TFaiCfgg8Y5Cwiw4z4h2ZC2sB6TUwQ/CtFO8lc3UC26cHDzku6NNHG43AX9UVCNPqH5wRMK/VovOK41en5vC1VHgvR61IvIgCDEoY4KbBWLwpxK16FPsfDUAGkjpxo+MkEy0XJoZTSYmnhXZmOXVjLsGmQjJcZEkhIxA2IykGkw+eKt35MAGouQswpjmKuOhsWT4ogytgWkhxZVktiFBRZAnypZH6DCnskHh00Hy98woNMrRvgMAl9WGPIe3k8igLK5YaFGF9HPJ4MJnxdH/p4/+tynvxZL5F79wXfC7RsvffLU+t3a//gXb7/9wcHYF1hMJc+sLcXSqWZ7Eg2GMokZOVG6wo0Kpy4PMpzPOOhdv/xOYyd8/sL5lRMn3YSk4pYLSROKC4+ExCK3oLR4f6aw3u4UCK7rdfGCSmVm0wmS77H4xaiD6sgXdza2yzXojieTTCwtzCUTCeGNQVe0FzLq8Tfb3Ttk+dw9YF9EiTY3P3Pm5AqpL1DxgcasbTUMHzfoFyv1/f0CEbccTgCLgz6hVm01uigmvBdPz2AepV2j2YiEwA+8QoMN6w13N7px6w6qs4vnVoldM45aBRmTVq72KkaJcQ1XJxF+1gx7s9BOrBUhcBjoKMkKMNYHGGjVGzz0RSvcth74YvDF9aMfv/cvf++729UBJqdsNIJG4vSpXCiRPCwOG8XhOB8alzq+0hiEB8eJZzw5e2Ymu3br1q3r6+uJzOrV/W7vP/70Ky89n8rPo89FrQgC3Ns7PDyqVZp9slVWBmCjp1BpFRokAx2Sz+DS3PxvPvHon//Vt9ev77E+RXAQq7EH+welygGzdVgfFwOeX/mlz6fxIeYqh0qxVuC9xdi0CTH0ygfHyBfEi9MIRNOMArNcNVYGa/p21rrInNBTa50/yW2QdS1siYX6Cr6AoX2WAnBEXQBGQzxdPvJXsa+A/DAz6JVMvFJtvFC9yGmVZqAr/BbGmUmTSqmD/hipt7J6RLYGNcmEiH2kBJMmYq8KhKxQIA1ISIbeABHGNa5WWrv7VaQfHLYzqXAy7b799tFbVw57KMZDk+jEV6l1j0ijEvL/b//hijcU7jXd7LJqX1wgLI7QS3ZxOqTxaKMy0DgIIUxQUXXWeigEoShAopy6SAx9o1kZo5utFlg1tUb73q31EwtLM/Hkw2dOL41uj5aIFg+tzIdDy+f+8i/+dmd9/3OfOjufIg8lue+gMoSe+QZEf3jiZJjEPoOGwyc8xYCHBo4+ifSrUbFujF2NipgQ7tNuF0rVw3prv9koXLsexxYyaey0y0lYk3gkHpx79rm1C8WZjTsHw2Z7UGoVPZ70bMrC7kOaFpaSZD2gblMPLFgsmgXtscZowbgzcYIL5eAJLBZTI4d9UD9gFaaLmZkV6PDKxNke12jJGKEAOT5hAqpBTy+RYACoJnGfR3AZyD/J4yPxgKDONIJNyIJsDKRLRBwhNS6O/Khcwv5EWOnpy7Loc+qbNxGPsxiwB2EPED8EK8rJRW3UhzhL9tsTckRjf+0m4oxtTMZP3NU9oxDOj2jfQGbiiEUKQBbWtUYBJIOkdZhLBZfmPelwdyblKpX3KiO5KQvZ0EHhjR8IImtBeBg1GN5A1dJlK4JqoUgKMghifV0j3O3xQsfDl2GSk1qxpaT64Ttp6gAtrAvbJS6DKOn8sSBHJEiUxeHOWDGgA+uC/p5YFTwaWs0mCtVMNDZ/5vknzz5098oPo6Prn3/x7PtvvPt//saV9/dGyVByOR27sDZPaC1MTTKZ4KjTSqXRGg4OCpWlmUwEbxGszRyF5g0XiqPau6Qgd1944DwSJEscdBIyaZnxrpVoPRz87Ke3X33jyn6pCcGA6Vg6sfyPfv3FtYUclkhcwdlVX/3pe6+8egWPRcBIsOv8icxXP/+pc0tLAEasJMPw+D68duvP/vxHN+/cI7oDwgVTiUvVFz/79Jc++zznPLKAtL7Brwnbdv3P/uqVy9c2SOy+uEB2yUCzQmoPTlCNZTPh+Ww4vpCW7xqTJdEDxBxBHFu9xgcfbP30Z9dv3d6Gm/ro47Xz52fXlrNw5VQNykIwQGmQuHBUvHzl1kGxqhQh+PyNJ+UqfoQdvIoff+jBZ595IEyUMCBgbxORF07bErPVAVjYMdjm28P/8N2f/oc/+1mz7Q5lyBTly+fT506fgUXe3y56w8mFpVw6n4EEp/G/zcfw5qseFKNhbyYanJ/NReKh19/58MGHLu0flV955fXnX3xmfuX0v/nWOzcPmttb1Zn8bAi7WDTl5aSGmOeRBc5+6CVjgbn4fHyMOumw+Vj+j9d3cMrhQG1tA/iudJBHJ9F0ttYqbm9tbd9cZx35FRPFctVBn6SpGPvRgJKGV/Yntm1GB8eGJhT6ARgZpeZLtBq6yn+oGm51Ii7GWUMV8FOEMmimtP4FIzHIKGKlY4Fsw9ozLzIkNKGFOvtERSzPGaAXiRA14KptAMCT7YtNhc2ZbtgNGgbn9C5o08YU9DTKtoLpWGwaUg9yAuwUPBgMKPe0E1G59gDSOnkDLKfDQgkqdefe/vJS5umFlRt3W29dLfexdKKMQgUdDAzCHOcS4Ci/VtfdaIxI1oL8Qm1ocVGqEMYXj+O/oa2AMWok1C+mgS/8Bq35zTV7F71ETQC2OMRrWKsfVEolkVDqIw/pYPRnf/3N5aW5vWb93IXl7v5WxBPutnrJVCqyW4X2kK6LtY7Ph5cjnuA+OYMcsoDw4k9wTpU5n0YZmgMpwV+w4U9KFZATug/AwG1CmlrNbqnWJPQIWYYc+MxGNOg53KwfjMbvtw5crv3M+5schlZuj07Mxz/Ynrjv1B75SD8STjDbOBXLT0cyBrC0/5o+iQGAnZbsplz6aBxcIZwAAMDdCADa5umGzZlgZbOB54m8y+gt0jIpBdAq4p7UxtNhEOTAV5MdaJI8axytpe1ETPEgFFBMDipxFF+Mxx8k6pUeuN2tYcxDVoKRjEkcHxEakv0z6oqyGbISGsQOcaCKDJ5RcI9cumElVhi0EKgExRCj6PSr+F7OpeK49Fe6/bZr1CJkF+KMuydcPdJEf0L28LlscCWfGQ6aChkII6Y1797eGMI9RHAHjZOLDi8gDnyRKzQu9zJT4WqB0WzYFh3F/Ksl0yVBdL8XiYTisSRMSjQRwZv/3uYhvrraq3HJxYcIgUKMPzog4RqeWxKqOYAYERXfJIIDmx3sU/V2m2OTSXAFC5BfuPjipz9fL+94WtsvPP/wD9++/t//L9duNF2xSHwm4n70zPzJEwuuaGx9o0CauNRM5tp7NyMz+c/+8lOF9c12qyrOpEGW9TEeVr3m+N0bd1rByVMPnIbtQJOI3Kx1qnWtRQiG3drY++vvv1Woduw4XyKoh/3bm3tbO+dWZlF1g3s793Y/+HC9zKmq8nMjzdmweXX7ndR75762ADvDoNgEdg6Kv/sH39zcOiKISZyV1q4PtfjW7c3+xx7HZV2SDquLSZ70C+XmezcONo+IM+3f2a1CA5TjCh9nXyfgiXRJm+4CnkidWgFkK3r9Z1dev7yxvrNXLDTNQOartA43dg/m30j91t9/+UFSDNCcyTesEKB6a6Pwr//Djwr1JnpI5Gd6A2+DXy5S1vdeufZPB8MvvPiwMkCoATHILC3ERPQecjv2kkdkWGp0/4c/fPWvfvA+9SlfbYicJQtLC4vlQnl3+3D11KnZ5RPko0KcbNRqnmF34UQ6k8xu3tnoj4K5CHme3S898fHe4eC99b35mUSqPX73raufSWUvrs65Bs1fe/xjyWSYBECYkIY404xxYOgGPTFUwyRmwhqWCx9cmh3/0XhMhlikWrg+DFGIMSJKg9ZcYra0M+p7lzveQjyGVZGp1OG6HFeKGx5aMlulmFJZsOwGkBKWlvwxbL2Lrkny014pSksx8IHRi0wzwQIHYKFOkQCxinxSknNzBVyWsqMV4CqkUI+ASGIoRDb5oBqoO7/AcWo1/l03uastncvGdbOIKG3PiPJjq4YtBz3HJNUg+wrSkrRM5reKuEyPHLqrZ+g8+xq+Eu7hRx67uF0sky8L02oQfRd3xn5iuSLuIecgJZcX6pVSKtCv1vqlOqHcOh9D+mtsHho30oRLyWqpUfsdxGPaJRrWxqcBaUS8a5e0mxKS5BUjgzIAhgKgauM08I7P/cbNg8v3SjArP/zxdXIfpiPB2SRi7/bpM4PDCkJinuB/AsWpuc15A6gKXLEA7H9vEA5y3hhDDfd9fs7/wM4B4VUEj5gZAOboXQVKEZXeoN2BK27DTAMZasPVETsjEFPX3GSl5ShPXFl6rmh4e7ccD/VfeGwlF4xAbLsYHIm9oWKFklOhbargPMAQkyH6z3fAK2UX2ztvBErRBJ5r4Do+i4IMKxnKBuVQ0AQlyLilvCyEwSINEtSBuycuKBBc4q6w8Aq14MH7hAGrs0CZpPndgC8RQd+CKzJa8h7piskCR64YgrTafc4KxlIBtg9goxbmiD2JdDquUk1xrMwEpztAdhE08arESQwvH+09bKjsPTLBDuL4/OKUFuhFApy4jPSMGZ2z5nHAInUQ4Sg4gWIrm/TYomAT3GjQvOX9oZ9s/KwnklMIKZSPAL8GyARgkv+cGDH22hEnyUsy4sxALGwk/OERDF5eTm0ktS3bVWppyd9sdgbkq6ZniicGuF66KrM4MAaubAkDIhjI3QAUwSuiZ9BdEfLuQ+7xp2KPfeqj41GtVNi6cGltc7P4r7/xk9LQPZOJoo17+Pza849fyOVnv/2jt+7e3b3w8MWTq/iaLPVC0eeffrJ7dnNv587WnTvt5uDwqHJYKbMXBiIBtNjn52PordFTsVfLk0BsheLE8F+/fmUTh0bQC+LO9LLS+v12oVzFyN7BQD9x7WwdFopVQt7Yulk/+pt4S0iXcL8B3BOFhndvrNdLdY5lsBWqxQKs+hOPzsHrdVyeFMuGuaMkCHRUrJSrNTTJolViSIR4pPfCI4bAH/UNTlAsPSyFF0+nb//wwyu31gfCb4kbzIP+4ELvHezslx96QEGzQmbIEZ3HJF5tkjyKuCVF2TAmqxCvE6gOx/K8f/vg8y8+BvoKG0FJ+s+D6gWaE40P+fr//W++9+O3N1iG+PInUqEF3DvS6bu31wul4uOPPfPoYx/94Mp75OYvuybNepO8197Bxd2NbZgLZDkUNgcHh2X34SdeeLr17tsfbq5n00v5Tu/a1fcffvIjudRsOp4C28UU4wVCGqNxGOcChM5yqchpQkNfLRSsZdN5DnqDOYhG8HaTAVBUGge51igTTzZLw+17+7HFot+TYUFD0HSQGMyKrCdAkJAalAzCWGgoUh1kRMtaQp+oMtRLFNlqRJlmcGD4U7pti9yIH+1RbErFNUv8B00MzqJMgjj7gGqzyvShL0ZFnEvQUk26wMzs2/xLjJiSV/GN3KTAQbnzB995E8H64UtnnriAtpzg7lhjSLY7TjyD84R0Mee8xBEzS/AXrVb3e6+9CxoqWxLn52YyA+8BXAQAmzR6TU6WvbOXjQbbVbwRw9gOYVXwUxKXC2TgLhEFyEIexGtSRB7YgPziiuiwgUBvfLNBTXvJmByGgQcgzC5sjKSVHM9nE+UaB0AStcCJFu6YDn0a1FlrreHCTJLcH+EIno3u994rnUjToyheAwFyDA86QVLoE7ZBS14O/wnEonHs2tXCPa1FrBwCjnyowE6NWnBnC4DqyNsWckIcX1NZaIZCXElbUnYyDE9HCQGIDukW6/65qMef7XlTHGiO55ZmjQKEsUj9JcadC9TLMIVjmmtbjzZwWxUEq2K1JkW2FHgImHSJLrBZw+MOOk0Yd4iMLuP4haOmvOwlXVKhHxJLmBbBg3SxzQFEKL0gmkoAiqcWUp633uqj9sVjkqeSUVSoWIfYEYVbiHkc60MiL/Gro16a88t1YjlMJRsgxirSZOInSYQ7h/OOI5EEc0qwO2MMelIIa2iKsRQT9YIdJRUlxjLYIAS478GzgghLqLYvmGjiQkpYMfoajyufjszPLbeI5/TjahSkq8wl9JEmeh2UbhwuQPT7kATV0HBERqmtOVGAkP5ABHaP/JedbqvT6IT8iTxH9Y73x6EQ0mW92S41cM+RBp4oSFy1gSlbN/ZtAApvKsxjnJLsPKFUrO0azM3Mz2YXMfXlMBZ7/d/83psHtZEvGsbp7cTS7KeefPDBU+f++Fs/+MlrH5w7//ALT36q0awTboGOz9frnFhcWF3JpiK+V37ys04wQgRDs1HOhkd4Fx3dvZWbyeKZpLVnWO0Il5zTuX1Y46BiZGo6I22cMULQfe2C41Gz1tw5KB3Vh21Wnfh/Wy4scgz46MuCEbyiCH5iUZKFqYpvu5YPLwbF/I8LdXb0HkQKvOEhMBBKsFvk4CvpO2V+4gO6RgoQE8Upw34K+8/mwsIAI0kGW2GVyCypJQCzCebadqVcVzSCPwtqPfBJ1EHKcFcV/3wRHFBWBAMEl/ABHil5nIc1SNdhIZ36ZROjKG/EfEzGO8X6v/uPb7zy5h514v2VSyfn87mF+ROF4mG92Vw8sYIM/t477xZrR2dOn+Vf4fAokYzifXvz+o2Z+RytbG5sIpe3Jt28p/eR8ycjPh9qsdnQfHR7f+VcMRJZUpYSvOPhGEhriITYcREGWTg6qlbLJ2aji8nUsLNCYp6LZ696otU+imwSFhLlruw3AGRcb+xzMMCHN252yjXsa3Bl2bQPrhFSgN2arZDEHBixRaJYg8SIYj8QUVNgETwUixHyJLUaWK7YRv4LA5kZ+Z8oXzYSg8pDHICdoKQXc2Xo4VaqHLvGE+CEyJdIiFEW0XL+UdheoII9yQ/Zn/hHWXVMP3iQl4ivLxB65+bVt24fhjjPrBt55PRcIpv4nT/6/l6lSjD1r3/xmeWZBE2wHoW8PI+J3jMobhfCmezhQTMfD1RznMuO8lk8aJRjrt3Y56N1VMr+cfPoMDGzBG2jBnoHq0hftIT9eEWCDkZmuekI9dNuaTDqmy2GaTc1GA3WYRZ8+NK467E47iLux09l+rXeXgVfbvHWHekVCW7lVKhQuV4nWczyQobIpdXlFY4f77W7sWBwUO9evbw9RHMeTKNJnlvILS0m0xmY1SjCqiAvaAEsQcqWnDShtkmzX9N/fFvc6TB5w/DaxScIVcSYc89ZYFA1dn9UGTQdCo4X5tM40JMPloUpFBcM9Ea9mjNn3tQYL9seaI+LNjcaveQivEzBVHzoQ2i/QRTIQLHeqhYb9fLRuVMzKGxQqFFUB2uxCslsrP5LC6A8cOM2Ls+kNNBMB5SHj8AuNg2WOakJJ0d13DPJQsPWhbM8KeMlh7DpJFHhDEeVYgsNDaaFia/HvCZmkujvqs2+n/NtSeY7cBMfy9qG4guh8QvB3cyfiIfCrU6VI8KgYMQESgbg8NCgZ2E2GcS+7PfN5HGRQi3VYo9krbIT+kKjUMLXrOIrLbIvPRUd5cwpNIUT2EZSfI3JQwf1RzQB39kLPYgtkCrK42Ib8qcCCRdHHkMM+zU0PWBWfhbzJuPxFjBVM3kE39MRUI/8pMS2KFSI9YkUAOcL/MMYnLsN9wOLj8RwM3X38jOJrY29m7f2sQpxMgiG/Ccura0s5v/gmz/89hvvnv/I4//Ff/XbvUYrORrEE+5INIDoz3jxhXjo4WfdqZM/uHL74NZ6vYl5qrmSju9Vemc46FwqAplBmGRmh5EjKhZItEW8IngNIRQeQDVhKPBUl3tWvzMqV5hSpfaA+2HJCzcQARBcmXOxBaQAQQok+XGE0xhAAOq3hS9E4qBmXF+xtUOXoduMF1perreVcdr4EeGdSksckiMJBvRAGJnPiycWrKqcwBQsIVyclnQQV/gF34eKm9HgVA6ZExKj53J7K2wvGpxsWFwyasSaFFqTGno2ITMSGVa1wNRV5oTtgWULs9j+7k/effPyOksNjiyRiKeTqfn5fKvdPDwqJJNpKOnh4UEmN4nHU0889ZH5+dnJuTOZXDqXJ71DkjQPG5ubJI2D0rLTFqr1paUsmaU/vLt1q0DYV6dVLMZmUw2yRiHFcsBbt1ZvNtiLEoHRhQX/iacX3QNOSqrWq1i90osnlg6boaXFhfcufwCrhKcxpiZkXNiawsGt1lutxlymfHS91dr8tZcupLKwR/5GGaUj68tCZuDMx15QF6dIcmkCX7SPrCnmFn2BaL3co9maof7S6ytRK/Dij5u4hZKNjm1YKUTEJgJIw3UpkoAoUOWTKeFtKpDxRWSEC6ARq5hfDpoxBeyuKqpJpC6+A3X91IzRg1G/9/Tjp77/+s2FmZm5HJl3h/+Xf/Efb272E5FMMoKeIYKCwiw8tntowrD4tWuTcaU+2G9ULgVykWjY1++cn4vPzeawhaZSrKFAs1rdr9Wq1e1gOuYLx6L42uAcJXmCBBvs7j78K1mOWgjqDx1jLNZD/dI1PjWI6TsYzLi0U4CmkficsksTdOtzn1sc+Hr5m1vNKsnOXK5ih9NlhqkM+YhZ9+P9Ur3vVUxRJKKUYZvb+5t398aoaDhvAsWF/yAeSayWG0HXjJTEuBBphQJwuqC1aAtSXWHt8AZS4/vAPVzUG6iAcRIn1RWHdXh8mThplgBVaCYeb7ldxb3qmdP5mYU4PiHEqZCPzxkn02tGdc2IWCMa0A3NikatH3zaN73RC3EFPbIMRNDpQyk4HiNULzfI/HR40FlZApZQQEgmRDYUZoshLwqSivDI0ja0ONxKqkUpgUFM2H94fFRe5EKA7rBnISox5moH1OzGQhN3HHtomGSWDIaNhZvsANq7FCbGEnCTcQsTEaewoCGQYh3/Gth1NO5COnGOaPL9EyLUiS9D3YSrAsZnnPShxu5MWunZ2HrwXkAPD+PNeQAkZGBTcxNNaSpT4hcgCexPsELABmoOm4mFGZyH2gtK4C55VWhKDNeAbKBsPWSlQ6dbrzUIOCCrGBEL5BTyBVA3aYq67BxxNjhOc2coMoQCHfYYUSJXJBZNZj1pQgL80cGjJxca3VI87qaGq7fQvLfRiGF0jieSi9m5Ny9f//EHdwPJE5988TOT6mahsB8Kz2YTaJbBDCCMHo0Y4MG5kyuebPJ3P3gfBj8Qd1d6Iy8eplKbspy1GhmbVqDHU64oIagFoIAN7O5gHsIlCi6UYDCVOsyg2uSEKmg3NETch+EJmypOvwyCOtQwUAnhZ4zFn2UCEkkK5OVRHg3i8IRhFAPdBM1qneh/oCguRBhGTwwJQQbEDjZGVEt8EOWKw9BAHJW2XPZ5uicqLmSls5KOhWUiZTAgaJ0wMrGLDBvSaLE62ch4ab7oCk2xN3A1nU7ZWkcYFa5DqWlcMvRoeG398Ps/vt5EDeN2pyKRdCS6NJOjqTvr+B25s9lcq9XMzeQYxcsvv/TIow91yGXV7gAHWI+Z3Gwum1xcPvH2T98cxAf5XPq1198jOGj1ROKBk/kPbm+tptY2NmvPLCkEhI110qkuhkdn5yJ4A+M+h+NzdW/zqFr52Xs73/7Bxjic2Kz2M7HsP/zcZ36v7jrETaJ9NGq3ID7gE2fFu0bFre2j23vkBYn/4Tc3Hrw0uzRLckBIDGozTidAlQkfQwQtegVvlDhShaUIKSGCgMEoquwBEBu2XaWpETTYA4AF1+DXEPdJhYJDJ+kYwJAOMNcezcxpXbCri9hRlsPThSlWg2i9hZtRIXuKRASqJDIHpSO7BnMI9rDNKDuhJoX5kkYImjQKRFzhZGpuv1xLZ5ZmZxe3KzvhyOizz5+ZyeCdCu1j6RlpEtLgVRao+NLlYjmeQLVHloHw+VMLsUDkwsMrnl4dgZJInXbCUzuKv75e+cLpzNwM+fHGiFFEAsGlMwShrogsiMN/DZy+OLjIFQFDzdmnkJMy9lvd0CZH1idUNkgdKB2LhR1fspddqlUPUL125rzjjqsd83EMUSsdTbm9yZsHXdxDU3lOlm2nZlP+9d1ardPo42dI0gYXeSFdO56zC7HZOQhb3dqkRftn64LGhfbqEul9fMlk5PTJhXgytV+oE3VAktQWnuCYj4Y9kUBvDGn6sLR/fjX94lMXSbHGKFkmoLF6rjcbqAlt/BTuT0enJmyoGqwa1LCZXwGJ9QrFgx9G3nCPyGg0bpTrWEFRJcmXFdqHbn42l6qjLWkiGMI9y6sYVIOlI9ca9bAZomZA7uQO2AAFwrciEvEVScczRiclh2VWM1IpK5DcoOHwJB3I9Cc+JAYRG78P1bpECoeng0ZAhGDmFKkLx0Y3MVSIspG9B28/VC9dNhykkQHh8uitJkhCYKQfKQamHpEErTaeqhxFiHKHJB2o1fD09PW9UWAyiMeIOCTrPTRlgLQYJhkdoZW0T+RfCO4Qd6soB9ATgU0+Ogidt15Ff8fpTjCmLDLK+wLeHiFvyKPsXr1RDTY2zemSBOQFEEQSmeTM7Gw4ls/mV86ffiifTX//Rz+o1K/5coHxfiUejeE39MG1e7C+QJGtiFOtoUHf/9kVLNuL+XwuAr1rEGJy6sxSPphqtOu9Afn1NG9QMlib7/7pNwr3tmD9cDctNVxzaR5H68RSFzaA8XwAugLOMWhQWdWGX0J5M/yFwyRelbloiJykVF84xsAogkRCQ7Z2Zty+gln0hJsKZRaVNh2x7ReGXewyKolDIARAiEQKkDYeeZou666Qjip5QdxG0QCHHaMc00YuYUwPBdB5an+Tc6FT1jCY8vCwSkJH3CM4DgZA2ABbr1FvMkSN0mqWTYvxyukMr9lgNpWiGqqA+1MX+CaGZXjQnRBmUSngKOIlj1skFE0S2hsM3ds/JOVkIBTCs+LUyklw8PkXXvjoM0/QAJ5nM3NzHP8CAYKa4FYfS0RPrJ344z/8U4jqxbPnG+XGzHLuuacfu3p3d3O/vzjjfUhqZ/hv18wyqUBYtvXKfqdeHx6VOM8FyuU/KoTPLp0s9/tX1+/6u+R0BZNcH7xzO53yzszEWcYSxrz9WLj99AMPZJILTz/xZCia0uL0eZqTUTwVw+2J/QSkw8Yimxscn+QyCO6U32MbB6zMKUAC7swPgOKXsyMKcuM4Wzl2PW+Y9S+Nu9YVSIMXAAURtGUylEpC6SknWKrZLUbk6hehoWJWP/CmNbz7wAKSkQsr0DEyg8ICcFUEQKZ3mC6aHXUGZSyzvUa1VdirFba//OLF2Rxo1Xvu0VkZquSRrflUH1QBmQZJizOKuUbL+exDZ05zmDNelHDUh/uNtNvfrlX7ZF6K+h5/5IFUPJNDrRuFdMlhRtNtoixSjUP56BGcDJjCCA2/jrFMRWnQwU7RFwFMVJEXZRzKw4nWZPmIc6rQ6cVI4iRTG2kMA7DAGKJBCCB/Y+Pg6Kj/0bOLZzLpySiSzfpc5yo7vmG1i+FQJ3AApqifRO64HqKOg3YyM2CzWqMCtc93p1U6SeIHQqICyXwucf70HP7WWHc7chTgW5+cOt967eY7m3tkt1w+N8c8sOtF/GE2cSE6FJZ6mRpnFHzXS0069Wt8xwNmzlWKPtg3EwaZBQCIpY6Wumvn1ibuo1G/GUyR25sZdvnmWAyk8dw/qFXL2OhJ1IfSqNsnLg4BVnwaR2aAXtBZ1DTkg02nyd4TCXlbREsRXo4TJ2OHYYfsgn9wEHQGhlnJ5DlfTKgvesB9xfqGQUTBjtQiaHBY+4y21+7jaY0FkDAuhY5gYgMbWdEmAMPJyp5CwggyVqDlH5BSlFMkFbEsuk7K8hE+1bAzXvbYdhejNZjBPoPxQQExffL34LM5HONKjswhiOA0SU+ULJh0WD0Ougn5YbZ0LFQklkrESRHsPXkmGYln40nQlRH4IkmcHOPcTOWykLlyEUdmN/luf+9P/+jd1978J7/1wmCkTJBkyiw3ari4ASxIGuYI/EDo0fXb+/54luMCcol4OBpYnE3EcUGHjxhCSzjfqw0JxNyyW9x/6/W3lR81TPwRmDU4kUMSaYejpvfQNIvPwAxzVGxiqwY+LHQWBMyCqAQ5TaNRtDQQfpQ/bHfi54Ek64fHQAGpTuVFgDwH/HCRQgvJ+TYonqV7sW2CzQLKAeEHZynMc7rj9pKYVSonsIH1p5cQUEwJt9HMklFBIyJKREersOqYGSxiho2U1DoAZw2R1dsA4dfMgazCWsZ0kFiEWp1cNNyd4vIUv7WQxiht0Q+oCtVIJ7RI6SZZO9d3G9dvbCEn8zMK2+z3xpJhzhcq1XAeGCbTkXub2594+hML59bWVuaBWDiSjMbiAB/OxtYWkiUW2EEwEPr0pz/7yg9/mM6ma6V2pT2YmVu+eHJ5fXP/qJRgcwoHBiHUAf4RkfyNKh6PYeTZ1Ew8lQfI7ksPPe4Zt+BhN/+Pv7tfKP67v/qz965fxsiE/3GtVsY/7dFHz378uWefeewjsXASuoyWTD40OCLChLs8pB4iCwuDY2ioNkF9/oP+dgVcY7zcYOCCj+YSSIiU6auJTJKV7EVBzSB0V1sv0pWABiOGXKEH2R0AvDl8kbQdc4knBDVHBUf03ERLhy1csTdsrmgPBW8qwvSnk+/CKALx3QB1iArFWxobGCjkxVNjsLic5dC94ajxhU88gWpBNSo1Bbhpm4t6qQi9RDT5919+fNxjsZAgPoItJZ4Mla5UoU3hhcjq4ig8m++kZl2uJGnwiNKz7e8Y40TRhAyi+Ubd9At8FJOhW7r7d17qPlik4XNdD9rL0BonnFQ83mRqsiSESnn94cg4zA5PjjlO3sPvNLZfa9e77/70xuYHG4eVbmU0ScfDa3lvPikFHOEjKG0mRLnGI8ySyTpqwlBcrViXbILE49ALpsnyLOngPA6lCMdJ6wdw1W8xSZdv3Xvj2jZbSa9N+GqIhPu1RjeZF7sjNZ6GogEyCP2nYrXhjFgzbBdUmfOiQc3bBB8bPkBPsMN7b7e9W+5/sPF2s34PTJ4/sQBz22w1fFA9d2C4Ggze2xw161DrUTxEGF6YY7zZoUgExNnr7Q5xaaHZ2TQ+O4N+C5Z6JovyBH8hfxQ/LY9SjtAnnLtjkbAWqA5bxxWJYcMIGDzYD8im2cXdXllQ2DBJCUKUEFARm4Gbp3tMhAiyAuZVC5xDlc+pwnD9A5KHkrUEjznMYMwmPImyTrC1YGsTAzvQAWAsR2Qtl7vZJVE7qdEJa4AXjrJd4NTJfoo5AWzBhTWEL5fMC/i+ZkOhmdnFM8unT2IF9gYjfk7t5R33e9kJ6LZ2HlgPiDipItD8bt3bRPuEPur27fUf/eSVw/29TDx49vQKp1Jh4SBtx73No1aHbCHiU/BeysUTR8UCSSJ9oSghZwQNwNXEiElwkf8BZX2TQMtWo4kciAbq29/5/spMBvZS6cp05syoPeRQKmDIpFOfxFhwhpMhK4USOnbNujCOa+AX+l9vPIHTkRg+XEkIt0YhJk8LoYeRBIX2h+Uxg22W7Y+TxnDfgwwJgWAnxFGAN1BG8uTI49qoiNaQjgrFWQZvFcYFMqk+FRUecs1DrB1aC/H+dFCJzrodzu1iq7Eei1apCVWnB7DEhZT1DHJvkgggHtWabRxztO3YcGiBdmnLViuxe8loPG4ygTFZ1lWWDVh39YO7rUYHAsU2SYg5kRnEENSKFUgq6xQEpu2tw527xbse17PIBqlgDi9nlIL3Sns4rWRTCiQfdMnG7s/k8vnFxcLuAadJHxxWsmPfiVz65q27+yUyTnF0WpsNHczv9nwYTnB4RtUG5yNVElZKjFS4hA77Tz9y7luvvFdpN2Jxf/tw0C1NPvPyxz/78qdWVhYioSS8XbEBemhhg78QRbZe0Bhkxn8WiAq8BMQItiJdgI1voCBwk0Cml6bJ5Gnm3NY5TIouys9BVgKxODaR1jNuoZ8GC7QMxEXi3wx1xn2AyH5EjhqOjcrNHARxyKzMOWqEEsp0z6LWTGsGUAqhsCVImGUD49CjNaS8Qd+TDWQX4+l8PnlqId+pdjk/A0YVSqDE+ZpraZo0keq8CBjSYjYfnYyDeKKA5MKXCTlWyUdQYSfcK0wu+kPp+FoEUwb8g2ABDkjfz6PqulVjn6KGvKje2RytekoZeJwS9q4Hj+HGBeGj6uQb0HEx3ex8rZ7S1wAgY3vgDVnHrpnz6dorjcI9dy4RTKaCGN0b9d6JhxejMXH6WhuMMZBK5xLaiMU+Od1Uq9QuFtd6Y10WENRjLlsMJt+cK1zgcVDhKy9/0hXKLeYzn3p6zc2RRLt72/uF2cU8DnqsYq1hYwZom5oMmKAIVgEbMru6JENVD6bQMxM54I8mcnjCeOQNtnrV//lPvw3hIYdbrVF+9KEHWR/VYrtTb/tmZlIcM1trDuEHSrhw+TkiRlnpE8kYRIIdnHxwaDIIfkDhAqvn90U7REh4OQsYWRtKwRiwVGHS5CjGMKQTmoKmFtGGoaG8t2Q72AxIbYifD6ZfUl6za+pggEG3rkOgfGFFeShxrhQeHAKDmEq7aCi7I8RRb015SofkXsejny3DNgCkAlzfx2SJJpzeHw4jZ5QbHC0I2pJbagQ7gosIsNCBU4KxJxpOZWdy6dT8ysmz8excKjMXTyaD0RQ5QumMKBrreTDQoY8Yjs06zdmVCC6seQLXONGiDWVudJtE3zaOPnzv8tHBHtFbMxAVdiw2W6J4JoF7G9uYPJqgEq6unVoQ1OqRURQK00Wk7rYGmXQYRxllZ8SDmi72pUPDogbfllldfP/6uxEAzCaEONUfIJp4PMj1rBNpfrWc3C72iyIMKoNiQ9MCgB5I8UNMWjqZxY0Two4RhbOwqIkk1boPzspxicxFvAE6hkfCCyLk2OX7II3wyz6cN479wVwvROaPF9ISxeH+tOxsEekGfREuIsUl48gbDIF21B8A2a4rCAmYqgzrlA/rMLhM2F48IsdnrWt2ShhW16Raw/DfgYDRAUNjNavaads14fhRrLJGTLSC7bIexhZy/e5OF+D48DyeI+wqEY5gJ6p3B4h9HE9NpviZ3NzG7XuhpIsM9QfbO8l0lsONIN/JWOTNt15fzqOZmyHJP3Et77x39dq1OwQ2dnttMkAs9ifzi8vBwPudZgMOIBFCsQJzTIbaELTCIIZkDCHnXZFQgBDhixPffvbBncNqicN3nn766Sce+eiZCyeJm643uq0mq5Nxg2q8IPpw6GySrE+x9si+zKMDJm7ygkI5QGDIAhaordXvgE1EnvK2waG1EBhhG+RYAmPVGxPxRfwf4UMemAzlgoOxJ/BTDqeYwHC0jYQn0cgomkApRAQ8qfmxrvVbHEvg65IQk/2JFLwIprB3pEtgyZMsuT/EMwCwy9mLSEPU8jjP/vPfetFYliaWs0QyCYCYaKZG86aymn4Hi/gUJmhKIQ9odznzC4KBzpAApEmm5223RlEc1MKeXqtOf9mmVY9Tk1VpP5xqVCcre/oSTLRVqLxu8G4Nqzk16LymX47vsCRkVQEaVkosEmCWnzWWzi5nNYGb6Rn/3/vaQwRU/fBVwvjq2YUlHHiYMOk5oIAARo5e1OS0ohacPgBmvmnods35cDomBNagBAqtGNv0SXv0Dz/3OKYfTlvB0Awke7f2cTRnP0dbp2ooaQO2xyCsIBLEjhdERKvIuC3pVLXYYNR4xD1QljfUJcRUHh4sn5y7/OHBoDG+cOHcAxdPY0fFNtSuVH2c0cuYyAGeTqV398sgnmZQihuIe4BEfgwF7ykIFqrYZCIOmya7+HiMfrpWB1Ydwm+jsp8G0WKycbPCGSM7LEYoJF2ER1wZyOikQzLwMh2QHhZuggkbY40jjp4EcZAvgYN2EUBgNjluKajcnPjbsbLgRumUmV7FLjmKSaE//wc6xZBSdJjMdnjls1lB40ipiMhBzsGeO3jpxc8sLD5ybu1sJpMj/4+SQuPjOnYf4Y3UKEJDtXhZSdoA5OYOXySjN2PkT+o61DkQhQG5nXW+ZH+0cffKh+9fZohLM/m5/AxSCwYOrz+C9nbvEF8QH2wdOq5Rr4ldj00UxzVYUURwjtJptOocvkDmPJc7xEabigYJIw9H4p5684lLD83AUvZ7d3fubm5sJEleEIZD7GutiQzyBgHxVDk6knPOhBUOjoFLErTk3IqHEh7GuFCzrNmx0TEb7vMwS0RKeq5KoETrA4g0PpF1py5RFFs/6Engo/0yJ4gHBMWIhtRZmmwAIkRaXsJFfQfRYajjMULw2NfIiSB6huUfR3txrNPi+rTeCpPZWXD/YP2w4oRp1AWClssknDIiZ2hOu3Ji0dJkyLP5LD4GY9QOx9UwYlyud+5VqqU2NWM3RenHPo1tlg2wxeEV9IYUal7v6qmlXG4OX+R2vbV9byuaSJ88e1Ze8HgUeaLQGDRjeHNevXXzwyvXsXPEYzFwWPWR1TKTOXdmbXdnsy2DlegvbqsoWMA8XpBr3gGHGHchppvDPF778DA2sxxKz2fzmWR0vu2eXF2/g68TKSWpkVpRwWDswf4G3WeN6HntjUwIv6BB/DRQmQ7UZGhgJzoBcBT0K3YQph69M1yHJgEo4SYATUrAIpG1iuSCzC9sLKR1gMKdgFNCzKNw3yQxQXs6UtPdTn1UOurc3muXcaroN8nyi9MCa5VG/HLtY92y0HCbaPrcjbB/NJONzc2mEqEoMg+OqOqCF8ZLoctRD0o1nHTR19suqB5pVPTbOqgROXDS+LhmSjzAh4iPyo50PGRQIiWvd+CpFgqhhZwnnFSEiEPweNpehu8Gm2l1xlVQRqAxKFp5NWxX9DYtfv8LN1WNfeibWZWFadq0HBw1lOVwv255tJJOLOajCzHsfvNXbtbLhQYaDrYLCw5CBoA2qzVeGpS92Yqw5tX7476oKQ1bheyfOqALWhU8gtyGkyupKQAf/L664vaSVJYqYNVMkGbjdp4XALHqM+10GVqFxA4hJfqHwjyKgGztgqAQcM4wpIIuFUVG4Waps7lVnl+Yv/ToA1B1jmrmkWDC5as0iccj91pobn6RkykrlRJmHPg3cSY46PgCsXiMExtpLBGJpJJpJHiYFZK1QhJi8U61XPb5BjPpBGkBCoelZDLFUiT2ljqVPw7aQQ5+IoWUZ1SezGh8oK94aAJ1mCkiemGvcK9E2wNAGBjqHjZBhU1M3LVGCyJA0GBUHqQBThur1ZoCI26t1NYbosjBlDIivQQW6YCHk7369XY8EeNMbbHu/uwnf+nXn3jhZdJgoChA1IQ8wpNj1aYVGHtRe1xZiR+Aw5VKHFZdylkxvDBTuDzhqcsuM+jDdyMOgKWVwsGVDz5gfoEODEwkmoQf1KbkIjvYoNrgUPgQfpR4rrAqUb21Oq3VtaXUzOre7tabb7z++a/88t31zZn5+VpzF4EqFU5oUYpjJwokEV88qZxMJ8912n8yahzMLK2i0WBaMdZJYW0RVbC94tcM8X7+NhkjqIEHDLrTapkJRb01rKEUOI5hH+EEThBjBMI5G02/1+FUA7BOaKn/Whp86swD1PS6Ii6UD2gEUJNu2XEB4YZIla1zdhkd9sAuxYSpOExou1avg4MgsjCAglaY76B82E+seEzoSs1ckTFmfFRoSgQHhbU0tO9AEXWfrdTnmSfn8lTP6vSTd16jG3cPBqRnGSAq4Z0HyhEh7uogrOFyw8vvTUb9j55fzc7OcfQm9tpqvXnl/bfr9cLy6kkmn2MAavViqXi4u7tTarQOlBMCB2YSCJEHtKE4Rbfr1OrK9r11icK4gyGMe3ytdh0GWCpCI8sag5R06FcCN9f3N4utaGYhnMy0J/7y/i7O2GAB3tOYvZkOkX/5s6GJ5xsVSunFS4ASnKgJlSafCK/IfZB1p4R2QciEyDOdcm7IVCzyT0mqQpsPrx4FBZSoEfDRIUQwd3HIwZ9jTjQFmZvlRqPdhO/pdknTKzUOibJgy6SL83jl3cL0sU7RbrOXMzDtwDB1wdpgvF6uD69traUCp5fzs3kEOHZ5iLTEGHpKWTSPmjyepw7NnwiRMyhb2Nxzxqj7wghZ/4mERtvsPfK7al1a82lb2in7U+5kBPsZtkYK60Gbdb2rXnteDd1vjoZUhtKGOFY/b/yw3vDF6chxd6wGVcAgVSt/9l8d5IuS3YSD7tUTmcX5JCpVLClEKuUzMB0tbzAuNZucMtUCMzBtyFqaNmD1C0PVBys4bdE+TO2j1g08FLL/UiIJaNqMcAcLkKqEHxbxJxFAAgUvOSLSPRSSkG9O2GKaML66u0PEU3hovsKFYiYkhIsNZVSudpvDTr1SbVVauEN/+eUHIf25QLuwV3HjYRLx55dyvkq9HYsqdVHIH1hYWILodURPMWP2sOrF4hECKhPpHLs7Rl05jocI2fUkc9lWtxupV1FphwKufDZRLMHEDZDu8d0s1dpoY+F5scDiYIbdkn4zndrPIO3CehhGgBdi8ZOzjHSnKH/wQoEEQP05FFXKJyKGxvA0nmwul0lHwTA4X85vAC0hYTK++3DqJ4AZGJMIE+d3EJGjFbytNoAYBOKRT//yf/LYxz9X3C0Q4CtFDoZZJTeSAU4sP8da6DQevYnWc8tcU5E/oEB81YYlbcmoC01Br+X11BrVG9febzbq0HcMuqjjdTys4rDo0QTH806vhTCOXRO+GjkbNqncaHG8+hefeSIefqZc2WNDCfuj45Y/F1zEBIJetjMkHR2cHXM7ulktREczazNLL3/806/+5Du5+QXIjqI+WfVwg9ruCY1uSM8vdktilnZ8YwOYKVJHkX4HuzWyE2gmDYHKCLdoAJGVtIc6Akgp44EDKi5FdhluCVdBMNhLZEkOBcLmLwTWrIGgeDvIZ4FvQltQ2tDa1ht4SLK2kBhYt5KDUgGCTrXeMq0kaGsciVXND9oKkMmPVH54yWB8tfUDwT4oVWxpqzW+ULOaFZNNgIE/m0/Tpv5Zn6yj7OOdO3u7fcU54kiHjNWLRdi0UHVrflFlo43EW+vBUw/vNYqpTLQ17NWqsPKurdfeiLx3FVxpNhroe5hftGM4MIDbwhAhuma9UiEYoy2fMYnleLXGGDRqGjKIYSiCi6czdJIeazYmrv169Rs/fDOSXwjGEugK4c/pigzcBmAwnlUDCjE2ERCDFwMV/QZ0DI35FTnSJb6ZPgLaLP9HMYWk3GEDoAptAAKV/eNpXhBuVcvQkNGYP5NoPawsTLmwgESb8ZVPbPQQN5IrBL2ZWAKHeh5EBSWwig21mQaTNcNEo+kC3Ce9I2rNlY5FAOxWpXjncG8mNnn4ZCadxTkTVkI46MwZ1YCWdAhA0Q9onGHItGK1opnTZR6QEgzbAuQEtCRGlCN6Ev5ys7l7rRTJuFZXXLOzeW2V02fswb/75lTGu9Ft/bIruqCCmp37bdoVjctAp45YWaeU9VOPqL/T2rCora4twFgT84vXCadYRvF2Z7zo0zykTBbcmXmtTM3EL7x+sWq7JWg6rdm782P6rkadhq0GFeBPVWayaT2nNcAsaIjcMbdfuAEyYvoxjB4dkYym0+q5u6hjUMix0hVHAleLwgZDSnyECyNeJ4uL8dP9YaeJehmbdy6f7HmT4xA7mZBYrv3RKPt8t1Jp6gS9MESZPaBLsqzcTAIOIRYkVxkxAwFaEcMsqHFKBIIcnrzk+MGpT2uG3JgLcylEI/xbyfLJdiRsVxZJ4QQYxr4EpgIyuBohijIcYV9FAMBJBw8QUjhI9SfGRsVEEaFZuIKFIwQVoIaWepvuudxBdPEWioyPDSHi4CBHvYOxiFEEWSq1AS5njz76sYXVR69e2XJxbL10UEbjOSQcSs/GKlWU8f2YnEXsxflrf6J/LFmouEgBGhkCILRpwLyhzd/d3iyXi2KUPJOzJ+fJoqMTmsakayJZtLRG6Kzg+gmzZehMCVIN/pqM/sUnH5/Nx377//R/Pf/Ix07MzY37ISZUedLbDaVE0sLV+UFnFuf+7SuvvvDAk6c86czapaErguMrhxOBB8aMKyaoWuXsS0HQ2DUhtSwmHncuhXcvnda/ISoirCmMaIpQaC1wHPQRrU8Zci92CNPFp0PGDubTedEFdmDRg2gCp35MBSC4qBUd5EBk1GIMZIreiAKifSAvQTqeCKd4iw0E7ZhrXHp6eIjRMb5TzHCcss6XMcdwgjP6Ce2RzMqpQYNqqa6FIKrBxEufqz7RGK5NETw1Es53ET/RU25M6pV2qcYUkYlJZ797fTgCa2tiTNh1/EHs4a783Nz3L78zc2Lh+cfOxQ/LP33tHXZurDhX3r8KMrFEImFMfOlAOAy9Ru3TabSZBez8pHSuVsrRWHTEYWHJLOpNnPOV0tLtklsacwVma3PVABk0rgr/9ptvNTzpmVi+ST5dDnJhD9FCZBRMnoAMCITZ+FkzNyLZ+qUNhC+CFS8N2d61cGz0FNFV3oR0zuN8YSvQ04gIFORNm4DFUCg3NJKUfsBWIM0o1o5uS18BZKlI1jNao0ZQCHhKshS09aam1GOuMiouql1uYI/DD48tKDdHjmkONPrW5f0zmfET53OIHXBvMGrSixn9ZM5UB0/Zu6rWoFQ1X6cvGzGXcbB+4OEHTz/M0amjTDpEAjNfap5wFt+oy10rzDs9oTbDJ+ufc+O4LuqlZrrskEk1ZC1NH7e7dE0Ix5tz7/jZaZnjhtRR0IukE/hUAC9CJXC4FT55iB+IYbeQWE9/IE42+4LNcV3Hn9a4tepccYatdwHBAYN+Odd1RXfonr2DHPqNWZ79hi+sQdBFo5cZULPFdIcuX926ea8QcvniuBbE4rm0O4rcGo6FoINhtng5Q4DJip1T3BvITWSIKhj3yc9G8hNvR+wypNvFGSxDjr2GG4A55cj3kI80pz5iQ5EMYz7Uht4+5nr8JNVjjYAMqBBT6AS0AjsN9IaVgx+QaJIO9oH/66D+gHzCGokqA1LZqyGIhJ3hOCTKSlfwQmX1dvroaqQit/SFivXUopefnNAVYo7uZwCnrWx1o26zjb0PyQMeH685WBK2A8QkNEiwaJBthI8qYWTj8erJB+bPvLi+vo/UgoKG0NZjjY7cZHhYAjILFDpv7J60QOYkQSUwUKxdaApdoatIDACHVlr1RrlwiDENCW3lzMyFSyevXLmDQA859vvx6nKTEoltA1wE6mJwsAPAM4Ar/tDl9cOtV17Zblau3f4wEnoMAztbKCojwIyqlvboJHGSkUn4S898+u7t241qpdnaeeDSJfh29kXwF8oF/DHEIVGADsBTKGNiuLM0UpxfIwTn8EtwhhN+GB/UiUeBtraLQGgSi0EukAAksOPYRDAw31k6IAYP8jh0nZB7DiOCp+Yh/vEk98iCB3wkMoP3ElJFhhkpt9lXQLrRQC4ilEAzgYcHvDO4QjOQD+0rwg3KaxknSKVJljTRDDCDW55mQ+fBUp4WKKQ2qNeoD+iVikTJ2AzuSK/F9sANWnGP6lU2DiljoKKoC6gJThk6btkj5WXFMSOE5+bmU1/9yuczyeTsTPP29XuHxcL84iIWneLhAUYS1B5s/IicZKigcTaYTC7nKXuY60AoUiyWT8wtnziR73fbnINNS0gLRAiWenVvJoGOCICJeXD5/vRvXt84ai2tLtS7TbALxEYIFMpqKAY0G5gtcWbOVNw0pukSTTIuXEMWlaIXzBZvesSYJ8FCGywXJAVQhHUCxWcy+YNewT1xHfYJo4e+cZH1aDUIXFQmHayIOe9YgeWkq25o+zASr8kSOmnzVYe1mLU3M4NqFM0hzamvJGLzxoIzg+TsfvXova3+I2dI0sjDtA4e6fQOytvLZtwmXl3QcGhEX9URRkpdtg9l53KZhRxWZ8L1RQ2Eu9hg4E/VHP+E7PaYdVFVcFUv67Pdc2o2oKl+u2ulKOIU1YfzdXrzFz80dD1knaRn8KDKPkEWGlhuDRvEG2DDkdgqydWpSruk9Y5PpwJrQH3++UvAtGJ2yb7bYGjBRjctaRUxUFYuZeDvcL0GrmKXmQaIEoW1xTFdkfBGsX/vaPDYxadOrswn8U6F/+JME5ANAQW80A7FdMvNWpwRhn/Z+UMQmw6OnWRBZVJRzHv8ePGyAn2YzKgaGkodXVK8kYc6EcumFB484hwMLInK4E69KBPRcJBYE4cBwgQNNMbqk2ExoEya1K4sb1AzRGlL5QmWQSDQIOMRRFuwFrJDonmG7JLuiHVCvgJgAFTx88Hy2IGH55eSSuonyCzWRgoZZBtOhUzC6tV3KsQv5HIQM9xmm1A6gh6xhMH44ExGgqZeMDF39vH6yFuqHClpEcK+NEBYu8m3hR1PrD7oKrhC0tgu2MSgH0Bee5ZuA01ug7EaDMsE2tTr10pFhgfFjyfiy4sLTZK9iIL1yLDAUkdNYicbIOVwoBPV6RhL+gbkttY3vvGNP0olYh9/8vnZ1EypVGh0uvmZGWZdXcLzFegMeh5ktnisNGhxasnh1n442EmI44SwoUuT/p1SKGIwvugqo9ICcLAJuoDehnABpVXBwqHgT+ZAgSSMioJa0JGIknFMvCELB2IXlATAdapQZQzS6C/yGS6Mwh90SSx+RjEc1Vs40ApLtXANxUFgqxnNIdGEcl0HaOwK9LLeYJOSwXbaOXXA+sFdTsjigB7ylSoXsgk+7C4KitShH1aK+sUf2LYlKpHEKoLPijYfVQnEreZxpcXjROM24DZYIEo/EVa8FZ5ckx7+LO5KuYY3EF4bt97/WTKT7vXD1Vb/9TcvP/PEo/OLHDc12TsooZ3DWC7LCIhKhii/68FHHoD/D17Bm4DzCwenzp6+det2BNcCGTwZPoKs57BY4648WFgjPfffvnvtnTulmZUzeD0gWJkQ6YxAI9FTwi2NTjRNGMVPMZBSFgqHrAhEHtQxADPdPM8tesVz3NZ6tvFTuai4dlbIOBsJYjJLnlkSbyg05FnsseiOKGprlNUtmEm3I7HdbAd0nNvsL5pRKIzkXRa8usWmxRd1mNmCybPtxLZ5pi0cgEEk0oxDdsi2ESWBU7+QUFZrSD8Vsf/aYIwzoDK6bwPn3aGEWlM2dCEkL8gLgjmUgzBMYlK4yMkWcjmx/ol1UDGHVNoDAscUmnreGuBT3XXuq6W/07CK8Tq+e/+r5kNXnRtqwuktKwv4xcN+3LA5YZCwCfALyxBSPrRIyKbHKG8VqDqnP/pgdFanGtQNQ2Td1i9ryWlVzfJna8i5a+RR3K9u2Q3RELlwalqk6DVhkQSdbm+9P/rSlz47n0oyQeij2NZBAfqmgCzxtbJZwtvy18V3QwbYbrtTJlO6sBPyBvEV2YOJ8BFr5juqlnPeRK0pOYPuY0gkG2+ciN6Jl4Wn8G3c44mDRHeMj4zy/2A+bbNDgs/4hrMbsPhGfvCeLE5e/Aq1BdB38ujAfROA7CPfEyKA0u0SgssSwglCJH1A3iVMxeoPGhoxmCAcYYhSSygJMEsd5pfTBEjzQ5UgbygUGrfG8zPJuQUvpIuzSGAPI6EUc9Puc8rDgDVK9rxM7kQ4trC3s9clTSPeQXgqiebrv4Yo9hd6qgWhtQrQuMDEgGzAmoWAbd24Di0JchfAchFa1W626hUWHmiQxO1RGyOnbJPBn4VM/jQO5sa1p8uaRuhhAhkO0hMJEUiO12q2rt688YWXX8JbAqk8HIySdmS/sxuOA2QOEnPXeshM7plYStx0t66Tk6QRQgDC3i45n8mXNzBxzZgjpGayzgqrQBnWtHQCYX+MsUCulbIM8YK0ZaQE0Iux8d8bDsVC/phItCZMgWYoLkBRBo2qXSipgXJUmidCXkf5mZgnKKWHA5yXwBkBzyoUqtsKgIaQsJA1y5QRXEXlgK/RbCDngZuUFkgpy7s6ofWfiMWxeHPBqQCUxWIsAwOcPA+ILKmN6fLwuBNpfBAYvZggqqObPAqMObcorOClPlOP0ZdD1NxJ+MghSlp6hNYyurwcTaYuv38FZf7q6vLq6oWPPfuxJ556iNOBWq1Sf23m7tZ+8aiIUYRRY2yHKYiRRyidzWSie7v3aI7AXJShaCVz5OpDAtECR7c+KRRqM2nUQ6wI3+ZO+dVr6+n5VZmjxEig2gOtNApHnlGveU5rm1nQTIms8xIEGIy99AvgC+3YJBg7iGeleOOiAK/h6wmEZSmQKAJchdCsE1Fz1DQ4gPZawJpralUSFRyNOkOvdKo1awjstwArGX+E+frQ4yK+1hWREGpHg+X0UnuUCQumV+KMM7A4nswQE5kPzeaRCMakRKAp+jtBEwjvKVHqeICGKFYRSKAmnMGr/8JnqS9RLgiNGbeGDKMHFgtVgMJ9SKkGgYJ/zhcHGFxTpVpw9uKqHrHWrbR909svFnEKMJ2/8Dp+BNhpheDZTNpKZYvBCREjIT9BDPQqYCAQE6466K0q1E2nNgBolasP0/pVIT80IP50V2+2HqyfdsnuABB2aJFhY/rxYheaw9zARov5A7uU1KHbmcvmiNNC14IngaYGN0tYAKkD0ReQiRVX6yDxKvUGWaxKzbqyKbMeUQjIDsqQQAFgL5dgiXe+hYVcu9bCvxNKTNfwUIPAKMs8/LXKogVFBy3TsyzMUAGoGn5jsL/eCI6qIpL9Lj4juILjUIP+F8si+1GI5ADkXMBxR44nBHyjfaeXAXT+wjAFRCjHDuAEBDoKg4f7+ORBP1Fd4G2hUCXQYYjX5sjTa/aimCaD7qgvkOU0R/IkQW4yoTA2X4JJhsNipdqsk8COY55y+cULHEmGJyL+96KXDF2WYlpiVMYPCdfFRAvzhbnCRnVFSwI2VtoJzZRtvUgWkMtWs0YoDexQIh0nWBSbEEIKDpxhJgkdIbjCgmHPZACsMlhiVDeKIuieWpl99+oYx17iQjkKFYMzSS+ImWCBEV+KZh4aHE7ijxgkKi+R0DFj0chsvfnGyZWk+kOdsGEQdTZHXFC66KrACcNzcF9dF20kwVIw5CgJpQEg7wA+npi8hV7sECCs24W7BWe3IbONYBWUkRupRmgKxiNagtX2h3lebn3QH0NdtcVENBttK0l53bAVbpCECUehY7laABurmTWNoV6opAqtfQFSrXABUSWR0gmLQBcqoRMWyQOKxVhbMHSLynVLd9FFUYTybAA+YaD+i2awTkStRmR0RMGNLdPfkXpb+w/kToVI5xRPxTlSLRKK4ci1X2jMnYiiBsXbfi43e2JppdsrNgp7E088EIwTNkyzoCcOsgvzmcBkTMzg/NwJInFgnRIJT8jfS6VTLm/MEGaIe0W9PzysNDJkEhkGv3X5bmjmBKfzMrOCptYI/+ms8IoLU2LIZPESk2V0bko3RD9ED4CMhiyICUl5OfgHIDTDEBuKwIuKc5FEzK4Mv+Sd4JGBwhzIIs0TQFMje/1AcSdqWT6CPA887I0fmgfrhlpz/uuu07YAzE2DMJsLcFYvxB8wryhB1DBPNToNT3EvuOXmpOPN3MLKueVHllHE1kS25MJknAFj1mj0sjb1hTr1k0kVMQZ51CG2MpSxYs44cslARSPWIT2i7v7/f00rtyJ8F4brMb5ay06j+i3oq7BVdfxm0J0+q2v83e+mAQkeyUPMZhJagPsDBHE2m8IOCm7DQWt/IEjCK18rG4XQUt1UHfZFw9fLAKhhTvth7QMogEMJp2/TBwQVXujpFe5hNWJwUPQ2zUFbBDf2RvIycP5VIkI6SMxQePmhwvT5dB4UG4BYRQhjn3Xd29k9un1r84i0xl3Wi1y/EQyUPVILTP/VnHwN3L6zZxa3bmwivBI8Ke+/EGue+FkRFpyG4UkZAGp/8uTgKMMDUqDL1IxzJ8JSiLmjTaqCaBOJolUO6nslPZC+uSotB0+wK6CYonrxF8gNdAcDhUJRldsWL6sw1TB4oy7yTECE4YUNAyVKtTHC6yKCqoHs0RPc/uQbIR8josKAEWePDYcpv7sd9g459jqzFAwnaxz51pG2iqO+oP0MgTEb/MULCettimC6QFvnn6BuvI/NhJAC5Jcdm8WFLkCRD0pOh0OS6Eo80apWsGYiECLAeFxh5kiJ5FBKsx7R6mCAwSBRO7p4+uL8zCwcPD05uHuLLMXZpXwoECyXK/hr4jTLMZyHzUGTRBHEksnoGmm6BvVR7+TqMqIWnpuoSmRvYfNhqzUTCgOgY0hOzCFrH3jBN3KIhN/ThVGVohq1Nrk7EbcALkEBbN54FkfJ1UbePqQxsVnsTxhGoLLghkACSkjRPiI1XYxTmQh2V9YXXWb+Gg3yG4k7d4AjhAaTQPAxYhn7CvwBjTl4Nm4SpqC2wVnROyExj6k4aDpJJjgPS61ygf4zigbpxamamaDQcQuQIO1L3kk6GUYfy0xpnsSoQuehg8Qfk5iddE/hTqiBvR1zFaIlh7nRTQUF4JiES0MgmEokOBdh92D71IUVTLnoF3EaCIbTnhS4tq+Ee/0xmfWwSkTYmXzuo6O9yKSZCYautSfEN6M3Q2hLZxYQabxwOnj1thAnXbgjx7zh7799dejPcBIFCA2oxDVrl9D6Zsz6Ql+10PRF/4WDwkVBxEpNKQa/dEc4NwWAwYxHdJUtjVplToLQ8UWndC8unHjo4uqp+VyWBGfefrNWf/1nP/zL3RJTg9+YGB0pmexpozZO5U4rqtH5bSvB2ZvorRpTx9Q/vRsF47LTUy0Qm3Mus/QLHH7cqheqO/72iccuJXWkJUtBzDG8ooY6HYlTrf3WFbWsjmnE5BcjPwwEASJrSgzrlQ1aA3f6qL4cf7fx2C+n5BSuynkK7eMuDdtL6MmSodT0EY2NVWCXBGtDy5/f1rNTAOghbXaUYN1o6ZHQw4VLJKyT5pYlgriD0UP3KWvlacbqVv2q3hn7cdedW9RqvVAnBVnNgl0AFJTQGMAixwIh0sxNeUaje+20h9VikzLkMakB4F4JJjsaQlmjuHe6h6YK8zlcJ1IC1PXoqPTeBzc2t3ZRusgAqy3F2QWcbxq+XvSZDeBgvxiM+Lb391qtXjY5RwLRUDAIK0uaAMgOih+UOzCQkECwG81GhyibAapwWCVOAumgeYTT5Dg3YEYXYNMZjtRlRKGxLHBDJm9Ij5PjY6S9xHyMAABnDzBwuiTDBBlH0PSDOgAVXZNMW6hccKxhwSkKAf2iDx4ZUYNwQeEXBUmTjZZqxBnCnUq1SrAVaahDQTI/4FDpO732WHfok/IHXRQ9NHWKyLjNiQNywZaZ1HyKoQRATCwsG+1qamwS1UWWG1RXmSlkTWHw6VQYW2s2nZTnE9IQJwrwCEZcuTxx4pmfbQ9zA0FfUFcwh1OAuH3p/MWbG3vXr986eTJy6fyJdCqJK+HCiYV0J/bWG3/r7XsC82cr42CLg4KHro167d/+wR8+93AAQzHmCrGt2lLl5MU8IEghVoBA0rIZ1gnR0WIgjoV9QxfxuLbf4QdETj2oqZMvUpQU3QunKoTdHog71hqkQhxhIKuq3xBRw+UHFp9IMKxnQUcz+CLUcUIMtwU9gcc+hfH8l7YUYZkvWkBwK+MhGn0QkZopLUA7bdhqgEinIgmtIlF0sfgoJpuKkaU9rY9pf1Qd1StXWgbJRRgB+dEEqSSc0nCYT9JTdDckiSKPgcwocG0ACY6SdcEWAIxI/0EOiVa1tbu5s799GD8Vg7ch/p3Hh+3hwVEFO0Gn18DIkMGbIqpw2dubm73uUaPW+867H/7nX/7C9u7+7Pwi/hX9eo1g28P9UruL/zCHIE1uH9bKA18sHZPmm9eU5WdM/OYfjDODF0uju3ZNa46BCHICHYW44GCcsyBVVLPBGFXAeXFRYzYyIdozlo/gL730qYsnTyABSwPo7c9VttMHgZ+81SqPIjJTCp7WgMFRFdAifXAqF7BsYowkWUGuWAGnS1oGNg6nO04XbSZtOGzgqh5WsFJuvPrOrVTy4tkFIhCwTATYo1WV2tVA1abzU2PTRUNcHldXkACQYBBHrW2Bzcrw7nyhgl+4oB/3X04TPKcyArq+6XmrmA9gZnuAVcANgZoCKm7V2oc16FTFdZsk7sqVVj8hR/KncmNa65FHRV4VHvSHsAAu+EDrM4BlAVqjeneGYF1y6tP8GrSNHdI11SuiwxcI81QY0s5OEhyWKwpJac6p1mZgQsake/fKRJLD60Y9oc1SNRae9LKcnkbanSCBH6S1J54Cv23IL7BsdfpXb27eWt9td7pchdeTnoyhYfeXiMBsiD1An6AmUPkgSAeVGTGwd7CXT86wgLTDiRLiICHesNXq4Ionp3hWTRu/aTh+joeU2lnYTG41DCQBUv1hIGF2cQglIJflwIEZ+INwsgqXSM0JUZbKAWHPtPxy+YTAgFro7WHobHETWiVnWzQnUDfwmkUkVaTH3ZRVzxtBuTvSAZakq/PKUxHDXehgv9IodGNRTzAemY8vc2xOu1llz2EcwNehGUq0orZE6TUHkFLNg0iQkEEXdR3IaMXaO1fQsLEFSn0msYrD5IbxeDCVSaQyqZjP0yDtcU8aesiZ0tIp+1AsnV+qtw/RGo9IKiqDYXd9a+v02qXdYhHT8EMXX2DPu7lxeWF2MQoNGvTXVi/+9Eev/sW//2s/p5cHkwtzy9tHB6eio48/dEFqDQ5wgb4rdp+NiEGQtbvFqWjSFaq3rEjmkNA5mHWC9Wf6k7gmicNXPeS0aJlWmRFQTgk3EmwRbABsfAMSzSthBJuslP7UC6gN4lIwC6UQbwENsJGAxDzCownNHRLAFyG6KgaVII4eX4R0mdAdyiDPE3WkRS7aN9UjA1t1l2EEfGFcepyFpkswzYNGkyw06iX/AbstR75oinAw4xAh+C2ug5T0STuBah7O5+X/MPHHQsN+CxMWoihii/UCpR/7omTpQT+RTs9k5+rd4d276wijF8+e4zgiwLi7t7lb2Li0NocLk6wqIy/W41q1WJA4Qn+Ia+9eWL7wJ3/5xgvPfAxpiYnutsbFStMSmbDHxK7tV9EgMTMmoWOONXRj59Po6CFvghBAY0R84YIgx6IDTOCj/dNqdPBtelvFRT9EzHhQTwEHCXF2nanknOoL5y6triXc+HGwtiRka/Y8o/KJZOuogOWSp1nzPAvY9LjVwTd9tZfVbbBWW1oETkP6ZZe5xkXdch6aPjnt0/EcgZguV7UxfvXdvcX0uUCAdHJQNC7a02pPv3jIqcmpXTVq1wJgQg+OyBYSM11Ow1bU3oDDtFl+2hXe7KJdNjgCTVBXfhjSnBvy2LD1Zv3gU711RqPPn//SyJwmrId6XBVrvui4rQupBJgyMdGQQnASNAsQAG1qOAfATh+nsNXzVoXzqXcBhMtW6XQ8muIpLGhNQILhJ1bK4vd9qHuxzmq5iJ66+w38z9HFw/WM2tVWreJuVTk+YkAahVSKGHxcmBHsCXsfKfDd79vaJ6x9vdKAqYI00GtgOwW4fISFe3RH1AWdojj8RrMXzJAkORULKjiEuQGRlZFCKwhtuJckLQwCI5usqRwboBpDrDZEOCQP5ABT8rNnkncN5Tw5hWTEIB2gtEM6agxxwk+iEuiCsJVpx00I5hy+HraaoUvCAMQSc1nbLHAZa1lQqFJAcP4ogkmzy54ziUc4NtLbxVMKmosaiPAdXPGxSusAq3Qm9zChEd1OC8ojrb/hgnZS6jNixIfhBdNhF0VkNBX0S+RHk6GfWpOQEAAm/Rtqd1RJXWBBIgF/JIneO4ajTKzOBoYNgoCCrgs3RHndrp2cOdwrjjlzcVhGSOBAzmKpms7U5+ZPrJ37yGOPfurdd36wVyldu3KHIzAeffjhaCjwq1/7yn61+OGdO4vLKV+seinrfeb06ZksAEb8CGElpkNCILHMeHLh50JnbWeDRIqd0pi8fk455rTeGgm+jQuXkde4vinOEdLC2SPaMzFtYrMmzI8NgKTxIuRCUvuQMikYwmhPzSxOfEvUBMeZsgvSkHoiOBlYqRgA24wQvw4yiWSzwQ8nxExrU6HTQm16KyoAvLlAPEmI5NEo8NUvXUKwJGE4opb0OjYX9phq52HCAGNky6AzMn6KM9HIwR0in6Phpfn0zU3Srs1USy2MMPqHAOMPggJ4Z/F4p1cjS2U+E/rUk894IqPbdwsHpcap1VTQP1w+Nbuymie07+7d6wXFlchwQxKrQqUU80SbrcILF1arhV08kJMc+zouD0ac09I/qnLGGj4hHo5jq3ZI/8qZOUbrGTzt8aL3ttzUf+GSVq5d1Nvx+FRIxfVbcHBK6puV0U+etyesiL4yNfCFTBUgTAcTo0IB7ZiLEP2BnOyG1Vak1X3c170KN8XSta44FVgTTs/ULv9sPqwtm1K1qY5oTfDJArSfelpd1C1NonVKT+nLdG1RGEndd2+veGM9/sj5lFUCQqkUj+tlneBNUrhQVZXrniRaplWeDkIou2SFrUln8BRVH457qdqnFfLJN9vnVBP/nUZ5mKsCn7DL2ubL9CERgulX5469C1WPSzoVUsauWPPOXsqTIKFICbkruC6veD2kIqpFsLPu2UV1bnpDX+kRl52h66dz196dUuo8K2jCWRoIAqTx1Q6J0C7eotdU8l4wnoAL3N/Z7ClYGNaNNrIk8IZX7AtenJzxRQ6Hq9fXj47KkA+BgX/UCPClCFIfwA2aZC4lAfALvhK7ZJxMtKR8yKRR6qUTGUqg9kBhSymIHermXrenIHO5nbmQLCK4/mF61fFp6KhRxpP/AF4Oxh3nP000KMB6ZXdhL8POB7mHKNTI8IOaloGx85DuT5pE3PQVtUOCDeg3mMsOA0qhoda2hYOI9OsAXl8S8Sg6f0U2dsgSh2wAfUOgV8SAx93tDDy5mXN1KATKeq0T8MyKGC4wV8JfnuCfkNBeTLzu8k/ggK7omwGN24qSU8IZeiNenbhqGONwPMFbMhlD98YBoQMsoBxxzNmwwbQc8yaDs6dXd28f7tQ4GQY1Q0Vett3RzZt3T188ffP2u//d5ge//tWvX0rG9vbXP3z38uuvvvrLX/6MJxj6tV/79a8NarGIO5xx3XznqqK1SDlO/mwdBKJTY2QQJYnnZNQaMHQOCIMjxv0KFOJFt2UOCng5PXQokGNcZ8vqGfPCXGue6TwpbwE/1lTMbsQTMFcELWPUYcyM28g0x8iNOBQhiuGHBa4VZKJGCy0eCDVdSKL/wE08nLGzBJ+AIdSg37RkOV8BID2zNwHevgq2yKm4T2oJ6L+WKpuQhER+qxxPqLTmhHdUQMRf4eOvwqL7vEM1oBzgBpPzGKEYN1+LxDKJWBAnX4bsScEFoR6E9PfmZ3Jk8Ir7B59/+TNjfzGePuk5k/rggxvt6iESbb/BURzYKlpwM5wI5xuhGXNVO43Tq6c5wfTevdtffPZXvvf2jxOZQCAe6IzgY7zNhpLCgv/4gJbIt0E0OywCfdEKZx60rjQOOk5ndYF+ix5pKWghTgtqaDZMg4wWGZAQLLisJ/ipD+eGU6EeYcjYo9j//Z71o7tn9lcH9WKkeRCpbXv7xUmhkSreOlMv5zypQzenTaKbpFmqVKOqWbBV9dM35+v0Xfem//imQRy/bDnocf6sh4wR4FsJG7XwD2zz/ezG/rlTOWVKY6BofhXtqYZVn9O8VWmdoHpVJx5DlXIfcVEXDJAq7ZTQFz3w8/7oh9WmetUAP8F/bTl6RO1N7zsP6SKP6HX8+Xe+WO1220ry0ybCfkA/VBuDkJet5lP91PCpiq7rO4/StvPiB8/dr17f7df0iz5+3px+qChXtcx4QYL0ybQrsEKAA2fkTI8tj2Up9xtXE6IC0fGigRzA6WIwhGbG+yTLCYwiSklTbtZ37m3zEIw7/Ds1UBGLlV6L4vMNQyukFmOZ+iZNEKTDU6t0IeRz2RmSlUGhyQWJSw6zoRQFGqEsHjxNv3CHRQ3PosX+jPVB1t0JMcAebGVlkgrBUSJkUBBaBS2Q7kKZRoi+JXFDCEGAX1h/vQoH45XizOCBx04c61EbXqGSJ0hmQhgq+ejYUgbEH0KLJ4NuMxqMx8MB+FYoGTIuqguU3G360h+Qli8UWQhE8x04dYkPolEA10E/QVKAZsxal/bDmTzw2IoZlHgzSDloBJA0I0oBgAaICC9ObokllRlR5nYpfPCbIgMnYbVyQlQYBFmUUU+5P/PM2b9+7e5BBdsEUdYyIuF2eHRwb/HECQ6++N1/+TuPPrQ2l85F3HG6HfBnOBx57NqLBzvZwOhgo8BZudiBmTtce4R0bEVsZexn8NccuMOWh5BFv8WCacdCyOJ7hBBuV2I8ibIDkncOk7t4dnYNUR3NHx0PB0nhQk5NVJmENyNLyIjs1CzIGEJAYWI47XIslCQCXaIJXLmAgn7qgkDJix4AMAggmZrAWQMvNxU5AUcqwKqAPpwn9CBOxqQ6ZZatGpVgA1CENrKLRBmnXjViy5knyDUewQWZERrvD3poDzDKQbj6pdOzs9lQoVLNJOKVXn/vsJTKRROxaLVY2t/bS6Ri2fmFG3f3v5jIn1lbQW3r9jd9ow9vXPkwHIshNZEXZehqYwqajaca/X6hWTl/MTs/F/9X//GbcwuLPW/u/as//q9+9RNhgoA4TWlIFIxccOFF4uE4SRFQsNJ/B4cYCvMgukjfBQbrMAOwSdIny4fbGqcB0CmoovYEi1XDF5AEBF0TvjoQ0VVAaZsKux9hPTv1yY8u7z8c3n+mdyXd320GMA4FyGB2ZmXywE75qJuSKDetgJZ4WnXau2DOD0GRrwCWD3uzC1yRCC6eQl/UWfXLLoIkIDP16pgQZl7eafxSSTwLDkr9uzuts8spfuk6CGXIo/tq3alIfRCUuIqN0NrVL+gUJMqKqaT+6DSfzrX7d6Y37ZH79zQMOsoj0zpo4xee+IWv1sD0tzousPKyN31hrNPvqk53RPewaWNhstLcFyG0Z3kDSvauZ4+771QwbeTnHblfzmp1gMHzVo5WBHBtnQCVWDNTXqgMupExuZFRaDIVpMRvo39BKIceuN04lZDTjydcI/6rLzjM73JqWYWT9fAOEj+iVQkmsD7hnSGjTtQIcyhIaW5pE4KPh3io3qpxOuza2tL2XhkEwPpKAjhID3pqXIzQLSlDXI+s9f1cNkW+dY/peUBKfMmpqljoKFuaRDr2L+EJwfjk/ecPjeSgV8fTMZnEUVG3CVCoVimO7sgXH7kbZLUgTT/EVfuSFKqsFYJzSFDKyie3KG4NqSSWaXVmqMxCfWx8YB8OgJwJ7E4QGeHPLD3YhgMkyyaYZ8oEYKtNTwCng+yumlzVaFMggmeTpjm3yRMoRTEFbB6l49rnxS8jBDAlbJ4UYUtjZUFXOX7Jmwj7u50GInlr3MYvyYUHjceVzsY/+pELr723sw/1n9TZGBCzEGyaxeosxxP2O9u725BTwheSMye8vpVmuZz0+hd8/eLutXoz4vLFkBtohomWJltd1w+Xk/KANHDaDthehR4m60OE3GES9nrSoxHepdJnc+C7nGgdpJS44CFDBhH2uOFSleg/djcTbUASW4ZCFgHJPQyG5VSMio55ZOKVNYPcSmJBpA+iVaBIOWDKG5F6MTK7sa0LoQRgYgE7nMNshahSF1W1MQVjjiDBPgtXYWQHgkJOuj7Bf7i3AXwog6SW491IIJeFF6lFTtDwEyCm1oZqRTYZjDiD4NOfePj3v/FTHD7xzR1Vxgc7tY8/c5Hqt/YL+welbCY/v3r2R69fXsyuRLOc4ztYv7WJizEHjbJPyhsh4A0kwvcK97BfPfq5Ly3N+7/3v/zJoDb4ym9+9f/xO7+/nF3LJLJgGjozANZo98jrJGUVImcP/yed2C4o0J6x+QhfdFUcBte0yOirbhgF5g64JslUkAMx7ZP7onWAXxDS4A1mBl4G6RAb4azQFC0g7BDufJXKZKPnnm00vK7tYAZGKwqfhPuwt9OdHTUKpSNXv4UTt6nM6Jy8uZlleAO4Luk0Rdv5kNJs+tLE0ozerQtqUS+nQ/ZJH+EcWacR8n0FQxypFiSdGEgFlrp6qGR3NrbOzcmLALUBkFGHRTGtCr3pq4Yq6PBDh3hoiFqxwJQvTmtWSMDiJyW5y0uPHn/hlxBA15yX0027qBsGKrt5v8RxQT4NyroxHZwuOeBWIfVNVat1be5ckiJ+WsBGozeuc18tTps4ruz4U3X9wktDV83AxLru3BKEDMx8SkDEg08kS1XaEmF5YBFGTS6sZwPgUCYKajdSAQXo6EwUjjKTfnLk7faChRKzLgwU0kEeQGtRb0ioNjIqhpgJBUANgI+1lUAw0qYTa9+DzWXlTnwx0oSTN1wOe0gQWPUx1dJ9TxfOIxTD+ECQUyKZhm/DJycei7jaSn1fkmPFWMydyDdO6eFwXIlngvUq4GOtJVJxYIqrHpkmm7ZZdKSFBrSyHkNtIzEwWxF3LDVi/Fns7FmE9+LrFA4FYmG8QHEcGtRJMjMK9knhkg9yzjDuQa1+IDFzehhIdBo18BzYaDs1eIsJEhwE/ul8G3CBothqpf2zqZwiOqKGQMvz0L44p2sNh01XC8YblTlAZA6gc8wJFJkI3g4Z5wIcGV4NezNE8bJ1O4uag0jmTsSeS67+7J3ujY0BwbuQe5LJNfB1cbtw+nR5F8aubG/sTaURWdjjR2l/vVu4Wa30xqFlpoy1YRKU4YaDakwpAyFFL9MA0MBMzADiRjSljBC9pDcwRFdHZgokNBFVIQJQEIY6QGZLhqIiHlK5yB8TJnS1JW+F+EaVGACEKsaAIfzikNXtIHJwRVUZ8gmYapzt2eslUavlzURAFjhBKZQxzIAtIZmRBH6tFnoD+YCkozNkVVsTEzKL8IRQTItJjdCCs7CEdWAUiU10kT9CWGwpaMhWrNOsP3pm8e5Hzrz25u1YILSyOF8oVN67ev3UyeUW7MrARXq+XDrRbLW+8de//8tf+2K3cdBv7pB9CYE1lU4TVp3Icto753OPHn70Ga93+Xf+xf94++r1/+K3/1fff+tnN9df+y9/5T8XCpJMV07PXbIAoVkCIRVYLkkdCGhetD1rxWmjwJwFXrF+oIrwDnRadwVZQQTUkkLPGGc+kMx4DlQE4cSWCfkYmUbLXb5O50/orDpEidh3OHuBSXKPk71mMtwj5wUuevKXEGvYn7QrN97ZJ3Jd+GqQN9gZ3ZnWZ+1Qoz7507Q6P2wsfD0uYF1QCX3RCGCFJiMi3Jll5HOS+PYjMGZ4juOs5/LfPug81Bjm0+Y7oVp41CFnatgq40PbHbUhQ/SkZtB3XVAfrH/CFfs6Jf264fx2vlmpaX/1XS+1JbDxoF5OPfzSF9UtvJreswJAg2tOM7pn1VHMyvBLX0121jd2AO3NmhFe2qt1UXXby3l4+uN+nfdv68b9pvVFXdVFdciastsGALWvbrH+0Pli5FRqZBwl0XpCJ7pjjquX1Y0O0Bk6AtIoroeQI5EMduHxiKQ5sK2gCsyq1O3Upr1e7pCsfGRzdDZQeiXMRZ7lKIeej+TsvWE/Egn1So1SscqJB0CEdQceozfATx/DLwHI4QExAV7cqzvtGhnqJQT63BzfAEdaKBZqlSZO2CAz8gR6HgZgrIE3GU9RD91IZ1LQezTRDAidD6jT6sBcaolo4QMJ6zbD1rni7kBHks8YezI+huwZ5LmBc8TeWytzrlZgYT7rJVfFoM/hagN/2pPM1lHWICpp72Pf0poCTIqq5BItaB8XzLnKctRaFUGSWMA/1qi6IQ5UYIXRBanJC390eEQeOLgmNkwkXoXPogIw1glRpIkJBIu0eFJVxrygpgN0HHTBCY+zid5Lz5+encnevLlbq2usHJEyqJbd3WpsZqk+iqxlTsxkCO19u1+75ure7HVqncCMy4sEQ/whu6/oAWogxEGXPKFEgthbmUBtUGLTDGhADa27e+iNkv+yB8KgHmSy2k0ck2xVaaziBjjtx5KL8Jy4QUaECCA6bCPW4rGxAwNWtLYbZ0qoQ4o49Hy6LQAZhopuGTHD/h+Jyjivm7aSUD2hlNO2C7nS1Bv0hfGq03yXIXu8qAoGUO4GdEbF9J83LTRbKCKVxKUI1agD0m/6H5qlkF2hS5Nht/nFjz3WKY8uX7/nSkczK/OuYWv/sJpKpNc3NguHQbiZ1bXlYn/8V3/5gwT5QoOc36OTfRLJOIfF00vWAD5q1z58e3f3L9evf/jZz32+udu+8oOf/De/+fV8jHPiOPaCCcULlKOUiD4m1CRRKDWg8NZPRs0XejLtvi7TcUYuK4Uovt5UFhIkisxvgIreSYItQwELjSLIq0K/eBP06ZiAavVyScQfYLnG0ZB7dibJEXeZXnWpV2aNNOsu6ALRJxzWh4SwXYdFIKLSaqG+4xeV8NJE/3+/1DmnWWvafh2XcpCMLqsj2uWIClSWQbBKEjOoBnrCBxm33BxM7u528+k4UgUcpPWdhyiizjhtaCbVmKRofVWXrIRddG7pmh7ikhbxz3HDyqgy3fz/fdGE9dLeuG2lVJVDDI6BySB4qRLqt0UyHR1P8M36oEel+tclrsBL9/HpE5l1OqsaKMybNUIfrTV+WON2UWXspTIi1wDfueF8ON+dzlpVTBZoBfOnFgEgM05OZ8nrZovD+ViGOCMM6rF6LxldWYPsLG6IBIjDWqIl1gzkFZaaI7iIhSSBGznaOPiLL4SJyf0DDQBFwJhMONEadBrDBqmkOOuTjS8eEsntDNrgpHZ68BT887ME4XswEiYg7hy/jpakXCpzoBYogdcc+ne4cdyS6BiHPLAfoFkiPxuDkR5IZBEdCuZHTxoXWk4Ydfn39o/oBvZVzBo9Us5hSQ6M8OwjOoETDSGY6AXQIOFWymljOLAQGTw7l0HnhB+ksSOks3f751d6nqTb1SU7NtAQ8lGTFJREQAmwmkFgKvUCEDO2zVlZ2hwESS7zlFFDniW9FxFVqMDoBhxoqFqEQsmnCaiVS7W1pUUIB2GL7KEgOenvZI81nATm8H/ieLGseIjhcj334PxDqdSHt9dvVZuFwsjnU04kDr53+UsrJ5aTgZvDo6vBcQnbd2OY6rkz0HzpoGR6pUqmgo7BC7DyYAk4qIOTI+GaqOMY87RHAJYBmyIAJgQZXyzsv5xappgJjY/aUAjqbB9ipYAG00FWDaLCoWUQJMZtSGoVGjyCpHZW/XqaoZA/cMIZbfebFaIL9amZBlAAkBFWv1SLEBzeUO6lKqIrenO+WhF0L/AHuqpJQQ7hOFiScMsaOH2pMLdUP99wPYDRplotHs0R3YUMsjT00haJHdtV+fovP8656j+8/IF/EFiIExQ4BBlycw9ubewTlXZ3fSufid66s0X0Flx8o9d4/IEHVsLnAh3OI2yA5HV5DbmrneaFJy9GE96Djfde/vRTly5dLB1cv7j4OIof2iecWAHOclngzOESTAY6KWiYyIltj0Ig9jxbvrqMnhayDYVG3JawZRsY+CmDCbjJkvGPCPIT769ciQZWDcqBl+oCkwEx9RsoqAOLXSoWW0qmfOF0tLyb7pYlEvTDir/uwSS4+hPPQUMqP8AkEPIsvRMoDeROVcIf545Bmq/HF6YPMYTj+5on+6l1QjHK4qnBBqBOQaN8PTcqAfLJh3mmP/TvHFRGZ+MeIqdku5ruAda+OuC8qIofjJsRHl+i8uMe6pLTKMVokFu8U9J6acWcp6zG445aUfqk30IMNaGv/NY3LSpdEs4eV8FUTL9q3LQzfUqU2uaDq6qJZC14tTMi7c60wEMGT/VZz+mK2lDTx93Ro/y8/3Iaun/J6ZUevl/CnhDREvNg48C9hfSSyMcsWCI7PThXQ93lcWeDYeYZldzD3S6EdsKUEeoJERSBgyyJxUNn38ImQKbFdqvJcbwgo5E5G6oDIlT25cNDT8TfaXeguaVShXMeNW5p4X1am33RUxRC0okrVkt55yAn4BvV49RDqh2yz/hDUQgFZI9/YDh5dAEKAgdPUg8zzbCQpumUNP2k7h1FEskEGwCrCqutJ4wcK0TV0hblQtvJ+Y6TbDqaz8WxCZNuFAKAqgDLG8sHozL41mjWYnMnZs5cxEffzVFdvJQ0jinHHs479A1GiDkE/II9amSuURMEUTjuTAOtsgaVdg4ndd+YczOaDXRSnKaDuFsrldrNpiMEwKsRXYwvbJITKLvDEBmSEL3Yocm4oI5bsIEmj56iyImxX7oCvdzJyeeWV0/cq73yfvvqtU0c9oLB5n/2tZcuLU5axdvuzgEHajW64e5wpu/KhbSloOiAcvASAQEbGAbUgu52lZrcKCBDEZYyKNTQtE0yWMJloxjaOee5N663ByWkBaMDVCjOAj2bWGkXZnZlqJDpXKkL0BrRirNQDBdJyiEIyxog+o8lfowuBbdOjUslgBvQ1BpQz5hNoqPBF9Y7K4Teqm7wzIrCHVpZYG5PkceWUA4p0Xlaai4qIsIABFdxTYma0J8WBu15OJFO3mi0peSaDt23W+oAFISyDL/vc5W+/MmTp04E/vyVK6VmM4mcWmtEYtGFxQU4GESeVpsTIqO4GaSzo0B4hQORDo4OyJQCIDMzC/FEst6oLy3MPvHUBdewO4yQLmLpyp1bTz18Fn6AlE6Eqh2UqjBO0AyORYcCekMwRESAA1yHuUAHLpCxI0nwRlkodoDbStQGt4/LtMoBIRM8NVjYBK4wAvujrDYHntXIHac9xHqJ/MCKjQNtWyScDHji0cjpVDSXr1+Ntks6AwQVK6c9wv13hlWlYY2IavESBlEZFQuivKYfuui8BETnn/Nb33nZmzqllzMrtoB0XX9AHQ7S4x2wGFlKMuLLD5psbn0OK+W8itnZpLzXVIPIlQ1Qz6pjukjXNFS+SqrjRdFpe07bNEO3TXDSbS46120/PO6ZVUYdDsgoAHAZoy0LLuqOVpGuqSr+Oc0bVKbXBQErY09O2+JDrUtCVTVyORACW0u2JFXj/VEd99zAyw1rTx+/+LKe3b/g/FJZarea9Y3pVw95wfFAdbk2wu8TAxzhHiOyMrMIoQ+6MX2pT1Ay03gwE3D1mP/YJZzY1WaN9JWH9XpdS0AURZvudCj6QvvCQt9hYc+LFB/04zlGIeViQofDiSLEN9mOAd9hM0QdfBq9cHlwb0c8R0NB7XSDWLR0dpY0dJ16C+aLZuicXPghDIYDbCE0xxKGwxUfhdgwIAspPj+YFghhQ6upeFadPjGm3RF0NeidxMM+8v+w+JkNonFh/ZFmcN6bHkqTOBfKfuy9t292mlXlr0CJpD6SqRQaIxZNijAhnaBL3+GuNXP8FOGwidct7mtGWHvIUvL57/fI/IR9ZefuVqNaJoGPHlAyOler2Tw4PMjNXyDdQ8CbyCXm+/260mhr9xKQeOcD/SzQ807wDQo22doC7tMXlhIro8fOxDePdpZXsk8+ONNpHeBfH/VlOUybE/k6Y45fJatrg6RegjOClbYqvpGSlZ6x6oAaTpM6Y4SRmbHD1jh8v8uVijA4fDp75EJg52ohVbFYeGmczDbR3cwAQxSjIMEPmMoEMGWup/1mEBwciKWA1thVSH9PqyN8zswBnUWrwfGu5QDaad6DeHYKk2zBCH+QMDXrGoJe1gN9MckGlyH5gVlhW55kDOSUTQpPp0EjUmkHNX1ebNdoMoE/JaQF0l19syL0zplYeE8A3njkdHpl6ZPfePPW3fVDVz9A3kAYU2Vx7mNJkjMRw0OQJLQzFsugrZzJ5apk/S/tpHL5iw+dPJXyJyMIY2TVyAzaVc5xi6cz7foujAcnfZYb2HEYjQ6mTiWSJFynE1pPyq2BxM5/pklrF+ctphAehP3N4E9/6T/IiUQqugRtYcTgJnM2BZCteR+cleDEEFUx0y4DEXK/pB4pPGGlQjh4BtqT4CCeTXS2WvWjTrs9anBgw2CSGnW84Ulb6kJ0iBIDrDFRFuG481LlDr7z+/ji9N79Dys0vamFo3q0UnSJHlMdCAILMfCTKZ0VTFJIbOMINp5G07V7UMvn41rvIrva7O1RZzeiaYFAcARcqg+wMWJBRcBySmm12qC5KkqiciqhTlhXnF/6rVtUxyzoi26r4LRCoYe8F6wPKqa7hj2sV6ekPaUH9ZBTGx22rmjc4KPibwRJZ4lzT9233lhDxxUcfx7fOf7tfNrV47efFxEEqE9j5B0+QUuM0YDYdAHbaqtJCmepWEADXCw5Y133BTmrhA+0xTLwYglw9bxEMBLeT4LEHlrOZoNs6JweiEwgWBuA1J6gYaNXLfhxsEdEOdlliOQ/IfE6HdaOQVy3tEiyN457I9AdpQE8svRBOO3zImQXBS4WvAFuoAGZLEBfHEM5TYCDCZGOIYNK6aPDwKAmYhVAFbmHAGaiYt0kss4kQuhyUtkk3qDjPmHDfbIC4aIxaDXYg5IRf4Q1AT1DjFaGGzmwwxMNfZyzRyCAe27u/Hp90K6XIdsGFnQdYCMoCfqL4WIF8t9gJZI/pXkmIzmUZkpK6JFNBSF4GuB4UikVy4VSt1HDoqnlq/9sLuNavXnz+jpztpTPhqJtotJaGHd7fTLkCrEALx3gdCmtkUlwTFSzhATW+7jXyvp6Kw/nPh09h2NLm+wE1XagnyIKCks4KbE5fM3jbZJoQ8w+DOB0lR3jGx1AB8m2qfSdXGR12SRK1aBvoWRI2wJkwkXua0+jw0yhnxfF1HA5+hoBQB6/0BTl80PjjJFARhPhAH0XnETUMWz7SKBAlcJFnLbkXQzvwTriH0PUBDqMGMsCCw3pmkzIMADyGApG5dNTtfov6LNi1IQmnlySDJCG6JhIIikrSNZnTVHE/tsbFZHlwc1RM5SXFlHzopdop0rou9MlflozOIe5+kn/+J985qFb283vvXF7f6dCfAtXdTQmIrJbdpEhgW6EtROQ5vakc6kTq2ut0r0nn/sYzmWhRikT9Y4j7lKhXCjsnc5cbNcIDGjR4S2q0smgJNSE+x1hP2BXVQ9sZwImwnH6AXgZkmAqBYg+HaZE3jZETTIodgrTATFArUuWOg/JGALDgnsHEit3DPKCiuMGBvoxr1ifqL7XOizf7fpnW2O/ezme9FUrLsK6ux6CvGcj4xYiJ2fpCTC0BS46UBe8BH1BSm/OLyMC/LDrv/CpAscvK67Z0wWbR9WtypTECWlPGj0WFqpdjj/zDNpd3/ph89zpYRQuEBSSHlv/9JDTtCoCL+wdTEKmt2wlAqb1hHk3HFM7euj4McMlPXw8Bue7c8HGp0oNdCqi2dAyFOui3upd7RrSqCn14OcvpwLVoKJOaYoyFawXnZAunNfDasOBw3EF02d+Xtf9b7rz8x/Toegx/vjFTIuDUZNOlRo4yAAa2X2OTB+VmiN2dK6JBMESQtpEH4AqvRKtEafANxMMpKYmIT6xuqR1a3fQ55O9AXpIe4zcIKLuaFT6UDd44T6GR4HYdSEsjnF+D2oOYTIUBwO0uHh5QPIcpBGEZc1TlxQfpkfgJjnRyOgjGR3+MRxFa4Z+WUcFmVQIr4neCqwUuiMCkOoZr1RCPD3uc2dP4gLIWcjdXgPnAjIFsUgg06h65P4REkuFXkcoITJHkkv0Jz4OEm42a3gGbR8e1F1kgmQzgKhp5WjPoeMsJTgnNgCRP7wpbf05FjhAqaogdfrPImXCDUGn2yR7MJstirNGpQo1kwZG0FbnmQHUcRwX9c4b7152T9InFny+5OK8kuhFpR9jZiQ68QjcpSaI/mA6wW2bowEI1MZzV6fQFznLcNgrI9eNhhzXPG6Pum5PDoM6bhVAmbZQGjBHfBOZN1yA9TRioWSu6pBhKQNk4CAAzFcsgs6NllFMcyAkDlZtOEhNryZZYDEsIQkzpEbkRPKSKcu0wISLhiRCDlz1dVqnPanK4TxIeSGoSVqnPWpTxXKkwuVPaagkRvDiFnsk+iVm3ICqi7zUWV6yb0mnb5g3rZ8B6OhSclapjJaIcNWa550dDOcvQM+otUXpZS3pXV+c4nwK1rQ+IjH3YFQvnczH/vGXHy2V2/e2Sgf1JohMXkJEypE/lp2dxfMn5O2j7lOwX8y1kl7YvnuEIBOM6hxaZN9JvzbusLNXaq0m4vBOtbHXRJ1JLm4FAhQqB+RP4YwwRg5A6IT6Qg+0exrrwRcgYWRCsit2Ecuzezwy5k3dpzxD0MBh9fVdW4ou6TtVUIRZAuLa/KTGYslh3Oi16ySm3a8WMil/PXeuV0hGPOMYiQA8lf7gtZr7bkeigwJV1TNVa+8O6FQ9LQp2+qbb91/TYej39D7fKHD8wxaYU93xYyiCAiSmgDqgocCXauhGFNgvN/B6wLWEUnSeRqwdpxrnSX3X6gNHwSvWjRpVh+3Thn58yT6d6867FbF+TUurS5TSKKlBbU0L6sNuTetiUvSwwdgpMi1ozwpadltFVL+q4UPgQ28hWXl6YVrMauXi34Wi3TzuwXQG7LlpJ6YP80HF9IXe2qfTmhY9d5hAvJwHnGDagMOG7mu7RTNAZBDuAxhiQSHjdeEazNMFgQ8SxVkvPVxT8PJp6who6LOYVvoHYwFSOQ05Q9LIrOdIAMoZjFd7NIAlCZPDoC2Uq/Q6qWSKw1s7Sq+ozkOVUVFAHFE3lktVgmKUbE2bvLYHMX1ezuPuoxHGBTEc9hD7a8QXC+kQtai4chzT6JHGy+ZCOk8PuSzoVg+3hVGyWT+kH2TaAiXIbqQsV14WndKLEjxEs5ADNhLMHVB4Hxr4rr8zqGOeYxuSnW06JBEzkT5Gp0UkJGPsIvQKVtJ64hrftbTYViBWRk9ViBtSvbnb9cbR3i6rnRBXpV7De8kMMSxEtitU5Giqeu3u4WAvEB4/l5kM6h1b+sgfgqkqF3XEbtNm4yM7PFwu4aMcWKBTiKnF3ZY2xxVndyIMA82u2x3VCGA3HIW31poBXehitEQ0HFUYvp1S3DBBWlyiieIL0KBxfgOBCOAFTlYQKRyDpzUIn6hEhhz0H9SlHJ8jVisDZyq4zcvWjJBRsCGTN8w3tTIY2bfHeBqDhDZvNj5AZ0uW0ZI+gUzQ7FO677xAPHgGylDWQTl9tRaYEUwA7CCqmavstegu8AmjnEoYqlqPeANdACLZfpgVUUKL79NT+qeK9VI9PGsXwXOgxD7lcbV7zXGvwWmzFy/MXhjPclr0cIQD8lw0lnH7Ivg/BTGXcsI33MVgsHXrgPNovYprIRCf6GsBn6gvspqhneJkg3ulIm4/HPxS6fWOdg5xBMBGr/1MswynL94IqAnbDadEZ0TehFLqogYAFoov1w3rNDPPfcCkqBmpkYw/cuAkpgP00WTyIBsI+x9SFRuwsv7SkPbv7t5h8XqlPddNB1k9flw0erXG5E7bs4WFFp5aLVvDVEBF+i6+Ul3gHm3qpVL2bsXtx/03mz0VE3Tt04Buc6RrmjL6gUIMfwnSzwI7W2TDesO9tdeamclqCDit29PItIyHblmTgglV8iaCYE0KW6Ztq7P3u8ETP/+hq/w6LugUOr4vtHAasD7SmmGUAwp6YdT//sPTntCH+8hEdRqidcTaFDWGGWNeKaUjq6a31L71QW383d6pS3bL3u7/0hd76Yn7I9LmQZM2MbSEblQnvYFUFNW2X6/XcDfnmHMuYmhl2YE94i5YbtoEKA7QNQIARt9AcxSwBGYhjcEngtu2LFmfsPYqoE5Zf/UAQxdykaMNdrRJuMEkHQsTI4PSHtYU4gLVQg8kjfJ4QtiHSAZqBVYl5H4yQX9Nvkk8T9gSMAYgDkD3ZWVWvZjNkbqJ+CWBLpl8JgQBwwAjxCMk8A6hhIpCzbWwMebS39GIQKVsMhpAgUE2OXCJvDX4tGNgUEpIVpmYY/YA1i3a+VTKHxh7ODWxoYUs9IOKaPWxWCjP49qwTWxwuAzJ0IIe9mGNG9Gabmk30PqjZimZABKPoHjD752Mp+ScwP2VHRiLs2qWCgKZjR8S43FbAtiTyknOhDlyE6jM0QRa4lr18Jbj8KQbRL0F+Rz0qx13bRibDCN+qMhk6MfkEmZfYEMCDBEM+wQaICuIy2A2xQkKiqIL1kVWiTPx9E0qeYcVFqIh3NFtXHE8adwDeQ4GnNBokGUAVhnq24wz8VJHaGqgv1At5epjrqifgXFZQwNBjHJp6igu4qYVysUumjH1xynj1KPf9BJpAfGTWQeegpLSkWNbdtDfcE3XhNA8QDtxZB70VMJ5yiuEEMc06wAdpY9TFOWTHqC0iuqUA7CG/5odLSIroh7rO513Lom68V2NGQpq/sdKCMFAYV5YKu7OTr97x/3/Yey/nmTfsvvAryorKzMrXfmq46+/fU07AI0GCNMAyCE4Q44oYjgPowlF6EERihi96d9RhB6lCGkU4syQMwOBhGuAQAPdaG+uP/f4U74qXWWWS32+O+vcvg1SI+U5leb3279t1l5ur7X22m3pXG9ZuqQCKnU0mCA1Fbs6N2E8rXW6x1d1ZwtBT+FPVmabze73dt8D1CeHk+ePds5GQ5YdsAOfDKP0qFBtid2NFDJ18TYVpp6iZez6CRaKZ6CBRb5lzpTwzb+Ci7qVUV2PL0M0nkjrMtIs5TK0TIIKzp9J00G3KBEfqA8heYKDKrdTTZmC0nBa83f9yvPlq3f1eP/cTTeM/bMivsyKls/ZWzqfniboq3qO4GqmMznfRUBXKh89OvrSWzfbzusphQxWjaXTs7a8ZzgGUxhA6LC8ykeazi/PzC6nmZ9378W1zxUoBV1PsciAvPIdTy1451dAUerJ1c/qL2XKgGZNvRhyaTrzmydDfgtM0M3MdhjHi76lPv/y/KzNWU1p/Rc6l58KmMeQs2+zuQSU8li6E8z3h8yjViD82BsvDg5Zl5MSjDXD7qgwq+vhhVEoBxXKckEVGJi9H6fWh7ImxPYhhjKp12aNhy0HY68HX7BP45kYZ2Q7NAUGnfNaaonG57KAxSl9dW21PZCHkzhI+gbjZ5Y6bbdbOkcxjp8pSxVrgSHbZVxchWcZDlQQA+p32JUQNecKRILihozPUW94NApaOMvlUqAe7ytToBpCOKBAX/UZUqJNJ6Ap24dkOaxhu1m820tkUwOdGU+08JGQOgBIzxfow5CSiapAVw+Raf4BEkrUGaSudJkIp6YXZ2ixL8cuPgMKX6rdW8pH7yy6tj6VOUxkqbw8mU2ONqzlVKqKB6fLW/3p60v8JfFoSU0HkDp/fNl2eufg8HTx4nRwWTWBLMyLlsa11YXzcbMqvATDZtmPqbJw1zyeGQsmzRC58GZDi8ZojuS5EGyil0FVzSlngdG2Caotn4Q8P67RahnVUqwwGyhqrKyHNic5Tk5Wezpy4f5GG2DP3jWnFzDQTJ3FYsd4mtXlIu4ElJZ4rFvYsK7pU96Ds1cSeYmTAY3I8ogAC1CJfSIQMiSd0IS+5ivJyMWjeYt+01FEt0gA1qrINAWKZMsUXHNM5mV2QHcihbxmM1oKvPhRep+HFbhmmoGMZknpqG+nouOxYn0lb9lsguHnvatKU++AAX6WHXxAQqsuOytr9aOLpfPGLaehiqukc3erwy/dmb7/YOf05Kx/sjfuDaGAKdEiqEXv1UBh6jPKzoUIHN2AJ4FyUDDYbAzXZt+M5lpUHvNBRQABAABJREFUJU1XYU4BU8DgTl6zIuUKK7u1P6Dxg0WuWM9dN2pXsJW+I6+zgEzlaKAwh7SqBqNUYzpSGnShtFKaKdfLlRT8//JKJbPH8yXYUp41uPItYa7JBGTbuBtO78AOziq7+4f7B4edu5t6EYwOMqTh0sasX5k4o0CMueNabvpLe7PP8q088dnbf3gpT5UKZ4z5RYF8hqqikpTqrqvIL38F3NeX8qGWVDSrKl0BwxT1mn0ypQs4z96KUiYXZw2+eLCUvX6kfJ/Vd33Z8NNEZHmeTCUAo6FMTr57y7wVS75SFMdLYft7B8fOZaGwZc9twmdgUXiuEp7Nkj5Xok2ogoTo90+om5CYso4HmhrVz1AJjGZwDyJmHnMn71RCO78uTseD02M5Re20ajVa9H6tWEHsHh7Beb1ZupL/uOYcHJlyRZ3ONHLEg2nm/JOzKxmDGw2J0lqxLZcNXlQsnY/uGKqbCkVl46bVe0TOCEOgdxmA1AY5aEBvhIfYaSiDL28EIw99H65L0BhDAdek3SaLTpo1XAsCOC+qVUzOaGhf8dz8xPkEMmIATg6QUUaKOqt5hlOsK2M2ztgqhHt6FlcvHnWi5fyKHo+8lAx0s55fkPw45rOAOXheSKiASn8Y3dA67nh12Vxa6F9cDS4rz+vLV/vnb6yX+JaIN9J38fHl7R89f3o+Pt6YO+v0H3cG8yNbji7P97hpNr6y+tpXFuee1tNw4W6ahRAR/InfCG6VeQsP9VXn4mDIegjECzWFqmaY4F6rw2LWJH3VxYGS8NXIwpBrHo/wA5mZFHToDNNTUc1SkUpUEwxM836EirPz4NpiEfyEUOdZlCj04qVkWB69gANJEWwOJeeUKgKA5THlSq0vHvCzgFc2aDMPH0L0Ea+sar7oRJoOkvrMwNJ7pi2HgPppngKEcPnQymdVv2hi9lhuBa/TT6AwUeeOjqdBEHdzC0KkrSXkF6nY2FgiphQgFFQKR7NrbnhGlomicurafG1lKVmgittp4eL03lbHJuCPHh12Flj2WOJsyMjW/AAaNpRe59OXgCU9yJ+ul3H6cNlXJTIGpF6wSD9TFrxm1/OAv8x9ULaohL5rJ7/inonSxQLJFqRd8IkhS6LdiD8XZgYlbeJ8Aai6y/usL4HyDHZhAtcv971mBa8vXV/4+a/PCl/XU+6k/ll3hYdc4AJGmBWv65XD46vHj49furUelTWFZpB5MV2lPeSmaOTj9av0tIy/wG72M7AsQynPvCj62WfGUf7Klc+qyq/rvpYxl1rL2K/hkb7PUK08eP2WvpbqyltoR9veBELEBg9Tgpezwj4gvlcmcHbtsy/lcrlZ3spdN0vbpnL2ObsfSgGccjfjLDgSncGJQ8Pk1pnWscRi+S12/Ovm8kjgl0mHd6nC9n8Rn8ybeAj6gqI4xee65OtsxJ/rrK/47qt3Xnry4DFNAh9fW+2ojs/ASXM0bKknNlbXTy/6tZjeHYdbYTMfjQcBCK7sfLLRKU5LNwEpnKe92HE1uWAYi1BT+nnmmBK0EvMRDnzmfAOH0WZPFpWf9pTTTYp6jm8lZjPdR1lzdbbYcMLCaAKlCtOCJYKEcpwKODRKkpV/72QoUOjibER74yQxRTiXbSi3t9dWlluO0kEjJiquc6RLtFQdaJPdDdKY1KqNg8HCDx4cjh0vTmGM/Q2vocDmkATTfT3DsSoBincsEpLgcvNr3crKjYWvvVH7R3dH35zs7Tt4c7paw3HmcwLl8HLpyaNPl48/fmX+tNbfe+livzG86FXazpitjYdPP/nm9/b261/91Vq1jzmRPLEvaYGaGgSb/c+EhXyi1UG+RMwKaLHNqyAywBRWUgRUa6nVaOQcnrmKPaEjyj9tHIEV7NR3LEQ9YemYajKM8uuYkIBZmaB43vywqGCPqnSFyggui7qRdQDmq0ZP5cMTZaUA1GZrlpHbjhWrNzwNoxUFNHmh5QbVNBmgBatsEyGVeV9cZ0XE+yJH4xnXNYVyvfRmBoJIa9kr6sAf+ZLhQehCK0r7MqMkz4Rs8uaVEgI3oIHEPxcn8Gsk0X92y+sU6NXqc/V5m4FjmmaBKqa9wrjMQLareGg8vf9o/82tVdurbcCnK1i29k9twmh12r1bW1JlLO4eXfRBpUjvGesGv1gGSxcycf7K//SqdNQiRy8D68wHV336/IJCIzQMMP0vz5Z6yoBmNOt60A74Ly2DTQtMBhMn9WVQmojuk6KZqdgpIA4glhZndZV3lfvM5evXf/il3EifP1fks+//kadyLyQbeo/t2spX14aT6oeP+199d2zLGvkb+ilNXc+THqSzLhp3ln1qKbeu2y0/r7/nuf9IB64v5WMG7FK/X6X09Q+N+Jb7uVxAm++ZhFLM53XJ2f3cS2MwyEMeiEFXAJnlFyrN2jmL1NBSCqWSUt319/x20aUXLc1+zS7msv7AAK8QRaZz9jJnfgcebsTQTNG+mOwdST5LK2PdiAEwAEt30i/1Q7W0EiqPCICELCHS4Hsvs1GMHIooXtiYNpS/7uGLych9HGHhot5pdPcHx47Rs26AnHdfu0fmnDzdY9fe3F6Zzm0PTopdyUawypIQE9qQI1DSM2xEBHBRnB1bMJayf6HmIhXFVmNRzTCVlqu7BAZdPqat2DGSVUJ3zobnGLodyDiHiFKbgtl2WH6lI87Y4hUB+rlkJ55zQhmCM1j2pQv72taWV9tt8UdLckR89NMnJ4eTq1rDFtvq1WRjdfHenUa7VR0fy0XBpr0wHDEJLEwkMuJ+YFdqLzofkZWnz6urVYm+yZYy5WaIPIvfg43HuAA4J9iargDfKiJnBzZqd7YcRn7ZHE73Dyt33209fDY+s7mZtcHxxfP245wsHjz7paPjzsnT5op9C3t73e2HF92Fs+NbS7XNytLrk4cPj24sri8zcGR9wyofDdH/aPGFMAo6ZN60HO6SIBBZhaLshY9cTydsvJqud2rObS7IwcdM2Homi5UiP0x62AsZjUPLHxXndJh4ygQRC1qV72GRigoelZFUkcSPmcuEnwQ5ASF0nP6kdcs105pmXUlsUkJo9RJEdbFUP8Nvdc9eif0VA+QBiKMKFVoUYq8zqimUU74WYiH9Vb60yH1In8CrZ11+Udms1tkz3vNKt8Dquj3B/7p+uXhs3ZTzvl6vrdxYXqjX9h6fnZxML3cCdSdozLdkcL1qLHCa6AzNnE3ty9ubzUalPzxkytg56D17drh/eHxweOoMRCfJOIas+KHSTmFsmvd53aEZSEtnSoFS6LNy+hgARKalSL6Xez7Mf+m6r7lcvhfdxYUImRSN7I2gMAVZORYkzY9Y6zw1Y3V6UhYAM0Bc44l7L7rjM1Xldd3n2Y+fv88uf3b/5zd+4VvpUGrCkSwCCOvwoVh4cwT5ztHo8MiJp1nA6UlB6RePz3oGXyGkIZXOu+fCZx1KvaWXypYhlNZeVFDu/WIv/boe1fVHGVzKvCiXTqSzpZJ8+3lt+Vpufna13DSr5jWGFIETIvSYO6M4zAqVGmZ1zCrL+2ffXjSSz0KY+dTEbBbCwzOsMnzgCTLoXhSIsH/GyNOxo+rOnCy4IBaBqhEgRsrPHivF4mHKUrIQOsvM6enAqehnuGTiMZHYbAzlmXCY0g+/ogfqSRlIpqb68cNPLufPjkY9puRzJxsuVZ8d9HpDCQsmr6+tO5tLQOdSszKxs2A4cggZfa1newE9XIy/TJ9nZ9JT4bKjZHdzVLzxqBavZnuJP1kHtYovoWN9ExrsEce3kAwQhX/bSlw8XphN1uo5qFsOIgzRvwwddBiwkzZKyjN5J7IFt73W4j8lVtr1y3Z7bvOXts/Pmlf1zqPDaWU06tarjbMFq4K1jY14a7Fq7Gpqd8LccmtNbE/U4YXLxtX52vKkMX88rVeWq1ftRqXdZd2yw9kJcDFwOyoHQ3T8Owt3tgrPn680sidZIHm3PTc8xpWmf/LTuX/2ettBXCDMCiUvp4MD7Bduj04aw48brWH/onO1/cXz9lZjsNQ4fXY87Leuxnem45/uPlpZWxfYE1te5lEFpix46JtBZ64hn7hYNC/0dr46olvpiiHZwcuVHiUwRLfabdqKTVByyMSYYddFcCkVeGWywxso7PHUFC94LQnlPM5kVgrBTBNXZNAF5b/oFeRFLAy4aBhP7M7BTsUznSHoHFJgK6jbXN1y6hTyLwfRFOQqzSsdvpzaoRrfSIkY9H0mgwgO2kC+qzudLKSR4ulRVR6oWg65jMD4+Sud0Aev0k7qn30vlFYACIScLldteUyX6l/ZrL7bPRiePn16NfqoNjppst+f7UwmDKZ8MLVTWwRu3pjeu3vRao7nmrYlNqfjRfutTi/2eoOPH+2PHCcmbWhlKirOsayPh6e9bA4B2QA/bcdXHnIsHcm4M9zSr9k8lB7O+lygEfhdly09992zZRIUVXdYQ/5cz1Wgj74fxIh6P7uKL8V0mtsAGCKLaplnfM3zCGh2v3yUy779R1+emkH0P3r3f+li6U3pMhAgrAioSHSZU58cjO+9VBS5wOOzSq576JngPAL3KtD8+53IEPL/c33LIK+v5fovvvJ8KV4eLPd+3iwwlkauHynlZt/zdfYzc/NZBXnUWEKaeKlkB/A3cjhzQRMq81UqmD07q8P3WRevkfL613W5axCXj7ICCEpkYtMzTE4dvuGDdHlbuk8znXGj5nElM8V5wbrwWDiEc/iKl/GSDkaDbPqNmZgCiE2ahYxmhpVBR9/N1gwKQZtSnVGF685NVy1wpd+xLHaYrTTTZ9P15nJV/OX8nNycOsWoJKtDRTbfqVXogP/mxd4A5qeEc8BD+r7+efer3nYqFmy1BWlR0gHhNJRtTGexPi/yj6GEf4MA0C2rgWTZFzIvlIAeXQAPMfA6w7ColEAmMUMsRNPLxpKsy6AkpFQIiqNIJsudjkMaj48OpvwX3Yva5ehMcNDofLGzeOVQS7sVnR7GiHw5dYimXQQEKhk7W7nwf28tV1eWF9+83apVHTafCKJez3EFBspdYbni0GM7MGUuqkn7AwucCGpBsngx11iYHgp5kRVjoPcS8nBvRo5lH9jZuNV/ilE/XeiMl985W74z399rO6rR0q5sLGldzbXPZOe4bDXMowWTiguKImW8C/J5L8mLwMFUTytxcpyfD2zzYDi55g1wxfRU59fWuqzlwR2TRwjACvWpuOiNwZ8gilDc7BWAHxEDSWFkSeZeoRpfgiL6wPJDTScIacdkuDY4UZPrIp1K2dhztGWxYtTVBV4f2euCk2WZIk0CthoMLbQ0q9dTjFtGaWtIfLEeLnevV6vXv2bXtFE6paQtgVaHHhYHScgU5E0H3C9E8fO+lwvXtxSD3CAzEk/cWVmBqB/9SeXp+yvTo2zTIIQIc4kOoWV2Gc61h8f3v//kYm5Q/cI7l411T9cbF42LLKcZ+Ne2aBHTkSxCg9pRr7p3er57nNRBQfe0P6P0gMP/MhBd8z/MtwwkYPW7fE/HZz0vo8jlcquogEpdj20GggLsGdmj0rIN0PNwv3iDfU3xUhthrDnMYiaOTE9+5d6LDpXmZ78/68msX6mnlJt9+f///bq2PAzRQlJmHQ8LQCxiBaPuHmabqPSv6cpMULhXvnnKtwiAgiufa3UGglwoHAr0WAtnS89ZqReATAV5FTBdfy/V59pnhUqRnxdN8Re/yq3yoLc88OKhyNHgku5hP8zBxd6GoiKrZNWij8yKXreajxfVztChVJ23WYnri6VchhxNq2hukQLkN45k/mKkLmox1O3JAGH/fXihoO0coQ7ftJ1SSJFNGBKEoCBhmiYA9vb2pDgs4ZAxs5iOWbdmOAKOsy4CTUHNjKBcMT7cdbHWbDsE5gJ/WqoseU/Apg6Lh0l+HdyHtxYRTk0puBCDlL6EAFacPZLtBqQOJi7TqEpLv3TWgUm8uCwuwmZsS8VdpfOs1ZaoydPxUd+aIOH1DLPW3le8vElXmSy3LgZncIy5hYaE7XbONmI/uhSbhAAYZfkNM3xyxwHgV2ftwfG01dhCGvXF04XGRb/SOO5PxLQO7OSkrF3N7Z7s39m+JV1CfzCoL3UdTM/Dx8JjRfHrX7rRbLKqDoXPZ0Q03er5ki0PydVlk1yOYk6DV04/XzN9WK2gKX5ul2x6Pqic3x/XLztOqbRlVLo1idhJjVMTNzxf6s135pvblclh4+Jorb1x2h+1Ls5EMC1Oz9enp4fcDcuL9GjYBkko4yAb5IoqbvQzAge9GNPwUNbo6PjoAZR43Irdyig2Op1yjoTQHVNhVzb3SvAj3k31FlatZm5w+kRJUkxh992CAD8JtnuHRkrSJIkfOF+pTsjA0gMKEPYf3/Q1SqkSIKwpqvLFBs0L9Ucz0nUxvT6CPNcvdZdG0g2WKG4SEoJAKg0XMCo74xEBhO9Qs7zoG6QQQ3xE1XWFualICNTn7K008PPmZigP5aoL64vrzSefXOx+sjDtzc9NprKaxooC5ZydRiYBgqz+k7tL808ePK3cuFepgaRuTlqXo8OJ6IJKu9kkLkVEaPfo9PxodNYfjs1TepH2rz9LXxTRsdLRMJFytxSblZ310ITM+j4bUJjD9ZhSXS5mHjwxe+ga6LlReEfpiwVt+IjvBbiKBsSlfm4qTAHuREstPcj7iw74nqsv/mY9cuHzrxdlP3/tP/L9F4qhjigWcaOQAtAoFkv76BCaDPFBlzKe2cBUNns4KOqVsX1Wm6FQHQIAV8OD4hYrd739vZ6+eKwMx81SooDws/6+uKjI7OHPGvqsyIsvac9/YJvVh8X5RuuMoZJn04p06mD40GUYWqkv8M8zeTSkloulhdxITS8qL8MpDbif4lwmgivK2E0k36YcXObOkGPNH/RG2RxpR9GsHbWqPklUMFodSMeYTXS2hNVcjIbD/skxc0sM7bEO5qVt757L4PUnk1B6ndpKy+kdprwUfiLppnjr+Ogurk5Oe7ysm/K887jGS4sAmWvO7RElWsR9EfieFD3qKHnpGpP9JR5DlgmmwMg3h3qJn6dNx+pTeoTxU95Xuu3t7Y3j/vEnj3ae7BycS/mTdThZJ7fUhb1oy/KE4sBTO85YXSSPy9lSJAmBtpDsW7Iz84RVnFEo26i2m8wqF6cLc2PSMoolG/SZcUirsypFw+5h7/h46AD5er1lv+6BnKeX5x27efsXYieWWnXpgVttWjuZiW0757F+LHXSVObnBAFKshr/RYXtaNyQ81z+ACeqEDwXx2xEih0OwKKxu3OW8Pb5i7E50sek5Z50r8b1s1OBn1wU58eDDab1qTRHpoa5hAY6x1PWbLZ5NEKyDClROPBr9pfMSqg3yBRnKa9Ea7FuSwhOCBVhH5gGSb1dTdutyu31lt3q/C7iqWT7oVFgy0lJVkjHm6mpL1w2Gzphn0CfFa8+XeKxrhdkDz4GkZOEqDonA+uY9g9r7HXVju0QBQtVp4z6i4HZenVasQZqQkI6inHBOo5qZmkTmiVa6X9IInVnKBwGZjaCTWlSJvWVOKDCspQIss5G7Q4hMl3iHopxxZIFhwm3mCF0ygLS7C/9yre8Sp3B/yB4pSlF6ni/8viHdeZUobFOzSA9TSGIW4cg7UjQIH+nVumOB6Ojg4vlVUtUa73x+eiECiaaDB+4PGOSHJ85beV8b/dEtELpS2mxENJ1Dwpll4GmQy7qduB6XTAfLzqacX52a1ZgNprPipRHA40Zd1FmptElwouOYCbyWyUB7ucZTeGppUoNlMaVKSCe9WT2ROlWvs4a//y7q17/kRufL1T6qczPq8AmzY7fKN6KWITBQe/MjtSVLqWi9FidPy8e3IxqmE2D5rYoP9dTaXQJZzLx+FERe6hG4/l78fr8d9cyDaU3gUyBWi6WQrOSn5X/7Eup7sUcFLwrjQSWQJjKsi8H6jNSn12ilFiC0huqEIYQb3DaCAUF3Qi/0reCEOXbiwZ+DqXZt1K5Zym8i+EiHmfHp7Ah9nBux+Sy57CiOHCUwhtkw+voo3hDkLXk+8QsXPcIZD+/FP0/6h332UuslkKKZS5KQwFbBqbj+V26kI/yNVeyAqCtW4fIvd4cDMyZMBJXq8JAnRxrbNZBIuf4bnFbIx72B8kqw10cGzVGics78OSMcwws6lUZgZxLS7oLSQk71Bn5G1rN5XZ3eWvTOfbN+lJjclXdP4mUU3iJxr0oeXIleQKusNesvXdPhsh/pdNYX2tcXto6m12aZ9y4Uh1cEYxFU3c4ZHvJ+QPtTpvWQV7ZOnw1iaZcpYD3BtBoc33ZtrhsQp7O5zCbS8dYBvY2slEvuxUb1sFxrtXoOK2WTl1tGPDVaNw/PZ1urW3B5uH4lH/LsTnAy1Bl09Z0/nwwPNvpyc6+2JSx9cnu2q2XxEGcztW1Lpj3am50UqktVUiCkdC9xcFo2SDJbnuk6Df5z7JoOTc2OzPnWSGeLHULZwzyEvT5HuK5osvizvuEmE5ALwRmA0XQ70rs7mpzVU52TJU0t1awjiQNnVGW9aq/RMBLftO6qq3JGTF/1a/ML00kTWhUKkMKBMh4hYLIuvnICKa4rgStloYXdnBk81k8TTNuo83gTqGc9mKzVltzMJpFKkMZCU29t1a55nv4bJAuXN3XsF6rs0or5tSktSkG7EI+KVYIeEY4wdlMCu4Luax5RHzFrDzD5NzMa4bKaUoT5ZGC0yDmP5iRT479evL84sneFXcaJpNCWrWJJLttwv+pS+UwDSsmm5Z2j4+yAD0fN2pzzwf2pLPpSesqEUz8HxaNT3aOjo9GEdKzLsy6EmAUqMwuaiY9+PmP66/5mHU0T+eRAtDP3c2l2V8ulu8po9NpIp+zBnNp1kY+Z1WVujxSrqSZ61eA9qLOX/hS6lAe81KmtPbimfL5+Wuf//75Qj+/nkrYZ01rJj16ie+9/uToaHz7ZvhpKZBPTc7Ah02hxrkqg+k568eQyD2diLCCdfgeUyflY7FKs0n3rgfxYoClv7l8/ZoB5rMLoZoMrdz97BlfSj3Xz5Qhp0i5XrpWYBXnpTbhEHKAo3QGRyxKj4Wtli12jKNVe/tjoy3zUirQolA9QCgk61LAUJq7nrfMIhBpUBF3Awn2bruGAGRxjiZNncM13SI1Bw6cxokSV5EJsr6n0mLt1sP4GGIMyy5EQheEpYOe46bYfwim2eBfDHL2qYoUL41npL4XfNITdgAOWFAnNEgPdOcj/K4RDdJeZGWHg2Gyv2Hr8sEtsm+Pye3k/AKRq4qAeY/SGAmSRNCThNGy1JpksfWOowrj5VzudOWItjsM59IHvD7ezYuLBva9JOljzSriqG+M5wTD8FxClrmtZnNzbZWd5sKefHvIhAlNIgbSbCBYU99KZzXBG0J8KnbA4RTTBoHQap7VrRTa1cbGYm3loHf88f0HO3snK84VW2pKrxpJq4MkOVsO52lRTLvd7ul4WK9xG077/Z7+2waVg8avzlu1jpOSGVusFJy+MeydHvav/F+8mNyoLRw/+fDtX3q3MZpOJEa5OmeunV+sn1Vq5xeLDZsMcF9LmAt7SgcS5gbmwuovJ9XLjgxulzbxEHfmB+sJSQQD/Az/z4xFo5Z2LxvlFqqPDh8PKKdDh0BZecQR7Bi43/9nv7F5c9O0U//JXplVl9vrc5XH53MjdWZFUTl/6ebWu29+ud7ojsYnEgVSG6zHDi8veoOFbu2y3mDhi3HZluqFs8ulikULy9da4mIrx3zoZED24AnuSs5jOkdBpcvpjfXtjY3bi/Uqk5fd4rAmQVLTlTMJnrMMVGxGhRCdgZPY4tNtgyHBRM9ZrFzUFi5z4Fdh94U6UECAUIbPksXrZGVaVMsCFq3PXoW+NFCIvLwVRhEs127QWzJxSUN2Hk6PB+6HzHyU/YxJOjvnpAqEEJXpkvCqXLbOx9VxP/Q735w/lQSIOlUQNwji3Ln5ZyfDDx/u8l3N6Kd0I82VFtNkobE07Wv+ZjdLF3P7F15hDl6lSOA0G0e5lkfLl7z5geCR/YuBllszPnJdbEbwqRCEZg8XYTpDo3J5VvKzWhVK2dmtWdt5cPZKqeuSn12b3fns52cVue5ieaJwN8yIEcjUFJVCLpjJw53+m29KLK+166eCFAkosKnFGdrs6Ze7T3YWmyuVpSYk7AiugByUkPF00u87DBB/88js6dmQXvRDhddfA5zr+gtq5okMw6gKt/37HU6h8mhulC/lDfhwwOgOs8uaiwFqoeIk3lbQiXpolYv35iDRy9GptMPW5wFAwF9gqBt6k85oYlarykoRV8rNKP+5lhLesw8dw1jMTn7sm8Zpre/cKe0w46kYu7cOZTSgl+cxoIwIwJ+SRgQvA3aGDllhcQt987+omJEcaaPwlPKZfqanpf1cKfXZCEa25HA2DIX/TwVB/AxsvicV/vl5U9wMf0hMy6ZNjoRw2mLbsVFA/xL/SyrW6wxEQkGF45+uLieKX45opwu0lpqYV9y8Ua/E/CSjOQnSXLjoXzpRoCG9p6hqRtbjfuKb5ZXDa6gG7eaCiO2cVTnE/EcWBDAbGYvVppHS32jiR8c7OrAwqTovzA6enE41f8myz2m9vpYYkv5oBP+cYXmwM2GwODw8AuSlpdbtWzctCyRJJjUnDlo8O3eMCMkydvq8M787TUfx9AaHoNxx8Gmk4ZhFenh+trM/POllmbtcnqWmPJzMbZ0Nfo0+PRozFMEYJ9hULgft+f7Vxcl4sb+3vLZ9tLt4uC+XGKMd5k2tP2t0w+3MWXb1oHPS16QESzLRIaKymJsOl1fXGkvSclz989947bX1zZ/+4FFfqtexqk/r882vv36v3VmVt4MjqFFt3Njsfv3Lv3TWW/zBh89sDX/lneW7r21/6dVXGgtrHN/jUf/kcIdD5+u/8tX1t9754Iej3U/v33/2eDQ0JFL2aqm9sHlzwwYvUcXNdne+6XTH3tXi6dLS4qQfTpwwFHi3sLi8Uvvf/zf/9Y2X1ur1EVZbqW3M17rSGv3GP/utnxw9eXL/uXniN7JwQfDAuLpae+WVjVazJpUCgo+fZyHu/ZXV5aunfXzD4I0av4OZljyxki455SbnlroKa3HiILWvL14FWPlRruXBQloF56PL1OeHdBXhBjH11NENf7tYMmtvx4JZ415acUZhAWr+nOYFR9diu7M1+OTpaDAlCBBEKMM2xvHZh58+PTzohahKG6XJWbN+//zSrGvXlFcKzbpUysy6rtcZ68+vhFCvR4BAPxtUHrzm9S+Ebmp3uYDqsypyIVXkZu6VBvMtYjQ/ZvVf35+Vyd1yKz8//1LqxfO/cPlz1z9X0eeLUHQuL3jNWE1oY0AKcM8HY6BbzhlA8drhLLoa07dWqlX2tB9878Fbr728cXdt+caN4e4eUkY+7LTz80t8XmVJMVswpKWMEfhL+zMIXrd/3WM3UrG1ZgHCDKNmRcozL+q4fqqULt+vYaYQX5enwyaFS4iaEwDoXO+TkZQkjsJyVCDuVuvUK60qXbiy0Dhj8ZzwLOFFZUWbDpRJA15g/9zLDx1SL1DMJiv3oxdB9pyRojyLEA6YI0dYTq53a2aVIHVmYRHBEuVo22H/ZILfXFuT8UnvKJ7RwjNiM7bgzegCgQKw8q71qGXXvQp/DyjZzpdqgnLoj3g64y9na1It1Or9oc29tc31dZFFMoxhXouJ/JEm55QbzIhNZrWxgPVOhg4icCTxtLW0nG29Dgp3glfN4dHtRjNJE5GcAaA9TttE/MzPizhaX+0cHops5PSIiuwog3Z93rYDy5He+LzSuGzOnUvHT2tcXGh4xOjsALBy13ULc4Pr9wcJD5KDetKXZcwk4ftndvJktQaWTtI8Hw3prY3lduPOrQ19IDwEuCRwqNv1y0k51k0kgdwP5/vHVADah7TUqpXNmelfNOHVnDydE4es26VwdHxOHbCJbNCPCYx2/YzJnwJ9cPCrreXL0T7uMiHAmmuDlZfGg590K9X+yfPzlS99+3s7v7F5GkV77nxxfuIYhNPNe0vs7KIyTUz8JpgN+WaUweEYGDO/JDH7RANi2l/8ja++9suvXp18/bXj/uV77z2+rA5XV5uvrE4FZvVzTO3o7HzUqDc2b9b/+X/x1W8MfvWi31tePuuRaQePWne65lHOM9oYu8ZkOL5ZORrXnm9t91+9sTUZr4wrZ8Oryjuv3Xrp5btOuhf5XD13TuhKd239N377S2oa7R7a/3HQGxwMmFRGv/zajX/wtV9xkNzp8NGiICXL5cz85S9/7bXfvP+lP949mY6Hp9zEC1U5xt+4c/Odr765vL1F876YHzmwKy7oq/lOu/arv3Ln0fHp6WEvzoZIABjI3zN/a7l5o+ucaFwbIDgYoBvQFPDA+ryCy4URzL6Ua8GOsD2PBfuFc7LzcLctzItskFiIvbRyo928a0tA++yyeXJ0cj7uXU7mZBW0/d6BkRaUz/YeSW9j8SGgTC3o4tHzo48+eJL8D9mcOGO3OhPyS49m3XnxkU5d38qnV6Z09ubHdeFyuRTMXdOrA2q6JtAMw6gwxGhzHo5TJB+pIFpQ+ZYr+Vqevr77ov7ApBC466XV0m46X1rOo7MvufmiNt+9Sq9e1DO79L/wnu7PYKByLDu9IbGB/fJq56BvN8BKh3/Oy7yYTI3ZbimHNdIfHh8end1ars5vHzz90NluS0tdqz4KsSBz7L+mX4FJAcyLfs26Aj6+aNG7b2UAMwjM3lMKCMpQvM0All/lSnkyj11fgF8zwJei1N1yQ1/nL+oXZ8tT+tVlu7L03k8+OL2o3Hi5wRk3uWwtte/wCXbXbtI3j48eVuftFci0le7OupefmaNMRZmpFz1I13S6TDMeplh+cBCenbOGFU+fjI2JRudyiCk3O+bSyej44uZrya9Z6hSleXpycqhL9HiNlwZLk6Uzn0GhdEWvSlPp0ew2E5DglYq0ZOg38RwrK22nPLP7s/ws5URu4oEZfOKerjCNHp8MxeywAK1061vbm8c921k9Pt+s15YdqHF5VW81beB0BiExQpraYsyMzNhMjDD9EiLJJMRVOF/zHMemZPoSP6y05hptuSiiPmxuWglybQ/kpcbR4xBhd5OOhk3Y7GBhcds6VSCbtG2aMOYL+Zin89kWT3cVsGRVIMsYqTK5bLYW7JNydrm9ypsby81Wc3WtazNbJjnuABJW+qCL0ShO3FZilziRhYvOiyWlRGFG9pIah2PGDweTo55BTHuYlbhgZasVRym37n8iASXbE91cWIngoavbX3/06d5rlYvF4yeHp9Xnk9HLijHdG+987f3hdPG1L9LQ1V1mriRvm+FEsDpagu6hJgJ2OKkvWCNfno25uxcmSy0+3PEv/UorEnmuVV/kxaYqS1zWF8QrRUGlJoDHhoRRZSr/BlKyqr3Y2NhyDorTD3OqZ8XO4Wqn03n5H7/CuyN7pA283FGAsdxq2nc1Pj2ZLgxqNQcr1u+99p88Gj9aXxkvvvx8PHl2Nlq6mDYux4NX1pcn4wPLFidolR0DJJkIZuE1V7/3q7/9K2++e7T7Qb9/MOd0uKXuSqMrG2d3e722ZEV3mnhfZt4sZRf/wTtvrK9uX42OL86HWC0Tms1f7ebSanulvX7TqtiJMeqH3NFqZnQyo6LQUC7NfuVrIamsnEA1bHl6tcntwV+EKqrOjF4Ynzc7S41Xb583LWnJlYtGa+lqdIRbCUU7Or+82W08eu+nA3lNNleSXzAUdnV4Ov7B+w96J+R3ltdptLz5CEmWDpTWZ2/lvm5dlykdLB1N+c9epfOezbo4GypUFNuXMhH9PrM0zOKQGlJcJrHNZg2Ttv0LX0x9YQh5lR/lQvnptpspnWuKl0+PzDqRm/l+/fp7v/6DIb0o97/wGcu0ZqzgKXuGU2Anr+L4+Li/cG+1VsuBVsdMCoPRrVvrq5tdvL+5eHZre4W4mPSO+eSmV/XGYtOI7AmVi/fTTx68/dZbFN0MNYMo0Pl7XZgBwcUC7YCvFAyUrseeC+XiZ2+l6C/UU8pkClzVlhi1sjfF1DBpnYu/bvzlDz+OpX2/311vn/bPllpWNTLmntkANRn1a9WWZT8iSq0qM/pgarpTqp5dLX3KRGWGZ/OSBssmIFwtCD6VKCEqJuh54Xuxx+NQsNX617xkauKQY6UvvVXg8mTYp+Thp9qKaytNpvn8zH8XylefBX20QxUut3KPhisDikUxN17WZvL6idY8PRqKODk57rGreMwah9H+qCfTd68c+SQPKDNuRbSqjVH4a8vu2Lhw5xjZm0vC3GMBKlsSdAQTis2GQMuKRycqc8bp+BfSjVYgEVezI1AnvsGWvYPNjmy89hUvVJesBpNrLNl14pGPJSAvi6aMk5Ma3s381XaZLdYvh6ec2BzFhEGiPpK1PccXVx2R63iC+UYsjTDKSTv2ouFW5IUVVjwq1jNx+UwdopCoVBeMpdVxN9vbeH7Z5i4u+SfGo4WVTu10MGbmbrTq3YWr9Wbr1uXZj7/zgy995SsLiw6PjiHvsrOyd/uLSw/3l48Hd9Yfzd2rHOwetucXlxbbn56Mjt79h/JvV3u7IotMPAAHLpkpfYjm719QWD3nF73eTsMutQsxdg50XLzgbKlP6pUzCVEtIexHGJ7Z6wDKbHjSMTIXdhYXOoLWcs6YfQOXo5XNlelcgwQR3wRi8MoxbBbsFyMVtBJVorHozfZqWElcyuzabC72dnqnjfr21m+8c2/t8cPviKvs1rftzeXbbzerd29tW7fE8TKRCCLuXUI5B1mPhx051Lq0+9eqtS9Oz9mucioXtcCC+rQ3kKojx7OYngTirnfXV9/tML2RXkw1FuBUhZw8ivvJ7mR3i0NYitAPXGbzH3S+Ju9QUKG5MoToycRKoTsSm+i7dW/aWZ7uHcK7phiB8YSR6vSjTwQPc8hzR9MyedzO5haOq4t3vvaPjvZPHnz4fmdFCLFw5CDFqH/24YdPP/roCQLMxJSm8zajqtJ+GvysH+mZmQvlffYqXbq+lI6niCrCz807vDb/1EBTjmRQynJXyISkSYnL6vVGwqWtgoVUyoYCZOEftE2bbdCD4JRYH0yhV4GPb2kPIsxkhqtYW2myFCjfMYBAMQ/NnsznbBDu/Px6CpTXi0vXZV5cu67E3XBLuowlAEt5GJh+zg8ncz/+YO+1e+sv3Wsz+Pzl3334W//gVxYb7dPRELtYdijs86NGp9EeDneeHhHQB3JJQ8Rpskl2UEjOFo7cD7TSpLfPd6D0eQbMXC9Fcr/wiYA5GoGu5NHZq1RQ3sr8lYulQJ797IuqZiDDKeWTlQJ+dHW6uFa/sTLbFSYqnK6CjJLV3RdJA9O/6G0GXdrzNmv2s8ZzOa2kobTlx7VEjzGnXAE76c6sr0V6JPCST4A+moQIxQ9GUwjvZIpPXJBHTCXt+KTfT2ocDaoPCnkyIWKlA5jRi54o7GswrphvrNLisicASjA+Bq07dFgRIyTPuX0vGPX+wT47ujzyyNV2U9aag6Njwpk72qbZbrsJYYknJoVT55WfnXfbbTkkrk5lhKXpg07Yqk5jMfplxOxqpFfcejHjVCiuqw2rhbNmbW7xqlFrLDcXOrK3DAaYeCGjHFGbQ2QN1oGXlIGCnKJCrAZsOzgfX05tYMO1tGSL1nHfbmWrDXah5BblTJkuJda7f3xC+iy1ha4Oqw71A7Dx1JkVVjin1Px48K/4QmTWBSCGAyzfXLUa9iSLLDr1a3KZc3KsYYCN+3pruSIX/hdeWe9O5j99cvZgZ/rwj384uFr+6he3aXIR0bIQvP7FZ0fHg2cfO5/8ndfvLgzmVi+f754NP33n19q//k8udn5aJiNZ50KT/KsZWzA2YiCz5Q9hXUx6p3uT4VLTbq8m963lV1T4pa1ae3hysDMcTnrDE5YWWWxyJLST4QaCjFhRBbGYAvovDf3qbLB7NbcjYRTSogFcTrIRQGsshuxOwXg7F64sg8AnPEVSjRzLvCRd37dXpqvdm6+cTu45KkVaRP5gqyken3F/79TuieEJnn02sWKIGZhzzF5iO2wbzS37CkUnOdPTbsLR8EgkMTvOwlJXUKqgfJROoZheMRTJ19ESzSTqgTbg6URgEBT09PrZxWg6HkijDQcKzRQcKNSdK6AVzPaWIXA+40OWZthqNoycryzPvfLli92/EtMrgFlsw/D08vSTQ1vUs8GsVptUq3JDHYyv2r/1u5W729/5sz92BM1it2U5bJadP/r82c6Pf/zR2ClrWaajl3CUWauFAF3yMxcLZuazdCtFvMIXcrsw1VzxG6PMUl2BTH3lsr7kvEonejFYhqG0uo1EchkHMj67sMSrteK/mF4OWi2ulJWLyXhte7myWJejQljEwH71xUqr1fIMlHEKoPpPh/KYEukh84JL4EmZlfMqmx8icGbdDTuYDaB0bTaU8jX9n/U+IyiDeTHs8jPY8/NnUjJYrDlcLAhWFmLiZnYOr3743hFt7cGHT99+5ebmapuqd3kmXs5qoTa4qjADdwdzd++9uiQyxLmdlEJ6YiKwUsesERVHMXpBIQV46dbsQvn24q0AvPT3us+zjpbCeaBcDfDzowygYE4BR8CSG7arAhNSkt5UGGB1cXxrs+Ywjd7uyVrXGsXUBL9o4SDMKVkChyKDWWV0miR40VIoy//AOP0I33P7uoR6KGACPFhKKX7iTR2QPU4qNfjBjMHOEbQKm/bCE4IW4eE8AsWmnhFML48P9hJNS+0ll6ITZwGhGdMRjNVahg01ShdcM+ekdGH1QQcbvTAM2KZQmhSIk/179Uux+P25HhIf99maKcijAcvddGNjnSQQn1FfWhyhMWu+WuP8dAIFK9UmP/Dk/FQjwpZstsSA0tVizdCFRB3qNDCdQ9B5u89W1nhMGxaN3KdSwNmjo3J6r/6diui/wG5JPDpFoKejrD9qg9pZaSYbnTCd4SJHw/zciT36TPqxaMQEkBBiKcGm1b3DoehECTZEnC5UWv2e9cVVu53FZkpUGQay6LIRWBhMVEizS3zwFsjenC24hBvVWIIOZqCys61aHU0WRpPG6Ml5bWLVxpt9fnX86N/823+9vvRP77x2BweiZydm4Gu/dr73xYcfPW71Kouv/trR8XDcbix/+TfOPv3JVm1EyQXyCIvExQMM0jE8wwqGhHyBCnfGI0UGD4fuwclIzjAjpU7ZtsNM1IMrc8WCzXnf0cVj6i8yJ1bKmgt27456wbeZduRGTDCm2lmRGgNXpAT+NkLTzK+c8cbGiUEn59n4SXVhBwDnqzZJqYNFbzwSkCvlHV0Dq8Zlzi+PxnvFUrnAT2Alz2N2eTqYTxIN3vShRRUAklXr69uN5Q2JK4iGORG/k5Pz0Q7T2WRan9ojXqfaWoKmO2NIcES7mh0lZ8CQuMx9sGlGVRFckWFBqVzJdx0MJUIibKgyuDhf+eWvDD7+6dmTp9bsrgljwlskWDHRNmxcnS3YPr/w6usbv/fb/+O3vjk/6a3evBXOw4F0dXayv//Dn95/tHsSKIZuMyVaCwqWt9BkZiKfuXjdEV/zyx13ZxSYXuZKmSOqYrqIcqbdZqXdAnn74SlBsQZb8VOqFPfdVNugQqdCQBSdjc31k37v5g1HH9+Up2T1tZatl8fHJ0udpXt339i8sT06k0OAInTy9MEOHc7BsGxnW3fWX33z3vf/7sPd54emOCv4EK0eAXMUgNkQCo8IhuiM/7MBz8aWkRUAm4TyXQk15eas4OxiuQCrEhVIAWJCuEQf5441F3k99/DZo5dfvyegakL7wE0uGw+eHUzmFw96542F49dfuddq5jj7Yv5QfwQ4+NE10xnfSpNpr3Rh1naZ+dJ46XG58wu33Su/S5nw3l+8cD1QlWe4wR/kb2T+azOGIFvmL1Zq1ZdWl+ukQr0+SRDHFHPkybRO9RgLRGJAoZ7ID4sBkEnMQTx6XmX2tVqgXTpTeu6KOc6iPxYerTF0SOcgCt95jtkhNi9vQvAdjs/U/7KzJxLHCkCkS+FclGD7Ljc21jY3V4/3j3H/hw8eAqEcvXYP9x2X5VWWrhGeZYBs+/a4ErQWFzAQn6my2ZyPrCdtvc9OBNqzTTM2QNoCPHcp0sRxgNXlpeXN5ZXp5RG3IJ7kKO2tlVXZ2p/t7w4nF41GU/z5xqojEhtjnCFcIZwqCr8MBgUcRggvMCTvQoUmTpupVzoS3GJU59OGEJ+qsJAq/we1ETvMNuEYfhLjY5nBLBHH8+Vcw85g+iY0yhEwYXA5NkwgUT2Jo08dLyg56Okp5tVeqllDoidpKS6u4tCWVI6NSHSqifGgnjDtIDyyj7w9x/vsFcpK1mIkICYS5Y7WBsQQGem02I2tJSnzGFyeTk5PRJl0Fpe61J3J2SGO0j+6HP2bP/vTf9H5xxtbm9nEwaVjFDea9774O/3ByeL2K9latP+49963Xt3kcsk5x0GNgpzQ3HwHA/3Hm4owdiecvKjpFteBnkSeriRWirpRuH/RCuBuMLZ8pJJUm49ZJJnL6Onn1IueSpFZRXA1KSyy4SMKorbFaMI6hfw/k4QvqipkmUkmvfAv64UiULJEhUsajwGRiG9oyxpZrHAOe9MOLFePXQd1Xn5H5zx/3EyMs0PVuTQsUiDIgLp9PhmwvbEWiuo1aZa5cflkX0Mh/+hWgVSYfnp/PQaDLUQRcnMTxWS+soKIOcliVmao9n/+D5/+9/9m6eTE0UpCvXRVzLGzT7H+gZ10b3759f/tf/k///THg/39lzZXmX7IfhUdH5385IPHP/vk+anNhy9epQtpKeRUZi7fZ1dnn7louNd3w1WjaITU80rPZy/sYqHdFrFcozJh+Ys5c0lUtPgrCWkJUacWh4lQ6dyVjqvbbLGlbm7cIwDQ6e7uXmd1eXJe76zfWltfkY0NBo96Z81Gd2117ZV7b6kHRTVJVKHb08qd3//C8nLn5Pjg73743tOdk+dPPnXedfQNQMu2vOBPGUpMN74ZQ36Gh+VHRjwb8IsB5Le/MiLjyuCUTZCeKJKiy6CrCxs5F09FiVy2FtqJ7reowtM/vf/p4fHRhw8PRHiN+2OxHHQyOrbZjvkj9ZAjwSwwiL5HDJTGZs19rguzrzNoz3oTxNeNz3qbUb0olc/rH7NLn3/PoIP2mTKGXCy0dnVRG08bNu47FH1tubl8Q1rkucHhUD5iZ9UJfKaO2TjI2Hh6maOsRr2eWPMiU1VGkdHpX2ivALOgalCEBAh/02HQxo5Yr+XdQWxoPdE0/KFlkRHa1ysLCx7EesWuNE5hwSx4NYVmpSsPf/3G1s3+Sf/VV19utZYSOzCde/Zsl8Xe8oJF1/7VvZ39Xq+/f7J/76XbX/7KP7h//6P3339PSL9od9lRkgIThdOkiaP5tiw9kwZzuUD++uLW6uaNzc0nh7uDfk9IKP7eaHYZXR48PuirmgZbmZALlGWBQ0gORi3W4ljEqhhNqKux2adL2MkFC4w28JiOU33Fx/P2JxKGMRtflWLUkVIMLezzgggdlosTz4LIQOu8IwKrljMmszjEkTJfRChpxtl7lr1dxIy8Q8ksERlqNDwMg9OxTQc1xutzlQv95OzQKf5nSdsm3OnIIExmtkzJ9Ou6ksJ8zxeWFoV+9ycLvUE2fzEp1WQ7Hkti2vmXv//PfunNN3ZPPvzoyaefvP98f+/QqB4f7/7Pf/WX/8V/8vvNTje1XE1PTvZOj593anP7T3/SH1915q5e2+g6Q5slHKcL2dk+9YJzFcNeFIIoZ0FOb3CGYGaSimUGppcFIaTxTAwlKWEFQKR5BYXLUIJoWQGU37mchUQhi4LyKZ17UQCzLSNLELOWyLNSQdAWv/UvlKit6P76GuuWWsKES6UB2gsdUgdFy2arHKSOUTqHROEBJgf6RrgpbWIXroa95z+lgQpc46tn1xLo6aghionqdRrjtxIJH/cXABWSLvDQdlh8wEMn1zdSavaKDEpnSneJnkLGmMh0KORk48bWv/hf7/7pX4weP5tzOqfIPSr+QrW+vPXaN/7Jyjd+/Q+//1cfffThndUtHrBkCZmr0KI/+OjpD372aO+E/ItBQi9wy0C79ERb2kOeabQ0nG++FvQpxXIPdYBJGYDZ029wiOvECltKQSqJRVBdcpLOMkAhEotfmrMlr9g2i5CclmNXfb26ub7WceyzlFOW+XNzB31caNxorbwitPbuBiPE7rNnz55+ioPUbt1aW93MVFe4PZbqmZP5PaEah4MbnXZ3daW9cYN185Mffac/2KVvfvzJfdpJX1hxcT8lBuMFr81IdTf4UQbnhzFlHvO7XJwxfZfBO0RkvFGr8nLYC7OCmOe53uCyfzq3sX7DdD15/IRZVHZVKwP7THOOabVOEl42moPJpBYFDHsgRUwd8AbbZs2Vfsxgfd2Z2cf1e3rpa+ng7Gum6//nq8zf50plUEEhXDntGpEdSHhutdX66x/+tNNd3CR0T/pk7Fnvon/Qn4yqmJ5IJ+EnbB6vv3xrtd0KgWSydTkEnm4ViKXK/CoDAmS/aAEU3yhzjKQs1o7TydKYCRofzdEcMAwkchwTQoBO1CJ9E99Omw3FS2jLWHGwd+wuzV7oNpB3lzGf6fTG1pe+9HZ3ZSP2bgEyTAjn54cnB9If/Oqvfv3P/nx6/6MPRngzLRjd6Su7h1aidl3My+8p4AdvvbGxvLm19Xzv+fP93bXlla2V9t4JX5qTP0/o/esbmxBMrJ3FQ39wxIydESV6jcnFamOmqSbrhewOaIGja3x+SuebnA4X5mSSmBucisWMn0VmB6xCoi2aPbuT1NJMgjXGTxsU5Hc4H9m52RSvo95Ih8QWte0r64jPjaUIYCVpMFvmrOXkrfkrXutwJHYjMpUt6HKe/Ze/TUp9/rTFC9r0ubRenWYAC4Et5UgNnEo/ZyQAagxgQph4jAkqKYPsB2GXOqlMfuc3/rN/9Lu/W5s7ray8tTO82Fi/bC8snMDs4eLJXld46vJaw1M2Zq205f7J4V8brfaqJQ81R3QpOCfQNwDPOknvCz3FuBMcgfu4BDGHGWVFgrJcTC8L+c3wCEYEw2hJhc3Qy9UTFpw6UzF+66lc9aB3Y8tP1xXxqQkdCfolk6jqISR8w0qN302Fg8MzroUySixf2GNEjhqUSMe0BhPTD09HsuZ6OTfNBOQ0IPMfAVDoIN/I0VEWEc7OiW7NmGiXGW1UEAWVRyiBThBGZiN9juTCEbylN6Gq2fSE45R5Kjdy2U1uyDgiIhiNwHehwMw+C5XV5e1/+c8vJSfYOWpNz6QqbHRXHBB/Mjn9f/3pf3u4d3Bj9cZStW4RbafAaHJ6/+NHP3n/wXNHAUc5AJgCqxn09GYG4ALvsBldSfuBbF4ziJsdGmCBiS+zUShlluREsZIuqt+8FCmiJswd7Z41QHQckIII/9/xUZ9wZhW/d/s2CWF5Sg9FrpQqQqzZWq53hEqtr61u2e9NRO3u7jIjH5+crK2tCuQeDwcLK5VWe0VS98VO53T8YLGx5CU6++Sg99a7rw5PNzvt1S++8dbjRx+dX55+/2cPHu8dFFXDqg72Qa0Mxp8hZlTlRzhbmZhcK3cBw/Cx/PD/skfRd3Armix70CUb6d5ub3V12fyOJ/1qvfKFd+8RgX/8zR/tHg1wHNuJfvT9D7Y3u5TqOoA4tUG6pqtxO9p0OmFOA/JMd4F+uZQ3fYIG119yAZxdDeq6V2jqczdTOoVefOb7L7zMdZlKUTohB4UvlxpxXp4OJjv77BGtiSNGLs437jb72HVO35p3/vlra5uNZnOtS1uFsFDVq2hm1z1Io+lW2gqW5qMgCTkf0in9EfMoMIU9HngdSBg+FAGBNWuk4BRY4BrJHWDByOrLOL4wnJzTYgt1WDSct+bm1ldWGNNEPN5qb3JzjkdHFIt+b2S9sLbdfeW1G1IkfPDehww0X/nyW8cjw7H7pSCrKZNsTH/kiylZgOa6nRZien7w7GSwu7neZR54eHDEIGOCm93G5sY6hiwhJteF3bhjNvLKpb22OVeAVMKmE0iBfzk+xkrJygBTFjg55wkH11M1JNk9JepjMatOrP3lqRHS7xxurWZFkkMX8W9cF69sVhotmVkqVwIJmwvnjaWF33rn9kfP+7ae2cx6UbmkcTIQHZ9I1Whz+dyafcf1Rb0yC1plfJ2Xnmi+5rSFnPpyedpddmovWM7soZxsZ4uX57aSmR6KmJCV+lJTJiTBNEuX8zQpW9YInKvO8vza0msv3biYDLmBzueW2iv3GmvMZnX7Yn/9la+8+9qNTkee68Rw0ibNLlzCFzHmcPXsA/axyEgadCkKdEGIsNXMcHAX9sy0B4Sd66YGZs0QKBgUFMpDENbt4Hrew4i9zZArNczaLreDf+lCiKjgXooXcbKYO2mlMP/QTmko9anBW3I8hpxTm55FPpA55dkImFjI0mTkT4rnzYVyMZ00Si4Rj7rjM81KfhQuD5FUC1NgSAxuJtkAkg2w3V5uNrsixU7PeulBRFLhMt6L+AKCfCs9BWIdLUCJHSo1QbUsQSFWGEIwhp+t1Wje22i9fIeJUXjxaHL5tx9/8OCDn57Nn99o36jPN+y+oYLwwn1y/+nPfvbgwfOjIX95gV4ZUkaShjK82cAy7sxGaHZ27fojTwUaqAygigQl1ELTFRmonFZv9wnLMfskjuzpWBqnFaFxHszmt/mFo5Mjubac89Nqdja2bhweHW1ubgGyRO3nFrnAUZGe6LK1siZywd55KRPxWW0iMSr2O++8tZ9Ien7ss06nTZPrtFvPd3bu3NymVnWF7W3cevTsiTXom7/2xXF1siTGYPN1QvhHP/v+xx9+hPZKWnHTkgkzBd4MvPyVwWeERjYb9eyO90wyIYA/kADGC2lMRo4pZ228ODvcPbi5vYZq1lbaduyQ0HwFsZ0v1iUTcaoSCWiPStSCnCF48tort25uLlNp02QQ2uvnLfo9+5Gb+W5qyqWUK99T3qv0f/b52eN5slwvlaaUV6kllWRK0YoSDo0WKUKO1hkxf/pkt73YuLO6KNUxyGtMMbWUgQpJZ8ws+kBRla4BVBDE91RfavZQuVXiYWx01ygfwsW5JINMFMzfvJgyHphfjDtEWWxyZjZKFj5mVSAOMIkMEinnwAqh5bUYZqYiFB0RfXNr8+jgsNtZSlA+Suu0ocHaapK2hWovr+yBMjW3795a21jd2XtWBEBSXcT6xvLOEESeSPhz0h/QrCVjGIv1u+gKhT905qT0BpX6zc31docS0zw9HVHWKfr4VNEVczTEpTSdSXEMLhkc6o1hXoBi2SpoINnqPDlfqjsrFxoICbEaRhYOy6L3gGHcj4ZKMrAAtagvMkVUnT0iJ2hCB+iL6yvtlvC+ulw+mtCWrI2LrE/idcbTvjRzRtuoLDvab77ZMUnVhvNdpSkYEkfEdvWsljiuhdXNezfk+5Qa/nSUM2CEwuq17cq4ktVYq9pZW11miBqxaEkR3Gmub9x4dHDcXW4b73AytKnrpNfnjF69cePGa19YX719Z21zpSK0IQH/4H1l+xGrvW1f/NuW8ljApS1HWIPJFN6e+NjCIosWEIpKDgXUE6QI1kQSwB1z7y1MECsEn1lESpAK9yuVBWSeCU6WJ4NkBYNz340YVGbI6UdB9cI+FS7/oGZpSFE9AtM0mNZLnd7yCjPNCkE3EkhSLLSpOp0tJXwoMaMcsiEPX7+nItX6SfHH+pluwrYNNq4n7ms4xynjfeqoCM4V9o9eeKb02UbLX6piVoXIArWmuoJcqVaxwv5DX0EcAwUkmI4ZqYtmamG6MD86Pnpy//3JSbIbnYwn+7aznZ0vV2uNStOqjLTgB+K1/PTT5z99/+HjnaO+7Y1RwULfadAfuBRoZiRF3rmcbhTo+JrelBLUOrpbGY5+RAlI36j22RIfdSvZtCyBrWPFY8hHFIpHJpjhnPhli2/qJcbTtYV9rbt/cMAutH981F5qpyPzDBLipi5spxj0DpdXmiK7uihIGpPJ2fLy8tHh0dMnDzFZUyqpCWbVaMp53v33f/Wt7fUV4pzDa3y1uLy6Scm35Nm6de8H33vv5ubGl9585etf/9Kn93/2b/+nPzrqC6mQluB8FrdhABlFGb4Rl4mdDWs2ahcyCQqBTBCYolBeYQjCfarNLTswlhedKM4eUHFu0nm22uX0IfFZXJlgs7hUrdhtG/SiQNl81B9d3KInzqRwgWGB8IwmrttNn3wtU5TP8n8mrQpGzy5cP5dyM+wpF14UmP3Is4ZkOvGsktvHXkV7QCfztcaNrZXNrRWMqX5he1q/7vA/uwJNcTxfQQwDTm2qyKt86HDBjvL7+sbsZopqiXWbQgxhRUFPbJkup1PN5TRH6WeweJsMYiRQa7yAIcwYVzkjRYxJky6XHCZF/b28slhsLy/XlpasIXrHQxAWD1ml/1ZrEjFI7EB3tu7e298XaNVo1A9h1NXc5sba2em59Rc3U6AcVYwLhI/GlgBBIHMLlhIqsR9KSN7hyfH4cnxjeW1rc01uCglLnSMMy1lsadesQsy70sKgjLL/P0w5KgCxkly+wR7bv0gvaIrOUAKIyTstpp3pCtcg0mIJFQk43h+Pc+Ku0DggICf4b/GFWqO1JfPA1t1WuyFixbGFl1fV2y8NHNdnmYCC5XWQDKd/MnmdCSlHFJRcGXHTW1tjmTEL8DgzYYxjfQBNyZVkfrxsVi5WYgsPyopcIACYp1crC6ura81W9/z06umnn07Hz5daK+8/219qbb311tdluU4AvEgf7Of09ODR061b54srreODnqDZ5C8rXBovss4ByhNLuYXlxtXZemVejCE6JxUSrIoj6lj4Ij/8Av21aNq01xk1QclwIFShRHbDGoitGzAof9FSChsma9gGo5uHNPPmDmwuOFjQUXE/cgW6fYaf+fXZj1hpkEeIJKx3dh3i0aaLUbPUUJB7hr0Ya2mr9E2DkU7ppXKlmVn7+VVqzIe7upj3GHXSutqL6VHfzEa49gVp7yK0MhNc9BwEaV6vI1PiMcsrj8ZxXvqgjdkVV9Mb7waTlsJMvBIsob3uyvajk4PnB3unck1RvZ3WUJ3yRWE3LNIe/ujjJz/52ePnu0dHJ3bUgWLgqBXqlrapaSouNBzIp7HSD8Qfm7HyRqFL4f4ol083a1s6TeS3ywn2p6HrlEnmLa/TjKWfalt1stiMSb6g6iQbGyvdVnfZkac2RmXTzMS+egOik8GdW7fvsBTzlOnCcHBigwuXOYK6fXN79/le7+Swf3z85OpypfMW3yA34JPnu1ub63KU29Vvd2e1u8BpvHdIc7Q1umGjc3up8+zBQ4e/EketxsK773yxdrX46YNnnwrhnLt68NGH9pqaKAMsSGGUgT7QlhEHHl6BuQW7WeHL8a38y5vXhSRY0631NUAL2c00QkyM4dj+HWuxpdOmaMAqCPAAgdlU2pd7rcbN9aWrC8ljCgqm2bTjX3kBaaDtdwT07CIcSxO5dV0mHynlxuxaeZ/9UtDTL777Vh5XHKrpSKiJ+QXPYI5YmBeOe3ZZtY10MnzkJA/4yXtJQwgSzDS24Ok1spd+peXSatp80cPSIaUCCJiS0YKR3UvWc+UkcvYflj+EDouEMqKJaFtQGYdkNgReYTDa9YNT/eTosN8/cvdkMFTXksRhBC6gLU6fPHtOUbBk3FjfeOXl2yvLy5trW40lVvX51dX157t7rZV1q0yBMfgwPWzRaX51MbpVGjpMmDaXJHBu4ofCyVhTNzqrWyvbtHWk6aAl1M7CLnGd3jPdYHltDmJ29yDG1cCkwoLMTsLa9JzSDxNAzQnW7JAVKnmcRZITOJpRloVzzF6Dt29t2aU6HgkFsolJLAr93onzMjVbO6/efe3Xx/UWQ27YBtU68T8diyhWRS5xCtTZqbSX/K9L9QwB+DMFFf5ymhdXjh8YzOVl3YQJdnQ8pGFbGUWJpV9mu10qZgc9PzMWGTQP93s/+PZ3xoNn9zY6zz75qF9f+ae/9bvt7sr00ulrObjncnx5ctSbP5s/eXbc3z/AwEXUpqGE8Al3z4EmMktfCHuRH3R++uTqrG7a1S1DxaIkU5dL1UsR9BILOf+KAsSzb7M0Xg96mH1UTaO9rHo+EhrfdKoahLChmPsIItEvQ1gKkqZCa6DBDKmxmUKh3mLSj/ac+Qgmpt6oOYWgU4lLUDlKPkydBYWop0jwQvqh/pQPiWS/C+0gQssTCc+IgpLdBulDJFtISStpLd+y7gx/UEPUHTfKijGyAr8AfJyckDMds/zbQlQHZ/zA8ltlXROOISQu68Li8QgtpX7yBnJl7sJ7qGIaBKsyltKaWMNkjXJodFrp1OtHxyN5XW7c6nzlnTeWsJz28sXC5Ls/evSdb33UXa8/+ODBD3/2sHdijx/1DiNLB4EpIhYBwGP2O5KpjM27mUm+mzLQjFWHrPJq1fZyW+/UgyuDa9zvEVDQIP4xwEBXSoaW5+v0D5cDff4xyxA70+QPP7/c3tpk8ZfkUQpVGG1ckvMen/SXu6h4CySGo6FuUfBpWN22LSuLjcXVtbWV/YNDNNXNsoBmlDnbOzgSGQKvVteXj056vA7TuQFiOT7pne7sv/Xu2/XK4j/+5//Zwd6BiO+lxSUWm5deebOzdvu9f/3vXnr19Xe+8Ppf/ulfPj94CsLZ/lmGGjam0zOQu+ILWBmrKQ6wo0eG82dvOKdFsjkKDIk09WIMZmFdmF9ebvDmGTVE21ht3ru1uZCdLuqFRZfoQFH0bwYAu9jE0155qcVcB5kK+DPn6UPuGXR5z+9cLK/09MUPk6P+2a9c/8XvBbWidvNiBt20bQFJ66KIMCWQ6fYJZXWJAWXMOolCMSHPBC/T+4Ci9KN0KBiS1+yztKsgMFEH4DZv7/SCJ3ksaVV44lR6SOSPy6Mre1cAU5WUA/ROZvqPobJciwp7sPOUx23j9vbDTx4QEDDUu8i73/ztX394/yH3Qk0e/GacuNZhjDWDYW+hX926cUPIjNLPHj8+2j+QEssRZOcY8lQ4vNzO0wWGJIqGfKC0uoOj/ngc9xRFXYzP7vlBu95aaS+vbKzt7u4TXMAk2xstRmAsLsPSh9nwYSeKk+VHlNRCdQKnhHTSwpklxdfXa2RMED5pn7JxALHJG9HtdFa6LXyaApYYRwvQ8Zm0QGOxRaC82D6+Wny6fzh3NmnZQWvoWrQcwtMJPUllbTvQFuW/bK6KcC0T0iUQnGkZHhXBhpsmTUmmg8s6vDMqG3wMYVvT2Vnj4EUFznf2PzrZPZg7329ZW13Z21L/witvX14OxTAIZ2KhFni0d3gyHJ3g4NgEdmrbQeKeYG1iwDJ75+z/bLZDB/qORxUni9EswGDoIBupjjH7hnQQ0tJxnwjwkhi2gtkvCAThTdU5YbQ6KJxP/3lAQhR0k5BFBk8eiCetzJ9qKJYU6JhdBYVPY1/+RZ3xPCpCSzMGPnP2J74ggkrt5q2UDDmBWZ6LFCzsI6w3GzOyiptRHVwMWYS3BeW1bHcHbSUckpas49gceAb2qrP8NK6lYHsIhgcklzkecmIBa0bpJC4P5GMhCQSm+Zm7HDQbnJySC9LMDaHw4MydiUEnwM96gopsMkOHRRJFwEQD1S91gpoL2ZoQWso6jWVFz956Z0tszfm+qMOj/bmjvf7x337/Zz/57gccpM5TeunlW0zx3/vuJ5cXCD4B+JZp2qGqmF3/+IZqi/SGeKs1BJQCAw0UBuLvhkafsGYFr5WVTgEseKKJ5MqGnziFRFuW6oKe2TN1c6nWiRRG07VFHg9rSpO43LEbLSpihOzcgi3SUQZzmpKMJpWz8dHK8mqt0RE9cWwr2Hg0v9Ic2sI3OKXPOGdURMqHnzxYW5845e/x872nj/Z/+MMPXn3jJYG5FMaH93fv3rvbWWkRQVYge8+ftLqt08HJxnoX9BKLMhzUG+2NjdX/6r/8z//oj79pw9Obb73xmze//Cf/9puDHo04AC6sDirCAS+dzNV8zRQniYULgVnIPVTXPzVpoTSwMkDoYalPLf3hj54sdxob6+0bG6vdpTaqm2MVCmvNygmOAHrByLxlbtNA3v0VEs4lPwsqzu7PrvyH77Ma0rEyLz5T/vrBUidurqqoOVAKwsNzr6g1rBdcwUUBmJO/YI7pyo3StTxRcDhYVzpmiP7nq39QXE+vQZZOBXTe9QFiIiOeSbpx75QmaZvl1enlVNiJCvAEbklNohH6PnuBuIjY/RkS5Qe1f9ypKj/56Wn/+PEnR85HqbeWiHnrPwdof+/7PxJ/Lu6d43046N26ub62tm4z7ObG5urG9je/+U3ioNNd3t/ZR48YFjXpQhgYvRz+jZ3mKbp4sdFs8AAzTp3TnQUdUYKsUiAlX5nM6U2LNyx+MrH4lTxCYngjtY0Z6CQqKmI8aMI6aQdT+Efk2BRt0CHYWByUnqMDAjx+qisbhvr9kbMCTkW22iIiFIBeVKlbSNjbVXXSiWwMlwt7x0c7zw/XlhqX9elAMCYbQcLFiuMv0jKcCoxDpuYtcxfyt4VeLusgTjTQop5611G8a/ZnDMjN1jNJyQ4PRWVgYqPTvrR3p8Mhnx2WRJvfaN+YDIY//e535TH2HKGjW8NJAmF1lqUaGlKzwSGc2X+KjIyGzP6xd4i15fkk8oQgyjEOtNZdV879zAGzCsL6BGHKIhTeelHhhLsQzFRlKCZW50+gnw3ZdOecOKCNK3txtcT1ncgr4kv7MYoYUqwxfsxAHjCAhS5l34EHSRPEGewsCBpGGfaKeQHDzIrD6A43w6gZF2zlrYrOU8SblUou+h3UJAeSLlFDVARgiBwIE8yz5SiPRSWmfQurSZQpgzOn7lELsDMiodBYcltj6tTFyfmcczJz+tL5BT262mjYWzFwFMWZ5bYYAbBIbJlsFRbLFuYmPnJ3Dsw0Zw2RNQFyTbqESAVEDPwZG9lvi/1gIruRzIu2B1YsFv2j64vlqDTviRNYWa6fL172Bhdbt1+3lrS30eRRvvADmBa7jtVE5Jv6zWjh5UX0RURmVxfAQPIsyYCWhhUABzjhZ6H6TIzjKHi8RRvwRYm+CwSyodTkUJN520S7zU1pQuQKecBiS6Gz1evexopooWxMry7Q+p3MIUKBPX17a9uxd3uid6rTw52jfeGAxadCTD56tLvUGjmjr93pbG+vfHr/ce9wCERLjYF0S6fny3sHu6LaV1ax3YvDg727L/2SxXIv28q6GWhDmpOFP/gX/9nPfvSDh4NP/zf/1f9u/9nx3377B5br4ZYZqXUIxIUm+V0QKqPEl4l2Y3YN4Zt8CllfWi9RTAmTCV4qD0fWVzp3bqxeztVX15atxVWm22gEv/RsSHRWdd494leBowYho5/XLefG7GuBsmfL3XyWKgqPT42fPXBdIA/l3/Ur0xZtKUjk2eylp1vCcP3yREjeR1hH8mmJdlagNF0Yvq55gUqpLW2GH7x4ze5mAArgDKhBCA/dIuvy4dDmPA5Y+zGvgnQgpDFQEvwZ/PGNPWGB3Qef8R/6kQ2Y/uPHj457J55tZcqsDapY6MuvvlKoQmSmWAOrw7ZAmN2dHW5d6vSTJ89u3rjBw4vRUR0EXcV5zUaHw1bZJOoVuwcty7p8r9X6wcm+DptwzqVO23lYUyJAlL0aD08kbxEpn0UJ9KerGyv+BM6D0blFKJ+UDT7oyHLD6IxJVumpYxYlFOX0wfQbNQHgqD5LlwBsSvXGxWMMnZ9fljgMutiktTBxuNzDB8/sNV4et6Us2x8Mnzix+0wkN56Ds1tmWmBAHpDVC7OjAnwNPP2HkEEgHUiGGVC38vbS5GzqTQj+WFmwgdmC5t7du1gclwYDj2ywdq6udDeFLXkMBxFRa9rpaWyb/nJWlvnwMip6jXUTIOSchwiE+BmiI4YH+Y8ZVc7Hst9rjuQq7Ba7ChsENKsSaRzk6BGzUmQXm0gIQlaKZDYSSkX45igFW0MhTc7hTdbTOQG71g0axJ614lZw1V9yWbitTP64WaNGBNJao8bBRF9xN0CDqKCBUYVD6TGzBCEdwPkaoM52pcN5e+T11XMZXhYCBJVZMIbwXWhqPEaK+2bJalRBCECXuaPeycJFb4L3uhcIYoKZn0T1nolTvkAIxTPgwtzSsnAsGSbirS8H3TBUqElHDS8iC7zVI9cTBxdRYTgoI9RhHRp0Cu0paZwGQqFklu92rwmKtFmsOleom6iDyAnXsyg0F9vN7as1q0SxKBHMWf54OplFQtP4r2uGaLSl7swN2ot7JtczlabAL7CclSkzEuGBXQAk0WAmIrkAPDODiMiATIXnJuf2e1d6xwOpJrduWBMIsLvYmM4vl1BRtbCr6K/tLFaJvNaHRz0xrMLRGVcZAMVTNpzB0e0A7tFJn9b95pfevf/+h8DyB//1P/3eN7+PxBz/ABTPdp4eHx2/8caryffdPwZBe793dx9319flQj91vMjJCZSwYPna179GhTzpnXz5K1/94ONHjx49tcpBV/GPh8wC6Ou/GUkFpwyl8NNgkoinMzxOfpfWhmRW8MlzkOhK3PZat3NyemnFEycHYGTSrl/lu9kO/GZsulwp4HzRYCnq8qzY7MF8/4UqXvy6vnj9UTh1Ks6cXY8gaACFcNegZ2xPJgo/Kdvl8wVBZPIRdrR0+JkRpwJDSi2zulJ1aGf2K/fKjxRLqcAmS2TEGMTkyOHstujNAbdzAkDjHITNWV8oinOiNDwrGk0IjZYlC+Xi3JPHzwbjU9iJ/bXqtXsv371z74ZUvnYNHhwf7+8dUMm7XbE6S1plBem2O4dHBzZ4GSD8H436suxQRnOgI+4pEA3HluBOjD89QwbnI2mouCYim67a3LDiY+bmJUM7m2Q/n+7TWnhxsooXKa8WboMmy3ZOUFvbWBF1YMnLn2qFakiNvCgctPslQmR0PrDrN6GSkWm2B7N9xeodX8iZRVZlIEDVIXzEUkzjtZX17n7/wdGTzitvfPGc52HuqjfoSWmJxqORST0qWAH/C/JhC0FMzCJ8mLCEa2FzZY5gmUbL5ADEbG5MLWv+8ejoi2+926g5Fq2PG7sZdlJx6Fi88dZGHVFFECb1h+zhB9LPrGPx+W82GaqBg42wtGkWGeuA20ziiGzcHsr6Nsvg+Khz0giVVtDR2CIT77UAXrgSdIq72joBbpc1BrqoU9jp/OJ0UlFMk9gqQ5IdtwkhiVWQtA/SRbToQjqiQxF/JZrBI7hO+pScep4vrBkpKR8CpgJQ1USt6hUPAO4WH1g07AtQrScW7mqBOmIjb8RlInStPZyukrQNlMowxzJGZGEkDvjEQJk5IM7TA4m0DfHs/MnAzknbVsDJoiZGuKyHCs3j0xkSR5SeglONlbh3Es5ok+AiozgHkXySgBYdO+SDMQeKVj1IaJ47dGydmo2ZIdOZXqY+nQLjYsCJUgdYns2ASzVF/AU9gi+RhmXcJiiMX7UBZ97TRY4cnVNKijqgN5khSDhV7kEKYChTrEjBP09kQ0XhEaVQ4F8oOaRtmkgd//MvZvDCRLTsFCHrm0YntnOh0isr6zeb9QH2ORqxAC01WyIgqPgP7z8ZDG2nwgHON9ZX11Y2ox/UFtZvNJ4/3bVTMnF18qVLczSyB2zw9MlTXZUKY/vGFmlDJaksNiXdcLr1zscPRHsb0SefPtw/OOr2eqI8NtZWHz9+srW9TeWZH8+trm2QBa+9/uY/+sf/8P/xf/1vxUgAAJINec2oKlgFWn4EXBbi3Dl+uypUnthzPqtjurfWQTowy2MB9zxGMd4ZUhYLM1R8xjSDmkHTvJT9+ffPvn32JTWl9OzC5wuHznLr89d8Ly+ly+UX9/L54nseCjbCJKsXk5R6IJVuh7Rm0t+llEjrwagUSRfSfWXK1dzOxdwLJpWCpZ+oMvZAAgXiSqY1oVhn8znXp0hgYEHRMz5T8BnBFeETJGQrLC6AauXpzjP9sZS2E3wzOLAslSHo81Lt7u8pdffWbaJ30DuDDD/7yU9sB9EL/idT1O8fo5dDDgA0g8Oz8+a8cfGbMtWHoeBU8tIN+aAoYwSFuLHR0JbIWD2IKZRPPiLsCT38YrGdaKFIEyqg7jv5i9W1u7rcFYpfq90/32EBlH4CGKxfHBJwPiBBL4TrQP5ORwb2rBUBYlQ7jelqKekeUFO/H61hqaH21s3azcbyyVVzWZqa4eEx5rLUbjDAJM8IDcO+AxyP5lcW6Th74F4mAPBnKoe5MnUhXWydKpUys9ny7NWJla9I0gVutxMSKLirbJR4MMFfUEwMLeowp/kLVoaZhncVpc4Eayjw158iGpDHFWNY+JZH4QAuoRLCP4hhvaUzq63KG3cl1V61emDExz50zWx70iZtz00ZfjCvguS4lwcjK9UVORIumBWlq4aCNQfHgqQ+te49oZNlnC6Vx4w6j4XDYfWYY/Gyecua1HoGS46CrcoZdKit2FjSblA1qm6HomFHmrUmDjXIUMommgveeHzqHCGGwEm+2Fz687/9iz/7878BdcdmiP4akksWK4IvWwGmHdrRh4LgxAItiK6PkVMN9ZC5aFFyCOyff6M0FILRc395In/4MOBkGtSWXTm00ywKiTrrdS8DiTs+mjvR69kMS2szZAgvVkmY90z/BD2cPXJdHV7pVxoBtSKfMQLCGzDdD4RSmV+ep4soRjhEXqgdFKtxHpbCPjIAdbgSHbJgRGJbMxHJ98EElm+RKokHRVfkh3S7ki6x7C+tbnSkN++sr4yG/YcfPDje73E1CKi7e/ce95sIv+eHO6az27nZqTVPT8aCQeXafPjps7trK+tfee35g8d3NjeOj3pHJ446O9+6tSXAVPIAQUcvv1xNNvnp1V6xEhgZuEKGved7Es812y1jhPysT6vrK+++8/Zv/c5v7u7t3f/4k+OTgfxQUC+SL0MosPAWuIV6Ajy6AeUuOzkvnh2evnyPrysg8SpTM7VHoXo8ob7lOZfcAL3y+ntfyh29KyC/LpKPz66Xax5KmbzK83n7rKIXl5XQiUyXLmozZfKUCcp75gBSlzmDCcpEx8m7S5njmLhg/nXF1+25nisZgrEXfEnfMkyVhyjDh0xwJhke0PLdu6L+03IZPxN/z9qZ9WUqCQDdD8rk6dLjqC90HMyxJjB/b69nwyCl+ubtbY4gW6s2tjbC2bizHOXSFAiPdTqPq9pdaa+tdSwr3esuLf/ovR+yzCcMhWHcWQC2n8gkBul1N9kU5udE8yCg/mCAYtrtNg7LL2CAVo78SwzSrFU0YnykXsUPZGEbVxdzFpdEYE6AWe008TuJfJc7dfE4d2+v22F4Nh3TpjvdhlsrKxvjU7E9fdYhWnwWmvqB5hPZFrFIfAlXtZKYXg65C3QJtF5avbn50rvffrZHW3j15e2f/fTTg6PR8yeP2GGKemjsmQtL9kQe41Rldk1b4Bfqi+vJKyB1NfzclLoa1sCG4/H7n9zXFQOLsTULJP5ZUxgbAsWMvp55mP2ZylJ/sD8VFjwsTRYcyRIxDDlswozG+g6j4kiyIABrXVlsWKD9ylsvbXXEQlh4XcUnyPKfbTASLBuMtnATRq9YH7RLrMClYFJBiXyHQaVLuZkWXfF4qLFQmefIRd0vyJ5a9CIjCIcLm8p/I4yVyotvk+u/RDFlSIE6J7MyDVxQ+XSoIOjsHUu0gksf4Wupjigt6rmCIibA7XKlUd9catjuN6kzcVZqzaUbt+zA3VhzKM9yy2zBfrikE7aQ2OA6jMWLzUkowcLWS+s9Z0o500cLhqcJgy+LOcI0PJyUC8eUIIVXrhAVZm01lrlR2p1CO+4VjTu/gw8FWorEecOymhF4We6ntIdnv4Ml4QmuuUo9D4wiG2j2ka8gkkbSN5Agh+KFxzrSSuEiYhLyaHoYRqCq4CHRj9ZUFMtP6U5UkXoml0PQCk70F5c/kkAOZ2cnJ0drSxtC+x8+ePTs+SPxFIrdfunu2sb682f7sPTp06dw1zJJK3L03r39hT/9k781+xJN3HYIEmNxv0dmMfZ2u63W9EpgG0/v+WKI3VDFCDZbbZbPg62tAZ1r2D8+OmB3iwvS7vd67fmOs6iH65ty+tfpfG+99dbXfu3r3/3ud/7o//1nFnoBWRnLjAIKrLIKKNrO7BdHoGFdPd3vc38k02lglpepotxVFo6MFpgCyBliX99PmVlJN158v0bl2e9y+bqVXMnruu7ZtM0u5VqmNq98zIqU9/JmCOHOikBs6olFdyENuG1Bb7FjVa8g5xl1Q1+wzbxnceAxdwKEVJ4x5LPU9dkNxYJRSpQW8sE0QE3hYpiTm5JDK+skJ4mLeHGTbEj1EJwjOEvsBJOgRRgTdsXKurD3ZFfUll7SyLkqnblEC8dJZUNeXMopZbKdy/1gO1Nv/3ROPsB796julKLv/fDvDnvHq+tO0mXyEUl/WV12Fu75wJrcWSog0Gk7G33+aNDrif6cqw4HR9qWL9NhkGsbHSuG7J8R6AJ7YwngH7Od78quDR4Emjs8yxrXHZt4+HAvz9a3l8+qlZ2DA4d2bQk1WBbivEnJ//ijkRxuWfAKCqUKwnwZ57sdCqCgZkYJckhgqLVSxz68yIn5Xcatfq9TXfrg0Y70GyIVnnz3+4kHCd+hieTFDEXiMWHpgCmAioZK4sZBqoVYWlBkJgkvyRyUFWstMg86LjHnM7MxrnBWkpDG4fnMH76S8kVVUG8o2hwFb4K11wjAZ0R/ggfox0dONOfwlFIbSNF8lF8hJNZYi1z082/cXdla6/ZOTsSWGUE6ex3bjpsE04JU+ZshPRwi1bSVloNFup4+eM9/HCbFiSxoGs0lyJn/HMDpYy68KB8EhU15uLRiWs2ZHpIekY1pRDP4VIwVMDEVxMqUtkHB8x4sfQAYcCUdS7gyiGRBBSzl+bn5J48OD4/HdCbLSgvE1c3VG3e3nbJpT1N9DkMZS9TMmhAvqApiySYJxI0gg+r0aJIzuTK3aSvEVYYQGZCuJ/xLX60nZE+PB8DVmKPSiej7memM1GOuZPB5ZapmoPNlxtUL5894y2TOfl036VHVWmMylBvY9vYtqxegyBauAtTIZDBXsf4UQaYWjyBcPYjgvDYchiQinLEYdefIyzm00mnKSpGEB6iaVkDIlEVWdosHYmfnSPpvv/W3du7o23K7s7mxrSBTEKPt8fFhsn1dzr/25qvNupB/xxGN20uTr3z1zaZ84XZOOqmktjhZqkvnjZqODntijRgL+B9pnOxy9J6d58/p6M+fPUF0ckisrqzeun3LAYDQ9L0f/SCmAS7PhYXnO8/tbRQXfvv2LftfvvLlr8j6+K2/+Vu2qSx9A1cjCzWVV4iOWPLdPBHxjMb7R9bzk+V6Y0Z4BB5tbKmW6NiiIwVlUj7AM2VRemYU4KJL5Xo+Sksv2vHrc6/SeCn784upM89//nX9Mx8/x6r8MF9pASXgFy6kwvAyDEHcgxUbgtCRaD5KGV6Wwbi+UulrYQqFWFJxCgZ93IJ/oab0WoNRN6Gtp3D8wSSpCbQyci6tNWxMAJhFsGomhaBEBA6aLP+NBRuzCevuy7ct13mN2/y8nZaNxD3hi/bJNib6eXJ4fLy7v76+NpLmaXL24OHTOzdv1xaWmA8ch2h2MFjHPkqdlnzoPAM8yHi3xbKJ39s/dhEUeHftJ6fYWGMu2s13Nb+50r08Hw3Kwq54LynSPBISOldpdbyRNq8z9LOitFt1HF/yP7uLl5mC5tcF/8jAT0zY8Hfv5q3D3Z25aQ/JQ/1luaST+DwJ+q1xcAPw4jOwjdm4iQHXhInuj+dGQ4fGTHsHR/xUAtrkz7YoAlhgJUH0eDjKoQqxZKD+ouiDOrOZyCJ6PaBHMET99yoIGg5/PujLEpqtcZartAC0NxwOpCwmwMISU1OZ3UxPnitcJTwxkjAp9HxCBUGfvAX0ffqilLsWi7Vao835Z8gASxgEtbPXb/LSq7dfXVk63N2VqQa/MuMYSnT/oAiSyhcYOms1iGOIhasqFMQKGyksR/mgRpA85TPC2Ss4BOdSy/XN8G615PmgZq5+7hX25RZYlsqCckSfQQbPg+G4fPqTcZZmtB+aD/jTbjqhVLhvxgMktjX34syg85awZg4VoWUOOOH0WLhw1LP8iUCVbkX842l8RjEracaulKPoOPbqwbvYajJa6jHcM0leiV6bg1CVJYumODMSbGDpR5yk9XRbr/xFKmTvcTqt74aYv9JLA8sk5p4rGR8gGGCAlH7kTbtCJI6Pjx12JAZH3BZNP57vUGoEe6qdMYKsFzXJs6Mi4SMLY5bSyzkhbIZA28rcAliBIoSB4a+8tL2+vtVudUkH9wLIQFPLAaBlxoM//tOP33+0fWdrxTa29VVBdfYHfPrxpzdv37r90u3n39pZX7mzTouvVexRAi2yqtt1jIOIPsFmcztPnqNBVLe/u28BLLsO60XO767XkfZizvG+YBEW8nBydLy78xwraHe7737hzS++87ZzafYOdyaD0eMnTyu1N5ibu8u1tfUNgzsdnq6ubZ0Mh9/92++k4xlR0NMsBYj+B3N8DUaAhgMAh6dOiBzdXpMJPKbaDHR62WrMN5ObGyBxLUDKI0EpIFVlgFEAcv2eu6kyd2eXygPXF8vTBa3LM275n/6UL+Xz52+5ZSI0lX9h9wUXsHVMlF6cYA1ok+iVEEpYhWJhipaoYrZ8u5jWVB8MSC+ygDMETXu5ko6UJzOX5flC4GkSU4BzzHycOyJzaKVmX1Y0xYIdxeARs0jhKwkCzca4mOvT1avp4fO9R59+yrK/sr659+TpoDdoVBfXN9fZg/SdUlVvNvdlh56crm+tU60//Pip1Cq3btx4/8P3nXtI13DGsJAWoNF5WdLOl5wmLvS32TJyq2+hBaSUwPzJxalm44irzrVacQW67TD3u6/g7dO9g5Oj4WJtecVm15WlxS++cU9OvGUHVpxdSEYhU5tqyYFeYin7DR67urNtGY9OJyMwnLvlUIvqlQPGDNPZMttba+KPEgcO0otTIc9sMPMyINIg+BnmpndubO7vsiME1waSGz57Lo41BJgpLihRvrntyTifxG4WPolMLX4EauMQZWlNqrmZvcqZuFjV0YIUxnK6bYtGIBkODg6dWJC1SBzADMj5Kyw8q0LsLXtZuN9FRDFsCOuM0dpsF599mXiIgh7IIR4wEBexyUpBOi7VGre21m/c4GZbORhYI+H/fJ5GEBGSDhmwPoXlhSEXlhCOke+JNjTSqMT6DcmKLAIPbKogW+Fh5W5BwxkfDHrm8dBknosiX3AyOkjEYYlZDIe9hmSgiT2Gd0abTX1plqpTusaTHSzOiqsoQYBRykX1SZ9TlDbLGP/vv/2d++99WAz98JcMqM5fTEY98WZTmqMm9BplaSAtMgFazXEdOLu41rDH+ll/h8lycY55JJwFvzCgBCycOpcCtWQGSVopxMEBwajO1Ibbg1O0I//L8Mpn+JDOpYdpMKAGtZBbhgKGPnWj0O6sTynnCcwpcryVvM0HhzsWQvphumOmK3M90wHzeNGFrZpEjdtUw5AS2qYvWEpG8gANOUQ1UTHVoTZcqN3ddNzLa05vS40Bo2rMr67qUsLtvvDG644kWr25erR7+PDTh/LEzC8tyPv/yYPnb7z7xd/+vW/sPHSk8tg2SgkcjUVEHF2FjdjpCzCZqaHeXBX8k/DNytVw73DiqGYWzqUm0CWlTbc9HIxWeOxaK2Ta6YVkGI9+9P4HP/nw/Vfu3YKm1sRPnj7r94fNpdjB0IrztAFrMDz9+q/+Orny6MGDgkckVrAlEC6ANtrA1ZBE+SbR5dyzvd7cO5vMqbmacnmg1WhxJNI8C5JBh+BPOK77ns0vZRX0bVZxeU9Dbv+9V0inTF4eKvdcyZNY56yq0kN3zHOuZwJRdFREesPQup8t1lF10YXt87s4tb7Vl2hnhaR5mtjmSgZh2hHfWFE/dTBFlEuVpROhGGgC0VAJ7IrwCOGGyCXCs2KGJUxunP10lvHFwoBrfYETi2oRo3S2tsqTml5m/WwqERWjggQaE07c4enu/UcXFz9e7RDE2+s37q20bGgf83etLq/LDbW7s3/PRmrRMSsrAujvvCSoUrKgAbLUU8tK4zfvhb1F4XWikKw6wsvOxAyI89Hu8kpd0LQtAFYIgjpYA00Xzo273tzsfuntl0ZnFx8+OR+yVw8Hq435zmpX9mY8bqEpU0V8VOIGiSlbc88GTnYdbW1tWfnnQLGce1dZXeniw+3mRfYMYcx2HixdMv3jugqgjzBdUY9nl1ay2LKjIqtLWVdmU5jtyvYDR0vCldBiMCXQnScyloCP0RGZBhfCpKpkkYB2vu6cp5JTLxNzGUEfG0JsJrQ5XliOODXw+kYmLa+Sgqdn/CXn2BZOwipqPrAzRiJnxmjVQoHozLGOydO4JMWpYWR/DUKJTeOCo9e618t5woMshXeFfOzvbEgbt3vcP+hBmQWkIYIqWnF41ow7FKUiLKMQEKwqX0JO5iCcCloU1DDEDL1gna8FDjidQkqmfBYTwfKU8tKC76GycCMv9ZWHg6Xle+7TVLOmYaeAE6WixB4EdT01ew60/ZyBN5ytNJZWPGcTR693/O//5NvvffABzqb71oh5VqKNCU/HYr83gN0ZRvoRmJvD8i8kEufL1fmod1qbX+ydOHAV65oDW6HK6X0ZVSSftng75LIKCqCmmPk54KkL9H0Vx5yeB8jqmIXS9QKEMqIZf0CfZRjqLJwns6zeACt/LwAX1qSEMWSdYnKJ3nQ6AqCAI60ExsahUWsRpyFYDCZGLoJd4+7mPjnlwRTWnpCI+ujlG+LkRPVaDaUT6Vxx9aB2zH5yurW6vrW2FVeODTg8adPFm7fWt1bnDw77uvPGay+tdttCt6Wt1RUCxzJICwbCDUixtFlsNBKIRZZcOM27u9zRpayfCPwk5Z10ljtY7eZwg/VHjJGVOH+AvNGPH97/4Q9+yjv99htvv/3FrwxP+7Jl3P/oo+2b2wBL6zwdjmSf/53f+Z1/9d/+37kTgkbRWAK+QMWP2a+ZaL+0NJ883z0mipxhrefF+Bb0W+m09obHN7ab4tfQc+G3AK4mIFIJYHn5OZuyoEzhsy6Uu6VJF0E1wjpFyyMFwYsguX4+T5VCpWipPe2phbppoebwUrtcKoJdqs01S/AYQB1nl/BHKs4sbVdQzubTRfuEcxDiLDWISk2PeuidENgwoloF44g+UCYCihlZ3JwrtZo8+67MYbQ5kTtZSub7dAU57G23na2NovwXQ5GpVCk+iHFjWcB2fr63f8A+IUKY2camK7LqcH+3ubhlgIyKpAtB8ktf+YJTep2+dnJx1mrP31hb/eCjj+GJoGkUQuYwygkHGBwPiYQ68mRuPzni9x1z6nrVY5actGSWmLtYW29enNecNaG3RMXm1ib3MvSVkO2dN2rZN9ZvdFoMjkut7eVaIwsFC0xjpzFRLmWIePfdd056R2bKqW8OfiQMVMvawwB6eXJer9SW22s2LbOgmNs0HzqwGgr87HGXDMiJJWaIkKWhm9SkeiMKs9U+iFEwLlMfZCjYVxjdDBcKp6rV17Zvr2+vioqa9E+4xYTQzTgYUikog4XYpIqnk+5zSx1ehBo9c4FvjSFDelQyR3sXlUUx7faJ5sSvOFvskwaXJGLkI5+bu/Hyq4TVmagnaFOogCy8xKVotyz9YV+EiOiJxcODniyqyKREMM34hgfwwalDeMJmyiusEdIFLO4BiTEaZdE1EUgQuAQjBWCpfPbPt7DrwNGjYSr5mm+4evil9YnBBnbcFoVU2IT10ddIxLLspRTNFqEeMygpOsQUNzsNXE3vCsldV51FMn1J6JJcFJWLv/vRd//2r/7G8rYa/UFkMP5Mo4kM0R4mZW9gVCztF56nJxmioelZxh01k+HS7jCrs/FkSJj2+yfWpsmVA4CWYTonFI0AgM3ZV+hMUrHxHg4KqII0TShlYJ64KdWmdhgVtaCw86gOeZV4/Yi9XC/I42Ig48HMhm/lnpKzjobR5EZKpFgmJwPLhVRI6S4Qd8Iqbp/dCqmh8LysFEuQEsDJAHYp7JtvTRLIMuMFmgkc0o4x6osgIAuek2Fv7cayxY+NdJOjka2AL9+9tVKzketJf6tNKDl7nc7KksvmaOmVEP7q1cHxAQWLolKLmhePnZRw/T5Fc2IewZ/ezevA6ka9PGQyODqAHkttEeMriEt60Hv3OuA4GF0cf3h/ZbW7vb1+tL/zwfvv3xoOmSPu3L3HYzfu3/2t3/zNb33rr4+OmXOLi7QgG/iYBVqrYRi/Sec7POqfP98bvrzFmpBI4cBtOl3rLO2c9Kielt4eCouN8EA+AXBgGlTLnVLc1eBTmRM3yq3rYtdKkUdDFHmwzIiimcBUFjFBIVCH1Tke5NfVnITyjclgZXFJhPx+f4CNAVY2bWbXocNLapz5ceSoI/8Xnb3T60lkgNdLKmb3poss1UW1Mvup3KgjvRCKBQKmBSvnF+oTIJm3w1GAbsXGuJPohaeVqCyL+C6nsGFa7SkLt7NczsANBRTJBYF20Glu3O8/+PATlhyLy8RLVudY/Maj3vis3e8dcZsaHc4uU+fdl+/eu3Pz3/7bPzsZnzj75Mc/+1itzsaK7TvHT2bv1MHhSZVdlmp8eDQ6E8LtdO8WzR2Zjpvz05vOmmkmppOl6v7Jniykq8vtG9vyDOZAAss60iZJ7lfaGBFLPT0eZINYmsACpwxHeBQG7sj4LetZOrDUhCbCYlMvbbK1X4XEkPqHRIK8oSsiNrGUYBqluOusmdBezsdA4LGLgoSVUMIFEyAUijYFoBVYhXaio4UWzWEI1QPNTuelV+69/vJdGanw7f2d59/93nsf/Oy9MMKUD5sA7ZaAaN1NoIK5upwM9jsXp925nPgzsY5g1GCQtondAs6ZPHLYoiKbEKSvO+o9PRhmu3JWyfNc4Tyb1toYUukM7A1XwYngLmMIJIHxUAZAwp08FItLNHeH1Bi1ATkyRN+Mp4zD6DKaDMiQyp9ZUgysQhFZcMT+G8ahFJSkp1EqIGa0k4hSNWghLxAJgUVX5Xc0KioBTYSCXvqSzrgATT1qyaKhWDKmFVa9177wykuv31nqrKTZdC8A17X8YGO7GP/Jv/vTjz64byboConrojmFTNGD1nBUextwcDh6Ee5gUUVq+SsTqD7YrhwoogFHAzB9at60tjq13ecH5J4eeUz3A72Ly37PcngItfTRwi8UE45PmClJqKu/zK1aQr7pRDrse3qk1bCWcsWl/HM1b+HCkUpa0TyABcQFir6W8kGxcjddD0QjqH04bgimBjRVQwzwMk9aE/4rkIbkmok921vcFWqNKeuDV3leY4l38EBxPAovmu+LBD2unJzIe3jy6tuvMPIeDA6MvtOpP3v8TLwnBi/TC5BT3k4Oj4i2ychOyavtrfWVVpvzycKdi5jSaD+wqTHLFBoExOWCkskrU241QOKfHZ8N+72nj5/ZOsQea7vxrVsvD/pHjpr8/t99b2Pd8VNdXW1w4ScL4gjtfuMbv4EZfevb35aOIpx3BmnQh3O0jQJlhACj9ODw5Hyjw+Bs1Z+5NNDF+tx6t/vo0+dvfeEVTDcx1JzCZQ4C4jD5UmOZeviObwegQX2FUn8plh+wPneiNOdWWVAU1EyEBZ98cBR2hJlGQaIvO+VPJnqnQjX6FyfPhlf15g1zRrFkmDGjLHm2tEtyGblUKlT92VTs+WGTXIgNUClb2DBrRRJLnfDd9FK7LrkL6Sl/EQuWAesvb3S21p892LdmskUqXHihuj+UViFmGFiAGoOOlt+RHFH9fcP+zVFwa35+5CzQ06GK6b8te8GbTdjuztHhIYcotYmmJXDrlZdeOdjrPXnylFl+qdrY2eGD77eaKyJyaeFQlW5mc9+Yq4rNlX53KEvW0CpyviEotLrw+sv3VpfoHPxIJldERm2527ZAkMvBbPHXSoLCxF/lgotLlIQvmlsxy4b/RH9nKzZHVA2h4dlbRkFgT8Hy7GehyIdbLSy+utQiZ5GqYFN8XayCgTlDgi04/uccDGG+PVrPQb4Nx4QfUfvVJaMKAYBLIHWwDqpk2gviGEZBh0J6MdSIblhtN7fW1m5v36JR2lR6Oqk9ffS03z/0VFFMpanIXuXsx5NZu38y6B28Ozf+P96pti/Pjq7sUHC0DDFQH15cHjkjbM5JQFV5V030qpV6t/Pv6ouSTFrJTxeFU2UnFO1JXYW/xxZBn4AS2LIFZHQdSnTmOM3BEuAqnZ/euHnz3Xfftn2fqAhDjDiM+hpOOzMgFG6qcNq+HmlIYKb9KulyjB9RQAIOT4fmI10I+hBU2FZeKZW7RGDsVfShUBejJJAQQuYl9ngoM2EVnGRHUa9XEwXWO2BaxEDY4sxzgK6x86m5/dZf/e0HP/2YvlnqjKUhbHQuW4GQoP4YCQ5nvElnFc6fxZt5U8z4MkKTnfdczYy6RRQw2lXn291G8idHM4hKZAvI02fPWDPLrGegtKwQTWCJYrJbNYlTjSkCKrDwTx9m4E6wuxtpI8xAb7wANb3QgXCIGNDtcLRW1m0rD3wWdJWZdc7UoU4VGCL0Lq/4VGWiMhdKu6MrxmGK85g9FM65nrMs1j8GoGA1EEvrRlbPRhsBqGV/no4maCcAa+UCm8yv/PqvLSwtrK2sfOcv/pr5RSYJbjvJHY96xxRi2GMhKkrbGFfWlus1vuVlhtN9kXP9AfbUkltjZX3rxi1RWWQON5h1k0lw+KuFHkj0ZV1xlqopaUzZBA72nj948vjNt97h8Jyt+yWWcfH8pIdndtqd5E+9urxze4tz+Hd+7xuNbvsv/+qvj/YOA1EwBaTg4gxWATlEsvI7Oh5PbtIR7SnJAM2ZCbm3vfrwcvq97//0lTde69AZyW3WFUAsyocSM1YKkrEQZS+lh8hLpGGmQuwFy9QWlSUHS5DI8mzTzxWJ3yUgdwvZyeOCmCZ5OxU1mVMXasujSsuKcX1tvQ4Z7EqPm8thbfaH2sJq3cUqgBPCoggCXG80WT47RcW2hVNfgy2aiPnHR9SZaDS+FVRzesOFLaCVyaUZuf3m6xcykoyGjsWVQVL6q5Fz3ySoty60Riw8Ifg409EiwYIR0ACXjTZx5SSuvgKEN+BvOZ99Y53y0d3YpgM1lzpQjzel1Wy8//6PnzxpOWT41u3NX3rnnW/+5V+12p2snilN8NlSfYHe3hkcZpkOWBfJwA3PpWJf7N7cXPvCrVsXZyc7+/sOLyyBhZd3bm02qptO6WpxDNg4IFg/m/2C22bZjObcLdiTLT+iRMEf2RMBlRxvPxq2i9MpNjrwsniHJgtM8+3V5RrEhYvmjfDHOqAO9Bc4LvmtcV4MJxITsdrbYbzcXO2I1wQvagsntTQIwV2tpB8I16zSOwqDy6SXuypbXFtxfqol7UtbW+vSbH303n1HJNmEMhocmzMPeNaSQgBSxnF1eXByfHp43KhdDD8SxCLcZLG7cNU1A2oU8rcwb1sElLooskgy7IdnZz9qb+8OnUYplEtmbyYgfYq31KRGN42+HW4NXLbEgapIM2wzLMLI3QwjYXZqfuWrvywS1yE7MUnJjGRIsAHc/CsDDPLDLugY1YiBkYpQVHo8JuAN0kCOUFYaLKAp+Oi3oaHNUB7tu1hDcLNcKf7k0KJnSk8BFC8IVHUyeyvGljS9I57IfYrGxQQX6FovIgjoH+vPdOHB00cff/ghWU8DgAk00AsxyrSc08npuVyHzBHsGxlOWelZbob8g+0axgIDAlbU2DoZ4qwRuVukl+U4F+UW/otIQpqRKKhMQeGnNo0Jd3Qv8KnMTcqZKiaUADME2ph1qjmjoBhYgYkjnJZazlcUpobPgXC8BygLZAIxpRB23E8BoFNDRcYP3OOTyyQU20JA5ofSeJSVaUUeoQ5TpwS6JP8nD56enp3a9Y4akIAJhPbhZUIJFynp4BtSFnKr+XFlsTeSezHmTQ0CRyxc/mG6yfPRsBsG637p5Vc+/vB99oHRsuMolt772Y/X1m6JoadOmdJerwdkIEivYspf6XTYLg4Oj/Z2D3tHPQLX2n2+csIwy75jCHZWKhDX1Gi8vGoDf6Osgni0pKNzXgKdb4KsOq3m2alYuw+t4An/2zduvP7K2zLQHx4fPn30XAJ7Z08tLzMN4grVd958t93e/lf/z//bSA7X6AVgE5DnFSaNiqYQZ+8o6T74vSSXjM4bUPi7euXOzdXV7oP7z+wOai6vdDea3ZVWYJwNghQX4EkGJ9q/F1sfzMctM2PohHU4pBY6SG04cZSnoBfCZpAHVGQoyf3SguSROmXdki3pDTmel7cqla59UBsNx/3Rg5K83QJlLNLAWQjzVxOKc0NPcqCIuaF9LdY2l2u3+G+CC/aKyjbrBcrZFucSiWP41CldAvZkqFyo599K17Etw71Hn5we9yky8G4xidHOcEPbbzCJhBVg90xyyZoFKpGacdjXs7SA+3Ckd3wcK+rlOQuBFYAMDzvPdm/fuLPzfOfGrW2gOTg6AIB33npHKv/9o1Fzue20E052KE904i1AIv0Y1yR+t7bWrL5+ex3QOYkAj9h1WtDGcmt8YfzOBWO6kQA2S9dXXrrNq+CQUv3EK80AZR7vDcvIERPBxJCtzG1Oo67JMRfWBzLmx0j4toulwyQxgFSwfE8wAjQWZMO01M9cKs5UXFJ5yjhEfRSKhE+yPdhTueC0JLkfb652H+/tlhAhmr3jDuSOHpuYQo5m37QSIIVQKQTsBdPL27dpQxsbG5s3t29ubd04PT2xBCFDLV+QLmwwS56P1KEGOCoDjjsJfX5qT5JcvcJHzQiUM3LExvZvdhGxQO90tcpotng1vOpL40UptuHVaLEF2AkVzRWlGlblvwUBfKYfZ99jcDfcN5IknVZ+bioKWwR3KPN0QH6kPWLWYlPvghthc+kwXPdwhhleEc6hanKJ8QAOxtCUmnETlXtSPaBSKCZSovQw6+HSRew3r3BWl1JzXp5lJY1KopWF6nnFYSOTKxsLF9YXpT89OhECYQtw8hWGvYnGmX90/5mB4MtlTDperXfbVP/uqj1fcZYLNWg2qTlokziBjYBCEOotXJ+zABT+nz1hF1OHrTmxnHdUj2LBgGnFJq57gQNi88oyotpm4sjO4ShhFvWZ8TCL4BrlGsyjwrNzc0fJoC3Bd6sFwlHTk3UK/0ZiSC98SH9SaxatSdJLhrnCrMfCniVnljWBXICeV+Zw9qIKjSf4SkIPHMXFBIicskMyzgfVJnBE/2ymt6zFX5ykrc1QAnOioOUBYPqSOQ39Fy3KcdTGhJHx3x7sPv6bkz0+we3tbdJrcHKysXmPiNLtuH9HLI2J6Wa8XVtf85DV697zXbnkLOxglr1jl8PkMYMDz3cOYmECKTf0+Orq6OSkoCDYhcPVeP+WkgtrNO6NxyMTkr3fV5X333tvPBwJD9hcdTbgFgfDB+8/sMv0t3/nV8ejEbra3JrSrj747ht/9+PvB7mNV7J3uBHFmLYBsFld7h0OhudzLQfCOKqs3nDNRABotcozUX3zC1vnw0uu4vmrwfkoCpIeBiWjH8w8+2WNzjJjONm8klwlZqbZbNZgXKYGSc92h7TOxGAww1XOKvN1HLDQW8SuUqE8EMd9ncR5OV0WRQtxyCiSaqF+BWnIqCBJgjJIwVZrNdSRJA3cH/Rn2GzXk31CBsZoEFJP09HU7UtEsP67Eg2RDKDcE1TDo/FgsCNC30JWckgpTManx/cdajhkLqyxS9lgSwec4oh1MTQN1rkl+yYcVuf8cAynMv30yWG/d2yD78HBvr49f/bs0/sfswF+9/vfhWcEMacRXg3zZAHMIriysLG69vzJh7C822ofHx1BrtW1tuRDDH828MY99Pqdjaesq1cri3YiT68IAFKp3ztPwzy2rSWuONGQ+Ep1oblUbyUCRyLOku5mpiTCJajPqhslNzQIsSBnBJZ/4ThzdrrSLDid4mKFUhCXCWwJtkG6KMshP+iHgdIS2YOE4gButPcYC4AXImhicnu9/Xh/r77k0MA2V3iz0+a4VlVYViwMWHi0P0qBCdDc2toaAAkjWl3dcLpeguHY4xJkZRpNaZRlE4tL+pXYfyv+weByeIpRmTSuaiNtSuqPWiQGzDwXlA752KqTPD8J9tHFwniiSVI78wrLhRkuw/sI8PCXcEstAZS2VeV/hAK8U/PFhYiObACVZno0ii5Ci7TMtKjAzFH2DFjQsAiEMuLgmxooQrkchq+FrCVTPE0FtsFMOgpjf1YcKRkNumBopqnYrPFQ+Ke6EArOg3+FSNAI6WGvNTyuCm3kHay1K5LIOC/LfZyLLkn4TC4rmEImSY3q9AjKk4j1bPz2qxtvtua3m9PTSu3Z4Ei0RZtKEaKpwqfmguMa6QK1ocvJOn5un8jc0o3TyeJBb/T+/afOoQuKpC1dBqfwVfBm/5TmAKLRNsKaFSgDcYQ6VLTuxnigqQwKvKP4PAhgG70T/T0XjYaBBkKOXMGG6efBGmO5FBt3OsjYou7BVSuhpGaOHbcALBAuM6bBoDo553Nv90iE76tvvLZ98+bq5s0z27odFlS8H4gFx+e1o+TtPnvuBFcBsfYziluypFmA6cNecC1QN9CClz4chBrg0zHmekf9jdeW1zY2ne5kIKQRQRqBfnklHt8H1k+pRyolOGRi2/DIKITHnsHt9BYJqp14ie5MAw/GmOu44qzP9ieH0UYpJg3ClKChnC/aaWwjjw2grXZzc/PG0T5L0sl3v/+jl+6+tL25trZJRa997wffPjh69cbWDSQ2GAhzG//27/3aztGzR092TK7oxQjAsns2SJqIaalMhXBP1lqtsQBwh74t8OiEciuywGdjcuC5sW01VTZTMjaZHQ4o85PQAL2OokPXzprA2IJHlnCgNMww8Vv0aNqNda4hf3tMn8xxlFXxPJFx6CE8OsxJ2SuK+ULVJp2sjfl7NdcYO+gqKSwREYsiDWCAdYvOaQbZssSIHINdErcNYYlTAihkxW1DiUJb9I7oFEGYwgcgFj1jbJBYOo8/I3+rs6QF49g96f/hv//Qar8W43b6CqkgntAerJdXXEb4IlNI8dPFZt0RPngBUh4MR6vdrvGAPHcxQ/NofGreoWJtvcYzYB/voHdKd1Tt3t6hsNGD/oiQe/zee2+9/mqntUKpNbMWog7VuhNVaqnz9L1P2YNWu00OSs22cjCFBY4TGXOKKS8OcZ3jqqEep2DUpivruOSKS5KDinzWyZJNMY49lXf0XAQDIRaFNYUvbFmmpsBzwLMVSoYTGGfE0VPCLheyGsKZ6gxmKqieDec6XNTNpsVqLGTExqhXWWh3aKPT6er2lsWm2VoUdSNAUKcy+wRV/dbNtWa9CUmO+iOb5OSWdgaCTXHs2JiEXQkxCy7YE5D1JDTSOIRBFFhA9kdYLZJYnNKOFJbj+vxCatSwY/iCYVtNwtOQVeyL4a1EV86vEI9hw8tZ4l/LAjClwgqhgUhF6d1KW9aHYgZCgGFnhYeoCjdE/TkuHCgsQCxCKJ3iBBEAGw+uAOMVAJhUqvk8PNM7StBZODsYRDQYCBavDJzDH8P0I5otQspOroxZhREAhZ2Wd3QRGRSbT8ZWLELB4mBbJIKsrvHXSgZ6Jf5B6F5ttD8iEvBZahL73QS3lbqTeAllRYwUOhDgMP/h/Sf3JsPj89q3Hg07C6fbhjKdt3/0sjpHw7QqZrIVAECZaHM1X159sN365NU32hu3rBucK6T/odh8ZKpUTqrpudD8xqL8VTxYWJm+mgaop5rcjimOXiLCVofALo9ip5P11ZV//r/6T776a19bWdk02KIrKHohnS2lxEEU9z/95K//4ls2glh4AmSQvYAZtL0CNPAzxPwoaEPhKJPJFe1IVrPmvFLy0rQFlPmP/ZwPThnAheSNL3d28fZOo3Femaytr6Ly8egEj0jfPWKihTrHrKACGwotihbWb95Z27ptE6VK0TkAW+OZaVUSZmI311Y3MHv0JXG0OEuLd4tI/SMtwlzNZxhiXumP6UeTucAQGf6iPVcFU81zAzuDDZEz5HmrL+XEmvOrxw8flZ1iXMeLDx9fDoe7//D1b9jg/cqrrz7aeU5r7W6sdZaXNidSf23/wR/8/v/wr/67+0/6FCTLHNMQqgnAwoqH4wtnVF1uCg4xV3PnowtpYuvYePoD0TEkJyXMDXsYZSZ6bKCx9JtE3UeXZf3tQsz9lmgMI+euAp0nSVFzSphQu/EBO+2ypGJrlfIjl/QhyEGAwCrfMvRIBZuTxqjIiun4+Nn5xELNlJ0mH0ayxsrLPbx//6Ot26PKtAFNT2VfSOwm7sGpObIylpgYscjm4AnVpInIkkRYIJ4cSMQhwbZuukluokbC4zh4iZ4uRi8eVNww1hTKROJR5owruFRwlxTLdgOBI7de6kjMbxtpuo2AorvwjNr0zTLfvH3rhhXN/sE+HLAWFP+boz+5mI4mCOzZ3v7ZxeDdl1969PSw1jhrdbvkvLMIaF+Vmxu35+ePm6390VjuHZYyu1tjfBEVIw6ApQV5JtjOGLNvlzAI+/IfY2fwoSJR2KMrxbIZrQnVmO2gvtA0ucEgnWAoMUj6HqsWyZSduf5HjaEaQBQmpPCpOemN6SK5yeA0yQZF+YMgrMM5WajAdXu1++P7z7ob3bXNGwS0/tsIk3TJOWavvXrzJvXu5Xuvrm90KQbIg5b5+muvy4YKtuEI+qBNcIYZQBtWWfAqBJ6v2QqcZG1ZA8AVdBkWYHTB4nCEsKMZC8BhSYDov1S+eeLWirIZ1BYsSt1UGJQCCGU0NTOYlTYxl1BFXj781/AsQGZBJ1XG8U4KwmPVBZ01qmy4TYSFoeBykDgVhKYta1wEqEIDpFIGws2uD0hCybIscNGaT+WUFKyhDDecP7TowUxcqgvXSAuxHZkydgF6ADUm4o7YcxpnvV2dFzJkZEBJl80ZmIW7lBGXLsEAqq7Erxxpta3t3Y8OvtKe/sumE3PQS+WMUdhwUmFkL9XK462cBjP9/tXie73zznBntVmhHlPVdbtAQGlc1XgyWB+NVmuWFRumeT7WKD3PYtlcRTyX2TUyP/NPh1c3NzZu3ul01m7duhM1g7eBgTjMiUVIsNvktQevnxwO/uLPv6lwhF+aKtNTIKJG0NZprQdixUQAmOlUMpj2DAfqlj2ZoJmLgQs6vrySqSEbPhKlJxAgr253Va0239KVdAPW64at8bpjKkWMwrlaY2lrvQsXBG/g7HQUrl44yfKjeqaPmzdv6ThDq73KJ+IpHSnA5puYuWB1UNfwZ+MvvXcxoMhcKhGfmSlWBtDMoQFRFOgxjoKldtAlDbWImaY6iRkunZXVl54928Fotm5uY9nvf3R//6T39msvyfKyLDB0fPZP/tPf+R/+9R8+Z8hJKlau1zkHWqoHeTsQ8Oh4iKsenp7defXO4OhozoYcCxRm3nSPzNPjqHu6Vx4yAXrrbqY4dGA44avi9HFjozNHKs7qIBTgjG/YzPLuPHGHeCAhCF9OoWCrAX7vEJbkoG6Gowl+Ox/GeifiB//ha0y27chOuB+6EDY513j07PFPf/Jgb4et/GoskKaxKArIXk5mGpGSZtNhuC0yiM3JmgYCpnMCwynQeuAEsZqToBhVpeA3GFzl/HIsjuXmreZv/IPuv/mfdug5jAThPmjCMMJ/4E72crMXLNanS4sLsqgIM+wPR9a44rG3b966d+eupaVg3MOjo+WV5bbc2sfHepXNH0MNXTB92y47OuOVueo2qh/fP7m8vXn71s3nB0MHRsrvb5lePTgZSFaz1Gi8vH3j8e6uaLHh9PJeAuHrqxtb8vjqD0JRxjpKElqbqnioskbCqoAxgFJKKqGxneXMfoy2nAkwkp3fbAFG7LhYEgBICInfn+dUPLOMt5Ef+BM8jb1WXdNpg9ZodbC0BA1H0pLLGt1tkooOUOITICQ2V7ZvL3efHp6sE8qodlrZrMwfPCW6JyxMWxvL/d5p/6r6e7/1Ozl85WzsBNTldrv4LYoebO7PxmxS5H9II/ScISI5iEOoJg4tTIMsQ6zcjM4CDZ9TOrreNa9RwFeUiu1kcWRToHN6oCdV25mOxmZGCQgUpiB6MzSM0dRC1zTrUurI/3wPltMcKIBxE6IQzCfsrNBqBBBSFtYt23Yy6NXVKDYhpKvFUpXacAelyGsuFrHexTsC7LEjoeEYPdLbRKAW+wZyChPAdCzYC58g9JPGwoWEbWH6Uao537grZQovzCzdJasqzaXauO/MTgjAkm/yT82REmg4fC/ES1pe8mKL3adOH3YTdTc4E+9MsoawFC3FcpgkDmoamGlocyeNs3r1rAavJlm28AIkCkhHczNr72gWHmXHqk4t9aLtzirKRcAwE4Gl714YXKAd1y6QVoSDLa+sxJdhitJXQCawjdryxuK1+uobr3zh7S/89V/9e5hmGKZLMfUEScKBCBjwyA84gR9lnGVydcp0hBdIbkxJirSPEdlKiEm5f9JHk9n6P4l9CZDbOtFqx4NJeTkjLMPjstKNK7BgxqzP89OW6Iu1ZUYAloHjgyMlsC4T2nGC3sqq2SQYEqHV62Nhul2kUelYYf+wLnDQ6kxMBRkzgHzkDkwvwwHUdAwKlKXHmaWeI8OyKCfP6lPBGpN6N4aiDz/68OMHH29vbtkzYLQs4jvPd61pvvTWvbXl5ujy1uHg4Pat7Wfv7ajczJYweJOWfzooDEm00uiiut8TALrMOJF4g7B4U0VVAoJMmVk0iaSSOSrEAtC6rMfUXudmBK/jm5+5YVMBzBJ8yHYUorlwxNaFkyhBg3TEW8wFlUXcY8Qx7Ktcnlpj+Jc2EqMpngfXsvOURAKK4FgJjBNtVXvny6/t7h10G4fNzrS7TJettESLa9sRjMU8z20UHQb4wsupjlk/THpXNHsZDjEDonR9cbWxtOw2jQHWoeBWt/bua7f/eOmAMhSNMS3G8uhPMjOOiY2VBk683Km1FtneV3745IThkGpMG2ACsgfbF1xcSqjlzjLxr1qpgW7evv3sybPR8Hh9ee1n773Hks8GubHS3KnX3//gky996U1CAiU5Q45Jtyr4S6wNHvnyvY1q/erkMPnUjJk5CA5baAc7IDoV0t4VyVtOedKJgwV7XE0QpKFV050GZ6Olq4Y5lMsQvjG9xqYcXJ6zS51sBnVuE9oO7IVVnCm0GIsplVsH4P74L6WDLDEMMLSxwMQISIi6Cmy8SoxJ1fNx7/jXvvDuH/7N3z3dG2zce5OrlnTgQTnZ37deIa7XO4sHj5989OGz3/3G7zrDJmslT4cms2CJkXfYZypCvqGIQsFmTOt66zepqM8C0fsRyuc9jGC60Dh3CG8o3xoPPEgN+JGnMRwBrOdXndr8sUNHsO0w0KyVVBz0hbHYwAx7gct6s6g5AFcYFJTOFyUYmATOWC8qm1uBefhTuHZYD7RLjnW9NBaeTVd8VTfVqsjyWEvdy2I01o/4vSjwNEsrKUw0HACzYW6mX4i1xYE1ahD0q4XEO0ZMRwRkweFx8ebZyCWNAYddpA7z3ZAEtx5goeq2l/f2n6LXCACpD2YxocgrDBeYyuD0MBteAwJr9HBpYTABeuzmBUIpGTDpU0A5N1pY6M3NsQwKxWZ1K/MTHh0fbD6stUfAq49IRqiY7MdIwuORiK5Fg4pKC5XMU4F74Jk5K+wEzypOPL3RLNYXs3E0EQy4ukh9nj9buHnrVrGrppXwnLDL9EEvAQuACicKWag64FOz+aHnJHCeYdNGEk3bVwEwvFpnPLVy+g8YYuP+tVdD9sM6661DlqRo5vcwY6mU9sjvw8if1R/IQTwEWpXYeXI6Wlvb+PDDDy2oTKKVcUcKMME85+cn/Z5TqWlmZvkapgacyQ3zizKZ0eOh4J8Oz6Dhnl+ueMuCNyhdXs6ZSBFabFZ/5BN5BlCzoflJWVa7OMbj6omTZ2CngDzS7r2ffXB5NpRRXZj6Bz999PobX37/yV/Zvl3Un5BL2oFzl5dEoQ3B0rk/fbh754tvCqYbnVslZn50huYdDRlS4K7Zbes7Ppx1OGW6aAmME/UahfOMioZb89tJqjY/mFQFskhDhgr4EOluhegM09TE2JPB48+OZTI6V6eN/IzYzg28N1tdoJj7ppP8yZx4dF7++enuHBObY6rP++PHh7HLUUrw6qU2Xsi+i5uhnBmE1QgmzOYdxzSKVb/lEN0uc6VQKya2mIcA3Bbe6RxTIa7W+eobe0Iwd3f78DZdm2Nan2svLqy06pucwDYc63StKuNH6UNMqMiYsqm3AoGePX5ikx2DPg3vYG//1p2bd19+iWXp6ZOHfPlWbLBpmJRDxgqhGkc94VtLzo+2v8SSJ/sAuKnJXgFCN53DWuuiWqFdIRBuzuzYjA87ukVId96+mxLMxigk7CfCGbNQM09BjFYOeJfeR3ogBpuMhZZ6eVY/q4q4MYX4UGLjjIjdrUhqHHGM9bsbwzRpZto0BHQEXYe3YDLuHexL1GP3mJFb11UE4k8++Jf/6Av/lz/8q93jua3bb5iFntPMWLbimpg4Ixu2/7s//JOd3Z3fYu1dXWV8in8rTUwr9WmjU9v7+GB3dw/6lzEFO3XBOsepqL5RlTnRWa9sC3AY9v785dr5dJlbkXISwEdpYI3AeXR13co4x93xO9tNjtv2DQwHQnIUkqjToFMYSXAxtBm/FVUqekKQtHBCnDjiyWbObNWDw1JOlGWkeWCHsohK0OJgNIAKeJxntIrXYLiQWzO4vi+oXX30Im0GqEXrtzb1Rf1oGmtjXbOlQyuURysts2+3iPzXQIvRAYVu6JdgA9AhTogB8Cz8OaoZNGXj0q7Wx/gRkEeJLcXgWCawVGPYqRC05hcvpm0Q4DFg2nI3DFP38hH+5COCwO95ro+Yv7Ensq2UCfRMCdBnTWQvY92BJAWw1Kjw+uBMiodVAGam9DoVZa54GnaBiS+GTLPxDVqDswl3vzzodppXID1Kl7znT7uzrikWpjC7ngozBbOS6Vpsn9NO2xZXX7KWx/qxS3PEXyfuXs5XJvvZeldfU9tUWCRbzSTMI1ormRGzoTgV4VVIT4eMRALOk+O+cO8PPvjwk08+Lt2cs01EbjiCt3dM8af/hXdoTf8jgbO4KlgVzhadOvxO573rccxWWsTbosQYkAe8l+YCK9fVkI9YQf23KL1qtTiopLCtUewwE7HwckqzNaPSR48eb9+6YR3wfO9kb+fp17/+G7//+688e/zxh7ZbfvcjSo1UiDORqC+UlSFH8PHR1r2N/vnpp48f3rq32qksTS8GS3AW86zKRrw4PaNqCAVLFmKbUktIoFO4s5vMFQQ3T2pM61l2k9kwkL9XVkry0rRZrVZjgTij5bMuJuLIM9EXqKAGDsD0MxCHV9CTBSdchelt4crWJosLayqBs04kjJEA/ixUSLJqfX69u352frrMRJfDGWN5FyNiI5ttt2QHVol/EVWWyyEkkJxL2j3tqKLAeynoE74aaIsWAekbN+t/8Hsv/933HzQulzAAq/qsdpG+m9Y6LH68DhM7FsYHIzmeM10cVpToh48emdikLsNKnAD66UMZZjz06ccPyZH15eWXX7734NGnQw4L8UJHhweOizmfa85Xjntif3VTgMzm7v5xAp5p+9bhiMr4ayLkx45hqePq9BAOySTn4UdM1iJ8KYnP4gNJbCe/C4cnlSGn+NoehxdQFaW7ELhTUDroRZ+UGsGZb+aCeyPm5OwiNGkFxYKGwUpwiWce3nIdN+lHHcrn5OyUq3ZUXxz0Y+XUodudLUaHJ/uPjseDX/vSjb/42cnRuSSFN+TDOxOuK3CtWu9fLFaIo6vBj7//508+/s5v/vZv3rtzpx1P0/Tk4Ojxg6ePnz755MmzoAFurNFoxERzlt4EVDiAaASBaQxI5xXRaIeObZtWe67hSRlT9PrEYC9I7HnFfjuaLFRXpT6VP52fwzqJIm/6o/+GvExjwjyy2PTwqZh45t0QpN+Jybmu0yJ1yKO1IPqbd4/pVUygMnpijq2lzXqwolCrfhZXsp5myaJbWl9aqkojIVcwdoApY/pAyr6QyLCZ4tlYos0rqQldEhNJZog4YpFTc1JrUIS8Lq8IBt02x3gKwUzHskVPW9QAuBxxECenOhSGFdF2eXTCGA1GF8nJcJf47aytoJdMYiwi2JobeGcqiEIdSsA9IyZiAInlHkKGvQYowY18LZVGRHCyRUeL1yAXLbadLFgrmjt4l2WZWsu6p7Aytee61qLcFS6Xn5HL+GCwrdSfG+lUxnJ+/vSpeNZknQq089IPtUAOj+laJiAPzr7GilBuVuYk2rU9BfwoIiygAbQ9g4l76bPLB0qeBZKsEpPiojpwQpMt7iVMND1hi4veMANsPEfTBYJk/eb2o0/uy8iGxYABqhQBRW9T8eGhuHpmpVg2AiYTY9ZCmt6Deq7OTBNlIEoEtrGTRHzlkQwvHqMXWFh+pFzWlgWJr6Y2OMYBIHpKwvQlPIQSoF/jZ08eW6ZzbLJv6JL53dy6Xa23X3v1JdlWXlvd+nTxYe/8VKQTP7tob6xP+5jv7sFo/YYmZbUbPX96SBEWZbZ3uM9FfCwFL4iS8RmDrgbW5sF3D6RP0Su8tfASiBoGn+nlNwXysaXo6CLx2dVL4gEehqBqCxTHcGVr6HmJuxaajjjsdhdjq7C+oacFVCqdVs/ro4ve/OLy+spqDDxQQi3BeMQI8hbJLp5pnk2fYgMUiVYMLResDilTB4Ig3jFZpbkDQi1Zpka9CgysO2Pf48a4rC2ef+3d9aODx7Xu0kmfHWpxeiHQJsmCqAu8Ro6upqnwJ1DhBa0N+xbf+j1/49atoVRZJ3YdTZzVg/sf7B9sb2+azvff+9BZkC/du+mcK43tHp4cHPdIcXBje6uczN+6vMmEK++BYKGq7GvLnS4d8+Sgz5DWWWktTWwC1tNofzpBcbQnx/T7xtgLKzBNPEyNCZkGF9YcAUCCn0/PxJ9Zl7CFIILQdlTXFBKNZ9+YLddMhuQ3YgCiRRtn1O5YgGhesHY6jE6BD0VB0jyxzqQ9WWqNR5fCn7kUTiyyW8TSGTviUnP1tZvtT/b7qu7eeWVl6R3tnx4KVzu1EpzDLeU2uJTW/OOffOvjq/GQ4FFAqIZc2TFJaBp5aBtFpq/pLvGUlX91kf8l1DI5Z72KXkBf1tPQjZ7FNiCY32YBeojThJtsYqcT26hBLOwHUno2jHBGmKm+jC/Uh3S9OLDUF0CqNWszOHVpB7KgYtAUuVQQKYuisrsxSiV0BGlGcGJYn6mxGLCuqACHMhAUQv3AlAu1E70VcZg2B2nVFR1Ix8IGmbzZGow653YJzSJrw/mKtbreaDAuz8JITJ2uizUEGGYgaK2t8F+khW5iOjfamOV9sVAgR90K/hsPCrjWmHMaeOFmUq7G8oCDBuLXAqBiWiPMkEXuortSOCw3c+AVZuZn6jRHlnECxsIcAEf/7RSL+TyNpUUsIQt+cMuaIS/o6mHNpUnzh/vqMwQuUqQwj/BCPcfXDg73f/rTn3iEXgUlCufXalpWRJeDKHEPZMYKMImOEhRQmX/55ZdVHLZ/ecUBAyZ21zthlO2fMAAp8Au3yL4ZO0kvV5eXCek5GydNSgYaEhC5A6hGTLAxG62cre48f/bpp/cbS60EUCxmq5fRqPb42KGtI9MWUZ3hqxtdFoUjkiamaP0sfVVfcGBWIJY56Ad1AamwV0PwHFipmT4XiqD0zbZdkeCIpQh7I7ONgvFKbdxzOALItDusBQGpFSps/u4Pvv3o0/fv3Lz1lXfeefqs972P3v/625ud5cp77+33JYUenQr8OOpNeoO+mDfhi2eDfg98+K5HE3b8Co6c+JxgVpnDmUW9UEhifrKkcXacydJWnNa6iXnZY1eRxcfJIQtr9S7jgRULzanWkDNgoSbGkk09qz6jvRDgMwE50Z7Dy8nJMOGl87Lys9dx5LY77enqaiumJ4w7p97O9mTPNr1qNMzdLKkpMOe7DqYDXtBBhxKdlNgGRh4k7wIjge9mg5QIfsNPV22PJUMxox6vTm/0dLhwMOSuXuVapSUBQ1Mit1pNCiKWWMxxX1yIDYnj/nIzMZmoX7rl4fHxzRvbQr6iycrT3Gjs7uwdHR07BoxOLD4eYyCxpeARpBHzTAnOhnscRt1mG/mIIKquLsv5xrQqc6eDoWON4UXM2fSWsZ6jkZPE/ll48VflB73YaAnquaNeH5o6fIIsq7VqQoiExNN8ZMoxgcFqk4OdUkUB42J6luPPsCT+lmqJx+HDhO7ZQQY7EaXWPd4f9kkEksOBkdwRzdb5KvsBn/Dp2EE1GFEi5DNpvdXm3Ftr9f1Bb26oiqWNrVfq9xpn07Pjw95g9/D50w9P+6Px3Nro8qR3fDQcHNPODSScuah7mjOVTpzFKlqdNm+dCRJlkVGjHMv5Ru2sP7mQshRtYHrROGONEv0rHoDgwuIbtfmTkF3SUgZzs0s4LotCkuHO/gfz4Ebc3c6YtBHPtXASHcgrixHa3/RkZNbO5UAWQnYqCRpWZTcNvU+b2tItajJfanwF2YIVJhd7fSw5RI8XHYfxjQABVSQU4WsBOxIRbK1ofSASlzqec2tIIPSM5lVCS5UHElqbGohJhlFTcqMiDseCRUIxR0wLjbWdip0qAhDgWGt4dCyv0Y4+gJD9K6MBQRg2qwQIoCOT1UOIjcalHfh+QqEAItpQPL8mIv9dCDTAqWheqSNMG3Ci1YY7zrQCNRLHOA8IohCKBeukUetkaDYTG6EOMOm90eECNfpH2Z2eWmJnA6v4QtIZ76Fk311h0/irv/zLn/34J/wBgWyiQNIRjeYvvDLiqMyY5WhW6PmunitHa629/PKr2FMSvFgECJxMaPYJIhflF6gWppxJzFSBAhox7UXTDSgwcTejm3u6CFnVQ4rz+x89ZrdDoWiY19dT8qvLqCoVT5YYqRbG5QVEwAJaYU8AEiSkSCfAIuIvMdSSvC31eqLmrizuiQi6OUYfu0XWkWVsIcmgljkoaJqhZ12h1lP94ceJW4IR+ciu1Cmv4UmXB/LomAWMTUSo8M8+vs+ecnOl+5/+s3/4B63f+dpLZ9/99t89/Gj0aDBcr+fkpacHxxsHrbXWsuWeHQznF/wjOpJtVjmbNpJSYHnWViKQIozMYzF14KSsT3S2+KZMUolPq9ZarmAUNDN5C+JQR7t8v5lljuDL06fOXDTpYhbiDlyqzju40G7w1S7yoKeavUDNmjkpuGJFgryZ5Zj1M3C/2OaLq4mB3zQVREXZHFWAA2u9eSbfdTZqZPRL0DXxDJ8O1BphUU5C750Pxv1Du0bl6xa7RdWPecj5AKuMKG0+9Zotk0xZNamCSj4nIXeXw4PeQW9IV+BSYKfxcHez8+pr92xRlJrTFGvVyozn4+mTZ3fu3JavSQ+wSggkXol1JEZrPYMIC3Ny6DhMxcQhDOEkrFRsBt3jg2P7J2JpQB/RBgO7EBDeuFi1xjQNqkMuRgntJqfOleBvJCGh5jzWIPYhB2aIIoslnhy8EEgCqthCbaF5djnCs6RKwDH0RhulnhLzHE22NKepRh2TWkioYCBLKUDILCCOGa6/1LBp8uD5vhxr0ugDFblyOj5Z3by7ubHyYO/phx/+RPzbjRt3b927+4XX77S/8vb3f9J5ttN70jsc7R3VLthJsVTDykrf3Jgxh7FBdFGc2GNOHheHR8u2LhFjtzD/5OLy/cXF392uNIZzXMEgkNRI3J40uFgQ8zjg711e7fPpNC0CrrAN+ixKoZhk8QezjM1vuBJNIfxu1BsIv60vNuEZXPMKX8flBC4Mx/3jQWvVfrslByNa6BA41B2gsIYNlyhciTsDs4wuFB8mImGfs7xesK+2ard7Dpcs5BomvpAtJEkFIHQk+WONGmaSZwzQrnvxskgGnjqKD1mn9DjUl/QyDmyZ2q4lIYoEABYBluoZc+HWDJ6Wn8FUgWPZ4iq3e/N0IAJdI8ihFERadtM40YKBJw6WEElYr4GE6wafXI8TScdiIyiGoGKLV9JVtehPzAJJ5m3IeFP+ZQ7Vsugc9Wn2AqsyUkTxyDT8AmRgCPzBJdggTDTOgjkLofHyPbI/hk9kjzim7PR/9ud/9j/+9/+dqBrKLMUF+oNjJidwp/Gw9OOJMQtEmpdxuu3TCv3Xfv03m53VIQFY5CGtn3Een06mUqZsW1VAuKwOkVESLrHtOhk1XiRrviQIDrnpix47EJPtTFaeWvvTB88KsO1EOdve3PCoJWwS4A0leWYfh4iBYiSKflwJzPMl8WDFBnXZrC/c3eq8/cbLmxv3Wt3VlTVbkEa7+71hrzfqS+kxFaYyt3D+yUeP9nZ2UStjqGEbEAoOCFKz4SOT4C+RgqtKCsVcSLVsN2WgPO47DmR9LDewQ8bvvnJve3l7fOJwz4l52Li5+s4X3/zbf/V/3t0dbK8uNm7cYynYqPZvby92BI4cjC+XqtIEnzIb1KbiUPBjB2aIQIvZwA78RjJGQV27c7GB6DLQMjQE5qGs8GkzwlzF9jwZZBbF0XBQMZ1RxEQ0caguXDQ7NBYPGxnMUFVO4EBvySyR6SXYkYrwjmAi3U6NcEMaslDtVfLWBAboGrAXbFlJLlrqPmU/RBljMIZ2hUmiBTEujnbpjSzxWEQujkclqYtdZoJIBPXyplvfYjESzq+sSUcg+BcGwgzhs6fncz0JQg9QlRVRDgrOYtXImMZsacz+R6Kvur7evWEX1AD9UsTibTIyItn34IM+xt1Z3dvbPzo+eOXll9Y3Vj99/CxyLCWiCVinqtz+C+Z9mT7Pa+PLja3t/eeXcv6BMmUF/11q1j3jbogPiMMWoljAZwMFGtimfdqClYIEQ2hPbKwZO4TXRs/4UrXRN+h5Mjym+GMFJJi65F8KfYa/jIkfLcqNZ3IIv0wRcZUV5ZVwfkoimmFc5gDG7gQ+DCU4ckYRcT45XVtZsho5OtrptFfuvLxdW23+7V9979vf/qvpX09Wlztr925Nmrf/xf/hv/mjP/uLo/sPgN8yPMpE8IkWk0hKs6hFaPOlL7+tTfovfLej2hYYEmKyWP9Xl9MPp9VtsL3gwpyLnXs6b0HpaBt8FLcqTGVcWWqd2tUhg1VgZJ5whKBTUKnQpzcoFpkq3ydf/vm4Ec1+ptTrSKjXzIlR3nvy7ObatuXWkkM+5fjN4WbcwiyysfNkBqJ/YMrNw8MDARieozvwCtkdihFzwnIYpCHUmyHLcRu+MvMfWCszGpglSEVJIQnOh0PV2gYFLEDhii9IAJd1EW+iI1D/e/2jXu8oi7igfFhyFr+VOUhrg5+ju6CmRQZDsJyV5+yEJCCqCs+Y47Nm7ayH1ZGg82OJtVjkWdTD+0NWiqFa44pEc3JO0qgUqIXqIjAQe8AaERC+q4ckGZWNGqtdxLLUFGPg1gu9jd6SQNpAAIprAQxgrJ7LZ2AfD9MKBdAaSBHnQ2Bqzx89+eZffPNP/+xPaNbJqA4ogciM7tPDUE+QXswv1SdsEeKTIRBKLp033nj3y1/5FRuOKT9euP9AOPVwQKbSpgp3znLOCxICn7SpWrZEKIBKYGOZJmTBlLdI+6Kj0c+SOTBnIsntfMSPhQuwnOD9JZzU7ncQiwCIeQb55XfY4Vk2iE1u3l5/563Xf/XLX7Dpud1pHh+M6MLH+3tDKOXInThN60envS+9+85v/t7XHnz49Mc/ev/vvvM3OIW7ABMGa78CUglUoWeM2OYDUghaEm1Ca7h1c9sYByejhw+frrz9OlAP+0NZV4QRShsnNKPRXR0ejt+5d2vh7Mmr31i9at/orGytt7Le4wkrE3QhkwukW9uWigeXTjqdgl/B9PwZXqSbXlDFI/MFXGQ6Qr1UiwQIQVcauXzLNlZTD0xoIsIYHYKqFM1rZPIQ5Yz3kdpeWHpUMyWyaIq6FgrVtNF6M3HBR9muVO5NRD+zhlD4ycXghEvMsVZT+/qSsmRSknlTiqNDqYclw9IrKYPFCUns0J6nPtGPxLFrKt0XDUDsD/hnmc0n8LbgOTuWQiFuPS3xq+Y2PeLpxekll8BAJG6Svq8FS/cWD+7nXLBmFIjsfDxjG0StdoN0E7hV8WVvd589+u4rL3MbiBQoBMGAls1hmVIAYH158vQpqyosRfS6aeUaetPXGWmCso2S2LDBxcyBMcraH4MMbSZpnkls+qXuZW0tRhsH4RrFYXJwMF7DloTkkEEYEQZQzqPwAfXNK/lnlaR+XuIohZpOsgYcTLwKIpYhO2tnhmx+y3Coi8vn+9YvNoKWmMiceX04nvQ6c2vL7a3f+Aff+PDm/R//8PtPdnae7h4t1D75172DtTd++dbtuxfHFK6zWqwnIUgYxb4WYbmwsLm18tbbbzx48AAcDebMnoeFRXLJMZs7l4uPocY4u9D0Zel8vmlEJU2pzeo6LLW/JCx48OGxjNEVWiRGRxk3cyDsS2RM2EZGBuPpDjZz7h4drK4sA6jJTzGAAU8c4nyyt/usd/zqUod5VKYk0WPcGUAv6o0bilsJiNCPXaBjqG8PEVyLYEAcCiQjWOGlYdSx5wIU8rDY1yPQ8wWP0S4UA0mIl1cI20q3BJYVf7IazZc+m19ro9Gwb4MJYRGCKjSDI8BlaDAZXJz2xkO7zGX+qcs4Lxy8eX7WhymqNHBkakZHoqTFujCP6RMxkIoSLqRTpZPmPKgubbF11qUgkLDbIu2ijYJdMaWKSDFSUDBy+mDxobDwMLj4ZxNqBqJCjNsanH3AbpWFask+dHEq4XqWsMmbBvuP2UnbIvSqxyIS+8cfvvfh3/31dz/+5L6KyP4iMTOHmTNDnfEJwygZvIL4pqpytbrV3rpz63LcePett7/whbcBvLBmG4IFWPfLNl3yF5NPhjXvRSXHJEIDM+QTIQoFAT8ab9QsAilxPHaCWwLXG8v1tkhBZ/kerK4tm+EDmjsDJf5hJOH2ZSbxNfjhH51EzMzF+d0bG7/1a7/68itb3fbi40fPPnx2QIk7PjiRhQJ1l1XIfLW1xHQzFdTbqa1/WG0uLP/mN772xa+8+sMf/ezPv/nvn+0cWg3rGnkGnIZWeG46Czc0nliQcWXHqbNrm2dnO9o9OOlZn3HpbjqbkGmm2rSoJxwOB8v985W5l750uz1sLqwsLt/OAskpJc0F26lEtB0dWpoT5Mk7AFuBGdBNeThfUIwgDrZElwo+I1xfCxYacOH+hh4sNvSsDgvaKByJHyRMVWoMjvuEIFGhgAvY3IUTdFtfAJ9kL2DEwZEy5gQdpKKbDgaO7nJ2Cr03S6upSUt+pzh54wu0YY9wgL6WUmpPHgE8EsM4Y87l+B9PBJZeCSmUOt6kwe1Uog7MPgM1aKM03AxT/3zNlXzF8cOqcENsKheiKlwKX6T/GcvyymoS+tEVqpT1uZ1nz072j7h/W7XK48fPIAp59OTJLqF7Y2vTKSweiVS/vJRMVmSySdK/qp363fUVBkVJ73l5074gsIotZ8N0CJPSD66tRDraEJyAUFdn5g06Tbh/xfplEGBML53oFfZBwJVcXR7OWsMlC7iEl5HjvGQQ5hzvazaWROVTHJiwgUDXLGCRn3UEAjbTpjZ62Ly0iAI05+10gMq4kkBgyc3VYIpsg6xf1Q4e7y4u9aU8fevu2s1b33i8u/eTH3wkYfnBpx8xuSzdvL3YbL/ypV+66p9cJKismLmuJraJYb2bK2tYmCzXO0/2bJe4aNe6F20ptBiZjk56dgvWlxaNIVFkjFg4LlnNJxEviQ7CU4FmcepaMps2ij1E5XCCuCCi/0qEuJN/0/2wzk8/+OAVwea2mEUphIiMnIn2xTCAXETXq2++mqmyqBIm0sjZCRHB1oUsY8ENT0iBl6iUVDgHhHALrdItOeDjiU2RYDmLagQVXgHVCvHEYJ/4NTcSkaKXqScmjhjirNt4VuNVShK8bMu4oNS7BbmDjDN1JarwnEWryaVXEvtiWtg4r46PswjUgawB0jNNZOsDpTFhpkyFiECovViKJA5RiXk3eFLMFhLBeyfzi6NGTaBG+qpXyAVphTwiy+BubLEENXjGXgmbQNj65rJptWnQ4QUkXREARACPCCPqUosFOKFzZ1cWMnuHh4uuLMgzO3rw8NnDDz568uDpeMg+tlB3drXOqDRWvhAfrQZMtKMGE82dVVturkjFeffmP/qt39zobufwL0uKxHoKMMgWE2LAhk+R+0jO9/hpCXaWAHCKjR3S6mXUr1MdMnKizBKIGAgYWJlES9dW1jYv52u9wbhSEWpgas729gZUF9wfOwAO72F8+mris0oUdXG+3K5/42u/+stf/QL29+jJsx9979kPfvzpcRxvoS3zL5Ynj7BeliCTdrvhwMl//83vHu71vvyVd19++dYXv/T23ZfuffMvv/Wdv/0h4IZmMwXB8sxWjComNBEE9BJTLr2o7b9CXR8+frzSbtKdxqcDKd2XVzqY4Dnv02j04ycHf/OjD/5P//LLfA1z/aRuJP1x4d5xTLKWUsT5WDRFsLMgRFA8XwsrSrxh1l9u63pIKugQ/MtfZLTLbl9ZW/ooohXu4+Jx8ocP5dHcCQeFc3nCVV7TYKbY27MKsWieJsztnNvHbFwy+opnlLnHSiUKWjKP8OqWMHYWprk5jrFTuCEI1RCgB4qBLoVM9aDUXzg8Ckvng1TxyIR5MDKzZSoTDldSBnm+jDvDKv2cSYAiqgHIMqQqEaYzuzgQ4JQFFm56AI3j30pg7uhCfsbjg/093ALZjkZ9iGsEMV5Np/cf3H/11Vf29ndsRNEAZPAfGBGE7GrVN996XRtvfeFlGwcYB1lmmalgZ8wy2REqHjkaJrrGbWM3KEb+RMIkQkcC9CwNYKCs2dG5QvmgS6TngHi2V/DmZyor6ug31GeSFKWE74t1AaGk04LiseghOVfdAit7XrAgjDMMt8gG1lWR07XFrn0NZNXK2tbB7vOL6QjlECQiDIYnPXn6ap36a9trt//Jb9h4c/J0f3AyqIyeLV42URYHyFKna0qwMlNfmY6zTenMWfNDngirpI3lhbYztVut4b5tyMeLG2vCOQbH/Y5wPSNZuKLOIQpaKSYDQ3FQDrN4TM7lH4/1jcoWFpJQHPiGe9Hkcc1CdgWvca6jo96PfvTTL375i1huxhy2lQgINmqxdE+ePWwu17duresnNhL1MIoXP0OQ95qpZvtFXLh+mgIVmwX/aRioVdN4M8UtNoViijHfWLliHrFq8yx0psR4EYc4pp2LGQ6lnnUoDJRomCcrWDaTJVvihyA4rzJJHDXGz8OjISGCPmCxopGFUic6kzYIn7nU/2CCNYkNEjxGi6OPnS0HufD3WGqj9OIHAyJnYb59frW8cE6ZsaG8VmxB0eWjj6RXYXZs4xdljzRpB9TgjzNAm2zgRO6J0aOm6BAGCsVFZC5eSCddb61t1ZvdJ5/eZxJz7N3TJzs8i++//8H+4e6zJ/vZxh5YhbNgk/nLUHPUMHtN5gYnri+trlB2N+2xXLt5Y/32LetwFmvmnMQsnFwbZrjwRZbQ+ZHpKWeAfV/cOKkkHDgcINbqzDfdBfVxvTLhsjcVjxeTqtlZ4ARcW7kpgSpDJ/khdA1PYFCirdIVAD/QMNGgHdTJt2z2qVVeefXe7//211/ZXHm+/4xB/zs/ffTe+x8fnZw6j8mMRy2JBT37XS1uMIgYHtHm+cXjR08++OCTx4+ffvGL79y+e/PmzRv/8g/+8Z3tl/7tv/uL3vAQFtOk+XtMpc6bExX5HoSemxN6uLGxhjfCUHKOMwkQKIqJq1honuwfc6y9dPPmoi0rsrPNj1qxWESR0m0bUDhzTdzh3qGTXGF4xpXZzqvw+gxTS2HooabCypFSXoqYfjibiWMoiJUWXZasIrEIQbh5GWajwKJckCNt5UXlfe0NzvqU+qHz2C6Hk8vTM5oNLuD5CQ2UiFA10ITvpVUDPbWI5bwsuyOALs4B1KJnUaugjIeKKa4weZMcbqdnswVueP+sIvQQaOaVATBUQTu4bMc1y6ElNg+4CS6F3M8YM7Y5UTxGsbHePhuMVlc6FEf6sX2Hd27fDi4gjQUHnHBbTpc6DdxmKhEb73TGhE4qfFE0y1vbW+9/9HHplIWOeaf9G8hcdWOt3TuCaX16buFErECgM8DrdZ2ZCgCwEdydYYpVPvZo6TCclMuZ4iiiJIQAA6VijwA4KqTCAGirSKw40ruxI2A8mUJdyroGZQDd0fGJCPRoo9QJQfROqlN71piZdd2X0sD32VEG+qYNhU9GB3uD0Z2tzTdfufc3z584/uK4NzBaKIcVJrqBk2Haq7bbG9s3V16+R4wJr7QWdUhS1WEPMWSjKaiGSZcTgPGyft+VhWbt4d5BZ7mL2BsLdu8lS4xoJAYgRCuEiRhiF6dJMgFmjotxOdBUU1G6OQOjTifmItNsjAWDgIUggFZZuZt22uV7H3zEiXb3zjYUgEjmP0giJlAA69zJJ5985LKjugM+IqSYc0APUkM4cFAzOGf6gSo4y0UJ0RlMrGPLjuS47aJmRusoHNlsQRYDCvePYIiCXoQFJA5nyUtllgsIMRk76KdhV4YB4bgulnKaW2QS4mJM39vbVTn7BjYcH2zWcHBWk5DYK1OOozEpD+Ybx4tn22/cfSw4sqR9tEaSc+PMwbeLtctqW64UQd0rwlsXExdQoY1RnUgAQCx/6RitP/HRRh6KCu0QxQRYslzUMDIUlHg3I8ZtyD5YSB2iRMgXJsSizTY1sLNQTP3waGDh7PAsK7CsI8MlUE2J+FA7Qc8IWGssL691O6tbW3c2ZDpeW++iPYsbeQ/B+yz5Ok8pXnu7o8GJMwNYw1ERJ7CUDyzDFEh8H0KiT3AN3nMaAifsj3U6ozK3QZKCOeYiTKeysC4P5/oqi5rjNwX1JBhsFj+aeYmJ1ayqgZyK9iwabTwSB/slr3e+uLHRuapXdnoXf/Sn332we6SMrJJWhNGiJMUx6QVpRdkNhmMeVgnmYF5k1PnlgwfPnz7Zf+edl1577c7rr9/+2q++w0n4zW/+0bNnB1m3kFXRTuFb1EEDih4pwn+uQplD4EgA26MePdk7fPv25vbN5cXV7Q/f+/Txo0fSTd642R1e9G9utCFTaIXpHqYS3en/uNltIQuzTVEGIihdYALK0eELGUWDxCmDtIllDKlYENK46XLFMcQIHqwz91ZCzBmmgiNa0uGeTcs8sRPDTESmWCqFKAkiQ0kycoJOHqYDMvxVYoDCcmcoHDrz9cqRzZk5Qf1XskTrX1i8kRSiMYgE2QSw9h/oWNlPY37VEg5eCMNnvrhmxKG0ogaoNQo/XUtLWXFQ0YrAUUtKBdZwHX7OrW+0LSWlD7EQQfgU/+0bLe4WAQuOt7ixfYMYPh8PsCI6h3UqM5EtGvriAGFgfPDpw69+9e0HT54OBiPCcXNrA20w0wcvHj24f/v23eePHzH64aFCRIElm+3GYiEI/qQJNDesTpzzumJN0DivxQ0lKHA6t7KwbC3FqxWagWnVaOtIL4tuOdqiFkv5u2SQBYgJYieO4L0XiGBBFokAytVICuoQKBgk8wJkg7Fu2c7MAl6kAhvCuTXJu29ur3ZWnz25P391tr22LebgeNRnYMqaX9SjqCthxb3D04O9JP2P+6pyennRlHpDVIz1b2AL0cxqLCqsG/aSB+sEKo4dt3049+mhXB/yiDqtwLzCD50Vtgx2EiE1ml0ncwoZDO1GC4OlGPwMVctvDuPMfUR/ptzEC4GhEJtRU0Rh0J/h5M/+6C9ff/3OS3dvdNfWMERYKRiPgBLsenF4Pv3gwvK67TTLThvzYKFH/jiK50N7XEPOrYC8BpB+oASTGZfCjPfiw1lxxpub9jHiYHsgHrTXEx3zJWuEYP81ayhXIjm8cC6vdL+Qv9PDeXcpuDrDivbk0U7veARdL+3jT62p8NrKlWfRhX827orSuXrQO0Zou1fnlPSiCjOpTMJKg+YjcW10NREVvGRM91oJkYQ0fKa//qnRJAI3IQq4+i3qzG103OguOd1FdCzgSMKI5SICxRiE7RmJwVC0j72ed7YphsPTiXTEp5w7dqgyearU+hNJyYJZX7TDdnP9pmM2Vpal1upK2ytKToRhgKhk9r6ZgqwRDvb32X36J0fj074T07hCBWV6R1RZDEbQBgDRZEpwMwjh/P4bsHogVLVOWYiTDN0U3MkcLa+s3bixxW4n8AqG4JYIsTAD057VDcRGE/keA4FwghFx8U//6e/bMDwZW+LXbrz02vyj40d7Pf1Vt55EH9GLi5xkoQ0qGaAYOVM1dHOuX4zFskFJzXJ28cMffvz8+fHOs6M33uq9+uZX5qe//Yd/9CdHJ0dMgNH9VaqKLH3DBMlbACT3HEEDgbRCxZZe39EuNlI9x25Z8wZStjpaa8h1JqlRrFnYBvOHGQ0mW33ac26IlBcTGk9/IZVwhnQ+qmXmWQwJ9khQYeU0MSYXP2GKtEKnOV1CGTCGqXGDUfB5O4K8DPLSM843QwLOrE5qOKIjsxD80thMJ9NoEnkG0kF6eOaVnmT68uHFaMY5SWzJSFbsHGpUhf4jTPtU2Rht4Gm2IynxC/ia2tJIoSdXaXKpN5RF0BU/r1/zw0gX+psUCdrLZpFYaGhAkSpMsnNNxzce7KkFYM+POUflP77Y3Nw4ODiwR0dNZgMdb62tWjQ61YS6RkKsrZrZC+6ofv9USKjTge7cvPnBhx/DHHuVcaHVtdVnz55VD49lI9nDZcSayq+s01EYhTMnmMGJHCFser9cyJLB4Pq0VWEPktJZjwOSiB9cH5GDU/y083OaFBJivACktmIjslxIphphKuUAV1KLVT/aLWISdaPDuiU6RBAaAY1Aa612YMCdQNlxfhACxrsn50dHQ927tb5l5ACLK1H8pF8fnJ3abSKo6ZXXXv7ej95jXeXrB3vUCKmEpWCPJlKYma3e2F0IsoQjomedTPj1/4epPwuSPcvvw77at9wqa1/uvnRPbzODGQAcDEGRAESCi0RqM0lLijAdDikYIT/4wREO+9l+0JsjLDscsvUiy5IcpuwQYYkQIArENjMAZjBbz0x3317uXntl5V57+fM9eQeh7NtVWZn///mf8zu/fTslMoBaGaZ0LhrD9Vn/RrxZ2FIei4SbaJ26ZMzjPY7xtkSpffHN836UfbXiYsTZvhC/jfcgKADN/RerElZoVSGIlC54dv3m48/2Wydn77w9vtRYkp+W6jmP41I/HWobnKbEjALqNT0H64tX3ZOYouYcykZ15SHMMqXoStMwlxHHTMElpQ93JxEpDRhc/vCeZQdBsLzC/f1ZlB/U45pwB3RBznnD0DSCSRbvjqNx1ARIn5AddLa7s7+/sxefPH4nbpF7orqYJ2kE8fmlrTwBi0vRkJnLwc2C3s035040ZYqj8Mxc9MwORVXnj5pkspry1UC+nGTcYF0GzWoMS8SFoLAb1EGFdKKilvHmrvjFyUdwgJqEVSv54ZilfI9fzdSXUpfHyyk1Qm4jF2q1sdFJR844stKpNOccTClldeiGnCttzXTAmlarKL8gAWwNzZO9kB0mOsIHirtdb+c+ds/Powd+l7p5Gq1fDYw+wcggvCjThlRkMBKOboiX+JcfxgVqdkmjSaHA+gMAeihsX2wubm5spn/tgkYL+Jq6l8FowOihYZixVcynuF2vW63jL3/wlV/9l755dLD3oz/41srywvLKxvbje59/+omNdlaSJUgTQFmBXKyLkpE9NzMY3FSVdmogo/+qaAdw4Y7xT/Nn3hwcSiJ67ZD3g+PB3buPvvlX/vL3/vw76nXHp+dMtWB6NthGmLpZ0a7PnBtSkYYfxIdczjibPhl2b24qjcoXHz3HHzZWG3pwLDh/feaURZMyg/Eb3ShxT6oPP9UgAkWd0Dk7PbVC51LojawUFmO1CplasZtH5lNybYIVOAycTrU8CKO1+JLBXoUwOKNXE4yKkeUXqghnzcaEs1sCyZh1RFUpn2Zp1HYbne9CBtlzCy0bSnfRvOnwKDF+NoNtzAZHyBgvuAE2knlZeebGooxR6QsARSe4S4ZN6qBJII6MnQUAv/73+mmnJBB/4zv0Fd5vv2QNMPJksdEq0LU2U1GsSZrzy/QBbC6BR6en8T+70/Epl599/hn1+v7dDXQRw1ek+vKMldDrv6I8vnj+7IOvvLd3cHAxPJetR2cilf03JSAsXznWRjiMNQH9kHtY8xzHIZkTLupMstTpJV0hrgbL0sdcUqVpseCih2UvExeyHZQMOjGhmUTBbM4Y5wnpgWOxctCD1tXUBRmEWFFy3RJOTPcEPMk42JqWP/r4ibPMSH9XYjYpvz6aIzBXFiutF44v7tPq03ehXudNsklz01Orzn3kDmIp6SDRP9tYX7aJeuQ64gL94wWt/V0aANigdlWDNBlQFsM2MfnhoFlYGBgoayN3eLzi2ctjId7ZsPjySEbHLe2gWWmu2dKgnL2NAwdrimy3dNgQVQcXCXr4j8sNsmr1ktoPrzMe6rG3Hm595fFb6gdKE42z0z4+Ex4dJOXPURZQMvpToRiUz0AeF+UhF2RojN2V8YjErQfhkiYD37OLPC9A7xtYFu3M3SHzyDe2PVRKqvW0Bi/FpRgxYUg8ohhR4UkRWlFD6MfojFA0aLKh2iedk3ZH53AaKL5XNBnPDZUUCRVJB+sBo5Cps5EJ0+5pT4gVqkvSm2yreb86LZ3zzA7kPRitlgLoyRyJYCaeXyaMRKwLCRfKCZAhKPTjDAu6mDFx0D89EzaiS4dBsqNUdVA43JOWS+pCk6bGjy88kz3WXEbtpAHDsIVPQszpC0yGaDJ01Q9zKK8IPx5ftFVeaNaSk9ImB1lekX8pQxuFCmgytg9223OvbLKtDAfKA/2LJ01fGCo/j4c+S7y4IGUR4WIhhPm1tXVEbvEzczVHfx8cHdvwzBOvwTFCUkHGlDddO0x+/9f+yi/8yq/8yo9++rn439Lq4vPPX3SPB9/5nX/+vT/+djnvTg/IYeQlLlJmBaG59U5aXfOLRX45ubDQUHPkT5Pmu2Tt0OkFgQ5bapdk+FLvLvUYePdLb58PP2y3Hd+AA6RQysuybAacAhtOJDVFVgGZOsrD1penZ3NOmQgIjtbu0PCmx2pjJx+3byb6F4MLRUc0ydK0WDyQKibSzduMoUzjMvFMFxUh+FsYi+hYMVQ91V6NEkN8hcpoloF5dE00KEXAZ665TBp6/EeFGgrymzLK8A97HiFT/C0xBgJj7DqLCjmHYn1c3gQPEZhXHGjNSo31Mezs4SJexLYBIItrPF3SLMEsy9gfhnJfmRd1S1gT26HtULFilnGKY5P8LYy00SCsVSTgs1fPnx0dHqMgOlpsriic84xCfN/a9W4RbjL6ra0NhYcnrbZDgRHP+++8xRrA9mrVBTN/+eqwddyp1hqWVq9Vm/UaG07L2FzfrJ/ctO7du436f/qzjzV4jhlKWbi+GFIoFhcXk6zCtVoSwJeX6hQdgsgzYIYyhxmpetn1mOrTtFjdfePuN2Epw3w4sYainibYheUCKx+AmTMDMbSwR+gS2OJplxrO8KnGGAn8C46Wncw2yyuQK+ZNrT7rvFXWtmcqcU4UephaRBlsJBEOQOCsr6zcXp+W2aSq+vnugScbbW15+eOnT82KMAxuWefUNF3ttN272j9I115nzdSqAFH2K1hgimQBYjUyPABK3v54XQSJshc2NdFJGwAa1uzvCPFcGPLMrvsODkIhUPJR1PaitRfjMenHGfu6Oj39L//mX7l/dw1scOpB50K+h7BcOFJsrUQFANG9BbQBbxEAxgu2jeaSaZxBC+NHKtCBou8QXyGfPN2MEUb+C4PNfZDfNxcCkMH26FymH54ZD0AshPAseEoM0f7Zc+ET1LHUcORVmEnhwJzRyWYRHMn4vmDQUCFhTnkyDxC6MW1ziWCSPqaNSP9MNACTmNIzTW31uMpGTBkdSBJK5MDTR2QTGsw/a/MKFyz0+UZlG9USUhodwqtzkoOFNjWApf9lyPivRiZrSMhHo1jxDYUj/Ih/DT5rPqD4iFMhJM+xQ1rYST5tK+epl0zp0QmS+lmSAbkaBWphaiK6LDDuWpXgAUdGyLZEpw1jydP9l3lH7wM6i1C0DJJq/9Irej72BEwLz40pUESDlL7F5A/MzpVIwhA9EzWxwIJ1WVP5Te2IOGr3D//Bv/Nvri6t/Ml3v3frzt3VteVXO3vd0z5z8Xd//1t7R7rrzHDsJA4RLTcDZE5lz63LPqMgGc/VWjNBEPZHWKKFK/tgWk0rqGTiD18MOTrv9+/o8//o0Vs/+9lPECX9wBqzTKumG17qGj2tOIEaQe4KunC/7u4dLjcbNDEcRxqkVShfoh7/+Z9/9MmzV6NjHKkL3MVxNYT3MSzU79LxM5u58FYEVBh0spO9kFTRrQvuj8ALMbyBMcG4oLc1Rm9jIoW/BO2QhT0JEUUWREXyR67znf/slm3ytQeWEUA7n4XYQzPZxMywKIF2rD8c0Fpm1R0rJQtDjlsv4+WObJ4TDpmQCdEKQPlNyUqKXZhAucwjwxWTNgj5xCQpE6l+vOaqRDyto9brly/ZrGaOENysRvfhew/2X+6JO3oGFCRQGaziLjKM2SIbmxuw/M7tWwic6RgOoMPSYOfoqCMiiMOBnSOWI4gHvZ2dXQc2PHh43zjaCIrYX3AZrS8uN6oES0dcyWOm+enQf/Qrs76piO8s1jBKnPzZp0/54Kj5lmbxSRFPa8eUwzAV1NwAHYsTHABE+zY8fr4S/YJX1/zcy306SK/Qcf7VqSmncitYSEwGjoZ2Uvdip8ezOKwlltLYTS/RZla6rL/ohmTjNG8mYu43K8tzVxPCyY67xBuOD6j+5+xnOHBruXHUarGjtcxlyqRqThxwdrbLwqTGsivPLxzLN3WkoHE2HuToNWG4aDxsJxQTBhS8S5PeosflgyBPVOOonkmvCe3nSpgyakjjXS7DSl0K0FRpT+QtxSHilhc1qUz9xq987fG9uxaJYmfn5jEZfLHHdGGxKx1Pdlq4jxEyDbOJuzv8uzzLp74DJziaS4DOe2GpfJ121qmX9zE0DKKPrjWl6JGYvq0wlFuC9JHJKSQxVQnL2QRSO5SDqWdxEXs+wIAN6y5UGqsdt5QIa1UMmqurjWbt7sbS9NzMh5++PDhsm0vqBt3kSZmeN/np8X5SACOq4I+KChA+T48KUsSjJyNnpcfl5crcYb8Rb16mEFekK8ENxJQ3OAo0fnDh1zgUTS2SK7RracBBFmVrLKYMFicc6zZdBdGPvBqMPhIdZ7GdXlHhAyB4GOZeQOcWniyMHl8zEtAUTmNq+EK4hCeQA6AI6ibneztF6LsiyREef3OjvdJirR61kqGdhF1fgR8U8p4GfbG0zGfecHyHvkw349293QPBuuxveVm6WUbOm4FDnk57//rf/o2xs6l/8bt/9uju9sbausj65qaVX33+9BkOypPGXw5LPR0eBgZAnz0wkgkV/7RjBirTukC5kJJDerNkXIc8nW2JzWlHYC37B8d0oNvba/fuai5598lnXwAIrdw4wGQ77Bp4mp2+Y8ury1IHLVZW1KefP/ccD72lPdnUzUn7eH562ZH10xMnF/wkcUumXAOcc1lgXjwxQZD4TdzoX0DEeKVNRD+OSgHhs7e+DWJCj0ISHg80WR5sjGoZrAk5x8sbYrWtHhcYlBuMkXzmKDzhs+FbKMC3mD1vryfg0QytqKrRBV0E+a8naaWWP6dJsUZ0VX25sPmkLIZhWo/7gwzB2KI7cOQyjeIhhkAmE5wqe1DWSDbRP6IlcPUJL/DksMihqhXbkGh0Yw7sHHz200/Flpym5WmXVyfcPS5rHR8LCMs0e/78mRjVn3//R43GwvzNHCBwdp50SW4+agdNVqxCDlijXo9fjfd2arqyjfFOHx8pVOCMvZyqO3hJk4Oz0iHy8nJe3DPO2UvJjFBhwUFayk2TWDGzsdJQX3CmEwPOhcFdXc8WP4K68t5puzTI1jSCypMdtWLIhwVPVZ2Jlv0gOQR44SVOAXDFr+D4N6UDM9iuvUT2oI4JZqtyMDewUkR5hKVvzsP/8P2LS0Xn7YMup/Gnnz2lvDiP2oCOa6hWq+tOQbk4rw9npBPt7z/TMpfWCqPk24C8s26yBeF+IQMkqiIXTE5Oehov+UdPidcewkSHhGSF2AvrhFwhIreZGvkXUso/Aix8LldmWL+CM+Hz2CQw5BbIgceyWOj/+nx842u/cOfBfZwrneOl3IL33ERlaaye09IIPtvkRdSLfccAKU5KDw7yeAjGmimia9rq6HF4GCRN1ME3QWPfe76H+2d2ZAF0wuwj4eIw0xeh2McIONeGV/qXNZLWUIaeEsYV5DdYPg1EvMnwwmCsKnX6zeri2mrz7u1NecmRbtdXG9u3vvWtHz3b2xN5yXPNKTegqMAuf4eIR1+kMRQ3byYWVkAm4N35kdVl3v5leqaatwE95S4wZngOBg6c4Mqb04qCilI0iZJGb9GpH49SEngVgjNIWDqVknRH2Dq1kR3pcxXDydyytYkHlqvCS+KjLSIrSAKDCkvww1zNtkzHD1IO1FFsqEOjWFKCdpec1OBckQGUlaJTz8pLoAeIWIAclAPzjMUleHaBFuTSs+4pjCYcozNaDqXYP4xAXHNCiQ7YmPCw3/6lX/rKs53dn/z4D7eWtyfHb58cH9++/0iIF++Jxh83YPhANiC3lD0L/AJov70Jr9P+vZKuvMW/6CNY7BU4wD3bYVNiDurj1O29eHG9MDvnSPpOv7u7eyCySlZifhkQDBM+Si4Wdse76zm43vFxF8+s6eq+MEuvaNQqrNutrc2nL/auxpwjghiiz44gig16GvCOMA3MjZvtjvc89YlK5KEzcHuXhZl3+Qmh8meILVifDbe/LowAyEKLFqUG16bG9M6ybRaeT7AUH6F1qkdxfZzDYxMcomSm2c2mwaX3rJGcNl8wMhaSIeBoWbvh6cw0kVCPWBgEQ17RBnCZ4vHwQ3xFXNCnkQORAvkZAoOKZkvxstqxHAcUZoJXlLAoASLDAxazfPBYbCvl1yn/oMZOJ1KoMZegf7dD/LzabS01mu+8e29m0KsszPFPqnYkhk9luCISTlfnI8/NbW5sK0f80lsPwUJwkX0JchCWT9ZsE+KbWZjvDqRpz9Y1B9YXYWqIJ1aqc5NzFcFVgLs6rU1sTx6fdPePWuZiTYB6ecGVL6A2axuoZmQXbzcaAJYsSunMxKkMIr33Ah59uyRb6N9SDiGAInI2aL2syGiTN2ezN5xFF/Nz8WTpbTAzm3OT2N9gS2FkuTKvuL0cf+ycoecnx4fd4S/WGsSO4/Zq+p4oI70+rc9NM68qlZoyUEHn3d2jWr0SjLN1ODxdLakKfLLwKVq/PSE2JnVbEhn0AEId1MM/4yWG+kltik0ZBXRE8EG/3B1EjJLiL+jqV3hw3gZFSzZhENJI7s3BpOe/8ovvUqWwHQ+WqoIJGZqQI6UXnL3DX1YN5iIBWES5RVaUz+BKweZoDIbGl7nsjYsrmAXMTV2Vx4T3ZTJhsyGKMKuwTVNyYZRy/+KAYGdkBzEYHD+VHOUIo0gI1AOjubgUtGh6A28NF1jEKleBp7nubL3SWKotLnMYxsWCcmFCMjHI8l/91W/M/eiHP33yRE2hxQXHwShck0yK9zbXlr9D/NEibXU8Y/6Zucsz8fCjgDNDjNiW2wtILXnEm1nKGiqAWxLjSvEwrhcOlzuyCWEIlpK7wgvCLAIgq0gpHGQMcw9neMPqXRKOaW6FT+ZH+T9PzlvjZmdMMJPzUWq24uh3f3J/jBaqHrGeqABaSohEDs+6+SNqt1AWfb/oIDYjTAHjixdIm2UAkuum5gTRRtdjXJsfqRK2ledxlQgKf+lLj3Tt/fb3P1T5/OnRs2Gn/3f/3t/hqZyfupb1Z0DMKfMMnwK8YGKmGlACSn75z7AyKePhmxrXiDOLCswK9GGeLXFllpmpctLymL14uSNyePfWluoYefRBPECfVgmhvYqBg+QyF+LgnlTSd9PudpPnoeNybbaqf+X87Hl/qOuwMEOYeQhnNLnAtIDTIOEQ4GuXYKDll63IhP2Xy8uyvA8CuCrriMRNZMs+BHNZSHDU91i2S1JrKwFARbQyiHgRkgSB0aurSpNmLEUqFiXW5MPELPlyXK2U5DUjOAz8csybRN2LBhEywoZxXpsckgm5QJ9MLDY+5k6tYMNzXicwFP8QEeBHmSqyNWPEgHgDbu/QuOwMoMRYFhs1WQxuaMxUUF/fIRBLSwvzWozXwEdmMPcgT8bh0fHS0hLFkY9GAijb486t6uryag6cMboDyM7OllcbK8trTz7/9KRztLayZoJkkJDA3dt3ZOiQDcTy4eFJcB8mMLmhCl6PPW9trXOZVCZuBr3WyfB4a36LIwN2c2RpibyyXFvfWG33ho2X+04jG09XSk7rBArF2iybzyEAcmhJkkwIEcfJ6lIpzcBOJFgEbPiHdlyMj8u5kYDKkWaw1txBKo5SORuEzzD1wwiGtud0mf7Z9XgtXfxo6ZJibPm9+w++ODzY75z1uxdjV70nz/cfbymVmFtr6P059nlrd3659vFPn7z18PHt7dsnndazV3twKIhTvA3ZhxHqQajCtT0+/pezU65Z8K3waUoNnJl+75312xsbv/sHP0j4dtQVq3AKd2MzBSkLZUFc48DUkAPUDbbmW1k87E05QzdXa8362/cf+g5a+Cb9qozojliolA7dFDwULLHVGfVaABH9l4COxzmhCKid5PwEFKPxePyITboqw/gZ3MqDAdMa47cReAwLMx36YL7KeSPjsuUkSuJ3ZfEhr4Ck3JplgUa+CLHlO0YuNM2i3GC74t9HblLC5AKmIU95PLMP45r42lcfzyyMff/Pn9hvizWv8DFXUK0xaYNlTFtRZmNIbwoky3pGU/VpebKrzSuz9y6XFubkz2gtaag4kKyMoIgfGt3Pg90ujchyY/5Zy8iiK2MVOTPiP/kuAHG5/8PoR7eYx2j7RnePJgd82aYycsYdzYYG44XKPcVHkXAjOCvhlhyZFGpdAIhchm/qMBSny14LTEhddjI6ob6xPA+Pd5rNdewr8slBjJbi+O8w1uQvWLjUOCHiRrPxp9/57mK1jpo0UNs7PPn088/1C6k155er1NbiOQY6MzTBrA6o3uxrVuoFdTQ1mZty4qCa0pOOgU+DNlm9ZYXVuj1/x8YJE2PmHh53hBneeuvu9vbayc8+Q9kEnD2CDIXwk4EWZidCkkKWPBwh8LWK/y416w4NlgFGQxMqVh3kAsDOmXb4J74ZlLaz7s4g8AvyGjYYXKQRwEeIUtpYhXSbKWZBaokJ37L7jqF1/u+YLgQs+SSw4fWEL/oBEpITl8PKI1yMwElScYhoittMsjR7iJOmRC+pa+I/eFi0elRW5hQMkp0ZHaXwb/P8OcO3rT7j20gWvxlTYgtmA4C5YxhB/4IsUKpIzRi12eNgtxXQoBMNq8xX1hcb6EgEyKr076xMLcgB5zRRxpWjeGY0bVTW0F9aakp1ATOlc3weOKeqJcfyiNnr7GnBz54/F5T/pa9+Za46pbuJdkB4CoxqnRzs7716+9GDPP5ajVF9d/ewcJuSD1fR1DgZPDRoTVP1nR+/c/vB+PWMvoeKzCl5w6v+fLVG79RddEMbtonLw+7h58+0KRX+xaixALBFXRcS6rBuQNPONP4cnbjnxk2dKUTRfYNmKe4dmUECxJpRYyLXtUqiAlYi7Yks6fW0bekBYJEI3EnI54xTSh9DCU5H+3uVm5mx3tns2Ey/ezY3drp/eLCzT5LPmv3R8QkbfLm+8sWzp47h2966tbX14GjvtRgeM2VE5rgGDHdZ+FO2ytSyV7HVMPuzSyF1vY+evzpQ18LDtnfckj8TJTuKtW0NrURjDE2F+jOAcXybgSLjXRVLK2dAQuurX/lLv8DLFO1bgX/hHHEXUGVzik4iUdIRZTUKrvDOppe5Qg7GF1pzURpZwrfwGWpt2GOZiDXEHeR9iNbLjIKE8DF6zZTcKjZgwcJ87v/RMoOAFg8d/VcWY9pZhFWF8sulYQTlP6IDZkSBdvdFCZZGhx0htRLK4ryPJsAXlbLID9561JhZ+N73f3CsoYjjuSOuImhHJVwwMHyUtpanA1LmjFBxIevLzMorj84bP6Jze5Wf+cAbMPCJL4AwSa8Wng0hT/MChyzEhdmL0ceBQpH+HuSzEGTuyPZlKL/yhHJDcMP4WW5e5VIX55oQNjbtv2Q8qKqLZW4hHmjbCnHRrzM246TerFxeLRwftHTzHw1pEFYLKQqTMNbtzc21tbV6Y3F9/RaV8bjVRtse7Ts7zQEad3KZgAySxcXlTz5/pmO4/AXWqlmA95Offbi2iPFv3lq/06i2qEoYKHsjHTqylbiYCVpCWUfkd2woLdxrCw15p7v7ifAzo5BjgXQudW2AiNFFE/A5IE69fLW3fdtJUxIQBdj0JB3qmohnEVEQzOjAwGvpZkgLKYXbmSzKyqqVqgqFriSVYXepPn14NNIbeJ3xtFM25iijIggcX3w0j+jmsksE4GY5PaJwhJPzvPgYYOc8Nu73aPQJeNkuAEOM5gxsdiqN220T+6QswU6xqGJ8yZfUPiZywLKvpKjBrUieIF6IwSryOxhSrBB/+LLItlw4ygpRTVIqk9yUOwPkFIwGxBbuFeyIpTuCpd8AmHhbqCBUVBCv4CeskAnBfml32gymFOdKLprQA2aWM1bBngiloitUvL21sbuzZ92l9ZZx5gSBFypVTkUHBXLvzC0syVRYbFY/e/rp93/8gweP7stY++inn4Ap9z9FrVbVZWFaKj9uLPmZMUQ9nNp99sXyarNWB1QJCbA2vYzmZiUozU7NL7B3eG9MEHF02j38y7SbtemFmbqD/rrDm8FOm1bOYe0xYrqcGfg6zOVK0YjS+HYV65f+D1QeaUOlf1HYZqt1pjvbGQYxq6pVJ6J5JfAiGppU0RjF59ihuN10lYUhzhxpqdiBrDo4aF30z790985B52jqYvirX3vvOz/5/NnhyXt37jXXFl+/clztVH3ZsT83c/MOoGg70p50Bdmga1D8Da2HtmkZ2ZpsV/A++M8x4iQ6RWfpePXdDz/663/zr/34kxcHxwf7u4csPBp6oo0hlCB+sC/3h2OFQ4eS8hSqm0+MCiO+/Pb7K80l3n21mTk1JEpEDMW81CkEA3WkOJvqYv6cZJIIIH44kB+eA9WSWJuG1RxTXDNBLwopEqCXWkKw3iOzU9GOrQqCC7xDyHCazC3/j7DVDD0wzyy81Tf5ulwROrSCrMcjCmF5G6BFsvnhL88JmntqbsRYA4kCD/hvxZB4fG1r/ZtL3/zk888///iF+abMB6jIDGpldNvCXbWOSJdA6oJnjmRXQJqJFCUxvyJIi0DKY/1fYFvAje/6O7eONs3MwvOzh4mrZ0ZlgDJ0WEsZt3yUZ0QeWFmBmw/zd9lOFApib6YTQISYKYl5ThEAGAnI4Tv881lqIIJlSFWQ1KBtQ5dkYw87sUsDXGxDrQK2Rse0F4E8Fi9bKsZw2Cf3hLIvXpLhSUeHf0pZMRBxpuBkppKqOh6MBfv+6sVr0WhVtfQCW6g5yMnJ6e7e68n5yuL6xt17nc8/e6kYfrQbsNqyyuaUtdquYhTKB9VHzCHD3e7x4cHL+L2cPzM/zzqh5v6cFAp0RpudnbnudAeq/9750r3l5uLR0YDKEl5ZQkN5Bn99eYUlim6aHhgXKc+fKHGFq2t4LvLc6LY/oy7fqMLDqqU5Ts/WnMOCC2p3szDvPFdJJElix/3DUrOXLrQPFzFbAZibAXil4opnuSyTD1aFQEjPKHPWUPYSeuA0ti/CIBfkRzC+3FWmX6wQUEJWXHJB3RLARZrW4WofxtakFF5yu5OqHm6EQu9Fr7LystAst5BCYv7Gcw4QoBXpMMJnMwqmBKGCxPnhX6RBOoLoEalvgpjJvDI3Gr1HWpwfhCgbDfH0GxX5+kRgrVKF9RRIA5pPt9ui7gXX9aK3/okxufKOPewNB4TB6nKzfdyhyJq1g9CmZydP2umFzvCg4HYHZ5ojOL9FHaaEU2x/Rn21eas3zcFMWsAwkYRPB+dxx5DMaTJx0afP6jE7X9veGNdzmmK3fGuzdXQEHbSAVaxX8gr8xSY6pb9rfArEkB9M1Q0wlFCCJ/BbnY91LIboI3h0TGTlpHPJfE4qlliGqDiIwMxRYqQV446eIh9I9ikNd64iC3C2c9791V949/BoKPHpTnP+/ccrP/rsSF98R481+HFmGq8O2nuHL5oNdaFzjsI4HcTxjrztbtE4bGf+hkeovuyQBwYhKObJl2xfDzs7d7effe2D97rDzYOjfTxtf68jSU8WtxGiFua2sJCCBAU70kCF4svOdDTF8O726lsPtq6vUvNMbRSAZy8m10lXozjEIJWbrZZFLRbscAXnYbo1XDY8m8smeXtzzFhNSeR3h+Ulk8LTYzqgYT/JaR/AV6jFLMDhWYh4jAnFF+SioHuEyegFw0czx2VMPmiZH/DVZS4N/wgntEOFR4xYgj/LxPAuX2bdJo+dh5FmAti7sSKRFmYX3n/8zu3lbU2GD49O1JeQYWr6trYV2jbkBkik//TVznFbi0vQSgjUIwjLZMi7P0w6TDCCCHQLyfhV3vs6EA/I80GuZefbwPCD0HdmZi1m5pOsin/G5bH4ApB8iWsHtmUcl79ZfBFUOEH8EshehAS1uNe6oz7TSOCiqKwkZq6ZQfK7oEsyQVKzTXs6P5WjTBLa6DSbHUtZu3TqOJvxy6ixMik9Xccp7vJwmXa71Wodkek5C/FcEkSeFpWRJLGMTFZMeax1dDzsl7xSGRjqPCRE3Yy3h2M/+GR3fPG2A5K++Y1f+p//W//W//n/9p+8ODrA6czXCuK3CpTyJ/diVjEzru2KhNZXL784P+8xEY3G8Ukp5A7SESA9aXC3kEV4NMOda4cazpQ5vbu2ulr/9IvXcejyYgXw2SWb7xlhlEowwvloIbws4zoxrF2eVSbHV+v1NvfXzOTyWpPZu7nEXyvIN5GC6PiaFOXzlSnBK+sOnzFEDk0ky3FmPppYy6UcF8hszmh/kpRbijsyD7RixqDlfRAn7LwgFUK0HN/Ebgt2FLCn0Id/XF0xHw73PeuAw06rytBFECTkEcoMGnkL3znl8hirDsLkV77MQ7zyJy8uO1crSRtX7gt+ja7JhT9/+cRofGL1asNwuhAeHB004ruS6X6hS+ZxuwXZMr0B9+/10xc7uJUNabXbSF2Wn/PhRDW8xaRMjsGkJxUe1jnp9btD6nv38GR6TJyRrHSOSdxm6/UmG+1s2COe290ecjXFKY0N9CuMiVAdr1Z9du10jW4OOJyqVJ24xCOkRjm+PQin8FEMJdC6coLYglKlu5vbYxJZZmZ6DrpxrA/dOT4KchQju9CEIyfP5BRgKcPZZWVdbpbQc3LTRheu1Zrc5hgQX9FJSiaDk0dz0tFVMk3JLnQibI52ZBTY4uZS7ZMvXsUVPTc3OO586XbTOp88fXZna7UxffH5i92Xrw9391rMnXce3cVbU+FCLs3PMXsXcrDtSVsbwtj74Qr2DSODyyO2MtqgsrsqaZGOvLCb/tnlH/zRnziJ7fbd7Qe37m4vb+7vHrzYceKCilCZvPh3wQaO6SgHkctQwYQDht5wpbbw7rvvEGF4PvgS3YjcgmBJyQ2J1mUaLg5CUpqi2eMgMz7yN4GIZRAFrB/3KtvrMaGiSMO+iCB+5AQLCADiAu+Ix55rEUJGG8uTrklNTcWStGcTmcJkQ3EnBTdpoOwNg4wQtfyEMAY3Lb/KgoLMIxz3BtwCu0wpoqCIgYwMp/MqWlpmkk/GJprKFt8WCnK6TB9nDynmbL8kTrNIlxcbOwdHH338fIBk+BFTXUJ2uijKMkaH0CTYxnQhwWJgW2igxf1Ab6AzdGk0ofuw98ieQrZhSCG9XJpd5o9NmzDCMFLS1dmnACMMDpe10qAsyETvC4SK7pZdQfGYBssRL6dPLdZ5YJUB0GDBGJDcnvMzROXoHEnTTmVM2pxF9hs+26OZrV+Wng5OSecYkyGDgFIdSRUgUzJmOU6Sa4X9F9SMjhLNztRMlD26rzQsOxIApGyv8GcAOTw8+/AnXzy4vXbU3Xu6e/WXvvmN9u/9HokL0FZZtoFbzgFqHCgc97xKtI4z7WLiR8JfMULFmOnuNYrVxKnCLxOWaU/QT/T0KtLjAVYTQIF04h/WAbb2JFouMGX/EwUXh1bKiQFjcbL9dl7vNqoTFeUOZ8O5ydlu5/DLD5aaKw1Vrtosh6enpSwOIxHQj+wa5M+Z2V42pKhHeAKlEttJKvlof0w7QepoG0RvGjAS7fzIBT2z9TbOmuOUjqAqM6Pja+QWoiC8MtWk8XiMKwPUN2vIfvvbv2xCGDXNyeB2D40IXPjaBhYyKNuRKefCgm1RFtC5kljbHbiGWlyQd+WVP8sfnsDsi4J3dUMDcrI89FO9gRYFMMx5pVEj71UIcl3M1Dhfsn0OA2AvJkpyM/bq9RHigmsc+PKG52e12rycvr5oH7RCLWPXi858dNrjxRGkVxPgPLhW+0QLmaOTvjnxMrHAp5wnjFmFb9zo4tBPI4R0zJjjtKGsWC3EVDqLkWi7Adr+zs7onD43RiedmVnAm3vDfrNBTbjpwQ4BXo035XGmTeaYst0K1yiYAfUkMSbhJ/I3PyXATLAK8fcrObbmnFwqBsk08s49xJXVkge2HivnL7J60MQ5MC5dyxtzYw9XK5/vta7HZx9tV7lQP31GhMiiu15dqbI2ut3TDpnp9tPB3a2N6+vKi53D7GVM98Id3mxl2NtIBtihYLb/40ZAw3jRxEnv9A++9Wd/dXL8wZ1b9Znp2tbG2soiTtzvDHUYPrF+kkBr6qBWUrs9IvGgsWvV8F99/1G1wRfM2RW/LSymvgSzkzviqvCfkb5gyeG5cVZCx3PJ44Uzk+L0nHgbxEeQQqkTS3oBkLoVC5i/5nBmMKFH+IX7GyZj+gNIyWt9+4OF1hJsjQoTCi0f0by0XpOxwk4PtQQ9IcQIZ5PPznVCB6fbUY2iiHkqJpIdDU/RIkqiVARUGCsaEbxPhZ5kO4lKWV15pLOQpCND66hGOW4A4RO99nxqfXlz+Rtbu4etnf3Xp6f9cz2ogYknFPHhSBYRtd2V8qiMnikReDLb6rWavIjr80PdTgJI9C91qRAo0FheaDLEGfOo+Fo4MMHIijL7fIt/gUXYuLxSBiv2kOV7Zn55pBv8UbKqFDLLdz05OeaGJjgAMBHIBY0obibOnf6RdedZWTX8vmZuz8/PnvqaYhuYpMXI+KR0z6TMybHGW0EXs8De3ViSU1FE2I3P/TQ1MPcgq0iVqRbo5YWef97agz8kVcy7L15PXPR6R9VO80CpsQIug5fciyAFWNkvWj9X8sLClERjvax8WJmoOWQcJsVM5Gqi0Ru/+LKcswBJ9QoyWxECuKXp3zd/8etf/8oH/8MffSfGM95gZQWMQBnijoCD2Gg/sZzS5nHGhh8w/hw5d3bpQKzdo9bt2lj/iLWPV0SqJcdEEyhCTW6ApI8k6aafqrJTFFJCq5G0EUdhG54Y8Gaf4n+DGnClMOVk6/q+7Gx00ILjNjaQHNE0GMdhGKqw5yNQwrHIyHxm+vmQ3g0H7L7LyzVWZ1MiFJOt7sXt5QaXuCBXeQXrADp2Ng4pjzb1X8Gg0TDlUneO/g6ilJ4Z/Lxx75QjEdGv5BwNpfTj6fQGy01sJhHT+3c3P/vihV2sVmdhQhqaLNId2HJzE9eHbz2+N9uoxDgiJC9P03DlfLxan6OMy8Q8Ouk2q3rGaWk8uHtnm40c3Y8p2eo6Joy10e72p+gyIDkjRXl+hkcC/XP48H3z1h8dHVJnYg+NpX9nSbXKgTIWy5gM+0p/4GCCNhYrjYbzRl/tnTBTx4eq0BwfoNeyorBsl7XroJsA4pWun7N2lzqGsgXEUs/D/zWTEyE8t1qroPdMVPhMmGluOu4SJqpe0xkolOBY6sND7pyzB3c38L/dkzFxcscgHE/MOj5TL/Kj3gnKTcXQ+LWD5eQ9sQDQz97eTliG/QhfCF3ZWsiEAMoky0Zldy3xxul0kgXiVoMbE2M7B50/+Pb3tQ5/5+E985xHYdOTSomXV+fhceHneJqdNcVwMNhEPW7Uajhi6ZiWNqhYs6UZdCAakEBAej+FkRcsilAKvwQxguLakVEiKoN4Q2IkuYjrSH8QiKgeImbWCGsvoNw5zwIIY0mGsqqsJNyOIEsNx9l5zo+FZNHXrR3rReuFSIKMOY8+HbaIgWIhuzcjeDJFsOhKuANmrmJ2mpZWiEyqPzbO22EqdjpyCCrwYfnN+FHEOkuLL+Yg/PFQaxAJcF2e7i/0brXJzIuOf2d7+c5Wo31yvL+vgBQdxKxyU7RzrDPeE8zatoTRWqx3JK4en1cXTXvUS6FWpFKIM7z9zWtE2myVbHWWHiKn76SqDa+G+jqf6xGMjxayhxSh7BBvmOGItxCIprqyuARXFFkdnHTr1RpvbETv3CyNY5xTs3Regk44AJapeRRZxZctCyAnHxBnHkyN49/UcvLKWfbx82qPYXcp5J4JXVl5UsPIF9LWLpkiZIlyeu0A8R5UAVoQsJyS64JlwVwtuAXRevt7w+3lRfrX0yef0ZyETG2sGS5QGiuziuEt0SRqC4uTlepZnCqXx63O8VEnNADChc6DGXh9yG3B5qBXHWBXljjnJ37x61/9G3/nN/7pf/FbH/74CW9sYBTrgSiAmoE94gznv5Twnbpgw8IPdW/9vhOAVAufXk5d9y8nHE/Qb3ExjA9gknzXtAEcdxrisHuR4CpFj55R0BsRRIvHSoGicPIEvsQaJDiMOQYOh5y1ox1H3TjZErIAWFAgtA1M5vRGqQMnf9l725qPC1UUBpCNzsjZ6oj7MKoiBnJJ3ueLIosRO/FpI/JR/n/zGMOYw+gjOJQnYbGxTMr+2aFy7QglDVouLveaMaOi+GZZkfDTjTaC/qYbxOJiteFs+leTx0ctic7dTndyfFE4VaeMudkqvjG47C0tVfSLGTvV96mGGSfFZtxRHwuzNelBs0c7Bzk9YGr8y++9i/8d7By0tOAYn9rdOQAW0URVHfjJVO+0RzOQl6gyNwp5akO4bmKFx0BKlsX18NgPAHEepEN6YSzM1rRrYhQq4TpsNqvwi29zbGWuplL3bMwxlt3zi+V6xfmSZKLTHNeazc7g5PjkSHpTdV5+NLZphmnXgkHbcVuvqs0Gon74DRH1h07UoOuMEEnFs7ECZvQcnyOnANkR1Gsq3Mbmzs+OlutCZzdfPD1cXFmkytQrEiuaOkdIGn3tQOBScvz06TMd//ma4QNNPQRZ9i2S2x82x7Oz+/6PcrHUqCxUxj757CiYlQsEhFt/+O3vHh4ff/DOo0ajEm/xKFAVXp+mTiqIArMrplLGgeD2G3OJy4xYw0gkEiid0EvmbCj/gR0b6imv8nBIaFTYF24lXHExkbb+GBWUc1VELvMrQUiilMob7PJVhApEdihxwadIrMwAarvLYRYznmt6zEzSLrTqhWDRPDBgcjgLiZM5K0owbWt1ZgvbP2GMHNCWpP6E9SABF4/OKFhzYeJuJH5KnDKkGrYzSg2R2MQUFMgORAPbSJx05+P+CXMNIQSqwStrAJyk01Qri9Nbi0tN2vCIGRCZhs9hTXYESyIEskTc9iY5f8xlBajUkaev9whFEy8kZodDyqFqewlMpuyHGeRzMHdZ3AWMMPoHNTNczKRyc27zf8gYIMw+P66XmsEGjZTJnqVGnX/ayV3zsoWnJ0/6g+Kvyg7RzXUHtkuymxtVB7AvYLFJ846HjdZsf3JiFH2FAsQpqf8ozQs2S8wAUZI/jy8gyezpt47D4xVOBX6shMyeVTQxTsuhbPPc+nuxYaAFMrjdOz16un9MlmfdFmSXPHlKNYyeajBzbma+3e7rrWIycMbSAcE/q4+Hy1pBOHos15BTjm6aS/Nv3a9+5c7db379K5v37//2H/3Jhz97JlQBYhLMwIvmQRqNWKBHxiszTvaQ7jSdeGf805MCYzwbXMw253PGtJObzrpJwEmc6qw91CgqDIdmhERCmFk38Bf+H5U+L3uST61Hmv7E1e2tdQdS2henobyeSD54jF4zoACUG7LVPvAj9wbfIG/+8jnI5EqbHWCPJj/a6BHQPDmX5Vsf5D+A5NuBRwFr+cR9uaKM5orReLYHZhV6jQniTVEqcp2hsgbz8+yIosxFlNGQsmU5/ch6Vb7gaV8gFe74kw+fsM9kmSF5uHh0jHfpfHLjKOdKrd4+dqCRk03nrvTcaA+wgxUpVihZro0ja+kWJNb45EKlmTDQzXhTc45XfedhaJbPcauajHMSmxVQvZxzms7g6simFr4LPPwZ0BG2siKxCrTIF8hsZBAI6ppUuIgSEkRin3UYm5usVnIuq3Md08pDMcjN1MFR66DVp7ZTblZq9c3VymTr9OJ0Xg9FCW0IWzx4Zraytbr1bOd1Thf3UIppjFdKE/399Lo2z++FQVMKKL3Wxp8jEDAvhDwcbug6W5t7tks2TnD4cG81NpYvTvpM5fXVelrPXl8fHetc1pORraJqRvj4dEaBNswabVzBgYImNgh7KNgRjRg5oJ7rq/Vm8+l0h+fR9bmHVdXuf/+nPzto7b3/+NHq2kap7I/8dkv03SCpsVIVUUZTlk9RjTUd1AnjjnbD/S81KvH2qPFgaCJh1sES/DXBh4Q+zRML9qZgDLwr1OAO/DpsOwod4PgBxUyaPu586nzm/3wanmthGm8xUKKh80w4mQ6hjaiq0EbwslyJAOOHn0puNcWEpIRwFjam80I6f0eCRYgZNc3z3RenT4ETMZIvHK1DcVUapKqGdzDp69K6jICTZkmFCMr03GBuwFqAbug4mCJA8pI0wn8yU61w9PkeaHwXWgoBle2ydqSG1vzt+5XlRYzh9c6rtCzEVgDdE/Mq2UoWniC5uYfZoXvDSuhgd3KOQWE8L8ygDF3WlRsLx/CphSWlZXtrTbeD7qBXLfVdjfqyhoNcUk6A4VFx1BWF377AXbigA4pcyWZ9HoFUm4vtky542mA/KTYUJulZKrDeuvX2ytqK5DriDpWhGxoOBlHYVJmId2E3hhxLPysQi6eF+uUaRj/GMdWcm1tbIzLXKnMTP/pit3ctTQ4HI6Jj4GAInhzkxmJUXl+etzu0ZWX72WLNayoLF73B0KMLU7iaotaF+Caai7MbGytvPdr4yt3ltzZXKIj/7L/6Z9/69EU4EoiP5OWbXQ8/HU0U2GKxFQVLSolOqzgK5CdU1ldrY/Oz7U96U2uCQnM/ff5kfL5BsBHb9Ie4FGOIkm0p8YizH9PL4kN3hFi2CW+ZS1PC7c31D959R4tjaeKqtnXu1usMbWY6yc2lKoQRZ/+LRH8DyhFyZWtRVsJFeRcMzHWoA9VBQpSRYFsRoQUNytdF/IT9uyWUmt8jlHkzisn5rJChh5o1HPMjn2YTMpnI4wKo8tgMy/S0DfLmaehIoNvtO+0dIu282q83klAgebat/7HMzJurvb0ONVh9L1/livSO6/HD3dbmxtrZabvGrzcxplW7Cp/ZGWmy0zcnkaMP7t957ytfkf4/Mz9ery3u7u4JOmZKZSbBdwhJuojClLJPVelxUoOA4IprzF/3SjgnQIR+5ubdmI0CM/3PgybyB67OZxcqDnSXwoatyDOdr4K6Mo1sObyl5Ojj0FxYOjnpG2RjY4n+TgzZXD5GKpQ8AaHUo+Mjty8sLDuxlX5ENZEuouUkhBAHlvkU/SSHz8CNi9ZJ6/OdZ4/u3CGTGLP0uFmR7pnKwdN9luavfe3hk5cvD056F7XZF7tON+WJwUJYNtSWFL9odBWcAInsY5AmGFO2KHscgvMb6x2Hv0v1+d2DbjY7no/0wJHAt3/Q++PDH21t7axtKuCoR8WOzR4pYN9JK7oJSZ4P44WHV6JXOSEEbvOowPFUuacZCEQtLLwANiyOe9WDnKNlY8KzsxFBlvwwauFeOptTKMvV7HX7acJhomQtUg6WIdCwZzgfJj3hpATnLjhZaBjFPSPlApgQ2h2NT6QUaksRsLKMaP9YUtRkCiyaj4cgfu9MJe6bzAgymXeSEwJBikCkaGbJwaCag8s8wsS3OVIxCnVIJM/GcQsSZiZRVk0kstG/n6vAHhCZOOJiNj6T9cMjXO4bUwihZRvTVmhqY005zMSLV7taKnHaYcSBD8dMEaZlLB+Y4BS7K03k9dErqynrL/wLRArD9+uN+DCvrPDq4b1llRW2tVGp6kHrAg3trhcme4MOlWixVsG/Fa7Xags4mjAhPi6tWa+6iblKvbLc/+EPTIfcF+NWXMiLwO+PC3LNqeVBLa0X3TiCuWgAxhYjsqwsWrDlwYYgT+4HQsZP3GrkAedrigadpzQ+ftzuONpyjzodCegqTyo5AKLTs+PvfOkrBn/+hXMZOpBQGkG9WYVbLhOI9hN/Sexxjmjxe0Zt0Z17DZHVTm/4z//sJ78j45L7cTh+Ipc7xkHQNHpAmGxBhcjPaCFBKjYQwLOMWeLa/SeeOFtvNsI85qYXG+p4erdXmvOL9fYgEdMIDCIC2AqPp1sqfrf4YsoWf2YCIeRi0qOhFwxY1/lobmFwsC9O6cmjh4OVJHTTgf3/4+0cQRNOEuMBrYw4nY4Qh5hc8gzGZOFLPV1bqa3fWv7s4y9evuyNa5+AIxYtyZ4FSQtlw86C/sFFN/o474Ij3uZd9iygCUSDbTRw8k9QsGBjrAEvF5T7aGGJ8ImUjd1wZ7WO2nZE9t9CZfZidVEhIVWRsri81OizkPRoiDCVKjmQa6ADlrMnpI4hr7nEAHQZgQaaG8uoTjtnZy7qF/r2/fvMC+3P56vL1O4pbc/qZwcn/Zz9xWUkNZcFMOg63JJncgaNJqEotjXKi3aAmDsKuKDf5Y06XPTCz8MiyQYToaJMjnBSA3wVv551ikTTTQgUiYzQqVlbfFTdkvyMSICC09OBFcedM9030MqZkhWuZxrU4HnMq/Gpak3QQ6svB61czqe+QdbjTa8zcKzHjNMlEyjuAODpxSzsaA30J1k47p4fdC7XF5XVXD3Zax22Wptba8fnFK7xI8k+PZbO5ePH24oSpmYq3IuUtZZw86CbFZQN88OraAHhXME8NDhCa7zz5mZ9udbuq9CP/hW6JJevxqr1ivPldl7vK0dQulVvKMxJO2LJ+2g45l/JR3aDbgoYYGKC3IexcjlaSP1Qt3HCrUPjJDFajqIaakcJUfpCGMEYxkgQriAX1SLfJvwoGTHfQ9OChsVI8SP4ZwHhW/kiyk6eooGhJAETKwLcWIXHWQ7ij8zL52YefL/BGhmvET4gkDmlfX80AyNmjh6SRwKIpY1GKOoBWrUAAQAASURBVAgf893sMUoSkHNB0pXT1cJnPMyscJGMFy7htsA/zNxwWXXiyll8KNj4WXieE7W9LN83JSDsHjwReZYLMntvDCeboFa9defOgU64Ha2qNfCjj79xVceQSoOBG00RWQlwNXfkw4Aoz8urULJHlwllGsYei4OlUV8SmQj7mdTTScbk5FHnpDvgdjjdXtte0PBBhIxbVosiz5ic5nHZ3kwas+6NBy8+RxTy+4hRRjVg2BNH/SDuFy9fIwRYmZAsHbBsbllWYWsmGadwQKQU/Ez2fphMtgAo+E8F7XGW7nC4rxbglOoeBRrcXe8mHJWzs9lc/NoHHzSX11+8fMURKnGwKxR2frpwk4w6CJZiqokZKtciSWCLontf3kz2nzw9UI3PdVBBPJYijwlAHE/Y78ik4fAM3LKFIwBmXvlXgGZ7Eid1lNOgz/5dWtsMLgqEnV45qH786ozLl+Q77Jzg/7A9ux9MGlcbhqVgc7bGYuidvsR8bGN1Ad7QrS6miYDxy37nUEsKxGUK6hD1EQym2zB3JmfZNUEz06Lp15u1Rlj8wtKKcoOrmiJLjcHP4sjS2EaeiCAJT5wp/sKXHo1dPts77AnvxFFQpFxBjSwNCtKnYKP1ZeWjH4FDwVnoEwi9Uc1gei64VsAhHDIuucGUCj2DU6aWRU9MLi01BlbS78VFMzgVvZeGK9cCbIEBmJdWa9PdM7YJrLtza314wR8+pXfUfK2Rvtnpv3kKNBJSHEYjwR6q90RYTs8X79wy8EzN8pdf7O5yymGbC0k+w4+jHoEyDW5Ko4/xaedDzDBp03FuSjcoYeHZPsOUyYgbWMXlTFefOA1HVNR52s1YglfWZ5ZTEwxp2hFrfMp5bFJcHBWs1wYdjUGSg5Y0F5xV5sDhNRw4djM5LNBaNvW02APldFK/0U3HcwMTNJ/TRuDmsrEgrNBQl8BkGTgmIQFnTY4GFD3lH9PXcw9Xt6CzU4x5tmszFzud82fti43V6qP1+W67v3d41hleL9anq5UFFfJq6o5a+7y9Sm15r9B/gnI2EtfJLtqL7HI2uTiAsju8fhrND07rC1Oba7Xnu21izRUYR7QsDeYWZi+GacHV6faPHaggvikISgbAArp7dg8EikwRSis1B4Xrwcs8M0oNPYm3dRyTioULmmRPGCz4lsx91FE08eh9RiWug3ZRMErLxxixLsa6bZHfGJyr8omFMB6CmXmbxi++CAZHOS/YWnhd0LV8ExYbErbugMM/opd/xaxCdnInU8+HVnlMwnBHN1pOQmJB/nDSYvCEtQaofDSqHrpJQMZ2qIORU4Y1TMwE64kVURisjy0+z/JkfokAoiwid2Q6TCgc7c3tRUK5AWcYDZnb8vhwEb6jyZWV5kJ1AZfTaeRNLDHgjRU7EJiiU2edYcOBmVEplWXV+cD/Wb6HvVmjt6vNFTcJahLYiVSlh0eSGTyi6oiUcZgwJ8tLjSiOZfpLi7NfffuWev3Xhydap+23upVqM1Q65sQkSb0xCgX8EDS0YOx7n0YswIavBx8DcLB54zaMJ3K8M7wQfOOE1qqLvj+QlW8l5zfrq5WWXOS2zO55TQpLiye13zBxTIfRjY0NcL6emOucCuzIPpLyfe2kFlnY1mofGPGG4XGW3yQn56TTtq6xqQuHhJz3zmo8zU7FgxtjE2urdf21xjpj1en63mGrAz3gUvxLEbGBZBDIXoAm3Tr7GK+f2U5OH3ZOu+dX20t1pxdLnaBotoumSEvVJsCHpJswfEzj4Btzk1AgSDNwnl30Yj628F3d0h0/hRtIa4cT6EhAQpBS8grMoCKEP/thx7ODYLe1XPl7f/cbS7WFibNetSGf0BORrZGTdsqDIlVGoTIfl7RL1z++u6bAr60kk+8huJJmJxQ3b+LXiFCw1BFlWTiS82dGK9cGFd0DPc1OpyHVDlpuLDabBOLLV8eHx90SDcwlWK2uY/QGZoCDOdCvhNgz6vX0hJTCicOjja3m0koDVtRqs5XZJcrrQiycpHaK6DD6Z+erRKkL7IEMDuwhXSQnJvR/7g77h6pLTk5u3b1z++GXTrSNcsY7v/zMlPwivBiO2CNAmtpva6wOFlI6BLWmosrGeZBFOjBobGJBtrryDU1T5VZOCjBYIFBMTFGuJULEvUJVzEl+qUeArMLlgnNuxxEAjR1BcHNZqL8Ss0KmyD9u04tzxVr6htMvVLdHqnPnTN4sL8zxGREkYhwaiJiY9g1djUQW5pCvWWtYLrT4tffvd3SEXlwWVvTVkwMHE45XHK8MF67G1EYzoGrzjesJHcwnh72zE5s8YKZ0aRWmG+YVrMVpwn3MEwPKvqYtLQoMo1RKd8lAvDxbkjnXrHAEleBaLni9c7K+1BCCVMrCu4OYKIZ8c85WOo3lllMtASlQHOncQYtY5rASDoVUiE6gA5tAGso6blNQL7zTPPwYXeNS3IBbOwJFvkTwLDGBQhzgXp5Qri6fUMATmEEzXj55Q0RWGa0Qb82obke8nlqwNiLqjYTJTIouE1BkUkUX8ww46lnRxs0/ky5Dj0QJRA8fLRRV4uvEoO/ldxgFR0ukEt1GJ7UyhFNuQ77wIlvg0mxFZKVx30AJK8QDikqXtUYYh/zLckyyrMcOFfsghA4ls4NlC6+u2NFT4wu66Tu11NlwPd5JRyYl2z0zCHgLZMrAZQL5rJD0CIiZEx7Ci3e9ub7RbDaHgxOqkUsdoEVtBEonCzQaKyuN+a3NZZ152qcX6kJk4i3WZtnBvcrZ3sELqXATE8ySZNSltNs6U5GZMh8YYz3s0hyoy/gu8Muk0gfUTEAjIAEjN8mCo5o7dLFHCrAMZxyfh2ApBzSb6UsV+TSJcfZHiIs3Uk7F+vrK40cPTfWzz5/t7O+mn/nY1aJzP9QkF/lrh3Boj+Ap6g5PD05O0hBToY9zfsYVYlyv1Osra4vUawmZCXRjLR3N1avTqaa8ODjrcxeX7fwLkJl9Ju1l74A5lAWdsKUp3erO6fucUvQ4NHbSSe07NnfaS30INcImWir0svN5BxLByoACcKIkOW9K52ApwpeXzhJXWyMOr3AUx9KqICcnwrBci7d7bhQg+2XXJmZnd/YOZsZUxc7hZCEm9C+OHCkoj2D6zha1+kx+B44lvXilWbvcHjvYb6volVzcOhx2sI3grsxkHrfpKD2QuXwUUjDtglCgZwI4SSBC75m+efx4bbM6/XC5ejUz/+yg163iFdf8z3Qjk9TcUvbWoI+LcpgBpsmjBEhib8aevtrRmUzuHm8n16LnSTXv9Oa0Lp5cmzzr6nh80W87k1pB2PmsBFsS/sbZDNqXzdXmKmCACI73jrq9jz/66DNzw3Ya+uazHDKNuHLS9wyIFmtVTXkbK/P9Aee1xqniQ4qmqpvby+K6t+89UB/y7IudGylcNLqzzMIiOe/0onvjxYiG5TghrOkKqjNpBXaSugDeV5fV5SqWBCIdXR8mpzQbZzFADG4fRKF/ER0CQ15sLtjlU4V411eOpqTtV6T4yaOemXZwmUzk5kp9eoYWqgkkJxKEuD7pn93bXrka9qUeH0rUH/TXN7ZXmnPPXreInOqsmunKYLxn+2hEJujwNDBGOWGFYazRtn6+f36X/QMq/AVc5LmeX8lqXXRkV4qKJ0WRjzpDYU680AoPjluO2mnMVnEGYV69cVmqlIWgCPVOQmQQwkaUEjN6fdgWykYbYWXEEmhEiX8zhyvcFp8M6YfNBplxpYwSNuAtcoAjGHTppTXi/cG8cGCvrAZ3xuRtRpIwoptYlf/KB9FVkGQYud/+K6vPTd7FdZSZeGucPN/bEHGETVEIQpXsUpdroWUlQXMXuNheelew33LzWa7Nw81cSBvLzNR9lo8zXkh19Hf53MqQKxoYVQcQIBFTrnkzExebbYLjlhIOaAwXhMGUp48GKc8NprnI8nHNlKRfnLSECuNpzozMYrSu8vzM3nLzevOrvImQ9XSDhB0s1h1GJGUippqrJ8eZM/BVjq7Eab1y9aZpt4/QqdBUfPhYpmycgaxcZ9Tk+M7rU7lzN5XxqaVladcnXD3MUAeWFyU3M/UcEEmaA2Unm5EdNLMCA5jLoQathl//YBM1vHi5z9UvuWNylmAeO3bS2vBS90On/Go1uFpbnK+RR4vLK3UG/PHBEcDJoNM2lQp71DrWcSGhOwIDq3WWizRVBvHY9SBnX2rzNW/p8zqKzU3WF2tWTCejYFGYO22UL7TRl5j98PGXrqTWtWKyFx4dAAZqgSYpfOH0dPyNuKQK0WhUHmLEUtqYUbQCy1xdrB8exnSmv4fTl80ObvivYE75KD98Qo9kbE3nKBpRD7twfXzceTk95Vw50crL8w4HGoZKRREAjkWW0QBRXDdqi1OIPnzy6uCg+/6j7eXlBZzEqA4wIWmAXUDeU5Yri7W5haP2Pvt1sTlHW20sTNbWK+yAgWZ552evXx8RWTuHvdg18h/nZrXv4iAJKhcthBYe7DA7C7L8YOr0p58fPpsY+/HsJD88EagQVa7T/YfrVnR40BZA5Ywmw5yzTsoirMTepuToClpenexShv05QTnO0TI0D2YPS21+bl8259h4w+TnJhkv8lxuba3J8iAa5+sMRBkGQ8iolkJ3Xmf1aMKBbHnXbGHl/l3nXcMvJwGnBRlGV2/UBA00nK7XFno5n5ihOnNfVvba7OYGDbt5djnR5B+cHaeGS9eSRWTexyZxlaxQ0yoCl30w6aRG0tEZKyzkWAmJlU00qnPkgYOBsCEaYqnEQ1qixdo50Juz5vmZ2bOZy+klFNKZoQsTRGRjznaPNmc+RAV17NRhCPWFrjOHa/WjligIBx+Brhx/4qR9zrtFrfr01eFPPntenZ7bWK9LAz0dQKHpU0FXZrZkU5mmhc/x0hQkK5zTu3CAwsmiDAd7YImpfrHb1ZpktcmN5NSeWZE4tO07/9EpnXojn7ZelZQUrUe6JP63srYk2tE+auGbDrSEHwVKYieR7lqoxnJNQRMBkK/jL/dNpIJnUvWj8ptQeD9MhkteRa1gSxQmpuI3fqb8V+adq0eibOTAMqg7gozWVN7nR1Y4Gs7TsoTyXb43Vr4aLSsfAwru4/Miejw7j3e/CfnYlxYbUynDuC0qfWYQ34W/R8NnjNFjjI1zl0iEmZmU0YqilOcGJJlmpnBFUccxNFTgkibsyzzKitN0J0yRKDNQdj2zLHKxuLxMJsuLxY+llixXvhpV04gADgVBI9TDpNznkvK73OK23Fn+z5SDBdkWl0omVuU2qRkURSSVB+R8EasWjHEAsMjbwd6hhA3vEblxxXVFrJZXV1ttvmwaFYt4qqeHy6BzfDLWqM4vLS9aAEZAXDBVpdCRe9y9Ibwih4tYKzZRQBrOqtmEhNIvPXpUry1/6dHcuwdffOvbn+8eHzC/+Y7pcvPLjVt31v7K+195uLXd7g6PTg5Fy9rH7bOBw5du2AES5q2dv0q2iYMHXr18TXWTM6a3CzpUqiIfSi0DgKcPS8DPNDl74SxZfgyBRz72s7iuVG5POhZxeuKrX/nSn//psVRm7hlMNrZXNtyMQZBoc+Kpk5qGlLzIcnrhDKUhCpCt8AcrQKkH0s8C/QfaQaSyD36Xj/zpt/EgFf4uxY3BBD3M2Cbs7nUoYdRIVbJYM99h2VW77I7gIX8STo+TWL5GZa8cFfvRi9ubTRlT0nOVLiaQgnk5sdppxWNpvra0/FAzbsmxh7P7Z5ed2fGxuytrx5Ot1uDmZlOftcukpUWVTHz00LGZFV0JqnxlcKzdzWlKKlpol+wEYj3xi4ifq5Mhr4ygnagDreTm+LhXPKKeCWYTYiEkImTA4ixYX1gK583F/FvvPJqbH6vOVT/8ybPj/Tac1sCDI33n4MTJQZu3VtsHx04RamKvlemNWyuk0sGrHXyhe9Ip5HalsRi0natq8YSTxTEI417t7Mpn3lhbovIRHjhQWmMvVuqJRTqsSv997Vsr9bXGfGX6qkIDbLeDM3Pp5TWzsODAsMVFSvQlmTPo9zonp4JjHbF4UZcJgQGnELBZxkmqLG56YmNrFc7RkfcPta9BJlFn4yjg1iX4JueYC040ttfKolLbNjatRhz2yKzInso94K9P2dkMbHamoIpwyKZ9B8axVp2p6m3Uv1yo1G8uzxZm6/vH/Q8//+wXP3irddQ9ODm9tb3cEuJJg26H2GgDKEXDthQeBfXKiw7jKWEz+dMP+FOSW6BmQViHSKLWymyOMp5ViGyYROdwk6nh2fXucYsKV9VLFXxmxhTBTF6dVqcqi5t3VDwwiagmqhnmE7Q0vsVQ5cnGqNFm5RlhdVhiSAER5F+EgWmUqbjarPA3LMwcI514Bvz+C54Vggsq5R7kCgftGv0mPDKU5Su//cwSQyWhNRvhsnyfK0J/vhkNksvKJ7mrvOCTJxaN1ROi2P9cG0ad7qUVuScTy2MCtawx03kzyXwN7AFueWqoPi8rwt9cmZ3GK+SOUhdtMY8sfY7SLekR3BJVz6U+kQMSR5QcMwHVMoiHYNlW5pIw9/wtv0rd7KmDbcGhQCu/sj6rc3Een1kWbjFabJl1Ps6bzJYX89bGJqaM16vrooXwzvBWGE6Mjd/f0l1d04ZfaNRejl9ToWQrqPBVonzcPqJ/afHoGUtLonPp5ct7vrK6zk2XDsypsJGbO+tZFpvsitGcCmwsxDZi3/DGEUFbS6sba/fUOlYWVjfvbqxtffAHf/yt50+/UHextLLx1W/80t2H28///NNXL/5kY2MdwvMl4jLHxy0AoE8mI5xCPifsFmtDek/3tEuXVXpar1RABNqwXPnWo7tfXnZOBx4s8J8to4FVKs3lFW6r22ubOvv3z/u3tuvDx7c+/NmT4IIzTCBbkMvVfgd9fVLYkJ3KOwhK37FP5E06nF3ddHhjSr5JvKLBioJ3gf4bFBl9ZEgMo9hEOt2fhrPMTZskNoCd2nQOuZHwdyUkBC6Y7FFCjL/ytQePbq38i2//kKqbeN74xfNXR5JunWLUVNYhRRVdYScSdKmXVOCJ6rbzy64vb208aFQ+PzpshfavnGAmMRZ/u5kUQog5Zlcu5ic11Ku+86XtrfUa1GQEQrn99slne5IQNIii1ikZNFMWXLpFZWXB4on9oy5fLojQ63mjxJ+5sJAlXgw2wNDuDOVkLW80FQiQoLg2sPIV0Be67S6lhLXWPTm+unJK+fz52ST79rg9ttVs3r8z1eq241uavZKWMjMusCQbLceZkAG0cDvVOz3nurh3a0stCM4j7YdY5ZkToZZwP7Mwda1EC8Pi62ssVflAHIHMY+SsFWn4sxVHrSRdxbhDpme7TTt2joHTvnm1OHuRiLgG7xBkCCezdXMzAnPOhaaYDAbclYBJqU+DblBDRRxT/FfnCHZv/9WLA7nOMzMVu/PX/+bfWqzMfP7xxy9ePO1HxFxU6/OSFXqD85Xlhu3Q0Hxl0SEqumdWXh+e1iuzd25tffzJ519+ePvd21t/2nuueEDIgUfp/KxnqULxIhE4MmRKano44QjXRpyymG75IPQXtA1ztgSfpPaYH1CXPkfjRA1OGBm7Ci+NL+iw5cSjBXRvedMp09Iqd3O12Zuc5lpl83JzGZKggclxi3jCtY6nYpQysseXFpvcw3Y3PDOY7utMDxVB6Xxm+0NWXmjFHSQW4gRJ88uluSbfRiUP44gGFCaXm/xXRsgl/i9Wgd/u8nfhMi4spJMNKdRX4JLP3ByhE5vEj0huN5hW5uKZ3vo7fwRsocJ8mLv8Gl2VSRkpY+X2/BEFzePLDW72odm6gsXC8zCTFScMYxlJhLDaaErUH4SUCEjuzZCeTWzE+DAhZIO0vPEHqITMuAKQE/Gb/AlDZT7Zr/J0D82k8nrzJjDwfgSSLHvs+t6tO8tLiwK7d28/ljfpAA02dq1elUpgio755uE0Xq02rz8b/bG5oMxqzjAe0+2fslv7QqlyWniN5hYmJ536VW0dHsX0pOjNqO2icRdZDiMiXSkSuTt7ivfHlklarQYj3OXyWGrNJeni6+sbFr6+KXdz+r8+PFzfWp9dqL3+4vXPvvtE8Y+Gm1oArW9uLCtanp6pVASIT7V8ABCwJBWQKaDJ/ldGE1XqVL/b0o1QqQfllU/cac2lvJ9AYPdwV1GXJ6cXhDF6Uko0gKws1G4iSTY2tz759BlEtLk4Cy0kQA5y+rOo6vzaOcyAZIxbm/PGthFpTPZFrrMxHZDSyIwIsU5QK2sf7Y+32ZB8OtqyfC03Xx7gEEwdTcMf4GF2xL1BNjpCrg+q1JxK9Asf/Mt/7Wt3bjV77fbbtzeffH7wL/7kB0IX55fz4Ht+cdTrX56tLK7UbKOE5YG8GD2sd/YPx3fbt25tHJy0b2aWdg5fUEUIaSqpaQiBJccvYQMa241CtLfu39aua2mhIvywlLM8x7eHS+8/dLTD/tTU6ct+92c/3dG96RQrxDPTTCUka2MjjSH45LUeapZAQgsfssPkJflT4Er1OI1rsTGjwOtocLWxJHat6IT0q3DK4WozqxV7Wa/NyXyl6e988fzlTz+986BJPMsoxU+lcnJgsvyIc3UBWtlyIwKa/JyTk87JYoMDfzg4BnzJnTgZCot0np08f/f9tyYX6ssb62L0OtWzvYVV6SyLyzXHsTiB20GU+lelmbf69aspmdFXY4SQNvoz/dOuTcdgwxPij9PZY+x0kNDE8lpFcRkKZw/MiwsXTrS2vORUA/bl5PzkQWv1W9/+/rPXXGOnqhwnr16MDSsi90tVhyrdvCKLjy6mby7WV5ekc9jxZZ1OV2uMp+vJ2eeHR82lyoVmY8P+wweP21fTO8edwmVw/7N4FHJEwYRejSyI17stjIRN9Ib4C9kZsDDMYFx4zCj+xrbFiUhyf0Mtp+a20u48PLwgJtQLY7q4PDhuIwwxNnvJR0/jaAuZpaiP1igkEIZX+JN3hEs4nHYng9iOCUisLddxHEAtXwc32BhgZE/cm0cV2oLgkSLhs/kVZlz464gHm0uZfCGDkVbkWW4sr8KW3TeitBCq9/4rdPcX9JaP88oX+ZBTMjsZqWMu+W/0hY88IY8rA7g0K3RjuSvzi75dPs6nXnkYD7f/ymu0oPxhsbFg8hiDAJKXgfNBfntKfvk8KdW+AvAMk1uzutGMkSfXY64uHWh944RGDgAoWsJr8DvaYnm4HxnNf6NXVprh8hwzyNfXkuIn7t7aePX65epSdXq6qfOTqvW93RasZv5q1+0uqQh9/U11iXZIUSpiUEkOYfBRp7erNowPKn7RYU/nYuKNpulYoOOTdsIwcEj7jBTk04kpYkPPD8baYD8Bo3SAIN+oMPTpan1mrjqzvLQiBd7cpDD+zm+/TGBssbq72+IFcvBW2GE6i7AlcJqxra3bTOs///73uKsSRHUIcJ1D64beATwX2I+G/or1rq6EJdY315RGHO0f6N2f1tQxFXiuL/rdvnNgKNADFWqT07du315bpq/McSvzFTF7MI1Yk2JqMJiNEJwA18Ry2bd2xNYR8CWxJPDlhr48GzTuzv1v//G/+rOPdl++2H190vnxyz0xBiHdaD+Iy1ZAidEmFbL8CzxmUTtq/KzVAScmi9wET8JQbZvokMjHv/TBW7/2y1+1+3OV8XbrWDP7jfWlR/cfbKzV/7Pf+v1Wr3vpoNtpBWgXJz0JORdLi5TYqYE46ti4BgQ/+Mknsz+ZUuo/nYQSMYvUnYEmp4XcEW2qq3NOaBgT76wvLKw3V9O0jQcvKpfVi8BPXA0u7tqjmckN3uDJ3T/+3oeHbRWtnIGEPbZDmfISLaDCglpcVOKcg8thp30i2y5nukjy0YGjOlevz58MWjJclHnRzoWL647rmpqr3VA1VA47J2BQW9Rp/Hp/f6eUize0ImU1YLy6LeirKUZpfs6DlbMgudOGIB/GQOuku7Q4pcfaAIFUp+nWYws1pWhn49d9R8VXGstMrPNEVYfILbbJfEOTa0e6sCYZN5qWyOKZnJqTP0CsoAqWFCQrzfbhA9+XGm9hvaQ+LNYXxi5mTGVl8Uy7oNWVuvR1xCyi5RbKgiV7ysXV/W++9+UzvjMK+9hVeiHNLox/7V1Y0+kcfut7H//Zh19IDKrWFxxkM1+pHB8dNmYFHqYOO2ft3smU3rxz53dvr1M2Pv30lV4UC4FvCM05SvKGwhSmpob9PtIKYsKz8DWMIOpgkNYk8sKHLFlIh+yLqggB4F/Bw6JIlZxC1+E1bsZW8Gn3qIxzIQoTKuC+ZqyRkEX5wpXCXXJHflJAnPcrqUJ+bdzYTnzuzU1AgvC/ADNcqDA4DMEc0EO0m3wyskfCM/0RbSc0klkU1hW/RebjQYb1PsykPDGXldfoxqzXN/lVxi1fWquLixEQNl8gAyLeu8rF5qLtT0ZKScBoNA/JswKdckW4Z5EJ5pGPy9VucHUeGIDnzvJ/fgTUmYdf+Z1rfEYe+DgCwAs/KeFusDGoCaVHeT7Pt2SxnyZZLs0Y4XyGyUCKWfgSpYVl71JQlaVkvzNmGTzj5KY8evSuwD3TltXW7ncOWq+Wl99SqhLt/OqaJ9S1RDzWhkT5aiswfHJClZRMOa2tZURr3CA7RkHOhORXldGkfF+D5RmljhRjB6RWq0m8N00SwJndknYICTWUWXJhnqaIW1hJPKWcBurzxy5XFukW59WFi+nT47np+S9eHnTbB6ury/yiNFQn2XWHJ2lCwdQcn05RzuX5yUnr4b17//3v/fOdw+P33n6v2azTzXhR6YC2cZaAuVRaxFstCyVpoFvbd7Y2ts6la5/3nRlLTSwtHAKZaCw4+c05tFU6zB9PBpzGs0yvT7ETC5U2iPDjnzMFKGsXU3qVjHu1xTwHkUyEJ+F6czVzeXF7pfHo1zdtSq9/lnP9Li5e7uz+9u//2Yc/fWn6rIiMU9Am+1HQMLtka4PZ4vDjnLn2Xr8RWT3cGR883PyHf/83VujjM865HNpsUeN5nQ5OL9uXe++/u/W/uff3//mffPKjnzxpOZ7MeiYr5zia3quzk83aeG1msnXc3bq9/uEPfkrEjpHXkyFJ7MlD4eDc5Az/Nj0NuFZqzQf3tpEsZpdu0tdJ0qcIQj+OJZEdjZewm5WN5r/yb/yVj3/2+ns/et4eDGIKRctIcI+2IoAEJOqWdnb39cZRbuHrW+pk+6eHp73jVldyLB/dL7zbUCEOzhbNQ8M5Oj1X6+njP+Vc21mRBuBZXl3a2Fh1IHBM16g6Kmpnj456jUq9229LWtZQk8sfQNGWfFCKPxFoUwYShB9s1LbXHEDG9NNJQMLyVeX6Wirb4d6eZKOtWxuObtDViSoi7nV92R9IFlZ6EcqUSnUtFhuaz9FIDAW9HJAKnEw+l7bUwwVysJb6k6mZ9QYLJf0I+XaZg8FvKB98NxaKGVtu1Hx7dRWpBX04m6ASNRp7/ODeg9Xl7R9++MmzVztOqa5eqI6+qZ8M33187/f+/Me6s09PzEj34C1tnQxe7VIQJrsgMbHSXFwQwk3Oq8XfTHSpDTmPxaswAY+HKd76e8SfcbTCe6CZ9RK9TukouxZ8hIvUwzCLYKUbA33GBNWYypMSIx2BOtNLtaruGZ7BYZbBS9/cULjbuRT1UbgZ4lAYAUNIkSfPwIXmYpHqhTeNJACNFYTM022Zo2nFWMtfb/hVkOnnf/ltMuFwXqYYOeKRRZZYZf4YXVAm7Q87YIb+8g0oRAkfrSkTLaRXhvJxbvfVz4fIqOVK15e7yhbGNsnDc9PoivwsTqXRuGbkTbk3v39+ZdZSAP7mwwLkfJZXLs/0iPG8Mg8Qiy/hzf2ZWIFGppSbSsmw3cxzZHyJOJoCgJSoU7Fg4lAujxzdkfW5NM8qI4EHBMCiL86797fXiQ79GhmOmKBSVCwg3nJIHg03GHYk1Hp+vX1vvdMZ0+CJe7h9odCpjhpittPWxQYxo6nZxtIitiOalSUVWVWMHyPRB12SSWXFyZcNNgYfPYSNeDm1//rgu9/5s6Xmokzs037/oycvjzpni+vLCncvLxp7h9q0nzD2L2/m1IO1BudVGnu792LvqLJcW52av3tre7FZ63Q7Bwe8E3E4spikVMqqAHsfHB3tSZOGcS9evnQucfHili0oc8p0QYuyOtidn/3yxRAru3m5u4vjSRsqOwWDEJj3AaJrbQFoc0ScJpPxYr5So0n62i5SImtL69RHS0M9dPjlhYmthdrbW/Xf+KXHTz7d+Wd//OEf/ODjg2PN7zK20UKj+A18Cqpoyg9Y19jde4+337l/++HjzXsrzcmLm1nNlUU6iaXpiWGvHxYeRTMdSRkJ67W5f/R3vnH8K2/9k3/6z1+2B0eHVyojLp2zWZ+uVaY//uzl8f7R8kb10b1Nfib+Xk9m+nhhpjmLJIdc8WBdUtIb7Db1C4Mh+xJrSWSl4OhUiWvThEW5yeXqImPh+ma7cfhF9bP28Hp+SiDUqnFzw9GZOT05JJgY3DviuXIF0hXkTNN+TR8vZmcbNxwfr15vbCwr4eh0h6Kdz/aOHXAuOlbE6aVEoNurK8PqTbVehVnYEyTgWpBCOT59qAXaYeui1evI/QT3iQvO5BvlMPpmrqw293b2eNSnNrdX1peWGKqVxUghkoHKc3TSwk+dDq/5rwVyGE62+7xKtgBH5i8jRkQIaPAM3xIADj9h1/AMwW1b7WiZy9PT9vHF0QJn/XJF/9LZsCP/Sl5zjm22mdBxpDUAIpwXdLDXsMQWF3HCh0j7Gl9ZXVxcmz082Ds+PKqvLr/ea1eX668PjnePzxX2Pr67yS/EP/j4zu0XrWHn6f69tSXS+viorQMBoOqGKIW/5KYnTORfPJXpwprQNyQvPwr9QS0o5jPi7VoAEFAHQUJ06bLCjP5HTCxXupcMgKn4qTfSAzTu0pipZPEYB2TyAOSMBzL+isgBBspSRCCKQEhdDe8Y3sqNjBgdJw+jKUQsFeYU0ZC55e5Mpjy38LLRfH1bLsjdcXb4CYhhumWKuSEXjORebsm0Qr35wtimV96Wy/J2RNEZ01Dlp9/FRxFAZIRC6a4MuwpMM36mXag2I5SryvMzwuifj/NMF5VBDJwL8rP8MpLRRhf4hIyMfZ9R9REtcQToYiS+hvKcwBAe5aPcb1aZbdkwv8OsRWVKc3beAttTHhVHy18IgTzX3Xl5rlXnfmmT9mdxaRW8KfujSaFN08npDDn9cYrP5KR/3Kiv9A+6iEA7numTjswzaaPsn9zktmLQGB/5seTjs6bfc8sCjUkSNixUh0ApiSpYko/BLYkPdGrZk8a56gxP//A7PxQ5Xqg0yByZTZb88O4DDnoOFSln3Pvy3w1F3hDlWoPu7x/ptyN0cW/zXq1aX11fEaNqd048z3rDx6YnOs7unkg7GhqxG3vDV4FeikgCvmx/AJP5hLsHShMOEJMXOej2Xjx78cXTp/Q07DZndAScNiD/WXXely2gkGn7Tc3R+AgjTiB4ghJLviQgAddzqVIBvgN0roZoauLOrdV//+//2r/xt3/l977z0x/89NPPn+23e+d4i+lkG2JVjPOD3F1d+lf/xpc1XWwuLU6P4Qzqtq4meue1WsVI4pRj07MJEPDOJbrLA8wOGdlSlX/4d3/j4GR42Ou9++76t//wx1MzULc3U5kaTs88P+jXqtokzZxdaTOuV6WCKfulXk1u8vjdexrQrZfKW3OJh4BeyYNHlbMOvjrps1HAQzKwzlFbeNigWpn6G3/jK+LBn+/u//n3nypHsq3t4Xl3eDEn91aXRoYYn5Ge822aqyYNsXGNIqV/ZWnu+Ojo4Lg/sTSjgHt+tjo4OXUgF2u8sbig1sBGU9lZkBs3axph6PGAXUMMqxaXUiJuiy6o/JN6Jq7s7e7yQj14cH/z1kat3vzZz57IQp1aWdt2ZPP6+rYoZq99xNo19XR5mZxy9m77gqmS/KGrbl+hLupSFNTrth3yNejpC+Vw6MLQ0ZnMHtJHwfpFtzlfJy1O2FcqKUTSz1rjS/p4zs02EkLhLwKwiyGLlXmVlBtcUJMyEIVwIEuohpzDqUt0TJ/R2dnB4IT7ienCqlyJrBo/Oj5tXwzlCzmp+k+++6O7d9fXlhc/fXbwlcf2qflq3ywHCt9hA5WBz53JqppXFcjINxJCJ2nCu2l8MY7CPwq+205sLTh5PS2E0BWmL81n0Fi+efNfrir8zt+Z7wjxod2xhnTxGAiiEakpH/S9/z0xuRWSMib56lyYthAIAK9m9upriE3gLAIJRbNAFWRqaKqMHdoqT88zC6WVCfgr037zfOIizLxcF1aY/3JfbiiTNJdc6+Oo9Nili3Ody7IPb56VZUZC+TxsKjzXDZgXtM/9oxlklDJUxiy2Skb2ZXlwWfJIRPmwzDDfuifPKrMu17o+n1pTnpGJ2paAC7QLP3ZpppKxcydw+pXLy0LKikcflm+LvpiRbHS6v1yXsA3ygmrZiPhq8zLaG0B49/NXHht4EzuaNHD94o962fh6yHmiB2etMjM/Ywwn+T598cW6LLeljaubF4OTtsFkS9/eWtGs5bBzedo+53r0nNiWmas8RjEeHNbzA6IifiMMNGlxhpMJeravLNolMJ9FTkMUxFKOztjQPVYtVdhygcvg7Px4vyWpTT3vxPXgWhXnjGaQWr7rwH7RPemen86p5J3VDHp2XoP9tFy/uPr85c5X335IeWQNcONWtbFSjCTQSXWd1tMlocDAGQjKXhQolR0xv3FHKXV+8P3v9046O/utXloEhPcHYEEid5V1RqFjYbCMlRolHAitIDteOTk/rTKDQm6ewKHpmiAIL5GgRTYU0kWoZ/Wr1Zl/+Nd/6R/82td++NOnH706+uT5c1nXChE2l+pL9bkvf/Xe9eBGP6Hj1pDfpnV8iFgFWQzeXKxwUJqLsZ2uLZyxsrLI9dS8rK0257he0wth7vzB3cajqRuc7de+8XXeuV7/pNYcfPpyv/A5er214D6CPWOLi7V333aEjWhLetj1e93JxixvR7Jo8UiJa3qt67Z4rS5KcHhSoJn+Jthed8g7mTlWd7Yils4oXLuzdMehPUdHr3d3v/3Dz/Ts1Ahflu38ArSq9oZnumEvzA9rJMbU5OFJRwh6bHx+dXWTQ06uk4IBIpLdBqdYfiGDm0t5NPzvXSr/aU+j9sEpDhOCpQzoMqtEAvyl4I+fzW3duXt0eKCy+62Ht7c3ttQw6PE9jeW4SGZ/bzDZbp+zEWbK6ZQ0GiJiv93vts83LrUS5emLR1JPhu7FtYgs24jeGhNJdLmIjLLqYC0coheQfTp9nvQ7g9fd+oysvvE6hTqR2LR1Q/+MIOAuG55e//DEwgph8jalIoavKHiIVKgQhVc/evvB3tGxIESv3V9eqe0finVMffDe448+fVGpVe5sruzsH3Ms3d1eL2duoHwFAxUbLPCdA2cIR4UI6R8CLHEyUrGxf48wvj/DEfyGPt6kW0SSGbY21p+/et3XsDw+E9+5O9cWdC9UEpOlfFQWYAjeySNxie5g1kkaM5NC3wwdyqyF8BXK35idW5C+JkgITIUpcZgZJJYE84ibSOKZZjx0C6SV2zwtBFbAE+3VnAtPzjQyEU8uv13FUA4fcYUvCvzyxrdvdPysvSBP5IS3uYSPtxgauT5kmAHK3X6OxhmtL9eXd4GP7/J1gdXo+p9/Vj42SLk212d6uT6csLz8fvPexxAmH5p6fhX9M4LRM/CXCKVyMSeVS5S0YkQRSllGGdMqI6JcVT4p4qGM84alGpCKViASL0IqVMKIE9kxQl7Z9YClsP+MO0bN1x4GNutQ22OenQ5g6B3xz/EUJalU0JRmqV599+Gd2Urz+at95Yq4XXVmen1x4Xrh8t6Dte98+Fqwx5rOz1vKXSqVqucR79dngIEtZiv9U5MZR4XgrFc2ITMK9RAAlAgubjQGT0wuZGD+wUH0XToK6HbBhT23vLy42zqQP2c9rnKZRLsSwPOH851Uwzir7+qk257T3mFxtXW0o5gG2z9utcAOJRoHqiehN2D0MyAxk/LLo/MJxYVz5ejwBEElv/YSj5FzHPDG4Zv7RgYEqippcrnFhIOJjOmw/egmCYSKYeqkYnwgwTE8C2lS0dCRF9+ANerx6Pd7X9p8792ti/N3fdWV2D6LBi0SdNjdV8uN6pDmeHFTb8wfHfb3d05qi7O8dUq0zoeAPMF79+zFKzD74vTp/dubK0vNSmNKTgjsIXs7Rw7XEIQ7XV1ZrtYa6393RfGRZFOcfCHNOcLfMRBhWKoY4Jhhg+NpMsr+lGNLxhL5g01Sp+xNwq0ONWHjWSQf4uRE67gdWp1NKnO739aLhDi/GdzM3FTE0ofnlkyzTOefA6ezzU4ryZIZWJ/UFE165MXi/OzVwHkM87unB+JPHUXAg54IRHZFTUY6rOiKIfyQqhSeo+rCIt0/3ebtkLZuxTu9tNz8YueF496Jrka9trlU1cXn+fNnL3ePBb3Vx3Pv9Ga1YWidWLnjveTlk0Xit5oNTc87wOF0stIU+yDd8o3+UGYqtEbZD7bw/8hkT1eyKCPZN26hOf4WlVx6FfXPOEaHe2ed2WvksdmXJ3CZY6RMlEIEQeA47GfS0EoKFw0GBFuQAf0XU4R9Eo2dsS1qs3CzVJs6EuSakEesIHi8Nj790cdPecce3lnRBpIAWHMu5Nz0D3/w5FjKqwCa1KZp+3ejLwoBqy2B/haSrRjjOCsE9AquZxppxxj2PvrET8dPxxtzo9ri7OKE4QpjCzd+w23RYijZDeF2vgwVAIrP4StVgB9wbOBjPU0T76ZFBXZpCJz+UB7uO29QeyYi0KT7tV5/qYqQHpAHcjfwmSZekGmGJstjCvPKX6MHhmzzdH/m/wgHl+evN7/yeWaW36Pr/Mon5Q4/EAtoWGDUfPCw+jwoPDi3mt9ovHwUyJTfuTkvH2WgfJ4by/t8Xgb300jl0zL53IyF59vRj3ww4vojORoYe27WgO/ldxkhMDe3QLtMKl/lCVhiuJ4FpMoDJpW1YxIAqmVmHu7KmDbMKc1uw64i/qewhaBZpEdu8X/2JPxlTHJnY2pm7qh9aGhncdxMX9y9vVpPzsnE8UDN4s2Lg9b7j5fWKvM/ernTHVw4jfTohGiZFjObGV98sh/EYenhi4kTp2tnymIrlPHRWRFQhFTPFnkCJPfcaN/+jp9KHVOZGxmg+gxriQCw+hzwEnFHSqexBRBAWndPTS1v3O70e3zTBmO52jXub112++ye0LUkl3ER44e3tga9jq6IqNiHxRihqmmYck5lDiAKHALmAu1sUdmtaC/Szhcqdme/pYYLPke6FMCVfQW10X6+sSIjiRIhzzkElwvp5yPnQ/h2evxiiGdZWpjjBCbA0k0WIX8dIJiMzSpOlQg6YXyWxKR+yDaF6ydtfU1S1lV4ApcLBRixyPG4tV5fb1bcS5YFN+jAMuFnp2U9oaNOhzLb6+WwcZUbs1ItmR3ajtK2luQ3jl3X2AtMlM3lVDIXnBPRK32zuaY1YXrD3xjoUAUBy/R3auF1bDweOxmiQrjx5frwk0+e7bROlItp7XZy3OFxwPEw4o3NxYVKtX94vtSsbV42P3nWMUd7DrL2ohAt3bq/erU0MX2zJllmIs0I8GiHwxhZyZhF8RfxtARtJp0PeEXNF7olwik0wp9j40NBaxyV0mlDXu8f3rlzu1lZQSL9VoeLWbRf2cHeUevZi12IFklG2gKvuHlOqJqb7GhOMutg98vrfpdfKs2GhHHGJtqyr3qnnBY350NhEGHlmXnSpqvkijAgtcXJimuP/qFTSpwutBtcXF0yyfXZwaXOrQ8ebU/wYEbbjTbtX7VR9ZdbIAQiRprx2sa2SrDBgukO/GlBjlDqdWV+4eneERLeO+A0maguVfePW0y48+F8C4qfny8tL3znB58eHffX16tw9/Cot9hc3FxrcuEI7EBm7sj9g1ZS5TwMzScVK28ziSSnQi8TzM9IiKsrWpJELCwwn0adSaiDqMC93RzCdHO4R8YY3YmBZZx8402G9i6GUkkURMjUHT+9ksemuokk1KI2DZcSw3K1fF5Dneh+NxSju0RI5fAT15pU0blCl8bOTD2+TDcDehuazSrycWb25s9Mx39vFmfqoJ8FZYaAEA+O70Z/+iy3E8U+M58spPzwUa73K9f60p/GKDSPsfogjx799l25pkDOZ1YJxrkiX5QLi7DxVQRChvVVvg73LuDJ8G9ueDPaz+/MpxnYfIwGiBiipghQBP6N/IqAglRSYBOW6coi77OD9oNxycpNAp+d8rTyIBdIKYn3wEmng97ZkXJuJDc1+ejB2vWwH0Kl611f7h+2BTbfm1j58Pneq6Njsdqw5YuL2apykIlBl9cofr/ikU8uHE5HfbYCYZ5Btx9GnkwzXJe3GsMaGDnGMODYBYuJ68oqpKCV5QQmAZFJm73sUYX7OJhBRM745NT9P7jz8PnLz53WbejE1cBUOj9lFb6en530+yfdDo39/EjFT1yvjXpdLTBpx7wYm0bTqLOAOIDN7pjNaOOihAFLOA5BNgfxSbWCLAFotH1XB93zXzbjzSYGq/WlmQthnYs6OkQv03VujcNSGb8lzIoRN2ry/UTX5U+AlSRLojNDIQjvyT6yKixAdmPAlh4wRqQ1E3v4kpgClY5PyVosm8zRMa1EfnRlNeFp5je9bn25IQMQBuqSEKl15Zidmakq7x7EiCgOVc2mB4G9oEnQbyOHUUCqIhKtUPaRr2LVMcAysknFW5vE3zN5UJ7Ek0Zt2+QWXF1WYqdxDjkucbFWraUhZt9R3jcPbm9CuNZ/cyBrnZKRw7pJGPnsV9e68mhkaD6UB2FXhbaEF+3Qsjsn441GskBNdTpnyYUZHu63kt9LUZ2Z2t8/Hg6kPMzcubfm7IrB6YDqC9HN+e1H91++2kELadW/UHGs7ImOgN2BylZ9gaxuLo0Tdci7Gj9vdR0tBMmydto9fYn7N/UiSvtKrieHI4S7vFisVheXaiJzKgpUu8hEhpDIKAcdXlwrn7g8nT6f7Dsyd96WX80eOsj8ptMdH7vVbKypwusP9eBGOaeDSWd/kPywiRUDrFyFQIxyk2/KPEwiDejTj1DARGN5ZfrF3mZj7tMXrcXavBS3z1/t/NKX7im30gJIFvOLnZPO4IzMVIpF5VcXM0uOxWqLzsTVZeVQv/CVMIHIojfqdTRFiy18EzHmHzKU7uYzxKxtBcSE+kxUWl20lWiQRVsJ3oePFSJ6Q0MjXpVpGxE6vWFwIMp4zbaZA3+UZwKpDSUCFRlBKWJ6/FKvWpqL3O5rHW0MQKqW7cTQSEMsApMhN/Lc4G6YIEbsbaafmYeIMZFiW5iaC71CWT4uU7Ns38c896nfI64etM/kcgcmEO9T5p5XCDMD5+JyReFXmYFHZqQoqW4ClNGI5Xk+LhP0OaSFUS73n0lQ9HCZfJDhyiI8wAj+RwNhMwbyZy4szx59l5TODJ1vPMzikYlCR06TONpyW/KMqbeJrIVNRasOWPzn1qCXWKLbZ32eLc1j8n8+mp7SMEvqYru9Q8GkhCgHW2ku6UecNvJnSknar44PHt1bHbTPjjp9zF87mYoUB5mOrLzKoja54/2WPUTJYEs7A5+SB0ctQzKHQqMuxKT4+ByASuQMhmpuUt0SFYKaL8BlZeklfqGdyUHLikf2AnmQq0w2dYQXUvjnwyNuLrrdowd3Hnc6RyapbVtX57XpCaXrayurCkMF+ehhFLxo0FhqQXiUf0VKRKG2uAVJnyjOpoBu0AQTyluSLBoJ7JL+WudxVrFP90xta5mJm0ebnT+ztwWKrjdH+0Aj1vG4LgkdPVszBHCCxtvv3dPVnTQdqZ0utEuwQ7Y7ZDFy8tMMETkjJO5P4ifuO6m9MJJVXPA73yMl5VS5CNsIto6d6XvMNJohRAUkjVV6cN+o3eO9gQDpuYgjwDv+RHEhM+WAwsP4Z3BhebmETOQi80Rb+8lpeZ54ZWUhNiMB0T8d1BzmnoQXRzLgDFOTVTIm3S/0LJTl1XiwAWbY5eUZ+UgOwf9zGs2iIlssb0x1yMzj+3e+98me0SyWGQJSAgz+cWcdqzpsXyGMGEZjkwsybs5z1Apgxtl+eanBG2sSK2cbOew37gRdOi9v6rXKYoOdsUGXj145cSF+eTYccGLv7e3Tc3FC50Ifa0vX6wNUrV7XlBN6nYgDgXA5aqBE5vGj0wtY6PQvaAhF1L6TBvpA0QRYmQYY7+iyp1mKxs9aPdn5eVBkdrZbram0hc6BAznw8aijBep6tXHUv97rnr16Pnzx8cnjh4tbmyvTJ2NLzer1+FBR4DQ7tjAP6MUJRxrGWJmbGrR6bL3oU/GL5gBh4qsi5R+/X2C7NQ6+OP/KO48e31v7/T/9eLfbW68ncHdrW2O5WS5aMOCC5//XNx1266gOpOopIIq9xBMKmtJiCs8IF/MK2kJlKOyRMMbWJhdbEWD8nrEVyGtZVvZV3qdl2hp8MreFFxXWFPJBp/kj5Op/eFjGjy9l9FkeVUimBNKsj4Ryna8dyBaCywv4Cy2CTuiB9oNfX4wT1xOXAgym5/ISNHaXY0bSALnw9TSbDd8NchddMjSWP/Mz/DevQmImEbKgnmXWtFO6KOwj5nymKwmOinFGDGcZ8BWtjlaXhYRZRIwgzqwXKuZO73w2Yg0Jso8EXo7hiDM+AqPMyQDRMfwdJTMQ8y+GRLmXCIihBbNjWua2kXxBuuHqhVF4doRAWRF2rxKnSBdpathxBEdY1xs+YrtzMZ0xqixR4TEoipHn2daKH7mLD4UF7FPJYxi4swBurazotUm5Mxf9NnEKvgiJ57v7R47RmLjSV+16pjo508UUbr793R/RyRxJo8OMhG5asJl7ksJ7VT7HrX3PTJWJ6kfPRN+K5Sdn+jdpWZUXPIkUSJbRlbKca3l+pFhkqnHAALZRkNwrF4UMmOefxowupjn0253DgvCze/t9ly0u1jX3dQJ2pXLz8sVzqg8+o1N74m3RebQgYlgrLlZleqF3rr0GgETKsz/eOwxc5FbiX1yR+M6je1vVmoLNHlUQ3FBRUQxGiJotzwb6CWGyH4AtcfSc9jx9le5w5/6QRDs9c2d9fbVZ33154KrFugitscmJpOt4Y41IPsPbVf6AHIblv6xe+J2w4ytGDUrxPAZRMxoiKbmIY007LHqGwxTRFI6ZDgrkbJQCeBZlAwcPRZkVHhqoMsoHPVukgjYH+Jzl5AVgGJVPG57f36MvrwRrdeWsEq1OzZEFakJqODK3AEMzUvHCJGJFwF7mzGq9IWcWlIelowC9FqgFJs2eS8yNb719r/GHP+70qN4CG9M6+uigrBTOiRJ4N9DJbmJq6ZfnvN7bd5vp/aDv3bGAB/UaLl4PO4c0Rpu5ttJkd6hCJZCO24dnn/Wai86bqGEpKgMcrWrPpYpx0Sj44kyTLE8A4H8KkEiFqVanLReH4i7N5t6t7WgdV1e6LtgGqQWQFbSwBQYzvqlZiKQqZHmY8+LPJ8TJJ6gPFaUkw6sxyVUzE5ShAF2XK2SyurJ6996mZCOtcVv6cl5MffTJk95F/8Mnn5/1z1U9bG+tSqtrLtbQOf83M0qf9XarhxajTUZXxAOvaSigBonTmu9q+hjYxsb3TmJNry7Ond+c6r9Rna3LOvral5cXFyd/8uHx6dyYUyHhA1/eUnOOj0PowQDOGbDf/CvFT4VB4HQxCaEbhHiDwWFNuIL99SG6TnLO3Ny11As7HswRZxNKck7hdQqQESpAwf3iVHVXagU8xQgGzLDhaThb+TiMLi/Y4lOomYtScIf8o0HlcveMLi9XhmH7MLr4iKHpCzijSWwiQm72IR3j4lKvJLkJ4dU4i394nyVow+1lyhm8LKr8YX4+4IozYpkDiT+54fyEitYv0slgvMS68YvJYEy7p57JliIrIsjqLEFENT/LZLMaBtEb/X484tYnsacy5Uw6qmuYWyBMwcabPDXUgqvjMXGk5mVsDwn1FtccVEcNEXQGKN2wvaER0Cuj/GfoyCzTiLsjVJ20SBoiJo9KfQ4K2Yko1lafJEJ6KPsJ3iLp8JXsXSbnZ2acik0wnK5XJlY3q/rptlqHi9tNGKN/wWDimpunvc/IlHlzvlmpX5wPpsb7q4vbz1+12yedZ1/QpeKJ6JyBXBiBhAnJYK3OiVn3en27k8xnfpdJ1gbReHYi7/5iEK5Z8D2TTAYL0u0nJsW20IilPwjLjlmUQHbU8iu00JJkgtfLUQzs+Hquxl7t7WLhS0urFGGp2rQWJ1X0hz2dv6ZnFyAqNiQ5BsRPTgaP37qnd/zFGAOi9Xznxf7u8fS1GKly/TlnuYA6MCI/KvTG9vrtza1Wt3/YSctyUM8/ky7s3ty9/LTbUcNnnOx9TRDSJLVUMtcL+RTSMIUsr670qtvddy75DeE0MXszN19N+SP4c6pkFfSrCNuYKYWhUwkLLfCwgyxPKbcNZCmqVw7I5DXSxHg4NV4XDOEpcl+22v/REZwmqw9aKNFUoUpIN6gDnKiXKyVSMGeNcRjR4XN0z7z54uI+cuNsDDpoGZxXDxKGZFU4vo2k83hWVhz+kDeUDVMPrgIFyZmwcJ4Hv8wtuiKxwQ6QAquQlrCNNStKybGipYeSI2mOzepEnWY9bxqXmuy8frE3vO47q8BJal966z7tXwrWcQ4BPlOEV0+rH9qMUj4IzEc55vyiCsXdmcCT12pSeT4smx9MrNnhhuSdWnRJSwK0mOgcFJU4lQSrMzYId3z8ZmCPzQpj1yUk6fsfmQlkbKR4VAnbEOj4dVela2OBx9FCr4YXC/MLU2ocbpRjzMngmSW/GCGyRlNZvjB2qgNJ3Ie3tj7oOelycHVw2DnYP/n00x0ly7P6V4zTpCZXVpeGvTb7iwAYtId3b68tLdfZOGw0nUmuZhl31Wqvs3vS1idv9+C4XpdCVW23e48f3n2trKHX316qDS/6w6ub7rlmGsTguDP8pmYn1dLLuQ25vzm5bILXs6BvkAInyU/7k70K9gRjcP98ldIBW05QCRlhsfCeE4kmAu4qeBxFpT0HxhF6KBzWD7gQysHzCrP0Jl9G1Y1mlFd4YXif8csD/VnwJEwLLpXvgzf+K3/nR6jMT1hX8ihItSjsoR7akMzqOJJdnWWFfiJHfBV9uXxenjBaYxnMdzzUmLG6l/6pc98vt1dq/+jf/msrSxvyz3FW0t/dSqFev3o1xLUuxd3FqB1H6iW7zUyj4aRqRRK0OviAUPr0OR1qiANd5VR7/7BLhhRgDnt8sBMHJ1ef7+z3uQWoeFAQmRbYYZwZN2Y1P3j6JPip914IOGCT0o++Urgk0sndTTqEVcB7oVpncvn0RruY5D/IixDrC0WS8AFAYG33aYnZEU31bSJBLm9PKWw6j2LHTudABfzVU4Vg8NhzzYm4bi8va7BbFeOQ7lPOdKR9I470Exueb6/VlpQKJb3I0edaZ94s1MYW6zPeShBkU1tRBtHR/fRC/X32pTR+tlVIBxI5XL7TkpEXBopboC8rjG6umW1yUQpDKWgQ1msKlDATg3ZSJ/ThubkAOXaSoDdSUWJKPnIlDnrpVvT++++02sKRn2s6gSYBk6bv3nfffU8zS6oqkXl7ffXOnc2do71Pf/T5wFFK4haco8Y00evrW7edtHbbAX/7Rx9TGfACWM8QixfLReUVmAZZgduKoUFBXL9tOg8yd1OcNNo530hJiqffpsyMH7Z2tzfoMXPcYhgi+Ntm2rS0NPuCyFKCF9ktq33B4NR2D+SrQYy0ShHXOIgiMmkv0cDgGD7oTq1SY0XoEGJ3w8HjNUfXeEt4N8VgaowEEps9w9bN/Ea+lpOvg0v8Ko7CcVkuVq9LoUtjvqg49AwCeURoHlhoMal6pTGG9gkpeoi9LL3FLbGiA50YmhlakigbMilPdlicdCoNAJLzQtJL9tcxs1HTjbVCgYHV0YlnphuLS87MlQN60Dqdf3kgTcm6UkrBTITNE+MUXH5CBoQ4i15VWv57YqoQbuRA1vYPjrAqfRyICX3IpQU42RowXJNICR+X7epI1ZdSOr2gMMyBJnQc/lTpsuJJThpj14vnqgK36c5mJAc0OVBwYFHJs7m80k2j3T9/+eJozJkwKl0PnZgoyFRzEiWioi9jhcDGjS7YhIAXZxtTC5P1herG8jIQ6yfRtwnaiF7d1NngC/ON5hqXW0WekwVOOubYYXbUNqyIn2t+c73xSu0jajo7l9l1LCfhUsPFxoefvKrx0wlHX80xyRxbRNtrVudFR6xiqa7BhOreSSlDMnbteOnzFCU0NjemEM6JRRSNNbvmIywlWWtevD+2ZBYtp+kHNpRjiwr7n7jhBstpdoAan1JUBGGS8OXiFQk15AFhQGERwQmPC2c2fASE9+We8Oc8K2OMGHQuKjNzTWRShvKmMj/DJDKM9/6Hsri/bKtyrbvtLt0H8ofZh17zrjw/S/Qa/YxQMsmbnDV1syDeP8tr17+y44uJ6gMEjZ1tJOOj1lhddA4JMRf+CwjSOaI+kz92KEoWK1dqMv1LhocOlIQBkcBmj2SM9kSz8GAqIBIgD3709Pn/67f++zapI5aX9caoz8KLvAIHi0Vm/IGEmZOGzIJT0Fgc37Njs+l+rpxfxQ6fUiFtJDcQrUmkFNtiRgJmF2SA3NILpICigMFjpF+wU+PkvVGqgja0A9OACopBxwpzStxneKpQ9ATjzuEWt7TJ6nZPKtVVjAZU4X2zsSTONqZpy2Ljt//8maQINsfS+41nr44n5sfvPrj7xWeKeNpEjxCr3ltoBQ77k2jDrzle8E8QQ5wq/p39HbZi1mRy5Dq+wLrAWTThXdDVHWDK/HEU1lT8ythqZziUCR34F3cEe1+ygFZasYBo4hQXwdWZ2tLKkhAZ7RhHICHO+r2N9fV7d7fhH/2tWpuTHrU6U93YaD7Y2P7Tb33/8KBno3Hj6sL0N37hg2pjefPRndn66re/+/1CHsHg6Mcc7UEDGgdDIcgaFE6iUllAToIYzqjxB7E4Rq6VA8D5+Snta8IEp64nl2tbTjBypA1MxkmCu5RTbTOKwEdE2hXEORmyjLJhZNgVb742fJUK2uQ/KoW1yZYLaNJnK4Yo7SRaGMwLIr2xKQlLAWefwR/ny0DiE7btcGAD4jKddM7HeafXcQi26fGcJEUViKAme1T/g/LCruMCSi1bKs5gKv7dap0IKkdzZVuOK+LN53k+Zx3XEE4UjRAdFgeXCQwZ5lPVuRqhDXjK5Xh79EbTPGF4IY31fGmtKrDV6/NtdDmTSHbGIEuh4ZiJNA/HYeIbJQhRlqVSBUC6rWV//8whtcAmMq5Si0OdmiDlf9Dv4AoyoWRr8qTRgxcWKrr/SAHmmJtdqTdQExuHPaSriVEvHDo2dZUQk33g+ClNQK/Ozxwhadvbra4Gh9eXNXre2tLqq51XP3ryUgiY8v/21nxr/6A7P7+8cb/ZWI17ZXaCbB2/cp8G1ck/oTJq51lzluPF2ep41ZL41VTfc59hVBZlPwoHiscWNoMcjLZHPC5EbNyiuogMTpcX5zpHPSYcfmyatzZX6Kf7r1u7r4+3VytYoy4UZ5e9qQgXLiDKPO8qRQTPokRL9T3HDEYM2GYVEw0wsaGCPbY9ZEdXjMJGCtArsakLOBZ+Ho2CL1rYjaYMNam4BoOF2XJRkXlYYp8QRcaMNhIlKUiBVowdivn5+yBq2FQ+8as82R+GC8/yjU8ipkJ447EQoSCJE7MizK3f78OHjOE/j0Af/C3houH9oydlGvm7PDgXhnDjzE190tjy6sLthekv31pcXd+ECbSVqM1EGsZ9ca0bpelTcDCf7EceYVTUGrniK6SFJeWp1NG0fdPpJolPKDsCNJZXZlcs6HOHZP3Co+3BL37w7Z99sivTgTma3sikKgXKOHhXDOxYGPHk24AxRXV2n/8dN7F37mBFI34dN8AAELKjiShEtSz8iCwgvEcQipg1yfyyixFp19Wpeee1392sue2LL3bOr4a7B2fCKijK2UfV1eVKdUUSHu8JTKSibNxqtlttuic8NND21uatzTVbPLu2KCvj6Ievbj9ePu0P72xXb99e/OLViTMIK1+u/9mffNpBwLryVoSjZiLPzOpK9sgsrg1W9rFsjzHDIMwcd6ffeYqMjaEz6S7cWz2ZbsW/Ezjna9gvkXqhstJc23r+5CMlO001X+z+rE2atbVVWAOUwerG2qvXe7Nz1Y2tDVnnts0T2Nlfef+RIn+4AK5cZcSMfKS4TOvXv/rNr//0J5/v7R5geLdv3bp3/6Go+Nr6+u6J1JJhJi2hNhMl8oMnxSmfPfCFEeFYsLSgndVx2dgcHjo0BBHs5e27mzwmuGOyLfks0N3N1UJNl2PaAJGs2WrkNlQh8oOHxqOP8A8UUiMbkRD/mP3Fmj0JMiZ2kBMOcJWcT4DbCtpAGDIPAWZCRU+CiAbxlPMbEJ7GgiStLFQiL9mb8A+Grq6sYCX4cKFl4i0aDBoMXpZANMIKBjFgoIrsPgnbQqQRPCzXaDkQHkP3LIqIB7sfbuLy8Doxd111RJZn52Frp33kybfvrBwet6vjfCVjJy2tNiuYWGhBk72pMSebLzaXLs5jcVL9MS+SSo+HWxu32eRSm0gdgJRwpTccDqr6lBMtaYSafQhUjo3ZytsP7jJrpL1Gs0mGGXZme529saCpvaAWR0rDbpBoezuHViHDlbkynURqznYom4Q5GtNxu0tGAeipJ09NdsbFCiaHnb1WG040exOy7JuLzdmJ3tOr0/7FF08vG8dTS43xpcbcbCWbEIXShsi4wsNh8hkHRHYl0leeHKcze5zGr1tUylKwf3AHx+AZDpeDAdh2U71OxyerS4um4Vy+/YMTfirF7piTnmzPXh3RfqIPyiuYjZpy0u8uNZelQ7DyaLq0G649YRIEI7iXadkto5uYx+Vvf6ZcGdrBtpxqkUOZ7WAykSC/G4MEDEo2dexg/nK2Ry6Gq5XpGT628z5mgaRyzoPIkoUEE8PPA4DCOUcE4zFB0dGvPBwj9QsFeOt3GDvw5z9IKSmFeRXLywTKjX1ZsMoawiqLilsutZIMWG7MMt4Mn5WWu8pc/OEvLHpi/LhzUrmaaa48kl6HKOPgJQEiSEK0UZnZjIXeTCgTRNb2K+lMWXjkgE+ykWI5aCmkh43z2V4wJ7K/qftTDEQkozR//92/9+tf/uqX/sl/9wc/fPIybu20xDESWzv7btiocyhZMxbHd0CAIG7ie5Aoy4ouiBXi6iboW1+I2udnJHF4EGGcv73sEXQiQxqVOW0+b60t37+9ur6soWxDIgT8GZxqOn42N+f8xrGj/vFLp1y026bL4hT5dTY2twdv9e3bD779w/+e58TKjlvtd9bvv/X41n/yn/1Wp+3UW+011RYp9OcmpQgunfVb07PjaxtNdYhEj9UhPpPBEcakhtrjcK3gHx3C/LTJp/wW93LMNhNm+TpUhX0gJnl+NiDBmTuS4VWlrqzdevTlv3rc/kT7+bmFxheff+G8xrt37gCXRwj1zliK42Gby/fv3e31hCSuuictGozQ1+pyvX2078A9EJK9AsoXUWGkaM5OIdOr8fffe/jee49oZawRVUnLjQUGc7vzikYPEAlxaYHAKi/tr5kqMRZsjl204ZSGVEUVjQ2T5M0IKtoQeGedk3c3m95CX+VklAlNIe0l3b1AJr55XqqgK1K7jNcFmGwoWWYTRBOZbhyO1EIX0LSMSUelr+O/QElCGswEPRON2PxghXOPKeaZXEIC0K/oMEEcN0BV4S+PsQ7zQRhUETH8cCF8PXiU2UUnReUlUQr5Z2CfIw1H5y5UkT1iiau4QAPi+c7MEyBmzRWLBOt3E5bGWwDU2ytLX5wdWi5pAceGfWrB2K3tdSK531eCwF5y8wRzhwuc1irxA8QcZ8NDAzHY1Kxr9oIpra87xkUnT8eCCvAOhTSW9cynNgnoperNm+rqyroKsTTkvmI3I7SbalUKw7UzNseP2v2jcs7zlcOzzs9kFsicUZ788420K7HCWN3KC7n/+F4W5iv8+Ienba2MzXh5rX5/7e6z158rKn7W6ywnrkETPt8fHs91rmZuzqYaKzOzNfUb0BqGwBjskCTDMS0mmmZkvpDLPOsEaIEpEEbJxvHlm9c440hIQcPz8/3eUi1gqM9PPe31l7dqt1arKoR/0JXlKhyvGa9z7E6XFueWavO7g3MnNJ054weZsX7iSWCROFgm/ag8YUScYSsjbmt7bWT4aVDIRFEuzMmhCjiRSDycc+inq3wolTPoKkE84YHf/Jt/5713Hv3JH/zxkx88edna1RVQzM3lHhp2GoegrQxNuCmIlHvL682vrPvnH3iCp/vCzP1UX15zijJULBdAL/l156jCLVlGLgu8fj5k4dNvUNXaclOGsaI8008T8XHc6JdivDNjqytL5CXatd6SlI3lMPq5LJM+QeHyk4DG36Opu5sVwglAFrHdjMKV4E6Lu6EayJFISoEYpisZ1wR94JWvhaRY3u31lcq/9Zt/ZTj87Z++OHEcBiPfIDGiI4ANZ7ZgH3FjnLLGCGqI4tjCeYl98TbZl4AVnZKJqHBrdfm9L23xVW6u11dX9CAbl0CgFke3LGpkTSEJxS/Sa5wz08xvFqbWH9bL5OMipyKIO3/09Is//vaPW6JTdLXq8t7h6XL14mD/cL8/6ZyM2SGzQOMBfqjrf/FHf7Z70JKrwrkrb62k/8id60xdnuIueLA2xZQySIdzBs3CFKJ5MKkLakXcUVdBbNgfyhaxy/JiSuMx9UazErYJiNW1tV77pQRG52s8vr/x+NHbKr82H779R3/8qQkiCmA5OjjCKbdv37KndiZg5Gg6F/TraJ0rrzy6+3iUR+ClOe3tvW40GnKIhARmKzOOu5q4WsDYHQciedW2o/qZBcdeMg7w2fNO67WpmS4mxilbqVGcdT9DodSt4F6sNStE0WPj1EZXMgC8gnT5C/idnzNdo6RP4q36u2ASbkoYRrJzb6h7ZcNl/gMu8w+JjqXLgi3DFdxSa9QSScbhOWcQR6gLaxLZzvkKUJF8wjRoKjTMONyhOY8M11NUIX+UWeltI8rLAtJ5Z36acuuh0gfsTPQdlarzszcyfrVPBkHKiMGVXURzDn2xfCTiQchkBsaBH21HQDnf2irnPHNpn5+60RG8gThum18QWx8k+O/RsTUf3d3cPeli9ApHWqpJZjRaJbRlgc++3j2kcKi/ogwtLzWsKXMPmUUxIAiF949ODlILK+Y6NyNEMDY85zjhw6xBUPXeIp/OOCCzpLBkCyaWlpovnrddkYIMewGqC3rhkYXyTJ3XqVUIi3dsCn1getGzp9OjIxoK11spgWEAOvTEGpDvcr32w49fHh51333/wdFpb6u+qAvKg+2F54fD1qmS56v6zHR1sUpH2+v3mmfDdUbrkvInp0WSpXwmsk+SpKELiuZB83PSmZWopAEn+NJiPBajwmWA3b/cgA9odWJNUmBm52r1ier1ORtU452Hj+599vzF2mL14892tGHZ3rjLdml327z8hOFKfXZ/Z3x359AYkFeVB94OLRjXmEyxwaMkQBHsHp74CRWAPASDWG0reoIaydSM3TTt7+ubO+urx93BwREtz7lmZ9xL0k9+5Rtf+ff/vX/3+Oj4+uL4G7/85U+eP/nxx08+e7YrQdhIuCkvGBdSECXahAXGxgSHn/Ns+1xe0DWfjTa+7D6Yry6uLi/HGEkojKoz5QxO2R1Gdl1obHSXx4wGKXePxhgNZXQY7jKLzLXRX1yd+thGZfo3v/mltRVHbai5wIuz/swZ1l3prAX+bmHpiIGULyjgSfUh98LV8RzwhC0IJEp5eYGf3fQPPYMSb1O0rwvB0IFSG7ljJnPn9sq/+bf+2tF/9TsH7bRaA5Yyw/h+6MDRVGgHMaWjs9glExthRVDfwSOMwyn9aodOufq1rz/+V379VzdWlhYXZ5LBSKu2W4A8FT5oMLE0zEp4Ud9at5tjpFsgjfJlIsfJjM44RR5srT9ZfBqv3tVVu9dd3rrbvjj9+NOn94RY47lIkpXaydev958+3znrJeGa77W2sGBjzq4v6nPjes52kx6Wy2jIgU+UYl7HGE1xKON9cZtwQ14Nbnq2U8zL47MtUu7jBUIg+ovpGKab5sJ8tdo/Pr7/cOWDd7fVY9Wql8+e/pkkiG/86q989JOPTnsJo73aeS1C9+DhPd4eIUyQvLjsvXz+4uL6fO9gX+3maasjxcuu1qt6slQcefvs+euTE+0vB87b3lpr3r51d2l5a3bWCTbxuzobQMxTFNB8znXE4hWYYvNLrp6QL8ZY73UHgBf6iFwPfsRKRjf4IW9djkIKtaUq/vyKp72xWGFpE4YMCFhhvVZsBDhVryxCTAjC4A9kAKq0WQ71JQkl+pOhY9GzV6gLCDLt3jB9eId922joI56AmQN5UAVeaoJE2ENln8LnIIBTOItBn0o4hEAARx6EXXpukQG+h3CEsalqIJbkUBIsg4Zyo/EIfph6CeqGYwTlU50zOSO0NF2li/PgUxrNISIQxpQYAGaaFQdQ41//8v0fffLp6fXsmX4SURTeXEx4EPwMUGFdqfoKk49bPf3VMUX+FiN1O70jZ2Sdi4SbgzBtkim2t9cIfd3iVjbv8FiNX2tMS2nTg2Seua0P1FJ9QXhV5jq+L5O0JlEBXpkzZkBB0l6I9UlwYpJ6gvO+8T9yhDHZABpvKQ0LBTdmtXZLAHRuQSrST5/vdCcmdCsdLHQOXjxtLDfY+jo+YyEnCa/y9U12pCtdXzbOT86PTueX7zLp2FbcCcRz2bM4UERmHFwcZ5aX5hly4E6LzwRrKVYYXIIZEQXj4+TbanPpsLMzX5n/9NNntUb98WpN1OMSGCUL1aY++MqthcvjP/nRUf+q+8Wr3t2Vpe079afPJc+zoJnbU+IWjoiZvKA7pGEDBIPAP2ej4FG4QjYND4JCQWhXjnaOl4EQ0CV0ZbX2a7/+l//L//fvdgcDZxoz3/8nf/9f+bf/wb+6u+8gocHm1vKffuuPPnj0zoPtu/+f/+9vfdLaFZ0TTiGLtS0SI+JAMHDGDTfO28Ku/Rmw5Bt/e7Ln5iO6f3VzY5XJcnF2Gl/kpW5yF+1Wh6AMzHK9/8x2dHc+ycytINPPFbkgLxgeYZF3Ro6FDXuv1muzX7qz3VhZQlpR86GB048hKmNbTklsZ1SC3QJP5gQFkCo3a3kC9ObJ1RSEazuaVBhCeQCXLsc9Ck3Fo8QybT+SakZ54qPkSCWDr95+697f+bVv/le/+y0KtemHikMnIRJjFMgXqYAzGjY11ZQ3Vr+FOWFZ2tHwqw9u/7v/5m8+3FqnHQAIDTpKNv6N5OPSMv04KgRw4pjyR9xZqevBKdA/JMOgcROw8ATWjMzmjfXlV8evjAKok1eTP/jZR/B2sVk52m9Ls9YMn9r12RcvuXc21poieBywFEeUj7Qaldr0YvXk6asThicyFJhg/TBSomKKRcF/8uBK8xKRAsBg2I11HDiUsxJNdGQeEnsmkzMUSzHRfHPmnbtvf/2X37q/OL+02pRPNbjsVTc2ZysLrSO9+z8H53oS+a6PDo9W11Zs8XHrROhFKB7kuA1tmIMUHeWElfAa9s/6z3d2dnaPhj1YdU67f/r0eOp7L1R4Pnz0+J23Hm7fva0iTf6IXZC9bikGY/pLxqgoF40GA/libdiJ/Mv/NFoZ8TY8olcmUpRL2TFJJiIEbnI404LuBV4wgyCQmQmfsRnpZaUvUMKtssj0VgqxkJAkvH5lw4szEat6eO4lLsTbHhs92IzPSYCNGg/7HWFlPsCh64JgDXxyqXXjDLFBgh84vp0IEYD4iNRCKWE1hRRSj5Y7XQYf+Bw5WeA8PSMGvyn7JhlBPk7bY8O5j5XAUrjkZZeNrI/zQtX5ldzuZmX+GBONB+IZ1lpJc9SzqMvQPNtienjRVaR9OebUuf3VpRWn+MrE7Zycl8yys4XqzFj7cnJ2xn6jOIVS/IQAI9vT/Vo8ZW7Ua8ZiX4ePmZw2TZlGIOPSDWRzUThunOJ1VZ3R0W7/xcuF2kz7tKuumL5if6eUA8iTkonA4GEnUiRCIbpG985g4IzHK2TI8ZRqOqY0QtFKYmN17Wiv5XSJtXq1JfmyPZy43Tytz+8835tnY+YwjHm+74t+r6IqQOLQxPjO4Hq+NjFHCIs5j/c5p5Kib76BmmSvIakOVOaOQceQpICEGos6kRwbOY7Jw6F7AfnacmP/RBdFCcKT+532ant8c6Xyw0+7p2P9v/T1twadJ1NTlfWV2092PmMqTM45NNlRvnYumRM2vliLvEmANyZDTsFweCE4gWvwOIgcPuo3zAgHesNYwyHIQxbu1fjPPnv1r/9rv/rv/6N/6f/yf/2thcXGysbtv/yXvz5+dTrrrEBB/PrSN//yX5Z+vTd0mGVjcnwf9CJtzf5m2KwuObzT8z2i4PCIN4+en0/K52+Yn3mtrDW3t7e1GzMgYTAxZ+Mv0yMwwSUwKZN0T+EcRYLkwzeWwF+M6rKC94AaAmDSlOUgwrmJ09/85fccfOWEJ8jqMqoOZs1fhwTDJel8DGFhOrgSX6TssfAFeE+5ZnEbhIVbJHR5RgYhKrQ+n6Henegi1etTY+fUhSNFOc5u8O20UFgiTL/xzV+Q/vJPf+f3HXASblkqdd/okmn9VaRAgoUj8gtblAeH3WysLfz1r/zSv/yrX5+Z1QhEfhuJlWBSAO0RIklevDBehdZxYw/mICi6IG0w1bulVTj1PJwiMIou4Byh+vTUHrsYW37y5OmLg86vvnN34eqyC0/1SqHeSzy91jaan+G8q+JdP8apSY5T/e+lTQoYH+91JeFQmMb1JyAcrtSRdNDWxY0MbhxPirw0QAtR3nlWXazoz5w0B1w1WJbwP7yzB7IkRZQ2N9cev/vwwaO3727cOjg++t5nPxTA/Ft/+5cO9j9fXV051hB5kEPYmekHF5fLups5PPbsXKGXTdYpXdMBYbvozHTV8Iibj37ysUMFkjmFiuxX0mjSYmH/4Pj45Mf7r4//Z//Be3OybC76eMrJic7qN5LBxFRnZ7hilqSeF68gLcpkEUhQCtn6Q2SNpV36J2KRYa7UZUCguJyitt4prwUlPiuFHHzL2sTELCcooT6ObiTh2UG73fYZRufG5ATOTqu0KMRxo5wTY5WULVfHrpkCsVTQlR9otikKh7UpgDhFqeQdlJLBmWiERCkucGKLOWiiFEF2rduRfaQvL03O/C7hBG8uFAZLa2VbJASAe8UDEfdy4tWRKQHdrIPhIgwK5VAkhJB5WAQ4CThBl+BT/KlvAoe0b+QllmmcL92//bt/+snoDOf52vzxXgd1LVzIrm/eX2u+Onh92O69/+gRtbXVbs0761KPOqbC5Lh4j8l4Br3VYWekbH8gPRQNjh/t7lrLLB0jP+nqSfNoHx+tLNacYsZ3xp8mO0ByvoiMKsQEgafnAxGyImEBElmTOAoBr66Yaq+LB9ssJhTk2DvqsOW2llfIqHe/9NbnXxx+9vzV5djwi+dnr6dnmpxeqt2rC/VJdnRstWib8StpCsGlNpw4O6hNzy/W01+XFUwC8wOme8Sl5GV+3VgDNl86PxIOOibVksEVuwk7iIeBZ4JtpnZuqf6zJ09v3Vp78urV7m5vY3W1e3W6srS6qoPd2M2LQ4rC+GZ9sTI1ezHg17yuzk101TteKj5c0Dsqxy0rWwUdBZdQN+wSpgb7ym/w8ExolUiOYGiEf751JcaVKo7do+5/+B/+p/+H//Xf+9/9419XhHzrra92Dl7tn3b4lKZPTzrd1ubWnVdXxPvJjsCgLGaHug37d29vri02n3z+qUpzpB3nRhi3ReflgQgp86FXiL2XjI7mcsPJ00wiepOdg818z23ewygpI+5fiAIGFzx2ewb5uQzxvryyLC+fW0w0aoIkvFGw7OKr9za/8vY7czXpWBhQ2pDyS8T9Wfi4rSobkVwRk8wRPbOz1Ehj2brC98Oy0JnIHHnA8Kfz2T7eTJ+rBVlprjz7/GlV/xmejcw5iywTiZc1oduxy7/6jQ+0CP/t3/9Wj7dfFFFwD6tK0iT9yrVmjRJpbfIF5Rldij197f37v/7NX7y9ukixdSaXJAUYAuOct0zNlAKBd5oZYQkYUuGTp1myblwG+YyJvcIWCge+jMTLFkSK+YIXhTms/krvXxb0V9+7j0cfdttKcOZlQxwd0csbGjAnDi3NDrO+oO+LSrS6XQLz5cHBDz9+UhcWmJuvaAczP99ttW05PDPHrAbnM41yFny7dbK4vAjcPkG9JNdIGcllQBPH2tTCzERzerquwcvYxIc/++GHP/5QDGP8+v955/aWWsQkO0R/uuyToCmk0M9yylHVWJeyzxCRA0yo4pRlsLu+4iBtnxzZ6tQ5cpGEvIhVeSdxM7v85YtP/h//9//oV7/+ywo5Z+enrvu96vjZ+2+vNNaWj/d1s5BvnY0UpQzvjZ4G6wLF8HW4FXrxLrFZOnjwblIzlcv6koaXMOiC5LM2R9imfiPaXnw4nNq2DK+MRTKufEkAVEVqyqxILiyqUa9GlAOI8S/PK/WqraRAAB1DIDjlOdZDzrMCc6ZjvDoyu+g6dpHf11g6JUBaWxx60TpC48ycaRx9iWEN5anVqU6BfqXpHlyJ6hj/BI4/riMmFgA1HdIWXQG88o9qHy/omLK69FhKO6GZuUr0zhz+zAWaboACCNHYgMZ2DJUXy3aRcilCNbe4uLBSqys1vb4QZL1u7e6Jeqg61gO0UaM7LTzbP9p3ytvGiuVL8uz2O9MOPYTz12NHR13F0VpBtFptR8cUJNIIfK6uCa0zZF7vAgLUqi3UnVOCh9++e09jvX6rb7GS6rS7PW+skIQTvU4X9MxpoH+49Gd4pNuQjTntb60vnw0va9NzapSXF2ugttSoX24RE/2d1sFJ92x89ubIWdjUu9kZYkBv9Ef3NiYrSmrk3XDbLIKRfAZygaYBpgn2pWCajZby9EBEt/4Ef0IGeAd4uQA7da570TeRTnyReIKkwEH7hNun3qw0W1UI8Hx/IDbrHOzDVoo7Dlqf1Gu1r37t0cGxksZuY25aK6ydrr7qkn+AfkhnEEuEmI1qjS+L9Y/fhXGG1/vpf7iEEfEYxiaADZEFrkEgNh/3vBk/6F78R//p7/4H/85vPH64fj118+kn+zuHAybb5Gx3buqydbQ3HFv53g++3z4d6oUoKrO9sfT+22+/3t2rra20n+6Cforq8yw/8tsT8zNP4h4Zn6/MbG+u82mreYHfAEeVkR5+ctLVARHWZoqjV2Ze5hm0hcjhsHnzFyuJVAjGF+mSK6xJdB2/ZK398gf3lYPpPMlTAQ2C0dc6+l04YJoihutiXFisJMnQtcove8Ok9SrRXZsiV91fep0vNpvouWixMJ+qa//FAC4evvXIoogHsiSztk6u4ZyrLiZkwfqHXPzmX/vljZXaf/7bf3jAlgtfjgcZgKIRusl8b660Ed6sLX7t/vZf+uDB1vayAahsCPJcmV+OOYkqw5y1ivj9Y65wLDh3e4oCRO2ikefDuP6u8DuDQjn+KNPAWSJmAhsPvT7V5FB4P9rG2KPl1Y17W2yX4cn4/tHR8IbpeXP/4V1bXV+YunVr+Q++84Pjo+Ha4oIkju9/9MXDlfWpq/G3H95p7/eupVyUBHMa6dR17Omy+Gzy6aAny4gvnkMA+klhtLMwPmsm5xMjMFnmJoYxxretvGdh9uz4xZPf+50/6LE5uNF1t3XcKdVN4czCvM5XxidWTs/6c3OrYsNYPqFnQ2en58/OCK3UTF9NzfWve32pP7YK35+kCKbRvDY4JJK8QirfzGTV8Uv/7X/3z77+5cfvPH6ssOjdt253BldzjcawrSRojIfbrOxS2D+agIth8iQg7pzibf5kF9BTaTKGxlLPB13nW109ugUUEsHAXPOSYJSTRsTe5d5olgAU2DNcj9BDffbHl3wpDhS20GwT/uCptpUq4GuSbMGRtgKDC/OdTufk6gQa1+tVBymgZhFdxwCYjGtHwWEnFVJUPYCaQqNEWZ6FaVLZzZqEMDP7Tq6kOAmjgEPEa7iWEco6fY9PppIgMVE0E9R2KCa3JD8nXGIWJsYJtIr0rCgeLfui25BNjS2EzU1Mvv3w3tYnX7yUCn2mEcMUBVq3PBXaB8cnJNb6SvNqQinAkAQUhgCr5ea8JvNMn8a8DkXEQKLoJVQmBHUur5/skR3BV8nzKYt6ejoD2qMQCetzvMaRIHxw2j9XGAaQBwdtKZV9hsP5vvTOVH/YFcEzllOr159NqSNzCHtUAjr2wTu/rEbh6OiFbV+u1wfdoRast2+9v9fqfvR8Z7/dZeY74uDs0skGU4667fZaqyuL6xsrjc0NBQF6ebMHyWYetuyvCB4qTBQvGIQXYAREDgSiyuEILkD6ep7AhmjKI8KUY3t2Smu7s7muOoatyZV2dNh9fTRcmFW3PHx5dD7V4Bptvnj6qlJ7pBrJ6aYnvZuDox6XF9dtqztAOcxOrOm0r28WTwwcBCRqzBuuGV4ZTmqzIaflhhBdZP65LpYf7oZOJ/7wp4c3/8Wf/C//0a8vz1+/tb30xeu2puZO5qlO1l7uHP7BT3/Sbx8+0kxyeX5wePDl994D8a3Vhb2jHaiCMgzu0YX151l4eFh/qqKm8P3NtdWZOcZTDxx8iw8o2jg8PE7XoFBumZlZhpRMLBw/b+LqKiv5+XJGC8kqcomhfE1p4d60qKt7m837tzYmWeXjUjYJYA2AbMrETGVev5nQYuYwEPETE2IKG8WMaXeG8SAUqMoJwNgJmxsbCrVg82jLtL3BSZEwCvz5MjPLKNulLxhrzjoCCpgHM67OPvjSW/+rta3f+9YPdhwJKArVTy9GGhwXSqO2sLZcvXW3+eju9jKLSlkCAYMyHa1H+5hLyULq8YvADrhgclo23tC+LZjgsdisTkXILJkUso/GGsuS+pneAj7AYHAxjOAr3/ha/0c//pPvfsjf+Hh7k+S1Mg7san2wu9fCWB/cu1OdGT/tku+qg6uY/Mz0QuvkbGmx5kTyjbHK/YdbP/zh05Pk8pdmy0zJERPhDYBz7BxKMfu7uXh1eq2SQ7FrtxeRqdBlMOxyi+hKZ7MwG6iGWJ58/hm5/MWT51QlUx6bo73qt9VXT3Z7e80BLzu7B5bGy6+ETLYMXVO5gL7APPdCBc4h0xWZ8b+6+c7Z1edjE88EOCnxtiQBT1vK5nLYGY9/kuen5qZrN5NnP/zZJzTYX/zq+5o1btXr+0fOLyZAhXNE4IEtE4RNfhK+EKzIhfSbgwPiP+CZPOFkvjmme+rhrc3sUPIlk8DmhmQJ2MDkmjtHxiaYeMpoDMgVARhkEdSglhAP3GhJE5tgYjoZU6d1vhdJVnEeeA6Oo1ePZvjV+Rp+zhWhyx7wmSSswxYPD4+YobQZwTMfz1U0MosTIHVlBI9JO3mZyEp0IkoDWx/jh5wiJ+QjTx31X9jG/C2TRW7qoGGur3Z36rUl1a+kwtm5/mYLvLOdoxMla5IDmZ2IJnk5EwRFGmJwlaMkvOve1tbzF4fQVpNKShUgjnZhcaW+4Myv8fHjwy65jgejgtr0QrszmNL0OvAfT1XXMOa4eK0bLy7q7FBw0B5V6kHv5Oyk/YmscRAWt+0cnwyXFre3to3w/Q+/SD+464sc837S7quM1fhtoOJdmeXcLCu3paWmzKerrkBBfW5ma7XWbFScke1coqXF+ebKMrmwvtRgyrUHPbrtve0NnYudOafRRwI2mEL6Y8Dt+t3NrTkEojcSe0q6EgMuqE9AwSurklJA7Ov2M5f1c9BHCjEGQy0BNJXA8ZncBKmNDmOyH+BC/d9aqbSHY0eclLIZlDDMXty/t/6H33/ae/Li8XZjY33t9V73pc7cR93iBJiszk93OkNZC+QUgMoNZxVGncDv2DrRu9+8wtqKMkjoBF+L+sznh8tiaMFfOlIc+jlY9bs/efof/6e//4//p399a61+R/j6Rh1A7ff/6Lv/v3/x3cPe6fLy6oNH9+YnLj+93P/s6fO79+86+bPbzSrDsmE6RpWnxGDmv6TI8SOvra0RV3yp3X7PFyjUFeyAg8Pjkp3m0YXHF/UkLN+fUS29TM0fo1c+yZUelEv8mW9G94Z0qW9XF/dWK7VGc2a+DpVRX5TKhSoG1e21zW6mMWOmiXFhS+nMlVZYWqvLMEZ1RIJuZdSiyO9xyYVDKYXIB3hQkfx1OWtk/pvDK1KFT4+PjQUJ8N+wDvMoFgC+HMk6drW1Uv0Hf+evIHUpTqcCgShl8po3hqXMHayVcNoTkIYR0NGAkjISFSwKAraIeYsYwTI7GJdCdo2CKb8+TMokvQYdam52vmS6z7i+KGQUD18TjclKESd98enL67jrZw+PjrdurWuKq30F3ksS86FLidbHDUs/63XtZu/sar/VEYtSU9066QoJyp7n6Ji9nDnpdmecyv1z+ZutiAKbI6NFEhy+anqScpr1xdaxUn9xichqLuSZaRbP3A1SjZts4uR4MFybfO/LX/n46ZE2QoKApPHezi4xoNF8yyG60Bawriad1peIiYT3+OFmJ+jGrAoySprq/MKDR4+GnZ1UeaQNB5hdQlpEQOkNbqfdiSZ0828/2Dzu9n/2MQ7xtL587/1Ht2r1xk8+/ZG2ASJ9oKoZZfQJw4RcCiMMogURs2kOpRmgtmt4wjYw5i9/471H7906bXex3ZiMnOkI8OpyeJUG2vEMcRBGQseB0utppz+QMEGk2WPkKHCN8DwJxygHzPbsDbuHqUe7h9X6c4A3IpUt6rnSGqNpM7yYzpfX3f6AIyLuhtlJxcSXSnAz5eQOmY/EyqgLyTbmSeOQivFnn+g9DNkUywmS6AmmLztJcJ2za5Kzy9h1POP5+erKLUIdC51bqMzrGBD1dbJ/MRD9sE1czdaAjihrngLfLYMjTlPs9x9vffjRz5ztdjpEJsmh0POHni4mctxprS2pk5iRjqw/T31avv20sD7XiVOCGHYOmmcBWXUyrcfHnXnFRQzOlG/YtdfuNeT2ng6qc/MwvDExz/yg/t57+Gin1ZMVSRJo6T+1dzzUIuK4NyBqYlLwdhGCccKgVPJv9uH9B+/cI0YAxWhjmk3LEIWSsRxvVNPFzZdk8Jvl8ev18/N7Zz1Ez5ZUnj5RrfM1oV6B8ayaTIAcYaEQpfwoZwhDGQq1z0q77eBP/glHhleETiMMojekhDJbildK6H74y1/9zvc/OjiaWFppfvJkZ6tZqalhebjyhz/bac5PL1KoZmbbh+KP16x/OpAJwycB33bHSd4ympC/KDcfbY6sY2eGLqNPmw/ukpc/C78M/4wSnrRlviOf0tNTlJQbJif/4EefHLQ6/+gf/u1f+tr9ybPBF58d/Bf/7XcGmNH01H7r8Hd/73dkiK6tLt+0utXKwfbm4uC4L/hFhygMJ7mSfF1YgBJN6gzXDuXCLkL69Ou4SpUKsaGvqrhJ4R6Fl5ukKQWrMrORgydvDZyP8kX5LwsZgbRcj8eFSGPFaPOyXPvGV99qNJ101Oj2u2CLlsgLKKs40zJp4Rgn6YpTUDc5bSne+BqE40lDWsUMj3mLZdhTXGeg89h1e2mxSk5oDHV8pEzvShpytH7tsdhzmSHZl1hb0MLOlrxAuchhJpN0cyzmpjEx01TeYpoRGsVIl+kVT33SZyM2QNC2wQ9KJrs1R35KJk40y/Jk3Ip1QhU06wH8G4kLCfli91Bhkjk10AiiXm/aBRSSKiWPiz1IfeR4YB72m/V5AmxqaoFX1HS1HzGxJtVHEkK7U52p8WIwyZWNSbNPRyh1gZSCcV0kz5wqcDV9MV+f2js4TUwCjzu3XkBNJS1GY5ushWteGy6mgDp8UbCjjkNMx2bxTw0yTUUb4cWG7l9YO369e3Dy9W/86sL891ZWZ9Mt/UIm2Img7aeaKx0exicfapzm3yESZNgrdEEpil61Qazxg9xcVsbONlfHj1cWlPnrzJCKmzjyYXIQxhMt5Ozq5u7tW3CNDk5Bxwe++72fHOweP3jv7d7VuCxAp9jqFImBxZtWEIn2HGO22Km2BsbyXcjtDiqm2kaTyInq+cXx0xcU83LwVLQ9KIHvJ0PG7TepzJjgS02+1qSWqyvNhq2NUpKEzZwUm/LVaGRBCUc0Wi+OjxWS7O7FHDR1oOnj1+QKRDc46xO220+55lSVsoOxYqlhruTiFhiSXQFRGZNmrFEhaY0R+9MCxXvNLSzrxrO481I8DE5OHONCoCRTdpPbPSF3cUaauMfNIaLSmGCxukD9yMOiXqr2SC4yQEcSlJ5FehFw+8yps7g4tQ+xYzgW2G38sd1zXUKdHkRv7p5eN/QKLQ2DpeTxzQKKHMiJwZRE07mFKQ23mSxyeuixGhzhdTjJ2uaKfrT4JZSbrVWYRqIkPL2dk8768gqbjeHUVs4b0/1sTEr7kO3lbJ3pieV6dU3f/RUelRnH7N67s6lRaX1h9lrI4rLKeUMdoy2itMRR7InV59GUkgm7qlcD11EqraxpZnxu4sqBDSIKCCzmGPaTgDJH03R6Xbk/SBtOiqK9FauPXNbGT/AkL9BKRDo8mKcIhRdZoF7h8PikOn9D2f/Oz3YXpi7X5idDpTpgJMOUujpFMziW53Bz9f7t9ajuV9f1av35QVtlPzuOfJATDa8UciOemFFILC8Pzf8Q1MRoNxbp0zfWgSUwlKP3hI1CDgPTUj55cfC//z/9l3/3b33tL/3Kl/6P//FvHXE74nQENOslTvPr3vAANjpt7e2Ht9gaybednHLiqLNnncuQZk5yJFKaJOYolyymsZVbtOZqR0fii21ISHEgpTI/QAkDLCwdOpU0jMy4yIIivyzBv8A7PwI88iAfFnW5MNXr60dbi9xz/CHMSdE0PNAFvb7okGRQxEePFhaLZwUsFuDRXL3XP6aBCQMYrtPu1OqLYeAsh2Q9JCS32Gx4Dp+oQTQUWW6uyVhFNvKuoDjWiw4tXjDFfNFYwJv0vviDTNWHQG3GiUSUuROP4RGJwcRZRJvAaSkp0e5ACTHhWwqxfMLESJIGzEGzxaD0ngdTL5X0G07WqO1U0BHdkFpBcVV0zzC1wzPRymPjBGzy4mY+ePfOF4cnrVYXB6PVERsHh0frW7em5yu0rYtLp6Ozah2qZNA4DOIZV6lbkYZwLU+h0710HrtgkbPF0HWpRS2Rx3DbcAGwAg36Oy3KbNpa/oJeg7J+BT0A3AZWmxX9LggV8oFM2DuUc3d1++6WdryqfGUDfPTTz9poW9uWolHJTuW9QfmOmV0RVUxTM81ZrzW90fd4gYeB/2hweP/+5ub6wu7BQGA08s7NQXO8145P6gZbr20srzQ+/PiZfaSc8iTt7O2pHdIZgMqDKPh6OXLITODll4muEdyKXzHzjlFAPa+AcAA9pahtbK06TR+UI1f2WkLOOfeFXcO73YtMcAbR20wj9tvYmWYvjLmr6xRDXSW2T9HEhV0FnjCJFyi3ozLOq9Dn2OB6AIH6hz0QxvtspT4WsszbnZ7d9qAkjN5c8KwuOAvFefAXISPcCwRQXzCTh5BGxssk1UduW+EJI4TMJ5hkzq6JD5M5RVgy40YNFrjM0Aq6krkUY/SM9zJ+jktxtVjwgRHsdaeZ2Fz4aaEsnK21ledHaTPIptRmD08oymjKepEQMC7K/RG70ZNNFzwlAsMzJR0Mi4W2rN8LUvHB9i1z6UuN4tq+1qlhQbaVK9wcHQiDcsjW9c3rnb07kxtYyObWqiSlTuuQn2nq7/21Dxxpsfu6J0ZPu7mlpqs+t1xdpPbZuZnZ2DhTC+ptqbw5XT0UqzUQaCKbhO9Fvc81YbBzJCULJxVoGtNNCs1HwWM4JIHcWqFhzHb4ASxXp1fyTTF9zEezI1nh9j6HMGBe9BpIhjCJc2K/8K/glM12bmUkT2KPyURcaqxOTFYXat27dycpJOeTc8Nhe02TFxZxty97ZHljWsri1kpz5/ULFhx7emFy4FwdJAdDnLhFVNtIZ/fAXa8w2TAA0xw91ht/jtAbak0kFlEM50R7XAvxFHOX/DDN+P/zf/Kt3/3n8vMu5O3KYKhqgyqpKcW6gurC/VOy7r77w89n+E8cV722urZck2GSrk4sUi43Va3GB99IRBh2yVt00uo4FjwIFAFlPGxwZKtkYuGdeeWLfD56A8i5dLSMWDNvLk2cs+CeLQgdX5Ly89VkSnisTZrV2NtJF92zGQ4eusYpp/+UBK7Zucr+3uFyc/mkdzTodurNqqnaqqR4lxxBYflqpdI+bpfG7johUFzQFQpgvZmURU3iwuxn/ILjSDzZMpGuNJlwEEpxykoTALSOsGrMANJLlEpANOaSABraMdNrbkJonVNf5gvxRxQhY8KFOmax2KgDsdrlUCQqIfkhzhA/T1Qt8oMXkbChcEoSTQMvj4iKB/3oHxQTrfD1r5qeFGzYa7XQXLt32mpzWQ/ZFfS7ew9vnbQ0NT40Hf7Pn/7kpb49Zzcp7yR7LlMrPQNZ5YItVcaeH/ZK0lREVMAALm/EtXXRfDWxljjPCKjz5tP79b0gSsFJY1Gr0m1Ixapwl90FVaa6/sC//Cu//F//03/22auX3c5+r9UzKJiBQcGNsPIoXyq45mdF4ObmKjy6YqE6gxUzSMHa6ub9tXfe+R9e7X1I0QAyhEkrg97QrzIv5VJ7+Znb9x50/5v/LraShLmJ6Up16YqZhGhL5kyYAILB1EIRMAxAMWZ7xUOUIB9Cxq3dDUrpIOAc4MokhsAOE9AIwkWxE9vERa95vmyiuwAQF4Y5xDLkyYC+HZ7G0QhDbpzM5pyGGHm2u1LV3hKVQAcN8aUUU/mv1KbBPiuaksI+PnZ43ILDaFzXTHvH1CazbDol/XKonzxggcHU9DxMYEJaTkjRLZACI2JHDM8IDLSbAAU4IROoqBs4fQWbo+JN6SRK8sO6GCK0dvsmXY0UU2mcuDCUti7s2HwoGXha1LsyDm/T24/u/fknrwhFOTBy5riZOu3LjdUVHIPckqXiLBpQVZY1L9vs+hooyp+nUjkBf2ZiWoPPFMaZ2vVlp9sj8huV8bN2t5K6kGSasJJwy93dI62iG43K1M3Uo4d3Qefo5GjqF9++LfRwd5Wlw0DR4iMGNPpUB24huAIlCToliBMqu1GG6zl2C6EUik0HHttJ1OB69FKywd4LHF9Kt+JnCddjvpWwI1EYiZpuCjxqElP7HT5uZQvkosBOHHn8RTJFiDt9IYhxcyq7oPYKtSuGEAOhP6KFFHrqdKExwmJl+qjNtSh3tTNbH1vSTAPTHQ42lutbzbnj7uWT173piYaQ3fj0zXxl8eQF870jPFKp1Vmyvb096v902qAkNb5gM4xGTfhw0BQcUK4lY6pBc4oBSOCr5lfw31wgR0T71HhrwOxK6kltdmpFs/Ucy5COQ8L4QZ2Ly0+fv17fXp1Mq9MrTVoYQ6FXC0VcsCWq6xgvbO/khPLpAEvKWTCK7pjJQKdQW3mX30CdueYzV9kIW2O2o0/CbbzLTDEJ3D9C1B10FFUiDg6d3DuWQ6gdFi6pByVhGIcK0QXd6VU2i6sL6YlGLK8tM4BhYVWQszbXE1ifGF9ZX4HQWtMgIWxL2SGrjwoVLSmRvTg6kc7lVccEm6tNtvOZLpsKKRQWdnu1pQZ6BHRx/aLgB6Ds/RIIt4jgUXFqh61jSdZYRGVcxsgpSUTSYxjSyUkNF8sCxdx0tyQ5emV/As90P4lVIOeTkjY3yZfPdTB9k27p9soFQIdEhBa1WMbWYlGcc55MvnN/+cNP9hyA9OTZ4d3bG9NXw/2d19W1m821mR+/aL94BZzjr9u9CrXIuVH43sSE1rZRDARR9ne/ePZqYl7ms/wH3My/eNxlsuQPkRWBZUpl/N7Idxy54m6wOq3ScjTVDIYiuX2SI2F+bnCmcRbr+Pr1i8+3bv+C/PbnzxzzxGfCrcqWKvwfQmB8pTiDM7q6uDhXWZyakpeNYrpO3aBKOoTA4TSng+Nbj+5dfe+TaPQ5viqqLkZGntVqS85HWVvbnputNxdXHn/wfq22wXeLU/cHSlKD+9AutBD1DTZBX5ANe4jqNnaF5rVng3tEr3EpuoHA+MSrV61GXTQwVqaGlW44aXdiQ4xpGU0ARDZ6WY6k//ZJi8vEGQbKl3oCjBLg1dRphiHF62qyz90OzzoztAotTjny2+0uQ5AlxtsDbrh266yb3H7dcyuSU8Ov0nW43Q3vSDzWac/SAc8c1NWcbqggy9aELRdVKC3N45DA3xGW5p2mZkdEVGi6eJ0PaSbhdIwm6CgHFP7httLoKcQEivYV11ddTpikMnLuYyHp/8pV4gG0e1ulxRPMfnR/6/Hd5Z99cSgfVYjeEZn7+zvOAIZSiq4WpufQEYV1qAYrp7WHgSa16noSJ5+kJwyGz16dSHoEVhWm2+sbrL3xitSMlJ3Dd9ZI2knj52oDT/oL1YoeOiTQO19+GzlPUfttIXOImRaGX2ocIp6tTeR6Jo4tdILneTCIFNfKBccZhkUEwWAeT0BzP4SAh5bIzvItM9LSuZVQV8AVha6gSJrxOnhTYLojq4+maIXmoMlP/AGJIOUY5YB+VKVN7IsmhZWNc0xzqHEJQjXarEzYufGp5YW5Ty/3aKR/+Ocf/9pffZczpd2jdk0fHpzIrt1cafzwox0Ou8f3lltt6XOXsokd9MOp4jLKgwcKFMWXHT0UNEaakBnlmfnfD3LhjU0Q3ToMOL4gU8BNQTnUgGv4piyFz+fstVbcJ62lZlMmBu6t4VGMRF+7SE57+rGkhjvmJvqX9g4DbRXGyD1pZzSEilFvQFdlMuAfjcvdfzGbMqs8vFyCB2Zq2TjTenOV60tiGgkW6xxH9w4L1lrz3vri17/23kJzWQgE3yeqrQULS7cf7pSwm4n4NKUbWuPkNJZt94XRuMdZCkQWOPDC+wTjtDTlhd2OSghmAK7ES1hM6eFAh3oUci7aJxlDqEthea9fX3Hw+qxELGxCJTgFipKYvJF4gVLqYYRiEpXFF1iQsp7FUo0TIY2pJfkofsHux4v3P+b1aMuY1zh6aDQJJNlfx9xotgO1+j3cX/0ap6I4npSHYwuXcQvOuA81E2yQh2ksTNfu3rr9Zz94ik8cHF88vF/54Ct3fvz5p3uvW1PJXl7Y32tPzc7JeVgTqeOtOLuaW7SVOcSlPTgZ9HrLy9VzXlxF4BFRMXjZEeenkWrxthR8YwL7JwtIS/MuuXF+ijxJYpo420T2keU5qJX5j2R0NHr9+tXY+C/cu7385McfxbwvdBrLLm/MmqZC56jwbQu0OjJMJff12DzusLG+gUWBELzmmntw+/Hq6o9evdil65GA2ITNVUuMZmuNxbWVZbj0N3/zb1ZpjPXlTz/+KNyZ/60cswPdrMgjCUsPHClNxVMfJmg74qz3Hd1xcnyo4QzZkFJB/cswEdmQWIomP54443DJwmTTfJ+fEOQ5N4AmOQdzrJOZL56+Ojvt2Ndbm9thahRzLFbOd9xHyUg+bLUIVVSvvIkF4CmqT9UWpZPlsC9xoAtv+WNpMU49n0uLNyHvCCrxApmacNhtQlw2MOdWEtbxvAy6TKJ4BZEemRHCs1F4cq/v6zDGURka67RU+QIDG4swZ0uKzo4oFiEyXyRBnPIuToV/hmGWGgiAyok9VLvpqfce3/7pk1cOgUniOa15dl5cZ36BaGugTXgj/0KMwTFYkAHvNaVuW3Py+TN6QVJLp7TxcUQuuNg12N466S01G1rFgTCc54MtYkj0WGpQ12lxnq4kZLGxxL0rqk7SApAA2NV8tV54QZwhEMWdpoiFhRWFIcYxVJl2VADzOY5PcIlU4GSyYm4tNhP3BbkTWz4eReWfbpEUCqZYGByFH+hXHXOuT+DfDIHU9WIbOdnV4PIXEouGXNHNpol91h/2BaciAMNC0wcqOvP1zTvvPD6+HP/4i9dLzUi9zeX6x88PpycbpymbS4ClP2hf9W6OHLSggc7Y9a2Vxacv96WL6YJDAsmfA1arp4QWWe1R8C/PGokAb008QgBMIgjgdrQ5K2EAhASKEe5zJBinWIhwkvfSoU1O+VEKAQja+BkR3iEhLIu+U3J4LVVdJkw4k6UggQobScTLGGAdy8PPvIxpPvk0MAkYIwgKu4+8yvcAn9kVSZG7fJRP3RiNk86Zv3OpRLGJy3c3Z/61v/XBvS+9awIxWUSbqWrluTbRruKa56wZojEuWl+pW02+PAKGodHxOVbkQfFWOLDYObcTtLCOzTQgYFpjr9eWgqkyNxr65RjFk7SVNy17AYM100tZ+QlynE+XM2bjSuOciQ2B12TrrTguwuJHcj2enj+DNzaI/TdTTmvBmST/hMEql4sALtMFnWAVGTQuOHSGDStl0HSBpM92cTmmQwDmP0lXZoAZlL/IsJaKRdhsNTW1qXEVMMft/XmpI9rP1SedZjo8H/IRK7SZPOluLNVe7bY235uXFR28ub6W9sweaKw05m+vffT5i49fPF9XiT41h/Zyuldt4QTHd13QGEIBXnYZC+IixfsEYFLCP0Pvu2GX2Tm7jI/jPXIcBdtEontHe+89vP+txvdPjjsjhLRxgGUCmB9rc805gcuyEtEyZtQSXfe8WXnSUc0Z2EhrvLq8+f777++/eE022AyR06qGurEX5tfXVrAbxP3v/eP/xZ//4AdPv3ihf5JYAAKhsKM+x0/ArGKVupmuaKv05BFmZFGlTbc/aWDJkadH21Spjzdj1OHZxGX4n31DKOTcEkdcQU78NOrqZIlwjg1NSF6iaJF52sP+6cXKYrPdHzCjGWkQjIqBUnBSPEJNL4qiNIwSh0RHLzo0KJL2HK/EfPHtBDo8Rs+5ePxi6MeVzY2LLGSvpb0K7RwzodyPMQwsiXrDEQYjcX9cOwhR+JvrpOq6kb5IlEUu00U4KuRBKK9F2fKCuO9CSmmUtXO0I/QHIORrNJHEgTkMmAoJBaFgzp2Npcb64oKjPOEq/c/h8MpbJ6brjcVlfeJcRy9yiDq3Rk85Dk8/LcH2ODkuHwrGJDygbJrjdXDaK2GUMA0iBLlo9TEvI43eTM6zt/S7bbXX19ZI0DEV2UJblkb8Rve5FjQohkmcMMiVPZnYrM0esW+5PC5AV/FLUA9F9soiLN7zUAjlkfIC7sUYLLhxfdVv98GV2iWNGn2S3iiZ5SKeQy4ZPtanfg/p9g71o9aBC2yg3Hk096VxUWyYZaifDRB0V8PMNwZX9J545+6dTz99vrW8qPXI3dsrT77YO9TgdFBiGPpd1+f2908Es6o6SJ/y1U4uL1btqMYGIh9VGXgNOTB9HMeSe1c8gwFfUBs7KHpVyMwnuAz2UGjOBue/iIKIPl8UfhUsQbRutq5Yu8I0l1eKL+S04Tsiz5AVukMURIAUMXwsXzZBFgeKkToWFz7k+WRjmYn3b7h/5hRlrFwUMRIPvqmFS2IlRTrYisxblDVXcxsk+FnoNOH06vT117YX/t7f/vrW/QeMEl4GiX9yTUne6DtBBknQ4caeXlxbSYWGYYnE4hTzs4N2hwzItAdMvchChdzmQn/XaxJKyKwlv22feDuqQ4QiOrgwBVTjMcgkK4vuZpUaKdPDHbjFhg0LSAYU8RMog4WnB9yRYUQUxTLUmDQeBD8xLu/bV6QwCvQGc4BPceqSylPRteGS5ROqUA+50pZq47WkQpasPhkRkeJYqmdRVaL76zAcEwTMIacMKNvUXGxMThzW6zOyQH/2fFcDBzkwWEBjsXl8PNCxiyFfW2xO73Sc8sQj0GntVmcnluluVxO3Vtdevn724sWL5fr/n6f/jrF9y/LDvjpVdXKqfPPLr9/rMJ27J7FHHIq0QUkUBUKiRRAaDAUIhG34LwMGRRq0xwRsWPYfBmxLlkVZomgIpkAIEiBDGoUBJXJyT/d0mNfhxfturHxyqFPBn++upl93v7636pzfb++11/quvPa9XRVFncaz50eLmduv2MJWHmXJsCRHqlBcKnL/3t34AwrsjZZJaAiFqFhGjNKjfYc9vDyvXld/+t73v/zVX3z3M2//we992/f9x+dgjeNGMSz6Z/70L7kcKvws4H59oxnyhYmmrgVeLu+99pAdLYMqOfpLX/nqj7/zB0fPDrkzHXfibGixrCc0amBqZcN9rtvb26+//doPvv9jaS1UMqQrOjnpEvM/wpBeGpZ1aTKbrmTdY0onfUp4M2gADgjvrC2mX3n3NUmP5dXiaHh8d+fA5IKwrBsRtP7cSAvFFFDziusUIgnHyZIDXgfRrG289cZrmCy5x5REC1DTWXqGmkTHUbFDWeW9TsfO7ZbJzJMwt16KDZNEE6S6zFJTvopVOBZQGOIhMLXgolk+ri484BzVwBi6LcbfKIGpErQoHkAYiaBpseB5An58xmK2e6VxfuUMBG1yl6KZyxkJLsrtEmN31qpAYaquKT4s9lBV3TqvN7auO5NL+RBl+6d+4av/6W99Jw0YBoGmfybNN+4eh++eRofGPL6+OB6Oep0+7Bdp8Ub2DX+FZMneueqTEGBOVS0m8Qgjr4t4zeY7/d2d/V25RP6gXEv/pjMYDi271+ubz6bGnsgz50sUr8CN3xEiRr0sibNWhKmYQA4tWUKsRgyDjDGerEz1isIjpKQYi9jmjgu/cLqg1h982FeiadI5kkSTigKEE4eDWk6dYIPKYhSBLXKo3TR2H12CTOQ+PE0fQDf/pz851ejcR0Nim8FjAF1Z69W03M24SYvrqltfXOT9XeFXrp4iu9niVZd3mFg3mNLArQSdbkTnVQEPZsOOPutG5/joyO5wjliXM3awuABrBYcKEPt3QeVYbV5nUz4WkEY8f3Ae+aP/5esAzl99P3/3UWidTKZfK+yXSMxnfKcYuX6IlkiKsmVWdh5f/psf5i15YfmCZZc/5O8o76/+oVDzy7ymLKGgl5V4vPcDRnugLmNsypwl5Xj52nbjC/ud+w9/bq3ei44Hl3DTZnIFnXg94x2DrRkd4wAsMtXGatJBnYNTZaxyBEwLCpVEn2ILhmMKDccaGiWrIwhoRb1hWTavH56cD7d3uhAEnzD10EdPQ1sv4Wjkwit9ZEHzzP/ILsRpBSLgoF2Ry9hW6bhJtjYuOHABN7yWsKDNm+kN3xNk92cfqG3UEhHTKdJshVzQSXYjNSFV1a78SZel6DAQeeMd+4CIKGnjO1c39ANl3AWLspxXNsh3ERrg5KvVws83zGPT0dRaoMBmxeTddFBd3VDw2/3meHwpaLt7t8vaml5WBcQO7rer7co/+C/+6Mn8FEBujmsjN6nScKkyVJxSQkOBURH2NEnofZN8d+nS7HLc792fjqd7nQMd/CLanBsD3aSg5uPrJ88O33h79uUvvPuT974/HIoLu8C9VCfgpPW1P/erv/L2Z96mWuCChqDvf//7v/e7v//+R5+4t0Tt26NXX//iF774xS9/rtPZeP31g1/+U1//L/7T/zJ34ibmsrm1u4MsaOPId7e33Hf97d/+ztHRCW8Jq0lR+9hoeH5LbXjMsAXK+B33ca3QLQ49nHD+DP21S8k49uvbr3TeeCQUczEdL3vNnhAQw1m8znm+fHmIf0G/+vc33nw13Kr81PAiRcPTWYl4y3MK6UBYj4Z78Z4VTOBP6ATT8/PNqplmThvTkWGIsrXtCjtpYSirfTduudXZgLFodDs1r6VJdIh2EKOGxQaCbfe7DLKAWtgbcvCMPZy1DtBZsEb1mWWQ645T/5MKAltPTRrfPZfFK+BWogisfV4EIPILxNKXwMgWH2PQEvM4f7JAm1qUpQkaLvNg0fpZt9XXnXuuEIgClDmMuXt5NjinEHNlAmGqbHDBDT5xYZdAlyzq9OVYK5ll+wr0d9x37uwI0W5cVz98/KkYjZTJQV9NkVvOaq1OFwM0ahuGgKCje2Z2+pM337iXSAtxd8n4LXRQjoxSNBChtml+RsgKJyiJgjHEzMrYR8IyOkVJBTcT1djiOAdA+AfWo4T98S/Ya5QBlvIxW5WmQJoYPoklJFOE3PQeb85gJmsgAKyJaAUFxGnl8HBV1SXlncigco6ERjH9LTYW8bnptRp/+he+/F/+zg8U9j89Onzr4e4PPvlUckKyY3GzmE8mrz98+I9+/MfmcN6/s8XuYNBsV7r0ksGqrtTAuLiEkYv/9AZcr6cF3E6tQeDJPwVlg/t+4uf+lA0E8uF/Pln+5+/+n8GdCIJ9cQaCzcTFE/LJaJR8tnwOTORr8aXKDzla0QMegHcS1M1vWQ55fd7v6/lq0MxzookQOZ8vP8qLfCgfvl2aH4vEurAy/lo0jCzWzeXbdzv3ur3Pff1P13b2qQTOJO7xXy8V/WQhOjuQWpSX3kvTSvh57hBkC/PX4+ExOvAmY8d1c/FpofmUoWAgc7XbaWN8mUzepAMFFvHqbiqCEZMhzaeQ+EYWUleL/8wnI4aeJl/31Vo4IFajZztKHbBQNlkKS05OT/GbeTpeFCsElMdAys0WIUKSe5KlqBgPhmcpQoQI0UBE6Nq9b02I4A4NJpvwiF4Ht2nmLYn2RJPLB8pz5EkpKFxxN/OKFPlx0DJaMQPSTc1q1IUPBJ+v15uw40pj6sbNo/3ey4mhC9fHh8M0NlXqbvW+Xu+ejiaHw3nbhMPD0dPj0zVXFV1t6MC/GExdJ8/KhiwkBHtbSTnEVIl06i2ZTPf9cCnUDFgVK17gqLe+tr2zLTIgzLasrdb7O8aAf/jBR595990vfvELv/NPvs3gIkqoIUvqosdf+MbXG205g9Xg6Oi/+a3f+sNv/6EJE1gA67qj+XT4/ceffjpZzL7ypTf7e61f/TPf+t7v//7z5ydA4e7OFhsfJwBf7KpQ4v/zn/zDf/yPf7+33cd65LNSay1GpwwkPBVOzhkl9cAcE2i1l8KTLGItrH64xhGAfb1663539+zExbN6DFvnwxGfLZFhh1RPTXAYfm2t19uKePmzpUSPxGj3byxk2KrIGCGhMpHO20gqrDdjCR+eHp3rMYaavT4WMitTCWyDYjg+OcmlzallUKPoURtm3DhVhJVp6whR6WdTf9hO/mM0EXe6SVaWKl7An4xrZQ/xdAmo0oDshzev8DQR73r8BmoTWrqULs5cioh8NeEKeRwjSzNFlQwCRHxlIlRdSa7h7SpwPHk+0o80IyCCIHxBh8d5+9Y3Pv+b/8O3Bcuop9z6YlxP0oSqA5qnL0/1oykR7rc7TOfjAa6r7nQbgPHOg3vxn9YrzW4LxioXoj90I2Nj1GbaaS8/Pxmu7crxsjPYVdfktNOBzPOTw1PT7zLCQlAibnAiKjgyUORomeDBO9lOfc1ORkRCzdpGoJy3KFKAZMAa7vsKoQ03B4fiHzlH0l1SrOAlIabbY3accZDSuLxKaqEwZgCPkkkntAkbKSf3GFasjwnyymWJjWI2sRXfQt+yz5QKw5GAV9G3bz14+NreJz95eXquaWht7XOv7z05PnJX+Ea9aTDhjz7+ZLVxLRQqUIj/UpybYF3l+HxsL2+/9rYIxfr6ub8q8aalYj4zM+khWyvjTQrMBmF/Brn+v9AqCh1vBtmzxVsABre2EPGIJASTyoZ8xw/8U57CovCshGD90uN9Pz/wLdRGNP9ffhNdEjjPL/Nh/2ALclJs/p9JonNFC8BImCigPEl4wxPyey+9bq3f3N/abNeW/YPt/qM31HSQivjSHpqPOMvERmh9UAJtWcgQmQfAPzWyhsJlJocJNIBOFzL8vGZZWqFYH8jFqg15ZZ27Uq9Sqblyej7lGqYoQOd9tcGFSJcPBWCcufp5BR7Ojd+A9+rVeqa8qRNtNZnscncpsDMhgaouvOTMEQSCW6g/Wp7T4ZeEEplTtHQRbqSN56iaUxULl6TVUDgBxy1AatpKbjmTIlQ8lr0gavRveI9XSo3Z3Xyec/SfpAo8iPYSEmlr/pScqOq9MoVvp731yaefvvnaq7ubncnq8OfeeaRzR9T5TEC6UtF7vt9rLIfT0VkquCR2KGIOcM6Vx6z6RYlS6iPj1/uZlSQxFY4wLaCOhqDPPGHFiLITbLOZa+6dNWVWr6sJZLApFXn58mRj8/2vfukLTz98cj6SPN6Arw8e7f/lf/lfuvvKwxMtxbPFf/9b/+if/OPflmJJBDdD9cKJniNr+pv/3W/1++v3V/07D+7+83/hV/79v/sP77rbfruHgZKYrRhj2RgPpz/+0XtUORmNtyK7oCuwFMCEEXPKZrTk3y5opD1xKYMLDsJo75IJqDZsZ2Z6mGuHEaGx2fJ8Zm9KNk1n08JaF/JNQZY+lwh44qWX6yYCqdZl/BMWydOYtyxxkxgWnHgOnJ9wpNyqePjkSNZCSKCBLNMl5Zq7Gdc3xuOFaRzWQAWhMH+RBHMBnLdgj7/Ba+bYy9MBK5flV5BkY7a6PhmeM6BZ6Swfb1mO5HtjgXkKJsf65tNZJx3mJ5dhFb+L1kIP3onjvjIpI1Uh64aoejJAxZ9Qy76mMUrM485wQXRAJULMOmFmkA3vuLPTff3u3o8/+tS31ltdy5didWjD83PcD2Bz0zV3vW7+k0FHkw3ZjutL6WJq++mzFzrYdm5nTDdrdw92aX1ZxVqrDz0lfk6OjmbzyaMHD+k2VcW1bRxocp38fKJ4WFEhSJLduJCYFRizHZtFQEQIAPlfrDoQw0u7TO2HCAM/ILvPQqlD4ftMXLolsYM1WIS+lZTPOWTgj3TirdQljcMOVERvhwGr4jzGsEPxNY2vQ2KihUNFP+p5dfz/MF+MR2EvyyE5Zi1mhqyvxSfY+KWvfOXD/+qfzK7WfvD+86+9s7+215slcKgYYEUNNjZrpqoaoLLb75qh4dWGfGAz5t7jZ4/lMsXvDOxVe+TRIQKjN7Z8gDfyiRxRStYSSUIW6/Sf/KFsolAh+yPb+VL5on3lKwHYYpmjgp+Hlre/9/nbP8f4z5+KbPm3h5RX5APlRQEmmq/QJzznx7dP8gr/WIn/JkCbl/m1kxLKo+SyCaHKvmvommtf/9KDb33rV414MlHBZ0iaSDch9JYMt1IiTcQvLpsbOhjABn+IhhJWQ/94wWl2ub5hP3goHGckz66XEnToA2igjP4gjo080OnxwAqtAj+w1NjoiaVcy/1MOk01KvqKlUotGTLWKj67vL5o9swUyv0e8f/cYqELYX1zf3cn0Ux9VgkPo1I2ay3o6uAQyjAS00Z1H7OpQSR1jjgxEX7mZXJUlkpIS6VvVQgHYMXIcG+quR3CBYLLLsDoJrQA4oWMLVs0kMg2O83ZZKhMcL/XPxqxNdd6rfaLo9Nn1fWjxdrne1tmPGxuLLsuPK1pQNz8+hfe+c/+2z+cgue0Gq3NxzMBLlfmKTgaTugq3WFNl9UwAx2eQwUx3pq5XbkjM4jj31q+t3sdu1DfxsMmXtP58Gx28trB60DEkOf5amPn4M6pIrrR6N79u3/2f/zP/v2/9w9lTFtrzT//z/8LkPrDDz7cqDX/5L33fud3fh/WRIRvvUl/QrskWjbOz87+4A+//a36l2BNq7f/lZ//ukAfZa8YpFgEFdcMnxkWMJqiiWOlo6GE/vQi/rE0bhkQ/dmcQF8UxeKpX29zSnHTlT1S3leuGUsIRGjOJSuYzRm5Y0e9qdyAHcnMEd7c+aVi2HnrAGCKsH6i3D37ottIY13i7woH1I/lWzeT2XzAKNaJtnZzZ3fLqSnsGRnO0ek4PbPy7Vgb2RDHNlWspCC11JttGDEhEgPvhiPFpo3UW8+XvBCjAMRVF/OLDY1G62vNijFBAoOZ0UT5ihuPllOINV2fYwyCidFYkQqpAbOsQ7RQnGHnmnvI+QfYzBiFwXDgaeoFCBKg93uxL5giqI6k8NAX5DCJAlJc3swe3ds7G5wx8IP3cpSWPUvHQV59YcaaOT894k1n4UblnmXekWCY8nL523TX6s2U5e+2OvCQceaSRC3QjBup0k6zI84m+Uojn5+d7+7t6A/fbPe6jha8scchAslzHs7Tz/zFSRsGy9sKs5olcsm0T+GHIxmOB9wqGtVnIpAEaU26Zc4JwmGeGNutXKlD/KATAMeBxPKW0WOl5qomjJKQBTRPGkE3tvlNigVdIMWTSESJ7r5xOyaviq3t8KAbNLUMJM6jSqTesun5ve2tL9w9+Mmzl+29HR9/tN3/9EyrXOXwcKjNan+nNx6fH69dpGxdc7LY1XK53W3NTdBdu3z5ctRq1+7sbs9nbJfocgwHQ3hnrPmCzIEeBxyozj+x8ctPgtHB9wLsAaiAceAcF1otLg6ex6nwm/zjy/mfJ3hSMdjJu48XoA9L5JflIX6GWX3GAXhg0dCoCCyK25G33H7Qv7OE4GMxSdKRKbPCC1kTz9KvWO1Xq3v9yre+8fPAfbFg/udmtSymnHj4kIlOxlTqsQFLwEoCBdeiQD6c2i0nqMsUKjVk3tgLOoZkFjjWdUN0FfOb5xVtHYPRJpwn4wEzWDY5FwpliXFtYxMYDqNSM8HHDcxrtyBeRg5CpWkypFODQR8k2UCuxJzMxuCUCLliEv+wCf1HuazAqORz2xRczKkMoVT78wNwGjDCyTQT2EdAMW5/nU9mdNzZ+fjg3v3wIsl3hchg6BtJo6Gjl5YWpenAUFJgd/nw7t7Ts4/ZX1pJ5P+evTh59+79d7q9bx+etDPCU99c7fmJtNmJ+Ov54Jy7L1jOzgVo15vXd3e7Wq03c/lpDUEV21M8FJQ9UmmCHV7qlP23KD+MorjBGudNmWSlfEGQtjaS+FCVqjbdjvKYzKBfiqofPLzzF/7yP/eHf/hd1uaju3deHh4aF7i1c/D406dan8rk6SLfeANnhD8oHi5B5eNPXzz65ODhyrSZxttvvf3JJ0/jnGPvq5tev7O7u/39H/44oY3NjaR4NpOntSimR3g9QkiW4/SDf2MswrzlF6kzKcULPgXu8UcjRAZn8IFjyJxIAZBfebL+c8nns+EkwZ74DWaM8os3xVX4eLSjSGKiNiQIT5gOIANL87lQLsHgKysQg150u0iRAoZrpf1mPtZlPigMeQJHz65lyAwPj/td+X8qKXW5Amtuy1V8R/9Znc9aPdaA9be2hQFNpeDYEOmVURwqNQgCGCxiym7VqaO4/nK8VEcTTNsyTiZDCm7YmhdXN9E6MkmjceRzfZ0qIv7g1Fuijtc3lf2dD4bKX1gathbPDNubX93YfOftR7MffjwxJxWeczrtdKUF2726G1JDjdnFZnqMHQNvVbfcpGeGqOqyegtQnqkg0npGF44GMnMgTDzDibdbKrmlUoCwlrW10ejKOA6n0KQnhOAi7JpBlpw4V8+UhIOYuF6JRHiu0wQRYADoM41tmdl8W6BZCvgXkxEUkNCSpBIQIO9QQIGmcwk/RIltOgzIh5ecMeYLpmP3uBGWQ/GiUgFLlqNLHMvg7MBpCUPxp+KESg7zPyTNEJuDplIIJGAq/Je0MI2YKlJU/lO//MWL3714/+VgcF2/mbk9askHUoHuSNq9ugvYVpnVPrm7vcv7Z2Hdv/Pw5dmZEh3nc3B3D953atHnL09OpjMmLS4NLkdmivhYWGziMLufwDe/vP1zka/8rAB9UDi6ILsQQytKIw/IDIBgs4d6UI7RX4i8f/whIQcPRLjY+/lB4CiE9KbyoTjXeWaY8PaNURR+kg+XoDn7hA8fJy6RK4KliwQrGT1Y+fqXP3e51p3M2XE61WLQUStkU+IJTiMorZLQqGlTGf6sh2PVarRwAM1gbAqVmyrp1LXL5xfNeHETVZBQIVHz1k2JtakJqwtKh4KkZRcuHySQtIuAAMUyGY5F1QWXpGHLWbteqg5CBIPVCtoFlUAiYsBDippIZVKyjH1uh6Xapfpuw49TAJqJVY4+HqdhWr6zWEskWqKixK+UgosnuF5Xk0dOwTPRKRxkEFtNnlPFzhC/eqP30iKW7UzCw1z1jI+HFesGB3YaPAMjBDcOB6LPF51GEOGDk2frjUp3s3N2OhFnXq4mjw8vHhzc+eNPnotE7PTamJzycZ34lhD1K2IjYmKLxcgN81bAAzG/SIAu7iM29j+c7AO2phyIjYZKmvtdAV4WB6Rmu91tO/Pd8XCkKMiclZMXh0IP+7sP/tJffG06HkEWPIF8VinkZhfhqtgjha3+qQ6IO1txx9/F82fPNVB3u20/MZXRTcAos1ar3HPR2GZT2F2BXBzxZoOhFnEDXgoKNJbQsuySEFNVamxmGJ/XZCceFgExiRNh9/cZHsZdxJIz7tLPWRMQZDKciAShKZoLJLgNl82lZMUvVZAqGtbgxPR00+fgYsahdBI5xAr+VGBtf9d37+yP1ZX1+bIxhwBpjKRYM2tD3cIlciuiIRdCDcibuhkEhDvT6KqqMTjW5EqitJ4gUc8YNV7f0kir6iKXX1W1GE+MCr68NiYn7eQlDMJTQd+Ji2by1gRLvNSJPDkZeDDKgwt8vzGWi1hlnqPaahmTWDpiXxKuONCx5NQhC64mNnAR3ciCw1Ijx9C+J4AzNkt0ssoEAO6OLiiGQu7lkrztdZoMOqQxaIPCszvGG1sNifzrsp68BQVImIVPBuNnG0uhf/KtVsosFoW2whs777y5L7DvIhnjoCeI4jtIZnFcHjFZQjIuhjBfhtdJd9lbwSMKrw1vhAKgeFwYNr55nOZgCZq7mBhc1tYXE2ptLW5d3CVGHKQGdkFRTxbS2Ywtk5CZdWHacGSmweTYiBbQg5F8PXzELy8WXwbWeiZA9lKIEHITVQPpOC7+4FiT87sWHvtnfvGra99576NPjp5divzM3mhUXjmo8wFUYormcp3k85+fDmVL3JzHInNEZP7OwRa1SpW4Z/D5ySnryaIIsJMP0t7uPkjLgiIFsaRI0e3/LN52/CRYnbX5Qf7n79F5voMr/VOgv1g6WX+KRMtjbz+cTZU/5Tf5eHkCjg7Pxk65fWG+kTdlKeWZAQ/sFenLNyKIImusJgRPUA4HJXyy+tIbb37p3Z9DO1B2vWSuxpQGRmhYusMSfu33t4h9q9ERGFE72GxsaUbH5GqrJ5lLSpwCvqXc3rkJIrocwwAWffk8CTKv5s9SrpScu1s8La/QPOnnmBEC6DjBXjjs4kHyb0CEwKShju03Wmy44FsNdRlJDYmYnYL7kVfJK9VHo5F92o6aXXUKaBvLwOcXuc7BDjudlrg5EmDsChMypXhXQsQFAJJe9jQynuKDFEdWlIdhGyInQsXyTatCnr8+OB/DZwPanAPbRbtyZX5xf7t3NLiogUKbuLg+v567Jey1V145PnbXNDvuUulr7br++t6dD56+tHPHx4jb6gpgaMISLjt7fnTU29rbfbD34U9fCNCjSU0NpJIHGQIMXIQgVk0qQCopmW9rI3fZ1LjR6Gs7ODkZbG3vWKdNY/laZ8uwSSgAjNLH1mzcvXuXyXx+ciaEd1O/NMcXFqL/P2XLW4655bGYnHb6+Mm57Pv+XiwqMAXEy4fXt7rb/9/f/K+NXQH9/sMb5vZhD7CIjAnBxl5OxZfuVN6kC+IxM7WmewBt2WHgcXHJQL1urjf50s9eDkUzTMrzbZbp8cmQKAwWI1kcsEjY7Zet6ouO1RUjvAAio1vg0s15VMblyoiOFKeoCRyx633v+viDx0wPoRjEjE4NuPv75ul4wnHVI+IICB6jhVBAXjmCIkveTNvx7rEz7Zmxe879LAkEdUI3bsNK8tLIoAjWuhiRLkUMRgEyYuYj+zWzAd/FY/Ne1ickoh8pA+ZCfHWmSymhVtKTN1oGdoAZaQREOwZZWtDZMaQ6xZZwxnPEnMu8kwyd17e4sdlR3pp6oKAbRWudnia7qwlalEkghpFn3CdX0VKAoRiJUx0pKOoKLzUso6+CeeNGzRh/v9dspVHxpmbxz48Hm421nVZXGzm7zL0yMRvs0JQJyASAdUVrpXNmfcMSxC5TeG+o3/UP/+Tj7/zwY2OKKIVXH7352puv7irAVPbTEuVzvZeQAvLGAHCQhI2NH47JTCLsIFKodsqYrQaKs+ZoTvdHwhR8g+uFCECYkcIsWWzuggc2ETWTTof0qQIK/JlwkzCW73oOMIrlGSs7laMB63UjPztfeO3B9Oj0g8Hk2XB8b6f+mYdbB/s3P/rp2WwStew4j9WGPtjrtLcms8nd3W3Gsq8L700WcwMYZIJlCh1W7HRnSVsFb4OwERHRc6eEO0AzLrkF5p8ZWfadhHnBZl++1Ry05C0P+K1v5Fm3KE8r5m/5GKc6DwJb/uo/Puavfut/eKg8Mw8pDyhP8LvyW6+xPLAb7XOtEp99kbVqgqNhraVd33z91Xu/8Iu/KAZv1TKRayqs+YMF/bErJmbsC6+4sA92Dc+HGT/FP00ItXmd+SuTVr+zmquEc6Wd0uwY43reTNY1gG+9TgeI4q9cbiKlIs/P5oHFCoXwvdNjgwNiMSIr4y6wXWZjliMQ94pZ3ZuVFpjQm45KdnpOg3xR2FixVPSXAp7xdNcVGblmHT9zBRJeQg7yQQBcicdEQwRygvX9Fl74rlCDDyO4lKMwtCogUb2ttsGUFy5CEvPFU0ZCKS5xnJ4jVIUTUB8tZUGxpfi9v7/14O7a9YmrO2xEhL7Wqrx8OejAhlZDFHM0nCgrqrU23zt83Ok3QH/vqtZoVbcOtlzRpb1U5k5z5mC0ULVHwzEvtHHapRtbUj9NWNQ9y8RkIO5KAlZowlXgrzzYPzk8TPlfs883fXl6vFHdv15Otrs77b27LweHq9mKs38+PPv4/Q/U1Tx6/SFjWY2LG6SYdDE+bpmo5Lp/xjvFvAgf5s4cxqyg7lBumbNFykDnxlbtD//4T3TPbvX6CvPAysnxGaNbSCDhAt8LMePAzUZD5j9O80YPpC1SkMpjupR2TkwPdBxNRvqC5uMJ3i1+AKcktzoze61NMy0ow6wQhkSjOsDDeHg5J6Am+EIAwJOE5JJ69LP83pFXK2IttzOy4I1MJiMmjsUi9aO+KQZIZigSSNNpgfgE3xMMwiOu4slclqL2UgHAHU3pMy2OZuEdpasq13HtRuXhvdiI3FB3mUFIU/ZAVjHVBDdIqSNcV2oAwQhd8J1Rj/ENfsgQoTQe41Ebo5z8KC7vxWowSXWD1Ap9v5DhT5RhXc0ljRTfVFA0rFs1Hmo14jDP5Um1lOrowqteoTSIeNz697ifxaY7mAZMptmu7CjRxRu1C8eHR6ClXJRywRDgDTsppcDm+UOpFy9H23sJAZnK6W45WVlsh1U3aVgHbboXRBA6j4thb8py16//+KdPv/PRkfBZdbb68dGPvrpc+9aXX6cCVkSoUY8LFLRPkgXFfTEKL+wyo5FirynEWlxIXnmysKm0mggd3XBj6p1JA2A9cQtTLBLS8ZEkHXh/Tj4zRw0+1U/0M6+NrOKkfD8NuTnXzTSp5OJNb3x49+70ndHhH//gTscgnnV3AMnF3Xzm/tHAJKnai+enxkjOlpXTqdhxAkyCHmOjgYmmUbcq0zeZnFgwdrfQH/rCGnBpeX6aMGV8GnzIIArq+rf/hEGxfElS+G0B4aL8sVzRFWA+EB6N4R/LLJjvT773M54qv0TFkmOzQT/3BYda3ID4UFlBBCE6IxLxT5+G02/1CheUjhIdMX7CwLO9/vqf+uobf/rLX+t0NheZmZmG3kUsmoB7QHMl5KW53HOhbzjIqcnPwuQ86YZBh6cNx4l1bKXR7BB1JQ6gVlKUvFilma1nhP5cgIApZJ6Bwg2DTRAUgqQaZ53VbzxYmNuof7aTVzNUeGOmEIGh+WKk3tm4E4vxHXmCVkelJsWeqkQWqFAsfy6GGF7hL8ebLKVl6e5h/qcPHpeTAc6iLWAnp8a8SIAKGIkgR9XVOm4HRawIXYJQmegrdpQtiZ3mSmqXSeE0CEgzk5ZYe2sbCgeUhnd3Wz/+8FhR/v3d7atV/ej0bHtty/0Z2hC2ux0177wQ4m8U+3Vv/bW7W4yzjJhbW7935+CH732S0AE5nnGMNo1pICO2U6DYkSKvrKkDIKeMX2jlOsBFs9EbDaUXKp3+HeP1X56dtzbXH+30hUt7zLL+ro7Q8WiIhpyF5y9e8k5Npuupj5Srd0NWuZccY8SwCN/hwECwLVEzBo05XDDq0HUOJyWuIXyt8vjp04ODu/0dQ3jGJyfH7ACqWnAPRIY/GHzV6mQswTkAsv7B+rd86OBIAIvU56s363v9rqoCZyF4S9g5nApY2NRQPGEK08VVI+giNPMRQJepcA43eb1EzKPazT0jdtEBJIKOYLKUS77kpH0LubwdYsbrXLlhJnk7kzJJCYkhLP7DBTIQ1Bb8FqwQUg2AMNpv+RNAXphwXc44KY1kWfAz08UfsLiKZYJrXuJWd/fF0bmH9ntNUHywVcdjzV5zdDYk3GJidk19urJ3725fgdZCUynJgR7FnCHh2AvO+5HoJmvDyjAwNsSpbHwLFi8x4MgZkRcUsDX6I/ogtibdGHnnYXidE5Dc0d6WMD4ddx3V5eEQ1aYwEsvKlWcx5dLWVumrrVhjsSVw0r7SF31FFQ8NIbta79B8OAJVAkV4gaOlNlcTsJW6Iz7S6QkpWIIX9vLLX/9SypGXU5dOP9o/+MK7D9T+AfDM6BCFu0h5qPmFthHGqNYkY/BeWCSeUbgHeIh8pdYqAMjuIYUM/3C/+XkGjRmF4ePxa9J5cdmsqfO5UsyQUC5/LZfF5nmMDx1D/b5ZcJs6IGxBWIkHwCf0MubF5999m0z94+/8KPddbDRenswfvbLfaNc+fD42BVom8OjF8fXdRHuT8bxcm4TLYUSmQTx8sP/k6VOZIqE0nApZknUo8XSWCNBFJUcoAootg8cF2As6OqcAemA7//+z/1lx/sKMtzU2Rvlb/hKZ9No4iv7fv/yK1skW86BYLF7EJi4fLE8tj8zXbjWJj1l/fphQVX4WnHZuPMrLVnP1L/7K1375q19yGWfKLdJsv8HgYXU66oK/C4qZPJB88l9eYIFRNBze0/OBk8VIBAUxfDljlEjSShTCHYURtCivxNFIZqVNYEv5s8oba8Zz9oxg8XDdx0A1yQYHcWMxealWXt8f5e6qNAmO6efcQ7TqaB027JYvv7zQiKt7CPLwCeJuR+HEuodoXoDI2IqgmZsCf9N1Y+OriqJ7w7ywWLSRCoK4leuQGuKsz4W/5Q+kPfyK9ZhBbP5r/VAXzwynk+PzcxRCGRalLcYEubiuGqe+YmG4vKglRnlwd+uTF8MXnxyKCre6dTGQ3V6rs9PpdTHMcr1u9kLl8PFzs3TSaLex/pl3X3nvTz4Wqd7eUnixrYDWoyzRw2PVMn3KFfZEj1ekcVKRwuHJ5St397a392ijTnOnJ/euQGl1+f6LJzYlScNh2tvZEa1S0KKn2qQgp+w24N7WTr258+DBw/FPfipyADLKkYa7IJ3/qERRjenGWEo3duz1tWvz+GkeBRjffPMd4OIqvU8//ZS01hvNnd1d+faidEV8CcSF4S45fWqTCJQJdEFbF4HQ0ALNBGft6rUtRiSFsFyX5tEZOmX86YcXx9ebdy23THCgsEOJH0+oUn0fpBNN4SySSgu0dz0WAJF4K0VQURSPSVuypEVbxbnb1mwoJQzzjcyEcBG4K2wSWSwnlxjk9VXLLtZNeK2IVdObdk3mLNWNAFCfyODS5LnQ9+qm30ylqRC5GVZIBwaPj87a/NZapdmp69tmlyVvd73q7nQJhVZ+9Sx37uxqMBgNp6/t7V1u61Obt9wHAOtI1tJwiomkDicJpMBxUItoRsIRFGlX6o4C0DQ9OJt4oGjUeGQegYjr1f42PsftwDzp1Vi7uhAULIq3I7eqmIbKV5WO6GMWqbLsVARBTDdqIou2iLWVxwv0COwv97ZbjDnH1uvLw9lpCTw5A/fuTqajXrOffB0fpEyiDmA5UQV/LqykB6qVV+9sfvW1rWZnf7tX29u9q/ZPiJBrJV6rB7LTVRHkpoU0ODBBeXmo7BkxJymoWmO1tnRzcTAjCjDXJJQknrEeOoQ3+tudZKNv2HEVwaioZCG/XH67aVCivJPG7/gCXD254kaN34oasUlvFEW5yMJlVleVufalUnBzdfXWo4dKkn77uz8ajGShN66fD0Squu4scOc5K+ticXZ6yEAkH8qCWs02BKGLJpN5t9PXGG8y286DbdPj0A/CerzgCWXIqrUBmGGtZAcSgQ/6jeUc/IUmgW7/xHT3TyQkW/YXx+dQQtYC/cUJyIPyT/g1j4y7kK/lE+S2/NFD87jypSiWvMhjooTKx/ybbv3/pyYkuW4ql/tb67/+l37ls29ShKyM9BzlHfgas6fYb2OUnsCkVfg9zJ/gXEn08smczWxK8GJdAd/N5gZM57CxUQzR2+7ikxR+qIkRJ/Rk8A567McFlpw8BR+8RKPw69UOq014Qc0DOhX33RvTe5WyTpTAwXk3D9fIEIFm/QEMG0odO3XUFGF0XYpWYj1+a2BO2BoDJPMfO9FSWxttnirDXLmiOg8AIdva2myot2ZXZupVrP0quxghHZodNVttii7GL0WV+h+Wbwrw7SIQoyKQHcV8LQYv2rqdo8NQbdzsdCsuNe1tvXI9Obm/s3M4fNrrNvbu7bC4682WcTz7nfpZ12UV5+1mh66HMjj28GxI+z66e48LI5a5c4As7cePn+JnFCa3iE8MS8hU/CNpVntx+OZgtpl2a64jPur0XTGiqPT6aDh4dnbW3qh/8wufR61xZWN3547SccGB6mbXUDnC6taaV9587acffIjfgCBhdF64yjMxL/zR7JJ/lPEp5MMblc079+67lai/vaP88+z89PHjTxGNBn3ltTfFX2bPnvHp6TaekFI9eaCInjghx6vUUjNXGIk4Nfb65Urcpbbm3/UXJxMXQ2E+8fpet8XNKIGT5BL80BMiBnEZYMxVxW3aogJSwbIF2r7wyjbrdeUmAXFzeI0jTSnsttu4hk5q1ZKqEcYWlTL+jvXmVlr4Ll7F0In5QqGxQgzl7SoCVGLbY1s2Y9lXdrrbp+dTPpMGv3o3OQPJWvVyOY7iw5BEjqOMkrnF1JGdWSmYYrjUjOZxL6nYkEzPft/HGbuWZFB/vbF+eXPRbm7qNkVz0MQ7ONjbESORdO0Yp8OxUKmxIfMsKlmH6sKhuPCN1+7qb4A/TP/pOJ3nkNxEVwCFN5g2sTnVgGbaLTpVCJ7L9xhkCGLtDpE8iJpjWtPaJIES13XRjTDR+RhmUMyiYdbHILMyUtdUosstlfV1lKlASGzXLnQwu6nnkm+T2m2+qAfHyVoOT8Y/99k3MjzO+dRazttxWBw4cRV7wr7JFEVbYf1EflVoZDJUBlPIp+GmQBDGUXG8qfA0qUPLpbSuZqzCDaNplJwBFDtVno3mmFXKh6Zk0rYb3et1hUNzVn+1krAXRsTPcCH7t2ylW+YYR3ubZpPW1r3u1puPHnz3R59OV4sXH4/vbumFFn0jA4xTYwXmboJxL/dWS73tFA6CMwbx2eBEcfdbn300HQwfiySkZjSTwjjsTg71xakssSiBAHCG7gSTOQeMpPwHXOO5iFVQt5j8cRD8INbLz1SEFeCv5Db8JmxSPi1ikO8EtWOlFleDtix0ywdIcF6Q5/sZ8c6/42flWynXCq8ITa/+6r/8z3zji+8yoC51RmzWeWpKqG1P5ZWgKZ6zFzVzceCxFrcjj7C8KGauGWHw5CCUdUz5rRnCYzZ8z2CyIp86JyjlXJvk9iuxFR4HNSNUVFFayISlMtdHU5O1EpxkeW/UMV/dRX+4g2BE4G1uKZp/4wBG7qBuambsWRUzJt5i9oxW1/BGFo/1JNDPMtBRqy5auxr+FnMAYPObCyP7MY70Mqk7Ox8p4W+uFgbyCClIUeIQjESXqGGjAomWRCmC8yCFrP0cofk0FgoYRGH0XomQsHQtERwrhPEEdwc4wzd2d86vKx8+fqILTvJRonlNN0mpaDBRZzUbrSbX65e1yeD88dppv1Mfns8c1PFg8LnXHj3c6s0vLz95/PFHH3ywv7t3787u4ycvyIx4BYcM+4EeF88kGrRU4Y70m9ygy8b1Vo8hPDI0dW7mpTkZa/W2HoM1HY4XbGQuT6uz9emLQVXKVgwa4pkkMxwk/ssK7QpwMDyS4YjocTViSdiv6QDmxfU19B3cvaP2JtNZNiruvzw6fDEeDcK3+kubLXMlnz57rtPCOWofjReixk+9vYDGupEbUnph/cQWvCJXM5b71dx1Y77e9cbO7hbFIcggDlO+5c9J2jFvQEegC8eCaY379G6Srg02AfXgI8LAtHWLfzNSm6CPjKOJrVz7gpfHan99l964bbvFxxeLlS6K4+GQvdly6Ut7U9ELPqYYlOHWtsXEplJiW6109rnKou5CFpOcWxnowYjBd5hT26noguYl4QQTg5ttE4ejYLxIeEPm0dIIKZO3Xa+accK4SwUcayaejchm2sEspteMiUKiatVtwkxTykxpa3UvsbE8VeVsohgrgZL63e2d2IWba40dlrr5+avkVNca4JTyh9IeCyRUQG1vtfJzcWkku9Imed28u6WUqsBCuiikjXG5EWsguJ9bkbH0ddeEV63PEkOK4iiJeAjY/KZba1b+wf/pf0HsnQ0kiucV/0DVXWpXnAABc+oIgYlJmz4CsGfx7OVUmUCNNFmkuTlYV4CDvmWbBeZzWrF5o5Jc1rN0w2cXNPoVDe+7FIDvUEbOWE7JMuw0WQBQmNDatRwdnvBkYQHfajYkskkQFBNyJsAc/GoiEnHkGThQJXwV9E0BTCLBOG+6uP7vf+8HP3z/I1ctaJHv1lMUcz67/PSlVIQbz9kK9a7jEAGsppqK2HT7Gl9Vg10LdNqvIdquU6oydxPOyvNLljI4DS+CUhSgnQDQ7A5osucQJ6qhfCDKwYf8/fYfQGux+Ul+SMxTJcZr5i7CPacOTiOunuCRt99NqRJmoobFPXy9RJ1CZA8XHwGjkjTGd1OUlnz9l/5HX/+f/LlfXkyHiisupooaeJoN1ZYwxuEyyVWBYgb/5o4iA8+XJN4ml9QOTS7Ei0JDc5KXo3lCGIroWQOpzppB1fnocnunt8oNGrRtsoIEwFJwKlbwYRkV5vXh6RGT8eHBXUhKwSsIc8KEg2jOMK+C5SGuYHw5TWElZfIu9Jh2xSUY4Qb0X1x/+uJof6/PHyQZmm1k6Hl8fsUD0jbMfPdkXYxx4R2faB9ttnbpWiUFl2TpbDASXTC4/WJ+JX6FT2JBxFokIsEsyjm35UkXrnP5hY1MWGysMgS7KcPw5OXLu7v9iB/YiS/uY/Wz+eK9xy9VOsFrN2xMl+OH91xatT2fTmRiqZgff/R0McGplYcP77hIXI3Rnd3+vb27R+MLd8Sbjfi9j14gr1pPDCKJN5vGt/VA2SaYob4K8JUU9w3z3Jq33DTf7g7Ozx7eP+Afbe/vPzs6dgEUZLy3t0futQGrfnV8yb+mdRbwzc9OT06OTnhUepWcIMakY4LqruLodJlKBvBt7+3cvXPv8OUh5ehgZovZ0fOnLvXEbFhib/8OaxpBPvnokwxL4MOtLs6OD70ID4S54TT4VseCgGkYjEMghiV2srfVuNNuiFtRvU+fHmI6fAXFpOU9ud1tmEcglhSPjQ8gMq5BRDOQi6bp8EuXCiR4QzSIDL7z2L3eA6bXeHFstBqtI2uUz9QdjYCnSKAaoFK0I6+TWsqN7d7+6ckzYyFoezl+/R7My8uKcHEu/Al2RVDXus1kStpqYRkdelNsnDYKmGW4oWSB3mMMq/g2JGS7ROVUpxcuhpTlql9fUBjyGYvgZ1ULwkyYiBxwkUGuN6CVkAHBFEZmSoMOJsX27m5JlwM7mJEAsJPR14aSYicwwadk3f0GfUqwJNOa+S2J5Wpe1HbDJrarYEiYn9Wu/kpRRvGTxEqr+vikAPzB1AdpJfsV1/HXQEfiXeJsMS4r//H/8X9G+hj+eFFQOIgjgqB0Whje8JGcWZYIaug5K0Imp0hr+Ty4BMcBIVwlZqoKCBpZINCXhUwJGrYIz3kT3vZ6/9if4/R4hCSGtWRvkwChe4l4seFiGjA2ePoJsACHRH5hMnyMwEdN3yS1iOaL+bSphqGka1AKjXj0XulFfEUHYH6LTpPf/Ee//dhA0LU0+O13Munlycm5UA8vBZ6Ag7jJN/KizLgIEnhKDZ341eXy8PRs4PaSRjcWL8FFtUA6zgzjZoNRAEUzRB/QjEjo1/4d6zrY788pYEguLt91AFEVoWx+W2juhGJZJBtJERK/sEY+G4zyjvJBEpi/5r1RLVkJizXRG3aqomnRnG5n/V/6i3/uS595s2nmFb9GvbPp5EU50h54xpO9mdQJ2HspEDSJgR3qMwSaIiaptIWiyfxWNMe4QcfMRJAh5wsrlxqMWMwgin1jW6PkhRIKw+UN7catphT50ZjuMQxiIRKiaoAxwrLHfRwGsR8Kg7WfqITsn+nQ+j8NbdVDwE1kxAoHmb7CQbAvJlAmd6X9BBd6C7UYMrr0A/4qBatWR+kbXyfDR8fnyt00mqrZEBM3CMjiJ4uVThyF9YCAhPPlHTYGkEWU4IFrGEYkk1fkFelI4FzzpExR11oppXG5SnuwTGGDfVehadUKfHw4OBe9rTQe7Gx9+OwT/TFvv/qKcm6mzrMXh6eT4Rt3Hh6d8rzUI+w2b5Z3726fTxfHc8crCd98fnj6J9//WMTi1VcfHB0ejXXGsdnQftNQVfTXQ5d+CwQ2zsVe6eh22hfjXZvf2tvZFQ5yCzB8Yqmx7h8+esD8v9nUf8c2cnviVIYcfkmk4S48b9sxKeJYpkYD2QSWpItV+OS6rmpVi6kRbC9fPhXqZOxh8k53K7GwzdzFeHx4DDOU1pwcv8Sy4bb4i2nzxkBEmzccMz8se73frf3iZ19lPZ4y2+tm04/1VcV0KgdXUk0+tkb6Uj60dtVqlziBQqBrUZE+KHBAMAyYQlXvOheGrVyP5xqhGZ9kkCm9JgViqoQLPsxQMtMK52qXm7JOaL+1mt0HQ64YBC4G9IwidIxfYOyvRRhBmsczWGmdhG9TiZ5pNLQOybJOyg/aScwDA9GSZgrWiZyvp6yR/UEdStKWjLFfkG51d5pXNmbc2ar6AhX3USdcW7Ag7Ck8w/ziZmiw6IhwldFa/HnfFUGSBqPYWIO+AuFgb4CBYlBlpFyCiCaNKgmUIUhcLoeDnywYA/uGh0gAOBUeDE6CY1CZs44PUvldLHW/Jf4MO/VIqamBMX//f/8/ZUbpi4FWnl8899CFJrHRpMgCwayK4HDSEV7oNFLIJYeWDl6/QT4YqoYsroPyCB4DsxBW0XZRpcQV2cMd0RypEPNsoJJuikCkEi7FP7lrTHGhxrkgO50UhAnAiTYy7xjFtIZIXIATK6MHlqbGeS7k05oxeoxZciw1FL/EbEjHQysuzgez/+73v//xy8E0bXUJAiVuuKoKvhVTOxxphHs2l2yqqJxpTf5Ggd9ouW6qCl/b1DhjN7ZBzwXTb/8XJRykdwDRhezvogugfP7x4HBfPuN5t1/xx/IIn8uTAqN0DgVQCEv2UAzeo18mJhYFUDRAPu9j3uEw/Is68BeHKEonVf5gf/P1O3e++Jl3fvGbX1i6sXZ0wq7gXRmBpNALoJAceRpkESqzKItFT80PbZFlXKbyKU28mSymakv43f45ojx6ne9Uea7YuGJ11txSC61giTMyhZEVYC140TQufBjBE7xmAq1u2j3ms6uiL1rKJ6uGkMxixbS77EHOx+nxsTyk+BfOin2YqoEZEpF/B2tosbC+CcXc0LjkOlmm84O9LUfNGZVrsAYyMJ0OxDFIh6sdBJ7EnK4UcXF5/ISfqqNFbdLGOolTx+AbbvToNKQHVCWldsKdguQBMVSeRNviumJYIb78CAfIoVJZXBOHR1K4AA7WNLgPj89p4XdeuStu+b0ffzqfrb7yhddFpU9OTh7dPTD56+h4+MnTQzcQbG11+HUzA9gWc+oQqRk6jx+fPz8bMK2IDB+UPkvI0F3W0cpJTlpURwgjCBiDwN8FwYzx4hxAqLsPH5JVMc+PfvxTluD2Vg/Z2/1t93kYIoGbDCDPUDM8h3AOi5SGzOFbhp1zB5Qq/f3Bfa/A5ezlqZtWWKk4x2C+s5Pz+48eGThDMDWmqXOFe4PzE6LkQRaFP9FWJCCAxaSI5IQ8uO2dg/7nHh68HJ5iYaxx787D48PnhB23KCYTjWO2AFD2sr1lvLaRbQk7U3oGASRMJPgPUFmMATWuSUUz6dxMee/sSkk32+41jq8rnpFYAOZxqRkrleUgUodWdfitDBYd1C/YttzGyenQ3t1mChEVOve3t3CaBTr1YEtijgxQkyhXviIroMS8XM1BbBOGIqiCbuWasJvJOBe/QDzddq2qXrkrLc2mXdkilCOT3qiUkXGIIL4uQQU2DXTVr2HzBXLYLi6k6VBj8AqWBJejLUAmiMMX/snMKIKPINBMwehMz0dJtwRLcKkKCDU1ViK0HuZNDFkUJEw+NZFEESDz2nQvBc/jUnlM7zeMYPFRxwWKoxn/o7/z10EVbnOozgbmOtpsQ3nMBm4QIghrRiVqcKTtje2mpmj+DGZI9CCB10zKDm+BYXvJmDD7zDho8XPBet19oISxXOIkwT8LjTkMVnQLXKg13NigzwV/cRLwpZ+kDanrXgd0BHOdqsA0C86xIxIDIZYg4hrgo0slbQH4KZkQyo0CYGjaFzcnThjV2mqdnC3/4Hvv/fjF8VgnweTi86/dub+3ezybj8dLxupwIkEtMtHWiAKooW5Rgco9EKuqeeMn7/0Yy7IcKUsHVFAfbgSZLS8KMt51fpDjy0+sBUnyt3xIoD76HAV8xA+COflNcL/8Pvoj/5ArxxNbg3GH+GkG9+z8N5+PsmCDpYssOsbPNl2wV2vVr7/wZv8v/Nk/X9toXd1Mma76GoR6Rnqil2tTQwOu5tBW3NMZlYhwEh7YXaBOdJWmCAOkUcO4NqkzZx5ni40g68rUc/pnp6fdrhlwbSS3KhCL17iohjYzP6yZgmASUv/8JwcAK42EdX4iRChqkwwBm/Qb6MN0ILpyPrEc1UEbS6K800VgeE+vlVxhnJoN0Rv5HnEdR3l4NKS6rNn1AwhhWKbJ5knzckwjQQw+bjKHl5+Ui3fEf4zrRyLhHTVi9qSqx+fhjqdBUmejnJjvTIWSUhWigFKVBNQzI4SeULOhLgm2mtYCTCkcmiYnWq1/7+Mn4qvvvPawu9W83mx899vv7apiWLu8v7/XNR9iGifJXOfj89Fmh+pattdrW71MW1GM4YAPT2eHx5RVpJpdi04coxJ8JVLOhx8gvK5YJf3XjgNIxUFotu4c7DBv+9vb9157vUR1lk8/+VigBG0NN6k3Ol//5i9I0/7gvZ8AEeaCxWNOkpJgvTO4vjkfnHqWKiDX8xiQ8OTxR4OzYeZub1we7O5/5t3Xnj05+fTlC1dzesvZuT55/+GbLdgUmNIz8tEyZTPhEEYa4pcQJepmvttqstVhBFy8enCX6Sp+ug12dYEk26clYKoaBpMTBSEspghtRwTsEXg59xIGmDlT8zCTAGi3zoYj6kHv2+DsXB/sdD7a6vZjAwZn1Qvgh9rUPWvrG8KJeG/d0KuV63SSX6wC4ixVqCC9Lwxa1qIgOHMDSmBabqquaykf2t+q0BkfJcgcWUt3lYJdNoSPqBY29a8MDfQ8GSNB9q5qBeeFeWja2HBIXBx96XJUCqdJR4topdPE8+RZGkQF9ehPDI7VYQYKIiwdRM1DtliKJURMVD2fgUhk2MchWlHjYAHKoJo3eFEwRk1NKcdgzYBEn4IkUgygAug7fVrh9OSMarckipa9x2aNAPz7f/tfJ7SOFcp5AXaJByTz5rkkJ6glX9RJQCj3h/onoh4Eg8bs94CXj/lxtJe8q/Y8isQLU6clQ5uGfDXdNSwCHPgj6geIfYxcgxr0FlmIO7RvKCv00vxJntWNpJLMs4CCS5F1h3lUdD0NZAeiNekVoVSUq8YDQls+D7mFzvZM93i+9SQYlRl+STAsL6mWm//6d//gvcdPaH0+2it3tnod47cWx2fTQSIBN3KHXRejV9xgTqUFRLyVqlfaxHqVhEQWKIVEVuIDQByThSoJkRG0YHdAmW5zWMH0AvShjz3aaqhebIScoH+wna3dPiHUznP8ILokiG/L0Qc+htsDPcivlHBNXbTtX627cVJUZq+6+a2vvv3aQ+U5d3W9AxkBHppBUssjCcDp6XGjm3sZ4YSOcAu7NT08JIU/pqNo2shbCEHGeoc7MQohM0LEmO4ripZ0p9BCH1aSEWEemXwWisLqpv5IV70DA/qe9c07VmrJl2YhOWZhd4cm84pfIy0pv5OIod9zEw7Hsau73agw10fLMZooJ7zLgb1kaLsboHYxurhz0CMRZmRp0xIZMNcPT0v4ihqTHTZhiH/tTqg59U+LRP84oDUTwS77yncE/OOmVKQs7DCELfZ84ZCawvWf6TyGRdOVEuYQzDmJ4gKSh2IzShgE/yk1h+50iDQZeO7S5rm299o3v/YGJfLD7z+1sDt39j//7lsrSDkZQXPVAe9/8lQ5hKtVCIi9aEmCKefz5YnW9OmU+j0+Hhj0X2+2bzEhLBM+kdiksYRHUqmH55HOz4kqf8J1TvhzUzZys/PNn//yBz/8vrWwo0no8ck5e6Xb75hbI+NFoyuWI8Mxl5lHESIxvISVkeHl8YvLxcrFpa4e3On3BVjE/l5/+xElapLk7/6T3xdJkzYfDoYncjk6uQXFIv5hTdyLVfEB4MZipEmRjKjy268eLMenZ+dHe4aMmf/N/6huwuvZdOxbvEB5z1slqhpGlQ4tzJZHYfrJ3AFHpjCBLXh6es7QTDdG7mxo073TzGyARTykFTgVpNMhntdW6uTdIoKAcCRDmqv6z/a3mlcbrG2SE8dZ8e5wMpfRTf0S7gVgl5d6TUxbY8eSOzT2n9iO6QhLnag9iiBUN1K4r+6eCFAARSpZANKqPVNPMDZuIkZJWEoOKI/mOFyuZIMY3WLdDaWHiSUnNYhHYVfpeE1sA0jS5T65ME13yqP19WShRGgsR58FrWDLW9s9QoIHgACZZDA5zGgLLYIpHvU2Il/RtYDrBc6JgO0QtKCJD2VbKZwjL7KelgLQoCtNHmz6D3/j3xBnwCLFzSm9eWa3Bd4LxFwnBNysd3lglKKfM4UCfEX9wqa8jItabuiWehXzkuV2wAn0mueLfTLZlbHWBl3yrTYGpmM02Era8YVdQyPHlDbeW6OWYeOTQuIQISYbE4zFkQoNlgs6wl9eglUQReEkw8Kt3658rJC4DLL2rEwZUcDNkk1UR0zKS81i/JOPPvq97308l3g27+hqsdPtPH58yptELWeeltSLm55LYn0eo/jvmjgyp2phv3osmULBshQUhkQYNMY+2gSCQnN84++FSn5a/uSX+T2Lnhzm834d5M+G4Xuw3lfBLbZz6g41rlR+5qGYJsUS0SH5SRQJAGUgd3v1m8vJN7/2hc+99nBvm54X6rkZHk87/SZh9Ekqo9Opixpy9qWYzDjDpt6IVt4osOKwEhzwT/SOpUaxOjXIKCyeYW5sETFAtVip9rU3BV0XwkSJ4tlIYQC7IcDRiNkam4B0UOTR35kapaAIPTBekkaJqyKR5EBJGmfz7uLwZ+Jl7/H1mElhNHc2KFc1/kTZNT3XxFJ6pJ4dnbWadaXvIDZxKnflpQa8JkaRNBA+CcHS0epBbPzZskDVdfHBcydIzDS0jdYVCpOR4mAVKpMoFYSu8XL9qol1DDJyHCHIOIHMPsLR4MRnAbLzc5TT1frp+exXf/Hd/Z36d/7k6cvjs729LUe1o6hgY/NkOImYVDYPT6YHe9JUVJWtrWufnV6tnj4/Mn1i9942A1Z0CJ2M/RGPMsQlGCGhEjMj4QuDt2+93ihq6L65sbu9vbu3i3Rn51Plnm+//ebTJ0/MDV2ZjXN18bVvfOG99z55/ORY+yiW4Rnjc4wdMAmPqnlNlxzmpqq9SYtGRwODIFJm9q20KN+7e1dy/tlzMaohaf3ok4/n80nYt5AubBleIa2ujNVepOTXYDU8s3z93tYb97eEgQkLuMEJVCe/Cj9bOlvQvEV8FU/+6gqse7tlQY/EEBj/UdKRFCZIUhima6ROVYvyGtdTYKfV6J2PTtL369W5wqVVslM3hSfNx++xKal3D2nU2+o/TCkDiyfHIwjlDwjBp+TLGnCi9BGR0+Ay04/WiDFGzDKch0mqPpjJwu13Y4/qVdFyHmfq4thAtKzkubgzi4evqFdud2cvNmjpcs9ciivhZXMEkMkymQukiHIyHk37NIuU6ANbfL0s1+Jms0Z48gGZsQbXa1cWkHBMrvO5u3+vkUstA3ogGQRE/otpiyGFSW4Zw0YAOqFWTsD+8XxIgdpsKde2RHkUwcLwvjwdK7uQkPPHBBMq/8Fv/BtOAfEdpC+YsyfoJvAimCYbp9xXZKq2Xr9ckxdilhIIpQIk49K9FsW3coi6/yU22OYJS1A51glr1RVAfDErByZkKMokFIPV6Wcu72Q23drenZ2NaSqYRr5SWpqPlqi3TV4ZqFdms0oDqOTI1qmQjBTDCkwxheHsfWE7mllgC+hQD9YnH4LTLULYGbFQCuvPDRpyGDX+fhDg8eHJ733/R0+PB/zCLRcrrK31G+C/YZj7IE1DmxKXzXqb7QrkuSnC0NbM70OlycycpnMj07h30NFPoo0duCX6NLGINsifwwEoXRiBZY3OsZbAKbrD75L88Sk8kZONOogn6Lf5j9B5jEFrtzDik6oMf4fy9qxeZ7tRf+edBw9fOXjjzbdW8yHq5uviIC4lEdpO8xpNJuaq3NOTIr6ENvaAgEhShPDVq6P8U4eY1JPMehJEsXKjotIVs1lGtUgK8kvzQCifNKzHJpwr34YtIrxXq8yMcoFwUQN4IkiTxKD448QNKPlWcDkKAMfDOSwhWcPsh332h3/YYsYPyGnIYeb+yRQjVImwQxRNNV0LWRhk2NBikbhUGICG1mRG1Xt8wJ8/VlJBMJq/KAyGLEzwZO1idKVGIJZAZDMkjz+ARYUiEj6sXD09PPfxNpFzAEGT8kHuo2yqlAmKiVXWqLd5ty3n3jw6G7d69XsH/dMzNZlXQMFYMTk4b6SCXN9x/97D/+GPvr9xtXz94R11lNPx5dFwtH+w40az50+PHr35Sr3W/NGPfqwKVhE07GCsR08B+0R7w11CAnwaa5cQhoq2g/4UgBpOGAqRGNJbu/uGAlPvb77xyje++s53/+hPXg6GH3/0iZjJ3sGeh3L5qRNEptb6GmjWqMbwExfn53/lW4dPnlCKfAOxYkGv7V5fhnU0WgxH0/c//GA4PNVIi3EiqmFszytcjXMuTdyXGzercvrGw+prD7dUuoyT8jVENFqH1erfJSOY8VO4MWDkETc34JUd7wCwHHtxPExnnHqrXr/nWLxJ4kQmQ3wGGwgEgQcLXho/lWlRKsgjOI5ILN3Ri63IIQhUKMJR5YVJSAmQDzRfERfKPhQ1jVxQElol1lJvqAjjRzMgxsMxtkweokTe3W5NK4SfHUmRZQfqAl4ZYjysJNfUE7Es4/cVubFaknEtFf/WU0xGw3zsO01ROgMhFV6FYe0uAEuY3mdcgQeI6WD4qXpVhb8KxWzJbaZakbP6tB3gOqKgIh+7Bx5LsOA2J+u6mphMEKUU3RTQD3mtWejCQ5CIAhRcKxSTVgEdvpJL9xgZvJOcacJJGauQkdORtHXhlzgr+dwF/A02AWKaKxYTV5rBlT9X0Ai+JwugkJHSj5OtTjwF4JwVolKSctx518LNaPKVWjcX/LY7pDRxOjXOgwGjvdOsqhdOIil2gSIiyLXuzK9VFqSg1LrB942IrGyxEjFjSRxAtMHaVVeKQwi4NFI7X2zkH+QIRfSvGXFRrAnAgOMyJBKbJyly9dr9O+6C/P6PPvz2+0/s2p3dv/KNtwbno8l7evPUotn7ajYbBnATqWR6tGjMGPg3wkQNd1BqljFHqeaazcksgJ2aneg/6G+DiOYfbwUiXosV4H2URAq2qALKKCLk+GAMYbDHEJrVn0f4C872W/ZRhCUP5EH6WD63Dp1MSfjal155dHe/Kz4zG5qgdj6ZOQX468ONNGanEC0uS1/3E1xUf4n75WArHG2yZSvs2RRSc5JY1wt+ZUb1XmR0uJKK3EASdU+k5E45WJhvyeThg8dBtGz1prx51oCYBmzVfOvzielW1mereQiRKI3mTEedmYv0Tsix2piIxLlZPmkkuK7wQJ3ftTEPlC4AFZSweJrKu1l2SjwTXUUsd+O1RDlil7ubOFmaFD1dr1z6o7yVSgBhGa4AqWUCWCcJDCqlC+LHsoxceSMKWH60pcbvdFokDxw5Wqj0MEeAMSBpnVIujOGDGBNNPQNTqfdYMPvFiJFKaPPy6t5e/3i6/OjJucKCe3u7J6OhZs6Nfl8vwhtv3rm7JYB89bUvv/VHv/e90/NTV0iOctdjTYLBDsa96mR4KgmLT1hzmah4Ze5ehmbHWJMCTXDBsSfYtbezJWRkDSHE2o3ELEEArNt9A/uGMOjeg1d4qUcng0+fnbnLd7ycbfW3XJz76msPiPqQyFzfKLBZTbD3pibhJ4dD119wNM4n4/ZWz20rSr4oPJl2dzl2eoYRnf3kJx+qfzPkBUfZLu3KvrE6YAoX/QFApe78Ym46weVZtXd/B5JxobhiQIQtyF2TT47g11OdIYCDsCJ/Ug7sXz9Rh13Mi431/sZ4sgjdhV0Y25zD67U+9wdo1etCCZjFpRF0hrAYvlKQzwSrr1WxbrKxvFLQmktMTZTSO8hGXMZ2FZ/AFReMGUoB16kdBZwBllxYtObQG0cGaHe7vK9GGX0t5MDhwFRkltmHGVNyqrERPJUMpSk9uLtrGqeKXZ3blOr1jbl/F2QwuSVLViBkmqzIh8Y94qMCer3Tr7PplEJnalZbQshnM8R0OJ8J3aItgCLuTFXhfkYKm8NmLZ6f6nMQGEA4IpDtJPAmvSgGjtT+4FnAjykQeGF48ZZ1LWjxgzTQmuwlXhL8wz63IS86BsBU/r2//dciMLL/y5SfUymEgUhDWE/0ZIKEdRIzi/ZJVATAUoOYE+L4B3IHpaLXKjJA4ANDl4iNehqSx8+i+R36UpiP/oAoHiZ3jb/93BroWLgXlPL4/JPagKJBMbySTU1blhDoJK6Elo4x3kdCTGeAlJoF4URyyqvyb9/3G8LpvQbIHB+dbPV7EtV0Q9ZpHOZyYeFy+PDu6en59z/69PnZSLiJ7jEmcychyM0fPD0UJUvkhV8QU6K5KYSeAkUTWyjs6Al2BEOY94EqiO5XeQgLNKEhW6JWgUgA0V/Z0wJjqTHL1Vp8MdyV6AuZD9Dj3eB7OiSiJ7B/SFJgz7ejhxgHSb7t9Ltu7rvT7byyv6UHFSXps7gVGsrSiJtwWRmeFQPWOjK007ELzgASiMnw93HGbNjZt8X1uG7W5q8W7BnudSLesaP9N8F2RQjKYRcXkVVfLZW4jJGkeTMGJSY2c4n2Ra2EkBytKLy8mKwLZ8pNk0rFLCX7uM5NILlEzMAvxDO/xRhbIbqwghgucC/kIyWXjP1SPDPptPuOAeQzODyGRGW/dhduyTejTVWVWa+3xynDTEnyYJVAPl1lbFHRu3gVdT2LzwLMUMaGFLlIT6Yqsq2pp6BgFpsKKKePMtAi6BFzp7JyJ3gCki4vSxlCrWJk482z8/F2s/XNz716Pp/86MMjQVbh9G998ZUulNeY2q0/PZp8+8efuJy7yeTiw0m/m348Xp6ea8RMVkwaQ8o6XKnwPxaMWnXHz1RkEcZMczQwVBFQCqIywUa+TRagtd3rusZd0qG7s71//1U5Q5in7eDl6ZlsmmnBX/rGV+ajkw9+9MNGVWPR1eHRi8+89eZn3vns45dHH7z3oRsA3v38Wy35s/mMjE6mFx++/7FEmOk93//ed7FWTKbka/BHJIuVEsWYeoHcvQ5SZJJ1l7x1b/fd7d7Z+bnomlG//W4HdDgIuBwZ52imDCRDJ/GdYB1RZ3BjPDRU3xN/N0qdHSlUMiF3oNmrN/ScxhTWWxUcFBUh9a6U4XMSZfojR4hcojcuGZ0ZYsZP1dQSK7xE3jfcWIVli9qUggbKDKE13iR3NnlgqtUBxTVx2ml7Mh8jVW0V9UgLu0g6D+hEkLXFbMgAkxorwT7UG8xCF9htK259wdHEW986kx9nxaZTesAgcw0Ze1z4HgoLqqt8Udy5tuqYc2PwNc40UO9yxZ9Whe4UKCshU6k1x+/hmDnll9YAfAXR3Qt9MRPVbjf6IAVsYgRiBo0ifYbQTdI2C7WCpwrA0muVQGeAIvfKIXRQ1FJBa/H3AxUZKwE96Zbgu+KQ0rlnh84xuphiDjFy/6qDp3BBW2wrR7fiAYRNEZrVlt57l9NLNwjj5N2JnrLLsA29gv1NTVRxPGF3maHq75FtYUQtkNqPYx07TpYgbxG+JwyRcj0PIwbBCnJe8uebGaRRsotwmbgiHE9Z7kuULribUpCVe0EhnbiOM/QE2MfZB0/e6DW01mv3D3Z6nfcfP//k+PTpcDIZLaD/+XQl2Yhw2ANBuCTGyWzvtoSHnY54hS97VLI9BcrRXU1MrHNI5NAdjnOgQoMjeZFoe94e6MXQZpwB5VuADtaX9ITlQc+EylGA1g78FGkLghWTs9WomvorOeHkXJzx5Hhw/UyZPkMgEW3S4rHBrQSCvIqlBkNBH4SnTa2a2crWNlmBQV2QvNwlHaqm2Ax/ENCoJYvVT8i8grBLPY2ReAi4piMsIRHmQpRz1sm9diIOUQ2PRfOwyIOx8YQGqum7UaoPUJls4rthBlaAJtLNDVZmfAVBtPqG+g3BdWEpU1aSddcDrsSe2ohQGsjVNF+FUoM5zpV407tkAJF9AL293bNxtp1Tchao8sxvNA+5/shvFDOz/bnCRmQquLRLbFrAKEpXVFeQ0E8YMkbYA3nmnDOj4fLA1IMzk5Ne4rML7Wge8EPFRWh6KYqSUdWxzsYX8x9++IkqQ1uIs99Q6FJZbl4fagbIzLLudnfv6HDYbzV3uk31BOnNXlwqQFBgKoCZAOGGvN9kq1/d29tWThpkU0+B3QXXL128mnnIk7VcmIEnoZ8jRswXwgs3l3Y2GY7miw/u3rtvQ3yik8MjQZ47Dx4d7O8+dzvlfLW7tecUIk5Ol6sh+lOryN7LeNfkDwjnSowuGZH33/+Rv2AFZib2wOSo68iRy7n7g2O0AJzgNsbryWVrbeOg2nn/+fMfP336lVfeuKpe7+wAWN23EW1Hgh8FfhGeGeHrddWQKZUJz4MBFZOQfkIDrVReqAZsMujgFNMB7zMz3AvIZj8bDmuN2P6WQOQpUcxkP15AUCxNGpzWgfIttbYJfKd71hnjXv3AlsFqlbIUOdGSzj44czWpWbmuk9TnsbahLlPZXAytaKUMLZbCVgRGK/u6kExeZwpWq4VUeBz7xXSWeaZ1hAyL9FASckm3cX9v9CogRcnALHhixARPlU3F+qGK0jKr6e9mvdPovjg/QdyEaBwA7WfeSWY8RLywKOmlRxGkpG1SW4E3kThOqLcI0synsZkScgObdVFrPSd2ulhwSkTA4tshmjFesj8BUYaPIn7D4JysXzDjsDtADzSwc3LK3GeB3xwfVGFVstp8zT+NpvK7wYsXzw7SKOg+GranRB+k4TQQCRQ0EeDKWIAK/+Faa/4QALFXVTwznWbLCQbmtHkVBdbbaZBP20vcKaPKoi4cDNXtIIUkMyCg2XB5O/GWXkaa8JD8zHVucqBOCbOwjLRpXMXVwrAfnUMBLGxaihoZLBgCgdgOQWGmt4C7DEmJGm21G9/8ubdeGxz85uAPkJJHRlErBxqJYwSLy8iwjevx6JyO5tNpbhqeKyUF+IFalEkEGtlIPovJV9Sv8LmQI0GGSBxTHzCCCZIQRz6KIVgZUiFwsrXJoLJrCQDZiEkbxg3KCshprjI/RezCeSzGSRSCh4Kf0r5IwJb1QN+Kk+RxjBHqXBRLWCMGjByU8BQH2ut9eJ7XU1KWanmZ4cOYSSQQ3qWODW2xdSyb9BfG7o6DeHHNWLVUQXx4hZ7NTsO7S9tmBhxiFsXGxUXTLTxR7wGHQKk5Qocnh+121w5BCVqQUpCgfyRArFYgwXseZ2xAWpxCdD7ZkIsM8G4eATtsJOPn0CYTM1OvbC1xAvgZKRj3iyI5niQPN+YKMfJjmoGhdOhz286WwiDrve0uTPF0HT7+AOvbdUU4ajbG2U7CRAXqnEi0YTSL/aYwCm1N0nKQmvGb9QvBKr8wLFt1XGJf+m7iOt/f76HF4Gz0/qeHjx70OA7nQ/efnM01Lkhv0HxVxZoJOyTlVZrOmI9a9m2AqWhHKoj6vT6uDs/y5R1g2CTKm2HGliKw/nEE7HCtyPp4NSKb1olyjz9+n1Senl7ev383wxwvl8efvD+bjpLyuan0+n0yvtQgPjiVNvR+cdrTo7Ob/pX6zBcvjw5PBtPBWGSvVFSEvlZACREWnBC9K9gbEUrQs9PbkWSrtwe/+o3P0dvqa964v2sShRuA4+o1MwW62RJkjJPPRySPkhZEnWahXlmIrHjNGywUBlG11x/eKI9ihc93u1sCpxidErRCHGIdZuBAJj+XwRbZlUrCdISazGByj8I3rMe0g01mSoQhtcoXy7d3//LFTqtta1Goi5WWciy16e6MqzUjMQIk7HeF72psNmpmLRBjZ43xgmjKcpJIk0SM2aH2hmyfnZ0LaRBhygRHNtvutRbJnMRVFTBIv7G0lrnfHS1gIZ3ycdaknJxbeUezVEdtSiHIzbg6YirEzTAS4uY4k3vWrn3RWIsrRKAQ17Ao1a4MHtfVrzVaCc4SBWSJORZwJjtpxiaImwuZNBKCfOxg9RSJmJERfo+xejGbSqOPLHGl8m//zV9jtbNsWDfhEsATkI99h3KK9Lw+4VqQhspSr5lZShDjxnLigBSckBTUtOCHmBijyY1Kddh/vUWAZeKifABHVFk4uXiCqzVIKq1ErQk75rznc1d7S9+HwaLZFPxJMcUWQxDKMHCYGU+UiHYBqjrHXn4qGcUdzD+xalTLSU4CGJ839GaywEPUXXZGIRCzVnrIJ6MpLix04duuSTGKDz89Ovqj7/34eLR0rx7fl0He3+66cuT0xLwY5AsvRq8k44MgsZz5KNQete78kC5RleJuiaDH3RcuoPtDGEKBUGSJ5cvoLxlv3y/6gnBCJEsssp6PR2ooH1GbxG+cVLrJdYFmv6m/xI5ONjvyXAeGRrAK0XzYP5D+1nHFRnk9RVXy1eVZfgvk2Pj5EkUF2igklnIoDHZL5Th/jhkeLWbtAuXm08pyVq6TihR1VaPioozLVHYiJgWQsh/1p+Uad6vnaFEcLFm6D285wZSJuLtRgZ17e+r13f72h8+PYq9DxBvDF+Z0Qwzw5WUvRm4ZWF2r6iYNVY3u2t0So1OJGbskcRo8zq6kNhOh8l7/dcQwnSbDknFXSZGcVknBEMD5WA1UrjGAqpQcUsZ5xQSIRfdcc2JCAIwdEhfzP1ZqkMARFkWdUwSL6TWJF8/2dyJUnWC6OFi3DSq+8MYjYdEf/vQZG9eQi/bWluLJx0+ekYu93R0jHBQ17fXaULi31ZJGxkHurDel5Cc//fi2HZupFfNTIFvfvw7olD4nPWM7+rAciiCIZYFA2t4R4BAON/YoOkD8KVObHty7/9Y7b0f9VZtHqoCPz0SKhE++950/Mlfi1TfeHI7Pnz1+mZwv3ePqmfGpO6Ak3bmgeCNWCwLbdHyN/EOr2ThSGBrmA9746PVXnn3y0Vv3O9/8/OuLcbJ6kA5kbG91HIaPkm6OhcWDG8wqwuzPLN94D4lTO6sY0SwMuMzdAaZajU4GQ282dYegsKyBV5lik5wxOJJQtCDTKXC7p/GBsKuJR+CPpglNaH23AEU4cALjoK6QsNNt4Z34tdV1hTq+4iAhC0UuKsVBx8O0MWpLAyUsdKW8Z3Cwv89XYpEyWqdG2G4K0cRtpZHpGkOW2HzLifIbGTMiGMOBtiRVwuFwCw15Ntjw6fMXyiDbW92oUwQxq5y7c1NpNzrxPHnxMSadpVQTqaRmpHCBTKKWGJC/hf5C1hyRVp/zYphlLHbTQc7OjmBXhsP5WgRfIh97X44XMzdvE5Z2u5kp96C4DJYgI1SO9ecPuVfzpvJ//Rt/RYV3v78tTlfeyP0vgR3ejRPV/KXHipHPJMxEaeMSjUkRsBEViYkE/QuKMGHjAlmwt1EAkAMdkCByY+Yze3/z2tPIC6jGBZwdhzEeGwySC27s1gmlWjQem8E4LFsBFi2ptYzTS80T7klsKibsfEopddo7JpkZI8fH8t4clV9z9oX0OEel7AELMmYTNs2FBDUzzLN50YbEkZOVZAfxpNLgRxB1ENFn6zfPD4cffPBY4d5K0EL11fXap89Hh5P5eGk2rFrKmPdIZ/2cObiLe4gLZPEHTEYt5PIEIB7bOZQoka3gMN5FUBJe5uYLaiSvjq6eWD4p7o29EENRrIIE2oIhkJiSnCzdCa3ID2+SzlHRRHgC+sCOxs2gHfrboVqFbyXiROWhQDCM6PqcfINfFc2RlBJbxbMcYtHozovkoE+0EoYO8NMCSBLrD2fHUEultW9RAPJUWXZC7tQwc4MacfbeWnztwGhc2srdu1uDU/fOmcAcZSO2qQl+42Zd/Ox0NPIM5pIoljSjgG+AZ3HdbzQPzwfEgCvt+m+bdKLWrYDIdprVFisE1Ni2H1P9ehqcYUzLZAjiZzt2m0K1XN9lxEpURYNVR2Haisemo9BcwLAwpmUrRHn4l2+hli0no46lk41J+V32SNtEwhJxIix+6uOeJxfJ+WVrLFYVqdCDnfrPvXX3Jx+dHE3yEWWPx8envrK9tfvo4d3D49PDk1Oh5Lce3dvqsx/jWoP1l6ejszOlQLyLtDX4vKrFuINUrgPzT1xfh+KZkDbLc3OvswMl8IdZ45xRj43vCOKHcd0addPulIziVKWM9x7ca7erP/zu93R0SwwOzwbPnh4jAnyUeEdhdlmnty8vrV3LjtGEaGPxMEmiepmjoBcGtakjzWsmmy5n41/6wqPPvnLHZUE+zDUFi5Bajg2dEUy5Nru7LB0rwhBmxPJ8fNpuKTftYRkBKdla5AWLNqYWBU1iXkmHZmpQzG12LDoVk49RrMvpJlNROV7F5um1+8ID1oRhsDjbRm8ZDarrA8Fy57xrdi4zecxGPMY7MS2xdHx+XvDcm9Muh+HDDsq+J+MUc21sjkUFq3U9QNopkEQa5vDF0c5uD23RhGQx86CJb6n25zdgPGsOgmUiDmsN/tROBmfqB/gZuSNUJYWAX2lr4OgSHGY0PikNaq63TLkjYrMyLW5re5/gXcynkMSRgx4RwUiztnyxemQV4o3EBuQ5aj4kcBTOr2ZOhuZnp0FbAQmnwwr3H/3ogMteqceEqv7v/+ZfJbjYHz4IMeN9zO9h6ELA6HOwS6vQRP7q/Lwthn5J/aFi3k5A/Q/xIjoRLWrBT+EQ8viRmy1T9sGvzFUBATL/tgEfB1naU3klkXYaNj1yCTor64anSkfYV3KDJN/zabaE2OjJqwsefjyz3LSZVlLKL8EhdwPkLkAhNME+/WhUq1OziwVV7OZn7mUGjDgXNkxKHkk0akv4pO3LJ73CUOjoID2uohtXN4OBaWqpzT6fL84xJC2zTIvQllrvTTp849W7u6fnQrn2n6Ykhr0sQsaX13TJc16o18RcPJ5YRJcj5+Xl7k4nqJJkjyJX9uN1bndTTleuScLMwR6X6IEwCAaaoBtiqgt0y/gNXGBeBb79gwriD8PzEfilNXBxkBY2e1YKt52Q/SiPSQUFeji8AETiVJ4rRS/Xql8vcyBwvCPgtKF2QCdo6DTMLUwThiepvJB/c9B+V3gorodH+mT+R/h8naoISKUkFJHv3dt5/uwk2iIHloHsuk+5xuw/N8KabYmrxe6i4ZLwYVYn8iMGnSBPdqxR2YibsE3UHcM/ujubw9D5v2QLURHkeZ+tZ6qEPQYJcvoBshj7sD7VyP6VPgAMaz92fSvFXuRBRJ/6yv8HUe07//FOT0j9ZaxXxA5SeCxSeUp5ojZj4WbOLmvOkV7QZa32lkb2lyfnOqpYdkI0Bz090WsNRauLxU9/+sIsnjdfM8NZbIqwr568PBNPGIy4KJ6cxkxLxX+1ais5GwU8LE0qIdYLQt26xXEi2cL0pHWTL6Kh0QmAGDngMJyMXqQCrKzIxEv9NupBPTsLkzsmX6cLEweIhVBlasBS6oMWkYAIeehSKCNt7mAcwOqqpa5RLAIyzWcmc/zFb31xrs2wGPui4cSZI4lSTgHRCCNTBpMgl4fFQtcedEkMtK83MaFcUda+dmW6QNSo0CHq4z0wbei/+tekN+OVgjhVYcxTp2SaJuEF0yxLCOHchS1JGp5UPYXPtX2xqIbDc3MzdXIxInknBNMOEM3q1XTajlgQU8YBww2CwxmNoenmxflcHRH2FdJRlsoMZHtwZ/GZJWEisWtvsSTGsAUPh2MYaJiVHDV6aZpGBCQQ9+F4IPVoMLNmCh1vxmiE1Ll/dynyIzFmRLP9ijwjU+QuqQ//u260u4tLQ1AINYM9E45Rh4g5unCgSHi5R09MOCJOKlPzcNNqt3ka/JjC0emvSgBYCFoAyKpyqGxoCfwYWJV/92/+a+FyZmaqAIMcQNBLsAVqCvYCAFdVAC9gFKnHWZFmFocAv6hsAhsqZAQfPEW4CCGKToADUYw+5vfMPzdr40gPT6FguCqy7Pd2jknsXIWvcggg4gyoA+zJBfGCiCKpJGGK2hqN8/OhQD/0kv/zDnO3Z2OYjk/YDkqAhWTFImg9tXq5J8CalKkZtSg8KPyp/wClYAU9gpvQCEeGeImEeHmKnug+CMYPJC1cXZ/1drocMuSaACiTAB1GckmZ2ycmaoIajY6OEsOVjdIfz5e9Zg0zmGEr3JQm+FLFJZc1Hl40Orq3ND2A4LQAJDPNPKnL+Aeu7VUsJdrZoWy6NMPwCY5QZuc5eFEXFXfKEYsPI/Ugrl7SDE6EZoknmNkYZIfuxTfZqZBIIme2nEpwhnxIb5uZvmJaISgvcwf1kmQEk6/E+kD18EP8dLt3jqEPzgka+jaACI2QJHR3btgGl5YPOPEgd3kvsYnfxmNjkqQUKLiJbrkJywcQGRg5B8WSNAi6sh6ICw8pry5Ai+O9EMP4IqD08HhFeKfgUpblXbkuXLQnP7Rae4g+ylLtD/gkrVAQvTSFhNmLQvbdaw+MTNkbdvXJ7DQWCr7wx/Ine/bXxIQcV4qpLVx4K64d+sM13laRaZ6HTyaHIGK+to5NNSjYKea+s7/T72DHm8FlAmWVq9rjp0eNdnVvpy+upfpcleNovhzlMoW0Tyrqsp6t7e0nT17eu3dP8wsuFf/Koorf5qj9wf744u1OO7ZO8orxDBJkcN5KMM3Ry16jw2Ic2GeQNfsRb8Hb/uvD1mxT/rENLMR1jtZDfMTwBk03SWsLqQZxpI417o0vF+fDl29sd7702lsH3U1NxN6iwyjtFOs62ppkx7UE56fn0Nn7gJfxD3nYupu8GlgkAc+b6niiAaomYsexTg4qbllSg7HMyCNuYEDNCQp8bzlD9ZsxbMQYgoQBtYQyLlJeyH1NBTmto8yk2VYtrsx0OZ906l3nZRqdTLuBbrbM9fBAm+XN0DWtTEeIPUS1oymNlQhzipPhhlwI1ZgCShNjNIHCQpSBEBiQjqGBRPZjb7E/rrXCtAmRCU5IHusMe9FhzSZYM0tDFZbWAvW4lCNQylHCzbripXnAtlQa99t9U8ZpI66QtUiIGdssTO18gZGQmKbBtAesr7v8R3RJ2Menr9kxCSwrClji0WTIWMbt1ng0TnTKOecbcBiKKGnzyWTjTDXQ60kB/BoEwpN+ShwjYBQBb8L0jOUF+0WbLjzC/8RP4ppEKy9N5USWlLyzxEFc1Q1VVuC4693MyDSikfg8k0VJ1CHeWrnWJxlwURQ8Ca2iPNBCkCSRcmTLdyPMGIQCyMCfgCJAI8n40ef5P3Qo5VnPFEDyrllBGjb1jXI1bt7BvaKK/s0MEedyxtSBIj9XabICfF85hwOzPq8m7Y40fJMsU4w7JpjII0kn1AVHlVUtlIbSajQwKk9dM5KEOwjYpEAwN8TTXpb0y0YSoeq3qPnE1KvqOkwaMd8cKS7HFy7sZSOYMOkGFIdCsYg5xihDS3JoXEmiHCjlhjIoUFe8L+em/JM5oF1WLSPDS42sSnx66NLNQYQzAFdM9VRukBzVXeBEcMlRKtiIYgh7EIkYVbGXoxtsOYZMNFOV64q4non0LKjEZq3JXwlDyU57Gb7Hs6FMKjC9MOXawNVnWWnl43Ez44c6sIAHWcmIJ1hsNHHqFji87pngylzJxnsLDiLggZ3gDfkXO2eAmskVgPBx9SfCgGiS/jsEKjZo8IvqhYDi1wXUsAZK44E4sp7mWPEJ5LINCIGdsL5V4TnfzWeK2qAVgveoHVsXR8Zb8gm/jW4PctprbBVf8qtsmuKkDu0jN11RGAX844cn/c4691lgEXdzVRkvrl4ORui/2xe0z8WrXfd0EKYrEz03Xx6PXg7G0vuv39lnY2Dwk1NDS0HhBXOS10vFdHv9nb1dl1Sfng5N7o/VDcySQXL8ub4GeVEMqzH58adjBfQAjoVoZ0Epe5GPSZljsQedTKE1HwcdrJmCCunjVQQoQnYy4AW2zM1gmjXqZlsyvUNx37lcczHWW693H7kzCZWv1lyQArXnhh21VFiJ6FwksB5BYeM3RI10G7gCDR0jiXlyyles00kJhSEsdSUzTSOw2MQBRLpjHUhx02JZQ6xyDJ6Tk7hqbMgD3AKV2m68zCR3RggjggANHZ5Cf0rCVhmSTN0k1IRgTHEAi2594OLbYSYq597X8WAG94JyoLLwBzK2IGPBcB8YjNyM1HCLgF8CYhvwCqLr4YHKIIAatvBJYSe6X9IVEor9WM/S1dA4G5l1umRydklRIIO2D/IVf6LoE5QmlKJDGgCEMKKTlI9hRyJNFCzdeaZDRUdemFUcnlcXgV1XVqCinXTgTM5wtdfuzmZiEtifiMV4xQPOAynkD4obEMsGO2Glyr/zt34NbDkSis0qHVyQ2rNIUNibEEBsZR7YuqrnBk8k/so0VjssPJU+fl+RTo1/oGEqzRcJSgnpm66t8cwY+Xkjf4i/nIKM1Ey6Ru2q2mhbNYeAQ8oEblc1dnNtcldezNboLYIXv1wsmbtrxf5GwSWS5SjUcigEira65u6UmjnGacDAArgF6MTG43kYW+/MECQJQiYDRhe5E3iRIeQPugOZaiZw4trpQE1BOor4NF0ad01NZsRMDQj3MxAmVA4SqRlbAju+4vajer3v1jvFJJ6TqIPLGdJLIkGneHShxKbWrmmxKVakSJO3bDoc7yJyTi49geGtHDVvK0gl3JXMfpCatLNzQbxuBLySYIczd/gqpvybo2MayUrJl3rktiIwzOKLieDBfrIVjI2JjQ98BtE4u25I17uq4dkDrSGGzO00rkZ0v+/m8MlfTTEZSSMLMYUSs/Ugf/EPziLoUSuBjOI0FEa0H8qgfIw7Z5E+bwGY3GtwoWfJ3Pgm1nEa1krIqXYuuY0EibAQD9HVCGWUud3oeyq4FCDxsFiIURYBRIFyPHhLxvKT5Pdgf4GMAJ7D4FgE2TEqSQIkGVAYvrVp+M/NIYdRigXrrcEeIzaR63gfyMAlZUDRGuIYzFhRJS0gNJGPxDtI1Ikeja3FGrWBs+HF0en8zr39vb3afDKUyqPdBOzm09QOJBfS2X7y/FPXnzx6sK/CymV81C0fYDSeBveYViUCbm4vUeLRR0gtPq0P+YcQOwt/x2mOAh5BaP/odC2JUzUdAdl8MqKcKEo2k3BtmCFyle4LvAMrbcBZ5GM5qXI3BuRxbkgkrMz5ZqxYBtZ+UL8S9uEMrDKCgVavuDXPAJ626SkIFj0dXyqxIEraSKhYwexZj3aga8bvqHUs9uEyV0i63gU1mLrMFsGrJAbwoRyaW4YQNWF+xwaahFCQVo2QM0xWGYyww7KpHAJHAckM1cE7EKHbbTPJs2x3w/ni2garHtdqXOQxEPI797TQmahx7/TZiQqxuTg1bboSc4tb67AsVxcb9h5lmqxrJHQjZaKDc5acJ9D61f1EOhT9Z+MpL9VUn9S5ClwI1VJenAOm4nImtE6zqXaGVHgQcuE5phL0N+dB97WDi8JPeCHWlSomVNWPjrvBlNsoxXYCBfUqC6HaaBmgAxAzh0ATJcewtD1HTSrBMKk315DNkbDd6sxy81GcKYIfWXVRgXtsOk2cLpCDCyr/zr/5V1mdiI7PCX0AAj/hBcS+1KcjLY/NYuQyI/MqhgMyAXSct5kZEhJzJDopQgcMtZL79QEM1VirdlbzU+JOgwV+oi9zvGspxG844ukFwqU704Q1tgKzmuvArgDxDDMH4BjcvGOplr5IVPBKgNWfca2Vyp6F6wWp83K1njH5gnrRknzeXHCv2TXzi5JAvvQHGbZkNNIi7UAW+CsuD97hlyVlWtX1OxwYRohhuSgpS4CD1hBo9pQCIRIzwiIGFoAn2TN4QVZpFS2AZDyOQpSc6FlBBxv3D8FNGa/R3oIh0uCZG0XzkT3TYPzKu0qWjEkezQu2bJZxCW8D5lFtoZ/dRkf7TPFvgrz0H+c3kVaikuQhLANVt5JPoIExAIuRHqxEogQT4+oJBa6mIqQ+74hZLNG5gYJc2KAeD8zdoqiIBz4LyqI1caW64AYsp2TSDJkQTXEgwI1HEKWfRYF8w0Moy0z1kA0qsOvFtp+QS/qJfJ4IB42DESntgDtRwzZptRSs30HwEDkOHzooppx5BasfasR1oM4F4GM/RjVaW2xMYqYmDbKnZjBlc9aGsAX94neye70Wm9oFqjAbckoxq6kuCsbpk5KiFwNsSuZFF5fddo9BzU3jpUTxowZHMP4rAfNC+bKQ3Jm5iWg0yU1YD+71RPXFLW0uFUFPT+znYH/74b0HiPCHf/Q903L2dvcM7zeV0z9djYtqItUGDSYoK3pmLY4GMaiiSH36DWNOQQUMEGbArPgiE7E2TYs7OT2Xrsw6oo3CLahCCi3PR20Je1N8YYlwWnbp5z5oA2zEoh+S/4OWQbO8NsNF9O3t9Tf+2S+/uy0SZC5gqy7s4yFSOB4sdJk0Hu+f4VcGSjopjx+cnyrpNreCgxwJvV7q7yEsaSda5yvgH06kSeDABvjoV5cx1FhrtRJpXtSSI3C0rCD+BfWW0W+s2ljE2RC6s+vcJRdfY3Ulc6eWRF1T0ucaB9mauQiPfS3YYu4wQqUMVCskCn7m81+ktU4OX3iXKlMlPSkQJKcwIroTdUUr/B/CqjhisyNzdiXhYuOcnn5GI+j8AACraElEQVS/C9ATPo3dSZaDmI5D2l2GmdIV31MIR9J5ITIHJhfXZVrBVowyPOfHaZezT0oOeuYwMK3zidO5cWXIj+AnBy5+Orsytx8lx626Sewow0LMl7ZrKSIPFV3MA2SLYuNi7MzdunCWiayET7TTt2LcFH3PIqn8X/6X/wrxJrM93RPC1QTfpaeppnIfZDR5ZJnUBGBjEaKGGFJjo8EB13RAQEOplHTHAIq7poaPYSDPs+E+8Wud1JmdyLSkkUt2ET+Cb/FfKOlmWIqPznDXI9VIM9yYrWGudzIkE+OGCpqkWiaBYw7o5VpubXLssMO2mXX2JYKW+JegTq4rlRjJ5lOeZGHJQ1g64Cj7x1W5m4re8noWZxpTXU6ibSeB+FxR2aA2FXOI38XcM5KM5OTQkdVZmYgYMcHXSJLuxJSus7Fi9W/I/jWXM6FYdneAMsOCrtcU/qfsx/Z0iIh6JSAb1YKBGNj8Dy9Kozmkc5Ez/WQbqQd0kD5L6p03pUeZRfuKS0LzwprBM48lx9hLZMmqOAnkljFBAUQRJ5ySztKIej5dKvDYBhyZ9c1uxxSdqQPNa7KfdJB7R1ibCCanzskNnR2HTxRbOzjrvwTVvpy1D/pU9E1Joec4/M8LQrF0G/pzbGd7DgAVdGR7AjDsXxZmxR7pY0DJduwuVVvkMEUjir6S5Y4WdDZAN71sah6SDAgXlZAFrW9NFhlciymTHTm1jPEqU6eCBn4aiqbA2B/DyFleIvg4Arfw72mULCu2RdCfc5blOnwjtMzPSClRHEUgy6uyFo+zXZzjqR5ZVBlbhG1e4q4bqhWrZ8dDfPvO5774/PnRxeL68dPnp7Pz1+4e3NvbYg7Wmn11AD98730ryXjt9B95BXZl5GYmqxIEA8LYDrZl5WH1jAJUVVnIK7nnyPwZt2dBGhRIINBOyzcLw5zE0DVJe2UwaStDaPEVnMHEstfAYcJlTl0dWrYFdyhdtEVPMp5nuR69Xdf683Ovbf3cG3cPdvb0SzkRLOTNMhCMyqgZJDdEwPGsXHjS9iuUS9W48XMEzMA4S5JZBeJazTWszmVHUmoKxQQEGJfQA286HYzBgQw7JzHbyt1ExdSIQRA+pmBc/qwiVsNyg1El75tZGuMxmcMTrHJIVhaeokzHw5oUdruighVHbVZcEzecTvR1ap/ecz/zym3ukANbZaRarVu3Oy/d39lN3YoEuMxMmVlE4TCfQ57wReI5GIlzhiPRn2FAeJVViBRaW3Q2unOjSrenf7XqDeEc6jvwIsdba+EmKRCfy6cSmnWLZ06NXuSdA63qRvvUZL7VZB/t1hWCk9daikOuKwauxKxJv+fm8dn5nd1tHFsKutQjJWWIWnjT8TdcNKQ2z5gwH04dVO5a4CtUm7XK/+1/9a8yFqSbVaOK1dhTBJ7yczLiKlGcMapIKDvfKmOPYBtqZ0mQEkIBQowwHr2j0bJHRWqlYguDXjWpNAc8pSNwHhj0GXKSEAcQWCJ3vRhc5gE0KF3rpbMql1pVBdsuxZPEbZhT4U/zvmFDLEH05PwmBLRerYAWB+ylgciUQix393djOgnRcENwpLnWxcTE7YxclgO7Row527DuFDJWWnVWBo8S/MWB8wKqywrEgAS+sn2KlA53WhBBAYPKgXWuieIit/CkAmjfjVMZX2QVYkEboqaT6YpTD2SLXZh+JSEdeCjFKi9U/K9coeUVHplylCRnYt0x6ximJACUYz48R4GxLBAaudjmzgJKJbSCjfTyUSo2kpsDYn2KvKuxY47MNAcmRMYy0N4iphcakRaGAnpyGLOv9HWLORb7uoCsT8U0ZonEeMLfwYvExOMWkMlEfTBs8LQMknbCKBKhTP481zL7I1IHgyKuAVj3yHfbnbgvWXj8A0v1b7yA5g4Vz/kWL9gbCb/gpop1shNcs32aqfj70ImU2jjRot3tGmvGB02JuiVw4BKg89eYV4nhOs98Hc0VLxbX8Gcw7ae2xGINQyb8E8WX/GRUrNFAghXRLt4S1ip3Cfhr2RlDITWpyUUlkqMsStiKXQZGUwqRQk6CG1il1+mz5oDy2Gjv7OxB/ydPj7S6Hmy1D1w7urF+Nrlo9bZkCJ8/OxItcB+F28N3t1uSlopCEZnRLw+Xjteba3nUVrtPCZ2djdmbSBkNSsbwPxmkwTLNJQpJAYwVdvtdZwQUHO94OFUHqXcdt6CYb2XvqBB9n3oqwVwbvAVYlMMDZJ/14/zMqPzWL73hwvhtw6gNmk29aRS+Tk1clMBssTUsgQApmlAvFGsYcFxfTScC6O5Pd3ExY4KJd8NvDnE3rl1cpV1KH7Iz9ASWZk7rWp2FcTIBTyT2LmKIgfXTsnoz7TKD+1kMqUDhERazNyofyW0cTqu2JNn4Zz6ewmV3ScTHoz7hADslX0o/1UgrFiFqdN3Y097pTi+uzo/PzZEXhpN4osCajZob5KXsshCskkne4XpqDOuiocOxSzjLMwhjVNLoYG1cNIT1nlh1Uc4xICmoDEDUEBcmN7pKu5wKn2sXY2IAN6P5GD8pvDrl9q1v7+zzqF4enU5H584Ikuk1xgxMAxDFJmANyEuAC5s1y8x5a4CSexBohKjkhRFstULo9Csxw10AsyNxg1HiPyGKS1XlE31XMGFhBVp/bSR5EiYUfVBqc5yil4XT/Qrg0J/Clyrv4165Ly9xTZloCduNyw0Xr87Q2yUMuNPAC0OhUNP4ThuOoojZlbkclmDp2jBMsbi4jJGiL9CVHI1Kxj3e1HOcvEklQujHcSGtAitALvpEYCy2mHVLQ5J4Dl0uQvVQrij+BgFtTaogXNLbnPGSZgEN7Dt0wWf9zKambIRoglpWErVJrN0BPZmpqosiyO2nSxE6qWOfApGZ9YGiN+vbjf3p/MwstV7HwKk0SRh/n0QFaWEF1WlmkScHtrm/24N3BCzhuRuT7slqZq6lVrOuCbNtohGKMBycIyLEpwX5xX0O7iV1SZD0Fpi+kHMSc41950QLYkZjZMJ2SmusOZ8VF+OFzOfESIoC2kUjwVZCKwGycuWegB87BftGrgKXaftl6sZ8Q0MEnM+AclEqqjD9/Rb5IEHeBQ9djZ0qVf8AB3LNyIDV0fBJ45ESx+33MQDjTFzf7G5tOwhpt6wvZxcyhp1KYFowweReatIvY5soz08V720HvLBn3biC2+Nmliq0iH8SuA+x/Je5ZxUlWy5iahKZGpwgtVivT2E8uxN1JhXoG6omvRbDpRgSiViqtnLBAOFm9OMHLWwWbbX2TvY8hEogfKGuKsDkKqIwcjTZv+RTRIMOAMdSYWL5tCB2wz9UOUgSkjwfnB+6kfRC9WHLLFz6eDh2XWJOzY1EdgTpDnZ3z4fy+pdtt3pmRoV2ntyAzbPWrR3UYNUvVYUET3KHRkA+PmD2FVrTZ2ETQXjrh/EXZ+cWj230WPgcubHM6Mk4KwmmJaGdDcI91luMr8S4BVSTmcv8vmvVDWpYt1oHrdpBd6NVE7rJbcCJrkF72TLt4I043zCCTb3d78b3TQ+mCeFL9lZ/u5/IhX/Qly+oFjNDvOcDLQ/8ZoP+lW3KFecGNzNQE3Cv9jLjLFukkGA6syOnqWyx0Wn10V4NKQ2C/uQlpHP2Ti7spDsB8xPhunwFrY81Gb+UMBRy5yV0MMSfIrrgo1dSh9Bpdug83UlDrQ/ra+//9KPZbO3+bq+XW1mAm20BXqnGRAjNfsQXVCKaOzgFhzDagcJijjseMKJcoa2Fqw4SxEsFIAMtJjiLN+IGK0V/qUMMLOFvMENTxn48PjsbaI2/EAper5nlrhb26PDjNMFfXu0aU4wZLq4BNBrKLcvFKCOR9td6EKNZ/Ja7798xZMB9bbGaQrOwa6Xq3tykRRiCGzemR2NMATTMRpGJN9CRlf/33/l1YoozOHRXhh8kun4lnEFAPvnkUF3a+GImyuPy6IP9uw02vY0yOYVkxPVT94D7mrH4YvMwDAzgtGAaErCmXh6EU0GAO5Y/QqaAvQhOJcYanoT8fpAFqq68UqqIaglSsGLiQtni2oYStBLFq5mdrnQ4rrrIA1Qog8ZAR8wHGq2EZZ234rYsQsCU2jGY10kqTnCBNIXInLQmH/YJelp6wOy56Kho+vhQ0e1JXvHOSuIxqkqLNnqS5fJqltGiYaIPlEiIwwRHw/9SB4vaLmKpXGUKgkCBU185ZNXQsbqd5gKs5Cup7YlVAkCKOV/OlsIqM3BiKeMxOWdszsqLgkbGSjrIUvEdrqdLYVAMQJ8gXN4Zy1pWOe59p96UDUPxkjR2CU8apGExQw/NwJRYn5enFlgSA9WSZGa9KoumFNnp4dhQWHGbE2CulZh+UYcu0+DNXChN8zAgGys7ef1ivVlEGrs4HBm9Evz1H2BQOi0wqC/xrQJW9GKWbad5n5Qz7LLR2CKcoQQUooF8Jo58cU38HPviTsiV31NUsnM0FZ+p+A0+jnXpsyypTLsLJ6Tp195L/QZJLCVMTiAfVnRY3hlIRPHwraSob9z6EJlrgmLeHvKmJD80FPXyWS9KeUJC8xQrE1iGILehkVn0KZHJSBnngBHLRV1cXI9G86G0AKPF0Dk+N5lQNNGKPcsiV8zS7fdBilVxo7mNKi0GK7UMamjH3L5QsngkOX9IkGkoTYV53ohWpXC2OOXkUcVOFBPyxvl0AA4FK2mFtF30oZgQJD5EeiaSj0V2IsJkQiCKwBElymVwdL9+v3/wC196uHkxcLGEMIvsq7NOfaHofAn9h47uDcX51U0XMguLo+qzT5/Q6+bo+9jOzkFa8CzaMLXlGMFIgvKQo/MzeinTqjJxBiYkqWgFjHoyS16iYBx5te5WO8OXqKJ2vXOVoGyoWiwJvEtMMtnDUN58MRlxOhrwzRIASA8QrN9gZd955aEwqavhvEeIwb8TYlPxCXmKOyUicTY6/c63f3A9nhm5qOXYgeq9T5LXQBa7KiyKB6IX6PZM+a3QffiEM+PO0dFw6HWZDLGWW3+pVqhikjWZZ23QSUJsL16cmo/AxG42OzlsvBGXw5SkUUTbZWbmn6rLUA0udNza0iJO/ctuOBHx59Fg6OIe6A4eHbzJIvR6XYfJ5lo6vEq4wt2RO1vbseyZYm4HnK+UJiIwRGpV2wzSs9FA0GF/dzszYv4ff+NfKVV3ablm2UGq6Ww8OJ1OXJ+Ty0MolpuhEHyr2livf/7N+64ZMnxIbplNGe4RinLVOtvw0gFwqFNUQziB2G1U1gKLb6gfwZklGY2UuA0rCp5MLqe9WhfjaWvTGkMuy1UMkUuKAeBSBbhFOgU6si+FpS1SLyjBw1tqQCfjcfAUmpRCPSTwTwwlFgV8DNKTCQKehfn/2KCJZhT3jSBj94q+c8xyswE7EtmM0cT6MaTs1vF0QN6LTyBl9AS1VKKmsSFje1wr4PFejh/XUiTQC1JRlpyF+yWJoo9zXEpVjO8XiZSqJTk2yI5CEWsG8lQUxsJhcM23ZDToKi9gzGTluQzWJsOHZJROQvAof4q+VFWS9qELct3xWm2mnJWvm2A6NgA2l8ncKKZeEzuqqhf2ay/KCWZ8Ll0bHIFrloT6mDoWxI0pHcJ0KVYrbmDQPOKQuCp9kRpQH05FnWWgBicyMzgvqRYOO2SBWj6X/wpwExj6ruAsESIUJZAQ2K27wy/UYwHlxihIEzXg0eorFuaolPYR6wigCX7SNwmOWKsFISFhJkhMEjoDiRyueDefw06BtL0AtVu2zKZUnNCxAXEBu7zkVhs5SSAkFu0rhUMycoeKskfPyaHgMFFNpL/VFw4/39Uhpd0Jr/qpAphoINliW3a8dh+qsidYZdOLs5E+lySokdCVG3hMCclqPu21pCoaFHyr30XGhfmiklmGL60y/Ct+CFM2T7Rg6iS1ad4raO51gIer4fiwgSA2d5R2Y3OEIGIp9ma5bpFL7ZzVKohKYT46M0AwW0jko9HWuI5x7KdrUqX+edTp/HM//2Y8AjlIfQ2Va4UfnX4/sZxMAAQbKprmQVXmCAFTKDWfeQaWK86nn0iS1VM+brX0t8ip6P9yYQ6+Qjr1Tvgmdp/jzPgWn8YdKZ2E5I46gsJMND7EHVNRgU755nj4otfqqy0QpW936rPR2PUsLFRBg+hwZNDIkkqYjeWV/oBYYQ6it7XNU9R1WK21xff5UwjqZbkhBkvGcEntHwQy4emDH354/PzYrWp7O9vz+TgV1cZ2endQxM0ObMGkQES0RVYYARwOHEpIVENhK0JENcqQ7Wz3yYnMbjw26JFeXNEYtTbRIckqYanqxnuPn37xs++q6p8acZoDFYpoXZmjNJ+stXtiIfv93nJ4sphNoNlidtPrdrgL0vB0kyBuAtXu1ch7r2kCzK8wlrgBgZnK02SWE3xpOel1wEjDWiD2WbloA6NX/u7f+itORdLzbDrqNruE5fe++53HT4eGiau6YCSEXGuVnU7/4cHBG6/vpQNDDFRd3WwE6ES22VtYQaYkKKImIamkNaM+MWsC38JepjNSA0IIQqvJPpUYCyeRnb552an18N5oPiJdSksRC2AKO6WW99K9VGmOFbIiT7HaN1qUqQgK50BQ3qF4pV5Z3EPrSgUBYua534uXJ0oo/RDnMBYjGZBwLsF0GiGLTMhBNXe1wQpBRErVK33U6a7SGKiwMpVk1E5ma3KQrcMbk8O8MaCOxzcXY2zcCMXZnVnauE84io5lbLlHFMdCWBgTz9HYTsdfVAfvijwDJmhfTQeY7XChEkaKecLwMek76irxRCfiZkTC3BAyzagcXUJSf1EMt6wbGtih1qEYklyBSIKoIgUpiEdMBRP8kAojthZnX46J7ehlEVSAUsYGWJtegcQ9SoDOp6R5sJkkCgGN6klkH6Ax0qM+NZIwrlm88tJIadnxJEp5D1AHzuwajBFYlAHyCaR0oRin1CA5xY8ltuqovai60QiM5iFeYoUJB8U/DHwnex9/zT6jM6Mdo/Jj9kUo4XZ+CP+iMoXdjWJu0G+May8CJNQoNVvMgAB01h/15hXRJ5jEHzybSUEHRM95UGKAycmxD2gU1PMraUrfpbTRzV8tydspOR+wXyUIGEwBrlGJBStUM9CthE1ApiSQ4OPl2ulwEgoK9UaT0KY4d10ofX+7Bc7D4n7H/ri8ODydkD/WYKoeEvhMxAbbJDoXrOdkBrMsmEbBrPSubxtVj8JxbEvlWwhl9YSKYZLmmJ9xHQNDvIh2CThQBn5BCPUvcGKW191e7fX7nS+9erA+G4l4fPzpeX9359W39q5GE9PYWMOuVTk42G+4kzLrIjoRNx5zSJKUQOwA0z0FlNwa3+t0j49OaTvXgaE04XF+1WZPSGt8OoAwqqqoDIflCajOfRP0sjWWTgwR0/o6W16SIqyVvCB+MqD/qtltCMEIDMS2drV9VaMZAmSPOUefvda03IzzZfQpC73VTfw5j20kbulrUImVULnKKJL4uALizmgpMHv44tlkOiJIaAPwHFlIU2u6Dh4iSebJyhRjI1k9k4JMVNra3qFiINd0MGz227eeR2rT442xkuCknrUwZDQJhjFSiSNQWX98dI4TpgB+fLG7vWU4h/D0N959k9USNuXizOaU2LUENYVW6wznw5PBSXPTdOAqz8OOnSw4m5i0I2KWlCIv6aJTbxNWcCSiyAhEP/acTWABL3U59kSVTavFA/jLHf39/HOfujR/Y3l0ejaYzFudztmL8zdeO9jbb2OMxWihLUW7LkMn15bBuyS+tERB9nUdb8XYys8dQhApRqKzTvkRrmAu4BSSRXNgTZCOrOiAq12rwiqaLabKfpu1hiZfA2QwqGkx7BLsju1jtuEd9UTguqJRQCkOPHIXVaIrTjwEiPPtP+LswFNXScQ6iKKEvBT5iepzTdLAmdG/iUMpI4qFWm3o1SarBYwAhdOCCzEn/MzBQxBNmyXfLgUivSHFrzCJ8ULyTT3Dw4k4i0WyqiQCEgKO5ZiLZRiBzjskYjB7YgmVMHqSURfeFVGlrgOUGCT2bKyMEDFaBHNX1vrzxYhIwMiEEb0w+C4BiJ9QHhqWAqdA0pp6EfuDOjgW0hE/zwNGPAkmZjkIDHcLW3kXkIUpbLnYiTEYjUlLfZhQIlSlvJ1jIkbuBNUNNC13vAA/BngZ0A1YygGlZQ7NPcrnC5p4a4TSSlmdScKL0HIOGlXZztJhLoCeBBOm9nnuLBVShEIAS2wxGTaARYCjhCvGAc1Q1JJCwPxIvW9ct8Q0qtXxcJIaVqqm2FNB7mu9fnKPTY/OGhkLQjcJWSVleus33Map1JCI0OcSUJKjqoS6cqL2LipCrwidJaqgBdKUtPhuqJrHhSzoEqcZH4KHWHPXZHjJAuh0dGDOnDQ7z1FZTnxTx+mvijMSeTe+aiWsk+YIpolbcFMlmQs4fdrzdCpNFheHY6qicnd3jw3OY/AA23QovsAajR5Kft6VZ9Ye7PZXHZpKM0UpB6MxdGNgslYsGptFdV3Kl1i2HI9qtM3uNneQvqEO8wjvJlD2u7259ud/6R2WLl47d8Pw5vpHn0w2GtVdd47q2ZYH3m6HK6q1rZ1tAWZfgZjEAANsMdX1vqTfqlQD3kh8Lrudboqkcq3fpfA3dpKjEh1yYmhp4RYhVuvPfoVKPBvKVKkereXOlhi6OmYLxxvMxUhPL7vdp7CVCxGDd8YnMoW01aLthMzcAoJUeNGf2VUX1wgyONjegXdcQ0FhtoMT8W4wo/ifUyT6tLnZAlgqjHmko8ng7PiECWLQg9AF2UUH65SCxlEW63Czw9xYqhDWRIB0xWnIs2+0HU4GVjIeJBZPMK1dhlF96EwJQ8uAF/pcIw7dLDJ91e72POHk9MQBLG9W4/liq9m+u7eFsfiQEJZrhaQKCiy4oCib99pU/ew5JeASDcZphL+aokthKGtZQ41bksLZSEBiJBuii2irUEsIwFLDcf/23/grN65cJ4XIY1pyShQz+5OQwwWsi4tch7KcsdbpLpoI6nCazPgUBmLjCxGwI8FQhsxFjDErZCz4oiWM0UYB+p5zpppCjOTNUloj5E6NYsFU/vi/un5K+e7gEgfYTBUk57+QtyrIS+Gu3iuzP9ZVRZA3S6AXsKacgUd7ACIgg/1HjIptSwLGF5UnZ6M2B7aWq106eM38elzquZDO0hj4PNx8i6yJUSe/BVqypEp1NBnq4zQkJPkAYwiRSBaGglXLrOiS7WGWqmBBatJjT2nui/l1zQWLXnYNTURL82e8UVd30pjQyrhH0R5N30qn/S1lr6V1JNLotMhw+hniTSauwRpyeLxFehwZoYZTsPoQjlr34ZQla+dGdp9LqpY0ng9HdExPyC7BiuQ5lAJA+QCC3ZcpHWSfStQfgZlFvz0b+aEwaiMDrvF5EX8KwDggZp2ns9SkjfVU04JwEJuqcAfTNm2deM7CbJONX3DcPVx5uGX6IpTyH1wPQRwfUI8mcEV17osXrxMFsopSFJs/MGdW4pB5L+dFvCvj35nkrLxEIchnMv2rzPTXUC14QiuAY7hqv1Sy96IgT6UYuCECeZtMS2NOthknFTemEILYFJMQ8fEOGUcAsQuyQyExCUIO81guIGmwgyaAH34SulHFziqmftGJjOB0ifh87v3wUv+EJuIo9uwjOFRQiNwmbsa4TMwkcIR5BEZrmZfFHrFXPNA3qMB8BKndxNKIqS/ER/RvygDBT1wNlpKqYjCvaaTCt+y7XD9rV1Yi9Hxnt3P/la0PfnpcazXceDoezlPNqhqAf+jTziYDt9VTwd61N+9uf/PdPfj87NNBq1V7cXr6+OkZLHh00L1rFGWZgkV+czVrppbmclZnpe3rbDjWfXmws61aqcTZ1syhE792ofz9u3dJiJvglBUq0mdi8DVBJf6JMQMLFlCYEae76hIQMQhSiRijTq3dtNvpiJCK0OGHRqemqo9UJRLv6kTbrCoiuNTtNTgZ0OhpFIgEYg61ZJnMM15c/Of/7e892r/zZ771zYbBDZqtWHMFMpAzYWLmlJBI4IvdR/3w+XKFdo4uJgdqF87V3xfz4kr7lrMZj8cMNCJHA2FkoCuS6c1JPqdMiHEpruVGbgE64QEjKecJJYGkEtcCCvZkwi8aULc8OlrF6XJWFiad6YiMV7dSu+V0OMOxiZMhMUodpypXxwCZ3YKhxEZBhTPBtdIzmI3WYj4yApgOKGRtjEh/siPZTb/HnZ0uVFcsmyEtC53QiZk4CvYjnRzHOU2/hEfiBxLYKIjBop1md+IOLJ/hd9qKLuREgVEmJZIOMSUpG000Xi6n1+ZoZxamDi+1LbAjs/1iLZZICOIbDuHMsH50enzwtBuyiIPfqQ9WWhFj1mEyqxNmd6oXRrxSUdQQWBS0oR6SSo0Yqgg0SyRBLi0HqdsgXDIts7VMoFS8IjunHIc6EZAnxo6ftwG+saMZNNFSYlluVebWOQzo6tbJlnJJTq6pDPGv5fcNZqAP3E0ptKHHZMMLo8P4rnSIU3Xgpi3qYWFvQQdlGzjWkwrZU76J5DU2o4Co9vRYbkmqB07i77HmqkqhPFC08UptqfNOAMZR01HJiND5RtdV293WCoX1/q0m1sd5cmq2BDuEvzFV15ikjYQjAEosaPbvhQBSIh5WTJwoJrABk0hRPpNX8O5nWvltGe2AF42+1e/q0fE6WJnZwaJz6xmp7cyKD5DBkLK4ABSrxfBcu2YFkx1oBe20RwZf2ODhDPmMC2WBUSHJEzQDOpn0kqCv4/PKDAVFSlmyLlN60t3rY1ZRSttIs2aq6Ogn+JzACIAVxm02UpVEYeGuyfwCNBEeLqoFWA3QQrQQ17WgVf23sRPxCXeEfaqsG1oxV7qNFpXJGLVnvOHZuJ0/N0/c3POSVMEgoAGoekIoiDpsrxjgmDeLl5SLBYaaUbJoK9aYkFveb+0+VwLOFt8vtapcjaw7bmoOikqbaY30AERJ0d+6akWnwlokrh7sv3KbkEmzy+Q6I8CkWYm2B6CDR+hoTRCLDvN/dBe5YNlWq72bdbfIOWPVQxmHoPRFdKuaC+FoO+2yLGFOPI/SHWXvfXKxw+V1093N1YO7B68/ur+9vWXOlb6cFJhVNP12osi1Cjbq7kbVfWxSRa3ZrT4MiKo4SO8LX9/3KxsHdx6y5YU8KUsX/LKyJeiiucVUfZyRoaRJ8Uxm3FB7N7P5hIJtN3uRYZULsMPPYUJsyk1XcagehGi4VMKD5e5btbXN6Xii2CtZXQa/EdjdROGdzXg0zOvWK3/88bP9Vw4/e78dSYBURjeixZo7VeLVsepgvrXBNJcyqhqLxV+y4nxCCB51naalhLoU6AsZbrn1DbOUXqkQfOPq6OVLe8f4kKjU2t1aySHjcMjI1jcUEz73LvpDHB7eAX7WcBW7PKnQyo2psHDNMkgHR4sWkDkXJW0024Qra8d2CQawnOo4j82EFHrREnM1qq+lTje1l+IWFgtg7c6vnLLiUDhi/YCHIpFkzuzV/+ff+tcwIFFJwxY6kMb034o4eW6qGlhExtRSlC25jqhKJ1xt93dWBptN2HQpcsC+/Bp8H7snsKuwUtsSgVTvQBFlJGsgTGxOZX1Cn3mX8gfYp39WJKeYSThf3QWq0icRaFEUWgvJAIlngyoUERfxRlZLnplJfgytFG7TXkiKSVA/OIxfMo64Nr6sfHiatJkQn8GytasLtcwbaniEx6ZzxllFTDD1mblCSBCdkUd7sccbLkRXBpdwA+9J7RCNLUYhirfZ7XaWuTr1smnkfXLE8WHp8mYT62thlxior6YMowwWxepk2MKJWtpkEryBRBlgwpTr6VlPfU4+RkciIJSWdtVDAAfNG7JBrnkJ8wnm5FZkGksJQ7YqEp4GEspfPYCbtkw7if2LeChItQABRoRQiaVYWKxHtGXwZVhLVI6aK1hMwSqz4xYzylKvKdV5oXnHHW3JoJLPsIVI2myu8pttwbFPpDIjKDLa2qZsgTE4Gow1WmOeYF8pOorN6wm5xSGl/VwnO0FqfG35DpQQQDpSFaLgCTKIzuJzUImdCGsTh8E6qagx714Ziul7/B4Y6tAZiZ4s2GQXF+6WaplpnAcSKgYwHsJaOjx916nxWmzQWck3+Ikz8gAzReK1pwQuKYRYaqabCKwZFV5uriZUJn/4N1XltyxHraroY7lYz8i/RKYzhyqeTTIUGkwUuuAl7JwyCz0c8wBxPGoWBrslSh21izIun4/gpY5oPGXW+xoLRuya0Gb2CbUhsawwPckvniIBCT7osVq44hc7iXZ4Xq51EwRoiLKDROe70WvRyHVFMzvN9b4ko8LtYni5nbvRrum3dIICO+wA3rSDw1IGsmARl99VLte3dvaY545CpNoqGdXOne2Cfchy3LtYaKzyRbm34EqSgZnPYMcJ7EMGEAKplQQ4bnsG4lqpmScxCEzHYle7M078dDNljnCbgcwDRznucuHhtBYz3BCN7EYD442id0Gf6H2Mv7guyvAXiJMorvItjJKwRK4f15lkXBhbejyefvxs8PHhqcznG/e3333rUVsXpGm+YL7ajDtvvHzhO/bf4HxIkL3LGsRI8CQ8lLNwtZZTgG60jtOcuIgb4GlKp6HdB5eLt3RWxOgg7H4uGFRMK1oQRIdz+GICSSIsTpfewpBUBXQnIkBLaIEUkJoSVK+4MXEjRfpKbKel+491JaVv0yWRI+YJyjTE8Cw1ITMsIjERIHe0oQPz1KqAqlAKxPdbvM2GwAAB0kQ8EtgkhFEAjHueU8SIdxMrELFZThA2N3CRQSaFzQsAgR5BoUC8AgMdpxYux5HTidMadc1ILwYMW8arYAf2RShRB/N2oAhbkjUHSAmCtwj0GGYTD8p6XcEY9OEEEIJYoM4cvZODlbIkcfZoT/GYEm6PTkgJ9iVGQIBIF5z2VP5SwdwAGcVaqb8cXLsje7ERUPPfnvuYFfy4vNsEj5SuskRglgdCcuag+tOUWyRGRWi8zmOFuWkFb113M0EDrIKQrG2zNr3QQRO8Y+N0XPdY7kGlTxQigXVld8ZKc1et3RYhHC0C1OzDpmlEf3VQoXjGyWEOV+9yhJi01mTe2QRbaM8PVvF74WX2qsiazg7SJROoRiXsG5eIaeBjTI7Y0OFWRQIlPZhBkknAAXwWjRfhI5CXd7MBUSz1qRAky8OsQA0T+21QDzyqcpH1SUI4RpANkP/YDOGgJPZTclOGGvFuKFPbKeKBozwbVzDTsCcDXpCn/NVqvbocnKzcdCF7kUke+MAH8zUBubQ78BYTiGfEYLrZfElMEKw81WWNHOSGV7kzwHVD7hwaj4cx0ErIO/zDmlssPEHoVneSNVmJ0JABl4b3WaFDVOiHoNF8UOPK5cZNZysEgSSONKVfds3lzVZN61Pdyz2KeY6YptNyWJMqSn6LbURAEwp3jHiD2ONGRYF8YWux8TBn6G1ggCi8A0qNL7mD9M5KqaqniC2pyndX0uQikxhIjg1aHs4D5xpcJDftVZk72MRjns+sNpxIrO7e/g5DnJ0o/AC697YAHFDfWHG2xNGxtnVmoW4pEI2QxYvN4OMpCufVJsWUc4JiRvSnLKdmoL/ZtHiFz+FWLPwZV4ZWcMT+63TBOg7EXbquY5RBafZmwrLCa6ClMnU66ts8XWO/4Bg3I30kGXRIwQfC6fpMVGT/OB0FPDVxN9JotANmo06mhiMlZBvDwmtBvQxElHG8Dfo05WvWKRuUsman4g7e3D4a9zKs6NqszarLD37y5MmPPnh5WVnubXUf3L+3t729t7WrRkTdY+pxL1XKN3v9WrO9uXQrWhoMHZIF1lweJfjf3eJzlyrPxI+YYumuwgd8PNEoXefdTjsVwJidCSColeZnprh6Fr0fVbVxZMGOmfYlv2VWjzuO4r6z320+VnEC0HXlQNOx7jKtf+k55exTP3ZORpdzzCyLoHKVL0lanWeMPBET9o1n0P3sEXZJS9z+cjGeTDPRSN1mHi1EELFCQ4dMDcSG+n/9b/5aaA0EFY2oFRXEUU1R2i40Zbw8P9nu9qT740244a8SHcsRS/uhWdjqkATUHAxDLCFdrnpmA+Q4tSb9LMhLSeCaxJpItX8StSXZwNwBVqTdwa7y/+COPAoPjmlSHNMYPB6GM7hGxYcJSsZtSjSFckkAt9ywEtYAtsiNnfJ7KcTyJrGxZHgSXM1901TveLF2ejqyAI0YAiwUMwNXwJocuq0kATXdmwq8lmZtTrqJIbJFkxikiFQEUH7GVqsVazfbyMiQxF+tWp0BToIyLsja073MaCersJFxylxSLpa6dRzstBGESMuDkSjQwJ6yckdCjKzeIFik4SoooUpXZFTUtdow48Iu1i5gt39gKVQWpG62OzEZMgxrQeq0pAVjaEZKUgSPY8h6lSgUfKs3mDmaWeLVlTmIPsNAdSWO1BgjnZngyTksSKe7GSeS+ZJOCJelNUQ4Lol0+Bd9KQmVKfkWhDS+lJfiQgIJHv3UVCcIwDtRv4FrSRSe4yPTwkG8gkQeAuw5wH4I2UmIRTBBEInC8DGwIJ3qA/7HxvI7Mu4rMi5Y2W+DvsAmhj+uNBkx2RpryILiHHLswnsyySItdJlUnXPxS/3SCJKOcN+kkk2nqjX5SaUBJbUsso9cBfFugBbNx22XwsXxcUY5nZDULj2JC03nYgYlA5KX0C2BTNTANihmSbZuw74ZZ8adnRIk6XYpPgd7OTqGTUBVUSuJKWjHiQSlDJQnnXYBbAiPyCaR4AjZtadnAKfB9JiORYTocYFZROy5EkQjRVeJJKSZLA2VzHNcWpAWHGd1aViJsTxdyaXVmkA89biAg1ZnnXN+NUIyZtQU0ge3JpgLPh8cHIjpOgWNI4LUfI7hZCy4sNvZIQ6Z1m7pwtlN+aewq7cw+1hRRB+Qy7qDVSfE7mcgs/8V6QgiigYmv4hSevvoUaiUGiEhbg1c7dH5KH/NpdDpmh257aTVgr5wi4HohnA4hhmZQdi7iKs/80NqqdGZjsGy3PtwvDoejj98fK4vkZJkZI2H4yvFjMur3a32L339S421i+3ttoipBs/COe2LG7eMTIrPY7BdXAyuW0xQllRu0VEBr6hB9Dup2lunRDksoMBlEwPBVdY10nIgCk2bmUIEY92cQ4X1+tucD99JeUCUoFmfmpD7+loTqvCTNEjKSRtMKY5OsnxVHiLd+wn1BPEcUUiNc5yXzAyL0MHS1CTGWeCA+Ogu4rZia2Jo3BrQnAPYRdj+7v/617AOMmEHsAyFo9fjul+lqoSB0UgrXaqvYyFfJKrKq+XO4GaaIIEa+ZPIW3aSFEo0mmNjaPBqMKZjSPELN1stXaroIvzD2bzf6sX28TsCpOgTv+IRUQyLJA18zLDomr4RRJSjED1Il3lUi3F6lU59C9kWK0mPmLyIH15jYxqZv1lP0Ce2MOerZE9ymES5IedjdJ8/Lhk2OtRWUz9lAW2S3FpLodRkOaJc6W147MSuTBphfmasBWnR0t3QnYNxapvtxXTsawik2BTEIIvR3jCnY9JDme2McetuCjUhUKvr1IA5I4OYcebHGWAizqhWnasAfwJ2aaFJ4fmtB4Uu9FGaPVg2lpE6dspEWkkwIReRJzZaDHPOXeanoBTiMHz2GIEbrcFoip9QFiRZvL5qzKesFcgjTDxJUCiSGWtAEVe4JICLvKnEBcQJBHlh8C2UXctIltmEtWxmsU+WUE+y7hAwGiPmSV4UsVi7cdGbigJYGYclHXCOCHuUsJILS6cz2pQqEtNgWDCasmfck+/GKMG4zEg/sgXR0sH52G+3+v1YGn4dlUFTWDWUTAEfVwC6MUWYuRiDWxCXJDOa8twkjVPSqqgsHArXZ8uZ0RQbKvLr2s+VI8Z7tVMTQTiy/hA2js+h6gzuS57kdkZalNx6LyODaBZ5uV1u9KXlFmZIGbs/dFrbqgM92EQXtPUmCozSv1jOYkVfh4xaq3RmmPIeG8jN4NStHA+bkB/TqCqgVFkmwOLOEJthVLvowwr06ZMa7rpYHFQFGTSQU6NO8JmDZQKtQw+yROUwPzebTgiXwXw0wTOUN1Ua5tH4mRYXhgtbmqeN8QmrkZMuMZIqT3Wp7UYhSZ/U2TEw5Wc+fTkJSjfhcTEq/RP+oFGLBhxPB/G3DHNstMWxSmeY2A/THkEBqPXz6mxWWoX+mbqnHd5hbmtJuTEDwj/FgRbkJCzMF+/1RZnnqSQnPBGUqSiEbFoQEk2GY9NPOApwq7+95QU43BlZAxphXwc8mY3ExRXOKEtFbbqSS8yUY8WLnl26sRnA1KrdZuPk6NzLbMUgbUaFoC0nRQ1rjIAM/WJOQxVGcF6QrE9i2onpkVYRLRp+PpuacZBukFIwQs4Eh6Ws0xVBY6c+MEVQzGU0AfyAmfFxeszk1pu5aTRyRL5C9eBHXlMqUpazmanaOnhwcfxsLlRmjLPeginsJpDBOIkFlVgZe8K/CeD6aDwyIJoPVGIkwUhMyd2Iy6Em8j/43/66GINnzSfkUHIxBjtSMFcJrtGYgIhaTSCC4RgOq3PBGNXAyo9SVofXCG5UFT7xJ5DBRrvCYqzK4HtROqirgMfcKIEFsvR8cLbb280oOYaAsrBunZOZkisaldjqlwg+uUAuo2gT4wwvZsKRyhmWl0Ao4ROJRptY1kEqL0rVUlybGhtMsG2DryH0zJenKjybakM6XlnCiCxHc5scWqwunr6xgAJZmYboZgmpfYEv3IGH8Cz2AyYtxjn1dk3BbJRRoKkKSLxGkCp7T9jK4zJrxLxC1VNqJIhuYseBVxgBrzhGt6oq8SU8HYyMYeHtjsvRUt3kCrQFWC8vU9WglUavQ6bFcjxzrwr+dhpeJxAYbmCwUsa5DyDgebMSPPFlCl2ReI5a0QT66+sFZwlIAXrZjiUTxrlBXGcWAzMmg11LuBWY4AwwMUxkYix4kZC83nEBXaeAmyWROr02hkuxJ+iIlN4IoEN2bwQ9bNhEx0UCMwhFafuCg2Jyllyi04o1kMpo/b3gsYazi/qwpygStiEK4HWWS8A8reRFQ8RcYOHWEivALH6rfrzEiAqjJmOP/4uzkgp9m8MP0QYm7ahOwW6sI7CHxCJqeYB0ScbtoSFLiMvOGpFMxjM5koQm4v7gad8iMxg+0cSSOAGCSIwxma2tXsPV1nAFgvnn5oI+TvJDzToHqVZrS7N4d5hu3TMpd1TVddFyUJ5mSoGUWDQlDSX25V0goNhGVkiw8VnxMlO3o81bDih3TACbBGZtVP1eguyYDXEyxsmTrlez2dDwjHazwxZJpqYMyo0apJfz3Uu/JfQOi0lH7SldI/tMjUSMci2VMeb4sCIyokDSfjPaspBYmUp4hK5hlrG45aVrmY9runjqTIoap3r5nbkohDlF3XvfErliSTZrLcc+nY+uNpfdZj+qCtatqa6BzRlrkDuIXQJ8MaN7MUmJvEUlC8IkBxa0Sd3+eDrBtFhFCG0qBNRqnQxPtxoyGeEObn3ELeCUACxnhaJ0/NK86t6l0+Ok2lS1Zg4ovhVgwcvSahoWgvqhIzBJVAMr6kl0y4pxOjgwJnKmsBkogfIpXZW1CXchLPe93DDoNNutmisFqYhOt7GUeml2dQtz+VpbvdiqqZMud9xTAPX6xeRqMJ50tlq9Tpv8uoJWyJwmMGqB9bCuloRzE+HXdMbgTrYPdgjwYM8UvntigFdyJciJbRx6LslJBCKJ2sL5cgmpTbLxWH4Q4z/8jb+m1Nn6yQ8QsQ8nFM2fHL0gHXBPyQRARzJIEd5BTOHtzAVKtpaEKxZyut5E7WQd/HFVdBDBCzLmJ0VcwLqYLt5lQIpb3QkY3JQscgN4YpSqZ2CgB6O1xAzbEDJbj7sEQDa3Wu5y48bVFimqofmvwJq2MyakuaRs8kSWTLlLmlyjig1kWBI8jdsumpZ8U1F+8RYNpGUcu0Es0TGmIt53dPYSC5YaFelWRYsaCYhYomiszWom5gCBk0QJNL4BiPT33ZTb7Wl0O801ap7BHfA4ZlExPy3SFMBceiwzENYS7cOg9drkfKAUFCwqB+NzVaodr4ftEA2NgaDr5mh8q+qsK1fgrUv5JTOM+RLuqDVCAkedbEeyWZgenOc/AkoZ3sfiS44X+qvf8FOxWNEIWgNJ8RBlLOKduFWsQlJl2poPLtRu2wEgTlLZZ0KdzGj1KcyFB9GUMiOsWk6SGLMrUI7h6FIqPc0HK0ZahrHmJga9oKkRAh3IhSaekT8bb5e5sx7lV6YS5c4G7yRvUQ8Agf+INQvXYyxvL+Fn30Y/OYN064EznJ5ocpEA/3IERQ2y2prwArBwn2A3HChaBEfFJZdwCrjnxMOEFCdvIrEU+MRuFahlXef8peUvUwgbvGao4v8kMCgVcB81r4rsRhch3IwbT/3H9xWFIeEOQ4CkyEhltT6fTJqdLncAM7sKJjZLGnrjA1q8vTkvR4nR0F0egsmmqpHoGGyAWRNlTY6Oze4ZAhFBYvsnX43GtjAxzgTmIU5GbDItIuSxGMIkroXJADWxfxkI/MOUTVoo2f2SYERq2i4tZuqeVlvNrUalTbGOzfdSe+8s1XVcLqTeULMorPAVOEoSDtGdWeVmdkGjUDZiFEqIkCpHAB1V2sqpmXHAYXexIu0F4IkLnQU03J6Hv2Z+gaVpQnuiizkiiZ4leCsIZWS6QDT+FzYzb0JITQUX7aITCZVjZiQUHWsPZ7H6AfRidtFUCVevjs6H7s8S6ol3w1zeUIFm0OaVrwvdQA+eM95ym3F89aWCt44/HB4eM6N6fbUv6q8QCjhQQJbABBCzUnacLK6wIDxp1dop41G7MZu33Va5ppproSWQi+QrM2knOX9TmV12T6QJuALl3HzRCPTg8DUhX2OfpcNkTd2NoPIisXb93Mz04Oj16vDoxZ3tHQylhoelAJHAso2j2IYyB+r55rKTbgyJ30u9rZRTFH3gnI7RpxI9yOXkk7ArkDUYwub8h//n/7naKXaZz+KTWB+yCsn8MidJTCInDpmgRIuUKBvjgl/v8beBMN9DHZiCeFZmf1jPIamv4DIAdEfof6Ayfr32bxXO6+xKPBOQ4lcW611Ejm7T/KxYkw3sFTJCqVtj1MbwyP0YrDSsDC8yn8uL6B9USEUGs2iyMGYWW+FyCEC46H12ikC210ZyCGtyF4mNOTn1n8hhm7aNOLZgsyUUTwygK8EXIQ9R0tHkft6UnwIn+tO/VAFPBehpF3uzQTYImGMQ8STK7PtkehlHcl+ruR6xlOISDG4TU5Tggo/kdBRuS+lggMrGYjqvsfZTfxYE0HTAKIdcMNIHJDMgVaIxG6kQ8CJaxMdEJIpuFxGOqx6rAkzk6ueld7NNi3qzZjUi0NLnWS9omFJZitojeOROXeG1r/sh9Oft2rY9OReH5NPCCcDIt8JG+WtpePMhbIFwpCCIHEe74PuGrhHLU4ALD5U380CDqQr8mR/omeRQrni1Tv+JSkt4Pchli4mx0AdsfiYFJZNxu2SjfmvDBNpjamS8j3Oz99uP2Z0zdQTJDaY/KLEOLA8fCRu/LCMbY59Ja18wPuFpDiIdSrKdmXgfJ0hNrWhpeQcNRDwcKy3FgKWRxbtZG9g+mpJvVrSU7lRQS7E7eZEdTr2xLUL8YPf2J9JnMEUcNVZLxKckelQnp5orneHKQHC3A0VUEJByLI30rg/rtlNCw4dI7Epp2rrMLeLEZSlWGjZSj6B6RroziQpo22qKh1gkOUnUVKRdkAsviSZ4nZRZbD6sIhoQmxYzCTjMlxPHqCDH2x0mhQRJM5ottxxfVs3xNN3k5mYyGISfM6U134WzHiUw6BCs3VfAABzlDRtIxUgX3UFYT76aZUCrGINiO1/DprIFsUZs/mrGdKDuopuvOQSDmBBXa9PUGpiYI92zxjbP/+lF6vRGJ2feK8SHCLetAIE5i820Bu14UytEotLbzzSuuVpc/w0hQgTSipA0B451/olHA0nuWMyDC96byloqEN12d/eIsKUuBmdxVKjqOEysBLuozaZTip83DHlIAHx7Mjw76G0rjeAAsUiJPGpgcfP++MK6xScXM9lGLqTQSUqWL1fiveITzGaWn8AjznT5cICkllYhMFMMjlhDTlAc1GAgBY9kiidNxlFwTMDj9KeagffJD0Z+0T/5ZtLKR2SvqROzR9KHQxJGuzUePN0/axXdMyS68vd+49dRMC5h4UErQCPxE14sw0700AlFMqjYogZZeamLFDWPKOIED1NmFwMUB0iFS0RcXUh9uNk1oQlNEiV1UeBbaUGaQFmnK213K/mPjLFj0hroX9J5HIlqqbBL1JKp2Grw4y5n0IgrYt8zXVcqKxBAYTifNQ613ZbWpvX1bpQBHZTCPpsvdnpqK/l0WSqQ4nwwk+OqJBJpiBtcsj4cCNTsFCFYudhLmBgaqpLGW+kOibYT2hXZwJpxmMCNBSGVyBbm9xz/0IjKjCT0huMJXcEMxO5QLB9ImsIzGO/+eC07JCfv5g+BEb+LWRLHtty7QvVtyrIsjSpU6JdaAhGqMF2gKTDuj5QncHNsEsjSburZS4sLwMLa5TdMsitKJdaF+Z0lGEVywGV+QmFbloY4d/LV6TMC7jw9O6lFzwVqDlylPPLiDBf+dfodEXCfAwHILc/HumGg4RBBdP4yCdNiKposXcitAX8Qd6LWmB2JZDw+oc90b4X+nl/0IPsoNEE8AQEQDrgjl1kDtBAsxWtxFCRshU6FGqw/G09G1CiTyGWUVlIvifU7FBiDF/GyhSeawQSp16SmeV+sGgPXovxooMwTZjhESYMcqtOSEmlMrA/bRveAg5T6SPNsNqfzCVy2KTqNpsD7mJZhZVIDcgUoWQORezOXRKrN66flM9KSLSP2mEMvRSYQ0nEY1EGOQgTaDgasrw9GI0rWqsmzjYygjKWYDZZa1Q1V9sorYTH9ZGtJVgXLAFrsUSrNURbFIHNbH+pQmhgZ1kdZzgWfhsFF61dNXJTcFDq4WtMzJZaBtZ6+/GB3a0uUCAeyCKWc0Z4m4F04pFupAZ1sAwVIk9Gs090ajYbau5DFdCMVJgjW6XQHw1Fs8DUdwe35QiUozLblFClxu2bpk6IZtEQZZGLf9UqjU11vzieH3O0gy3qjs9m/uhjNLqRk1126ypomYUL27tjg39ZzzeFCsgLQK9CgvyGPVLsV4iixVv5HCEYrJ7Z2eaE3m1ZwQ6GEeRrl0oeo6YLAqqvB57w+B+0NzCCqDCEJabyHwDqLRIa2c374Qgu9eDclYb4I5vcRoXtzJlLUr+KLmtepvmm4XF3J1UwuQjoZhycIwhCuWQkuTd295wuzcfLMieEwSzjpnhFGw/1MWygAj80vkRRq1vkkRq55giJO7/KmZM6BEbMjcUVWZhMsmfkx0yJwvWFttBilD3spdVTTk7e/t8NGEQ9UaRBOcgSpV7thkcjT8i8Q0P4r/9Fv/DWWO+Cg0MQ/cXzcSzwaVI3VGfmkbbWSSxWG0fC0ZEhc7xJDkNcRRtASnQp3wQ58TwkQUUrda3jRlH7MVZyFfBlryAEWgFjcXJjd05ibB2BKJNMBptyszy6ncFBsWOhNHL2dkL2smsHQNFwZCpokQbpenWtMs7gh5m+mYJGuuVDytlputYXY4Inh45RHkJqty9aP7uRcGfM5n5jb0t3eKfGQJMCBLI2qbbXdbdJkHFJ6URaMK0BHeRQtYL8xu+MwIE1UHzOW5InRI4wj9hU/5edSirK+IvrNDklJv5sX+5bzw2VsLaa0fHJyNevird5v7Htkm9SFqonHJSAdAyr8wTa0BweiWJOWMiWCYchTEUu5nq/csMFIYbR7Q2UynpFJ9iPr++T4bGerB8rZxd6LFI6dJKA3UGY8gjKaL3ZuJvyIwlOD+IdTn2JcQ7vc2Z0eFuVf0izQmneuW1tMP2iO8pdzJZxmb1GpXB/z6cQZCGEhkRAGUtsR7o4FlKTu0pGzy12bg2JR/KSQ7ShL7Z6kTCii/qPUrZSKwtacGqYFZaZDyjadBJ5GacFnbE2PWmp0WYJIoUDC5WlwK7kBmR6Otz3aPLLXm9wKgOjr2CaxL6zrz65cp9LmqdYHEqA8wOAVIiQSy8ygKMhcQ4baFgYQsYJ1B3G0gknMMh5LJMozY1anUJ0VTLT5zWmqxxs+ppdnXXUJTemy8lab+TKezbFKsSzTGWfZjsD2ibihVXBZSI1S9EAhghIXERZP1lGgTpbYC+yDOkrsiGucUpA6HhbwFG/3duk6Ve0sE1Di9+aQShIsNCHKYYpBZB7JTCQ9wYcNqUstU5Yj+1Cfx09GJaLhEuCNwdkJ99QeHQ4teDEfEQSGiGARg8A0Iy89n5x2JBtrLYeAz50FW8pxxCPTFrO8boq6ZoZT+hpIlQ6htcWQ08gSQiXGGeMTg8oWUQjCI97GrGx0U48jTBUhXLFIoFjFlbfSNmz84pKmSNC6o8Bm0ygGg+gprXKEVDLfU90UsLRRThULHaC3pILd4nx9gX9NbbPW4WAgWmCxYNyTTdDc6bek9BvmejoUY8jqjo/TFo/MvLyz4VRTmaCCej1BuNtyh/hzjFbhh7iy9lJRvyTEhEtpTWbOZrO9ODsv5+x2zB4bxCYTy69WR6Ox3gRkj0AmyXwjL8t64AVa8C1j8PnwOc0Bc1zw4jKD7X7f1Aq2SK+P+PUnz1/SLzsH92ajkS/ihFhSGVLA3wGPqHEldcnaLNx7U/n3/vavkU9FOwwNoqgS1q0C88mMluaEWTfUJkARLVJUZAkKUltEpPDq5hRNtcqwLYJNqb1BFkZUQD+qZ1Oc2i4RBbStBKNubvr3lNAM9Ye5IicDTalxtirXPoGvVOMqaCAXegx8EY9bRCTD4FPN1gZBSbGVWbgFHWQqr6kQoInVnCi1w/cVIqTGyAYUDrRhZDQo8QQgaGVwUOEuakIidlb8xAJbCVglfWTB6RhWF+jPtwE1IMVltjUPSuDFrTg/G70bcM52VXTEfwrwsVhleAVAiWvOkCvkuShIkyXkl4A+V4SvhGJQgcyzX/2SCIGtcuSpLcMHmAC9Xa3OSxDFxDFcWMajjyUgKCYLJXNBhAi18CtTR4gz94fE9JaP1AblqHheFJQMv7Zbx5r2UapqSrF0Gn2mFIbodFvz0XlmyKWwjG9GkJN+PTk77fZ6djEYnux3t0CamkG2ltzXbDLxFHujnulXHZgpHvB68pqMCH3PK1u2q53Y7SoaGy11f7aAYZAL/VI6HM4isD4hTJFC22ajA1wvLqYMZFDGGJwu570uZYaEWIudwZVJ+zHjnbYEYYPRECJlvpWgB/ZTHTRnExXPBick9MTIy01bAncYk163UXCrhByrhFMT8BEgaY6no6j/QGeJMVEewo5WKCIGZvL1wHZ0cI5GdEB9mlSKAdq5dCRhKHrV+hMTo9QZX6X8AVI2RWkSY2GG2zXpZhFQrOLOxl5gLd+y/ogdVma7xXzJ1Ad/s3KqFxKJU9h2yxhdCLY2d5oQQeEQmuTbHiuFcE2CUqHItLEltyxS/5AosswtSKjwprvVRXjNYsvJBC/YByYQBRWJMN6vVJIyx81AxMNE27l4ppL2VtCNlQAGNmsj0RxzTCQVDGWJNKlAUvAT+FVPIJJD5XgKvRgWr4vr8qwSxbVcUxgN01L1LoJATyd1rrxUAKRaG4+mtaTir+FDp72lJlqj7+V8RPzVxcfwckHIrS/baltOoIZVi0zyhQl0Bjp450lROCIFGsxudXrT5XQ6cgrTmcyOaJKK5LWtbte3RuMxSywxLhqGqGTXshqLVq/roHmTKAcVlcr5Iv+B9HHwqdGMpLhm+jT12QuX8Vbl+xjsaUs2EqbTNXxd/yvMjk7eaF0sVOgp/E8up9m2+OgKJUQgC9Z4tYRw/E5pHjdz8DXrVRGFzUaHrpI86bdbs+GIQ7bR5E+Q73iscECEgY4hPo4bYJ0cHUpyAET4ZvyJfCFrDoSCDZLo4XA3Rvnf+9/9euy6DNii2SIDSO8YRC3BDcAP9tiKNJrRtakP8cDELgWXMxktSb4Nbg+0KKLrKgl0i0/NC8KRyf0mdgFz40ub5y9qhZckk6wcDMnYyNRFnZCo9PJ5ZG5cQmX9fB1Jy9SHrYzM4MaiH4tfNaqzEHBAMNzklmBJAugNuRw+czcVQnHYFflOMEqUhwrjJBdJiHq7dlIImSfhXRAqEZVwNKu2LuokOwEX8hXdHNCTuawjhuAHcwLh8uypfDW1w1ZYaqnDShaX2o9U2wrbp9wBq7oLNeI5yAP7/6xAzjOWl4ydQKv3XkndgANxA3Ycs5PbiJklA4zBgXRORN45p8CTiDlTMfWB82PlXmuAvPWgPC2NDJRBzHOd/dQh3MGzSEbcwbBsMx3FnmVDiaUgVxrTExFOptQqcSTUEvjmWBB/aGKRii4CPHg0ehpiihCk7ZxVsXk5SMyn+nDvwBTDlqMqganJ5erJs2fDszMjKrZ7BurOWfiUqEFUEF8MjbsQgE7m2CIzSvUW7yg35OAKOxLWBD5THYCUsSSdZiaiUDz+HfUSM5nlG8PC5iLjqTg064o7G92SCL5XkFJiJbDOexD2SUZEnCJBOS+JaZPcQVA/tbC8cltkzBp0EVbJfxP6y1eEjFTou8HKQJtUq3NWE8oyrYyyJHQoSZ17mOStconOptv2PBeeSXrZckoqk9bAQ2ZoxcSPX8zsCEO7lplVuxhxSNo1paiyTi4iId6l3klPBgMsLjsIu8GT4KxUI1I43FrtLG0RGzogUcxkp61xDkOwIZaAK3S4yLFmAhg5GIzkhgyWDeSIynAuq+Klo46kL3LNl9S3eDsDnttl0plotUjudLxUWQWtCLYd4A4OL4kANkhDVDEybiQLWmqsgkvEiTeGoVHvgnYd+9fuL0xFX0Lqdq+dy3HMl9Pc4MB2vGHhmgS+cN3H2tVyu92cTsaqPSbcitn12fR6OlTYfHb3oCsB+5VvfE3pI1aVkQhrqg6tKdWfIgWmoV0wKtWk9YQ3C4SpYTE3MOm3KREWI9aFPCspKFOEk5hVWiKCP9OaQwOPB8PtrS374090en3TT0gA+Jp7ATXIUFXQTCLUdkuusv0ksdYve7td7s54vEAeSOCe517gN6UfzFc8KiRgNGqzu0Wp4P/VbApLVV2yB/FyoyOWGAcUb8joqu2JLeGejNrmhJSpa1prH58ec2U0eF9krFAc6BT74kSGz826/LOsTxzui/Qnsf5KzIUqxHoQDS7jOIUs6b5gGpYgeaXy93/j1y2ufOQ2AgudhGpV01OvpDBFcmCLlBErW0dZQCFsSrWSIj1GsZgFYYTPIldkiYXBxrpxrkI0Ln4jf5QY7Qex0UyJVU5MVsszy73BCawL++h1Js+C+DGkAtfsgviJMKAuiAnMaEciROF5G4s7Q1ISQhQM9TS8L0aSFsL4MokSJhAb3IqzalXpk0qXEMaK0Ri7OgXQEFI0CX9QeQ6PuksID1S5IVQjdZ0oN1npnqPvKVEU0YkEjYRfkmRGLE9L8IwyK5CaciRRo6ABdHLl04xPIwVtTxjCSy0ZYeMIxKzkJfB8PQ88GpWRWkMLpx8AjMd4ArsUjjkYZk1yCsk9xB6MnVPuxguse5LVy8HpBhRVY1rGxLFVqtF6uCFpBLR+08DarS5uE8GfOz/mKAUjd8SbZchUhR2C70wFERDL83CuACVM+Rg4zvIbmMYwOH70+v7+o9d2du85cRUcpCqHRJN12jD69OXRs09eygTaSG9rx54QVXgUULaaXa90/A7I7h0B+IuEwdpKVRdScdUcBFrBypgdyVIw4dWkamsC4pU1kgxuaC64lur1tEf4jJwN89OjEDu2UQlr5GwkZp3jcCiTyR0TXUxMxpt9zlko3BZvcYIirvasBjKEh/uW5QAcQ86O2IAU8AckCXve5//Utzo4L6yIU+JpDOWuPZkw7U8wkgCpdgvz+hW0ZD1xCMzklasoFxLA0MRqtXcKbZOBtouy54txEuNqhJKUTp2PfAhCadRi4TPHnAyh4+oSIbKQdkwhTFb15Zw3xDeMrshIqwuVdqEYpccX17dcBDgbccAJ8SYsSXyU+WSTdqRBodliIDtuso+w7arrWjO3PP3s1ECrr5d/PhuTGWJBwBJcyOWml2rXVOfo7PdoqpwtYnSWzZpqo3zV22GVzEBzowtesbqgjyyMrhv+BzhRsxA3yorcY1FrvP+jx4eHz390PDgeX/erm3/262+0q8vZ5drRYPWNr31VPp7Q6HhlWNsFLmZfWg4MFQxRMsvBpX+7jbbLueazEbmHS6SMwyrjzU1n4FI5lkpnlxmuE3xDTuaGm7pyq6s+JQE9aEXT6+1iNrOHEnkUzFQ4M58KuFHjIiHddtUAvk9Ph7/77R8enk3q7fYvfObVX/78m2IMS1OX4imumxErEpwoE0dEbEiklKFS25Ay0TSA3WkZ5CnVHwpqkmpiNjk2GyRFvBa1eWMDqaeTbl+dqC4r2QKVqQp207sjcY2V8HzJBIAREkZwcK//CiSn5qRAFu2TKjsMq0KJdBl2kQLzjLhwme1wGvAR2qKjjPBWGyA8JJO+vBRvRQoVi2CHXEvI4JwsGvNssl84QPJ7gV07hLJidxK5CnUtTqaTQCq/4z+ySnJBUHwGPYdC61xmzMwyWlhSIAd/iUGrvGy3lHqKkqN7LFnBHEFNGL2uLEGMtiQJL9xTwfT0UozDXaI9dPQY+lpMuWRQ7Uee0tcYOFEJLvz0ceIkPk2II5YpBxZPJJBxn4NG+IvdFquEyphmKrsAkN4lPjK6ELeMVagJeCJuQgE0MpVNHDLWTeUOyczwBDUh9U7P6WIZAF9K//G4/VknyaEUBUNAuo9YCRGEiC7OW8peeRGbBbgQpvggCRjEWbN1oSGl5A43IqvON2LIVTcwhxqOg8/ndMRqM6FhrHiXaMd+j84wio3k4oWFO7K1TQkiBev9dek2okQkrg01M19TvFHxuIo4lVQNakyg8/hsvFqao9L+7C+8IpWml+pmNBbwUrQkFl0uU/G+a8mY5v5+r9H/5IP3ndjqeoxiuXgJf+g/UCxRxhyxR2gEii16wNllBodLHShIwHoj/UAh0floAkp4x1rnJRzofz9S5kTdcGzFedLIHVcgVo7Tc9apcBDXDo9jhkaxUPGnMSRWfT2ajByISCElymCEHo42lE5Zqo5EIgPYwyEeqYBMptka1BRHgUXPOSqHkSQazZTnpC22hES8LznUDgNWtIbTSM7YajGcS8dmfGnCTfRE+jL+1rvwf2LJ5EG4yGQRmoYWx8xYt8u6L8MYhONhd1zABAAtybpE/1IEiakQlmJAK0p0eTGLi1BLcNWJI62VhC58PgSi3IwLnSroVC9UEjZEWGw6U1uqZsSraV5mrFTFvGiIPB9MucFuAVDGZAQcPXZ5OdVRrAwjGk1FP1lzfmn/N8VaxcRV1MBCUD5uJYc1KBQvKvFhdgL9q0nGcDcTsB24zyFxaoeTYsLeBLB5Prn4/o8+PD6TYLr+7Gff6j6e3O3U+2ZT+V2nyacTI+r2EaHGCCBEYAGH2LsX2iS87qbCTp8Xb+z6dDhMLx8kVX2YA0xvBqruNPe7rfZwcL611dD4xtdJEWdX8z8vJyapIwcR3gKlyB4Tvtvrot7p6TkHSxM+CXvy5LjWbUyv6ocn4z/4wSeruVDexmC4+PBo8Mr94aOUGGCjzPykWcQBwLReKGGiVKIId/uvxIkbYMSEheWEvObKu6mGlGD1e63pdOHGG4FiLOemE5GlTRXtzIjmxnyS5B+OYJD0ym0HqqgTJa7U5ivpgxkFAB+wYw46brKij8tmG5jLqlE0OszblX/3b/6rGkXYefgvAzwSu8TKaJ1ibfGQ0WxxOhr0u11/xUa4OQ57BtesZUSfXSQS6U1hRb0S8VWZTkGfknZQJJupvDaXyW4QRytZ7rO/SKjLVzK9KiFC6i5t92JLZJctk6meaMe1TKZO1bbR59DNvLY8XvDWUriQohWCYRxSpRS2lVnf6MF5zgMDfD4dxRfGVYNVZ2BG/8uY+5XfpOdIyCWKACdRXZH78Gu2EUzB5tCofNJzE8/H8cWgg1MAIcgNqLgA/JXc8Kd/gvyK3YtRZ0QAlJGud7V3vaOmTHmEUiJUlspJVYzVUnmeSgHKL1q2myFwM+XhAXKVqEAFUUpAWwAKNkL/bIiBw5bV2iyewxzkfKWWpi6AzjmMIcwErHLCZKTp6SCZhjtmlt8SMoCLaDGxk2bXpYQbGBnN4WiCwDQNnYpx6BWgQy+ly2ajZk76D7778Suv7N55Zfdge9d1JV2xSMpPAJhiF3o2tCS5YQMAZyZvyjg29ztPnhxd6Jh0Nx2DMo0zGmRhMXVylIYD3deTQVvXhkFykX84LPZYgnAp2ElxG9TTqioRDzxxcwKBFC6fJVeSYaLIkuVNZhM8CrzD93S2qJFx/6UtXIQdxkEpClQ9e8nTSDPCCbc8JqHihbg6HCdoDmJTKojPETVlOcwClj6jNV6GsCw9dlsZj52xOmKlWbrtZGUaKCJBRaBKKsS5GrnhQPNKYqTsan49gxDciUk5JqWBlsGWYKEaZJMy/IyTgtlCqDq3cb6Uo1WbpNsEXuwyketiSrPqwj6o2ax1aVdcTWrND8D/DBbjCquNdozKRMzlfFbGWMrM87+ZeKrumo02S0Z4RKVOhnKthItIdE1/n8oyFqH59Hxd85EmE/3MEnNzIXuqDrft7u6KIaAQwJlNcxkG0BSQ4doxrHKVUbwfmOJfwqGJLbsj72azY9Dh8nJEK7o62ICTUeLkmZ1JxpMaYpP4Q5Sk4KrBJ2v3Xn3427/zwwePDkbnx7IL58Ox29sN/P/qN3+p2dyVrXT5ojOSg6FCSGHOyllEP3OU2Xv8yPwMI8eRKkE/Zg0mpJPIjRQz1e7SRdYbkbdZfIXOaFsiYBB/E2RfXCsZYDFk6jhxpdnwiE2KjVs2L4uxi3HkOY6OT6Q3X5wcPXt+sr+33al37tx5sA3yG9eMlV4nV4vHYwVTppyytFpbzYaMNCnHDSZvpJkJGuhWk1RHT4GpECXRS2jjV/GYyHvYckOScswAwvz8XiYEwLJAJBAGpPk1Jis3GSifvV72el1JTTQkFL4CDNnxlb//d/51MVWYQuScQCwG7j/LVH3FRkU7jNIOEZJOu0+wKXl2riUyhEUWcI8YCmASecLYPFIrwAkW56eB/7R3YccUeyaSkLwA0fLMmUpNh0dnSzQgMS+eysmxW4X9r9aMMnSo3EJ0IQsCFgwKkz8US9i3GrFkatZjYbGFBZIdKmlObQODzpQusggmnbEahGb6JAlvDG+7A4bgM2Ho7BrmIC/rHBFmucYk8SJZXDkauODP7uGEtH7O2GEqyndQ4jqzGemipTA8/m4R45K84Hkn/YiiDpJ2YW6LkKR4vGoEq6LPmN8d9zkUZiW3vG1BUrEEpc7CMFBVxy1bplWndBVIiJyZyWF8I5M2KWhtYgp7xdWzbAavwjKBY90V6KGRW6auUmXHyVi121srV14T3eGItjeVDBOLg9JHsqyktFxoOBP9MFYyyQC1IrZjbol238ScN0bjSfR5Zf29937ing1zmh7cvfPi06duqNMZOD6ZKibsb/UevPpAWUtK7uYzF8B1t5qcSxckca4DIRlLuxieDRQoRg9dmAwDXjNsvN0yYXuCW0xzi/CXMptblBfnZf+nigx9lNirZ0ikAz/jb2VmWhM9R0k4dxNyr5mijt/8jhyjA12uzMPxCxdyFugJHYWBc1O8U761RtVBUvl+R0DF+yGl6ruUC1mi1cPhJdJDqILGDowZVcYscMJiMxAEpX4mhITyMnpNugBA+wcbS2/QEj7DbpBjxPsJDokvZeTZZRr+IzyQRPYBJqB2ZrxQ6nwGekPuVAyLAiCN3gPBrMtJsAnAWSJUUS7MwCF9FmeNZMXUGIYBUjOjtFxrcJpaWh2dsWv+dTOnR1OegBc1IQTBN3LLVLfROJucmhycGNaNWH8K7eAmLxf3MlOcGlRNSaMKblaX60vBh125+Z2xY9GNyvGxSdJjihxNxLKcrwjYWC2Kx9TWzaszkrLT35U7In2uE9X/JQB5frHYKuH61L04eI7JfAr3YwtGZi8Nf86L2C4XV+enp3v3DjDqcjHodLdBIk1JFkSgUkoUl0NVNLrF9HEmKVMB0rR+AW1QQcUAGqidrpRW+3hyytBkyogmpXqCz80Kc3kLN+hyubPTZygrEpuM1NaNkx3kQJVhyeCZkhiNRts7fbzHT4htxnAAX4kHVMfzyx//9PHL0/Ojw5MMLb65efuNuy7nuHfvAKhAWqwuIeILODq55RjlVw11N1IuAB5gbm6o8BFCcI9CggcxSnQNNZVdqFnDG5SIl8ZYTdgBgsafxnpOKuULxq+ut0XyKV46eLO5sWAfCDSpgdTrSfFodaSn/+P/w1/HgyAb0jl/4SrQV6ILiRPFZc8vuE6eiP8JIAKTq5QR4HLhMYEq4CHgkcgS23w9EEydsvqjFal3JTrFy2YmKwxPBs3ICaxkLUWf4VxTUDW0pRE05QaMsZi+ERfJXqlRomMmDLfa9H1u6M1GJ5dEUw+2lE6ZNpvIlZB6u0Uo9GTBJoqxqSdPmsuAa93CQsObpvr5Mx0gy0eHEXUngRlsn9dFYlEkLVTWmwByLg1gv/MtgxvaKwQxk+SwTYZPWC2VLoQ+0SeVAesGfQgHJfkkIBB7vdTSxI2ITeEw8FZMzDR2xXB10gSl3WvjPCyiRkOZRI7uZqFfmLbjy9ON/Eex85HvZxiwjhNlZ26il16k4aQHJP30TBoeQu3PuuqcN+qjkYGQUCMGoj6HkqPw5wzfiWmdy2Db+H12MenxRtOo6UxSn866cT7F1mAGpNgUlKRytNV+8fTQoUqUKt8aa35VW7ZanQ+mJgiqUuNEzFkN4wmtsrPLLGs9uHfnYG+33Wht7Zlzcqg9h3nb6vYBaeyZVLaVclh6uKq/ZoSEYQxeHhBPCfJNBgf4mgphN3TDUwyn/l3MUAmtqmWlFFHMMhBc42RZsSEYhdT2SI2HxJAmsZfMDnHgXhyXyqn7X7C3MhkNuqbtNNopXBO5cNBUTK5hxAFJlXsMDKYEb4U2plISbgug4/lrNaUXMxBp6IGXqkFDSIaLg6ESxEkEutPTLB8Tsyq9CfbIamH7mxniF1jCQREFURhC5ojDk9EQsVwV/kuhmcIt02opif/hXg5wXFUyROQwpvp9UyhwZvPC7ITQk8wakirmziYKqOGbi+UEkoPq6XQI5rUqG1k0nCwz/dAm19mnV612hzGLZ5L38KdMj21nVj51KuKn1jZF8QsKihDF+rO11ZUbwXjV8crQgFENQxtNv0dK+2ECifMvR9Pt7e7lxVTrj6r/DOVRnKrrTYg5Qd5Fo21YcWYqeKgEDy6iZmYZh5BiVsLrBE0fUZOTkWezsc8hpPh0qsGNKknNa1zVUN6RwaSUJpZmDsXiiXBlIsKtorWqLLjeghJOlzJT6+FpMXUkW7ttk8+ZyX6OAdkrLAyWH5fTY03SJyE8eiidAkjIc3Wj2Frk5fx8IuEgyyqgFNVTQnPiBRDcX7EjjetSMJFtAGcGFVb3VA0djq6quljUzNUpMVYVdDQTz1C4JVa1XGkE6fZ3T09ecATJI6jq1RuKgnAwtJGPiKDQMxk6zQ43Egshl7O1ukC68lhX02rsm3vWilfRduUcVFTyITVb+Qf/1l93VCwofIm5cDpwYeQyggRNEqCXtS+zbor9nFY6HgG4SYm8iFsgiCBzDBJ/5GBEA2befS7NsazYLLUN+QNfQ1DsIl/k6jJ/SHCUOCdvQcOpXuC3Vo1+E7hLJeJG6p3Fiuem1WZhwiyqrHBh3sc+4qkALlHdzfWUkIsCi7kw4sBtMNmRy3rFPYt6InreCMWl0cherDmWlxoM5fC5bcaikm0XmBVeNAosJlhchjRMO5DINi2qXjScLcHhWXH1LRA6c3T90d+dVYLcBIMIwY+MCIvTAYejJRA3RGaF0FWpfqEd+eOz+TSKk6UkGaI0wljXTJTkBzFeGPL+70p7t2nirXY3ZqkhABUkEtKhCWg7Q9aMP0sgi9TyajCge6Wbve5FpmAr0jfuNFNW0IHaZV3I7Fgqx07UxXq8GWoAI0aGiEQJm5g0cOESbYYwywhYQhBBLjtQMog3wHKSRJkVuVb1EBhrLLM7ODL+UOjZcSDFpgiyhT18c5+t4/ryNM/DTdY0Aua9EnnUUSwPhwK3YEb0LWnO1TSa1BrnA2Wmizuv3MF+htlhUcwQUY32TXQjtbT6Rec6lbr2pTQDCGAR5iwmiPVHjDgEUavcquQY/MPbToQujdxeGt8/URo5T+cU59IhifxIdc6pALNZmJYQh0uNnTwcsyn3lgfcNFifXaQxKHbBzXK0ave28pMkIy1RZLIqY+aYwGLykLBWFC/DVtklIrP8vIwOnBcujQsvG8akjQFr1k/6ZSTMgKRKT5+U9GaCwX6F1/RlUndKPcWz0p+cu44ofyyv6slqmKv4lq6YnA40vrfbNekfyjL5Vw7jzXxzs6/A1U1OIamjTYBTpkCgFTQBZdYjhN3y8VAFI6dTjxN20am1PUIYiryDNlYjspA4mS7wC/0JABykM2HSNJtF8ZQe6k20Zobberdj0pYu44v1pu2Aw8ipu5CilQk+NIoWZtzIu3gx/GclJPPqYgkPFQvP7EXT32LY+XbgNsZNokAqrwTiKAjElpPA4c7DEYTZHC6LPYYRD8ou7TpM5UtsCvwLXrG9eIxPMv4IMEkpuQlcKm6OYyh2DFUiEDfri+nNZDx2GXB8JPRSMJ7MnNem3CZBNgKQ06kuJ7FNvbXeaonTwg9xAhNYadOUHjiuBPNE81qpUIKlMkTJpvPC9FQGLTmoMY9FCwGsao5VptrsbfVk0tk+5pax1QUv/E3xQPqOUeNm3iROpUULDzMfGaKITApV5Chrqvwn/9Zfd4QOzPlSpwnzOSXFYcrmjGKu3Jz//1q6sx5JszMv4LFl7EtGZlV19bjtHtszHrAYA+IKkLjmSyAx0jAjX8wnQAIJAWKGS64REhcsY4krvgHbCAlrllaDBy9te7pryS0i3nhjydj4/U9RtstVWZnxnvecZ/k//2c5y6XbeWBqP20HU+fhOywhgmKQOh3jtTlYlgVuOGjgSK+VnA8DAy+4UaHfBmSoG2IhSRo/ErNKEcLE0DkfGELX4uSBk1J2AaFxbNlOzjbml57KBEPkNsVVf+2wt9psuQRmPlXRIZBUSuwNU7CRUtaa6R0hqaEPQg1/NqHJExPs6yXOJE6owYmUmWtRgMw0KdyBNFJ0KzUQcY0k86htktVN0S5eng1mhvxLO/XX8Ue+EKFKHO5yYyAx82ORpuXyh9yrwy6n4lj0ZK8T/W2K+zH9jrQo//AW3Il/8BdWzNEY3pkpyTyEpFZ85Nkw+M2yel6vr9zscDu9//I9JzkYy4eLQOGgeFZ7zn5L6qCNWCGunRW2idx7+nhPpbOUmckH8lFICy2mi/NpEwdOtpxoZyCgMMszeJkzAB+Ic84cZgZVkBUZS+c2LdpF5gO3HMHOoHxhVghuyQsRcVxKR/FfYVEYz6SniLqcBCPnYeHZvXsgQmlZcCV2aLfUqqdkAudCfNyP+qc/+vHXb1+9fDWH5mw1ioeoBsGfj6OZ3BVDT96cHPDpqURRAUmsmc2XkQofiuLhIgzbkJH0wzANZ6sSgc2Bg0xcBNiZKNSL7w6xgqtMGC72M5lfPpTbhx4Ig3Whlt26Z/oKdnW/WT3Vuy++WjDsrgRhVBDFo/7NX/71X4UICSTXy0syMYkLVLkL8fj4c2OQCiy6elztlCXkWlPenfvJbR7IiUyupsBJ1yxXNep/Or12TLyeDRSKpX4sKScGOxR8qRmjgVLEEHvhFNJrkhZ352eXJWWUdTjPSKQi+wBkzRkbQiBO4dwhQiIKODpZ2f6x21K4inqNdAhRrgQoaXaK7kwMm1PiHmCTAaL5fLUSmjiTeSEliibie0iP9Rz2nBxLR9XVwpuFE7Ndin7SlKwf1PdnxX6SbBKbMVMreyR88cHst6PhZfyruMJvqeaQmBwOjQK0sYSBW/ckokkLM8Yql4QraojjEfakwDSiEh9A6EudMVucbD+Whh3wk05GnyaMQ/a4fXEBtQNUbCwjAAIzUcx25iVbsWZ0GszZRMAQUJyKuonG/sJs2tn+Towy7q8WTx6Jn9R0xuBwWhom+DMjjaLmpKGEJ6ENQBJkE96m29HBst8ythOzOTyGCrrGsJZG4y5EhH2344ClStR6BgREryzCvuFO4LFeZ8NoCCQyuoXnD9ocjfVz7EXEHCrM6CnD7lgFLAYpnNW5l6HOf/gH3ydKMbIGrWUaV+bhieWYNDrpZR0Jg67nxnf4Pj7AOfv4gAI+RZwWb8t++UyTFbCOa9GxwZkAlE8FEhIZO8ndYZL7fYK2mH/1QFTA6YS/TWtxyzYZJGG/VfWoiDMuncKt1ls5P2kCpsfAe28t7gV/qDJgTIMdqoIHQJCK9p0sD8HDSdw55iwxZTycFqvrK4xLofAicb7GHMNtzGQ4rQRXiaIt0E0Z/i7SFFLd3d+RAybAO9Npaw0XGh5Kvs4EGNtGdRmWuLMCEvh+zBgm2maqgLZ5pDk9FiSYEcsnd1pLebGzaji7R2GavpEekjcOVUBraWILjj1Qm1OpRYkGI6cx7bg5aHC3WqfMvdkYFp+M8zqkn9SKrrDOlmR7LYUy2m35c9/NqTCdSGZ5Zu7NQiBxjm88SFil8idxXxx5kt5iFFjBC2KY7JfqCFYWAmXL2eLYhegAAt112GG+YhuVe+lQHfdUWFodqGAZEuOiWLsEUIJUeTVRJoucrY4rhf2pK0UIx2AWiqA1uneeTCZKIIxTANczJcq9C0IN8oRLwR2FEuF+EBYGTRr+w+OUvqeYSfMY1F5nfi+kxiewMTCmeTdOz3Y5KrjSdbRX6k8Skqba1H4VXooUFOjYvlov6hjNIauU6J8/cDSx0wWFcfir5eKP/vv/qcCwvFuDGeECtLz9zb/+7Y9fzlhgqvhByBnYVHYQq87V46YidVaYWlM6RKGw0rhHVVn2M25Qb9p6pFatDK7CZKBRrJveUUXslzNnwdUWk6g6rdiwdivXwev3TuY/Wlwcn4YYQEM92GWlcwXf6krq4342UXYl8y8IySWFgidozwwHjJfvKQFcy+iLaQbYD4QXjpXYKF8ZKlbnEoIDMiArkY/igRJ6ug8ADKEwZt14Z53eKog4POGCISW8NG8VYjkKw2iR2FY4uwLg/T8wgLMYjuZGjgP3vKQoIXGJapDW1Xg4reonaEgcufPRnkwBDU4ovRaEzT5TGnGFH2FfPBaEms2Y4h52z6cFPNholSCAQwreIEx8p97vABXcUYKMRnM8xLDXptMxHF4NYF1tNMn2J93xw/JBgQkxag9G9IKvkC5OnWhLBJ+2ZDw+VSrFbO6MPFU77jNohenwYGArYcaBg9ggQGif4AP0pQjm3NlQVgQXtl0tBbSDyaQyqTdiqqEnK+dKDCOXcxRiQ62EXvuewxIn1SsBP2YVm8SiusP8fndaM/TgF3FwzV3Y8xAYVjpg42K92QyI/ATRDtMxTwgVgAjQAvfQcByTMJTqUf8M3kqjkE+nIjB52EFCJJ2oxxuaZkPNShz1HK2ZLBC9EZwcc9E7FoOQsH6pZulNKaPKTUYk+XpBWqwGHSwWVAKHOgcr8a6ogDTuuUV6zX4p4xP4gjle2AQ3C82wZUct4uWpShM2n8+BF7IxHHcyVtKnDFrQur2V+6RlNkK5StfV1WTUUxIzxmwTp1yQ5kToohnswBLfbMc3OsuxbDYSMB+EeEjHG++RWAiKk0Pm+mLmqDK778AJOwZEeGENeuJ4FxYLmcOS44G5ZqhEM48IjjbLbpnZZIuSV+kgagRoqft2GSiHkYXB0FZCwDXypDwB9T/1Ja46qixQFTrwgiGCDtq+CXFClmR0cLVGSafNkrcQdZEbJ5G0nfeDc3EIURmXdezW2GQMV27QTAe1jRVje7r/Lp+Wr17e4qaZTfZM9n3QGcNzcDw2rK6WwX+OkMGx1wylSAHaGQZk6SqKtYzqB68gYdMVmJIChgeYDSXiE9Wc8J/mhtCrAtRK1NJqvH//Vkg+vX5hnAyyC/6QM7Qm7nyUTkFIig8QpPu6AoCT8j2JAasInLXRpTa/Wi4zOkpP6fE0oL16bcgksNIbJxjkS7r6gIb6/hO95zLAxFAq2ZlU5gxWYVG0s4jpBbnMK1OmEs95a+ZEdfytv/0dqHTx6KJawiWGO86F5MxbcI7DZ9dC/6t/zhG2+aTEmZI7HDb1deMbLRsqV5JN0OwT2s/pmF+UatT8fMaT7KdJVgeJw/lMmDCLArntp982II5U20vlrdl+EGRX58JOXD8uVoKaV4CR3DeWuTrqkdLGSAIwrnnLnNNQQ9a2x6aVcj6YHcum9p9Hfnv/xigxH0xNUpFyaCzWKyMXSVNq8grooctQkTUo6jPUXdAt/OVT58PxuzsJaq+dvpZmzyYgDXp+jGhyE+vF2uB7GsSeKBFmWwVUJB11FNuQcXQmdOI8NZAtIZRQDw6D73InmuKU3LqTGJkFMBHzxfVwuTk+rVYk1cnCXRoTX8wn+j+Ajdj3hMLOH5pPUMHNOyBDk+4f7+sNv85eRkFSNtNsIDNnhu/vt6mPqDfS9Nw3T4O4dfjQLhJYsCGMYCOouEtwwuZJXQA6DAEzOBw9PD6NR6kUImgZ6IliuRpchijT3uPTEuDwgpuadjS5qVS68NHtiTc6bNPfpNIEzejSGzPjnDjkSBzAAi/COUntVas4MKKSak6GmFXfUxFD4pyQA1QXdHheakOT4KS8GttqaWTAF0UYGWaqvMkf/v7vCobIpoiYMJAx8lLLibi9s6s3daekzcYJmm14anKASutM4NlCFbHsnJgkoZNTuggLarJRS8O6cW+MHaG0cb6ZL/KqQByh5O21L3JPILlZs3RBdzTVxeSwr1TF063FO0tIMDY6KPwjV1QcgeBQZiYcAjXgHmK1o8siaEFzY4dr43u5G7fMhGCgSA2X25DRD+AuMFwNhCqgXEORmwVjajkewutmtctGbQ+Lk+xaIlaHnfKEbj+z+9XP0ZP0GrhgMqE1pCNU9/bsDkfS20u9SP1RmhREeaCmwQQlomkNKx7AsUmTMGcqvtxgoVQI9qJa+sxGCcFtQoKRXUI2EBvwjO227yJUGqoBOS0LiH7tY/CFLv9ngqL8BsPoIEMFbLFkHifdRJAMKVSw1Js4Jj7QbtgOQkOloWDoCMpwfL5qW5S7AUzEh3WL+SnlGbS9No8TSEwJ2hkjhVgEmbyJ8POxWuobAj38HEox4Y+QX4DpsGmrYxEs0RkCkBG+Wy0Cyf3zqWXLuW1hsssPfVoS9UnWdY1mjO/runRh2cPsa7Ln1MTO4drsXKuPEFXXJo8GLiorAkeaILhYPsOIgAXqyAdsVrU5WfuLIWKiplJVkKjotIYzoLLLefGkR69DxxwLL8YPUXWWNhWhCRBbVbXANDLYBNkL5TvombvJqBP7O5YkzC00642oyO5YG/zRMXrOexEKqR2FcyxNRgTCOHJOmOVMLvMECQYz6CPFdIhXVFfPugkB+MUgjW0q04bTobT1c62RxcYmOpdY5pU2MraN880oRWg+F+qmNuLg4nSEg17GXUZo122gR8Yj72wTv1llcjz/5416hhYbKJYSXkM9g0bDV9jYs7vNrA+DlDAxn+lW8K5GYstLVQIDE4wPTUhpExtKQmfVdBlGsqh2PdNkWczcymvOkuRwED+pJpnarjBqjcMGCAKch90p1sY3QHiESqkh50ab4EvTuvrjwfTmttTAxrPZdhvFPCYC07u33z7c37+4mUmQkhw6q45CY6PdMD1sNusquUmmzV6QfOcRLUVuOJiwtrFozowUNFu/+MVXdw8LObshfcEJpsAkTzEq0db5aQVvTIog1Xa0B1ebajcZDDYYeHeyLtfqHfqj/snMyd1Z3xJehYiOr6/RoDjtACAFUc602fqV65t1veQe0CPcokoh97voMbgatlf3a3fpPC6eQFqTa7i769sROMmEpEIaznveYUTBJ/1gY1etJymVskzuBfuBVi+Wjs0iUEY5JbxP/YCuAh5SZWFPK7IfV78AAl22VTWdi6zGzR/8we+wcQg+1AGVFKKgOnyWqC9snUoe3y5cHQy8jLoFvtenQWHs3bv370dGJcEIbkDsMEpJ5FI9tL5lAdjsJI/CcVsm5GKpgn2EQPyY1WewOPyfInoDiPAIVoqW9hSogP3tAxIZ+olihRfqghmJJK4tVIXiNmdGJRhbjImgTwQmBmMxh2MjzJZAlYd7O4ccs2fKrqy9+YXC46SIiTpSmetMyiiBkgypyOSy52lxiwk1wO+SDfCblmZusRCzXXtC/BnreIgrr8vhNLV04dpTBqjBx3zdvAGAz9Gw7naC2VUWCXx5XxFApvQRirYxiC0FWjAxXxBOgkAwDfL1Ur7z0bUiRqsUR4EGavD0gApHIEouupQbcZDuJ3HfcoTGvYreiPQKTkm9l45TDDhH2sQq4TrA4yxGbiFccCI6gUui2rh/YzILp8cxDydLpJz2wGwvdRDV6U46pP/HoxQanIWPVXkcV8rXB4hyZdwq06zeQYBP7vhXtAZZ87o7A93C00F97GsCuGRa5VQ3SmEP6hO4DCmCtJoXU67Ky2txWHTXD6AUOBLwA8rClKQTDM+SlCuImlCJmUxxm6lqKpJbZyw2p4ik2Kz308lY6o5f9zgeQjsUV2cVMAQjIDonsYpxQB12FpPJaqiqyPFfMMKuWASPUksFTTscQNyC2HrDB9XgmtkNwAK2sW4+MGM+/bPoXSTASQX0YHWU3hZ8w5/b62N9fra3akXJgcRulF3OksDytLjeRnP5WENUKHzm48VsFnFLeBe2bBcVvUyShWHWeD7z3IWw0hX8YAq0RB2ZC282AFthH4+7TBxRuS3hDwWn1c0v+NwhtG9nk4enJ+UjXJdGIZSWefc213H7JnkHfbqG8Q2hKmgRl0CVNpSBUgwQKQhzZt53Cg1D/fJnKGeVTjlL7Ve0oiFScY8XAto7EF2g1ewm85N5PuMNiA5J7Q2mbqf0nakQK91qmcyoOmAwpLm4O8k8evuB1RdDucFXxc26fhwMp0iHfhhI8Y9s6IkFsJA4OgXHliKIYZUTBgBg/gBq+qT4g1I5c3pcLt58+VWQbQGXsOtGWysstTnoK35/t8R0TjiDdJuE/WeIbSZhw3NVTM8VXN9+3qi3kYsOjazigGUhuBSXrq0VvpsDkeqv7XTaN/mRhjtLwo3FUJSYIgg5vA99RTYz7CudTQmn8BuaJLroV7wFnCkIyxGXK07B55vJjYs51JKYdkrdjE7Kq4UUpxQ0vvvVmzcmxRFFedD5zZwpzAgTcgXKgGOgTnpM/Kwrj4emqUhBIaUFw0mYOloL1Z0dxwv9ZfwO9Gas6Eidnyp/FsiVOHCsTAUsr8GAS4rN5gW8Bmyl96TXHHWnOBkYKrDViGYSW4gFb0jy+V4Ty5Su2EwZRZ0NbBIvzP8nV47ehDsGvVnac8BknGm6YxX9r5RYwZelXrM/H4mgF3f3z2uhQj7YOztxsnBYiwCSiEnVcnIPSCNFb0NuyYIAVtICUqJTlRQD/LrLTBXlCfwI5ZZBsL+pDIn8S0l7LRYPbG+udGa7QxTED1m9i2GK0QCG4/ZHt6n1hTi9DJFRoYVU7Y9GEhNt90QfTk/r5aB1GHmvTkeTC2SKmIMoqBYdqtXJpY0LjveAtknrojwhHiUaszVMswafbsOAl5vrW/zYTqaXF0fBMyIYqhjTaB1D6RycDk9sZVLYfFNSK+GFxDMmHZp+U3rwYFUF3C0TvfkzvdMoYLWLUv27ztCFd41qtcjwrKMLaW8qQaWTQXIlsBAf6kIAShix5FionV0i5NCOL9M7YBIotQJQg3b5K9eSZHvwesiN0E5Ba84DsxjSL1X06WoOjBMDBX0n7ac+UpnAByrOz/gREChONKaPngiVLhe1c8Jzk7GuxpmRIqwEhQRUShcIMAXKCj6sB1fFohKozBsXKoZhO2iGsiy+U4lkULk4NneEKVLUAESkWQfxm4cjVcAQIhR3ph4R6k/1lEEuJEUFEgcTVi1DVhLg0u9Gxcmfdz3344a6DxChM8wtZJNMEqpR3vS0657ak17/UhrLU3HAkkH3zLYkjJ7IhBIpN0bj3q/r2+FEjYCIyrsIl3vTPoRPbUcWrA+Vxin/zXRIk0q55i4GGyqDwe/gbifFgYkCtXdaPdsAZwcquB9NXSDRzU1YGA82VYIoBPbFdYPhSB8X9zit169e0ErqhtviyUy0ns5u7QYQJ/IQBYgZRH7RkYlSjZF59c4Bb0kkM0kRd+SCQwGQtGgGRhke03x392jI0bL+2SeffKL4B/zB9sgzhW4a9c2gtmnEM9PIz2nuLTg/TALbh6lhQ2y9Q0xhc1J90XzvGBkjnrmFKPaVK/jo1UsZiS+++DLJ/RRSdsRghE50zvTNJimVBTdzK49LPhWO6ylptZ7uHm4mfUAVJsKJuYtgw2UPXACZa1qkt/h5Nl0Bbk8o2u5t1xV1Xq22mc0B1TWOOP0AkyYDPKqTDTCCt++T2VL8qjQMjqffGRKHq4m7D9WkabNOLjA5LiyOcrsjlazomx/nc7TjCJ/QLtF3ozNhtOXi1Yv5SL0pgjHQS6XG6VqDWvdqudo1//0//a3rmQdY+mYyRhK2qjr5FMYTEnGS8CoNq1ZrUSOHSq4QJnAAE29HKB0rr8cVzwba0u1AKlO90NrpqEwpNJ1bp66W3KpFMfOWCb7iABSzWAs1JjSP95VoC1Q0/MR204WE88aC0obDyZTKVMrnUhodEOo3pPzkrK8QI2E4R6DAeLeokBnCQI2zpb0ibe60u7j63NoIL9LM4WzCiuxZrswAzYBC9/WoTMutzkHWcsymfeUG4CBr3UO5YJYtAhU/UImUA+BKn4IDQJ2AGZ6LGjAAREIDZlXYEbCRPGrucmKE6SH7DicZaTkZTO1rbfhMVNFtGY1hKrzQo+HYSoGZV97LARRzYNN9yHZ4NeCcMgce/Ettj0Ir3SUpYYJwVSgJ9hLVg6AjRQL2KROsGCSGEoxjiTCwzg6ChA529fmXf/HV7UfXn3ztRbWukyI30rYjyIORMqsE2kYh0vByj5jCiuBM9GJYEFLGNrLYOPOrDI1IkC05YB4E+jZlOSkYtQMJo0LN2YlGittyNZUWxM56XTloaafcwzdSgJ+2Vj4kpJbHy1QjEBrtx8WCD/f67NFoPGZeuZhQTOJIV4DRZDKtmFHLsRdTe0QUjagTmek8T2t64Z8cIe/nFySeDheohowEZnujBKfmPK9Tm5ipYsE7djEML40gG0x6siplcXFaqmlT1McRszthTUIeUpVkYhJY+WsMfvh6Oyke4mmB5Y3Gy4yFUVDoeUkSFU8sAtOAHWWxSfwyNReTAsKsh7L34hA0WAiIJaEDBX011YHJfhh1g4jjaVp9PywKkR+Tk7XhGqCNg8sCeq31bivim42Hh6biFrGg1mK9ehkUqjvSDcPraj2djknINNWEDbMF0VmK16xBATFNtEcpXZS94OWeN0CEx4lvCIehjLyRnkw3ELBTXo3zIhM6aRR00Cc5ZM5DMMAycLuYVvMpeYJaxLdYYzIUvkgue2mZRNe/xkQlhUwvHIVKmIIBBbPKbTumkpiaExp5djtZLtfYkul8/tHNi7FLx+yJ42eylbsQTjvPqAf8kVEYiEtP+4UD8mVKEYDBuXmtD87gqp00Qrf9+Y9+8u79ircaubsUrwjnkb2uTlKgdvxQvdvvHswd6I5mrspUA4KLqwvlu33afjydjvDiWqY42wzyVLidGWgeguhRD8r1M8d68+BXDwdU3JplsLHXdY0a+VGuDgIlZDdi2rUlvVSu2x2kihBfnJwbM3DXrNXmOXZVY0wEW/CJkBD9ogRiFoRcbG8aThou3pHuRklFL7vDacLfvW7kGQciZEgy/T/8s98Ga9hZQZkwhHRnDmins1gsoLlUSjDiMEg+NIK713ORaS1iSApjDIt/7leHxZVQQ0FSlhAOleYyFU/rtSwb/wvkwC1+iMIlqZm6/+AmjxDXsk0k0kASJber1eZmPi6NJoKF1CbSgwRt+VDRH9lw9UgiIIIYQCF7bOCG6ARBonDb601cwE1Y5MTSKZN2V5RqKVvkTGVMUAlckA/SrFBvDhmi1VKglqkRCBZdsvwfThs4dFSWHVmyf4xaepUluolNn1VCHTB7NoZjsU180m61YckFHEwB8fXj4geRm9CJ9Fk7Fkga+LBfRJdOmRr90/uH1+MXHNLqsLkeTxhq58rsGv1kZ8QSid+JGsAuyTnUAJHzLY+zOE5JoHkSCMiXMiKyiVS6OLaYowB/5J8qIBF0WyfzALRxYDq5zHzZ7CqlieOJeYf7Sb/lPlW40A3s1x/NxAL7amOvSnLFDlm+zU4lT3FAOQe7koi5M7AIUlqvl5n5EesU5CBjRWIQZETKwclfCF4iCzRY6Cbq0qpwNeKhkUXcT2m64QuSwg3pdDypb3E5hnpWyUoqQy+ApuD1TGIAg/KxRI3FEc3ZpzJSO/kxmRkWld2kHWzZuKt25YpwpF4+gNH3Mg2ZJSZ6lQCRyeCmxmP1+GqnjdNQMxQ6A84B+uVavaDvdhIt96TDjimlNxDHWScaBUYhnpS0wjgiHK2uqgsycic0C6kloixRwlkFoLE46gK18BF71Lzb6jdci/SSy9MFJMbRCIW9IHaf60SpsPTKlIg4UbSUMB1ylcdOAnz3xJYru2Bn7sim81vr3fN0yNN7hKaEKeTaO7cfqi3bPVSrkTmy7q5JHTN2uHpcmG8DRgDMdt72EBB/pacoCqHDc7UVo2SDmrLlKoVO1UYgnKRt6jvNO8J9tTuxwvIMonfjdAZTZkdSmGMEjlN9G/IqWW1T+EnAcr0KldPpaA4amHpkzsJBG4fZlsqUMiwWdAERYkBljOLOYwTMSSBbLrvpm6ODb0izi04KUqBaTsmGnGTaKllEeVUhlaXSUDaBnsQxs7qcQBIuZCkQln3IV/xNBY5cMUvdaP3ZZz9eLVak0V9NlDKwSIgkS+KG2Z2LvTLJL6zGRv1Ur28ymwYyk3zEmrta4c8DQb9I6mcAl4EFDIS5b9tJf7hZKfWnBOplhkKpZNPwNXxyl9nr2zjL7k8m6awSLLYM3K3hdY5ksWF2BrV7SgYnpdlgBrBEnzgnpcRh/kpWSSEvp6LTnbdkaxKNFwVJ9pjINRq/+PJdfzISK7CMH716xX0UQqzR/E//8vsufgpx6ed1xIFHp5MyYOY7fQmAFjx6Jiueju9iu82VHcbg0i4z6o/7XntydrXDequYMcwfXUGn5nIX+RQUE7QakIero/NBDgFUgvRsvEOdjsdppg8hFd1WSObRNoL1d+pS+I6eGZbJqN0ZkOpApawKTJRmKIlREMmq4vVau1WwjG32+WCfEFrmlneFxuwWAeckNSN4R+6LnU1OHWURxKX3ajHMc008h2uAwa5wFS2ZEgI+Mxyt49M9MFFkITThpmuTxei5CQZmyapcVAWP/Kh3bKUrfm1ZJZPWOOnCMJdQniSfk/aRITT0vF85FHpB4jN7YZtyOASpsNx1j7JDxJGlgLJtCYMfCSYwRnsyutEm22k1ymaee8Rb3MErxuMSKfyd5HmK330NgmJlAHbhnc8Qs5BrKTJirEDIriyXmy/ePRhBxN2JpKSJCM6nv/Faavh5IUORy6zX671KOLraHaaMm7CqOMSzUijPcE4KzphLAZP1+IPZ3tKqrIFSfm9t12ifIeDEwHEkJqMfdM9tuQyy15InDyeTNxTR55tCmAQ6hU6STMos88HTmzt6b8e8uuPopWeVTXbWbCup9SRnJ/dISg8dXU+ZP6Hm5SI/w0azCKaYWRLT5wcpUSGiYpqggeVy5Xo4H8dzhMGQuEMrKCJw3vKoeYnM0WNX4ssdjAZsKev21WhmXJfslCjw6IZZhIrc4GQ4ZflLQGHD4hiS95pOYTckY8o/ghEDlbC46cNgQzMMUh1hkhFIXi7EqDial2H/UJ2DZpu1j5BmGvG8yjVM8b6m3qRoR3Yl/LBKMidC8wrWghKQrsStT39wMIyCPuPG82wswugpfIJ6mSSOw2rwPQgGx6dCQ9CsrFFA1j49QwyCNZdiYALIawFVyQL7qyo0Ma4FQ3FaFxmMEGm+nDgyq+Y+jZ8Q8Gtpc5tYhl+Ue7UcClkgpaBc9bRQz5CCSWcJj4Sub+pOxzbCwttllS2BNtRwP7uX22qQSDF2Qjkv4wrTCCGLnowlTCg4xsQIB8zS1I1HPPDPxboxeH4VBxDfziEkCuSHEt2G00Vfj0ebS+OP/sv/sjSIlOu1w0FzZTAnSnmEVDxJ0QLgw49ubw1ffPd29cQWdZB+lgNETQHUXXXHypiZGKLejQI9zkO66FmQmRfBKObP+EHfq75cyF4Bxmy6hYjG9NIhOJI1lRI6nqaDNGEUbHHuyp7Gc2gPSn49p4BilbXm+5URCy/Shh0Pg7fhsWwOGOqMnCJWD9yhO9zqeNR3/wzA0fzP/+r32BSGWsEctCUhoS4QAou/9FBYmLBDQLlAmUSKrHEOXJmON8nPpkR4sAFQjPBxVa8dEx9oC5Jj9DIafWmslimWh3QE7Hszv9wUoXj/SIvcmMNrEee4RUem7sh+B3LaHz6IB2sKM6wEbkLG2DR40J9sqNmi/jUt0QEtMXZ6AtCp4ixuMAdMYGytERTmF7bOeEPvIqMi9BbZUFHiyZalmIeP4Jc8Wtk4kBw1d8z2gNooTTOek37mej0/dTXoC0fJeuQE8qR6cla56iL+E0GR14jXgyFRQyq01RIoZRf3yT6Ypm84Sh8PFTPof+GIHIaQUKOmPIqdOdVP96CZIMfqVVILjHm8eE6EdI6/b/edbsBy5hqFYKONTpeMJxEfl5AhlygT3t5XtNGjiZQ2Uh5v2tB8JJkJyJgJoRu+07u7ew/LPD4uZjfjw35z92XFIVWrh3PHBUGnb/7apy7IRmQ6WVlHfpY8rKvVzM1KntWByGrn0x1MSnrLUg9K8Fgmh+IXt2pRIXB4xWKflJ6AX6tqqXTcKBvb7jwgb65dvwKxCcJPpMamBBmQdU6LehBiyqEeXkkJBED3o8IhheRwpH/VLJ3JkCpA858lETJRWfU60QsBQqBZfmhDnkpoZi1MCj4XOSzZm34ctCTVlP1R9OBdFJrSzAB/LhC9XmRSz6PtJdqZ0ae8LWyR7Qf2tfz4DHg9zfAl5N/QCMLGOnmRFFAmLAi0RcU4zl6uzmTDPV8AkelblJ3G+i8rvPf+PjvFBKH6SSNsLl2cgVrAl2AIR0hPSk2XdIX3i+4IpDJXNQltkkkDgU2qgZp/8/g4FejJjR/5dQkRESqs44mIYwKkxMtcpj7pV7GeCNTLm+DbG+1WS3Kd4QONxng2ASMaZsAJckwJHV5bT1UtxTYSpZvML8/cTdszudKCtKv2ezwneGAA942iGdak11FhpUmp3x8jwqkSnTMZomsAsLx47tIJhwlI8Z60mg8GTdJpXwb6+wbbDz9ItJgpGstZslksmFdz9Un+wH5ozZDeUNEUWxsgmG8lV/k9XBMnFLcpQMwHKPEfMXx37x7f/PIdAKbBHmvpl1IJY2ix6vSMk1QSn+CTextMIDa1bQxQoqc4gLGU1Zu7tx/d6h+HTFO2VLvp8tiiPsxKYGt/aC6iU8bcjEypSbLhYtiH2JgsLg0kOGmPDkAZTfr7/UpSxlHOxtNtMLGitlgCoTgR5APEDGyIE/WqOffk3zlE4WK6PVwykDSbDu3WlZQ7W8WOJw9rmoWLVJmezPnTnPK01OIxm0w5qHWSMmbdwU1GOGxFs4wxICIesIta0V3mwqtzEB0MefuyNt8Dgw2bRi0TvLNX7K6zS8N2enb4Y9Qf/CF5CewkRa7IHua6OuWGCg0djL6Fwv4sC8StuELOR2cd9eI96qRQCXGwcCgpUEsaIIRuoj0qoKA1dVXpBFEulSkHk8EcCcDU0SZZUzUgYu2IDGeVEEWdZVIFaa5K39XJX0kJ+ktAfzCbQbqzoREhEYULWEaTWb1ZhrXaPM9GuPKSimjorEtXc7Xh6EXzaX28vmHGR+er7bNB0Oy0ogJxfV0nESa3wwZLYSl9hVpSSqtQ3G6UItqu4ekVShd6k4PTtg+9sTfJ4sY2hR5lY9w4EdNAc1X3u5tFwsMJ5UJgNl/4qZmwKIx4Ng6DlLCYujttlTGzuapTFJx4S/pGh2Yb0Rl58k3udBkMr17Ob3HW7Ux3gJ8u23Nn4hKLT0azOThj8L2GCXd5pmR2eyQbRhvJBrkRjHgQU8yiwvZM2etctGs8JzRTvy9bamgzgktRpkplCczwGyxJezqbyvj5BDRU+CnKSMMD81Un9sOl882GHoUlz0UZPsHFJQSQ6c6W8tMskSDKsLCWohfNDW7yUoblh5zGOncXB3jgv13qkCJRFLlQdSPR6MRiKlM7xisLq2hwxCxWPPGvAJ6NoNhkJKX0NMe1XAIu9sggY/jQUCAVjXEhFiqzRM38wSnLsrKwKScSzLFVotv6kJaoQOO0xycHHZQBXRLxsGaGaySr70YikGL3XPmzHCR9EnLanyRkaTU/ynBArXGNbtiWABVIXmp72XGfUvAaJ2vuOs1jUjS7p/Cf1QYmsSsDV4SbIRXALgqkHdo+ZNr8uwP1skpaE3HzTPwxlgwFbqUmD9JgjTX4ATW4ZjqtDG46zAZTGVoA0xkpH5IzAHXcRBbeA3GBVwlzze93Xr0Yb91+qYyn1U1h7mZtU5EkKuJbogcViyJAxuiMTuwqpGbxmWNnmlgJ7VwAgKOiAzZZyAHzSLtanL0BfIGS9fPu7mEJBStH/uan3061h5fpA2rpGbRtAUXx2U4tIXSJpKVV/IfAIlsQdB09OIjyFy9uNEixMdUKxZIycffnyDVCtuvlQr7tchgaUF67YyDFsGiJxvV4lgT57riuliTl9Yt5niA1kfGoygHUZPWRNSITfqN5yqV54dxOz6PwpWEydpsVuD9KlE4iZLlcjylcfBQG7XHLEIIAO69+OBjTCV0r0hFVawY04s/dwgxZW4qlo7lcdGuMguNSDxqYG/ogit/S4aEJTksNEAkMYZv16/zg93/XT1qPE8AeODZvTo5wqZEIJj842db7YU7Ub1d7Qdnz6cblxXQXROAHiE0h7Baohqb5KISeVkmqOkHOpoTmwTU8RiSNrIjmYDdLE3yIzbRxL9c7Hk/onxnfrGBBZ7HfbHBOLJEL7JlUWRJ0rdJbY5NibqDgmD/XieyxbP3EjCxA0hbeTGoxUu0pmzWPLiGZzHGCO043PQAleWjT9D/H5rqpTp2cMlgvnCwfysZbmLeVeEKNPHbPtQP2onXCqZIeU9CtTABg8foEVSNGTAfXd2/fNdebT3/jVzEwRFYqO/mA7CjdtjMMgUVpGi56itjtYCFM8a0eH1Y467E7eSe35331rE1J4fzZTQYDmgZupsiWAnhpNgvRWeruGRyGJu1LhsS697WkNZ0DWVc+IT1jy72yXTH/C1UUGO8XI2hDL4G3ErmSIlA2DhSqBrMUJDEH8F2dhuokPdnSWMzYWTdmpPeYgIB7w4nJU+rcvVwD+24BZI0Gqskbu9N8paRavCMg1XTaI12sn0dbFOjLbq547d1e96+1OEmJEP/O5oLC6IJk9vTLaDXgqVnBnBrU5t8buB6FaWnmgGBJQjBrms+TID2nsgUvAiQZXM3QsjFUwYO1Odo7XsbnQ4cJ80KBp1sNFZASBmiGN0bndnS3mwYjAkB2+dY0NARvIrmcZpvbQ9HTGL5WC8L/B5mEKtF5FkNUA2vUMBy3WwEKLwWxeTl76BePQUNCfKm/dxlOkNbZhVBhpzsKndH6W9bcN6mOS4DYAeTjFGkQuRbgyk2IUygtECbVCpzaUkhQ3C5atlMB+un/8nqZ4CNQkP+R4rJdVjedm1ed6hgx4mJVMb0kVClSQsUk1Y9pwBGv77SkCDiprKVCLUIa6qEDue8OQRZWrKEnyZiIBRNTmDT7yc9yui8mykSGb2X1G30AFmYo1lhR1lhKXiln2idka4YzQqYY0RLWtSrfULWppuBjKEacWowDceUXXR+vWQiKNa++3u5XmEoV+OEwrl7NX/+1731zMEjOGQluY2M+eJHyVFvqM31q3tPGyh5p/WUNwVXaKO2xTi5DbiucSgbqxNrqw/Tt1XL1J5//rNqf/sZv/hUsirvDOIAwQOl2qkLLCrPCP8HyXWBRwyZ5Wguernozw3QhUESMEJaFwccOho9v7ojW6HrIE3/It2umwsiYl0963PHKrJkP7h4E14nCXvTLaRAE5shlOMl1AOJmlrjGzn1gyoPF2hfR1aYzlICR7wRUXPRLXMlEuFLelmj5kHT+24r/+M9/h66oqYcqMoPANqXqjlfJ/APeyqb1uS8gVA0JStTl1M29i8noXPSnlP2ohSUcBI6JBBauWv21NKxJICNvohiOXYbQA+uYfGrntTIJkbAzu1QkF96KAaNUs8GAkIJILk5TBOp8Jr0hQ+NXDLZ4P5UQJY4GNAxg4QiGSuntJ9IIqUpEmYmNY4AqGA4+nOOwU6Z0Le/vCSKNVMyVrUXRKSwzmRkpARYEKrIrmS1DBDbH3fXgetAYHChmzNBl7bZCIpxJbYD2jloxsrbMzjoFC1O8KY9YKnAGn/3y3vVAw+bVd3/TTUansepm1NrpMp4OvQgL4xA042kUodzmd8qwCCzEvKUhiCdBvld6C5KRx0ZrsBadyZjBcUm3m1RjExLblvYfysnMBN4zYxA9/8IqIS4kndCvjIJ0hQbveFDQ9PIsbt491Z2++tVMGtA1zywC7KGDhKVVTbm5MVUxxVSlvlsly3q5DPOUxIyumb4HxXuGXz7pSY3woMjU2/SG6sQtGKCRr3FFuX9h46S+fBHJFcYq9UhcAEOpbshKeUIxPuycblLEmFFfWREVTY0IOg2o8L6hhCejicJqPjIAwwamHEtnltgOusWOyoBuSKbtout2xRl5uEVyomgsZ4tnTUKEdWRmPECqliPP1Dal7qkfAyQZFBxOOgoYHgGXF0Cn+LjCPwhGOVGH7ujteNKPQUq+zTqt1JsmcvZHf4jDFL/v0soUsJa6xDLJJeUq8eOFuOOW7AVCHP2fTmMPRmjANrw2c1siJyBvuHl+lDaTBvBwa6HUGFlyJ1tLCbWKGU1TZq/E5UvTgjrRakA+AYpEtFomm5N2qgxQjty42dwiA9cRhkwhmwCfeRPkgsBC9O5GB/03nD2GwveVrQ/scjAZAWV0oAtSjpdRr7lrdSXewZq75YMqrqGbnDH10iNsQe4EYXj3JkfjT0AVJUN9ieCMITis1w+TyQ2ZMabBAbGMNlk1Dq2XFBsM51X9mFMG1I5oyaXT8LZW/7ja3T3pKjg8LFZemP35u3/nr44HKFCtC2Y7Z4CHA0gKJA6My6TtAHmGkPP0jpUNZYuCsJHLWBaBgyycTqBSU5Amp1GPxurku1ts7h4fRyXVgMq/uZ0blkGKmF8CgjYxTIItgPaqB/PGMcyI4iQaqR2WJUUc5TZDRgYR7cFMgdsIHIPXBEzxV61jS0RMl5xvrdRIYUKroWSIWRZr0hRkPdPlmxEA2DHEDiWyX9u9ApbzaDIlNoOBVuEVagYWsCdgnQOF4kzpcWgACuFkgzP3XGcXhrVepniZCH2gYpAXYk0YX3HlvB8uYTDSTjlQxymXKxj386ldo3icTLOXmyYu5kBIqG7BEDuolbvwNQkb7L/UnH32iOhjaQJC6fKeVAMmQjcZbECZfAVjzsSziQCyF63S4ZVhaiUUSc+ao1JWJYTX8sCVOVCCQpESoiawIeb4xHDtIhSb768csjpkBlpInpwBAQABlBEMmQyMqvE1uAm+UVpMI15Iq9F4zm7kbNgqFXLECHPPKUaUzrOJui7BQYoWmBlEd/7KoHCWqfHtyLR19o3Pf/bVn/z0DRhtjke72f/2y/lf+s4n849fQXOn9bPIKSFo8sNEWTvfVZ1ARxDyfKXSOMTfNcuON5KHh+TJQhAlIHZWJKNGwo8LocQ6GpthMi41tAJnwjL4RMeHxIMlKiNWItvHme45ThKj7X+0FFqHkyczdS2IqvQfySxBY2hn+xusB42m7VCIL/WWqf2onvFovVg9Pj7JwbA4TCfm7IP/BFKk0+vK0KtQXsEjMfsEPelKM58Rk54v4lBGIsyKM+EI0wa8dameuy/ImxNlmZIESpylS5p3JrTp0eVnh91rO4HjHqQPS9WAIIMfN4RcXCje9D6sbkdbploUYYHSf6/gdbEato6GnHLjlYWkUgvwDAokklj/9BlFnJgeQFm4JO0MOlu/w40JZ/69C1kj4nG8HsxmbzHp/b7khybKuDSvg6Lw+XZGuMH7+WJyJwk9lWAhXRGPyb4yqKlTK87aRztWWf2SzLQuJJ6RMpt6V6kRcLVDDmoiyID/dPHoPBp7BqsqhAEqgVip2uhXcXkyEGK+QJyMdOF4rEqDeghZ958T+pBn4pdYgNgdVoEI6COzthQWJkDK62bH/cEFPghxHCDPzIi6YMvIBI4h+ttQQdZX7yZsMLzsuJMMWJ4XqbJC3ziS9Md1t2vFaSMmm0/Fst3M56yz0u3xWIxlIzTGb2RQBcjLB92wndub20JcMqy8oX93n/uKsfI2i3qN1p7G4gIocqG6xW8ypeDwIL2wUhbcP3/xk89//dOvZ3Ta2HTFVJxkIncyhVxGNI5XxjWL+hjZxdM6kNRuRg6NHEOn2RD8MzTZsd89msVJSqA/7+RVvvtr39lXxjJuryepklRuaxA6coDIhgcbT69nN6DyeZY6VAe2MtEsRfrwXuohBcr3T0Ytyc27H6e7rda6y4SWlkXGjxvG1qAnw39cAdHW+pT2nEIeJfpXpUEQ2w0jFSw5o5n0KTzXNGa1qlMY2m4v6+1s1Fm8fWRGxZOuLBHtRdgRUerBSwklW8D/WUzz3/2T37aTsZ/OIPTsB/8YmoXK2hFiRH6CpKhBIJRab5thS1vcuGJeMsw0u3xi4m4EaV0unbWLFckcrlR2BbwnngQtOFsWP6M6faLI1x7jSTHOMreayM2i0REn4qL5/tkJiwL2RqSZIhnSwFP5HXhWjGDJzsm+iRnxHvFR/IxPTPgZAgHMiRZ6OSX+ak9T1GtB7IjWsJGQQlOVJ/oib0zWMSCkxEmnC9fcOkksYTJvk1HVfAAfi9iN94rNDagMleOvLKXsNEqEx3I89IHKELK3b58eFtpYloZA/fSruzcLvrMzm02+973vfuNm5O4+fKzCCAyv1wX1Ag5Shm/RgIKhE2Jqm+EJgagem20pEBOgp8d2WHzqx4XoEJ/tBV/6LnStnlgs0g1ZamBWpMQwzD99dffzt/1CHk7ms8X9jjXXrtQadapdY3h9faoeccfonVBMmUKVKlWQ1tbJYfPEzt6L2yI2IVQ2ToSVsHsEyDpAcNcGKCiBLDLl2ym55zZNwj4iAN2LkblWE3gP29TJlP9CNKt4t0Pi5dRia0NJJh9sSXs5Betsj+7kWQ1dKm/YkffVAqaVUW7QsgpDwJkLXAxelHRn51Lnk+QQKU1ylVWlhjHBOicUcADX5hxzR7KOkj2a7JyWxcHpUFVPBgIOiOshsUKEElPnwwA0PotBJUT0xe+AC4WQ1NHrzQFQtiSZCQ2MQ45E29Gr1CZi8CFBIy5CIbmbhXRJYmXaQhZmgKInCssCREXVpeCHuPqxrTRGepfEKwMPZrVsNL+lnm2Vqz+SAUbapswlvBlL5dRTB8R5eYGmPmJD647rdAGqwQvWOLESlAO3RFNMskhhN7gR31QUT5NzR0Um1wIbeGukWMp3U51EedPKo/1NkCSeSPO/8YPSFfQqdxIwtb0rjU7wphRoyhk1vecGFZ+Wm5NjRg099TmaRZiY8JliIMKhTCVZH9kiUYhKP7EmjR7hA7gMBCV+VVxiDZKzGUh32t0v6YUPn03Gh/b0brF4a6TDuwdGyZUf017za69e3tzOtFgq3ZF1Fgqwvnm+dA0A4nSPx9VjheOqFpvVshq6wvRmIqf75u3Cjo90Vvp1PhlQCcgTa8wGqPL+zd1oOoYQNV3q7AuclwQiqBK54zETmiKe3nS7XZIdNox6Bn07kMR6AFw6AAAv44Y4LTQO46bLBxBdl5CXxGIv1cjoFnYiW2jFcomclIzRo3SEKQA8knASoRXSQlTATfN7vC25lLSKO08MR22ldRyhH2Atk8GFWWMUM0DFJzR/8C++bzeL/Y+9dthW7GhEaiwgb+A3FQ5MDUNXkssRQeYSupGZTWc/k4go91A84LNLises1SmrT741qWfT/zun9aqiUyo+aIaeJl24to+5zIYxFR+y2OSzFO5nlnqqcWwWljkjGSwggNcbByg1S/2P5ZsCGBpaBOqfE2dTEqSvXUg0F5tSpDN1vllyRusQWtkYQ9DkOI/Daa4YjffPYPmObC2Y5lIAkIe5BYwsEAUs8NQa43dENo3w7jyp/Y9J8GESUgwD0wC+NS7XJrwrB3SxUeLW1I2hy5a789O69fbN+8XTSoIXwfjppx8HYyJ3ckc5ibJ9lqYKW/+IXT1DPnTD3jNnnqQWEngiYTm/+NHEgITMjiS/Hvrn4parTAMtXLaLVOTEmFoFuP5Vy8Lju/cSXHzK/WJpPs3L2+nlsNbXUq9dAZa8cjIo/Z428dE4UxBYw3pRC0G6w24GZhW6ZzQZS2nEzzE3euAhmuMWwrDm2PdYeePReKwYjjjKWEN0l9or4BfoQtZTPVocwiYlpKKZUnDCAmXUMMGDTOXNZFx70USaAGuCougdoUYK5ARpaS+JRIjpmcWkCpV88DtRbVAuOVKPDn4F73nU9KaFJHTqSfbsUgWPfeYr7K1fxTSx7HkLYg8K2UbnC4Ywm/45Ti4f6b/WKH8Y/wrkIkWZLWUCBKI0e0AY/KWfzUgAShGMr0HQRXLVlpmdXE8oE+WU4PRNDBCNFx+gNm1LRNND8w4ejVULIuGO+Am0j09jB6u12gS1aJk7JPeWlqWU16FGUvZjjcxEPiU1stl9gxyGnRFXKMa38uM2/J5AAZi/kqgkPirUkgYIzYRjSJ4qDV+WEfTj61SDzucbFF/JyMOSTuOcKxxYMwocqwSICB9TAsf4eG34FNayteTKurhhrHqcm9IXMgBcQpKGCOgDKEaNA7XkS4Z4SyCHkTegvpD4glrXw/FU6mFG4wKzzn/8Z1/s28ebUff1ixttMp99/hNZj6UmVvdg8yeKkXNdc/v1bPTpNz6az8eQCSUgrhhpeW9cm9ICIBHI3m0zag0JQQVEUcv6+cu79Wc/+vOnx3vS8K1vff3164/928Nq+fXXr0SI8pjSUaw+klZKRtHz4ulBT8Jsev3k0mw0r5u80phJolOj7HUUI8BuWNO0PPDoJASOkYTxp1Zj9bTVhCNGJfUBrJr5NzuVUs797f2jqkK8EBWXbiGbaFJlWd7OjC/7pbgWmHIiAQGsE9lyTJcTJTXshA6yiUwTvJOMLTVyQOEwUlIVrPmv/+HfEyjY20AyFE2Bz+K2icFMcSbwoP9j54IG3OviPGkEaWO8YvPYGs8gsL7mrqJurtjlPPLUMBLEmAc3SlEQTx8gaY2apqFmSgxJtZR8Ukq4PCjFAwnJCQ9gxvapIaMe0stXbQBwx0x474RvqezW4jZ0ibkIfJeSy5AwoRHFYnFXgWuZXW7SMa3AGsX9Eq94Sl85N+4f35sjxSuG08j32+0EE4wEw5skTdK/SS26/9G3hVcq3aT2kU9iTbS2GjZ1fT1emIC1eda19KDYWfJnvZcR9SKGJqW5UyNbTFI/bR+pHnleVjCj1qd0HsmvplWBliAHQHU5iXFoZRPW0CyMjmouWUNnEPeG6ilqmROGTfRVFi/EiPhnL5H5oCk1jktFpsGV8TEMce72OkDMVID97E4lnSRz4eGtg6J+pJBi0xB5bMUJnIeEBPtMRScjTaFSw/FDrLwXVLBIpoPgkBtWIOmaxKN+467LTNh470IxIB2Q3cvhXtgrn04X7AaDy116ymTSTc1SbwAlMLtEAtQl4vrn6E5Abe6US6UHNGqcHxoUjAWBiI3pxMZSOTKGiQhxgMPhPEVyzJBRqZZbuBu7US3WGnnKhFoMENGO7fFFC9fyaNMgmsCKjH0NW8WvxPlxPinqha18Y6QuokKFHMSH22OKMU2AUc6OUHL0rK5XgAK9u0iIVLEUcvAUAWqJ4Jkxq3nndODJCCH/5Lf3b98MXMQ7nzhlAQlkhbDix9gOBjy6Hfhlk+PxyBMNiH1tipYwxUnCjLTiU8E8vVD6XK4gOLXhmhhixMOC0lsL8kEZ5uIITXJUnmFpMdzUGvqzbvvplQRbmfhLjNLzH7cHBTPrYlS8iHwyB+CguRm2OU7R1bVqzCwXPXG4GPTGlaU5kjLbwwwFH/hXDIkwV4xkvkbccgJf7QIMgwt2QriH7OTa1MkVqfUvzlqklVIoHECGYU+AwjhdOyMEwVMA48/b//3nP/3xX1Ty/vPrnpagtQykM3DHVKs5HQ8m09H1bCRWcBnCoN3AFL18JToYa9Aw+kKhdmAWUC3DTEYAOJeqVtXPf/Ljd+/ugQoOzMza+YuPvvHJr2A3wizvQvdaKuaYT/ES6+Vag5Wr4igmuaFRuGF7zVMYfAAa5CRt0yVT89haQwg4XYY37iEtbHRV0xxkgCmi3ZmVy4IlVHYKBpmk4EqhV4JFxUm2wiQMy+asJWtH2npKoy5E4jNhAowFpUO4kVu7SDr4MNMerQOkoHFafFhdncD/gGX0D3ZZkxq04e2ifkEvTi5Ik1Qla7xJyMPXAyU0gTlwRjRZZZ6t3taSfhdukLVl7sBrJStkkLmJcwonQ0dKUZ3IOsJIaghYyodirBMHeFGEzHGbrsXMxfUdgg8Hbx0JReTzjZ42UsuIVFlQ7u6DT5Jq862S1QO1xkoqs1/cI1Wng1ZLSmELJxGTZfp87mbxySHW6Dd1RVAnr47L9pk+jS2QF2H/6z0tSqQfS1dwoDSJ2le4D5MrvIDIOkYo7xLu5QLbZr2q3ZGrpj3zhVIDinBgO0v7NO/rm2yoXVYEljtSIgFGa7IaFpqcJM+D++B5mfvydargh+LVuGA8VW4aMG8Cn80K5PukPei3oJDVjZFlGzwkjpnVi9XOMDrHRMmliWrTYptq8QhiSktzDwcpEWHLDpX+EduQcMIHJWkwnV8f6grY0VNueIO9si7+mF7aRt9lHyRWyAaJ8FemJGA/Y+AGpVIXhGcC4lPj46W5ZB0k/HUGSMWXi4UF/gIBd1w44fQYBiJkaC24Qosyu5sVD6QQDMVV8Ty8HpTtE2iCQANLaf2qDhxujjW7TKTi8ZU9+937eFVaqYGQ5XLnn7d4f/9Yyj8SYTPNfrGhVk6EYuTLaRfzH7LLSgiYFwxq8WkF2RI/J0pCrITI8QgWCEFzpZbnRRg5MMVWEkEiR4Ks3HpyzTfsRrkHffkSqAWHOH9x7U29nc9jZSUXSDKBD+GZ+CPlEk7WR7EgGakCSMFXHAbL6hWJqIIW0pIF0fas0VfsdlIP8V5QQtoCsgqLCKHE2XBMYt90MGCkPCcjMFnJ3tXi8cn7gJcgVMJL38sBpCfDYhQY6uI0ASXzD/kl4q/qFmIzJQVWUlPA1IOHAjaXt7DaXK+CeVvoFdmn4aSvwsGy63UNBrMwqIk8CUkq0Ukfsk/FJiTJZGdN7XfZiwHHCZW9gviLhPq2FA52eovN6Yc/++KHP/x8+X4JFnChiZ0KURzNFR4h9budab/3Ytp79XL28nYy7Q/msxHf6ZN8oOMX/ANstjc+iyVM+Z+dpXS6KfVxpv2ZAmzk1UoTT0ihTmoOva85H/PJ9GmxzP54HzFikpXkn4AJsrxLMQVNRrIv06BSy8axA+xS9Jg1wHGZG1rLx5VqNKglvbdx/CyCo+QLs0upLMo9FvYyGRbiDbUDGiQ05cIAtWm+oTSt2bnjO2g0f2j3IHhqYm3kWCkgU9T8t//4tyJ2rbYYP+mWpGhbvbFuFJLHMApJST0HRQoDkRyDWsboSpkyj8wB9uUWLEieUgivpxV/PZlPvTm3DfBG+cIdcyTIVguO4edgrNug0yi5Ht+tcfapBaO7XAOPQt09kf5YP0a+mDDZTULNk/oQtibj9vGhpNOmZzMyhIeJ6CBbvTj98cFRM+BCEMBoHZkYhXMUFkyDm5XEyoWqpSYvhuwPvKq+aHKM4BFbA0Mms1mDTVAoVa0rW68SPSQq/JFYzWJJKmm81FWtLDdzNDLn/SC3xZoQEKlFiucTvBT9t0BrjhOg2cm2tmtXgApLFbOva7oI9MJoqndk5Dg/UTlb59tFlPYmRaN22j7FmMQtOldbRtygJ6lyWxRyzgqjKLj1pCit0j6nhDoTCnPnrRIHgMsb0C49gXQEx5UUyPkiOc/d+HAsjDXLVhEYqR1rZsMyehrpo65/0CWsNg+n5kPvFys3AIvSRDHcktE3JgoCvFAFn8JG020lWUrhWYZEMAyOvSvZtc4k9277tOv5hDFwpIC+sCXVJ8HyCe/yM8Uo2F6fr0gDNUTSRhTC3jkw2xkdUZQQiaX8sld+xl4Id4K3AjCQjWrJnSwgG8YpCDOZQGDCnobPdSjGPPhB5+ssuF07weexCETLvvPZvuqXh6g59g0C22F8qtt4NO6pkYYlqL8XVFqd0JZsUhPmj5I6fZuZiuHB0COJMuu2MWvLwpQhEYnkpcB/8XIyGdTdXnlLJ+v9KFpAdE+gdqxqqHU7MUWB+2I+/Ey5U8iSsh8O1eeEpiOnKe62twJrq6NTzAiFdaQWzUCktQV4NPpCbLXb3BiZ5a0oABG5pL5WeEdP7QdT6YOdu7oOP4hrUSzLNRIwosh7BiR6QNosLD79Deq0GIWQH8qKks7dEl4bQpss0ZEhr2y/N/R2hNDp+/Di4QBZqwCEBVIG7sLoOyeuCEWd8VRJx1VzrKy718cNmZz3X//bH//P//F/F7t1cjrmF5G0Uvlj8eUAozIeOBz1dLcY4WjE+ccf3Xz7m18THEjqRgsyI2xghwsosicwQLaOztkHd48zUa7V+eDtKAjNE2VXVcXJguF8I/BNMujIc33Cc0+uVZ3YUnEqHOjSG4fBWgUWOU2+Dg0W6i/wIjnOAsAOqoZsDjmP9z1fTHIlf0+LlRdiAny/Zh06jGOmfJ6n6Id7cebS8QqqnUaWSi3iEC46FKQ8bYU9B30cExkGrQhh89/8o78P/ApIoX7v79ion+/kif0ACY5aBVfSyTCSVuqk4xeFt4aE5FDjIqiizLVd9h8CD37yk97M2AC/W2VYFbccbFLp7Is+CuawrUQE8y51ObmZrJY1o1nsKTeWyMVqopYhNUh/UJm3Khk6/jnsvzMoWYQSHjtbF09OJ9bL+qnUtF/6jyDZUFXJ5SYYp8az6zG6IKl5rVBK5kwQSyq8o8XRa+7XmlrTM81gkBjvfHN7A67y20GeIBaBYFlAXIrFDeW57G98YQrLCipnU0hddMFzbX6pw8Wvel9bZ9GpOSH+QvigU5FQiFLRfpQh+NW7cnIGnRQI4E7d4aDWJlipWAAilDgn9WoNxReQroubgcTO/JzXpY5QCGLq/u17DyKatCgXz1EZeC2hUfLeeFWPciLcyYuPb8AE/3WcAY9Zgx/AtV+Wdw9sh+9PlhJgJ3PEKGVXzzCB+x/EEaoA9PjU1ep6bmZrkFRCEy+RGFEqL5aFZQ5gLXhyQKixqEus8MnU33pV2TCrsrvJzlhQIR9zBUeqrVQ9cTZmQAYvuumYYHJjgQIZPuojSW+q/ouP+FAgQIL4EstIJEtQeVOOj030EIdatJchB6A/AOKIMYaLJYVVPfQD4CeEsVM2ON4+/yGCttDP2JNoRKRYAIasbNzcXrMWj08r5kx+0s+Wrc1b0ZgYXyaw1BE5BXJgfwgL3IOm8TnCfPL5wagEc0cEFEGUzG5QLOpZmaBdQFDI1EDgqev1LroO49v8xSLLQv1gCZgQaIwZJ8Rxq2gq22Nv7UK8r4XnuXaRLpPq0HNYJlNsNWOHdIockuqcBk3wOqm0zhaKuAIPs3NgWOxDgowUxYUeVgziofl+RYq50uSU2ifA2F0InslcIIoTbRfjh1XPJVykpewWpfCpnirJYN4G121eBefLAxnOMx+bOrO4exynL90JIGrlHXrP7ePtq1e//NlXf/rDn3z28/dvHtVQMx5az1Ju7WT9x+p9qFOIdmCrVSiw31eN2XRE8ub9/jc+vvnWJ6+0MdlU5kWIw9kZaeftnLmoUBDMuBVSCMqJa6f4lubonCz1Hc+0blx2tZuzN/PbycuX1++/eh9kkWxw0W+ZL/EYs257QzKfFIoMEb6DjLjg56xN/7lvjqqYyxd7pYwtGUfdG6C2w8iJ2KDz6eXrV4Z3ESAmiH2k+bEtELcRBtx8ShlHXiR0LuYGJSZuKLjA7wXtnf4fEnncOd7k/DQAAAAASUVORK5CYII=",
"text/plain": [
"<PIL.Image.Image image mode=RGB size=512x512>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# path of ground truth: /home/ldy/Workspace/THINGS/images_set/test_images\n",
"k = 99\n",
"image_embeds = emb_img_test[k:k+1]\n",
"print(\"image_embeds\", image_embeds.shape)\n",
"image = generator.generate(image_embeds)\n",
"display(image)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"# image_embeds = emb_eeg_test[k:k+1]\n",
"# print(\"image_embeds\", image_embeds.shape)\n",
"# image = generator.generate(image_embeds)\n",
"# display(image)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Generating by eeg informed image embeddings"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"image_embeds torch.Size([1, 1024])\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"50it [00:00, 249.95it/s]\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bd684a39c4c34d6aa65e7cc0500d6afe",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAIAAgADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCwq04qCuCKAKM8UzkGCMA9sVVsz8sw9JDV3NULI/6//rqaBXLSEHqKSQgEcU9SM9aRlDMDTsF9RmDjpWL4iOdMlH+zW8elYfiAZsJR/smk0OL1G6LGjSgsAcwjGfwrbwq9FA+grD0lvLS2f+9Dj9BWm8r9gKSKluWcjFWLUj7ND/uD+VZhlfHarltKv2WHr90UdRdDSCq3BANMmXy4XKkjj1pscox1pJZVkgba2eCKZRxO8tczbzzuqaLG0ZPPrUXlj7ZL6hqkMuMDGea4ZbnfD4RzttIUYO41Z0vA1W13dfNGMfWqRQMwY5yO4q3prp/aVsQQW8wfzpR3Kex6ncqDbt9K8mvHH2yRcjhjk+vNesz825+lePXCN9rmBByXb+dbVldIxp7k2F8vBquXUyR7BnBwDU6A4O8EDsPWlgt40uBI54Qn8654ruaSfY1YNBjuIy0mQ7jPX7tY8lm9hO0Mx3E9GJrYXXwzeWiKoX5SfU1maxMs8wlGQ7fKK2vHZGSTuZk6PI2EPyLk5966KPSrcwRO8X3lGTmsUqDDJxjahrudMSNrKIOoPyitacVK5nVk1axmjQbIL84O3HrWHd2ttBIDCMYbHPeuvubiOEFGjbZ2CiuPv5FkucICBvzzVzilEilKUpICAMEZ5pdozxnNNxuT+VNVmUjI5rjR6JK+SBgDNRFT+NWt0Ii7McVWPJGBRcLjVDc5wRTWXAwFqQoQPvdfemsOo44qxXLmnaZbXkDPNHuYHGc1Yk8NacyH5CPoadozoLZlzzurXwNmM11xSsefOUlJ6nLSeFrHOQzg+xrEvdOisbxFjLEEHOTXeyQ/KSDXH63g36ewNEkrBCTb1ZoHw/YFc7GUEZ4asvV9FjskhaFnw5OQTXXwpG8MbHB4FZfiMAw25/2qjqF33KEfhV2jVku2BIB5px8MX8Yyl3n6iuvt1H2ePAH3RTmIJINacqZlzy7nGHQNUxjfE/1psmk6jAheS0hcKMnFdwEAUHFV75gIHA67DScIlKpI4i1e2ugssUZSVGIYZ46VcAz1rK0sECXsN9aQzjg1ztHfT+ElwDTWUk8frTVLetBB45NIs7D4eoEvL485Kr/WvQj0rz74fA/abv0wv9a9CxXRDY5J/EzzzWR/xOLn/fqrGMZ+lXNZGNZuf96qkfer6GMj0q0XbZwj0QfyqWmw8W8Y/wBgfyp1NFhTTS0lMQlKKSlpDFJwMmlqJy3TBNC5AGDx70BcJuF9j1qkjSo3lEZ2kfiKkuhIcPE+1h1B6GmO+yISlfmXhsdCPWlcRoRurxggj3FV/MAZlbg54qrDdLFJImM4GQc9alWVZSxA3Dg5oHc4JklI4Vx/wGot0yHDox99prWA4pMEc1z+0ZXsomV54B5GPqDVW2IjEuSPmckYreZA6kEdaiECAYwPyo9qx+xiZoYmnlgq5Z1H1PNaiRKAMCleND1UflR7Z9hewiZKzxscCRCfrVLV7WSeylCAE7TgAit5rWFv4fyOKcIlC4FHtn2GqEe5yMcLJpNmefMUDKgcirTXKqgJDZ9MVuzrsQkIDjtiqMCh5GUgAnkZHSodZ3L9imZhuGYZEbY9TUtrdN5MabCdq4yK0b22HkoE4+lZ1uURm3H5QOan20rj9jGxaW9UMVYFT70/7TEiFi4x9azLibef3XbuRVX/AFqlNuCeuK0VfujP2HZlSSXddSlCcFuDSEle+fqalliXBVVwT1pkMJIO9eAeKwcr6nSlyqxGLh92CRtq/pRj+2QbuG80d/eozHG/BXNMswU1W3VugkXkfWnF30Jdz16Vc2/BxxXk95J5d7MuPmDsOfrXrLYMI+leRXsQi1C7Gc/vWwfTk1rVtZXM4bi7mK5C5NSM5cAnAU9RUcUbOODniomk+Xnt17VzG1r6iRqFlI/hUZLH1p3+vk35OD9z2pgiF0jscxqRjHr7023zBGFMhcjua0RLQksgiWZGOScL9c12ds8kUEYHTAri5oTIyvkAcnn1rZt9Tuc7fkOBxW8JxW5jUpylaxqalcSKpRg34Dg1y8zebdE1sz6rLPF5bRrv7HNYflyLK7PwCaU5prQqlTaeqLYilaNmiQsq/ex2pEgk8oTPwrdBUyOqxHy3IyMfWqhlcp5bNwx4IPSuPmb2Om5ZXagw65b60xtuDjPtT4AJnJcquO/rS7kBbksRimpWYXIhE2Fbpmrc0VvHCFxmTPr1podFjAwOPXmq4y0u4de9TeUmne1hF/TUESuGx14rU6jg1hrOImOcg56VMmqfMACCPau+FRWRyVINt2NliAh3HpXGa0oa/BU8H0roZbpJkG58A+hrCvZIn1GLB+QH0puaegoQa3NWINHEoDEcdM1T1MyPDHuYkBu9T/a42Hy9qp3V2rskWxtx5z2pKauaOGl7HXQXCpAmQfuim/ao5SSM8etU2v4UiVCG+6O1VUvoQCFVh+Fbcy7nJyS7GzJewwRKZGxniqd7dRmEsrZ3KcVlXNws7gg8elRs48g5bkA4pOQ+V9TIhHlyuF6ZzVtZMdc1UsJBNJLuHQ4q46qmMjFcx6EPhFBB6mhmAGc49KbuBHHNI2CME0myzt/h0Q096c5xt/rXoWK87+HAImvSANvyj+deijpW9N6HHP4mee65xrVz/vVRjPNW9dJOt3X+/iqEZwxrboYtnqUP+oj/AN0fypxqOBs20X+4P5U8mkWFIaM0UwEpQDSUoNACio5flG4fj70k27KleoqGaXcgyVGeCDSFcV7mNYwzDKHgn0+tZuqQLKpe2leKTHBTkN7GrsbJ5RUsPcVmT3dtauVkBSMjIZelJ+YFGzuzHcx2t9H5R/gYn5X9h/hWnb3ifaJYEQq5bjPQ1k39zYXOnrFO6smeHX7ynt9DVLT9ZlilFrPtcg/u5WOA31NTewE6n5QaXINRrKhAAZfzpwdCfvD8652jpHAelIRg05SvqOfenMoIxSAYp5xTsZFMxzinjOOamwCbaaVINPwaQ0rDTKs2RIAcYPQ1QlwkwkA+bOMDvWy8Sywle/asplWGdBKvzZwKmSKTILiRpAmwHnsD0rGkfaXycZrUumkgmbauEP6VmhCVLlcqDyakdyoWZv4ip9Kkt2YMwbkVb1OGAqjqdrADGKqQxtjLY57UFXQ/cJm27fu96jmUxHcG+U0/OxzUzvFJaCIqPMJxn0pklBWZmyHqxYgf2tbluu8fzpHgMSlSRyOMCotMeT+0YVf+Fxye/NVHcGkevuf3XPpXk+oru1K5I/56t/OvWH/1Q+leUagrLqNyCCG81uox3rWtsjKnuQwu8BLKM9sVUeQJcgS5y3Qdql84RvmX16Cm3BExiIxjfye4FYrzNjShtjOFRAPm70y9sWtZcMBgdcGr9vNBCE2EAIMnPUmpLi7hk83aA7MPvYq7KxNzBgYzSlAA2Oxqz5Zj+tU7NlW+k5wc4Ga1JWhEYIHz45rOSa2LRFuIAJAJ75qF08wMA3yjvVhiccHKnpVXBVz1255qSr2GtA6FWXhf50kilkIYZ9KsNJuYRgc9jSSIygo3JxQS7MbAxdNpA3A8UrqImyxHI7HrVclllD9RjBp6Ou+nYSRNhyOOAe1IvynJPHepWYrEc7frUbx71YqQenSoV3uVYmVRImFwSemaJrQRFFi+eUgFlxTcvbxlg2ecGke6YEMOMjp61k/a8y5dh6Fd3KL0+bpio1CmTcVBI9al2tK2/Heoc4lZDwetdXQleZPsGCOlNCZlzjPan/x9ai3SeYcMAOlIp7E0gbewzx2ojTAJPpTCWBwSM/SpGbZBgjGe9UtSRpzjIAFVDIWlbAwB39amlyBhXJJ6+1NjjwMdu1MAiIQH5evcCnNk5IHPvzTtpJxxTtrBSCwAp3Agy+eT+lKFyeRUoUHnNJt+U4NFx2O1+Ha4N6xznco9uhr0EHivPfh2dsd9uA4defwrsrm9ZF/dDcfQV0U9jjqfEzjdcH/E7uf9+qAXk49auatIX1OdyMHcaqRcn8a36GDPSLY/6LF/uD+VS1BbfNaQkdCg/lUwGKSNBaKKKYBTVdWPBpJG2xk4J+lZN3qkWmwmeY/IT0HWpcktWBqyqWPynkdKy7u6EUBFxG5wTyik4ptr4gtZYBI8mCeMYx/OrkN5Z367I2BLDoDzU88ZbMLM5nzpZJVayvBGjMMxuuWwTjPNQ3FlfNcn7dtlhD43A44z1p2t6dDFdyXCOruqEbM4Ibsaw7XWrm2tXj80lpG+Zn5/CuOVdRk1ItQutDoZ7CCxCSQNG0cjBXjBBz9Peo7uxt9YtpIbOIrMnAPAx75rlLvM0iP5pVE5pq681mSbWcgt196mOJTdraFcljkYr+7TP+lSDH+2am/tW+wSLuTH+9WWOtLkjODXbYwudHot/dXOopHJcyMhUnBNRTa7fxXcsX2ghUcgcDpmoPCoLa2gPTa38qz9SYjUbkf9NG/nSsPU2DrV+3S8b8AKYdb1INtF9IPwrnRM4PBqzFMTjNO1hXZ01vr2qWemG4kn83fLtzIM44pr+LNTkXAaLH0pvli68KmIY3byy/UVzkTFflJ/Co3K5nY3B4z1NGCYi646VfbXryYI8u0sOeBXLtErsCPvCteFljjRpOwqZpWNISuzTm8RzzxLmNcEYJxVW31RvshVto3N0qnHJHL5kZX5SeKitjDFIYT1B6k1lbSxpfU17i+82DHljIFNhuWEO5l6VUfO1lHepbba8bAtyo6VFkXcneVceYxwOtLbXSyyCQ8Rg4qnM/nx7OcDtTrRVC4HTPAp2QGvI0Mqht/A6HNRaRKJNXhMZAZSSCRnnBNRfu0QqVGT2qbSlSPVYgnU5JH4U6aTmrim7RZ02o+JdUgura3SSAmdtu5o+B+tZOsm/unjFwYnG4lSibSD370/VZLaO5gMtvNLMnzx7HCgfXIOaq3N+dQhjBQx7GOQT3r0cXFKnJxj2PMw9STqRTl3Kz2MoAYwNz0I5zUVxZSrBteMqT0bHSpGee2XKzvj1z0przXU0WDPuHUZrxrs9YhIIKLu3MBj605ZwG2Zx6iq6ZEio+d+OT7VMY1JBU/OTj5jVtdWLUeLaFn85SwK9sU5SHfcv601nkjwGIHP4VKXiEQC8MT2rKUpbMaGXFxkEKMBe9QRl5V3HIX69aZdkFlVSAx6gUKXACkY4rZL3bh1HEurAg5I7VYSfzSMtg4wQahDDHvTJFywdeHFJq42uxbYZUxuBg+lVI2AYoFzsOKcZ/NAXbskHWqNvLm5nViQwOR71UYuwNl5mYsEwacjsmEJK4HSltmOSWGc81YkkimiJYES9sVLdnYCF5dyFC3NRB8OFIpoYls7enBqRgMirAekmARgiq8zKbiI46nmpT8pUnP4dxTLlQqxOp/jHSmBLKSmAByelQoGz05NSSyfvSrYGBTIGB+bNFgYbn37WHOafI7hAeDjpTHJbO3vzmk3hyQOoHamIeIiRjrmgBgcd6erEAcYOKC4yCO9MobuYdRTWckc5xUjP3pgbL9MCmAq/cPP4UwS/Lz2pdxyVHU1G6HOOx70WQXNzw7qn2QTARlvNYAkHAxXbRalHbqJkk356r6VwXhx0gsZpHXcQ+AfQ1u2kM8tvOygELz1rSMmtEc04pu4yeR7ueWd/vO7H9aIhtOCOlNtDm1UnuT/ADNSJy34V0rY5WdTpXiPTfsMMT3Kq6jaQa6BCJFDKcgjINec6d4ZtL6CO482RXd8sARjrXosaCGFVHRRgVMG3uatJWsDEICetCMHGapSToIZCzYIqlpeoC5uGjHb3qrq9hamysyMRg1ha3YXd3OFto4tnUyMBn6VV1e/n0i5QFcoxyGqW98QQNpo2Ru0rjrjgVhVqU7OMnsVFPdGHdWpWGSCc2zOh/ibDD0Irn/Oms5y9tO4YdQxpF86e7d2cghuW60XkIhcyiQMWHPNePKrrZaG9tCv/akrz+ZISD7ng1HNdC5iZcAc54qOVRKvlseD0IrKNvcQOwD5A6GiKUteor2NWFZJmWMNu3cbewpLi0htYgkoAZT94HNZ9veXVlJ9wnnOcVpJcRXNs08iZz975uSa2UUhbnGhxT8ZFMUL+NTwmIK2/wC9nivWuczNfwiAmuAt0CNVDUZEbUJycf6w/wA62PDKodQ3qMHYawdRjH22c553n+dT1E5JosQWkNxESU57EUyPTbh5SkabsdKp2s8kbkCbaKvHUZLfDxT/ADD0ptMm+tjSmiurPS7TdGQQ7k/Ssm8t8/6REPlY/MB2NaviC4nfSNNk8w5dSWx3rKtLrZGQ3zKeGB7ipSNVbYrksn8QrXtiZbdAy5x1rLmtRHIJF+eBuh9PY1pISlshTgGplqi4aMZcAxPiPjnOacUheRXYAMw6ikdWkyu4ZxRZyI8RgdQZEPBrO2hotzRSNQPaup0rwBeX9gL0TRoJVyqnOcVxyt5rBEYgjqK6qz8eXum2KWMaAlBjceeKzja7uW32Kdx4P1WC48gJExz134zUieDdbiLYsxtxniRf8azNQ1+81C7DvKyvn+A4xQmpXmcC+uP+/pqnyiVy8fCevuCfsLt6YYH+tS6foWpWN/DNcWM0aDO5yvA471lpqGr7yE1O5HPGJDWxoWsau919iu7l5oXDEl8E8e/Wqg4cyJknys6AaPaajDJJLIVuFi2x4PGeev6Vyd5Y3Ng6xzAKXYsMHtgV06Jqi6uVjnIsGiyOeVfPasXxOziaBZpWdsHBPWu7EOfspXas3sefh4w9rFpO6T16MxyysCrHOKrhmjfA5TtQzuG+TLHpxTI2bd85zjqDXlJHrXLEknmKSMBh0IqAzFVZn4IGaaJ4sOQMgciop2W4t1b3+bHarUbbibLsE32iMLcYKn7oHWlCANtTJB4BJqG2Q581c4H3fpTkVkJaQE5aolZAdpY/DjUZ4FmeaH5wCMnJFM1LwXd6fZyTTNGVQZypp+m+OZrHSfs5LF4z8hIzlfSmaj4quL+CSAsNrDOBWkXGRDukcvBYzSwl41B2n1qObdEwEiMp75qxBcTwRt5Qzk5qlc3c9y21iPxHSm0gUnsOdonA5IYfdb0qksg+1yFgEkC5XHQmrMZLqBjGO2KjmhYsZAMlOV96hNbFsuRu7cqF6YzTGUg/MfxFQ2twTFnaAc5x61I7b8D+I/pR1GnoEaMFxk7u4oYlOOSD60h3K6nueKeygRkk8+lMLj2ctCcYBHIrNup5BhBydwZRVxnby8KDjsaz7rIu7cEgDrmiJMiVJ5J53AUeZgDOelSiF0kCySEhuwqOyjAkebrvOV+lWHlUMHC5I657Vad3Yz6F+ytFkkbcSYwuKplJWuWS2UthsdK2bBWh08seuMkmqmiiWZp0GFUtnf3NdMUtmYuT3uLNYTQbS88e8/w4qhqAlsojJvDe23Fb2oWy26o6MSwPJPNZmoSfaNKunlwNi8USjHogjUl1ZUi+dFJOM84qaQhVAA+Y1UW4VbWIqMyMPlFTxB9uXxuPWuRX6ndfoOXCggnJ7mkZS6EDr2pSo70oAHOfrVAO0wyraPCwxulxur0PS57a2sNjx/ORj1zXBW0g+xHjrJxVpbq4siHVsg9iapNIxkmzYgQiDldvzNx6cmmjKsc0tnIZbNJD/EM03k7j9a6lsccty1o928cERQkpu4H412812VMYC8Eda81sHlXQFkUY29/xpV1/UEBXziwXpmuOnVUHJM6507pWOz1y3kFu7xR7wR83zdK4y1vJbK43ozdeVzTm8RahPGyNN8p7YrNd2PJPWoqVFJ3iOEbKzOv1nU49V06JQrBwcnA6Vg3FwUtfKZmIHRQeDVK11DyyRgnHqacWjnLPISCRxz0rmrt1HdlqNlZFW1nlHmuiH344qrcs8qkdCeQatT6jNDbG3jAI/vY5NZwu5Sw+TJ6cVzqMr3M2Mt5mLFHXGOnNXtoeMADNU280nPlgg9qtwSqkOPJl8z1BBFW4t6oLEjokkYXGOP1rNUPbysgQOvpVm4nMI3OpAPQjmqqX8ZcjOT71ScrbE2sc+Ix1zTkTL4zSqhI60YMZ3V7F9TnautDofD6GK8PPGw4rnrwk3s/++f51t+HZXk1EKQNuw4rFu0P22f8A3z/On1Iimo2ZW2DOcUjKNpp+DuwelI44oLszc1g7vD+lkf3a59ZNuQa3tQ58NaYx9SKxHVSM0kMs2FztYxyLvif7y1t3UQisY/LIeM9CO31rnVIwMV0Nq5t7TeoDKQNynoaia6mkGV0jxhzz7GqzRvFfLKikhuuKvwwR3Uq+VLtU8sp4206dFbNvFuX/AGj1NY3aZruiSIqWZol/eMMZPSmEOjhXj+buagtJfKPkH76nkmp7hy8+ck45qH1uVcBErsXBAb1qvJFImc8f7VSwna7jnGc1YVlZ/UVlzNMCOCUxNE64bB5ya6HRpA2pxkHqpNc81qrsfsxHmZ+4T1rZ8OOH1ZRsKsqtkGqjZyTB7M6XUb3UrURfYLAXIIIc8nac+xrl9ce+ujE97b+TNz+7HGB61vnxbYWt3NavDduySEF4owyn/wAeFZPiDVrXVZ457QS7kXBWRdp/nXp12lSffQ82ld1tXp8uxkxgKmM4PrULsrtt6AnkmjzHRSzR8jtmmw3Ec+5ZBhh0GK83Xc9QivDGk8KR8Kxww9ahuF/e+VHgRydcU25AZWbJ3x8pSxSbponIJUitOhJpxXEUcOC5UKMAUFo9oKsTuqhKAJFVjnPOBVmGVi653bQOhFYtDGMJ45GYqSlK908bIeVZjinSzMwfySPmxxT0hW5iAcfvAcjJ6U+ZLVgOWcx7lcn1BBp67ZkDrwTyCKsR2UTRZkX5untUZgS1wq7ioGD7VHtFshWIHQpKwWXqvTHekQS+QwLqTnpip2nBnVQuRt4p4izkAnJ9qTqeQzMXctwdqBm67c4qeOeN7hgysj9NtRXKGOQSMMlfl4qdLFpYzIxxkZGOoq+ZWuCYsoXepUsQOaeHXbwAQaqQsYZfKlLF+xPIIq55TtyiMD1+7wattWHcZ8keQx47ZrEu23XiIegOMj0rXl3ecqSIVf07fnWffw5u7f5QCz4I9aqLRMtUaIePChBgKAM1VuC5lLqPvEcetTGNvPWPcAOygZpssYS7iZ2GAcYxSTSegMufarxNPbzANpHSn6dqLWVuoEIKgZLVWvrpPsrIQwJIxjvQzD7GXI+QYwvrTVVxVyHBPQvSa5He/uGhfzD0AFZGpC9NvIxjKRDGQa29IiHmh5Au8jrUnigominbgksO1dULzhzM53aMrGBaqDErclsD8K0EXuTUEDDCnbhdo4qxuUjIrme53xtYR/lPrmnFGaM7FY464FRSLK8ZKYz2zWfFrut+H9ShkW4CwyuAy4BBGeaqKu7ClK2pZsGd7RgG5Ehxk+9X2aSQYIFP1jVBNeA/Y4raNn3r5aYyDyc1bLWjRo0JDbhyO9KempEWaenDGnRD2/rTnX92x9qLL/jyjwOMf1qU/wCqb6V2LZHG92Y8F5CnhZI1P7wkg4PvUE0QW1aZepcD9KzoUK25wCVyf51vTBP7IgCDO5txPvivNt7zO97Iy1YkgngVZVDMAicsaryZ80JwAau27LFtcAbqS1Yrmc8MkE5RvvdasB1QfMOTV+aSK4lDSp+VQXSW3AjOfapnHqFyiAjMQDyaj8tYpAG+9mldwhyF/Kq9xKGUMGIIOa59bkOxfCliDjj0pnzK5Oce1Qx3qugwTnvTyjY80OMnsaSQuuhXuleUkhsHFYslxKkqrLECM/eAreZyTl9oPp61Tugso8sqMeoFawlZ2aBo55ZSOlSFiyc4r0uXwhpxVtsVuhPQhqgHhizTGYoG+oBr1Tmscl4ZkZdUGB0Rqzbg5upT/tn+dekw6FYwtuWFFbHVRioW8L6VIxJhUE9ev+NO4uU8ydsNSIrScAZr0eTwnpSNzFx+NNXwppg+6jD6MaBo5vU4WXwjp/yncJGBNYP2S4dOImP4V6U+kQm0S1MjeTGcqDziuX1k3Vldi3tn3KRwCopIZzyWdwB/qm/Kt5YM6EAeJM1XEl8ow8oBPQbauiK5+wlwwcnrxSdykVZ7NrdwpbYzKGXaaYJp4SrTjzBn72ealvNzPHIWyygCoRIsi45BHrWOxsRzFDKZIASScnNWWcs6uQFAHIqBWijn8xVYkH7o6VIkyNA7bMksevalK1rgiaM7wVQ8k1IkSo5B53fw0tt5DoAEye/alEbxTybMMvbJ6VyNq9tirEi2yoS6HYR0NaHhli2u/Nlm8tufyrGW63s8cyspHatnwkzPrmGUAeWxBHfpWkE09RM0NL0JtVWa4e6MQEhVECA5x35rM1SF9NuXinALpjke/etTRtci05JYpYnbMhIZGAI56YNVb2aLWNTmmmUqu0Yyewr1MXKSpyv8On6HlYVU/aRa+LW/4mSAJcsCcdTWdfbY5gY+T3xW5Pp/lRv9mlGGHANZA0K92eYXU/NkrmvIp1IXu2evJMjjjdIwJunqagjRpIvLX/lmxGRW/LbAW6kIGGORWPGgju7lTlV2hhWkZ8ydhCWqtJKX2jK8c1eif96ykAAjrU9pZLHaJkjcRk46802W2VI94Ukk4rGUlJ2ApGGQ3YRGyhOc1ZkkS23R5O7rTbeORWbexwG+UHrWgogKFtmX7k96qW2oyskrqgydx9Aal81nJJjwc45psyKxDRZXnGapI0pfc24rnk9qzUU9QbsEzk3gZchgCPwq3bLK4yM49TTbMxNdl3UbuwJ7VPPdbX8tFABq2+lhIr3Q8vYZBkb+D2qVrtzhY14qrcGSaIIEfaHBPFSiVnBjQfOOgApdAJWhW42s5CEHIJHXFacFwoU8hsDH1rMSK4WMechwvTNC5jUlGO49FAyKxnr1KTsPuLT7RK0jSYXPA71Xi0zzLseaS0UPIYnnNOt5HScrIc4I681ekgackC52buTgVV3Dd6BvsYsoiSdmV2DZIBNWrayNxbI8gkBz1J60HRmMkYZ/MVWJ3dPzrQlR4o8hcqo4GaqVS6SixJdzIvIfJK+bIHXspHenCMSRfNkDqFHapPLEria53EBtwUDjPvVtZojyUCr6Yp87StuGhUj2w4MczFgO9JNcNco0VwSydQM1JdNAWUxLgHgkCkgVAWIBJI4zWik4xvqOy3YiOmzaI+B0NIoAJPPXpUkIOCH9eT6UjGNSQDmtU7lKwKc57Vj6/DHNZNcbm3w42jPBrR+8+xT161U1qNF0aZR1AyK0ho0TPVFmzhSa0jRnJcqDmrMCtG2wfwiobFENrCY+MoM898VJLvQskZ2ue9Q97DWx1Nj/AMeER9v61MvMbVU0kv8A2PbeYcvt5P4mrQ+VDjrXoLY897s5hfkstvfJroLOxL+GhLGDK2/JUHJQeuK5aaR47Bm/iDEYrsvh5K0um3pPOB0/CvInLki5ef6npJXsvI5m5UyOAvUU6OVlG3uKi1J86hcLG21g54qMXM0SAPGG91pttamfUsm6UOd5xgdqoyXG6QlT8pqWNo5/vDb7GoZreFMnfj0FS5J6CaZIMkY657VXkV923bhT1zTkhlLAxSD6Gp1mkDFbiDI7MKSj2EUpomjTcvFRfaJWVVzyO1XpYXkJ2EHI49qyZFuIjtePIU8EU4xdrMllr7YhcJKCCan8sMSQ2B25rOSN7n7y8diOtPhinVWUsCQePeqshI9mbw9pZOFeT/v5SN4asT0knH0Yf4VANDnaWXbcKuXJXrnFbMNvNFAiO+9lGCfWuilVqybU42+ZvWpUoxThK/yMweGrdfuXcw+uKjbw4Eyx1HavqyDj8a2dsmelMlj86No3HysMGt7s5kk3qZC6TYbgkusRlj0AABP61ZPhuF0BS8bb2IAqaDSbUAF13Nzy2OKbBZzRsIo2ljiyeDzWEq0oNJxvfsdKo05JuL27lf8A4RqNet2xP+7VG48E2s9yLg3b+YBgfKK0r7SLq4VfKvnRh16gH8jVS30rVILzc+oHy9mMqO/0OaftJc1uUn2UOW/MrmVdeAILg/8AH86/RBUY8BlIBEuosAO+z/69dmoYKAx3HucdaXB9K3sYHn9z8OrmUsY9Ri57Mhqq/wAO9VUfuprZ/wDgRH9K9JIPpVGabUI7xBBHmLjPvXLiJeyjzJNnTh6ftJct0vU82k+HviKElo4YJPYSis2bQtU0SMHUbRo97YVsgg/iK9f1DUL6GIC1tC7nuegrA1m8F94euEvwFmQFgNvQjpUKope51KdJqPOebxyNHIdynk9QKmRyzg7W2nqcUeduX5SOKrrfStIQEHFZ2b6GRamlSRWO3JxWj4TvLa211JbmRYoyhXc3AzWLNLlhIijd3BNXvD3lXmuW0U0QZS3zKehq6cXdWE2euNYWsi58mLnnOxea5DxFFam9SJQgAU52ADnPtXd7YxCeAAo/KvJ9duETXrhUwWMhwAa0rwbg7Ep2eo5oF58uU8DAHpWczTiTyjIVfPanNMRIrqOO4zUzlLmFpI1AlB4JFedtubXuSW7K6GNiwI4JrMvcw6pHGMsJRg8ehq8JYrf5nGM+nrVJrqK51qNudqIe3Q1tTum2trEM1iCCpQdqbLLxhv0pHuuDtOfQVkz3UhnDSIyjOMiohFt6j2J2uHaZQcY+6KsvINp4xjjpWclxGZwrEhexxVmaZZEIRW9ieK2d0IhkuPtUy2Y4wdzHpha0EeAhk2nYOiqKybZgZWuJFIdzjHtV5Jjbt8uCzj5RUzXRCuWrWziRzIUI3DjeOlNuIIg4LMCRjGKe16ILZDNyScUXklssCsrgHjGOayXNuytCGUO4VgzIAecelRxXUcTttUgk4JNPUK+FlueSMjFV7eOOIyCb94meCK0UVsybmmlwpTaHLE/iKit42Z3aXhUOABxmq6I5do4htHYE9qJJpoww+9tHJqOS2iKv3J/ItkujKuScfdPNK04EgZRjHSqUHnZSR0JB9KnmdUbLrhnOAc9KHHXuNNJFw3G6HAB696bJcukPz/LngDrmqU8xiI+ckY5xU8QF3b4xkE8E1PJyq72FzXZZhaOQblGCeuTURsxcO22bjpx2qsZZoHaDYB7+1SQXaRyGFVPmAZz1zQoyWqBNBPpq28fEjOPQ0hjKbAqkFhwtTuJpSCyk/wBKdd3TCFQsabl7gc1oqjejKsrGXK0iSEcj1BphYeWWI/GrdxdefGvmxjf6+1UyRnGDg9K6IvuJMfGONx4J61X1RAdJuTnOEJqfdyE9ag1MBdJuR/sGtVuinsW7T9zY27ogbKDIpssjyyqSpFJaSAWUHOfkH8qdI4ZflPNIfQ6qyd10y3WKFXPlliWfbgZp1vP9ptvO2BeSMA56VUWP/iUWT/aY4SYypD5559hV2ytTa6WoLBxkncucH6Zr1Xb2a7nlK/OzlblTNatGo/jIz+NejeHdJi0Pw7MySFvMUEkjviuL0HTxq1+lmzmMO7HcO2Mmu6vWWw0JbRpQ0hkK/hXy+L5kr/Z1+/oexTtbXc8+1zTJBM17AzBnbnP3TWV9snhbM9s4AH3l5Fdz4gAtdBj3J8jP970NcW115kmI1OKvCVJTopyRlVSjOyIvt8EoBZwD/tcVI7QSIArgnr1qWWNSoLRqc+oqNrC32qTbpz3AxXVFpmYsZ8pBtkBH1qxBcgKQ0in6mqS6daF/9WPzqVtMsxgCLI+tVaK1C5FeXao25XVc+9Vvt0GxvMnXn1NTvp9qZRtgTaPUUyaG2ThIYvf5RRzRJKK39vFJ8suF9qf/AGjAGLIZGz6KaYYFMnmRIDjtip4Hy2GUKw5ptx3sB6lq41ePUhJazFbZVBb3qyZbi9kjSG4nhwPmJ5zWh5Qcktk5GOtSwwonKgCuppt3JVkrEUVpMiANeuzdzt6/rUnkSD/l6Y/hUxFN70rILkflTg8XR/Kk8u6/5+z+VWABVW2haOa5d/45MrznjFFguBS5HW4/nSH7VnibNPvLVbu3MZODnIPoar6fYy2k0m8hlI+Vs80nFDTbJS14Ojr+VAuL4HBEZ/CrJFU7q6kglRI7WSXd3XoKOSIm7Fpbm4x8yL+VI97KgGVX8qWjA7ipdFMtTaKf/CQIXaMmP5Bk8VT8VsBoNyxUHdH0FXJ9JsblXDwKCw5ZeDWb4wlFp4WuX2l9igY/ECmqaitBube55eYyqjaeSOSaiDFFwRg5/Oq66g7vhIWb29KbJcSswEsLKQax5JdRXRPO8u5mRRtA5rX8JNu8RWvIJyTx9Kx/OkRMiFyDxjFaPhCUR+J4H8lzjJ2KMk8dq0gtSWz2qOMzveI2ByI/X+EH+teN6+NmuXjKfnErAevWvYNOuPOkuW2SI0su5UcYIGxRz+VeL67L/wAVPfnOP3rfzrWavFkp6lSKaSEbpg3sK0bW9JwMKFNZvmiRgHXcn8qasyxMVUbgT8orklT5uhadjWlxLG4JBUdweRWdDGwupCrZZV5PtQGuI0LlV2t1HpTbcuJ2Kn5iKqELReo29S3DLI2QQAB61E0kjF3dwsY6D1pyuYiWcb89RV6Ce3mt2BTAPGDWMm46pFJXMiOB2xJuJJ6AdqlimZ5Sjrkxjp61NOqWzAI7bO/tUSQlrUzM5DMSeOuKtPS7FYuQxKQT1bsKhlt5FYS55B/KiKRhDvQk44BxRb+fOxEaSSjPzKFzWcVLmdh6CQ24nmBdtyZ9avTG1jXbsBweBTLmF7aVnaKSIADClSKzpZzJIJAOfQ0OLb1DS2hde2BkEgfarD5R706ExqhiKMTnB9qqQ3Ts+XHyrzjpUmXJ85C3qcUrPZisXZLqOBFA4YVAt0ZmdwgAbg1TuGd7hWXDIeoqeJSWG4YjB+lPlS1DUvCcImS4U54Wkez+2uJVfbg5FZ9zJE04AkAUDtzUf9vLAxTbnb+tJU5bxD1NMWnlsxlO4npUsdxFCuxAox2zWdDrEdwwEg+T2pvmwvcZjQsvc0+WW0g9DX3pPgsevGKx4FZb2Znm2ASYBp0t55SErkcY6VThUzR7mbLscmnCDSYXN8SeUm/zDJ71WlaaVgw5BPQDpUFrP5cDQ5G49MrmrHzRIcnmocLMq46KIAkON2ffpVaYeUzgsP8AZANPPzrvGVPpnrT/ACI5Igc5+vatE9dQRT8veyuud31qtqrE6bOCMYWrG2eFjsXOOgqlf+Y+n3JkUq23j3rogtQkWbCJzbRZPG0VbcpGm0DLVFDIBZwYB3bAMfhTGl3uFcAYpPVlK1jsNIHn6XZKV3FSTjv1NbXiFhbIqwQskRTIyc81j6LFdjRoriGMFEB5yPU1oyG5vdHJ8suOoOegr0J1KcYRvJLQ4YRm5Ssnucjp91JZutzGxVkO7iui8QazFNJpcsSnZcoXB/HFcnJlbJ8DBwa6K1ghutN8LWzoGkePcGJ5Co39a8apT5ou+x3xdmbniqMN4S8s9SykVwNpEBnvXS+Jb97q/lgRyIYyFCjpkVzwDx9uK5sPB06Xs7iqS5pXLBVSu1sDHeq1yybQvmYPpTmjkkBJOKyrhnVyvPHeuqirGci2s0anbnmntchlwG6VkK+0kvnFWonjZfk5+taSRNyxJKSflbn2qs0vkvlhnNJHuBZm4HalGPvY3D3rNtJ2EOM4CF4gA3pVdZdzZxznmq8t1Es2Itxf+6ozTRJdOWdYQmePmNaKGgHvqipV4FMApw4FdxJn3eqi3uBAqF3NSQXvmIzyAKqjOR6VWu9NE90s4IyOCrZweeKVLGRIHQMm44wO2BWC5r3OfmnzMsNqkEaM0gdSCAFK8n6CmPrFskCyqS+7JAX261CdMkb9/wCaPtIbcCOnTGD7VVGiO252kCM27KovyjPB/GneQuarc04dWt7h9sW5sAEsBwM1DHrkTSbHjcHJBI6DnHP5URWRt5ncMPLYg7QPRQB/KqJsLtrYgKEXOWUAbn5z1p3ZXNNGhJrdooypZzuK4Udx1pg1u2LqrLIue5HFUI9ImhdH+/uJLAr0J9fapZNIkcLshROefm4/LmndhzVDcHIyOaWmRoUiRTjIUDjpT60OgKw/F67vC99/1zzW5WN4r/5Fi/8A+uRpPYDw2KY2r+YrHB7VsWmn/b7KS6kY7mzsHpWAFM0qRKM5rrtKkEVq0UoCMowBnrUJK+oIwIruezkBLZAPKmuq8AyC78VxyuoBCsRXI3Kn7Q7yAgFuFPeuv+HUZHiVN3eNuPwq+VXugPaJNoiOcdK8F8RRK3iC8JHHmmvbYFjRGQSM5XOQzknr3rxbxEB/wkF3jp5hpPWLsStyujxKoXAIxSQ2Fze3flafb+ZNjdjI4H41AQAODirfh3XbbRtc8y7dhE6YLAZxWVOC5tTSV0tC/c+Fdfis5JJLBtoXcxDqcAfjXLKt5E8crRuI5MlHIwGA9K9nbxhoWoaVdRQX0Rd4XVQTgklTXjU+oTSGC1fG2FDtPpn/APVXQ4RjHQiLbfvF9bx22AKPQipHujFGwaMewFUbQ7i2Dn3qeRGmkAQFigycCuJxXNY180QTNK4G7cNxzg1eSWTywu4KccCoS0hG0jLL0pDNvaOPaCSevpTtzaWFsegeBvB41e3+3agGFoGxFHnHmEdT9K7SWyt9OmEdtEkZx8uxeEHr9T2/OrGlyRWOm29pCAEhjVB+ArJtdUW+1CYkjHmH8hx/hXQoqCsjO9y1/YkM6sXjLs3Ukk1yuveFIrcG4s0CsoyUA4b8Oxr0izZDEOevWqOrxL9ndQvTgHvRpLRj1Wx4Vd6jYRxlFJaT+6BVE6rOqkxwRpGOoZ+TUGv2MjajdfZSd0crcD0rDtdLv7+fYkUnXl2BwKUaMIrUfPJnTC9+1AFSsTd80sMfmS7WkZl9CeKxXS50ydYrhCGX7rdjWzZXUU0JdgA4PKispx5VdFp33Ll7JbwW21Ywr9sVQhtENi80wweuaV9l5dhVDbF60++VYLYooOW6VMbpJdQeolnGsVnvPQ81Pa8RblOGPaq5Rks9hGWbAGKvORbWoO5QAOgqZS/EdirqFywgWDYA7H9Ks29i3kKXkUAjAAPNZYuRdXXmyZKqMCrsc23LZOMcCm4tKyFctRGK2LBiTz61Dczp5ihWPPapFmtGjAfAY9T3rPlTM5KEkE/KDRTjd3YGi8rRYJRgnqakS7jIwG4qrc3MixCK5gZVxweoqvalFnYBvkPIq3BMpStoXyx8/ewbYeKZqoH9lXGP7nFPinSWMoeuetRamf8AiVTDp8tCVmU9i5ZhDZQnGSFFVZrba5kPNWIIxDbR45JUUrZkT60h9DsNGuFTwksWTv54H1Na2lJI+iKirx5ZFc5phlTR40U4BUgn8a3V8RGw0sQwWq70XG4nrWGPw1aqo+zX9WDDVoU21J/1c4C8YpZyjvzXa+HbBDoenas7/PbWjKBjt1rhL6QmMlsAtk/TmvQrKRbbwNFlsA2Z/wDQaipK0V5lW9443znkdpGOSx3Gh3SQY6Gs77YEGB16U2S56/eyaTptswuXC4AIV8kVFInmAcZ9az2nZMHPXtUiXkm7bitVFpCbHNGGhYeXyKoPLsYhF59K3raF7mIgsqn3qhPZSQbmaPv94Uk7CaM4NdSH5U2j/aNOaWYx+WzKuf7vep5VuH4UYTGSTUVvCFkLN8zGrv1YhbeJIl+XgnqTTpDyQrZBFLMGXIwBnpUPl4HXr1ppX1YHvqW8j/ckjb6NTjY3OOCv515NdQ65b6hK2npcLHvyoxkVrafq/iXzFiuLSQqeC4JXFdbJud+bG47sn50LZSd5V/CsKOYSsIpZp1c8ZWU8H6VXGk6st06yX7eTn5GA5I96i42jphZupz534YpBZOBxOfy96wm0O9fG3VbhT7VDc+HNQuInRtYmwemFwRTuKx0Js5e9ySPTFS/Z2kB2suK82sNN1q2vPtMd+8sEMpRwzNk9ulb15/atxEhtbhUdSd+7oePamt7IHZK7OtFrIR1WlNrIvUr+deaXF/4hsI2knmHljqQtUh4ovLhMRXr7z0yg4qnGRHtInq3kuO6/nSGNh6fnXlRv9cJz/aQH/bMUjahrg/5iX/kMUOEw9rE9W2Ef/rrF8WjHhbUCf+eJrzY63qulalFqEl60jhSoBHy49xXTw+LZdWt2t7m1hkjkXBUrw31FPlkUppnl1pFPGyyeQwAx8xWtzS9NnmvhNcI/lNyGyMV1GmafoV/ey29xpqRTg/K0eSOMcEDp1rYbRPDsBcLYfa7pVJWFBk57Z5wB9ayvJS1RXu2vc89v9Hv7m8eRYZHTOEOOMV0XgWzubPX0aaIp8jYLHA/M1nHStct2kluNAtrkA5GSPlHpgGq8tzqkjY/si1t+OuzkD2yau92K62PbHR2Tdviyf9tf6GvJdd0a+uNcuHigyhc4O5cH9ay9D0O8uknW4EgOcR+Y5QHg/n2rRtfh/ePIWvLyBI+wVsk/mKb2Emr6FT/hH9SPAgH/AH2v+NV5fBuozMHNuR/wIf41qT+EbeKQxCMTMvXZMyn9EOKqXHhp4gPKjmhP+zI8n8oxUaIu5DD4T1O2AKWw3jJU1Ubwnq3ytLbPnHOATWhb6Bqo/wCX3vwD5oP8qu22jawkuTIZlH8OZKfNbqD9Cnp/hnUopIozaSbZWCglSB+degado1nokM7mMyN5ZaY4zuA5wPasjSr6bw/IbjVoniWSPbCAGZnOeQBj6VDrXivUZ0lhs9PuIwwKjKfP/wDWqeRN3Yc1jmF8VveXMskXhnTlj6klihA9yTirkl34avUjt7jTZbCVl4mt5t67vzIrDhsL+K7fzkumjYgIsiHgfQirNxo8wP7uFi4wSBBkDJ74FXypaonn6Hf23iCJtqxzB+O3XP0rkTrkmja7OkpJhkcuh7EE5xWCmm3aTcRbGzhRuKt+VRXkmqwwlr6LzrYHH7wZwfr1FU1fcSaPYdI8VxXNuvlvHlRhlLgH2xmr+qeIoBpMrwfvZlUssYOT7Z56Zr5/jv7cShgkqD+6rcfhkVvDUXuUtrOEiOF23yKDk/8AAj3NS1YdzQ07TNSSeW4vLG48yUlv9WfU1rQQXJyI7C4J74jqguo3Nrd2tpC4JkUsxPf0qX+2LrzSH/dsoyQGOD+RoVGpP3tA9rGOg3U7CW5gaGTT7osen7k5FcrHoer27N/oFxkcgeWeRXX/ANo39xcQxwpueQ7RtY8D1611Mfh3UGJEmoum75slCSDjtz7UnCVN2YKpGSuecadY3qqQ9jOp7koRUdzY6i1woNrcGNT18s4rqtSm1TRZTFdT7oyMiT+970sOqXLY23kmTwSp+U88cVHLZ3LTT2OVuVni8v8AcykA5PyGq08d1fTbY4JAnc7TivV7PQdSmtWeRpA0mCoO7I/TH51jXl1q3h6/+yXk/mKwzHk5GKSil6g5HCraNBHjypD6/KaclxuIjWJgO4xXbW2t3crkRMycZyOSPwqyg1O+kK2bvLMT8/baPckcUez7i5lujz24tyrF9jg9cYqJJnEgLKevcV6bfWmr6dbCa7jAQAZdQGGff0rEGvvLyGhYjBMZVdy9vTmtYxurEuRX1F1k0pXJXaU5HvXKWm159gzyOAK75L13gJ/d/N1DRqf6Vj3WvR2VxHAlvFvJ7QLk8/SojHoU5bHNrdLbTMvPWie5Munzgtkkd669datpfmb7I5A5QxoSPr8tGp2Qk06S4+w2vksnO2MKR78USTjqxxlfRGRGSEQcj5RTslOhOKqvI8Ea4y56ACm+fJLGzInzL1FRGLlsaykorU7TTj/xKofp/Wnuu9GB7iq+lSFtFtmIwSDkfjVjdXox+FI4H8TZyOsoVlUDp0rqtcuzY+A7NAPmmjji/DGT/Ks600d/EGrfZUfYMMxbGcYq/wCLLOZvD1pCgBNrErufoNp/nXz7nFyjF9D1prVtHDwyF2yVH40s8xXIUDNSW0BkTcTtpWthyQcmuy6ucZStY7i7ukhQEu5worZu9EuNPuUhuZog7ruGDSeHbZzr9qzDgNXpt54ZsrydLmW3/eLjByeK1UFJC2PNXhuLQKs25NwyDjGRTlkMqeXvOK6Hx5arHNY7Mn92R1rlo2IBXgfSuSpFJ2GQXgl2sGf5B0xVeK4SNRlcmrN66LGozk9xWX5odsKMn2GcVUbtCZauZIkh8wtyaprJNLHhVIyerUrRsXACZbPVucfhVoRTAAOc56VqrRQjsI/FurKBmzh/HNSr421AnH2S2Pb7xqlCQ0YzjkVny2BgaRlA8s89ehrt5Yo5vaSOgXW77zvtB0uAuec7zU194t1BrV43sBHIq7g6vnb71VtX82yTPJK81a0QRXl2iSgFoyY2B7g0uWPYanJkHhz4kebeJZ6qigMdqzr2PuK9F3K65UggjIrxbxr4Ql0G6N5bAtZSNkY/5Zn0+ld54D8RQatoqW8r/wClwDawJ6jsaho1XZly0QpDqCn/AJ75H0zUvEUDSN2YfyqWXZvuTGODgmleKGSzmWc7Y8cnOMVMFqhz2ZzviCZJ9MlCsCcVwunR5Ix13Vob3lmkheQlCTjmtXTdIX7ZAseCSc10N6nMl0Ltv4fvp9gEYUEZyTWdqNo9ldNCxVmXqVNelxhQgVeoGK4/WPDmpXF3LNCiuCcgbuad7g42OO1eSODTWmeMSAMBtP1rZXXLP+z7SKO0gVyQS6JjHtVLUfDesXlhcW8dkxkGONw9frVG38IeJ44Y1ayVWB4DSL/jSurlr4TofDKtLrOqGN/LcfMDgHmr+gfbZtZuJ4/La2myzMzAMG9Dgf0qLQ/B+rW3ny3FxHDLPjIRtxA96snwbqdi7SWRik3HLBxsB98VzybbfmbppK7Op/s6UjIu40Psm7+f+FUp9HsQ/mXF5Gz/AIKKo2+i60MF0tk9QrH/AAqN/D/iNnJjltGU+rkY/wDHamN0rNg3F9BuqXuk6VEJY7lXlHARPmP88CoNN1yw1mBmiuWV04MZA3fUDPNRz+HNfYndFbOf+u3/ANasp/BWs7yz2MRB7RXCZpuz6ji/I2n1Sz08sRKq7jliyNyfwB/WqV34102zUb38xj0VFP8AUVk3UOpWGyzXT7hpmORGMMSPXg1l3Ggapcy+a+g3YY99jf0FTyxT3H7TyOtGpajqOnx3FtBaRJKNyF5CWx7gCn2eoXsM/wDpiw28KjMtx5oZFH0659q5eC08QWUYjg02/jQdB5Dkf+g1LIdXuYvJu7a5KnnDW0nUf8BqeXXdD51ayRo+IfGlk9uGtZJ2khOYWZPvE+2ePX8KwoPFuv3UwFrBumbnCxkn+dV7mKG14uU8th1WRWUj8xVvSfEtppqPHE1uu8/MSeT+lXyp9COaRZJ8cXb7sCL2ZlA/nWfeeHfFU7+fPcxCTGN0c2D+lbdx4vto4lw4kZl3ERgtj9azbjx2uz93aSO+eC3A/TNJRd9g5mzCRtYstRFqZpjdqM4AWQdO+TV+STxPeIYp4oHQ9RIiAH64rNfXNSe9NyI41kYAZY4x+tObUdVmb5rmMH6k1TvfoUTeVqNu4BTR0P8Atov9BW7oOhNeSPLK0JmfvCAFGPQVyNwbnOZblHOe4OKtaN4n1HQkZI1SWLOVDfw/Q09RNXNrUm/s3X44AC8qDDE9xyQMVM1yJju8iP0PNc5feJHvNUOom3SN9oXYpJzgYyc1FH4im3sfKDk9VweK3hKy1MZQbeh3fhiSL+3oPMAVFU163B5DQKckEdDmvm2PWJR/pEZkhmQ7gVTI+h9q27f4oavBD5bQoSOM5P8AhUzfM7ocFyqx3fj/AOyzafLAijcpDA575H+NcjprKNSt027VaQcCudufFU+r3Qe9UxwqwY7c4JHTNQDxKYrpZolO5DlcioadrGi7n0latb7I/mAIAz8mPbsa4H4kwQyXFuY8ZXcp69x1/wAmuJi+KeqRrgKhI9UzWfqPja91iVDOhZx90KOppcr2Bm9bXZiDPtUfJk7XzyP1rvfAV1FLpHmsWE0jEvt5yc//AKq8dbVZ44z5lvIN4wD2/Ktfw94w/sOJ1SCZkY9NucfShrsI9yvoY7vTJ4pWAV1K5XuCK8INsgd1Xb3G8deDWtqfxHuLu2aCFZYkkBBZ1wQPaubXWoAuN449c8/pVK6Cx1dqxWED0HFZQVZNafc22Ro9qNnlTmqkHiSHBXY8mOPlQt/KqqazawahJPPC8kcigBSvzKQc55oWjuDV0bMvhqK3tpZ3unZ4xnoACff2rpbkMfB8gOCTBkAewrnrXxJpEsbpI3ykZHmAjBqKbXoJIJ4I7qExunljBbj1PpWVaTmaU48rK9lFI8D3AI+QYB649aitpXE5wo8tmAdmre0i5jiFvp7Qh7Rs72Rctk+tWtbtNOjjzNIEdvuqq7SfwpKdjSUbliBh9ihCLtXbwKfRaKjWUXlklNvyk+lSeWTx613p6HC1qS/DrH9ragWPKrx+dWtfOdC1F+OY9g+m4Vyv9p3HhrxJffZcECVkKnuua3dbnc+C5Z+pmCf+hA18w4P2vN0dvzPWZxMMTMuM4q3bW6F8bjWYLllHAPNX7WeQIGbAFeg4y3OVbm7papbajbyKMkOOPWuz0nW7++uWhubQx4znj7vpz3rzhbxQQ6yAMDkH3ruk8Z2sOhwX0ltIxbCOR0z6/StaM1FO4SjdqxkfEGE+datu2ja2fzrgi0oysC7vUngCuh8U61Fr93BLC2I0TGMY5zWJvSNThhxWUneV0Q01oZbwyNIfPct7DgVMMRJ8ox9KHBdzIT16UmVYdTn+VWImsmLSMzDOKvfLIhGATWVFHJExKsxBqdLhlOzvUyjfYdzpICBEn0qaRFliK57ViW16WhUck4q9HNKwHFejc4nuW9Jf900e7dtNSW0hsddDg4WQA/iKwtN1eCC8njmfaAxxTp9eivL+GOFWO0/epXLt2PV777NqGmtBdqrQyrzmvGrhLjwnr3mW8haEN8jg8Mvoa2rnxTeo4tJI38leNw9KZcfZdStWjkI5HHsaVjRu53ei6lb6tp091bnKlVyD2OaXXVU+HrzMmw/Lt5xk+lcP8O57i316703fm2MRZ/YgjBr0W6srfUbC4glRZImGOOzAcfjWcV71i5O8Ty5J7dgQXANbfhmbGqQKrhufXpXKX2nXVjI6zwSIwYjlTzWv4QSVNRjlMb7NwG7acVsznTuesJxITk1Fqt01vp08sTYZVJGfWmecSuQaztWWWfT548kqUPFNoXN0OT8P+INevNTAhgaaJ2AeRlwijuc16ZHErOrht/Ay+4Ee+MVgrNEmnRwxoscSoqKi+mK5WW3nt7iRrG6mt42Ytt8w4BP8q4vaqT97Y2d0tD1QLzkNx7U9kZRuEi7ccgiuO8N3l+Em+1Xfnj5dmT09ear+JtZuEu44ElKYTJAPc1o5xavYluyudRHqsfzeayAgkYRgQPrUcd9BPIS17CvogGT+tcGt/cMMGcnPrUIWRTuWYr3q1Kn1Rjeo+p6bGY3ztkVvfFV7iNxnykV27ArgGodAv1u7FtipGsCjeepOBXN3XiyYXkm+PcueAOmKylUV7RRrbTc3J4r9gGa3WOQn76D9M1oWJkZNt4kh9GC1ya+Mc8eSw+jU5PFhkcKEkBz2NTfuhWae7O6kS1t4i8hwmM5xisaK9uNQu5Le1X7Hap96c8u3sPQ1S0fWV1eSSS5DssDFEVjwT6mpdc1O0sjHH5BZ2XcMNtxWblHfZDlIW68N6U8zSL88zfflk+Yk/Wqx0KKL5YZlXPAwO351R/4SRjGECToo6bZc/wA6saQ95rNy6R3cyKgyWdsgUe2jeyRm5XdrD49Bh3Z3oZB1dkUhRVibwxpdxEVaFHJ6sYVGT7DNR3Ul7pd2YHvd7AA569ea09LkvroeeHiaM8FhDhvwOKpVFfbU0jZvlsYL+B9OhbdP5EYzwrRgsfwqUeGNNeVwkEUIx98oAGz6DtVufVNPjldd8aPkgliSc/jUA1K1LEC6hIPT56rni9bifZGddeG9LgyJUidOrOkAOB9KpXXh3SHDOILOVf4T5TgH8QMfjXWweRLbNMZcAHG4NgfmK0LWztJY1ME28sMkBhx+lTzLuNc/Q8jv/C2l2oTckaO3OxXLFR/wIcj8a3NK8IaBcwA218pkwN6hVyD9DzXX634atLllLRgnHEm4Fvp0rmZvAFszFkuJI89TwatNddS+aaepL/wr/Tc5+0Nn3jU1la14b0PSzHDPeQLJKCVVowOPWtP/AIV9KkIMep3JU9Cp/wDr1Sm+HYlfdLeyM3TLjJ/nRaHYrnlbYwI/CtjKyiW8sVQ9dpGDW/ZeBdDZAVnt29drY/8AZqSb4ayRqpSZ2BGR0z+NNXwC6MN8ssY9QOT+lGj/AK/4IueXY0/+Ff6Q6/u0Q/Tn+eazJ/hpapOsqTMm05GwD/P6VpQ+BbQLkXt7kf7QH9KSbwjdR/8AHlql4pP8LsSP6U1FdPzDnfYz7vwJaXVo0QYpIVwJOeD6+9cZqvgufRV81743CL/DHGxJ/LOK7f8Asrxmn7o38OzH+sYtxTh4U128+Z9atnYdiCcfpQrQ0TBSuebRX+lwMRJoc7uOpNywx+GK6PT7TS7iySaKEwNIeR9pAdD0xzWxN4T1iN2aedNw/iMZwap/8I/qkrhTfwKB0zGf505Wa3sNyS6ka+AdPvDmK9eNm52khqjk+GMhz5WpKSOm6Mj+RrVt/B+tO4MOtW8ZHPG4fpXVwaLq/wBm2y6nbtJnqIjj+dQnJLe5W6ueYXPhC80dRFdLHcRzfxxR7gh98jI/CqsXgXWhKHhSN0z181en44r1Y6Rqy/Kb2Fx2GGX+prIvNJ8cKW+x3lqyZ6EjP6rVqVtxc66kmk6BNBEssVl5E2zYzNcL8wHfGai1XQY5pRLc3UWRnIUb6xrmHxvaJmeze4PdlUPj6BTVb/hKfEltb+R/ZoiVBjEtq3P1JqEuxqqq6m/E0NpAkKvlUGBxjipre5hlkXawOGGa5bR9Zl1q+e3uYYY5CMoVjwCe468V0trp08Mq/uxjI+6Qf5VvBz6sifJa6RzniZRJrlxMhBWSQmtuecN4I8phucbflrndSLNqF7kHK3D9fTNb9g6z6d5BA2qEOfzrzHC7XkzsWtjj0lduI4sYq2LaSaLl8NjkU3UJRZahJGq/Lup0dxIXBQAqa6XexztWdirNpzwws3nfgK3lTf8AD2ME87z/ADrI1FmEJ54NbvlhPh1C46cn9a0pu6bJe5zq2+LbeDwBVJhuYKK24IIpdIyr5Y/hWQrBMoy8j0qENoTymUAE59KQQLJKBnFTOTFFnFVLeYi4Y0a2E9DQMZ4VVJHqBTZLZy+Qj/XFdP4WsdR1C1laCFDErgb24z9K7GLwvOVy80Sn2XNXGldXuQ3qeXaRbzLaJ5sLIwHcYNbEcTnohJ9hXpJuw1xJGbeMqvfAzUN1aR3dtNHFbQxvKu0yY5X3GK6HcydNbniF7oWrPqE0kdhMyFyQQvWo4tL1iKdXGn3HB7JXqX/CG3gxt1qQf8AJ/rQ/gm4f/mMyZ/3D/wDFUryK07HG3VhqM6q6Wc3IGRiqq6bqvT7HMAO+2u5tPBkyM5OsNIRwy7T/APFVbj8KyxvuXUXHtg4/nS5mOyR5jayXujXc2x3gldl8zI5ZeuK7vR9Qu5/CdzfxMoltZWcKB9/jms3xN4ZmGpxASu++PcZOgwOMfyrc8DWSSaTLbTndDKAdo9OaT8w62RoWerWGtWASdEaYgbk25res9NtYLSNI4VCjnHaqll4VsbCeSS1kZPMxkMc/lT7uX+zrmKJZnYOM4zjHNefVxM6UmnH3e56NLCQqRXLL3uxoM9uDgmNcepFRy3drHDIwlhyFJHzD0rOn8LWdxK8zTTbpDuPPFZ994atrKETrI7MrgAN9a7nNWucDi0zjfEd/e6focsUhmhkkO5G5U4zniuO07VtQdHZ9TuhjgDdn+ddh8SdUW5jFqpVmiXLnuM9BXm9pdeUxQ/dPNFJJxu0Z2aN6XxVqlvIsZu2ZePmKgkfyrdWPUrxElN5bSAjIZoeSPzNcNfSh2XHp1rb8M60Lf/RJzw33GJ6e1aqnHsJ3todA9rqOMo9s2OpCkfyNRMdRzFCscLyzSLEoDuOScetaYuEEeARk1Z8PrHP4gtvMxth3THPsOP6VM4RjFsmMrsnTUb/w1b39m9mJGeEEPEz7cnIOS2faqup6q9poMP2yyitpppAQJS33R7hTWrJcrq/iRYdmYVDMwJ4IwOv41m+Mne61uC0hQsLaLcQPcgf1FcK1qRiyE7yuYEetQNzss8+gkk/qlWIdfigfeYrA45wZ3BP/AI7WlF4fv2iDFVBx90tzWNeIrxNE+TuO0jNeh7OJpzvsbGk68trbsI5YFEjmTBhuCQWOcZC4PWotS8QI1yJLu7hVCMIRDIaxoxeWibYp2eIfwsMkf405hPcqGLwuO26PNS6MewnJPdF6PxBYlvmuE2+vkyf4V2tjr1la6Mslq0AlKBt6Kw3Z+orzWeO4t7d3Vbf5R2Stn7K8unwwA7Q0eWC8cAE1hOio6xHzJbI9H0Z4NXhluJhFLKCBuZMkcVZOt2pf7FFPFE0cwQ+WyjgN83BP1rn/AAQ7WGkXKwjKGUZYnof61wPjjV5tI8USwRzyqskayttbglsk8VCjqoouDvFM6jxNA1rqsiwwXEit8xcxnGT2yBXNG+jScCcMoVhu4wcVhQ+KphgpelT6FR/hSXWuS3bbpHt5mPG5lGfzzmq9jJ7k8h6tdeMdASzaw0q3lMbx7OTgA+pz1NO8PxXU9wlzYbTsIZgzjOM+nfpXkCXwj58gZ/2JCP55rq/CnjuHRHZZrG5l3kfOJVJA9MYHrWToSTuh2bld7HrY1Sya4ltnuRFMDjGcEE1zV1q2ow3UsDXLEIxHIGcVPfQWeoEX8bfvWcFsH1AYZH0NcbPFeprsl291IwdjGN3RSTgUleWhNR3dr2PQvD+oXV5cGCeXKBc/d5/Sl169vNPvFEc7GGRcqpAOD3FcW1nq6t8t8Izn+AsMflUbabq0jbn1Viffcf610xoz5bEtq1uY6UeJNQ3LiQZHOAo5refXLHUNPMcyyI0qdChO1vr9a85bR7/r/abg+oB/xo/sjUO+qy/r/jVKjPqOMkt3c3t93Gpl2PhTgmt7w3qV5JcNHOpNtt6uOh7Yrzx/D9y7bn1B2PTJFSR6Ldx9NSkH0z/jWUcJKMrpkR5Iu92eyNLbsMqVUiub1uEpiZUVVbhto4z/APXrhRY6kv3dVmH4n/GlNvq23H9rTEdwSTn9a2lSm0aSnB6HUw65PaBI2lDRrwVbB4/Gt+3h0vWIPMgyMH5gvUH3rzfydVBz/ab5xj7tPjfWYc+Vq8qZ67VxSVGXUlSj30OyureK2naKW2Cj/lnKQVP1HODWJJd6no7sbqFby1Y5SWPqB7+lZLS67JGySaxLIp5w65H6023XWrdQIdT2kDGTEGyPxpOgwUl3NuHWkuGLxMp9iMYrb06UTM2WbGM7hyPyrgLrTtUu5fMkuYTJ/eWBVJ/KpbaHxFZ5FvqioD/0zBrGeFm3eLNo1oqLjJJno06712OxUkfKw7Vj/bWgZoLkMTjDYbrXKyTeK3xu1OJsdMxgVXeDxHKxMl3A5/3cVoqNRLUwnZu8WdO0UDXAkW1t2ZH3I5j2uD9VxUlvp8UUsk0UM4eQ5YRT5wT3w2f5iuaNz4mthtMtplu+3k0W2r+KLeYmBrfc/ByOGqlCdwu0rXOpm8FR3+nytLcMt3Id3mCMKPxH/wBesQ+HbvRiI5EPlsR845Bpf+Eh8ZIOba1b/gP/ANeoZfGHico6TadbuoHzKV7evWlKldG9Os42vqYWraRdXV9IYLcyk9MetLaeEPEQUN9gYZ6ZYV0fhiWTWFZndFnWTmNR0HY12L3DafGBJKzsegJqaKcnKLWxcqibueYTeA/E1xyttHtPYyAV07eD9TbwRDpYSMXY+8C/A59a25NXuHzsk2/SqL6rd/NulfI966o0mlYydVbmHafD/WY7MQSPaofUOT/Sk/4VtqAJJurbce2T/hXQafcXdzbPLLcPkthRnoKkMd2D8txIfqxo9ih+1OM1P4e64qFohBMMdFfB/WuXh0W9j1SGwubaSGZ3C4cY717BDJfxHmRpB6GtEw/bUR5oFLocruAyp9RSdNDU7kYe20TTIbeOMKiKFVRxVdtdQL90fnTdU0i9v4wq3CJjpuFZsfhrUUXabi1b6vj+lapIltmA+uarbRI8kcasygncOtXfD3idr7UWtLwqjsuYyoxkjqKnuNEvNUvJGfYkQ6VTuPB13BPDc2RBljbPPSuNVWpK60ORqs5W1sWNS1XVodXmtbW4j8pCNu5AeCM9abbatrbSjz54hF0IVRk1Rj0rXIbuWWe2e4ZzkFcdPT+VTvbasPuaVOW7crj+dVWmnfkChGvH+I3v+BQbXdVimfbfPwSBlQeKlTxRq6/8vEZ/3oxSS+G9U++ICdxyR0IqJtA1Vf8AlzdvoRVrl7nOpYpdH9xPLrd5qZSO5ERVQeVXB6Vo6LfXFnYW8cFtC4VeHYkHnk1j2+iak0zbrSZFVSSdvt2rTt7HWobWJreGTayj7p/nUtLm3Noyr8nM0737Gtc+J7zTwkk1rC6M207JDkVuRvpeuQx3CFZDjg7sMvsa5aXw9q+rWQSRY4ZN+7dIcZGPQVc0nS9Y8MQMotUv/NYbvJblR+NYVVBprc7cNUrqSbujrjhEADDAGOtY3iC5WG1hBwSz5A9cCs/XNbvNLmhb7PsEkYZlbBwfTismXXH1na8sSokCkZB6k/8A6qlu8Ls1lNczXU898TlCt0WbLSSbge7HOa49lK8cV0Pie482+dB/CcY/CudCs7BQCSeAB3rrpq0SFoOBYjoTgU0Eg5B6VqtbPa2BLAK2DuHcGsgMV5Bwa0BO5sRa3dQQrtlJx2bmtzT9blSITYG6aMqcEggZH+FcaHyMGuihhAS0jOVDRhj7ZrOpqrMhxR6H4JuI7jU7u4mBUBVRSeevJ/kKZZ3Ud54w1KQ8sOFB9MgA/kB+dO8I6NDdeH57ko7TNOyowYgbeByOlcLr169v4pv2SVkAlKDaccDj+lYU+V1dOxlBPmPYFBQZI6V5zcMJL0+m4t/n86xLDxdqFvchZL+4MGMEMxbP51NFrNm92SZdo28FhjnNdkS5pmwKYyFW3p+I9abHcwSj5Jo2+jCpuo4IrQzKt86mxb0YgfrW/czp5CmJQjLCUB9c4FY8AgbVbOC4TfBLKA65xW3rNtHHqklvaoQjMgjUc8EVw4l6ryGpW2Lml3D6fpU5lJSEyxuW9hnP9K808f3kd/4mmmiYOmxVUg+gr1bxTbvF4TijdCjLKu4YxlcHP9K8L1CTzLg+xNOlFX5vka09PdKyU4iuk0zQLa905JWMiydypqjqWlR2b7IpWc4J+YDgCt+ZF3MckjoSKnspnW9gy7bS4BGfeq5NOiO2ZD6MDVDPZ9OhvXvrWZYpWhmhQBgpIJAx1/Ck123uRdSwwglUcOxzxwc/0re8K6h/xTogdhujkwo9QTkf1qvr87xXs/lYy0Ybp6jmvOnaE2/M5asVDUWdykjLgZBIpEkzwRVOzmaewikc7nI5PuOKsCvTWwna5PJ90fWo805zlVpnSqRI6lZCFyRT1iBUEnr6UsgwgXNAiHFGM07FFMoBCpH3sfhThbR5+/8ApTd7DigO3rSJJPITONxx64p6QRd2f8Biq4ds9aeJD7UWC7J/KXOO1PuoI4lXZnJ65quJG9qmdzJBubkikxlegdaSlHWkB0qWFnPbRl4FJKg5FRyaJYgiQRnjsDVmx+axhP8As4q0oGCD3qS7GFdW5g5XJiP6VnzoHTKgbwOPf2rp/JDFo3GVNYd7aNZz45MbfdNJrqJq2qOURG0XVE1SAFYHO2UDsP8A9ddX9k1XVE+0RQxOh+6RJ1FQssCWExnhaWBzhlXqCRz+dUdB1m4Sxms7LO+HOxWPLLzj8f8ACsm+WfMuv9I1VnozSj0fV1+9Zj8HqC6sb5VKtYyIxHXINcnq3i7VtzBbuRB6KxFYdvfeItVZls0urjB+YoCQPqa0U5LcOWL2PRLe/t7C1VLmQRFTyGq8Nd00Wi3P2lCjcLjqT6AV5Tc+H/Ft5kSadckLz8xH+NdH4e0B7O2S+1ElplXEcbHiMf41cZXE1Y7NL+7vCDCq28XYsMsfwqQpIw/eXMrf8Cx/KqNvfQNGoWWMt3+YUs90/AXAHqK0ViXoSyrAp2rlm92Jp4iixggGqURJck9BUwl7d6GJG7bFUiHPJ61L5i+teSDUbwDi5l/76NB1G9P/AC9S/wDfZrzuY0WKXY9ZMi+opDIvrXkn9o3n/P1N/wB9mp7W8vZpljF3KCfVzSci1iE3ax6pvX1prXdtGf3k8a/7zAV45r3iO4tXNpbXLtIPvuWzj2rl2a+u2Ll3YnuzVpGDau9DfnbWx9DtrGm4I+3WwOP+egpun3tu1tGqSqxUdjmvnRobhf4s/jTrTU73TrgPBPJE49DVezT6hzM+lpbyCCFppZAqKMlj0FZbeM9EQ/8AH5n6Ia8zHjeTVtBeznAW54BI6MPWuaa7lNwsR4z0yaw5JXsVdvY9f8Q2V34gmhudPVZLZogA5bGTmudsIpbS2vbOXyw6OwL5BXgcgGum8Fazb6joNukLL5kI2PGD8y49RXKXh+z6JqFy4zJI0zD2yxH+FH2bMwnFc10cJaj7RrglkG7cznn8a3Tp1kZ1m+zp5qnIYDHNc9ay+VNDIxxh8H2FdOkiyDKsG+hrsWxzVbp3MzW7ISWzzxI7SD+EHg/h3rjnhfDN5bALwSR0r0cntVDVbA3ti8KEB+CpPqKAhUtozhYxukVT3OK9zXw5pLaNLdSWatIlsQHYnjC8V4zplm0+rw27Ag+YBj6V6RFeardaVeQi+mZEhdSvByNp46VlUjGXxbGlSpZpJXudn4VhXT/BVmZCF3RNM345P8sV4Ff3Yur2eZm+aSRm/M17bq2t6fZ+CpY4ruN5kswihT324rwM8nNOFNRk2h0nFrQvRJbsAWuFB91NTx2dvLIQblQMcFSOtZgGKUCtTSz7mwdIlx+5ulP1WkEWq2v3MsB3R8VmRzyxHKSMv0NW4tWuUbLMH/3qCfeNPSrm/n1NBOJV2KWBau+0Wdpdf017uXO2VSWbA4A4ritE1H7VctvUIFXGc+tdbbQR3N/HECCPLLfrXDiH76Rm5d0dZ8Srzy9DtYQxBlmL4B6hV/8Asq+enO+U47mvTfGUzQKlsZWcQW5bn+Etnj9BXLeG/B+oa0VnSFlidW8lj/y0YccfjXVS+BM1Ur6m3pTLa6Wu4gAiuf1TdLDJMOspwM9lrspPA+tJB5JMa87cEkH+VUtT8FarJCqIqKfTdxSW4upwP2G5bOxQ+P7pquVeKULIpVgehGK6WXTr/QrhY72AoG+43UNj0NLezQXVsQyBiBwSOQfatblXO18PW93BY2mpyI3kSsqh+x5IP6iuw1XSxJZ/2h5vO0KEx1HrmqngZ4774exQlQ3ll0weeQxI/nXQ3YEmhjAGNq4FcNSN5O5jKCs7nE6VxaNGeqSMP6/1q8KqW6+VqN1F2YBx/I/0q2QRXdRlzQTMVqri7sgAdhSYzRS1qMtIMIB7UyTg59aaXIxhj0pjMSOTTJS1HZFFMzTs0FgRRRSGkS0IetKDSUvNAWHg1Yj+aBh9aqYNWLYMWYZ7UARGkOduRRyPwpQM1IzoNN3S2CbWIxkVZEcn98/nWdosMktvIFlKBW6AVfa0c9bmX8KQyeFXD/M+RUtxbpcwNE3fofQ1WhsgsgZppWx2Jq28Xy4VjmmUjlJpXsjIjRh8cMhPDVhPf22i6zBfwwBIpzseInPX/Ofeux1izBRbnHzD5X/pWY2nW99b/wCrA9DjkGueqlbUI36HPw+BX1HV57maZRppfdEiPksp5wfSu1tYtL0a0EEc0EKqMbc/0rlTcXsFk9lGW86JsbBn5l9v50tt4dvLkiS5l8oHnaTk1rSs43uU5eR1Ml/aT2kv2a4SQ4w23sD9a5/U7gC0kYLu6AKoznnpinahbJouk3LREtJIoBdvY1wX9uuuqRLc3LxwK25yqbyPwyP502y46s3ybyQ/utPlGfVQv8zWtZQaktqY5LfEeOCXHymsuPxZYHAt5JXbv/ogQ/mXNXG8TxeWQWumPopRQP0zSV1qdDSas2aKWl0q7mC4/wB7/CpRDOWwqr+Nc2/iVQDmO4kPYSXBx+QAq1pPxD020iSzurWcDJHm7t46+/NEpNK4lSgyYadpp/554p40nTT3jqNdNlH/AC1SpfsLj/lqtc3KVyx7Df7H0wnkx1heKWsdH00NbbTcSHam3I2+9dCLBz0lWvN/FlyZtfa0Dh0txtJHTd3pximwaSWiMkOqBp5jknnJ9akF7JLHiJNremMmopIhcHZ/Cvb3qeC2eV/s9thQOHf+grbRbkFfZPvyX/AmmyxmZSGGHHQ+tba+H4vJkaRmDqQAc9zn/CsdlltJzBOMgd/6ihNS2CzK1m4S7UO2zB5PpW9ZW8E9wEkYyCQ5DscYxWHfQbWEqng96uaLbahq1wLGxVWlIzknG0VFSLa0HF2Z0nh+9GgeIGeC4QI3BRPm3A11Ot2Tx+FJkADv5O7I9cg1lRfD+TRrSTUdQuhJOi/JHHwNx4GSa3ZLxJbNQJckjG0Hla55yskkROS5tTymJS4cn+Icg1e04NbyhhL2xiu/sNCbUruKSSC3e3DYkaSMDI9MgZzWpeeBNHdWa3tGiZv+ecx4/Bq2jU5tbGfI5R0OFE7expGuVXl+KmazW3uJYTNKQjlRwGyAfwp02h3UtuL2KUm25B/ckgY9cZqlWg9DnVO7tcqeHbVLrxisscQxGhY4HfGP610vh+EyyamgOM+Yw49AeKj8I6Rcia7uLWaCVtgGBuGD2zkCr2i2t7p9w0OpQxwSTeYwKsPm3Y9D/nNRVd0rGqi7q+xiavYQJ4AuLxlzJM3yfTOB/I15Uc7iDxivafEekS3MFvo8bSxWcMKkyKobLcjH9a831HwpeWt0yxN5qdmZSpP4VcJRNKVL2cTAz0GOTQSBxVyTSb6I5a2f6gZqu9tOn3oXH/ATWt0WMoppUg4IIopgdL4csppbSa4RGYCQKcD2/wDr1rRXE1tqZkikZGUbTiux+FFig8KS3DoCXmZhkemP8KytU0y1tbzU5nVgVdimDwB16VxVZWephUi911Oa1m8lvobqeU5diF49AAK9D+GVzcWuiWygp5WOFO3dkk9O+cn9K82u49mkq5/5asSPz/8ArVv+C5JYpAVfhELL7HH/AOqul+6kNaWPV7ZbyzsEzqUUtzNJwknzLFk8nPqPw71nXNxerdgfbojEWClyvO3OTxjv2HauZW+kaCMEly56HJx649KV9Rulby9zSEDI4yce9SaGd8RttzZLJETtikGM9QOR/hXnMtwAgCqeePaus8W6os2m+WkMybiATIMc5ya4iPLxOpPAGRVx2GerfCPUWa3utPeIsN3mBgeOgBH6V2k9z9liEbMfLjuMYJ/hz0ryn4YX5tNf8vPDr/8AW/wr0HxBcSLevGceQ0oBOOjcf4iuOq7NmNSSSJvE0Qi1CwvoghSQmJiuOQRkfyqoeRVLxMDZQW8aMTalgyEHlGHanGO6aBvKuMOy/K5GQPwrpw9TmuhS1ZaApdtZJsdUYjzNZb/gEQH9aQaXcH7+r3R+mBXUTY2MYoCls+gGazF0xB9+9u39QXxmntBdW+TZXkijHMcnzKf60XFYu04GsZL6UThLrfC7HAZQCh/qKszXk0fyrDvfsQwAP50WGaOaWucuJPFEh/0e3t4x2yQc/rUU8Pi1ogzPBGR2Rhmk2kNQbOowKUCuRil8VAYk+zgHoSRn9Kge41+OfYXmZvVFBX88ilzIORnbYqaA4k9MiuQTVdft0G6zklz3CKf5GporvxNc4ZY0hB6AhSf507oXIzpWHztx3NC9awJZvE1uu8mFx3DRY/kTU1pqt2yn7bB5D4yrBcr+PpQDg0ddpd0lskqyNt3kEHaTV6K/sy/N8hP90kCuatJEu2UTTbyeiDgGtGTTdPmi2PAF9CDg1IJHQ+emwsjAjHGKWGbdGC3WuCazvrGfNrO2B0w+ePcVpWHiV428nUovKIOPMA4/EUwudVOqzwPGRwwxWBp0iLObeUlVY4Df3TWrHeJKA0bBgeQQetc7dttvZccfOTSaurMaepBq2p6P/a8EEF4DfqxRlCEKQO+T3BrYg1BZ4iDxKnDD+tcb4j0u3uJYdTU+TKp/eSIuSD2bHfmtUSO+jW95ayQTyOCspAIx6ge4PNcl3SqW7lX1uY+v+LydYbTZrON7RXEb7ickdzUqwaZaPK0FjbrwGyYwSB7ZrkfEVvMmotLMpzIm8EHqOlasF413ZRsfvbMZ/Ct4yua20RmeINfkS++zuqjyhwVQLuz34rJGvYHOata5BHc6rZRzTIpeMK0m3oM9/U1HJoenqv8AyE1b6KK1Sch89tCs2uZ5wapx3YkyG3DnJ54qaTT7ZC22ct+IqpZLDHcN9pI2D2JB/Kk423Gp32O5HxAtv7h/I0h8fWrHBR/oK89kZTISowvYVtad4V1e/thdwQKqY3LvYAt9BWXs0yuY6c+P7ZCR5UoI7YxXFrcNPeyzuctI5c59zUd1HPFcOl2jLP8AxCQYNMiIUj1z+lNRS2Bu5oWxHmluNwJNaehLJaapbLOQbd8F2Hv1/nWYiqhWRQSCfmzV+CRfLFuud+OG68djSavoCZ7JBL4V1FJoliQoqKIRGP3m7nJP51494iEE2pXMMEgHkTMgLdwD/wDWrY065uNKtTMAxmAKs5b5cev1+lYd7JbzCWZI9s7yHcD1OeSamMbMpu5T8sSWBWRhkLwRWz8O4L9tckmsoBIqLtkLHGAf/wBVYE8hW3IBrc8LSa9otwLixkt1SYr5iS85A/DjrVsk9K8YtMdOsYpG2tI5JUd8Y/xrlGR04fYHBIKk8jFdnNAniXTkkmGJ4h8hibIDHr1HsKxNM0SZPEflXgR1gBLjHDccdfwrhlL3uQwrU5OSfRkvg66mS+mgdWMLjIbHAI/z+ldu7ERsQegzWNqeqWemxRRu2xiwIRF6Lzzik0/W7e/uY7eKQtuyCGXHGDWsGl7tzWNorlucNaWtxqF35UEbSSMSTj+dTTme0lkszKwWJipVW+XOea9LtrW2tFK28EcQPUIoGa888UI9tr1wGQBZCJFI7g/5NYTpcqujnnDlVzd8Fq6/bSR8jbMH35z/AEqzrFrPcavYyRRM6K4DMOgGc807wZblNFMzdZXJAPoOKo6Lrm7Ur6zuJPkMzNCxPQZPy/yxVqN4pM1SXKosi8XTyRTxiN8MecA9AP8A9ZpfBl1FdXk8N9MkshQeVHKAS3qRmuc1m5lutWuZHyMOVA9AOBVvw9oI124lkF8bWa3KsNqckeoORzWKd53M1JupoeiSaLpcpO+wtzn/AKZgfyry27mj+1yqbS2ZA5A+THGfavWlQpAsbTM7BcF2xlvevMdZ0s2F/JGTlT8yn1BrZprVF13JJNDbDR9M1O3d5LWNJVOMKT6detXpvhPbXcazQTRIHUNg5BGfpVLRH8vUkjJwsvyn69q7O88RR6LHFA8DynbwQwFbRfu3CnNNXkzHtnufAWmW+kusVzHJuZSpIIGfXvSeKNMn1PRpL3T7d3eeNSYwRnp/9aotT1KLxTc2sUSNBNGSPm5BBIrXudQXTrm3sQ26JEAY1lLe8thtpryPML3S9Sj022gn0+5jkXIw8ZFTaRcnTLe689ZIT5fBeM/p+le16pJFJpdw4KuNhK56Z7V5JrVlPex4E209MHoRWsqzUrS2ImlGSVzFm1m4tXZreRwWXBUoWyM8E56fWiDVdRd1aOJ2Zxklcip4tIaWweG4nuPtG/KOpyuAMDvn/wDXXR2XhXUY7aHOqQiQoCI7i3II/XNHtIW0Zad9jkPFN1PPY24l+9vyfyNcqu4naoJJ7Yr0zUvCcuoX62N3dxRsE8zzIIyQT0xgnNUp/h21hC10mpxORgIpXGSfoTVxqRsUtjlfDt8mm6zHNLuVeUJA5Ga9w0E2mo6bNE8QkRpAHD8kkKBXmC/DfWLlxcR3MDxsxJbDZH4YrsLG7uNFee3TYJRJsbjIJHFY1oqXvIzm1GSk9i74h01Jg1uGk8qBg24noMdf1rnLjW7jSjHastvIgX5ZCWyR7gA16zZ2xOnRC5VXlkXdIcdzWNqWn2QuTD9jhbjJBQHNKlGUNUJQUVd9Tira41a+tEurUaa8b9jK25fqO1dFaeF9XltBJcz2iSsfuoCQB9c0+38PWFrcC4gstjA5wjED8s1qx3slsgDPKiDgc7sfnW3NU6sFKHU5LWrDU9JliDXNrskBPzIwxj8earR2+oyxb/7U0xfUNnj9a6rVreHW44xPK0nl527RtPP4c1hf8I/bK7RhrnbIpUgEH+lZTqVk9NgvC5h3aToRu1nRnxyMSH/GqU+pXUPzfa9NlI5GxzWy3gBVkwZljHGDLkf0q+nw4YoCRFIPaXrWiqtdR+70RjaNqmo6vfpYW72qylC+W3YGOtdHFofiEFg01pz0yWI/DiqWj2tv4d1NrqG0zOqtFtkkOAD1/lW83iq53ZWzi245G41DqtvcXPHuc7qVjq9g6rM9qS3IKFsfjxTtK0/V9TuvLVrNFAyzkkt+Ars7CeLXYHEkPkup5AYNn8CP6Vk63ZXWlujabqUAmPWOREVh+IodWdrplLv0Oc8RW+qaA0RmktXilyAyqTz6Hmq9vBrE0KzJJYIr8jIOf51evfDes66qSajfW5RehDj+lVLjwGHgVYr8pIOpzuU/hTjVqWVx3T9BRDrHIa7sR9AaimfWLfK/a9PIx3B/pVZvh9OR/wAhWHPpsNQ/8IBcbyDqUAPuhq+eXcOZGjbz6rKBtv8ATYz/ALRI/rVhBrTZ/wBO04nucnH86yU+H04Yn+0oMevlmpF+HuoOv7vU4sdm8tsUc8m9JfgNW7Fm+vNVtEGJbOU55WE8/wDoVWCb26jUTyWkmV5z/KuavPC2oWN8LVrprhwASYoWIGa7Gx+HKtbxSPq8iOyguvlYwfTrUupNbMT16GJaWer6aCun3lmuScpcTkj647VFcah4nSfBTTZWPUpKCD+tdBL8NW3krrIx/tJj+tVv+Fcyq436mWQ90iz/AFp+1qEv0LEuha3d6XHILqwInjyVKNjkcjIJrU0eLT9D0mTSLm7iF3eOpSPcSA+3bwT61esNNbR9Lis4BLKsecMy9f1qlfaTDqc6zXFhIZF6MGAx+tZylN2bRN7PY8/8f38V5f26eWIzBEYDF/dCtyD7k5rG06+vGiOyH91nC7V46Y4r0q98CQaqNyQvFc5JaXbuz9ex6VBN4Y1K1sorUwB0iGBLHjLc9SK1g1FJGt00edarY3M6m6XhYQPNJB+TJ4P61zpmmLbdy/lXvvh3SoLTQpoNV8lXeRi4cj5gRjkfSvLda8FpbXko0u+juI87lVvlIB6dMg1UKl20UcpGs80vljHPc9BWjDax2+NwEjdSx6flVd9OvrBmlkh4XhucjH4VDPeyyKUEYjHtkn8613DQ6mw+HtxdgMb+ID/ZUmu907R7mxt44XvBIEGB8mK8ftZNUgUGCeZB7MaurqfiBel7c/8AfVTeS2Y7J7nsEum2tyoW6ggn/wB9Qa8w8UeE7nRr157aJpbFzuRlGdnsaqDVPEZ/5fLj/vqnfbPEUow1zcke7Ury6jsjNt5spt/DHrViF2QELz/dYHDLStpepzvvaMlv7x61Oui6kR/qAT7NTugIB9rEhMjlh2LN0prn5+uSe9XU0HVGOPJwP94Vaj8MXzj96UT6HJpcyCxY8O6Xo+p323UnkSBEGBG2Cz+p9BXfR+CtLuEH2HUpY/QOA3+FcHD4bu4DmOVauR6hqOkTKHZiRzwetTfsx27npPh+yOm6dcWnmrM8UzBmUY9v6Vi3/iKHTfEV4Jrd5mwFUq+McDisbSNQvb/VzJFNJAWLu4jPXr1rR0/QrbVtW1SSd5GVXwpDdzn/AArhinzN+pdbRRUf60MC8vZr+6e4mxuJwAOw7CnWN7NYXaXEO3emfvDIq1rekf2RerCrl0ZdysRz6YrNAOcDk9qWqfmcLumeoadfC+sIbgAAuvzAdj0NR6jolprIU3AbenCuhwcelY3hO4LWEtu4IaKTOCMcH/JrcudXstKRXvJxEJCQvBOSPoK6k7x1OhWcdS1b2sen6ckEWQkUZALH09a810Mb9UO6cxExuQ4ODnH/AOuvRrPULbU9PlltJhImGUkcc4968jYb1IyVOOCOorObs0+hnUdmmNuLqdr27WSE5jJJJPYetXPDmsTWGpW1wdkaysqSK+fmUnHHHOKouLsuzC5zuAB3KMn9KW2iL3lpHflGtFmBfaMEL3/nVWpXutyLwvdbnsrMcYrH1nSP7UQFGCyqOM961RtZQVIK4GCOciheDTaOiSUlZnB2+jTR3rxSkxzIN0foxBFdNe6XZ6tYpPdO8RiQkuv8PHORVLxjfpp40+4WVPNSb5osjLRkHPH1FWbG+t9U0+4ETh4pImDDoc46H04zVRcbcvUzjBR904TSb9IdahkjVpIwxwDwSMGhdUubm7urgpLMBmRj12n0x1xXRxeDDp1y99Fcq1sgJRWX5uRjn6E1wXiaJoNUFxCzKXXBKnHIqZRTdmSlbRm9a+NszOtxAypt4CHvn3roYNUstV0e5ngtdoRSrb1GQ2OP515pp09zNdAyP5pA48xQ/wDPNeveFYo7zw4RLbW8Qd2VxBEI9wHc471nUim7dRtXdjk41Zp0jXklgBj616DrN4ljpdxcMivsXChhkFjwKo2/hyzg1BLhZZCIzuCNgjPbmm+LrO5vNJihtULt5ysyg9sH+tY04OMXcKcXBM87jmk+3Q3EpDmORWKgYBAOcYrvLHUtJ8Rym2ksmDou8Bjjp7g571wJXBI7itGyu7vQbsyCACUptKSgjg804yexEJWZ6A9xaaXo0siBvKiB6NnBJ+vrWS2kxXniUi82vC5abcrcN7Vw979oy9xMjxpOS4ODg59PWtTUbqX7QUeGXyigKuPm3dOtbrVXNG+Zao7+WwXS7ae5sZZo9qlhFu3KfwNcymvanktMqzA/89IsY+hHSuPvtVvIm2RXU8cZHKB2A49RV608R3lrbJukEyyfMSx/wolzNJoiWvkd/wCH9TbUrr7M8TpkfeI3KPx7V0zaQ2MMInB9DXPeDr6LVdLmlMCoyybTjvwK1dZujp2i3M8cjIQAFIPQk4oU5Je8aqK5bt3G3Gny2ZDwWSyDv8xOP1qvDq5hkKTW20HrsYgj864tPEupo2Rqk4/3/mH8q6Lw9rmq6tdMj/ZbmCIZkLrg+wHHWhVE9DLRv3TajubebJS6mRv+mgzTJnuk5jv7bb6EhTV1mswMSw+Rk9SMD8xxWfq2mNNDG9orS4OTyD+VW4rcck0is9jJeP8AvYYLg9yGXP5rzQ/haB1zHJJC391vmH9DWY0M1u/zxujD1BFbmm3gmtDG88yTDo23cP5Gs9HuiIOMnZoqDwxbxKWlvlTA6suCP1qnJov73FvdW9wT2SQbvyNXpr9XJg1Ib1B4Pk7WH45FItla3WP7PnRn/uSjafwqHZ7IGovRFSNNSsCVVZoQeqlcg/h0rftdChuYI55TGZGAJCxjb+IqpaDVrCXBgkkQ8YOSv4EVpXt/BZoPtUUw3j+Fcj88irglZtlwiluY15obWshZJrYj0VgCPwqvJZ3W1ZJEleJeSQvb64pqC3mmPkz4BPAkyDWhHFqFmySRgGM98Ag/iKzW+hO70ILa2sLxvLeae395MMv5gCtRNGtYowsWqRqvsR/jVSa8iYgXNqqZ/iA/yarSrAxzC4IPbJ/rVqS6g58vmbC6FHJyt2snuOaR9AdQdkoJ+mKwgskbbk3AjuK2tKuGnPlyTTB+3zZBrSDi3awKafQyrzw9qBcsJgEP8Of8ajX+0LUGNLe0LYwWZsV15jfbgTSA+vBqBY7kPg3rMPSSMf0xWvLbYHDqjnbdtYkkAlhQRdzESSPzwK047FHU5W43dzjH8jTrttUtZlcvbyxHsq4YVNB51wpkEs0bD+HIb+tNMFvZmTc2N/bktbLMc9Cp5H60RahrcY2tZO/uVIrbFvdOeLzA91H9RVhIGVPmcM3qBj+tFh8r6aGLbq98cahpyJjkM+D/AD5qy+j6fKMG0hI7DHA+npV14HJ/1jj6Gs6+uruybaojlj/vSIRj6t0p3S3HtuY+qfD/AEXUtzeQ0chHDI5wPwzXBaz8L54FP2QSuBzlcHP1BNeuQTrPAjqsLueojlyBT2Ew/wCWRx7NTTD0POI/DVkigGJvyBqVdBsxwI//AB2t3y6AmOlRY30MV9CgCHZCc9vkP+FQLopHPkH67TXQsrnpI4+jEU5JLiPpczfi5NKw9Dnv7JIH3MU5NPQHBwPrXR/arjHMm7/eANNDlj80cR/4Dj+VOwaGPHpgYcBSPY1L/ZeOoFawSFvvQ491NIbWBvuyMvsy/wCFKwzKGlD2o/slCwJVTWi0BB4cfgaTyZOxNHKhHmdldT6Z4gv44G2vG8qjIzxu6Yrd8N6vFpt5K10WEcy/MVHAbOc4/Olv9OiTxKZGjLK4dpRg4zwQTjp3rKvmgOoTfZgBCT8gHbj/ABzXE5+87GFabTTXQ7mTVNFv7+0gdI7oS7lBKH5TxjrUt5oGnQxNc2lptuIhvQITyRz0rgLLULjT7pLi32b1UhS6Bse4zXe6bqrTaGuo3jhNis0j9BgZ5rRNS0Y6c1Pfc4iTWbnTtYllhYEsAGV8kGoNa1yXWYbZZYkQw7uU75x/hXL6x4qW91e5uYLXbFI5KgtzioIfEUY3CSBgDjBBzitVTklYlqR6x4Htd+hyuZZE3zsPkbHYCuck8P6tDNMDYzGKPcd+BggZ561J4U8f6Fp+lC0vJJopPMZs+USMHp0r0LStYsdaslvLCdZ4cldwBHI6gg0pQdtTRwUkrnlOc0Vc1WzOn6tc22OEc7f908j9DVTNczOJqzsXbXWL+x4gl4wAN3O0DPA9ua9E0y9GoadDdAbS6/Mvoeh/WvLTW/4b8QLprtbXbkWrchsZ2H/A1rCXc3pzs7Mj8X2iz+IJHkyfkTb9MVm2zvaMGgdo2HdTXY+KdP8AtVql9D8zRrhsd09fw/rXGGlJNMzqJxmdtPqy/wDCN2FxvV2kuIopIs8v8wDDH61keLvCdsmlz6haNKjw/O0ch3DbnnBrnbR1/tiyL/d+0J/6EK9I8Vny/DGosV3goFPJ7sB2+taqV9Tog+eLucz8MI4/LvyYkYMUHKg+td9dNFBbM5KRovU8ACuU0KytvCWi3epGSSaF0jk8sAbh2/Hlqy/Eviu31qxitrISqu7dKHXHToKVx35Y2e529qyzMWRgyjuK57xN4ol0rUks4IIpB5YZy5PBPb8v51wsNzcWzZgnkiPqjEU2SWa7uGmnleWRurMck1Lehl7R20O80jw1pl9ZW2oNHKHkBdoy/wAuc/yrF8b3I/ttYBjEMIGPc8/4V2XhyaGXw/aCI58tNjeoYda5rxxojEvrERZlAVZV9O2f5VKiaSj7mh0l1plvqHhpLWaMbPs6lDj7h28EV57eX15azfKIpREQAjjnp1rp/EPiW0/4RdYdPnV5Z1WHaD80Yxzn+Vc9deH9Sn1Nlht3cynzIyOhBUHr+NaN2Vy6ktPdMW98QSXUyGa1UYBHyMaSK8sdqxXFljAH7wDBPucYrsfC+maRdaMRe2cU11JcMgBXL4GOmOcda19bkg8Nabbm3sIZYy+zZJyV4J4JBNWmmG8bsy9DfSodLRra6kt5HJY7ZGHfH9Kbq95qV1afZork3cDMCVJyQR05HNdLpun6fq2i29xNp0MfmqW2gcryehGK5nxb4ehsBbyafcvDKzHKs/Yeh61i0r3uKqvdujB2bOJ4J4T643Cu08Gizis5XgvI3mlflAcHA6cHnua5O2v9ft0LfZ1vo1+9ld35kc11tjptleadb3F3pclvLKgdvLyQCf1FHJC10RS7j/HGqzafpdtDGql5pMncuRhf/wBYrkLXxRc27AqGj9fKcj9DTdXvpl1WaCzup/s8TbESaUnp14b3qi800rKJrBJCemIyhP4rips76Dl7zO/8O+KLvVr5LVZwx2lm8xeQB+hrppbS8cs0d6V748sYrz7Rbex055JboS2shATEh3AcZPIAPcVdn1m4ttTtYrHUQ8MnXawZeuOauMujCSUY3Z1iDUS3lLdWs/opH9CKn/s6crkx2m7uPL2kfiDWHNrEunssl3b7kY8TQHPPup5FbkF+up2Be0ugpYcSDqp9xVWXUaitrjRBq9uSUljZOuM5x+dDSXtxC6T2MNxH3Ctgn6c1zt3f6ra3BjuZpgw6EMcMPUVU/tOdfuyzofUPxUe0S7mfMtjTuNOjiUuqzQEnhZFyPzqTS9LvLuRnt7uJCvUBjnHr9Kl0fX4ZoTaaqVkB4VyOPx/xp+paa2mqNR0ucBU6o79AT69xQoRl7yHyrdGk0WoW6PDd26XkLDrH1FcreFrW6O1HiU8hHOeP60y28c3llqMhvoC8TSchMgoOnANdFe+KNDu0iWSMTRPwzFeY896uUFJaMppSWhBYahp7QIJrdHUkL50ZICsezeh/StqPT7cOTHvifthq8/1O5tNKnaewu0ktpOCGYKR7EE1vaX4z0qWxjkutRtYZV+XDzLyOx604qzs0VBJ6NHRXF1a2zCOa/aJyOA4/+tUQkW5Upb6vGSfRv8KwbzVbLXreSCK5tjtOYpw4wDjP5VxU2qraTSQzOgkQ4I3Afzq3KXYiSsz0ltK1Npf3j+amOGWQEfrUM9tqVmC0FvJJ6gDn9K4nTvG0lput5JEaDG5csMqf8DV5PH5Eg2yKOehcAY/Oi9uhLpx3Nc63qMEyrODCM4PmEjH4VsR3980e9JLeRf70bgg1wuueNbbVHjikeIiMcPj5jn8elVLXxXb6cMRXELI4IaOQgr9etPmaBRfc9BabXZh5sCxbO3zLzTobrV9xW6skdMc7WXJ/WuQs/iHa2sJiaS1aMcriXBX271A/j+xkmLtJGvOcCUf1xVqSHy+Z28tsG+eDTCkvX76r/I1Qm1W7s3UXNq0R/hBlJ3flXI3Hja2lnRor1Uyw3EyDgf1qfUvEmh35XN9gA53NICfwxSvfYTT6HUYiPZhQVj7Mfypm007GKuxuHlg9GU/jTTC2M7Tj1p22nKCKVgIChFIqnNWi7Y55+vNR7lz80YP0OD/X+VAAvApTTgisODj2NBjbsM/SkUREU0Lk8VJna43LkA8g965aTUdP1XU7pTavbMi/KIn/AIgee1F+xLdjVjxF4jk4/wCWXP6VFb6Hp+oPdTXEJ8w3DDKsR0xWZYoz30ii5lDqdqOxycYp2palN4egSR7klJnbgLnDdTXLKMk9V3J5oyV2tDHv9MC+IX020VsFwqAnJ5ANWPiHfw6N4Vj0a0b5pcIxHBKjkk/U1oaBLDrd3d6qgDzxgIOo5IxnH04rz74g3byautq67WhGSM+vSlTXvpWJhFJtrqccaaadirtpptzcbZFAVCeGbvXoGhQzXpPws8SQ2Us2i3Af/SZPMhKjI3YwQfwANcNNpc0Q3HBJPpjmrXhaeO08T2bzyCJNzKZG/gJUgH8zUyV0K/Y9m1PSINY1hLkP8seIplU85AyP5j8Ki8Vaej6Q93DColtcE7R1TuPw6/nUME95HotzPaTrdyFjIJ4sPxnvjOcADnApfCdxc3j30FxKs8bAsyOM5yQCPpjtXDdX5e5Gj0tuc5a6VeX+k/2jbQNJCJCjBeWGAOcdxzWYys0gQA7idoHfPpXr2mPa21u9pHHHa+U5GwYUZPOR+dYPi+axtmtphaRyXjNvjnU427fXH3uexpyhFK9yJU0lc27SJorKCFgMpGqN+AxXI+IdLtYJS1nLGJcjfbhvmGe4FXLLxrEVAvrZlb+9DyD+BrH1Zv7b1m4n0uKaYFFb5UwykADP503KMloVOUZLQy9Y0q50uS2W4Ch5EMmAc45IrNtJ54xIiTSKrDayhjhh7jvWprt3qd1fxDUd2+OLgsgUjJ74FZ8VvI0D3CrmNWVWI7Zzj+VQ/Izej0OwfXLS78BXNnLMi3qoqiPBG4BhyPwFcdbD7x9qVHaNxIhwynIPvXbw6BZ68Fu4HNqXjVmVEBUk9eO1JNsNahx2PWnoK9F0bw0mlGdpmS53gAZj6Y+tZfjLTYIreC9t4liIby3CrtBz0NFmN02o3KnhPVBZ3/2eRsRT8c9A3Y/0rvQqSrIjhXU8Mp5GCOhFeOiTFaGi61NpGqrcbmeB/lmj67h6/UURfQKdS2jNXxJ4USxR76Cb901wqrCFxsDHHXPriu9t18rCA8KMCuO8WeILebRbfyVf9+4lRiOyPg/qBWro3ia31m6ljhG1VjDfMMHJOP8ACqudCcVKyMbxxZ2tjJBd20AiuJyQ8iMR09vfP6Vy32+7ljjjnnknhRtwjlcsP8RXpetW1hfW0VtfnAkkCxMDghyD0/WuVj8JvbXVxHcbpITGfImj7N23Dt/9ep2ZnOMr6HZ6JeQXGjWskQWJBHgp2THBHNcZ4m1D+0NU82I/uFXZH9O5/OuZTULtpQiTSJn5BGrEDHTGK3LiwlMY8lxMO4Xgj8KKulkTKbmrG/4OjljW6kdGVW2AHHXr/jXUTT/Z7aWcgkRoXwO+BmqzXVvpekRPdMEWNFXA6kgDgCpYL2y1e0cwSCWJgUcYwRnsa0irRsbxSiuVHnfiPWm1xIla0iiMZzuHLHjpn0rQ8CaZM19Jel3WCIbdoPDMf8K2pfBenNMGWW5RecrkEfyp9yv/AAi2i7LMmc7iyxnAZs9ST7f4CoSaepkoST5pG1f2lrNbzPc28c4CE4kX29RzXkF5YzTXAa3R41D7h5bE7R+NdGPHmqXNwlktjC7y5UIucn2q9YTi3YrfaW8W48FXV+K0U4bSdgnzOzjsct/aeuwKEnzeQr2bhqtReNrfSYftSRyeaePIbgk+9dTcSaZBDNLE5UrGzhWGOQO1eNK7arrLSycrksR7CrUIvbYcXd3Ok1jX7vW5UvbvULqJT/qreDICD8wMn8arx6nJaAGW51QAjIEjgZ/MmrKMLOH7UyK0zcR7hkL713fhTwHDqulwanO32h7k5LN8xzn9MYqak1BbXOiFPne9jz4+JGC/8fV5gdRsQ5/Grr+MpL2zNk9/OI2G0qI1yR6c17bH8MdF8nbIDvI5KqMD9K5bxB4AtdMieW3G1kGVYD9aiU3BXlGy9TSNGEnaL/A80/4Si0iso7cTeaUGN8o+bH4Cqsnim2X/AFcgx/dbJ/oK1IfDEU0glnby5M5yBiufuNHzqb2+QVU5yB1FaxqQbsYOm0rsIrWHXJpZIrueR1GSDyFz9aaujATC2a42SsCQGQHp71f8P2Qs5r1lbEYKqfU9aoatJNePJLZht6PgY67en9K1vdkF2Pw3PEmItVWPPJC7hn8qjvPCtzdzCeXWEchQpZskgdhmsi2n1eO6jWVZmj3AMWj4x+VXNbnk/s0RjcWdxwOuBz/hTvqBKPBTk4/tSH8VP+NP/wCEHAPOqx/9+z/jXKnzxjJl/M0SJOUyBKT7A1VmM6weB0PB1Vf+/f8A9ennwPb/APQTIP8Auj/GuMSK5x/q5j/wE1MEusf6mb/vg0WfcDqz4Kth11X9B/jS/wDCFWh/5i4H4D/GuattI1W+ybaxuJB3YKQPzNWV8J+IWOF0+ViOcK6k/wA6LPuBuf8ACD25+7q4/wC+R/jUbeCYx01VT+H/ANesEaNqoJ/ckEdfnH+NIdI1TkeW2f8AfH+NOzA+iAD60uD60BQerD86QjB4IpCFBIPNPDetRhGboaUxuvUigNSXK4ppANMAPsaXDUALtPrRk0hDd6bg+poAfvb14ryjWZbjSfElxsOPnPUdQTmvVMN61xPjfQZrplv4FywGJAOvHeokuo/UoWmsTW2o5MaOGcHPTINWvGolfTbdpYlTEwYESZzlT2xXNzSSIsLsjKNqjJHccf5+tdb4jjN74LgnH3lMbnkfT+tZqcnuZwitUeepLcwTF7eR4z2KPg1ialdXF5fSS3Mryy8AsxyeK3iDnNc1KGa4cAHcWIxVw1dzTkUdi5pVibu43MpMacn39q6FGDh41iV0Tjj/AOvxVFlXT9OWJWIkPUjue9Zq3soLALuB4+lbC3N1lEycuWIPpnafp71g39u1vMHU7XU5GOoNa9hdOQC4Kt0IPcVFqqb12gEgLkH0/wATQSb9ok97FaalZwTRyPBiaWzDIQ/Q8qMc/wBa0PC2qXWma2v9oO7JIGTzJgQ2fc/Ud6wPAmqzW+qLp7zP9llzhQxHzY4x+PP4V6LqGlPcWLJFdOjployUUkN164yOfQ1yzjaQ1HqilrPiiL7e6Q2pYDguXxnj6VlG4k1tkt4LbbMoLKN4wR364pdTt0mhgui8bSGJRIUIGTjuPWqmmXEdjqMNwWkwjcgAcjoa43G8rswk3zWexDJHJDI0ciFHU4ZSOQa6fwUfK1Cd5Ayq0WFYjgnPrWleaDZ62I76K4dDIo+YAMCPfnrSyarYaM32ScyoYkHzBNwIx7EmtFBxdy40uV3exuSGOTUMZSRWgwehH3q5bV0tNN1HyEgEdtd25WVI146nDAeoIFYGlWs8fjECC5MYaZidjAErnJBU8/pWrrWuiw1trS+tEuoEX5WGVYBiTjnOeuPwrST5kW5Xj2Nl/BOl3duhjMsEhjHzIcjOOuDVQ6i3hGG3sJIhcybC3mKdvyknA78j+tbOhaxZ6lYhrRnjjgxGRJ1GB369q5/x3GftNlcHBR0Khh0JB/8Ar0pJWugmlFc0TotH8S2GqoE3iG4/55SHGfoe9TeIbRb3Q7uJgCVQuuexXn+leU969H8L3Ul74f2XDM5VmiJY5JXt/OkpX0Yoz59Gea09a1pvDs39qXFlbyBmi5UPwWHb2zyKk0nw1c6rbSyxTRxtFIY2SQEc4BqDm5HexUaG4v8ARLgL862Sbxk/dUtzj8Tn8Kj0SOb+wtYvVYqI1iQHOOd4P9B+ddl4V0260u9vI7mMbnRApBBBGTUkvh2fTvD+s22yIR3Ekk0YRshV42r+GKpbG8YOyZx9prN9e6hZJPKXWOZSq9McjvU3j/xhNZfZ7CwmeKcHzXkjYdOQB/X8Kp6JZtKZbuRhFDApJZjjnH9K8/1GaW8vprh9zb2JyeeKujG8tSoXsW08R3qXZuT5ZcsWxtwM/hXQaN8QmsL5Jrux82NQfljfHOMdxXDE0V1OnFu7RXKj0jXPiBYa3PA3l3FukaEbWAYZJyTwfpW94R8VaDBbTRzalHFNKwwHynGD3/GvGaTJpOkmO3vcx714Z8UGR7qOWbz4owCg37iOvf04ofUTqMrzSqN24gD0HYV4RFPLA26KR0b1U4rpfDHiSW1v/JvZpJIZcKGZs7D2/ConS00IknY6rWFEHiaGcDCuytx7jBraaVDIXVufStseHLXWvD6TOhS42kJID71zcXhi9EYuftbNCpO8KQCB+XNeLjcN7VqXY9zK8VGhBxmt9SZw02l6hIV3bY259PlrzjSDiWRuOgH6169caQthoN2YLrzFliJYPgZ4ryDSgDK4Pcf1ruwC5aVjhxcozrylHqdFezI8CBTntgfhXuHwzt7yz0SCGeNo4zuYK3BGTXglyPs6ZxjuK+g/AniEazoVlcGERHDIw3ZyR3rapJKUXJ6XFDWLsuh29YfiqIy6SwXknjFaLzFE3OSqZxkGqOoxPdpGluFKA7mcnpzV15qdNxW7JorlmpM891HwVqEVkZI3QkjcUJPFeVXsbpqx52yrlXwa+hNe1doLGR4c+ao27c/hXz7qMw/te4kVAzEtk571yUWudpamtVNwvJFC3uZY7yeAEESkk+o29/1qKwmSJ5fNfYBznGev/wCuobYlbu5lPJ5IP41LY2wvbe4j3pHI4G2RzgDmvR6anFoWW1Szxg3MYPsef5Ul1rtra28PkBZmYndg8j61Ul8NTI2fttoSRzhzz+lU9T0mSxtkna4hkG4LtTPFJct9GOxfHilc4a2CkerU5PGEYjJMADg4A3df0q1otlpV5pTxzwh7ib5nkP3h7L6Cs6bw1YwNtllkz65AyK0GTjxhG+MwKM/7f/1qibxltxi3XJ/2ulM/snQ4wN8jH6yYpk1h4f2jEmw/7MhJo5UB6NZagmpWUccciQQ7UbfHwSNwyOPUZ5+tFtLb/bF8671ALbtFlFl+R9xJ5P3jwOecdK80t9abRzt0+7aSHPMcq5/Iirx8c3LjJig3AYBwaYHT+IrSy0/R5r21ef7QpWRnlcnfuP3cA4A/DvjpXHReKGaRN9rEMjkgkVMfEsN7Ip1ItNGp3CFRtXd6nuauLqXhWcDzdOiVh3XI/limJntBTPSgIKsedbSfejZPpQscTfcnXPoeKkLEBjpvlGrXkSdRhh6g0wo6/wABoERBCopGBPUn86fu7UhyaYDAMd6Nwzjcv4mlKZ609JJYxhJGA9D8w/I5pAMIbGQOPUUyRFkjaNwCrDBFKwkLl94BPYIoH6AUo3Y+bafw/wDr0WGc/Jo8JimsZQwidsqw6j/OK5ifUj/ZT6S0u7YGhGSMgg45/KvSNobG7B9sV4FrhJ1zUCDjNxJ0/wB41l7LsLZ3Klxqk0E8kMkADISp5qPSx9r1QzMmAvzECqMwLuWJya0dOAhsJZujk4BFa8qS0C7ZJdymediPu9vpWjpemSSMVVhG+zeWIycdgBVXT7cXN1GhGVzlvoK3ry5jsp0eGEtJtwxHb0+tTJ9EVFFIJPNah5IcSISC6jhvf/Peq85EtoVyNw55P6V1Xhqyvtcs9U+ciIgeUrDavmdeB2PFcr03L3780U5dBNGHb3M1leJcW77ZYnDKcZr0Xwr4s1TUIrk3mxyhQqfLwCDnPT6D8684uE/0hwCBnkZNel/Di6EmjtaZBkSQsV9j0P55pVVoC1GarqUwmdCkTRv03RLuH0bGf1rJWVc85HuOa1NajaW+uEb+GVsYGMc//qqPSPDdxq8czw3ESGJtrLJn09RXCrvRnPyuTseiaRaLa6Vax29yXXZuDMuQc8/h1rgfFMdx/btz+9hm3YBC5XHHQ1qvrF/4cuVsAEkjiRchxweOoNc/dXYur+4uT8vmyFwCeme1atpq1jSclay6GuNe8/7NNqOlSAI4MdwAG2kHs3/16reIrrT9Y1RZYrwKRGE3OpAJBP8AjW34QnkeC6iAOxWVgQe5GP6CuM1WA2+rXkJUbVmbAx2zxRfQbl7qudj4Uhkhs7uyna3mt5eVIOTyMEEHt0rLtdO1PSo3W5tpRGT8pyHXP4ZFZOgS29trFu88eYi21gGIAB4zwRXpmoaDbahaPayPMIn7K+cHsRkGpeuxSipx06Hl14LoXbt8yITkAIBj9KuQPqEOkC9hnmjVZihMTFe2cnBrNaS+064kt2uJVeJihBORkH3r0bwzHfTaFDcTTRnzckI0WOM4HI+lFrmcY3ZyFrr95BeC7lYXL7Qp3nBIHuK9Btr3TrTRn1LAt0lAnmUZJ3EAdPXoK5KbQb2HVRdS2CSwifeyw4Py7vT6V0HiHULO68PXMW9RI2wCKX5GzuHY/ShIcLpMbp/iOz1DUbmVGaK3htwzNKMdGOT/ACrW1m+gm8K3l1DMrRyWxMbdM5HFcJoNmjRakJUkT/RjjDZB5HYir2ozQP4ENruO+LYgDLghg3/66pK2hUJNrU5m81ZYPBH2Uf6+4uXQ4/uAKSf1ArjZVAjJ7YrQvYmSSNS+VxnB9az7r5ISBWtONti0rIyzT1QtgKCWJwABkmlSN5JAiDLHoK6LTbWCyRGfDSsfmbPQegrobEYsWl3MoY7doUZOfSl/s1iNwlBUHBYDv3rrg0E0QiXCgnJI/Lms6ezaFwVON4I3AfKq+gHrVpIm7OaktZYlBbHIzjPOPpUWxhyfzFbksIdWRUKEY3Fzg/ie9ZTqY5COCM9qGh3PXPBnjzT7Dw7Ba6lO6TJnLbCwI7HIq7pnirRhe3e6/h8lnLR7yRuBI46fWvJNH0nUtbujZ6YvmSY3bDIF4/E1o3Xg/wASWJfz7B12YyQ6kc9O9ckqSvqx3PYb/X/Dc+mukeq2akxkBfMA7V4pYSLHcjccDOCf61Be6ZqOnzeVeQNEx6bu/wBKhjgnkfai5b604U1G7TByvuda6Q3EYEt/bNg8YY/4V1vh7xeug2sdulxaOikkZc968xh0u9mO0FEP+2xH9KvJ4U1WUZV4D/wM/wCFRUp056SHGs47M9nm+KEM1p5RurIE/wC2wI/8dpkHxRENsY1udN3AcEyOcn/vmvGLjwxqNsm6V7cA+jkn+VQx6DdynCyw59yf8KzVKlF7/iX7dtW6Ho954wvLyRyb7T1V87v3rd/T5a5xoYPMLreWOT1zOT/7LWIPCWoMcCe2z6bj/hUn/CFaufum3P8AwM/4UQhRj8LFKtKWkmXZItNsIsyXcMjSsd3ltu7/AKClk09AWNkco4ztHUe49a53U9Fv9L5uUGz+8jZFQwajc28GxJiF7Z7fSuuNrdyHqayuBIUa+GQcEG2fP6CodUtpXtGcTM4X5tnlEceuSayhqVyDnfzUqX13dExmQAEYJx2qrIB2kag1tOqluD0NdTe6c3iG3hMU8MTxEljJnnNcwmgXDBXWQY9Qpq8lhc6jbmzhdRKp3ZLYHHWhjRZPgmbPzX9uPoD/AI04eClX7+pxg+y/4ms4+EdUP/LaH/vs/wCFH/CHakes0P8A30f8KXzC5ox+EbHcRPqXTupWpn8IaKvXVXx/vJWQPBl+es8H5n/Cl/4Qm/8A+e8H5n/Cj5gX28L6Gp/5DWPqyVGfDmhD/mNj/vpKq/8ACE3ve4h/Wnr4Iuu93CM+xp3XcR7tkn0oz6nNOChuaNlGhOogOPukj6HFSpPMuMSE/Xmo9nvTghoC5N9qY/fjR6RLm1dmWSGaLH8QwVP61FtPtTSueoGKB3LwjhYfLIPx4pptWPK/N9KrZI9KUOw6HFMNBzRspwQR9RTMVILuZeN24ejc0/7TG/EkK/VeKAKxYLk54FeAakRNe3EhPLSMf1r6Cu/swtZGQMGxxk8V8+y6Zqj3cyJp93J+8YZELHPP0pMDMdRmtBAi6GpH3mlII9hVhPCniCflNGu+fVMfzqPU9L1DR7eC1v7VoJWYyAEgkg8dj7UgsaHh6IvPI391P5n/AOtXovgbQre91OXUbpN6QtsRCMjPc1xvha032905HMaqeuPWu58K6wtrYhIwFWTL8nOckk1lPe5aeljodYa1ginEP7vIOVHHFeIXkfk3lxGGwQ7DI+tdtqN/dT3V958xWORwxI7KDxj+Vcbq6LFqM+M44PHfgU6d+bUUtjl7tT5rEZIHcdq6PwrqkmmRJcxBdysyEE8Ee/6VzNzlpm+YfjTIJ5beQNG5H8q3auSj0O81uO+1V28oxmXnIPBOPTtWn4Y1yHTdRa3nRyt0yoGX+Fs4GfbmuO0yL7dqFvHLOIw5HzhM4J9vrW2kR0fX4jcjzVtpgTtH3gO4/nXJKKUtCbWdz0nWNFt9YhUSExzR/clUZOPQ+ori/FWhrpc0U9suLd1Cn2cD+vX8662DxNpU0ayG7VNxAw4IIJ9aPENlLqWkSQ2+0y5DAMeuKVuppOKabRxvhfWn069MBjaSO4KpgNghs8H9aueL9InWeXVFQeUxTdhuQcYOR9QK5y5t7vTJ0M8DxOCGUsOCRzwa6fWtfstU8OlFmKXG5GaI5B9CPcUuhhF+60zkl616T4b11bvToo57hPtCfIQ7AE46H8q824HSpYm4Psaz2JhNxdzW8QSXEHiC8XzGA8zcM9MHn+tbGg+LTCi2uonMYGElA5X2IFclJI7yZdixwBknPFJkCou09Bc7Tuj2FGEiB0OVYZBHcVz3jeEv4f3Y+5Mhz7cj+tVfDXiyxt7VLPUYyhUbROOQR2yO34V1Gp2ltrWgTpbSq6ypmN1ORuHI/lW91JG9+aOh5Jp880F2ixyuiudjhTjcD2NaniJZrKzRQ4PmE70P+zzWRcRTWwLMNpI+U/jin6heTajYWbysWkDtG59SMEH8Qf0NKO5nT2sY+77WokYY7YrOulHl4xzmtyaNYLfCIAB0rAnkYgo64YHrW0Hc6WSwxrBbq6D96ep9qGR2+YtsT+EsetPQqyewFVp5WkfAGSeBxWy0ILkYliwyOCOOPb8a0re4EqCOQNluGyc/gPSsy3jv7Ybzbvt7jrx9KthAFWaM7d3B9qaaewmht3FsO5mBlT7gVeo/r3rMu1eZS+0ADsTg1vSt+5WXYCw4I3csKzbuCYMCzJlzgjH61oSL4MvJrHxhpbwn5nnWMj1Vjg17lrEsU+n6hl1I8s7WB4yBn+dfO0gktrhZI2KupDKw4INew6Tqp8R+EXBKxymIowXjnkGuPEK2pRBp/iDRpEFtq9ulzxjLxbgPpVu28M+ENUuGmsLqW2kXrGsg/k3NefLE6zEHqGwfrWoIs/MANwXrjrWLlbQyUjuZfh5HI4NtqwBPQSxD+YP9Kki8Ga5af6q/08gf3ww/pXK+FLtYPEtnNcAuqMSMnvg4ruvF2rC70EpDlGEqkkHtz/8AWpaXKXK03Y5+98GavcOXuL/Tv+/pAH6VBb+B7oTDGq6ZgdQJW/wrhNVurqWRo0eVgPTJqhFa6ksqSxR3Wc5VlRu1aeziwuj2u28MLFGfN1OzV8feRScfnWWlo9pcvBfa3a7i58rCcMmeCTnjvXBG98S+Xj/Tfr5R/wAKsacmtasJRKXc2qjh0IPJ6dP51mowinZA5JLY7jXvAOqataLHatBIrYO8y4B/SuRk+EviFSQLaJtvdZ1INeoWGvQWehRyTygCGNQ4zkjiub1rxdY6y0cQuZbdVyMlW2k+pxR7aMI+6OVWCRylj8J9YuZ3huIDb7RkSF1Kt7cVX1L4e3+hMJLh18snaHQgjPofSuiGtaloN0nlX6TxYDLsfcjj8a0fEniCLWNIiVF2uHEhGc9vWrhXcioTjLTZnm0ur3KTtbW9n5hQ7cLknrjtTLFdVurmQ2EBFyQSVGOB361r6XrFnp4nSWxnnmacuJIwMgf3evTNN0nW00/xJJfzRTCGTedoALc9K6bsoyLmbxPaSpHMjqz8LtjB/kKsm08Y4VvImIPORF/9au6PjuxZAws7k46ZQCqE/wATbdHeNNNk+UlfmkApXb6BY5NLPxpIzKkNx8pwTsA/mKf/AGR44kB+ScY7blFdCPifjO3Tk59ZP/rVH/ws18n/AEFAT/tn/CjXsBzttovjS68wxpdZRtjB3C8/jVpfDXjo8BZc+8y/41qL8S5ULbbVBuOT8xpv/Czbjk+Qo/Gi8uwHqYTHQ0uG9RUmyjb9auzIuM+YdqUE+lOx7mkZSykBsH1xQAZNBJpiq6n5mB+gp3FMBcmkOaXik4pgNPvRjPSglaOgzQAhHGDShyB1NNLe1KDntSGTo+R3ry/4mD/ic2jdjF/jXpYavPviZASbK4A4GVJpAUPCeJJbq3C7vNg4+oI/xqHW2vNL8wW0Uq2sOVVsY2jPB/MmqeiXP2a9tpiflzhj6Doa77X9OWfSVREaXIwVQcsp6/4/hWUtHzFLax5tpV3PqmpQx3M7SKp43nt3qLW51Op3jRHKiQgDHYcVoWPhq8tr7z5UaO2iO7cQRkDnvWJfsDaSSZG9mJ4PPNXC0pXQpabmHNhnY8/SrehLaNrVr9tZFtg2X39OBwD+OKpNnPNMPFasR7EllpNyiSRW9s4AGGgIB/NalnstPknVHdw5QHMvJ/Pg/rXjUcskTBo3ZD6qcV0fh/UL6/1vT7Ga8maGaZUYFsnBPOCawdF9Gac66o7e88OJLEBDdxhG4JYZA/WtCC81q1sxDiG7aNcb1lXJA9utXX8JlObe/cAHpIuf1B/pVW70vVbeNlhhMxI+/GwJH5kGsuSSGuTdaHJ6x4iubqSW1vIGiX5T5UgG5GHcHH1/Osdbi3zkswPoRmu4tN9qzR6lE7qcnNxFkfTnP86nSw8O3bHfY2y8D5kYLz3+6altLczdG+tzntAs2n12xQwmRCwcgYYbeuTjtXpbWNu6lZbWGQe6Ka5U+G9FeTda3k9tIBwYZwx4+tXI7HWrJgLPWYpVIwsdzERn3yDUpocaTiiHXfC1tJ/pFoyWxAwyEHaff2p2i+HoBYOLgQztNkb05AHsao3j+KLe4eaWxhuo3ABWJyenfGeD+FVbPxcdLiaC60q5t8MW5Y4557gUKKZHIr3aMa8tZLG9mtZRh42Kn39DUWl6rqFhqEy200kMZAPH3SR+lS+Itfh1PVFuLWNtpjCszjBJH4mq1tqVsYjHdRtnPDIOlWqclsZ2s9Df0i1j1nVPs12SySq5JBwQeuR+NJe+Fby3nksLP9/ISs8bN8o24I69M1L4U2vrEc1vKssaghiDgjI7itrxXql3p8MJtJPLkcMCcZIHrWcVbc0po4PUbK7sT9nvY/LnwG27gePwrnLqMvcInOT6Ve1G6vrm4M81zJI54Jc5qhCzyXOZPvAGumC1uaNksmFQAd60dDslCvfTDgZ2Z7DuaoGMyyBR3rYuzPHaJaWkRd8fdQEnAHXirl2Eu5SiafWr6RRK0SDkAdhUqwT2k7205DgjKuOjf/Xrr/A+h3cizXIsM+cMFGQjPsB1966HxN4EJ0E3Fnbpbz24MrRnq4HUD361nzpPQpq61PL4zGrMhydw5OMfhVO5eZoVMrLGMkKB1P19KsuQjK6kZ659jVOe4BuZF8pzyNgI7kcmupGJmXIUjKsze59K2/D1+8dg8An2FJd23pkEev4frWPM8jwcgAAke9QW8ohkOSQCCMioqR5lYZ6trWlxz6JbapZqCcfvdo6g9/wrRg8MifRLbaf9Lco5cnA2nquPpmuc0jxMtt4cOnrH9oMmQGDfdDda7Dwvb3enaWRd8lpQ0Y3ZwpAP9a8+ceVXYkk5WM+48IXen6xAbORXt3cbXc8p7GumvvD8l5p7xC4RHK8cZGfSuS8VeL3c/Y7NJYbiGXLSEjAx2A+tZNv4y14yJF9sD+YwXDIvc/SpjFvUXuJtE+lanp9pYyWt3etDKt2CVDFQVyA2cDkYB/KukfxPo8iQyfbYihuxG2JCAqjLcDqBjH1rltU8JXNgJNQnKXUZcs+wfdye4rOnurWSBLdbSOMKSRIoAYGrbs9EZ/C7M6i48WM1y0VmxltSNjiJWZxl+G4HTaPqM10cBe6sL64hjlUSn90zKQSNi9jz1z+Vct4T1zTtE02dJgxmaTdlVyWGPWux0nxLZ6wGQRyQsDgF8YP4iiTTKWq1Z5xqEZgDpLdR57jD/wDxNYYuIw3Emeeyn+tez6h4e07UH3zwAt0yDisxfCekWcwm8hQV6FzkCudU+XoYqhZnl02sW8LmFxLuXggrgg1as9S+0sEjTMeOpqr41sHfxFf39soe1ZwS69jgA/rRogMWyfGUi5PufSuiNKKScdzZU4wegkADvLjIO8kY9Kp6kssfl7ZwFbPDDpVuykB8xn43MT1pNS0q61QwpZqG2k7iTgDNdSeupu9EVIL+4jZB56Hb0yqn9DUE8MUkzzSS5Z23NggcmtN/h9rUKB5Ht1X13E/0qaP4fak6BhfWmCM8bv8ACi8b6Mm6OYQRzXgiRiEJ69a2rbw4LqDzluSFBxyuefzrNOmS6frL20rq5i5JXoeP/r12nh+2F1ZiF22q7lSc4xnjr2+tbxSYmzn28NKHCm5P1C+n40w+HowB+/cZ4HyV3h0zzRJcG5hESxCMKEVMsC+UAxw2SvPfNRTW1o0UvlXCgxgqiMFLGQO4G7jOMBOR2Nbex8yec9EL47U3zh0PH4U4j2zQAtYDK41KyaQxi6h3jgrvGam+YjIwfpT2iSRSGAqCK0MTHErkejGkMfg+lJtzUvln1pNh9aAGBMdqNp9al8v1NIY896AI9g7mkZBinmPHemmPnrQBGI8mneUKeEI70bfegBoQCuc8c2BvPDkrqMtAwcfTof510gUg9eKSaCKeB4ZOUdSrD1BoA8Q05i37n+LPAzxXeaH4hjtYUtdQWQxoMJKqluPQ4riNU0+TSNXmgb70b4z6jsasrrPlQFY+AB1Iz+lJq47m54m11ZoHjtRIEl+Usylcj0H9TXn2quFVYgRxycDmtGW+eU+dIQQOmeBXPXcvmzs2f0qoqyFuyHoT70080tHemUGOa978IWCW/hXSi8Seb5AbcVGRnnr+NeLaHpcmsaxbWUYP71xuI7L3P5V9ARboESFI1WNFCqAegHSkyZFkCngioN7dgPzpAzDrj8KRBZ4I9qgls7SXPmW0TE9SUGfzpPOPpR5vtRa+40zOfw1Y72eBpYGbIO1sjn61SbwzdRPvt73eeoDkj/Gt8SipA/vUOlB9ClNnNLY6rBky+YwByoRgwH9adJqBP7ucqc9VmGB9MNz/ADro949aa+x1KuqsO4IzWTw66MtVX1OSvhoACJdWdmrSHapRdpY/hisybwpp1zvMEE8XPHlSeYPy5/nXY3Gj6VcndLYwFv7wXB/SqU/hyxlYMjSxkdBncP1peymtmPmi+hzFr4evNL8wWeqfZxJ96O4hxux68mse5W4ikdJrhLhxxvUkqc88Zrr77wrNdxmNb/5cYVWUjH61yepWsmlSPaSMGkiAXcO/H/16mSnb3gTXQwbwYxxkAdRVGAgz5A5I71oT4aL196zISEuR+VawBmzpNsLnUfLbOMZ4I9Qe9dDoTxweL4pJVDIpKgnt/np+NZXhtQ+qM3GfLb+ldpaeDZJtObXEuypTLCHAO4BuRmlNpN3Gtjr9QuLqMjXrAR7oWBZI8DcnQqfX2q34vm+26Ok9tMUYr29O36GuTTWUtLR44oAzSjBG7Gc1lL4lmfTYxI3yIOh7DNY6tFI4a9ha3lkjYDKsQPTrxWVNKRIioM4G1mJrofEjKNTkdANrKp4/3QTXLSkBT83yMxI967oO8UYtakchPI3ZyfTpVQjGQamKjA+Y5qJgOSTVCJrS9uLGQNA+Oc4IyK9G8O/EGz+wCDV5WiljPysqEqR26V5iMdAc0Csp04z3KR2OsatYalqc9zFcqAzfxAjPvUFldQC5UZSQqQQd348Vy9JS9kkrEcqvc+jbK8t7mxDbkZWT5lyDwR0NcRrvhL711pkgKNz5LHBH0PevK1lkQ/I7L9DirSatqMa7UvrgL6eYcVHsn3Kkkzal+0WzlHVlcfwkYNdJ4J8SwQ35sro7RK2AxHQ+hrgH1C6mx5k7Pj+8aYt3co5ZJpFY9SrYNN0kyVGx9Mony/KSB7V5trUuqalrVyjTRxWsMhWM+bgYHt3JrzU6lqTLhr66I9DM2P51F502eZHJ92NT7FFWfQ9Qt9Ih1aT7EZRMqkM4ztUn1Pt7Vo+I7LTNG8OyQxzQNMybEjjYHBOOcV5B9ouF581x/wACNXbHzZlZnZiWPGTVKKjsJQ1u2FxLJAoAbqSK774f3FvI7i7RXhG0ks+0YrhBbJOrvKfnDEcnrTBbAZX5segNKSTVi2rnsviLVLSCSKK0KSQEEkLICQfrn0qjY6hA8TOXjjySAjOPzryfyEXqWz7mmNFHn/69S43e4uVlnxJclPEd08bj7wwQcjoK63wneQRaXHPP5TsXYiJ3A3fX2rh2jjCsQOcVSWWReQ5H0OK6IOyFy20PXl1LT/JkcwR5U4VSRg56n+dNvdW0uQbLeNM5BJ2AFevf8a8j86Q/8tG/OkaVyMFifxrX2jFyn01HfEEmRI5Ce7DB/MVMLq0fh43T3HIrLPWlySKwsO5rrFFKP3E6N7E0xreeJiWQsvqOazFbac1Yjvpo/uyH6Hmq1FoWPM7Y59KA/rSLqe4YlhR/fpUiz2MvXdGf0ouMQMvrQWGetPNv5gzbyJJ7ZqpMLqJiDAfqTxRcVickGk4rMmFzIcpePAf7qxqw/UZrPkOqhio1hB6f6OP8aV0M6MYPagj2rnGN+qfNfOx7kDFQNNdD717M34gU7iOmYqB/9eo98Z/j/WuUmlmP/LaU/wDAqzpDcBiVlYZ/2qVwNfxl4fi1Ox+1WsiC8hX7pIHmL6fX0ryMyDcdzMNpxsIxXb3TXLIVMrfnXL3mjTyOXSTDnvRzIaTMa6vCRsTiqFacmh3gJ5Un61C2lXSgkhfzp8yHYpGnwxSTyrFEjO7HCqoySamNjOOq1e02V9Pk3CL5j/GDhhTugPSPBvh+Lw7bNdXTI19MuDg5Ea+n19a6sX8ZUHcv515cl2JAD9smUnnDA1Os8v8Ayzvv1NVoZu56E2rxKcbgDUL6zD/eyfauHWaQn5pwSe5qdGx83m8/QU9AsdeNYXsfzqUazkY+X61xiXDGQhi+z2AFTpPFjBaQD3xRZCOsW9V/4hzUnnt/CT+tcvbzw7wUlBwf4gf8auTa08SnBT8CaANwG8P+r5Huab52ooSHjU/SuaPiKcrw6AfjUEmvzgFWnA+gFKwXOuF5PjmE/hR9ufOGibP0rh316UceefzqBtekznzSfxosO53/APakcR/eJIAO4QmuF8XGe71ed7W3mk3bcFI2I+6PamDxC3/PQ/nUyeJCOr/rUuCY1Jo5d9L1eVVAsrnGMcxkZqrcadeWDxvdW7xBjhSw612w8Tju1Y/iHVl1K0iTqUfcD+FHKkPmY/wqQdaiXoHV16+xrvNK19dGs7qwuFMiStuQ+h6Ee/avOdJl+z3UE3pIP1//AF11d5pt86StFEoeNd3ztgY9a5qiT3NomVrd0qySujskTMcZ6jPapNOkgmtY1mj/AHRXBGDjFcffveSzBbokOvRT2FdVb6lCNDkitkCzeXxluRihq2wIwbv7u0jHPQ+men5VjS4D7QPlA61r3J8+Eu7HzNobnrnFYtxJvJYcZPSupbGL3ICV5JHNMJGBxQScUdDQMQkZoHWl/EZq5baPqd5Abi1sZ5oQcF0QkUN2GU6Q0EMDg8EUh4pXAWjFWrXTL+9dUtbOeYt02Rk11um/C/XLxA9y8Fmp7SNub8h/jSuBxaIzfdUn6U8xyR8ujL9RXTan8PdfsL0wQWr3keARLCOD+fSrVj8LvEV4oeZbe0B7TSZP5KDQFzkBKOm0mmgyM/AwDXqdh8IEQhr/AFUsP7kEeP1P+FcTqeh3uh3kiXlrKiKxCyuvysM8EHpzSsFzHVJJcKQAo681qGAi3AjfYwIxj0pbe0urrH2a3eUt0Ealv5ZrSg8L+JbjKrptwAe8g2D/AMexUtMrQyPKdQMyjI5OKfggffrqYvhrrzpl5rOM/wB0yEn9BUsfww1pvv3lmv8AwJj/AEpWYXRxF27IAqsWduABTLbTru7kEVuZJZyCdiKWNdlffC7X0ZZLSe0uDjBG8oV/MV1fgTwfP4diuLnUQhvZvkARtwRBz19z/KqS0Fc8e1Cx1DS3RL2CSEuMqHUjNUt+TyK9e+LGmibQ7W+Qc28u1vo3/wBcCvH6pCuPzk1PHavJ6AepqtTtzEY3HHpmmM+ifLYDiRvrxTxn+8aaCcHNG4jg1GhApzn7xpCr/wB6k3/U0eYc9OKYDl3g8nIp4cY6GozIoHXijeD0NAD2O7uRj0NTpqNzEMb96+j81VppOTip9Bmg19aTD99btGfWPn9KSPTYLwbrW7GT/wAs34P61mMPegfWi4Fq40i9iyDEzD1Xmsi4hkjJG3n0xitaLUbq3ACTsAOxOR+Rq0NdLrtubdJAf7owaLhY5GRyOCMfyqFgT1rtGtdH1BchBC7eh2n/AAqjceE2Kk2s4PoH4/lSfkNHIyJkE4qs8O6t+50PUYN263ZlH8S8/wAqyyhUkMDu7g1k7misZr2g54NQPZqwxitZiOnH0qE/Q1OozGk01SelQnTeelbuwntQYgfY0+ZjsY62OFwev0o+yMOlaxj2njmlUEe1HMxWM5EToxlB/OopVX+CVse4NaMkW7NQNbbx7VSkxWMuQuo4mH51UkluecSsf+BVsvYg+lV308DnGarnJ5UY/wBpu4zkSN+Ipj6jdD+I1rNYDsKgewJp84cplG+n7saha8mJ+8a030/rxVd7DHIFWpi5SibqU9WNMNxJ/eNWXtCO1QtbHNO4rEZnk/vGj7RJ/fNDQMKjMbDtTuA/z5P75/OnRzt5i7mJGeeagKt6UmCDTEdXZoCinORnP0rvctqGhxPGNzhQsnPOBXnmlzB7RQTyOtdJpuryWamJTmNjkjGcH1qJR0uhxlrZmlfeHbK+sVnkJ+0gbVx0z/UVx8mlT2e+ab5drbVX1Pt9BzXf2xFrp897qGoWqWflnaUkDOW7BV65rgLvULnULhric7Y1yIY88DPes4xky5NFW9YLCDgb8H8qwJSNxJHP1rRvpiQI92D1/CsuRix610mSGgDPWl7mk7c0Uhi45r1vwU5svDsCF0HmZfHQ8mvJ4ULzKucZPUmuxhvHSEKsowowAHosnuJux0jeB9BmneZxcEuxYjzeMn8K2NP8NaDaZMWnW5OMbnXef1rkodQm6iU/g1XotVuUz+8b86LIXMzvYyqKAmFHYAcVZST5a4mHWphwWz9a0oNaYqN2PzqiTphJk1Orgiuei1RG71djv4yB84/OlYSka/mAimvskQpIiup6qwyDVFLhW5BH51KJlPelYd7k6+XGNqRqo9FGKXeh74PpUIlWlDL1osO4puIVcI0io56B+M/TPWpKbuDcUnlLn5SV+hpWHccWIpokYGkKyL0YEe4qJ5dhAdSCTgbVLD9BxRYLlfxBp8Ws+H72xIw8sR2Z7MOR+tfN7o0cjI4wynBB7GvpkSr1JH51458RfDradq7albp/ol2dxK9FfuPx60tikziKUUlKKYz6J3ADmlzkcYpPmx09hTdpOe1QSG735pCTQUJ5zzTCjjgH86AHF6VT71H5bkj2pcMKQyXeelMZwO3Peo3TzFKsMqRg1IIxjH86QDQ2QKCce9Jgg4ApGBOKAELEntikJPbinY4prcECkMbvOakinuYT+7ndfYHio8ZPNOpAX4tcuk4kVJAO+MGpTf6dejbeQ7c+qhh+dZRApjLRdjNZ/Duj3o/0Zo1PojYP+fwrMu/BtzFk28pYdgw/qP8ACq0gxx39jUsF7f2/Ed1Io9M5H5Gi1xoyp9Hv7c/vIGIHdRmqpjYHBU59K7GLxBdABZ4oZh6lcH9KLjUrG4iYy6eGkxxlgR/LNS4FXZxwWkKH0rUljR5GYRBATwqngVCbY8kGp5R8xnGPPJFJs46Ve+ztn5sge1Zl7bapk/ZZICB2xg/rxT5WLmQ5lGc0woMdKyJk15M79+P9kD+lUnm1YfeeanyPuHMjo/JBGKabcHtXNrqF+hwZn/Gpl1i8U8vn2KijkYcyNd7X2qtJaE54qsutzAfPGp+nFWItYgl4kyh9xStJDuiBrMenNR/YM54rXQpMAY3Vh7c07yuMUuZhYwm08elQSab7V0fkeopht6fOwaRy72GO1QNZH0rq3sdw7VWfTsdMVXOKyOdhMtnJhVJDHkVoR3R2jH3/AE7GrUunyDtnuKzblXteWQhfatIzIcSaVnmIMhwO2OajkkVU3bunQdaqG8DjOSf89BVSe53ZAwD7VoSR3Mm92wep/Kq4ODzSmkoGL1oopwUnnBpgPhwvzHrVpZyvR8fjVPBHajJFIm1zSS8dMYlP481Zj1WZf4lNYgJp2aLisdLFrrr97H/fVXIda83gSc+hJrjgxBz1+tSpOVIyikd6LhynoFrfMxGGX65ragkkdOG5rygzZbKysnsM8U9Z7lfuXkg/4Ewo5ieQ9bjaUNhp0X6jp+tWhKylcXkRPcYI/wDZq8ZaW5dvmui3uXNWIorhhkX8IPvIw/pT5hqFj1yO61OLO4wzLngo2Dj8anXWZ4/9dayr9Fz/ACryaG41S2P7u/Uj/YmBrbs9a1LAElzk+uafNcTVj0eLXYZCAA4PfchH8xVmPV4HOBIufrXH2Oo3Uv3rxEJ7s2P1rSFnJcKSdVsefTk/yqhHTrexv0cGni5Q9x+dcU2l3iS/ursv7p0/DpUqWWsDhZzz2JoA7ESBu9Q3lha6jZy2l1CskMq4ZSP881xs1n4kOQJgieobmqF/e63psRefVVjA/wBv/EUmM4/xZ4TuvDV6estk5/dTAfo3oa52uh1HxbqV9FJA87yxMMESAEH9K57BqDU+je1J/Knia2fkhowfQ5ozbknbcKfbBFZisRsAcYNMxg9PaptgP3SCB70hwODTENIPbpTWBx0qULnNMZWHO6gCJRz9afwBwc4o27hhwMUjRgngkGmAnXtSFPUc1IFYDnH8qCvOaljK7Z570wuisVJAPXmpmXBzmmt9KQER5NHOcYp2PSjr1osFwx60xuuKeTmmN0pWC4wgGjFJz/8AXpykcZFO41oIUGKjkGP/ANdT7Sw4/Wo5bdHdXdQzKcjPOKTY7siAPNLjNSFCeaQKR1FKwXGGMHigwjFShaUqT700IpeSGyCKiktI3PKj8ulXjGeo4prKQaGMx5tIt3GSgY9hWNd6bcRZKaahHsS9djtOOcUu0Y7e9KwXPNWtbskKIW57bMVKljqAwGh2j3Ar0B7eOQfOqsD6jNVZNKtnOQhQ/wCyxFA+Y4029zCdwXkf3VANR/brmJsHI/3q646WqfclmH1bNU7jQxcHMk0jEdCaWgXMWLV2LDzE49VOKux6jatgZYE+oqQ+GlB+WYgehFOTQUjPLsfoKl2KUiQBXXKyZHtTGh/2ianiskgzgGpTF/dGakopeS23G44qtcab9oQqznB9hWmBjqKXt0p3CxycvhYcmOd1HpiqTeGJFzicflXbFC1MMAP1pqoyWkcO3hu4B4kUj6U0+HbofxrXcGEHtTTB7Ue1kNQRw40G43cstSnRZgPvCuvNsM9Ka9sMU/asXKjj/wCx5f7wpf7Gk7v+ldaLQGnC0HpS9qw5Tkf7Fkxndmk/slx612H2UAYxUb2oz0/KmqjHyo5MaU9L/ZT+/wCddSbYHtR9nA7U+dhyo5f+y2FH9lvXT+QBzSGAelHOHKjmF01wTuqUafj1roDb+opog69Pwo5xcpiDTN38QH1OKkWw8s8XOPpk1s/Zx2FN+ykHgUc4cpmp56NhJ92PVTitS01a/tcbTEfqrf0NAt+5604QYPSn7Ri5EbFv4su4yBJbwP8A7pb+orSh8WTMATZxDP8A01x/SuZVNvYVIHYDuKpVWQ6SOnu/Fs0dszLaJnHXzlOK801qW51G8aScn2XOQK3pAzjBYmqclsST3zQ6g1Tsc2LM/wB2nCzY9q6D7EeOKcLIg/dqfaFcp6cQDwRSbB6dKdj8KXB/+vWhkM2mnq7rxuNJntTguTz0p3AkEvy84/KmmQc5GPpSNgHA7U3rRcBgdwT8wI7DpTjclU3GJyB/dG7+VNKHNCZU8UXABqEBOCJfxiYf0py3NtMfkmj4OCN3IPpThn1xUMkMUjfPCjH1ZQaQEzKOx4pm09KgFlbxsSkKqT1CjGaeYogp2hlz/dcj+tIZJsI96TGOKr+VOuNly/8AwMA/0o3XYPBhf2II/wAaAJiOMUzHPNQO+oAErbwkZ4Hm4J/SoV1FYZRHexPbFvuu+Ch/EGiwFracU1UYNknj0xUiSwy8xyqw/wBk5p+0HqfwqRiDOR707HHJpRt6d6HXimO5EeaTnHTinhSOopQvr1qUSM564pQOPelA55pSKYEfJPNG2nH17UdulMYm2m7MDnk1Jj5eBTTlvWkIjKCm7QPepSvpTSuDkCkMjZfSmNH2xUxXn2pCPagCDyQBtAxTTCSvTmrWOOKaQc9DQBTNsDUZtyvI6fSr2D0NIUOelRylcxnPH6JmoWjPpWsIvcH14rTsLXR2iP20S+ZnscD9KVikzlMbeO9IVPpXZroOj3DEw3Ensm8H+YzUM3hXB/cXAIx0cY/lQ4MaZyHln0oIYDqfyroZvDl/EMiEuvqnP8qzXtmXIZD+VZlmeVqMxt6VfaPFN247UyWymsR7in+VjvVxYw3SlEJVz6Giw7lPy2NJ5ZPB5q/5ftSiEkdOaLBczTDz0pv2c1piA9x+lL9nJFCC5k/Z85zSi34rU+z98Unk807BczPJUNtJAPvTfs/PStU2+fQnrTDBg9DmgDOEAFL5PfFaPkZ7UvkfhQBm/Z/alEGOv8q0jDjjFAiGcdadhXM7yP8AZpPs/GelaXk9scUvkggcUDuZRtvakNr61rGDHTmgQ4osK5lfZflpRb/j+Favk57UGHJ46U+ULm+FAHApx5HNSfh+lNI9q6bGA0qOuOtNJwacT2xTSeelAhAGJPpSjn2pRSc56UgFI4zmm4z3pxPHApvbrj2oAOelIc9c04DoBSj36UgI9xoyOven47CmkAHPemA2lprAlhT1QnqTSGNxzmomiV2+ZQe/NT7MUhBzSEUjpluSSERCe6jBH4inQ2k8OV+1mROwkXJHtkYq7jilAoGUpxqUZUwQ20y+hlKn+VJDd3ZyLjT5Ij7OrA/TBrRGOmKY4oGZk+s2dowW6MkGTgM8Z2/njFW4rq3mQPHKjKeQVPapjGrghlBB9RUUthZyr89tET67QKAHkgkcijGeaotp9uAdvmJn+7Kw/rUqWQwGE8wxzyQ38xSsgLBBz9aUIfSokWZDjejr7jBqcN7GmITvikxjtSkgrg9KY3UAE4I7DNACHNNYE9/yqQLgdfzqNkBBG7GR2pAKI8g+o9aTB54pscKRLtjyOecnJJ+tShfc0DGY745prqGXDL19anK8+lNYZHJ4oYyIDGSQcUYyOOfepxil2+1SBXC47GlKkdiBUxTFNKmnYLkLCp4b+6gGElbA7NzUThge340bSe1AXNe28QXKEbowfdTj/Gpzq9jc5F1bKSe5QGsVVIXgH2NN2MM8ZpMpM2xpmi3b5Qcnsj/0/wDrVBP4WhbPkTH6MKy/LJ5HbmrEN7eQcJKxUdjz/OptEq7IJvD15ASfK3r6rzVI25iba6sCOoINdFF4gmTiaIH3BxVsanpd6u25QDP94f1FHL2C6OU2KR2pwjHaupfRdKuCDb3QTPYOP61DN4akHNtKjDvk/wD1qfKwOe8hj0ApRb+tbLaPfRA/uSw9V5qtLBLGPmhkB/3TS5QuZrQZJppiII4q6QQOQR9RQBkUWEUvKA6DOaPJ4yRV7yxSbDnpSGUvJ68UCIE9M1bZPamBSG9KoRW8odcU0xDPTFWiMDGKYVNFgZAIePWnCMYqXB6U4R57UxEATjkUpi745qfyzQFOTxRZiKph56UeVVoofSkA7EUxn//Z",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAIACAIAAAB7GkOtAAEAAElEQVR4AaT9SZNkWZbg95mpqqmp2uTuMWREDjV0Vw9ogA0BBaSQIhxW3HDJBVf8HPwCXPIjcQsRUEgCEABd7KrumqsyMzIjwieb1NRU1Yy//33mkZFAEwRAdXMd3rvDuWe+55573/H/+f/6fzmezY+Oj46ej46P+zvyNpv5+cOPo+fnp8PT8/Nhe7udzQ7dm8+fTxaHqh0v5rPZ8ezx7u7bb36zXK8//9lXs9lcS89PT8+H59Hg0fHT0fGswt7HJRee9TB7fjrau6fo1P24Wt/PXahCb8/eXDq4qNWn3W774bt33/793/3dv/3Ln/7JP/qjf/zHm48fH27vFsvVF3/w86d5deaz4/liMV8s5+A7nhuRl65raUD1POABOgDmz8/f/vLX/+jf++dHi8XhcJg9N+Ijo2hkx0H8FDSHw9PT/nDUwJ7m8+PlYraYHz/7Nj9ZrVbbx8e764+37775/tf/8HD97nT+vDh+Pp0vdKfyfD7f7Q/amxvP0VMQLhbT+BqSLmazxXLx9HTY3m9GhYU+Zirv6vb45PT153/wL/8X/+vPvvqZy0ZSK8DZ7+8ftvcPN7/+qz/99V/9+fHh9unx0Uj3z8cohgZHz/v50dNCX/PF4Xi+Oxwddoenw7MCJ6vlarm832zv7x4eHh+/+PLy4uJiu3+63+431/dHT/vj5fxh//x0PIfE0/n86bDfRZmn89OT+RGcHe9mMzQGx+zoaY4+h93b97d6XS0hZn56vtruD/vHRwQMhr1hzI4Xs1PQIMTxfH90DJuHyjw9HR3tD0+PhjpbHM2OLxezq/nsar3SUHyEKMdHxtWon1Fmdng6wpOzQWgXNYdQvcPZIB9W2e+iNGSq6z0sD3r64oUWqOC7L90AEBrtDLGKgIH3xYlxxN+683M+UwDUxzebx4f97mG7PTl+8rfdHe0O8PO00Mx8tt+DF2kSGgM8etqBtZ9GMMdic13igB02en4mKiez44vzs/NTrLh/d3e3e5rjrOPnI+zrlgYeD6gA9QCYHc1PEs8BeFw5O16eLOJPzGQAi1l/oFhUZv78hP3nJ401iQsJh0V4rOZ2v8eTQIf955nujg+PQO8e9FRh9nyyOkkWMMNs9vF6v57N//Cnb5bGMU9pHM8WoVKduPF5cRJLh35NALx2kzlv+AZpwmTYeYoyEZPwxY0P283+5Ox/93/8P/2TP/nnpycn0WLQurrAMbhjnAaMOvvLf/sXf/bn/xYCYcX1VMPAUkpDk77PZ8sVLps93N39wc9/9h/9h//h+clZsubeUADK9Zreg2L6FZDTNx+TzpnuNJpPdUBQBQSBX+UHiL9XfLQyGq03xeNJvDd15NLo56XByrky9TtuBGi/XSXgioegrnWDCD7uH+8e7p72uxPie7rCoBD0tH+itWZHs5PlAtMice3HJ8QKfenOGHpgUmNznEkKn492C9CNtpMS6GnAgTjg6rebo2cwPR2fro9mg5uPT072ZMOg6vV4djiaH44XEOx3+HmpDgz0TWRDfdCQ816Jq3qoetB8ZDWGFGvIg6869WPCdfIZio5nqD/Gk0akoI+OT2IiMokhMReEvHr1ZrY0qEHq2Twu03jNAyGp06xL4D4AP0ZvAEdE80QfuiB5fj6lqNWl3ANFzzX4fFI7qJJ6eNpv77fwR8KWJ8+pudlsRyk8bLV52D89pjkJ5p54PB3NHx93YDxJoxyjBRwYru5S/gcE1lVKU2cnFAQdROy0kKqng90/OqSmIkn/3QVCCsZlMD3v9mnX5XxJzQ48VsSVw46lTvCw0sBCtKEciMnj9n72vF/OTu52h/XymFJ/GpqYHl+dwsMp27Y4nV3v9h9v7463jwYzX61okrOT2dnZcrNLg4GCSQvFT0+b223kOzrebXanl8uzs8vlMWWKOlnQY7blaLaPRZA4zYoHmMQQ+qit3f6YEn1+eDqiRVRMmcbG8dMY98Q4Y/B9pVm6Pgoo4jO+msqv1qdE4vlpC2NoYcxdVypxCj9VjBcMEVcNI3R4Ijz6pDErd3ygqRWj6tTUViqPeWKTn5Q8OT6/pLHTjNgDzLswECqOnnMi9ofddr/bPbKL2MX/uCyK0E4zLAg6g9U3RFDBbPDpfEUalmfn3APsF2ezIswYA5mmM2TGHacefMuKDxQg7RbDHBpIEMZIWgXv84ytrfVnnEU1L5Y1qSVDwGMx9uKUrMyXQ+IwJ25vEImjQRkIW77LrtMh24ft7nm2O12HohDZf/4bY0WbjCrg5eLMaerYFWDBHNr7CI3Bv/PDLVJmkKDZ7rI/z5SHdnMsKz6AGyOOEkNcjzL2qQRQZDQjaA1Exl4+FBgw+0XQh+2ZPS8w9iC2Dl8KEvsxupffLw2Ma6OEm7U/lddNF71pe/riawrEj1r44b7vXuOSD7crM1qCpYGL1I+qk9WaWhjo0UcIr4vRrLfpB1wgiGFCKWM6qbWE9/n5YbNF6vXZRRUjEU45Plkjc1wbmbWV/cDPeJOXdhi68GhxsiRXWoisj7vFoCRgw57+B9mSoonCEWn6hibTvadjXidVlPQNSMc3YE5uRMDSY3Xfv4EepNVIIhe0YPLq2ujuOcZALTI2OjWcXkPNsXh0HANYeWTtlroJsGZwDRAoaw2oPz9erFbL9RkJUwe0Exanm32vSnTRs48hUklgAwc1TctFG7p2gDqNe0Dsa1wf/geX0k8AeXper2l3mK7Z5+ftdvc4/u74h9v90eLp/HxJ/rGrQQ/Xcn56emYOMegy/AK2ODxQIBrMumso+sHIgc8H0GM2gzlQJwMxHF50qMWUU7qAg6h2HECzL04Ox48pjT3LGlHn1L/B8bnNRSC4OUU8eLKcnR6dQuRycXJxxVW/o7GO9tvzqzfcX43RJp9/9uXz8vy7h/t3Jx9vv//ueXs4zdqZqMzfnK+31+YWswP9Tlnu8N/RZrd/PLAlJzzZ9dn69de/2B/jlh1lhkYn6HWy2LITj6rkKi5J54DveP+42d5tHjeY3aThQCt8eBtNjShnn/zEPUbMjYlreIgntB46x+L4YUjI03J5ghwnWDya+LnYboEASYPqUTr+GQ4ZBPt5lAvcbMBsDysdFid8bnwFWzU7mtFj8zasAC2gA9Pq1av15z9dnJ1j9mFQECAQTBM0wtVKuB62D5vN8L0gdPe4o/0e6xVx03HPJxV7etputZHcrs7MI//xH//idpNR4eKNdnaIsWXen/bp9b3ijzc3t6AhEfEu2++T0jdMcn4E4XFjUO32dxsTv3yt+DiZgTs/myqwEzHIEDRIRpqTWcRlBoZ1oLGTeBRPznXz9HSzurn57t189mZ5cgKkEAubGJUfwxGJLOF6vAeOPkgZnLsRoMlZgjhwNCYEx9E3ERzy13Sn1/SO/H2ptRRHMu6HsdE0A/L84qlwNyqrIV/w2kst/Z4MV8PoK1tHvTQy3seP8fbpdyDWR63VdrD1PtX0/lJ1/O6trl/eXgqNmlP50c1oyO8f9+/nVGL60i21R0uVGzcrMAq5YezxOOuvHFV3sjwc3T48Ppw83I96DZkzrO6ECGRW2UC8tEcHIMLt3QaTrs8yCYYxAip8wfiIqlFW3U+dx139nq7WzIvkRFEhkmRj4L8yx/OnxdFuNd/Njk0XKzkg72v1vBMwrcV5PiaYxi033RMHmOXQVGh0VM8qxnUKjF/9rC49MOYxgZSNGMTyaRgNhXBrrX6rmmUhb9G0t8GCGsmPmAZd2/VJ1xbCyHEYIJEK4lGtLJ1mp9ZGb1WpHieGf8GN01gaiIcIN8ePe5MBc5IDf4sEcauJeXK34PAVFsDIAE28lP6EkdQV/XJ4fjzsu0lv8v7oIz7dfHa6nO+eaczBBA1uwgnLMmN3tRGGh993d39PSwGALhozwbwkEHDOiLiqsMPZet7tmhHMj3Pq0PF0Zt5ipnG2PuX3npyvX736bCWsdfZmub5Yz57Wy/e/ujm6e/j+dP7Ex3g8fv7t/T2ciH5QG3Qfx5iL+MA/zXs7MT/bn5wfXb4B8cyo8IqgD0Q9H85Wl2cnq6wTHOf4cUAZsufN7u7m4eZRPTru9vb5/pZVoYyaZsYYEVdrcBY5BzPxcKEdMtAsffeCBODwj+lBiJ/MYp2BViujvRineRKFD6U5E5AAL+YcCxY8VqWP0iPu1nGsRNOrjseeZ6z0nAhevFqcX2pxkCOQQi/qan6QChk2mwfu++gkWGIquNgJtDw2NaTZ7zc3b79//913CM2GAuj06vX69Sl1rw0X9YwNtsgJ28JMR8ebh8c///O/vL29yY7N569eX52dXwqhiaMhfTGd/Z7C8OJq+GeYw4zFov6PYBZW42cMLCaBSUOYSbxoB0rTVJUZmLOgp8vlenV6eXVxtl69Xp//Zpulf9wKShk66CA2DlQ4/OdZjilO6jqRbQjhGGYGny5muXSzZxjgZxSdEq+YL9br1cnVK61oPUbH4I0gSmjEa2L6BhIbdXO64ls8URFvOnn59AGCIXhDkN0YFV7eK//y9dONcWm6ntrzqlU4aiTjx3h3sbvj4+X7jwCYKlbZ60e1/KrRWuw9dQvWdFPfR3/BMY2sq6Nk+sSAR6NgSM5SuhB/cirwd3d3n0sl5neSaHMx2GrMXNi75mtwdKgf7aTKWH1yIfgcWx8OvC8hvFHmBYnImXoaUHqf2hgDjNKJEF+SbwSUdHH4we1hCGGGGhxx+jF4DXe9/2ayacNCwZNq1nA3RokRyCa0EQoDhqnuNe4oW/1G86lNYCTtANXuC0PEv3xdIIEMhFhSqapO2HvpLe4ZzfTWnUBTSFvazBPsbwCg/SEhL7wWHIEx/KwBpp8K6x/Y6vSqmQHyRFmBeAJNsCg6wJ0UQys8aTAZhORvULdhJ53PwgJPD1ua5nl9siSDEEOYj4ghAjfDyrcMwPobOBntjBgvbZ/rmkuJwrvUPYQbltjfkuv/JMRCdxXXyqOz1FH4lWKeY6mHe/Z38bBnPBePm4NpyqvPv3598dmtoM3yZD1ffP3F6enxxXdvf/W4+XUCDFW7/SlWO8JMOuXLPu2290R3tTpZnp7c8D4Xpw+74/nZxdMJTSdYtJ/tH3CA2/v5iUA7PqJwMwDFLOg1bTzebUSyjvYcbtSk05r3YAowL1CKhownXswBOvme2+MVRlg6ROzr8a6ouS8t0gQvCxX7D0OuPKrx+bFzaB9awlSmQJzKEe94mhkOXxLoWvBSXx/6RE0RQ8ZLSchMApKDISzarFsBxZQix14ECuTMPrNLZbPX5t6k8PHx8flxi07HNzd87sIUYBS0Z43ySAYkgRzgtJD/RTNYcGGdq/NjIcf5MQ169rOffPXVz+hNhM4MGmq9pTaMHAMhfFEkngXbwCL09/RoNQdu4/2mGd78zrQeHbHuFtnmOz8fyfTy+HB1cSG+lRMXO5zG5AaIlwauVQckSgVn7G4IYAgeZB1IG3eGfohmEAN9pqpPzXtwgDlNbRYVGqgadA2NiS2QEDbA4nmvl1/JwLjatXG3t76PKi4N+S8M+1JiVK1QVf8br5oAwrgT6gYmpp7QPfEEijrTpalyOiwYXt66HUTjc5QYYE0toap7U43xBedVNA6uBZ8vNT9VH2VTEEPBVkxvhSrznSD54uJK2HSz2ZCgi0sSLgKxXa9WDw8P6xkh5Fb59wL2xBWpGOw55yeI1CFa/D+ZioG5QECel9ENjh8wN84XHAZPbFxs3chcraZ6JCZlnDx5e8GVsYBZHf9oBBroJOerwYbkuusVXOOfkjU1mlVm+gJR41ItISpO1/zoRYHADTc5EtZPwVmrYzSjC61PTddY4DQARfpfAX2P+26M8VRT45oni2GrXlXp5Yvygx4K5Ct1cZCF/1s/LqXW8XxuO4GghXasOPE6RraCHSjY8MJAxBmSHkJUznLGJtoQplvNTPkDh390khAfDkt9sCjTKPRIyMc4DI060zgnm6oSUx2earXTfBRahivPix717SDAMFsyThSDucr9I5sRPgyVE2Ht9tVPXq3Oz6mh/fxwdnp2vr44nO55fl+cfHX97vHh7hrwViRakWxs1hHmfFmzoTXTsTyl259PuRnYpLgTTUwtr7R7uhKQPzqZL9enecDgq4yI7ux+t7t+eLi5vd9stqY/PJRCxpZOh3GGHiBmDQqixw/mnBCtdRoP4PAZMlMx4+fwg7SdZlOMckWhJIggKKXnqmQIfa1wFKGTAQOj4ydk1GT4ii4Ej1YNz0JyEayVaky3TDDjkaYRmgqJ9QDU3DdzlMWwE3oyADpp8D3jY4CHnV86Bp/xQkZeS+vP8zMxtsXToyXlqUW6luuEE2aMpRnKydlK31mGk+PT5dl6ebY4PWG+4ul4Kf70r76K+HEkRqpFgJqODK1gSmg127wHVsdUgWbp57AN+8cHSsIS1+b2w/3t++3m4WNBp18sc644jUEPo8MbaYEB2kbnOUN1Xpgu2YIAsotSgTNc6YlCsNi69CgOswjBAbl+f/v4iBGTam/99V/DfRuv+D3RQckhzy/3flRqCFZIUF6v/oZY/NDC1MxodTRV859eo9cA/3Th0/ekfrDddKfufvftBbzgGcP8BPePCrkHoAmm1Eg6Iz8jDpnYbNIDWDJ4ajuO6lvq2FjjSfzGCSwEKTBwfCR8enFxfnPD1yKIzXetSyWQw11RaXCmiilQcjANyiQdLKfmdCZboqNHmgowb72HsPGawAWjBhqRv3En5nYN0bFRsz1/CDJ6w8C0GHAmnTq1NCDCEMwwplF6sGZ9NKypOQ6VBobP4rpyhg38MDpG3gy2snBCJrWe7mhAGh8MPgjU9yLRzegH/gYOPyFyeHQxYi9jdR2T9howGG/KJXw3wNFAHgQnJwTUmXKxnYqDlLWkuZoa2Cl4tJiZiTeh5V8PBleW4kAD0dyUTzNiiyWUW4GNMUyWgsckMPNEERy2or1jGW2s02aDuMMiBuLAz8erx3zVgbhw138d9AblcVKRjzEKxThg6JMyzetnGIY38HR47OsCC90/7De7Bx2cCyCI3D/uxPbPVhdf/uRrof/5yZlVStP/VTOJdP1nn19dXSxPjw6/2lsQ3HBFoYPzd3icC0o8PO/OxppoPChufPQsP+F0tV6crY4fCmcNt/JhWTxgf3p2glko9aPd8+Nuy4dhADYsjLQjQyQZcAVbRdSFM8I0TUhJGoSWrHpjM7afHiJMCqd8cQz9zZzEgWOqU60orphBV0PEmeggCt0HAKjzQ+sqizxkdOAM87nnVlMCtxlg4x/LLZFMNH5UEffDHtxikb1J98b3GFdzQRNdoo7C6XW0SBPnXLgZs3ARWgkxV6isOZVYWjjlF4MAqyBTOlQEB9JGGDGDYK57vFzOpcpkkObHq/nivMXrpiMBECJiWBhvfEmSNSB8WOhmitRP3h8kKoI5/IMagOoa9uNUg9w/3ny8+e6bX35zK3R8t3+evf3+40/OLvmWRg1Okgw8yC8HSfXE3jD4NwzDfpjw4Af6i1lohu136B5Y6b21aOEKQONcrQBVyy9/Afbjl18vFwDs37g/cKlUd/Rfy2M4RjJ1gycUdAcmp7u12fcKT5e7YUxhzC3//fUav6d+DALBx/WXnic2mIopWn+f+uzi+DHVDbBQ5g09arVvXrXP89hJpjtmWSGzegPQbo2OpjIuQ9LJySlNYKERrlenp+vl6mFxb6lJ25j36ESOUG7k43brJ/7RUZzde5DoZYz7yVolA88tIN4KDVgHNl+gHrCzz5lvQpiv2QAnPdhyw0CEC9rzNSaFtiFgL3dqs4tIm0yCwF0QMHFaG8A0/CG/ocJC6YTP3CBxdZ0MI1BfgvMmmIMzjzgIxCY0dicMmU836x+NY+Bejag2+xc8GYRxwY86czU+1GHg96OJN/qzrePCuDSGzsYs4KEmCWuFJ8oZeUgdZA/DWR1alrDGRdMNvbHW+wUJ53grb5GAuo8FmOQaGhYHzTEWFUke782FaQSyHcQaSnHVjlST/L8x8vp9edXS6E4hCZTbAqsaLc6GTzh7SwFWppc3nWQNSMUNBBm21Nvx3ZZHd3I2Xx+ebgyCf3lSZuhZy+rSRVsAtJBRBptxmWE83R0uTy6P9yeH/QMMgMbEb/u4E7aRHCIfzTylChYGDofVc1ECqwGLI9Gj5f3djZkHaI+2T0f37EZ+L8Mnnr55eHoQktge7e6fjk0kTmiQdFA04vFgU7kqYpX0sUhIiK5nY+wL5sKilCaPmCMEqamRaB8tFSsoGIcUsRgNwhkum9gTVVAh9RVkuosnWg9oUWPMEeCl9YAx21AzVHRLY62U6gDZJqbRxegXhAHBkMgPa8I6wKZqA31wTSzZ/SnJbPLYsg7Nx/PGKWUOlticmBcl/XiQy/R8enpKy+uT/j1B2OeF8gCRfTeH5Mm+cFmAigEWWf1QRcaMaX60Y4UbVVhNEyR7AGga1GfvA3kxZeEb41ytz7cP97+V5FMCF4YpKBqOSB+kpBSe5VpGi6Tbz9BHIpWK8bE7gxXjVdJFFSNYeIbDfsAJGTnwj56e1q8vpmW8UQE1tPl7rB79ujL0kM/uvxTwrXFVoX/9+e2vGB2kIvcoOW52edzqdt9eGtHvpysvtxtUJfr3opCGHjP/Hdd/aK42RiEwvbxGEwOqcQESuhWnBeco3G+Mh6tlcq+Pz0wo/cIJRhi88VcwMQyIOW6Vu7mE6GEqKIqry6vr52scvra2O9ZgZFPc398JB11dXeYQ0Ti1EQaE3Z5XYoePLAQXiVhpsyygCWeKDSwNKdUrBA/mmW4DBUPFpYECwjDR/TF0bzgpfZ5bEq6mO+pyZzBtyqchDRyHiZfO/Faye4MdBsfEmlgpISJL2stPqYYuU8RTQ0PE1EoBjBQ97YxZNpexgYW7Gu/+QMH4XS2I0g7FIKhS5Ir/RtICUZQhAIc+aLCFh62rASA3IqL7GjTBTPYbSOAkiuBEtjxdHZV6SDFQyhZdzNYt0HMkUykDX0FMp/rTR/pLer7Ml2LeMFeyIZlI9QZDKenPB+pSco0hxjxjQL5gpr4yDyJs20MB9AHZMqs72z7fP++0snoYyY6GxXkkctITFyVHnNw9rljU+7u7x4dHeDaFXJ25n05rhbvouzknFWxhm5ox+KfDZgPc8uv5IMsV6d08b2fr4/OVkT3f5x0jN+iZtKLqklLPDJ3muDh7XJWuzpZLEl2e0tjLA6Rjyoct+Z8vL4DsJk1tIimdNvWmCrs8rdAbZwSaMI1a8WPEBAosagEzoBe6hmR3UrQw4QIUxuZKhjFIKne2SWk8GXlxtJu8MIo9eSulTTykprMP8V6sHbwYITfDhcQUlQfT6BkUkBdjUH2RdrJBeRoDK0MFxnq6xiL4CKonftQaRg6y4mqE0w9Ebe53uHte7Jfzc8tCwpwAY8xPo4zBG7HcZztyRIVqPWZQN8KNOHspt8CgUbJ/sUbdDwl1hQb2P1SNcTSdGOLRdISdGCxr6cerUWEeMFLWhxIbArUeYQ1Q2GDgE8OmpzSIayAoGUkcNOBSooGpWpgAUE2onXkO9QB3rbmUSgOJWukVeIPO3sYQGvhEYJ+B3nvKwl0fEQvwVR7arUHVYvcrWanpY2q9cuNbMIUiP0ZHL9fHzVHBAAarxDlARrlRdHT8UrhevD511Pd+jEYbl+8DxKm9QZr8j6a3EgehqkkohjTGWMYIqgRF/CMrOECnS1rWSi89cvO1zTny3oQS65u6kR0h46OnzXZzajluypQfhKeYMaMFJ6pfFSv5aNT0LQiVaNz9IlgRTx8D/qqBZhSAJCou/h0IGDgNX6NgjSDq1NpQzbVJLfJGxjYezY/GRnuNbPQ3tYmZXcleJZADqSQtiFL5+RxNHSJuAjkBGq7S43rHynDXYnMzAC/vDWJ8GdDl3VWtwuFW8eLu1ouHgPK8Cj3I1rPEDuMxZKaramLl8wIzA/qBnFAFkDH+dP6Qq9RK5f1CKrJcVEGQ/eykpCtgNxsdkmsY2tay62GMcZawuJdFpVXqpaQ/usvsjNUY6Fuimyl0ZFB5vOKNEAJhNWrlV9a56ljIyJdWgR5hvUwhJcf8uh8c6jB5bI3veLkuPI6ZG6Cc4vWJ9PnzczH/y6hMQgt8awY8u9juaLPZU8x7WvD5MT7byGdZHF+dx09Ug9QYAWKq2CJjmWEoA7b14jkPvkVdisVKvfijhW3BAmvMLFQ7w2gF0rFaZFnSIcOChMTQnl3nyqVzE4ZBV3AlT/jeYMJH0oOFcl5dWAlypt3UoKuPNc4GJFMqZXiVTuuDb6gcOkl+OnotDcrNWK7apg5xTJQayr1f6icLE/EiwhCHKEl1DwbT58TFwNf7sD1DSpC/yuq40xVfQRhBhyfuXsPDysHJBDDUT7Pl6cXJyfnI3FAj7EQ0TSRe5etI05EuBVvGDjAUj72AgvI01QRukGPBxKxYmbe6mGS3Yfk5+MgUO+4Et5+gQ6t8O7dH+MvCUXKRhCY3uJxeGtXTuQTIZbsMhd2yCpog0QNH5QGoUDrsLgmsyZBoGAqIm5bCixX3u3UbE7ro/oCwctOrS/o2tu6M/6PQp7GAqsLd726YbhSqVXy62OeEc5c+vdyOLlUaaHG9Gl5VGpdrDmelc71AMVoZlUa9cXlq4oev05feo/vUyWi5ymPsCRi1vjyxfwjGqOPJCagKTGPEAYegzUaa+WHPAJTqn09VJgGLTNK39nHuHpdWpOSAH+8G2tucoUGBg2iruRg/CEoXWSzkJI/PKQTkbkia0IuK4+fUcwBNFVP9DSWqx3qBlkWp8CjRte6KjSrol2JGPanDod/rpIFVxxd8GiOlVwfBsQRHZQAylVQ0kCNoXao2eK1xKDC93HcnFqXRU4BpAPX6oiClE6uOSa0GpteoEbelUKw17vO4bJsUvT5dMSgCUlpRVsVaS4H2k+oYAx4GDcyBB4oG0Xdf+Ebsd1EXnCLPPVcQraoKjObs+YzaEqJHF9XlZxB62XY2Vh/2m4z6YK2KVzBJNdG2tiBGzjZk4eA3RHiF+ql3xKZr0Fx5LtbkBWYTK8oiCaMFmPbNR3x/lKMzxSzsn5g/n5ftx43EN+l6ESdZ+dvtnUVJOhbUh7v5fiNrZbO8eHq+bxf4w+Pm7mh3etZ+4meTjyfhriJVhp4PDRdqMn4rWWky08QvGrMxWfG7bdOvGNUxy2a/2aulmcRhI4gZVlDGKDLoxhZZNYZxcYexHZ5Nlej4FNNYiopnyJI44SB4PMRq5kYf2xYiLzKFOXt6fIAcAzE5m0iUko1XNBZtqdIF64jw0RJ2B88x4X5h0ExQ04R0exzbIs5AfTQwKPZ0kEOjgEw35uEP1yV/2TXtDJGPGTSTsRhX4LZyNGUW36/kIq6CtOWab48+zcY0qF5mJoF2X0Ng8ctiuKldLkvM5c4QS054v42t4QygFQgXxQUCqBb9q5k6HK8h3Q0ziWH/RhaNNgtVH6w5N9YUU3oVNC91ivmMjroV6FCjJNSSP/yfTMEyPLrcxg5tK0oKCE32Rlhid3vfMkVDTJICq/G9vKYv3vWfjoAlg4FCvU1DqKbmJwEdQjHqB+r48jLeTw3+tz4rVUv616Rv2hqQ9L1v4arOQunLKzjH7R8upVoqOmp/KvYyDAiBVnl9Y1wD9So/85zsrKHYqay4sRc3ji1orlkXECpb9rC/39x9eP9Obu7Z2ZlN++bQNo7o8J1bUkLPy61iYCf+iK+DLhQxM9kDrWuMFnP2ARMNg4KFKDbGrLu0STgIFePz5UIQwK7XdG/8rtR0wRiqp7JLvY8v0yhB4WpiG2YGtqodbnvVIE4i5Cr1DpiYsVs1NMCv737WwlSn7mKbYIat6TpKe5Fya8EJdtLMDIRujNWrAaqai6SqiyqyPOWrTWbiaWdFD1Y4vsGVS8chMjmZ2GqImHEO3gV7ujU58nXSI9JsCmOyzyLmouErM7CyJHINK5TnWZeERRdkJvgLE8cXZ6eOW1iHpCFfww6nOSY8ADblpDQj1FB+wEcEBgdyixFzps0YUFv70JqiodmOpbc/W15Yr7neKH+0ykErxGyXDBFdnK3fXF2dLlfGcntzTQlYDnj//oMN+m6fnQrV764uv768urq+//jq/PTD7o4Dv9+omVI0eRWDTo0aGvkk4adH9zKDbK4eQSeb0yyEAIgTLrXn4fjITna/eSKyKWU3wZid2UILnQIgd2r7eNriYCaQ6YofIhwPHVXSfyavjNz+8AC1w9TFBpPrLrjENmD3p4XEM8EozC+W4g9+kAMPtgwf5pGPkV6afkyMmNojpBOf0vEuTzRSibRoaTKy+asZSUDFQrFf+jA2rlzg0nB6GFaFlTIMvwf7mEalFZ93gxW7MSiuiZqJ63qN4Kcfadwc+vECXpemHsnJ1Ecd6g8LJfBxI4PTh4vmpkPkRvWKBdLgf/D6NmRCm5/6VmDgOfYx2tyj3I1RMhzVOPaR8q/mGCGQEKUIYYvhqX++RbBActJcLBfqJyEaECIxOR8Td9jGi8UYCYRIXxN+EHyCZ0D9O9DdaQApCH/DZexC+mVoim76mxA0pNJt+GzYvWp6+vbf9Z5c+aeSMXyqNWhZrUnuatd3aJuo93vt/dDHVOrlXj/Qx68YOL9AXchLS5cAkqtetoWxI6gkBYhPHzZSksCROrHydrpa3W/upcq56/OLL7+08ibVonNotqYB2+P1kUgxyGgKxDuJJfhbptAo2XQ2oiINx/To2F5i53y0slm3E6NMyBrvMdOEAncHo/qVsRijr0LX/XKvXxH9ZXhBHbYQv0u9qudi0jExZyhUzX0qgpYaoE5wDJzVhAaHlI6SyteY/ynRMS8ZMKhYF9A2xE8Y5GgnhkM9DzaEqoxQElK7NeGttbLR+7gKI1iXs9y5NfdPR9zGPRyZvgsQNcrBFaM6gcpGpft9DC4cSBiDqtNcuRh/IEC39tQEXS4/eIJDANQ+MWeuiOE6iicyT8pEwosSQ6DDpfWxMqmJXHo8G5ZAT0ynoaAYGDKchq/bnZ1TZofp/fTMsE12PM12D2KCVD8FmuzJ4TnO4V/qANYKErUNdEkP8tM3N7fX77+nm2/u7mUBnc6OTE1taYKjt3cBcXr8eCZHkR0Uf2ZdnCVDZYcdcwsxIMpXfvrznv5OV/O9aYd8wpkdAZZEeDz7reiPtYHZ7BEKj7ks/Jb7O+sYsoL2DxuprOXRRykYHRyTy0hejDkBMhto7hZbitq1tjFwDA2mUiTCFoUoJ2KNgSjxAl9BU5AB72gRHVjAmJKjHEmzoK4OchsVfObBTqoQLArHVLpmO3UTdDVNx/umuNfEWrHXgBxyfcvLagyIRMmFQBxAp9bWxFqZb6+IH5SMiM9B01RdzGdeNPSvxjQSh8RRuq2UdnBd0zR/frwwxQC2Bgd/DFkeRFK5v1A3ftdB1YIlGLNP8ahLqDpGojtyotoE8wAiaIOgbRYMaqkSln1quJXrBA0StVFfSQMIjUGtKDDBFiEzsaNpbcPUSDDSrO8BUA+/e3W5P/cSsYilYZcC/OVzQKhAwzMutIkqn16Vnb7/7tunez/+nHTUS9Gp7XHbMDTb19/dA5HOXmpPXX369cPlgVdFGhSQoYC1Szb8yEEb/mHGeqhBw+PIQguETf9beDper9cGhjh3dzcUFIltK8nhifYnd3d3Fn4fOZvmCsJoFvbsCf3s8y9EZR8k/B0exTZoBqog6ADyTK53ZtxNNBqPj8EkfnQfCib+6OZLFV9jzAqMSy8FXJi+9V7DA31d9W9QKLNTobhJN6OFl3YqNfWXDHcrphufo7WwP1X0c2jQutfWwB4EJgi90t96ObYzQkD9UychmQCCgnsB741ylHZFxQlW1xhfJ2ukJ7iKR2IMT+2PamowVrfx+ZBvLQVmVHF3eOLF9ccUaoCV1hjaqKZLlCW6uBAvNna1hMf4OY6No02ERcBAYyO7+H3I0R3xMDx6U/PlCA5/TsQX8MMAuNc4KxgOvTNFvpn+JRVeRZf0X7jJjZ1jiFL/piZpJGWM7Pr+UdyG7ua2SQPgRbN3jzuuuRjz5t13vyyIOz+VykFwZZnzsjebG9lqM/yztaXr9PHBkXFHZ84e6UQGxmwInQaXQlW4VDgIScpLk3g8N0+NYMLw4bm17t3T/d3Hx4P0nw18U9ViAI7u2j/cP8lR2zkwYkSRwq120okxQsrbFjHUGNhstC7SKnCXOgD/brvloeIMLXQnc8vesu5QAvfJGALCJ0TS5hG2dP1y5tLxVYsSmVgyGaPUxWSn6UEZWX4zWE0x9/bOEc4Rj+gsqcGrEztMtOka9MZzA/daLbhOkB2aQdAD3qiaAGdFtF2K6m5/0uprhn+4OikCpRrsQLPReSUp47eu6iamTOJQfxjHAOdcu0nIJ25xy5+SicWIVKmS3Gg4UesH3eRtjIXN9Nn6BEU9+iyxzaVpXQA4sWVsWFJv6owBE//k40tLtecgU4ZirAO0q9j6s4Gk8FyAtlF7EOtpvT6NRxqMlwKxb91Pr2kA40qlaii0TKV8UeGlIOWQaXQlJ+BTfZ/1WsH/5uu/cWWU+b1rUxsTBL9rYyryUvCHIj9qvMFVaboXRKOJWInXz1WVAJrRG4BR4qqiC89EiZZ8BjsJ1tvbBTMEltK/vLwS9Oeq8uX4/Hjk+vr6/PJicXfym2+/XZ6eXl1dYaJ77r1TUKR9S/np0ELn/j2dnZ91rghHE/o0aK4wxP8Fvt9BHqS9fnTlxeOOw2LEgd5uVzRAq9FA8iZGPVzlStejcyXj5hxkjBIvVRz7jD4UcwU9u+pVVVBNbboa67s8tTkKdDEWjjUV9XVeuqgDJsfRY8NN7HrMrV08QTcHJnZMBGoxWOssGIm0YyCLZ1geLdTShHTo0qEJXMfZZXKLeWiWjMApLVKy+8DjGEugBGSDVSoeRyF95HGlcnRPDwFAh/J5aLJgSRsNrKWN6FieJT+Z+dEK3fBkl6yw9/GKQrOymr6f0NTHMCqaLPCNRWzobIsWcTVclkXY5HRm3zh7Mp9br22TsFFI+aGVt48fHe5oUSDtZw3Zsv9hu7BndPdwu7n7/POfdfRYbTihjApfSmp083grSXR+fX23m3Vyjnh7wD7Jlk8veAEY9gg5BQazx8uZvUuPC8uJoV9IzpKwc3DunrZ39x+VkdAABea9gKQCj5iM1mOeTUdWs7ltaumrclJYqzAFrdDZ9maTJElF6ROXYSUytafh+UkoKfx7ETXmaTBJHBSnVZhSwzRGH08qO+nSYSUwC0ynYRhU/u1gQBKTVm3iESE75OHu3hBXZ+bQu1ZR4sSmPMboFY2yNy7EMLFASku7HAbmpFym5uVO/szUVCxox+Q9aLkgTTuSnfjXXy9f3DN6heNdwI++uAYVGb02QlTgyoS4KiCuGuOmz8GNQ0pVrZoyXl2BR6Z7uEFhJnAAFuYVyQtotVatXqMKWIQpjBSqyEdAuoIKRKQ5b6SwUt8xc2a85F+hrvBL/EYXN6BigFADtVHTA2V1MYY+vkzwN0hF0vBjJG7V2iDfKFvd8BTSqgcZFRxDnFqr0X/n61OZqVJFfndlVOhnCA2JEaOf48YPb//OnkKKgp+KDvHlcpEXzp8mmg0I1FiVxbWxpE3vw0mADi1bsGUraPBWgJWvofVKzii3hZlo94CokHkATN7d3168uqDvFTMZ5wwdzjhSymG2PYORHsOicrecZigMftgVAho4r12DC5U/Gjm4J8diGjAe9nN4mPCsyqe6GqvdSo33vsQH3R/k8btX/lXqaVB5uuuqIr33ZWrB1yT9Eyki4pCfMd+k7mkZKmEIV3UxRDag9W1rLIY6HSWpTq26iUEB5sdkMCZgkte64dFxVFtjH85Kfju3OXmOfVIA8SzBBpEsvPBDF/BYSUtSxg0sSpOKx/BhJ8jHgFxEfe8hi5rsqBabIE/9S6haqJBWDncccFXpcRCCWvtcLfkSvAQxDZBR8LSW89NMQkZzg6kARCBonKfOAW1/3+Vit3Ey96OQjpx+kscCdWSArhy8WDbM6mkrTrh2WLWmyF6G9DCT27OZPW3vhc94DR1A7FgGRuJRBMc67WyxOtnrm/iyL9sn5xA8XV2cno7pT8ydak58owncmRSYYA7amAfgoazriLUr2sElGNsByMJEDzshqZ0laSwbqiIZpJ60/2TIsYSj/bPVLq1QiYn+IKUWqEjE8YLA0A+ODHDpwKDMcKR8BhOIpI2GQcgkaIEe9j15ECkq9ic6xaTUmN4NhQJzm2VDYlqv8THM3rriV8e7WWUQuuLUy/UtPpV8Dk3YFD5WSD/qa+iL7H9CgY9YueeNlFr7odvknUfWdVPQ46Pru/vLVzvOcMw4PPGpIsCG6hxLQNZHIpwh2AMQ1NCWXqzWeFlWkc+aGowUEDaJ60Bd5Bokczl0B2clIb+8kQwAJu6i2uX+Q1QTWwqmDmLupimjn6Y/4C4KpD7UDbdpjF2svyUga1KCk1IJxCBPbBAPGMU0ubBe1RhZr4CAdgMAaPgaAE7kiCT+KzK+BHklxrAbF57zqk7DbBQDtCEko6HkMdSPYqMZb6P4uPTD26dLU8mptGsDipdC063xPmFngPS7Cr5VY7T/qbmufLr+wzXlaHpmUzOEH/Ugnk+5sndy2j0C/0P1wAlRptoGA4YrY7m7u2UMbA2RHuo2jScF6Oc///nf/u3fYOz1qXDRytFcFo1PTq1FHnd2k4Tim1smx7FOEoqZh5H3ONJAG4B2AxyE0QSfTowUoP1O5ys0EBy3Es4q8OfRD8KVICgt2GGIwbGjObBWMKVYA0pNdEtKUxQJZ1dHYTRMCAJjeqFhlaeKE0C4UYGhZGJ3/3U6BBZ7znfzk/vb29uPt84E7VRxS0y9puZrOSWrel12GdenVCRfH7YnYhEdutXRLUbUNhweMagRp6/Jk+/0VED13YIzL+bg9B7EUIVCjePdqWDk4+5h+Kh87IizRDeFbW4xEj+gxTywFcUsf7oj4EA4abVxiprRLgXayRBQY5FbRhvLcBro3mg0KtBpUMqblchjEsCHWK7lW2Zjmk2gTee4LKQINVV3bAByHR9dvLnc3dyp1lTB5l6nsojMPFJDKymhbNr8yTqvnKNcEtQdfuaJLQP3+2t8dcnislX0sE4GKka4Sm/perObEh6WQ7MVlIAOaIR76tI0wNYtaQtL8f47Z38KqGGlpgOMKMdlQ6s+dEq0eDvELBhbSNRXtIH9oYV1TldFmpL3LUc2FUiYjqzrNksIz6wSHBl4PDcOEI19lEQ6f9DgesQCgy/AxknaSJcxQllb2An4RgCRI3W6OhqN+/JmYmHpBu20YP0guViiwSjQImne9CdHfpiA1B+SP7XxAWAYMXvTmsyMrL5/+/78fCUKVA6fdWuVg2IwFX8lHtEASWuOAsqMmL4A7dN/BbEQ02+8BbTi+DoJAyr7TvJca+iTlgFqQ4ivvRKTmLnWSzAHhf9WUhIClXmurVTUADr4sN9wgFhKCcRYEhB1C0OD4uVhobeP3MdsTILBN+k8JTwCfHX8N2UlPtMvAxoXg3i8Buy+GWUk17hh9ppwMQ2mURiVGw2jb/DiolfXxl8/1J6uTj8qPr51p5Kfbn6q2c26eyn148o/VKyM1w+/f/ylJl9eDWywVF31dfxGLjK+PLU+5hoaJi+gMrNmdRXK3a9tUzuAPFo3fd5tRFE/vN1sHy9ffy4UIZNI9vM33/zq669+CrcawYWb248wpa2xZsAQ2yB20eSSLgjBthDGqAjV8OKIVhv9mrA8Tclau1I6eKn+Cb9KTvCHsYIV/Y4Pu+xDlxoeVfgMDaGZtysT8hoUUmbwfUu8/KmsldHPgGjwsd+hKIkt/7Ef9BW2foFIFWjK1SK5J0JAjxtKzTbUi1YKlapthXpNvb9YmYlN8p6JffgqWkA0HEhixXLZiNXSb7CMVsg685aIhTQuZNogVQOb5ETBaVTBFt/BilxJMQywS3AWKQGneqOxGK1iRZXI/tEiwa55iAtbA52J2nJ1UnY1zKS+5Izu23vzqXCTjvrZS8p0AHEbPvlYZdhA6kMO6OHRxtH9PU0oeHhiV9se/8yelj3ExsEGgi7O8XHulxiRBP2j66cNbjtt862yHSCHK7JOnf/GrT+6uX1wisjFak3QweJAG2bPqovVE7xKzXAh9V9AjhL17B46ms4/RWvqNH/CKD0uQQDUWUS3D7L/aIgxCz4CBn9fptPAegwkj3SJSdRo9YrlEx2KkimaYlW7neN4WA5lBZmYtVxgmrTTGxwCkUaCNYoYArMWIHxhMbSLI9NoqUOejO6O5UpBbrCZqSz2Jh4IXkQOrXey8WZCVOkgAaRCWp0zETT6GifN4YQIYIjDAIQivOSDrBlk3m75Uuib8RPG1fFgzWHVJLCdnGJtPGMaupETzEkk/AQI2JBCcVpDkpTViS44BJCYdDCUe8ohU1w7XRoSFktluuIgl5tqeDU5gDcl4afJi1ouK5RF5QM5LQScQJZcbi5nBmBg+EBrDhJPYkmnmvGhehpxjS0sxRM6eTWIn5Wpr7x+TpJiOGS1Wjgsfbx2zGBzX5EwqZAdP4dpMgCBkh4YII8+GtOQu5Dhq1INssuNYgDfh3+j3sA3GANt/FXoR6+p8R9d+F2h2guGoehG+65oKZAANvX6ezV//OOl4Rqp1vQxGphacDHKBek0xul3o3CWD2XQkhXU5fNBRnqPwqkhWIef5mGnvJSjY1FZ+N9/+Idfffe3f2Vvl4nvq6tL/tPN9fXr15+tm0zMbj5en68uOmz1xHTdboNbGsMfrkUVL74kpypw0DQ/Trpc4W+XBgAjzlSIEwyhxGdYyO/IyWgUSU5Uo1UO4rZLQ9Q2LgDyREpFYr+O1nEzpqgAVtOKzmNavKeFxunrD4jze6Jhsun7+KgrUtocXo2R6ZduyR91dIGEBKcIOAcBJ072IrAbYX+1MVryFpelbQEwtBbED8Bca4tACfWhgt6tWxLqABknroxNVQryrQwxpsX6NSbCEadnUTi0ghijRw/heuS5O6MfgUdUfrTWwLQpGOrBMjShABSkHj8RLoEbp3yl2Z8Oq/MeiUXZtAjg/J0xayRFRq5LEjit81goyvVczDePj+vzM6sSDgd0XwwwG0WFtEhwvDcHEHBnrvYSThf7h5w6oFF46CFRFIBQsTp5xThs9t/x6860i7rN+BNyyQU3Nw+XZ6fzpaSjbBxl0TZheWwmICPr3mCdVKXDgJubRDGb8IFG+BnVhTtFvtpcBuy7rbNMtmL9EbpiIjedLgnhw/dRORXpQsuvoiUgjOMMqyV2yaPWJqDOukP5DFGE+Tsy/2M5xD6xggICQY7i7xk9kJ95HGrXAdi2zpk+Qzry6CHexybmSzKadnDw+Zdiacu7m/ntZjG7E+OZy7YQkcM5BSwKrmKPeKgXALQS2bukjGYBjhiw6mci4VcFVR7li8LVo8vAxrDMnTPzxrHqNGwZSiBuA7VWRhe+HTmzD/MMKR2WYfTY0kgS55/CesziVW3S9QHWK7UDUGBN8pn0DaBHD1EJD2RJ2Td4cfqnoz12D1K0PNLIdHQBFuModMU8mBuEzJz6euKYGruVr9agiMzkqDEJLFeTKnuXDI5yA7tewWGRstwAtwfVoWvoknEPiL18b6zTvwH6C54HLjVTSxNywKBYIwv5BhtUo5Hpva/j2+9+uvDjH3U3Xtqcvny6MvoZhcet36/0qegLyJ9+xlW9gj2sj7YGrD9UH1enPnAFM7BcWvXF6hgPFmNK6Nb5cD3jG9l6SxEhxH168/qr49nq19/88q/++i+/++2vfvqLn8sNdaj83ebmYtWjRwTeLl9drc7OiKpVAxOIHlrS0p2GhIYeUu3ailNzbw0t/ZUVamlCHQEKizjWDEuYGGwXTsGkWEOKxSMndlHbGRNb2cu5LcZcw9wLZqUBpkYMpQlr1k0j5ijRU228MpyK8OXPhRi7b/Hv9BpOxggD4BVNhJ0hHnpKGE+FP06dcECs88ZYgI5UGbrDxwudB3vEM4Qu3QW6IpHbO7WO7rc2qHLRKeQkLG8zAQ6+QDbjjVUhPg83QewGDTBhoEabq9UjMwC8BIgB2EjylW6+bIz26Y1aICrGQORF3jtsgfHgQDk0eXZkp387bffL07lIC8FBAuj26BbnP+ER3fkbSClbQARJ2mPng52eCilZ/hd9lQDf3vISOxdb5zVzF1BV6N5rcSwv4N7648nS2UE5dpNabMX46fJscTZ35tTmduPsNqR8ss/XrF9UWUaPc8FW5+vzyzOcKrko0qSaZNoY2qB3SCoiCQvUeUJP1RurIE4cMkk33OYIa/QUBgDFrNIntIPNkENq26I8+CsLYDoRBUMw5xin6pHdlJKze96d9Gwbj1RcKY48FNV+f3N6et6CQfE1xWfO2cDz7Lvx4vvBsJGB1sEBRoChYLSGkwGn4M3OLm2b2K3Xm9UFvJ4f3gFEEuvswPLdqyTXBW3GlrN4jM6JLAnGEAo8g/uptXpvh2fjGcwILByUkWkCOWnZ7F+TiBbuPWRCSAsJhx4HVpLeTrQUtDZUYsty3OujCA8qqBkZhiqrH2DktCTTrFRHgIbAfPacx6lY8l4hXRs1bBj8AB9tFafgraVY33riOz49ZBgzJzMxTw+VFBc0NkJR18Zm1iOVCnlbG4sF8p9gRDtthGkUTQfZMg5No+/kMpfCNpY2tRy4GsAE6ZB9bw2m1wDfz4HgUDn+xn0jeCnhZgV02kyn0v2cpL1rUzkfo7VPtcant0/Xp5ujcC2FyU9F+jl+/K6BT7d+3Gh1PhUETjVegHwpPdr5oaFA7tXN8SaScdi20x4jaAr5xygGoRVoTIKNztnNwp+fXfziD/748s3rv/2bi29+82uh/y9+8rUELNN9BLDwgjPF2ehL8o8wjnjy6Fyof+At7vaL89Pip0Utc0Zw18GDlParwq/j0HC+8NGzg0MtNWK+RDUEj/GZEwc3rsWM+2360qZVg4jeogODqxRNHcIiuDmARaZa4Ryrc0iPUol6xZRS0ZcQMcjm2+huwi7tSlvohjoW7llgTCdoPm+oxcvLSw9ScRaazHWzS/OgDlBj/3ruJXTF2+mnAiacRRNay7iOrtlg4Tb17DeeubK7+Y0J0NPZmexx3IsjZTM+ir6pQdqYtZ63FXhpsqE1AIzbCbnBkgO6xDehGqImWNNU2eDsb+rZfCfmFXRBBE2WiYZBS+caFiRjQDUE8WNSqXIy7vkkhb5ZBxHjTiVK8qs/9InOwUnxM6uSXx8eHCYBzSf3EvOdGLbf5b3Z52xF1aE92weYzrYczz6acWyd6Ak0O3eqRZoJKEy8upDlbzXY+Z7gZ28YtLIkQSCtTJq9peZmigAg189m9M6BcA7dlultX9fT89ZzhGkwJxePLEtCPhxrg/UwmQyWAIuBcbhn7Kz4f7MfaZGyP5HM5LT4TkpDIGJa7WQD/ItNe7ZdMy3fPPr45NDa8DHdYWZAyXsMAJx6TKdtBvkEyMST2e8f7GY46mkRsZcnbykUW7V0CTfwCUXsDiswjg5luOfb5dpp9fvd7c3JfHXYOlpFwyeyVk00QTbqx1VqY4fBrQaIhvGwV371JNBorVDk5fiqOpgbaX0i8Ysng0vgsxQzJjdRSE0jHhtRK763PqIJfGd6yPUZvbmjwaaucjpiqcypO4O/zHiayqdiR7kBCFCSvmEamA+WZVyJI33JANSIi23+cEYTRyjpLaI3BldLxjK9VEmcQ4LhxEU0BFZRiz0Yel8Rtwidu4rhmkwB2SRczRqzvE1RGzmSDSMWjoAz9TN19tJloCgCFGCibh+6Gr8yhAMFEaP6hpa2Ge8DBS55DQqM3+PXuDbdGV8/vWl/fI2eo9l+pap++PGp5Pj8d7RQeVh5Kfaj8Qx2ecHjGNgYR3qlFyLECiecFSp4myKio4pSEGLuBz9ylFGS7uE1OQh6tny1evXHv/gny/n6m99+82/+7Z+frc//4Gc/vTp/dXX1JZElig4Tur2zPeDaM3NX69doZCu+lhbb777FaGUConuWHdRpe26fY58S3npqfhbzIp+7gzu7XMpfTjxGLiDy2pOXj65EPzrtXaQhRRjv+FVVa2RkK8IMFJRjbilb+kqZl0MzakZAEM5Dc/RMiicCILcr7AqFpNu5BSQn4DlFxpHWs9Xp/Go1k03x8PB8/NF8VUjiloGwBJcbpM0mnxI3hafjm9HSbsPPbqENXz7v1jZ97T+awuz34v9pZW67YLjTsz3K6cHT9ZYnh/W5/J2zsmZyb+goRkLEVC5IeHt+utu0ienRMw+tc7I/1JCMq8Hmw/3y8L542L8YFFKqzTGF3aSRAoWPFiGGZjeDS+fJFLQYl5FxfoPnxb/wGoxqQlOpEdHx5Upfm7t7/qrr+j8RyCWHJ+SrCAQwUNGJobY7s2T8NI8Bu7g4kzFFCZ+Ovbp5csV6weWAOqfQrE+OL4pH7Y9uNrceHX+2Ooc8wyu+LsPU0ITFTo6+fxDNPqwPCxk9t3YqLs4GmrEyVkrXDXbNqLI01h3ut7dUPtvjOWIcQ0lCzE8GoPiPEZHaQvNIX+yI4CGoJ1+eNpLdViLVSnbJ/mH32WeXry4xyl14ORyt+arCqB7KezS7Y+8iouV3lPFEBpEn5PAUTKvk+RmYoq0fB8cRibwYjng9DUT1PZyeS7k7OC/RWsD1xqFGPTtTaItfa3f36zfn1z3mPaBbkyeHdN+Y8w42H7IdlfPph9ikhSezkSPSi4pEB0+JyYMuz7Lxpmn4GzEX3wE0ZGaoEBjQKMpDzJA/mrblln4rh9sG++Gu+paqIIIgTGSCTUYR3uFfI/gWGfC+VyyYo160wdzX7VQ3EOhnfr9zZTv1OwuRD5HOJYg4yShBWDMaigUHHweWdvO7Gq+vmdcx8cedmgBecW0Dcy4pY1wEg+JQJGsVrgp41uLE3QZRk/7/3stF86KaJEejVeVBoVIIyNr5/CRcCn9q7/da+f0fU4eujbI/6vHHXxvnJ2im6z9Uq2K0/v3Xy4VBL99/d/+ll+nC72oy9C93JgZBEJUoFogQOiYUHGrHrt95jvfRzN5fiiemG4vqiDX6WL6i7ldnnsb6t3/7F39x+/4f/9E/++yzLzb3157TYV78/dvv3n98e31r54Ap8sppEjIMF1+sMZrwI1pHNgzFQaCPIS9Hurl9yRbddhObcMoGKvJs2/cDjOa0+PFzYiXacPf26BY2SF/GgkvTMNPjQcyXRCQMZXJCjQhayDjZHT96vrpj5amLLM3ERGoQDZ63MAY1PR702h5MwYMgnH2c3e0/P3+3v11sr3fvv+Wdzx+v17ONp1qdCba37omJ5cx4tIjNp06e5xuW0qABK6sncuDFZnK10zIPB7mGxcaMgRo4E1jJm5KTfuS87RtHVtq+Ws4ueaJ8xEXlRooxl55paGyTgFrpjPe3nqeBYdAekbIucWuS1IAMLS6FQYI0F5Qeh2QJXUCtQMGCoSpaXMCuQjaMecQuAyloc3TSkwFr5YXXEsK4XYs23oLLw1gcGsVsMCmxUxZXHN6djhJ52gkCLlZ1aAVSKTpI4o94/p1Hl3MWxb6cp3B0JNCP7JfO9y8OAbCT+7vNd+8+WEqiJ615J7PNCtCKTJsU7ktW4fvLQL0XYjz06HC6TxyjMqRbnC2NlSJeCmU5aWh2K0hFabttkiGknCcZ81OqXB6o8nXMWMZ4PUvyYnH+5jVF/vHd3e2tLWRPX3x1efX52h4YnXqg8Oz5jK6S4hrbzRf3Nw+UGddZ+z3B0GBhfKgnJg4Wdza+EabFsSeqCHQAk0GzRw/GaG7KVmMems34bW5YHY4tZerJK56pvbwpdRPbCIMjSEjyO06jgEzSGnMZQXFGzNzA8OxELpCwoYfHjf1u2AOGlMR1SgNX7Is9SJ6pOXO/jDGaDIREIuxfONZIhgLWD5Nd5kZEGYxB9Zo4UuDyiDHRbDdbS/SSMB4PBlExOotNs5kzut+/e8urQCxi6Gzh5fpcogE9cyAP5FP/aXnSTCEl/CgTUgMVmv0afnf4LPcJzE0C4pu8frcJDGQYeeW0ZjAAL4cWzNG+lorskZ4Yf3TWqMegX3657NsEScCoMH6EAT8Ykonb48HaSOIyqC8FRyvqdeu//QKqlzfQjvd/d7kX3Co2Co1KL/XGrU8XftcBiDFFKElIA6wy0BkowR/LvLzG6Po+Lk8QoPHzY5kXBpfpxEizo+sP1Pf1T7/66vXrN0E8czSW859veSK0tCzS0/IfV68vX//dL//tr7/51dnZ+qdf/7RYzvF8feGRIudZ/e2N9IjLV1+f2cby+s3rtErgDP8C+wws+gyL3vsJ0k6tGd4BX9q6YQYeGcFMaaBfBT0IHTvn8aFtIoH303gZqzDHweTF4iN/RTKN7eHD5vvSQYSzPGuuZb6ei0u/oym/iq07dbLlXJLT6VJ6IS+FeKKBGfLV8/4ff/nFz87c3S8O3+rklL5eP1862sbmI/Niy5DamR08LLWDYnJZuYe81/n63Eq6OwTdgZbCxpY5PMqqI/vPZA/Rl0VhAa6vR2EkxphXeb+/nR1Wkk7I+MPRlm6hEARxyKDpxdZG1s3d8+M1v1Y+irB90RPheFMEz9jLix9swCUmG6xToTAoTZ7NYwBEC9jBZwnTs4SpaHiXBmaDgsn8g+iRpYdW7+Om/C1v/jLWw2bn69FOq4fbR0VQwdYARGo11imBpZjzMgwwNUtEm6H0FCxP4HpezlZFfEO6KNDi7PTUEf0gp+tlpVgveHd9S3ucn51ZARn91rx2Ugu4hFoPEvxwuLeVl+JuSb6IEL86KeAvCyg5o3RxzOyqxVdh2D7cbA9OwvYc5bRHWpJDXmwNfPmijRRFcDbr5WTo1x6Edb7+6dXqb/7m+w+H+blE1NODhEkRzlO2i2Xr8Lme2UsZ8hpUtC+MQrLpen7kIWv0LKqncwAlKEc1ibusV7Jmd3bTHD1dnJ+uO9nicWl6gTzbm7199BsrBzkjuNvT2XgTXNhLaM+DzVNCaJm1Fif0OiLeCVR4wkBpwUm8Y+mw9vgYn9gFJ8hi3s3JImLKkg/BTF5Ioq5+F7s+teS3EhPd84oUMQZslM1JkVRL0WrISz7h8SEpk69/kisiqky3FZJKxDpsH6SL2M7WU4LcEQAUDOTC2BFyd286XbQwyF7E91MvyhoQbPD/3Eo9oHjwp+iZMVZyZAuNqXxWrInIYJXGhGFHMK/BYG/CXEpipsmqwNCZwVknfXoplvaYuh+foRVsYSTVqs0KjQaHgLlWuSyU7rv5qf5UcDT76e3lZuV+6PLTvd9dm26+wDDa13XYHM2DZoLW7+kFQQp3efybvozyo5a6RcKArgSBqNB4TQ2i6phfuusL2cchTxcdAHfZUT/PT2+/f/tw93DioTDU4/OBy68F0pf3OFt+/vnFF59/9vqz13/+53/6//rP/tM/+aM/+aN/+i/efPmljaLHdx43Zxv/9v751mPeZpudNAl9g3Z01iQAR4EFNxrBGDcTC+XD+jfAEB6cXmmMlNOjXckucOJI/bRaHOMMwmALYzTHGEtEhs/M+BlyiJAlxME9dvCb7nBjSyNDual5BO62VYnFYi3PyQwixaDBei/n+5Uj6T9rOuBSK4vzwzkHgz7aO8uyHJ6xJvsoSvaK38l1dwTSxjWnIMGtELQNYMXP50dEL3JF3DxxMVVQN9QxEFhbeDIJ9fR8Czyp/7QAgKVMbj2aZ706OHHj5vvjh3tutEN2zAtMlCUK8oypL3lAEJtvx282ens9GlrP/PN8h4VcQzgnkyh4bxE9D+7pxOnMK7RgsfOJ+QECSFwtGInvoWhQLSFkiY5pld/8+m1pSjFyLllzdc1aGkEjpOHSImle6UKIACEQWzTELMN6jZdUPG3Sb6yfLjaPO8ljh+3h7Yeb97e31pQ6hjPH1kAGFcIQHHPe79ad+zmT0O/8tWIYjGdWsefLskvAoR6d0mYp2tYBQT8LqOzhWWfeCzUdPzpAWlCIqtjLR+2sHe4b/JQQ11wKxma3Dw8n97vlfLuA9aPb88vFA+fn+6PTN+uNaI9yB46++N2pgbMmnOViCqGgRRrZQiAhV/Ebbny2xgsWa128J3moG/6D7j3xfuZERXrJMsKtLNXdbQp/9urSZkruudlPDWhbVWONC8EnnJ12w+wG6GsEjcNRKZcXNtSiXO+d4vVw/+Hp8d7JSFwKwDm3+iFoj6wpr8/P0+muwlszoqFfdJfqaSiGEU+2zULMKWebmoZ5Q6MUYw63Gfbm7p3EwBcnM/p3GUWA5JovW0emPDhP7I7V9rO6nkhhkmvwWrHYY1sL3FuEgC0AJM+xsOYm4eSm+ZpBq9nM0OCNBNs3XNYKWMLMjYtRtcomZzGGtocp4o+1DSFODPSkuEEEoPZgUEt91vVoBDrCDcEkJInmKKH8gCl18VI7aMfVitdeHXvX0Lje7d+9RulQPbr63fUKT6++/PDjh0u17Mf4P+BUZGqr0uQS2L5o+KX6D/dHTbmKMqCcgeFINoUHmKM5SEsTbDwgquxBOB29w/Xxern+6idfvX/79v379/O7Gb/47OLK8Ve8yWy9eaU9YpevFvPl1dkX//I/+I/fv/34X/7pv6ad//3lvySjP/nsq/OLc6dHm6eL8OFpYeIcf/itE5jFdvCKKPXZx3iPfgM/XSdODWkoOK6EryQNrywcGjMUNInQ2lDdiBrbpDXqI7Xqn0vaKVEfxfIUjlaX0GGXVfTiZHViwTAvzAIvyzH0u/uD6JZDzOhQHKpffqKO/OB3jHpxQ7ETOpgfI/PvdgP4XFGm8uxCqJ5QSceBURw64rc8zuSZOiBRg6VqzuiM0WvEvWLGyECFHMzZASnAUiiMi17u8v5hceckY+Pdzo+2Z+LOssXDiuCd/Ab8XjwcTnny7EGcmBYJL6J7paovC7MeZlunSsj8h6L10/r2cP7sNJ7DfZ6wYbbG2llm6kaD2guRmoFbbi+gzcP4/IIz5ytTHZTl5Xnc3NGZ46LoiWYcGE8yKbImnCmOVFSrEHEkUTesfNgCNg/WjDz+5R4jblqNMt3bHT57fbV2xCk3L4qqknmiCcWG1BXQX52sWxSKWbCxWYXoUGMFs2Di3daD4U/L12FBLeNw3lPxmSJ4Gj5rq+G5qEMjuNNJiOwF7D+f3N46YxTSH5x8hNG+f3eLkOJPHOLHjdnD7uZ+88VPP7O93V4yfNZ8xcSvEKorI5W1sJ4FJLwDxD19+vDonOvHCyekns1EIQB//krQcjkTl8ynn69PzmQLmBrBJyShBO1mt1yerbG3fTgL0BgMC9+WTlFgNBIh19CNUGUb3+zRBNHfRwbDZE16quit2aa6uFAM/eysZRUIiMQ6gzbfYKRoWFLjF3OevTaBlVGW8YleuWeDMyhycoUti3xNz2cooSjy5hR0MePMA6D/bYBGpNFqXIW+x7amQcqgV+0Vl8cghX0MyQwIt3YBq/gGiWXEge5FuWp7AFuiqC9jCqdTCOo6yBWsiC7Gwpf+YqH0RVlFRqtpJWuk0VfNkMPBUP19nbWvmHIYklDjXcweJBv9hfQu9j5a7Ndo0XvFX9rrSzU/3Zx+jrsVqpTXqNCX6efLt4Ggl3uAdE9P/fYW3ENzZms1MIYwgfNDK+FrakMswZE+ptZw8lK2kUC19ArFFJyUJ/FzUVTQ9Pj1qzeeBzmE//hW4MHi2XjSTnk+3Nrd49XF69hicfS//t/8b/+z//z//m///N/wfP7JP/nnb15/hlpnFITcHysHraV5Dd2sW7BikQlK5B8MCPJkMXXIgBsYiAK+wXrR6zSThw/GQWg7xj6UPf2QJ+p7P8NF6Ej/d+flJ8rL6I94RwfKEFmVoq9nq8oOrTQ0gTUJeEzhu1z8pM+QON4oVVdBAzpbOvExDTFbPJbLIKTg6SOdVPMwnkloggo1nGPuP7ec8xsoNd7g/cClxTTYJ8UsDLMRmM1I8Zh1MckqEMPecmDFXKTEyNV5vBM2sBNjtTx6I9LgTLpD5mQYmRr2YA9qvogOzZvibEmW/qW5675wZeIJNLKsexGkO8/JfSzIwJmls1O2LyyoQtDGdV79ihrMQ+LpkQidrmzK1AMm9WjBdv7gCaLr4WHpvP0JyASVgiaUs9M8VfPiQ1NE50uL3HZtWQb86CeIzk5t5z3+/vqmoo+eAQuZpSeDRxsUaetADu3Z7u5uPqzPX7nJn9989/3R2T0WfGS6VlbrRfCSEsmbj8f3Z2ZNgnqn85uHw8eb/eO9XWwmD73oAtp0kMOboAqZR6S2Nz9ZBrt2eASPPRSI3lM0+yNHXlApu54reby63Z8imkD9TNypveEenziQdHLYPB42D4fXV3Tv4mn7YAyM/jleW67Z5fnJ2nZXBhtmjMyc6d4uivmpGBBDXqDcskyavbkd6tJBZRITOEFexE4BWwkrrAZ6cTcibWoZopEXai1BGZB83dkFr0FOL2Et23rQlYhQ4nLYyhbrdOWhTwapIS1fO65EvgLKER8GcGvS5SagBh8pmhhQH8Kg7WFTpOoK0vSJdD+0pWcTzryOuhjaM3FvVpy6nsQrscwNEz82b2qftVc26OhEpvLoPzvnwhgEkNN1AxUTeFkXfWvVRQbOxAukhLwhtNuuWepYzDCeTHIbYP3xYiYdMYAb1ItBvcbI25EgwGss/sK1EvBvFLA84aFRut2/gZCwMG6lL8a3QK0MQIxquvepp/Fz3B59VG5qd/pS235HA/9qYPweV7sROD41m4zW+Lj60uG4UJetIZnrbxGLp+94BogKTpbYceeyIYpZ8LyarAsMulvbxsj+d167jAi6VAJ0MfPT0wuq4sP1B57a0blcjwcxbGtANNkf/uIfq/qbb/4BTv/oD//4km0o+HlM/ExBhuyjjZaCOQTrKUJ/woZLKNNNxYx2QoWGx3fM4ibocS3Y4nVFQk2VjG1wdlJgGN2JKUNatX1DMVegqgvl3WgExhroMEwG3be4ZrBQWOg3E4BPxq1aihD4uC2F7ZW1haL9rS1ppsE9udxyunU3DyIkZgUU/BO65SNRuEihpQHh6Bhd4Fg6SkHsIGlGRs8377inRcr1BIbqhWtyMsUCnmaM6cnzSPyhCLTmn5Pre+5a/rJFOT3HuMdPwllskqk5oEVCKG7KZHG0jrBU6mIpBLGWc3hraPb6g6bVP+oBois/4e4FS3AAiaGaXhMnMsVRw+YDOhyUqYzQLiCQNGd/Bg6tEqbsVs1ydIr8QhAjxBBVHraPTPPr11ey7OPj482NLWbWSYrxZWf42/SDtlrxS0cLULX66fHkAnAdkPHuV9v3bc6z3dNKydmptRPTLKGxJS37sLJPxVzi1PMHDtfXzw93Dq32BAFEhZacmFy9J08tPT+fS2vSPDLhFH3r/4Zxuz2cPucvP9wfhGZ6RK6HSR8dv7+/pp5FShcF2I/mF5ZOpFJAw/GlBGibHxZ2RfDkT8qdOMw8sLgVKAkEhA92pJA6pNTjiVnOmRX451ObJY8O97s7Lrs5ASaFVBgyf8M42EvYCiJ5OjBZeIKOxODzHaPb2nqckPedxurwAwPgI0C6eh6ihp7lzhLJ5iWc9VhCJnFqZPB17McaK4NdIb+2O2yjx+9ANDFkuZOabEkiUU1XnSphiQ6xm3xjuljWKh42jp35MQKLOTVD5+R257CPgBtzAY6EvelMS34m4DYfmRgltCfOCGfjLYHgwzF9Jzu6qIYSkyIZA0cdPmEKX/mWcxSabFtDM4kLNRGacrCAJJf4jv55aUCRJB3U45UcxvdeHAUD1qi6VR/lumHc6YahIIZGqFhEGVdUdne00WcFvXydhlVbo/Z0fbxPVXydSveujI+QNkETXN2fSoxaU3ejZX2b0iiZWe1KJUfdIEXO3V3zokq4W5O1R/s/PNzbt+kBAFYQDTC2GCpOSfM6i1nyreBre39XQlBpMY8X51fIfHNzLbzn0pL0LJfndux/8fWrn3z2b/7sv/7mV7+UCveHf/SP3nz2BQV/c7tdcszGmEfHeh4Y6EfmrSGRBxdzuCv3UmBir8Y0xkuv+caLxV0N4qXcQJCGeg20114DbIxjuMq/DGrQkPoY3NPTPOqJYuNhDXzH1MWRaqJa45WXMEGUAqxh0GIPJ8kIJsXiUnXgBleTKGckrc95/sQsbeAVyK31EgFiwQUfNBE/EpQGISgOCjQjL0RCusSicB38i/fQgBxOmRx0ZttnBVNWPE0KQQgbNI1eFJWDVA+cy/2tI8+mGFfnoDg9rCNScnVUoaEMIFQDlszQIusFVX4s96cH5s7E/gyF513O0fgbKICV8UcJry5PL65Wu/sH5oEusO7rNAfIK4GAKQtXrKOAQ/MMWks4bGzXtVLaz/3TnZEYnc3DVB+ZF28TO0LVx83uiy/PnjzlvTxLjy6TNEtb5hvSd5ldTCq6NT++ulyD3Bk2zM2JrM0R4+YUa3VmywWc1gaF1WPO7zqQylIKS20pZsfXKZoSbuhzeGuqa6gnCzvaHwpp0wxpDJOpowuPKRd7eHA69fHN/ePt4mmxenYu6+yR9SgaIxPVmQpvXp2v3jzKhuUMWGNgRxkQgbinx5N2BaM5kpfG9XS/kZFWzjBxRAN2ToibFaIpHUtqlmHWUAjumRsBtieHZrClmUCYM7O0XI6XW+003AxykbiRbp8oCvHhMdWidj60+RDb0NlMaDkiSzkLLb20W4/9gwdjz7P2z+MTAEIXY5PdAtvc33kgZ6nI8J91gG7aUBHygPVKCrCLw09eC44UvRkmQO5RjSmpzsEyrkagfNJoQ+JzhjSQvDeZIYDNpzk9+ZLc+fOxmz0+TQco6z0O4M5LAdIZsg3+FC7qM3igtGWFRHx49wnpZD/Udi0VYCgnncO+uXEQ1NPS880zKGRoqIq6qcva7sLwEH1LXiui5aD2b5SI6Ud5X7SeAejVzamQu6PdLvgy7tTm9K12KtFlLXzqotZHLwOE3zUw2qil8QLoqNwPnU8gjpZgIFBrZfpAT4UuLs+5/xx2+S7EQRnwijBTVB7wwkLgVlXoqcxdlSejqyNfjj9e37y/fvjqiy/3e+f/d3DQZ2/eYI9a3G7kC12cr83AT/ZHn7/54u23v/32+1/fbm4+//zrr7782s4tm0atYuktkGKSCeehYlwc0E4XvY9xoFWKuvLAgaDx8mXyQ8fYGpgvUaha/keIKvaKnNNH9d2taGUNFQO6H2OPWUih+hqo1Cindw1VnTaupX53e+ILUkNMHxJbstt+YFpprCaYivLnxQVoFVXqf7BdoTcheA4vNaZFIKbiZIMK61oxfLhPGcLn1ny5OowquScZJjsmrC2fjiGm6Vv60nQHtA5kxt0n86WDcMiZsw+tGefCWY2VEpSusTZdQIb+ZWagNUTBAI0w31tLkMEzVOtuYw7DHb61TCqxL2XC7jQIZV+wQ2OUXgl3Rt28q4kk59sl/iKlxpSNZWn2yMRS6v3wSbGRFVk5lSHC6Qfbw83W6qDc0PWFhW+6tpCU3U+zKyfU61rcwGwnI1f/FBRFQ67hjE48ubC4bYHdxoKCHyOyAGueISMF59gEAlkk1RQZNNTSaTDx81LGlLUPje/2ZlFgN8MYkwqBseO7204yzI5HquRZsxJGij2fZUHFexxzCkcnklsthrEmzp4WBll5DtmNUui+tqPl9OzDx2tPMWMQXl2u6GKrpKnrk1zplq63hWvE6djy7fC48ZcFHWYLX3mQNuNjpFhOBPp4JuZ3vX24zSTnm3Pt2T5lYwcYSbE4M3VhRTplyjjR7mXgynbivsdqx09E/PpDPEZF0uf0soN85dJvexRPDGo+1IQPunbPdrFQ/UdH3324+XC3dcrjyjaY4/PD9QfpWai2u7OOrRJtLHtQwCkPpU38ze9oACaqzdPD92kGwqYiX0L0wkhp2cFNABwqEiKMYffkSdBWms0G3I63FUvtZ+W8MGOBLAQhY3CQvjU4mM0kjeSyA4bMuvFex8bM4UlNwlunDJJbq7PV669ezYsBKPkJqgFc0j2EPH6fFM7L/fHDoCsxae00iAs1MV3JMr+McHzUUlf08vJN6X6nesZLc90bV7phPOO3S9OtUbRrLxVeCr8097uWxu3RQiWpjSALPbWZuOfsW/zAZXaZSFp5NiuGQlPx01baGh155TiSweGyBkeeactleQDnF+tfffv9/rcPxACbvX7zubI8q6tXV9+//Q0d9iC6+lFWOnrMvvzyJ9+9/fb29pr24AX+7Os/WO0t2w693CxswNZYfv9FcYcwbYTXIGgIiJ3w9rN63Qk5gdwE2Z2+Ns4xbJ0AN3/EfRUGGRNmPzlMBJlznWJoOddPmMmhr+Gar3zdjmZHfWKhemX1x00NlcXGZLAILDjhhQ3NM6lwGPNqlt12XOJUTIbDZswkbUSBzPhzRrEsRUmafSckjLMlGiuKmuFGmTlkmjtyrqXgTFoDNAqqAovTNoaU7SRcGZTQQ6929j8z0PnHeb16IN7umZZQpikL8hMWgraBapfutbuM+C72znddnl+d7u3ffRBtIJVwo1yf4Wqq1gQ8g6dlsuoahArZs0z5zJzprAGlcQ4BLcKZKdkaITuIkrBmULKQnOIk1qkSF2d8fxjwZC/2YyZzmGISeaVLcuLj5ggenRWCFPkIllqF9ykIyVjRqyk/1qGr5aPaIY7nyLoGRjgtemkDyjypSJhejpD78DZG0CkRUAsruyyGBOezyJLZYnVE3kV8NPNIYSOg2Qt3CvD8zuLsFK4E0ZOZ3AFnET1nxHmWCLy0YGGP/T2Dt2enJUERv5GdQikbYJvCQtQIMGd0CK15l2Z50RbUDahzOubH47F8ZhuFNii3zts2OXDIkj0mUCu6CCVSBGT/SniigG0n5m678eg0VX1YoZE23DnY5mVjCq1/2yg+zK2u2IJr80bq1EzBk9psYNyKN0G2LqyA5rcfDmtAieE+3J1uHj98fH/0eA/Z3HsTQGhmBIZkJ/l8ykJRsyepxuSs7tPwUn0muRzy21Ic1EkL3ok2ktcRJDRPOCvfqakJkmilFNKJm9CCCBCn3NZEjH1s+HgCjhIxcNpdsbaNDs1yFGJcf8xAE4ycGHTEsmhKaoSICC0+CbpJEnz83msCXo0kZbxVLpmp2Hirqvq+x0O9ctmGfhtt/l57U61P9adbv2vqU9FJyJRCQGBPxcd7ZUf5UfTFULjz8nJr+lGZ6VtA5y1ABN7D9JjcyyCKKJh9rlHc/v8ytvkMRNVSpIiQxTfKDY0AQ1nRS5owK3Vs7K9++7evXq1oz19981euffnFz7fbj9hYYte3v/3++sONpwV0CvTs5Or8aoMZHh++/+2vry4v/tn/5D9o1qnvaOtTk6jqSlCOGynhbtFrlcyrexmLz1EIgqvklneo1obv+dLxx0BJLXhV8OXKSzc+8IQWAgBy+1pTgTRIOOrV3qivKASMmYrGuzbuqDJgzRlxwWPK9S522UNO5IFTbM1QJTzRXNYuc89pJ0jPJ87pbqlTfNXBqoQr7S/AdpgV4lF9J1TaRITJy9DQLsoeCxFQpMwA+NOAIu/eB4pKEBlSp//i/hYPieWZhwQbhoAvWwBM+MmVz0aNcfQbmpqiFDxSJOsIXTkI5hs8XAua4PAXpsegR01DMMNq7pDvKaFQk6YOk7B5Iih1b4Jd0LZIjV1gcg3p9BV9P87MkzXIZMsbzwzPLpbnbSXhtIcY8AGisDTcU9iUfygbL4NFLVq+sU+JTKVn8Tx1Yk6wGg8pwxbpCIarOZXtr4W37YPisJAkFjUl5CVIdSbrlNoEqikT+2D/BNoBQ9qnAyk73ntMKkZxHBNcJYPBVZZCgpGnnRbyPxyfedIvM/y8fLCX3kMikMpW5aNzesgD8lazU1u6Dx55/7wUeeA0aZKLulwvpCmhumQZsbPsF8/KsSUmhEc7U6D22CyWG49K7iibKMWkmSIa240NHIejy9VadIbrfHJqVxqtSO3d217+KB+tI0VUKPHS+Aq7bfcnqWYLPLS/iYiNP3z0wpdGFo6lRRianwgDHG7y8vT81FCOzQDaljezAo+ON+cmSMsWnHKisgGS4TCZIdOyI1THebFVku4o7JPwQEk5QS6nwUxJ51aexmIgMssmRqhnPCIxygFwKKf/UlOHsEz0SpiPxQxtPcxb8k4okIkwDpJGX9+M1Zj12U8LwnjPen9GYlILTencuOyIwRUPkIZhOqKuV6KdVPmYfhuTZiLYuNdnWG2kDSNVVruZ7iEmWLFVOn/11sATHqj0vcan1/j2u5/TxdHhS4G+D5HTaI0ETuVHm6PMp2/d+/Gr3kYFKIqmyX5gNormVMZDDNIT2JBrbxZ4t7293zjesQk9UlvBbDh3Ujnk80mlTkGZA4CIbrkQ+b0+E/oXSvVAb1sDbAHbbg4/+foXptgCQ5stZ0MUzwajp6vLNzDxcH8rjP3Xf/Gv727vaEVSgyqNb7i0Y1BjNIB1cQzYtwmphpZGULyBhu0XjEzFpqGqNu725rtGMv6RHAcN9A2N705duJoHny3ICRik0dnLF50FBLYORM1pyi2MlVkZOI2imirlcpoW8LDP+IgUuBPPrHTbCuYJmh6cQOXyyihEm4XMgfkkeS1jQhWdaPgxg45pcCwXHkh5OWNOk1pqfDRNDjvVFPTpH049WZhYLIXXyd6n7M/HDx88MyoYWXHUyhcxm1PROCBR2di9D9gpqjQEls4rZ1+wQESlwba+d5i/eX2+sn9NngixhbWEIKU/KAEBYVZfEGUUetHBMAZmBLSUHdH6FklXraPm73vAS+GntHKzisRFcphoTHGpOmAjhSVgNZViZ5oY07BdIb81kyf7jMS4GC3WpnHzS9Mzoci0RkfGKcbEGuaudwZEe6aOOecxMaPSzZSQ5QkjNFJTB4NqlmAAocugcmfZBBXgsCif1Wr5nSIjJcVhgr2VrOOtVIqju2Py4HQPZtxBFkByfGlnRIHKAOljjMKVdsCSGTX9agjDtUEDX9rPtZxfTOcZitaM8+/GQ8xxwLEAi2fA3dx5bs4zH+PM9jP/eLpUOfX8/HzaoURRVEaH5+dYn3AeU8e9IjcON47I0VItgWu9yGTCyRnmjedjKX69koKFGYODy6FsZohOMIGk9DDiiLmxLhdr9sXeyCJh7OTD7be2j5gsPG+25ZV58fNz9eM0dE1cTEKQvkc6x/SuW9wvxDaiVd2HoBwEkglNGE/OQfviV5frK+diPz2vZVCYsfJmJs89hwA74w6ENCSLuuWJzusAV2LR4cwgIuLH8PR8AktkQkazXMNqz6WrFjzvHz1n4vmiFZai4Jgj9RAHNaBPrwQQsEMrxF8NbdibRouplM9s8zIamAIibvh3aKx4S6O9jY/a/FHjP/rqhrL/na+amMpM71PtevhU7YcWEu8xGvfqOtcOFdPh/XOIv1FMrsxi7vguxnvlGXosgRwhmDf15um3CO8wR44SvC3m6/mae3p9K675Thjj3VthbFrewyCvo8jT0enN6ddf/+LzLz//+OH67uFuuTzLnTk+/ux4KU3iu7e/xSKzb/++qTbwAtaAXvAyQEegoarUmUrAevI4vaLraA9qhxHDBNM402va64ceU0a9+WvcUx/e0xdKjcYlk7RFq1JT+66GqzGB0E6oHuTV1ei/zsc8elx23wJLzq94NO7pwAPeSk6Bsxs3s61mxWzscLQLlbvTJM4x9VlFa4WPPQSGoiEW6uoAJRyRTOT5jYwq3NiuFmRle5RLzoXyMmMgkKiSbKOfWW4+eGA5+rMEIuJzv4Ik43TiGA3BQZcuQiHkksgxKaykpQDd7MSdRShEl3Av/UhOhGBMqO0Bo8cNW1TB+q0a6hEccOH58Oe/ISkx1ESGITEG3JB/vYdC+veJX3yKkwyw2b1T5+TOPz1xEYhgEXwrEiKQBDJ1wxgVh29gWRW9N/GBI8McfEwrlZcS0YrPD7Hs3BLHw11ArqGG6lZdhjXBCoxAZMkSlshkCNlN1HIABj2Gbwdmx9aqlErKIqWB+ZmJAXXn1rW1Q69wpCEDp2fZhCJPB88pPlk9cyVNrvlPgSrf97HIEPtHliDLY9N07VgV5NDO2P5hfAYq/0fMayWOpSJjxCQxfxR6i8AEkwXwpJrdsScxwenKgTZlFdnLbN7gUMb1yWF5f399efKqxRMk3x6g1Cww4oHE5MxCEcTCPN3JSLWwx8SWrsFFYDbMvaxgJQ+RIHuR1zGYvhaSrPl4NKxYejYNj0Gv+AAdYTKQ/UHdmDnxgXJ80LcMekAYmBwm0bpazvNOipPT0IlR5EzjYYZWawxshXEXlpD8JWe3tNa4iyNVYgT8I1s4dIY1k5UzZD5SK4gZ01k9qk+mAP7rLlmlnqRmx63oD6lJjusfPny8vbn76efsNqYO5pfXJCOxcUAaDeDzt3CnmZdejdK/5HSShzHYKgeDDo08HMYqo8la6V6CMT6nj67+93xN7VTXS3NTY/00npeb496nN0Oavk5gZObRKc9TWJUXVaZ1iyhjJkBjroRby1wUiNvef3jPrz/57LPXFgVLTX7y5Ozt6dojXR9vHj7e3r+3qZtcC5a+uXyFOdHz+uY6bpnPL69er07PHP6zPrs8X5/pb7u5/+yLNyfr07/7u7/65rffNf8DtL+GUaUgTVm5HiFIQlcm+MFqeN3rJp8pnR4Nk9MaScKnihO1XPEzAqEC4fWrIEJXRsvxQ/7KiISoj4MH/kYjU0fj3a2M+IACIVNBQOi98kmTJATOg6y6gh5Q6UWzWNGV/IlNWwlwyJezfeVH5ZMU7RZxVgsfpmdyE3Cp5gAz4vKdH4F7kt4BVk42zh5syFsSGrKQODIcjnmd4iCdLAn7BHjwtHgxbq4pEZCuUSjizvxbpWTXiBBnFLXKehHn+SY4STV3O1xRtg6FGDkBpR7x/KmuJDn6RJWGPmhjFHLUQ3kEHFPzZgH6aVwAkvUjRu2wQLPC/fajQCsqGJelQnGvnh3Jv1uQajMjDvpqTAR0hVTsXgd+0HcQDh8mERsbfjutmhKCexmaLG+OIxGktEwJVmZbcwubQRQlUtvVpaOFQ5adb72iriTCQ3qPkLBqyy0fhARwc46IDfgyjG10FBXgEfG1AbQZmzdaiYGhFmXpYQ5PTrizYXd7a6rrtGpWzBF5y13Z/WGDLkrpTFEy0xLbYCi27HdWsFlL1k2mDNTGQDEjHOgFuzgv7lQydqlLBZWs8dDlIv1y8ozT03gONj0cFlJ5HQthY3ZIi83rlueUUup786Z2Hkc2t3nMfo99DPl24apT5Xh4rG+V1RqUjopqNArrFrkOlqZVMAoMVJFpSb02ctENJeL7nujQK8xOj/jJ8hiQ7qF5Mua+D3uv244nSa/m6DgyZsz9oKXuOrYQuMETw4Yg80dgQgfQ8JLJwKPjlZRITmNy8kQkKzpYMVbQWdVTbeVjgEbNAc7nry8/u5T/kwul/QSRtpkYvQbH/6o35Gxj9woWwayGCW2TnsRmVB9wBGTA+jF6/lErtdSr8v+jXlOD/19qG7zXGC40BCwNM0ExAM/LBDzuYwRYA09etRUg9+7U/BdynOgGNQ7+eXX1mbNuvv/+N3/2b/4reVLE77Orc/kdA2/Gxh1ZYTF6//Ls6vXrL8UenCjw6uz6u/ffvv/u/cP17tXlq89ff2X5s9XO0zMbBL59+9svvvzJzccPf/mXf80XYKSHNw7icDUN6QVfYXbSeN2aBgW+WKsLw0EcerN7g1pDYhrzILp73Fi0cVs3Bp9vTg6bjqiB86qWHUhX1EHt1FdoC5zgMdA+CoxQAdMt5fuiPjXiecejtpQMvXDSfQw9bjHQDMtqGRl+3PKgT5ZrJbXDKyAYmk9zaaZ+CWOBiKGDXG+BVJwIG/nubsEKqgjHZ+hyzcwihDw4czDCZeZUkfBJfRVusawZkLmihqC+GYU4rZ+W4/g/u3L4eLWcbvpVyeeb7YMV5C8uXxlWmdqkvCH1UJPh6wwww0kY8a9vRDYRTpX6hnvSdoRyWGsXqEjQks8nSJLP0lEth+vbW0vKlAJ3VeRHdlPhd09mz0UdAYhwH5XsToLiLFwnvsmO7CECQggDtiZerZzsNk7Xw0x8mvv7G6zGM80kDbLFK4PQBS7RcOhV8BJ2HgnKBHimUm/KVsCwOLmdNe34nTEXo45Z1rggY04pB9xoPzg5o2I+zo1im27uH4qT8Va5z7Sx8Tuuysb3EW1oRUdijxgM22YFNi5ACFLYZlQmngKmhChMmlCnqutYR4yNZFAQFMJgKsfpRi0P4BlnU8+2V68eT9fHdzYRXC8fb/kHnkCAF5h2FKKFkQJnCriJkTRUL3yl6Uy3DgTHJQqjW85xxkiZdHwFs6FGiW8NYrD+qONmLJl8RHGS4mvf436gJl9T5dG7u9aQtYU6tHtcWfnBQ6YNXFIHynbiBxOEHmIRuDQAcugRFwiCK1ZLmCnstHt0U2SrwKLP7FzOBwHA4QZkvsm6CzUUK2OgU9umzmgEUDYZbhNFcLREhAxanng65DSK+CENGowgmD6gInpUEhpjcFgYpimMhafeSUFA+z81mc7yP7gayxjz1N7vWv7h93+PLzX+CaQXwH7X5suF0VcDGXfqNAAxnAAAKM1cEd6JHLLOpGxaFPr81WfO68cAADg78+R3R687t29xe/1B+tqHDx+edpvNxw8/+eprJzvf3N1ihRyk0/VPPv/ao2A8E5xeu3xzIR3odH327uN3797/1omvn332pZOEUp6WSMcJyjfXH3/685/bNIPOBGtoL+5zGbuJVUgr4JPEqTPZaNeirjvTyONOJMd2DXdUrF6kH07ouMjF62Lk8bsGuRHIPCjXtUGsSBj7ekGWTieM+RnC8hTSoRGcNFa5kpoYkLQ8RY89bB5sMnWYluBLrNzybX6pYw4dDIQF6ZoP11sGQJJD/etUhZ2nLuBCmkvDNc6cjLkY3pT2R0OR7ZYfGybM9ADHoGzkRNSQKGrKYDp2WZzD2oIJSfgDt2g65a5DkzxxiMXRzb1ex9GV1g1O1Ac7Y9gyJYERAjhbeHZzckssdJfSSxjJLxtG6MJMNMiRCAUvmFDBWKEoMFUhku4xH0OZjQhIstlpl/6sjpu70HBqGayxO5VZbEQB4GpC24GEJqK7c/sBJPjz9O0QeHjwOHOyPmJ22dGMHq4YUgmmDKNHzAQeMNE6SMcvE4AmCO2Ecr5pDqoCoWu/Nf1wFhOwh2MjlMA3cjRZvipNJfFEH1rKXzYsEDcscKZReo7escNc0QMQ6ETX52Cy+6AwNOoLSU6lNVkB2jSbwU64m73Bjw0SxY8kDjnQCH6F9Y2/jdxY1yIbxtOpgbjCc8fJUMG45NsCaD7ziDB63pbwn/3MFrOb7z/YAvHF7YfwLxkgBcW8t8+TerUMg1lyqptJ8FltAUHqoa4xrSpclOiY2CGf5tWLxsq8ELf96Sk5A0v2QJNgyTZj8EpYgNiExhgib8ViiPQ4qrpQW/F/VcesrstZKgx2e1ei2ZkFBjuZ9Z13ZWFZd0ZfFqyaWZHUN/YMCI1Ng9RI6E+U85zgjh0N1NIQOqPKkpyWRs5EU9zmYNgb+5tb2GJy2dFmmSAoDlSNo5PvDQEkvvXZEAKe79Z8uSHGCl1ObzR035ONQOlzDFuBPmugq5WrUl///3/9fiP1iG+9frgOlqAeHwYGVKM2zUK0pQ2glnmcNiyQhwR23blLFRf2tMvDQu7DLXn4F//ef2gp79277+6ur//j/+h/fvPh43/xX/8X8vhaEXQ87Y3D7d/94mevr15d6NoU7qc/+/nlm8u/+LN/JSPo/u6t6Z/Tih2R73hNuzIPy+2H/fGXr760DhZe0kRIxjSl9pF4KLZB9iHDERoXTSMKwwPN3qVWhsmMOYHuK4XxEoOsEi5zXXu+RBU9yaOpQk0MKqAtaW4G332I8tl7lmQU63I8jP/CKTAwX/jlr1XDBadbSy2waMJFXXgqjcBkDk1d6EjIldIjRzxCU9W1vRGrdWt34GgoegN64sC/KTBH1vDtkFfbcjibnrLIqVQc4fSaOXiyykcVYkCYYTfSl2HSh4VVwBvB8d5K3UK4xUCdl7c7dqTY0doSz8nI1yAfapIEqsYGpZ35IAJ8fnaFV0Eef0OKsWb/aP+MRK+BqMYGjOmS5TzGewwoJQglCWqDUwNcroEDhUU6MBlNd2a+6cAfCbO7o03PrNyf2U/uHCFLrMjhNB6dQ4n4tB1mV18wD3JiN3f2i3047tn0rZ1AEzam5wXyWyH3e+Z0ZcFtZo2JrGvmC6drv5EADXuM4bkFj+0sprtIQpvCGDhjtGeCAhEh6NA6WoyhYkZIQr40w2BoQG/w3jXWjtpWPcNPASgQ0Sk2ljoLlwcriZL98owyU58NbtxZC3KOyvxOf8zPwfO/bNLIVjr5W03BnVgvNxkXFVnWOygN9+kxkA6Lg8comeNk6fcPy8Xu1U8PR8uRmnG/l8t5urpswoY542ocaBKDoIKTYzHbiRbpLgo6FYu6Yyghz4tNGWSmxN2KhhG0SWQWwJchFONmjAc1rVyXPovodHamNwz3LwZAkZK+sakxxUmuaDIbQW9iE7xHy+N1WkPaBEs66FgTDHDhsCHG6X24wZIMJiqqWKb6YNS0RgIRzxGlJpBjrmwSLOqZudWtpXPeRQiNE2IBMEEyOIAusr057O92q0sd6lKFFISP8RsMA5BxtXsqN5YMjK9D008Yq5ZmuSG8AzRq4tXY1fd/aqyvAwGjl5ceavp/yGuC51OD1Zxa8xnaE9jw38RmaK/GMpjWzUHpSYDbHs8GzjzYCz5UsX52e/fReZ33jnXD7cPq2rpVTriQ9nz5N9f2RR5/dvmLP/jZrVxF5N4KgGwEMT227dGB0Etn23YgwtPV+eznX//0b/7uX//mN3+93X710ZaRp8WXP/mJozUBKzR06rnB9CDhA6r1U/QGBDjps0gw/jh04E7LukT9wpzrOAg2h2bp58vwqxS/up06J0TZf5pwtNrcMK8N0UZrtVDFmhoVa/RTU64N9giboQrvpNZiw2yAcr5F0fgo0Dy9pEOiSjF75JjlOvH4RHB6ejgtTpEMrybaxxN0Fk4UzL44kxa5hz6AuKefNImtNHbilWclB47rq43J+xuCNNwrfBvEDokb6oPRVM1IppgziS3A0i0CyUncyWPMD+SV2kjQSTwabNUtFChsMGkI8DpQYUSWnV9EW8tPQZhCURMHv6DIOCCDucFqgvIbR0rZOjZEvcGRqQQ91MFtGDcyurWFR+nqXA908FPqyNOtOejz8xsTxPPTSxwrmrIUL8a8vG7BxYszpzczZcIoHgHWwI6dNbJ9uKMxsqPCGvzE5+eLjvhZvzpfw0v2E2cwY4X0USwFylt5odpQ/2DHLfSI8jYuFjd3NrXNYCCtCQonUyp46TEs4lD3nmLnoaNN94f+GmyZ4YFzTwNwYGvPwXUMduza5ipPOV7RNzv7ZZxOJHXGmsCHdx9tDOhx8lPv43EpgkBwTAjwKiGzDrvZYlM5cuaXcBlDI41Yjw/712ScSlqk/+wZmJ96vAS7qG+9nGxv3tv2ffHG1ByPzm/vRF2qHU8lCjGZbQoiaIOHM+9o5DU4H6mRa5C2DtWDCS5H1Yx6YA8G8F9V8tgEAeZWVMpFZpyokkjefUzOn8kkw1AI07Dm0KS3vrnlsjYtcQCPHTX16mhKteLL8adELFSV2sgr8KXAmu6bMOG2BH1oYXejhmJNX3k7Bjkg7bt2ULPGwAMZhueSqmZU42HLUgcurhpRBcJCnPvyfUJL4tkFnevAD+jDLsbp6uSChCY3suA6JZ2UcefLjnbG6Efbo/HR6MD/dO1/yHtkCqETfAE8gI7KkFTUEve6L2qWjjAdhe80GGEAYZV5AD7hDCM582HrRCwMf2we9uHXv/o76QtClL/57vuvP//K0WiWrlYrJ7Kvfv7TL/grb15//ge7fyQYa3uTOfTd9fubj9+tZW+3ScBM1MLAycP7a9PFN5999tmrN1yP7cP35nceQfuzP/inr968+YNf/KLnICG/+VhChWGQJH0UCqEPMIjEeRkeBHQT4kgNaFp9wnOIn1AxuKQ3CC0uSqVEBP9qkKxXjG71OQ6bHZwXodK72nihdMZiaiqOrVNV45KpgC9Diqo2IAjDlZrbGVko+v5m83B78rQEfMppWKz6RoROhV+YU5kojFU4g15cXb4+X69tN7q9v0vKUppAGOyPdKVtnJydOVbp3skqYOeuItcwaN5aPhkqF6hVAdIYscU0Xqyjt6XmYb1WAhB2QXHiBluFMykiUrZHqWejkjNbnEfNaOEV48wWd9ylM+TgrDRNeLKCoLewE4KGnLmZBwzN2JwfBDCeZbG7wxQ2Cm08O+PKnxXUzSQItkhdImd+Llare1Zzc09JmRgwNqCyrskvlmreqSOMlMKdwJPatUOJz1lIC2Q2DyACy4SHSDbYYvWxYmgXmYVhUXIAjrkLFUiPAtW7caKIY5b4piG1yLcVmlZaWUgeI+2oryJeQIRxCyBO8GGWGnAZrRn4JFurGXYoYmXYAKCdHC0ZXimhxn5//3gqQMS93DnOofOMwtfBM9ek2lMa7LOj4jCp67iNmLYP0wyOxk+7l5drv5heRQKNx+Kt1J3mUoI1DxJvnB29v36aWfPYOTR0eXT5eDfbvj2z0G1OcPW5mc/z7Lfr99+b2mMsery0K8PmpEGVzTxwmD7NPMYJYkpkYbwmJYYDEWpIgaEbbmxs3gR448tI4mcIRk7g4RUX8VqSM7F+4qOpMscNDK7dissaL+JMspurLP+cM8GLMgURrcx9oNKbFekY7BgHmCY0jUJ13T/atnBkl1+7luHVRJfVwRRGYzAsV1I9QYk3VEoxcjcD3TgS+8B0rfS4z3/y+avP6amkaPx7UQnTr9ges43BIFG6qoINwPfGGz9PZjKIveKP+jQSUhMolRrD8c3dAcAnfHfjf9SrfmpsVPajXtL+9L8IY5tfYqBIHM3IycuaYhfiMAQW+XR84cnl1WVph9bV1ydvvvzJ7v7Dr7755Rcndgef/fr7v93t7m0C+ey1Mg+XNwzBFzy1k+WFQx9Mlj/7/POjp5vvf/WXd+9eUVrrV2+eV5d3t999981fPc1uV2/W19cfnz3OJD/EMYjOQn/NVbvdfPwhDTSFEPfgG6KQHusPiNMVY+g7CrAB3R3/QruRI0OiGK2jy8B/zOn7YJdKDPsC50UG8gmNPy7slV5QJBT2GZLGZ2yXdh+5ZQPDIxqSpIDQX1WACpyqmUytViX32DTvyLZQrYU5nIq8KkncJXI8PncSujKWg226o9kogESnJIKJVLE3PB1L+rCGdXLy6vzs8WHmpL37ViwPrWHQSAao14YJ4MROH/Vi0bIgqacCpFn4hY5KhRqHqyWn9ljaEPbsUHsPLlNOHADanV7HxdVbSZhF6YUhPKbF0ZHkykN/UASgQFU2+gwSDZKEwgQvewGvtC30hJ8S7SKFNrPXY2bEw/ObLq85+peFO5mfrmdOfeA4z2dFe206QZGS093g32ovZOfSyBeSOUuJ8ESO7bR4PH2wmvL0YVuKrd1vpgFbw97ul7gYiaFTeEZMs2cdczaSefRvckb7p7JZvFMTIjnPKGuQEaoYnizEMvTLRRFLQhXQ8absVDJvw1KW9oXT+a6YFH9wgaGe1Bk3T3PFzHs+NB1/PNtvpAW3uErGQEOtd1aEo7BFhHLtD2tzLdQezbB0Rtvq/eFgyaCNz1pnzLjIOdfP9m2tIA7BEMiTcy7Nl67NjJbDgHVuthPbXy9XK/GQh9tbp+3fL+ZfnM4unDvnMaXYAzfAQPp0yBiD5OdQG0bZNIH5QziToWYeUTA0Zr0JTv6h4cAfJCKNC0Fl3K6DXA3Ur2FKz3F0ppq2NbYrReIpO8uwjX5b64pJjDoRO7J17smTDyjlVmJAip3pAz6nUA+znjlO9+oq+Ps11hs8S8fmuA4f5C0mlgXxgIxBqbaAN8rxMlfQ30goCnidsgWaQSCMZdvy/undxzt+yKsLsA2hx79D5tPwWhm6Xa3JCUqjvzQ99Ud+YzeSUWGYBLB/3Ry/3QwsrybZ0y04RUrX4ar3/9+v0cAPxdR1YQD5w7WaAUfwYiI8t3P8IcSaNRtG0WRY95NQvQDmi0qCstwn6gFujs9OLp5Wh/v5xWxx+ZPD48e3Hz6+++293R6HzXff7sVHnbW4vdvc7t7b2b5cvv78sy9s6z1b/8nf/8V//dvf/qmHazy9P3t3vdndf/z43T+s15vF9V8rKGVXqtHDbOmg9/mp7Wb3np9ihp8XylBBCjZKH6fHGwHXJAesUecdNbIUqWGE6gbgXxopv6pXlzoapQGJmTqZeOCcalG+YnFb1WK83icaR5u0NZp2O/5u6uE1jMpLywOzoMO7cXEzztGrvoIjWlo0581v1JNYwj46IpJwJNv5kfbRWXY3Cr631RWDBLYwvRixp8SYHDVhGHAWLOJ9EwSRstevzz23eHZ8dy/FjRwZOzVMc9JhcANjUNMmV6PgPXknBcrLAEqbNVwQJyDoe35x5Ukmi+tH2SQ4/Pb+0YT7MzEoUqWpXBtaafnh1gkB+/XJ0dpTKxP/ujAMjvmQhokmQQsFLg0lwdQkBHXI7tafkaOoetmzdKvsF5hiFYoJSzF2cpzg45kURzzxoFMHopkeLE/OX79ypDhTaRQWMGG652M5vIjZXHTEoEZsYTH7saQ8u7WSUES7KQYhB6vvUmDF2587cY6jXUa9Mw+O4H8odhdZ+vQQq+g8Ihqc+tipYGrR0ugzzFCyjGiws52pv5GM1Iyoo17tGi47QF8GbkUDbgrrtAD2YMvZw/0j18ARPlevoLeH8ogOOjwCPoq/lOK+dWASu8IyacUkA3eNSeO08dU0Z35zbxGiyTH+MkFBbm0wREhr1eP+9sHBZczqx619woKQ0HmY37duINzEF5Gkvd98L5uJw4Dny4s3wxFWJB+Ix13CTiAKDeFNBAYmh4ToMkEzwqQqysbtQootFB72px0yNMfeg/GGyGJoPBgvxMSCnzSPJWWMWfjSAOZzk19CDu+pY0JNaDggT8ce+Qk/F47oHksXOQ0jZqXdtqwxx/RvQpYeV9UV8Fkfcq4FlW8AzvI08Zj0AiiCoIfiaW4AZaRaiHlj2ED0rZmpNaT4UrD0zWuuq57H9GSqlUgpDCV5eyaJGJuIBfvAUW1Nf4buNWwALBIABVSZPlU20FE4iR1Fh/lghkpLaSg1o9XxD8wT2OF9vAKkL9708un1o6/1V11/wepnwDQn0UEOGjSVUJAFb17Z7QidgOb7MPsmm3O5gdk/doL82jW/3J+dLc5PXy2e7n7y25tv3t58e/XK89/f3N782+uPf/n99a8s2P9H//L/sFh8ud28HWr9FP/x8c19P1y/f7y7ub77cO/Bc541d3EFKvOSh9nNx4+/ln94c/Px7BUxHOpDFDfooaIhZgaGdGbH0hcKATnN7CcgxzqOYmldIyY+qo1xhGr/o9FQwdBugNrO5rsVNw2ipaqUCwu14v/kXwwbExg1GbNpye1hk8KuH7UCxxCr9Rocy0h1ImzBo/RI091Gf37y+ErFoe4dmjGyHfXzaLvNNU/WYfFlnvBZCFXggzyWH/xSTLd0iItzz4gUVHm+uHpFWWzurJI1kbf3BxDIpNqgpfyqdB3pfFHYBiciLYZgxKXleFjbUjq9dXNG4MEK5/H9rSkFc7IrnUSEiKUY2Y9t77993MBJ3qBhjfVG3x5HTiE4dQ1//dMsDGRf+uflY+hEkg64HJ6JaYF5Mpw76mfU6y5lwmo6rcaUCOQmImdnlyer86s3X/KZXRpbz46dWmbRE2mcIc75ZEqRRbrjnUcVO6sST3i1E8EwgOD4sC3n0R7S1TkVTUvcPe1uHw82o4u9XWB5Hm61SpMtHqYed0PLbIzhUofEh02QrOlO61MtJc6cRWpikQyhaAfO2XBHJVEuMRActocqXmxeRm3zLlsR3T/aRxMR8zsgL4MxotghzG4MXRcKEjvSlJVap0TLpimHF6szRR7jAw6PCHPUuqnOxsFFZ50ozZEg4Cen528OHhr9bGGfZ/Z4u3l+uN5frC6XMrOXeObk7iYjwivHYxF4CEgQ9jMiuUAfDs3RkgOwcWHsn9pPn2BJt83GcF17HW0iKRNLIU4KuoyBxbjQkK+Te82Y9DRtEwZTpE6cNwtKW6sY0pVNrPgmTTjtRYgFS57TBNZCvnFovM5DOEwF5OAk98gJStl5BPFmNqOQy9AeJYZ3gQuamGBPl9VHnijwohk1VDqs0dW4sgXrZbgiSJ2nTAy+VzrSQp1tUSaTuAyL9rw8iIHBYfJokHhglA5TXtUan0NjxOgJ94uAJLDThbRO31RInWiwjhsk3EwflZxevo16P/z6dMNnzYzWAyLvYGoF+WTAQr8YhiAgV5vS6ZTiLGEm0dDRsJapqs4bqfO6tyfQYyrmj7dn1+/em89enq4+LmdvzlZ/9PUv/vCrX/yrv/x//vbDd5IyXl19JUno21//1fboN/cfNo8fN/eP71dlKtqCtzl+wvkyYpY28kc/0Vnz2ofbd7/5Vx/MiuUU/XavLBKJO0Ej+YHIogyEM2ozxgACpwzguK1hxaexJ6ihuXlNBHSrfwY+oiERFCUxPdIT53HqTsVcNj4Ovq4yLbnPKK7h/lwYGPD+Q3tRS6VxKYpXZ2KjQa1AGlTTtGHEfetzcbHtw/0NEOyeIvxim1yhocsqhtmM6s5Dw+f34kJ2yNB9gxtL7tQgyexCzIulPZiLuMtCYZEXN8sbz6UqwE2Yml4MiJju0mYKZSYruZTcyQBDzqHhYIKr41Fst8/LMziX/ee8r1ZfSGN7K58WIiIm03QyP0va3PHswcMWe86M85FT82RaLmS0YU0HfgbnIEVbLdqR0yv0JP9jTdMQtJCldruq4C2sTNZNuuFVbAS1HVMqvUeEceVRQWu+whXYPRpeMIoaQCsn5Bx7wMhAPXDzO02bOk3OOMrdRkfyPU4rEmAxOTjImRe+WfGQy99xPNDCM+nxF5vsBUI76TAL0gIyneZZAq53cJ2TwtizqMqDZb4FpSBxMIdn1ubzwm+hoZhJxKbuMRXdEcobbFxFDWExNtRJPY+3suUUgIF23jCQqeRy2turutlvTp20kvJcWpMQQSxSl39NYPwDj/Z60rJLuMg0z5zGShZiP22vbnf3xNhsyARmvjDFW+/feZzAmWdr3d0KGNpDzIiZvDmR07k6ppWxxMTTyBSN4AXkTRTRjteQZoizxwANBzZcsUjrllmSDA/OBOOUa+NZZU22rPRoKebI5EMsdjBjHYvYlKVlL752rgizhsfNDEr7ZvedfbQ/d86DYM8I2wEAJOQEQV0IDAh20ZdIlQRyU+EcdyK7WxiYZlEOvMl9eK+UQSLgqBGhGADqEUl4kqYNSwexkiIcKMN4L8HxA8s36B5u6mq8a+QuT8OBtUeb649XdluMR5GnCPoL2srC4WCZWgjYlE3sNUBuRGF0VBpKt9KT8zSNZqryMtDRQkz1+y+DG22M63USdsAQvC+9QkXuS8o9qAbV2NS03Jh5Hd69/davqzdfkHZAeVTVEOeiaGPYaUNEdDZvnt0Vt+H86e7x4vTNyTtT9Z9drv/Ec8ftY5eQdzp/c35y9rT7mw8fN9c3v3l493yyP7/64jPtbB5v2p6zdcDUzKmIDi6xOV10YXu0JLOPd785PH2kMBgj8R/2aCype1y7dUK6fkJsnAqmrFUvfJF2IZpEkd/hko5GNAamCHBGAUqSOcN2lzYmb9BgnKl7iE50R3N6FJZOnDQUQ8KggY+ua6QGcPPgqiAMO/6NuWj38VpvXmR5Kt93WoAneLK6uHytzv3mDlcQdftOuDmLUycdOhiMcHCOTksbFbPePXCUdFx33pKC4cdmt2j4MubtyLAUkCI4fj6/vLJ7trSgdq6WvdAO3dMiK4kXUA2EiGX1QJsSgrMEHlscPwiMOIAADJvN4/3N3doxwctGwhOfWFQX3N2lk433s4eHg7PBPDDWTpBzZxjY7B9vcbjaSKGWZhP7bBetCB65wxkt3EY3ecE17CTSI1lT/JhN3B2WguiGkN1HWHIslEz50VVTBkjEpaHpLLFylqyJAtzAgaNRNw5ROD1DIjFlSWlHJ7s75+EISqhuyxjdhAJZNtMY+kwGpK1FDONyY4Pu8fzi5AoKPIXgWfg6IjcCyJR84nwK54rBn3iPUZlR9JgckRohO9u4KICjRTvJaCYBuqxYcaFpEhnLxHpZbkoRfxqrbvkewwkZsuhhyIrvPZteFnaBgoiWOnI8hknzIx8Md2gmf39nY0QJSTBrMHrDC+tjfpljpqlshzMKqtrAqWQpoTcfHRZ0WKzs0sQA65aa9xx25vc+ZdwG5OI5eSFyZ9Pyk2QUCkquhrYZYk9QwJf/EQnRAtuPr4lYhE6ISp+NfgwMQct/S1i9KBDfzJtMgKDVE9ySoyCOg9FGH+lfzxWQl8rU9iR610GFW0r507x/KQHtDLWu8byFgAGtDrIxgDZl6GvwGJbu8FppEyryN7PD4S2KuAZwR+2G3UglG0BjbGlPW/AqzyHPBVP77zt0+cQcGhKKlMRl+JwvC3fN1xM1pQZUtdZr+uEX0LC/Ibio99Dy8tJnN/wC5Hj5GN8qPN0ZZQbCXxp8qdtHNPmh4kvvamo1W5Cmw4B7kkUOyITnSxPvI2kpViaXs9XjxgjeGqd0nvX6DaGUqoKTAUnEyAN1kA9ac/GJL1jdU3zPTySY/c/ef//Nx+3mt7ffeBr2ybED49cPmw+3s28KFOwexqm6TrynzOVFzF6fne9Maz3111rxfF9sT1jZspbDCCQNlu8ruaMnSVIBuf0580Yw1DcmgH5UBsFQyw26wfuZIeuiHxgSx2HYPDk49w70wSyD0AplFjwe0QDd5ZUqQUNpASOSDgTGyEgVV3zqRMlBo+jXbKObgy18mbrQTaVf7vV9UCAr252RzHa6P83fLefHxByCjddpyCl6vqoH8nkoiyABPktH64VGaGTlbi7bfepcJe7R69fSbB0nNLDkYMr7eyXxsyE7PsE5q5AovlQgNByNodRo+KhlJPRe5h8ZsDbsKI4jB+574rOprQc6E8pm/cIJD0LkSLE3DQDf01bCUquaSdqR58M8nz7dL59vLSwP5cZZzmIOguB4pqYDd7Hf0AGtMlGQ9CA3mxvX+RN4oScJOTdeILwZubkPAa+Z5+OLth1Cl+qHu+sPi3VBGObJ0TN3t9fYeelkG33vbu8dROIczRgFqfGSDFQLKI7bm921gJuva6xJgBVj5954sroHSnEnPS4t/S1buTSb/AHMAmvyo8w+y0FMXQxdgObMJgt9EDuzFQOPMbvNog4WKj2KU/K7/Jyc4WIe9Uhw6P3JEUmXsdn0hOfbyEuRRUqTpPyhgJ525qIIjAz6sRPnxFlsjx6ZCSTqJnXm4+xifbZaXn/YOHStRK4eD3Ym3eVsfWG3LroUE1vOrx9vuVTCKrKrYGRzPUSjNdFcUvp2OD9xAPtKaadKHSHVXG9knmZkc0lEt/KDBkFBz8ZHt7AzXkO8IA1e8Mv5hePDWgxjZ5NDzKdUXhxqGjq+MyVkuSNRfEnIs4Wh3ZXCnYP1wb19vD9d1Fp8IB48YmhFf1oPj8WMh9ROrU6914lXXaegvVoXsjixZT4Qo5wWPoXpIN8sa2wkeZWaTDFqZMhg+iTHsRtO3CNSIx4+GIcUgjNTbiTts2zLhtnK9f3N5dUr+dk5PmPQyUakTe/oG0ihLN2Q9vAxZDFr5HK3hqKYqlbIlU+v3/348dVxd6BX1ZcbPmp6qjh+GESjamFMNuf9GGiKESXwALjef/yHm1/+w/7uI70vyef+42q2W+33GYbmzqcmi5vVyZnjMKChHO2mmthu5nGqh1tByeNXn/8CU24/fLN9eru46am+tieR0tsHc1N7gPan/JiTzfXjr8wPPIhVSnYw2gnrgRv2bypiH+TONmzqGFrWmzvnYx453xFxHVkFi+NsKU/sayJGX3CU86TosnANn83dYDKX0IUUJ2zGDdF0QklX8O3A1QtC09kRgBHAcCMHLNI05XEnmvTFpdqL3qljVeKV4d3XjQID4+F0wJLelhOSBWqNJWpog3Bpk36XUnPBDi4e2V7p6hnYPWVw4mgYr+NTasvuVjoLa3kCSnMNYj96XpJFcSH81nMYetI6jW9BDxcyoA+y/8Q9KHQnI3ROzbSdtkEEJbEBFvGbBlZwe4R8QwHv8vHac9g2DmToZE6l4SaEUjAyX+jAUnilqHLOnAFnHGkr1KF3VqaEHmIs5N4pN4RzwghMacFqG+/uXIj6sBXMZV0nkyYmUzhKsiZ9AAKaigEjEqoR8Q4h66PImc2BRtCq74lsleP9/b2nAizPzmw4v739IAXfExu5kWLQVhRZdxaUFqNA4C8nwIMDnvY32+36ZA5ECpdzLlx+I0FITgJgk+MB39M1H5T+duR/Cl2vUEjdd/izoNHzutxTdksoKf0ARG4uCvopn6tc2Ll1Y3MY9ohViGHycOMpGEPEsUTj8uzIQw2GUz9sojHnfSqlLo0hQj04hbWVcIWAVnVNhgrjUaidymsxqRN6d54VJjote8ujkjm8KjZPGROe85OTh5t7g3BeJg/q2TYIh4qnbMkApaqrAk3puKypK9Q6hi79CoDm4DYkiMZ2sHtMz76N2/ETQId0+D7YG0s1UmmXaIqSMYjYY8zQfpcYsPFhPR3m9cNGzkmT8Hybh/uHLAbS4MnZwlPhBfHwl9Vvypbc0DiGrlaAf+o76R3ipRe2w/Oih9uRvGNRdQUamBWxRDPCYB79q50oY5WhQPI/yoPJ5ccLSTAGbuHH03tsZVL84PGE/cxioU3B1QwryW0qLXH2VCbWxfq8nXshN7IjqSnIgFR7WtTspCfUrlV8X/5r7ljDGFL5gtc+wuyPX655/bcuh/2XdkeB331vILqv+cqgSLOepiz3li3sTqVweDT7g4D0N3/3l//F/vYj9/L89flXP7l+fOXgQjrhfru5w2NcGXELF6SpL2zX9QCQ089kZJTne7e9+fBrYn6qo8WBQn/1avFOfHbjkQD8ABJ8IqL78Py03lNxzysLuqyK/3NBZNv+9fHw/sP98fwSB9gUwQ2jlTaSrx/3i+/efbAWynSbLdh6gKcwr2ULThfcpkx8yZstzUNu+3Bshj6Z8L19lsHoj/2AhmEhKE/zjDHzUtWaFBjhh64apsIVcLviZ7JGECowsK99CI1Sftak75Ex5CrVZTf9w95+uWX20iH7WM2Qu6/lWAyXr9biCoK7AmY5FzgUW/J6QWGx2BXKxP5TbqwSWuEeYmjPKjf3J1Gz+R3u20j+KVehWJA8P0tppeiNIxVD8gByQBVIPPgJJmzvhUdxIu9k2ClQt8X0AQebDD/uPRa3YZUiFkspPVLq84bIaC69p5c8diKood7dHyQEz88c8fGmVWblp5xQYyZqT/OLz77+6t/797/7+7+0HU6cpqR6qtUpdeyLozGcIrVtCISK4FlxLviGwqngAi6IW2BLouf91tkiEHu/u5HoPX88dR7hk0eXiqHlY3bcJ7u3PFnTgxQvRwW0jiEwCKalYyasru8Qmbp/ekh+uYVsnLTYQtadI8QwMVgeeyYwZy+74XU4z9whzRRBs6t8TkMscdIqOR3FTaGakXghoj7jT/INCi88SmIZmtZYYAXnGxBCuNXW4J5GsvL4F+YfM2s2kmGrsm9zhv1jt5zeo0+cN6ZPVseKSEhdlf6EfKt1sSbQyOxh3TnP4taRzb0W5eW1lxk6WDM6cp9N3PxMR2HRzE65VXEwriyTQs+FUjF6mhDndkQrm9SCs10PI0pZ6ZpLaSkTZ0EvnlLYN9kDYlBReGh9TC+vQ6EhSsUwsVyxLXsnqJBiLFJr2ysgI6TAlWmgGJcTPk2mwll+IJxDCwbWJ0B0nSwFYsPxO92M1/guSg/zBmVEi8YwSmWyn3aUmKISvHAWX6d+cbPqxRVagq7NxDw1zUTlnkSPvBbm17gjl+2Nd49NGsKaM1xJ8wp8jMbb9++f3+YZBWb5Yb68AKqXvqUkSE2pNVxfjpzckJeXG+Nun0H26XrfQDu9qv7j16DD7y6Af/ox6tTjUFrhz1zo+OwSmFtZmkR9T4dsP75/e/v+9rAxDlsSz81gN3eO8PxTHhVD7pBKj2myTHb34enm7cVy9ebp+NVXf/BHTvjZF6X++PD07vvf/L/3m+8Wi6uout14XiSC63X+LLa/ckw5GhCm593duRMkZTZDbtNSRNpvHnYfbu6///jItSPs2w50aayJMs/zX//NLwUyxAdXc1lszorgbpoItlqXmHEWMUcxTOJlQw2/Q+jOJeFD1FkcPeyWJfJhfEutqnALPUWbRjfjp/nQVV8whoVFh0VCJ+TGt5lLwt2M23cORa+YS0Z/QUWVDazYEbWa5OAVr4JWFIUsgt3dnQArwUyhVNz/Gs4MRZbCCBr0qPalZxF2cPuYVvN0zjwUZazriqs35ZEJx0pudpe8oRxzkBm5/AZuhwc0lfvHA6VrW6cs8iyo3pSBLJmS02h1Bt05PgYPRJOsRLzIk7iqtkz8i8FaUHWsk9CIEMVYTySg+o8r42QUgjYxPSLgOeqyB42h2cds8dmXV1//4ivzFqMccgfjvJt9HtzuyZTwn/7Tf/7v/fHPT242//mf/lf3b38DFlOD2gMdiu2FBI871SevMHLGx60Z6Ntpeh3IRWErf3V6KVT0cXvjAZGLk4smQKK7IokLjxCA4M61V5Tw+RPxEUJmq4RCSG/5Gs7cG+dLE8+c4VDn3CGEFzWbyRu30cuBeOhK+pkdUgDnlHpuAyO5vBAhywekhOhsS8Bth8OuI4JPiRU/dltWLuOTh44A+EV57s5aMMEKOmzKIvJtH6d+fHcr4rUSJZ20Upps8KYUJXuL7eYtdQYyF/bBEUrcbnO1+cjFuWwfGRzmiGbhkKk1WtcAi6V6uH1z9ebEGVFqbPuQnYFgZaFV/G1YgCZyLyovv7nFCVoO5oWheFU0lCe4a6qWTHzVzJcfGjH2oH+IU7vWoZwGNAi6G5NRuE3SuRtDm+Yp8QWsLqKD1gquqs3JlvB6WK3jUtKfEJXTlx3GGNyOJhBYvnPI0+vVDs48qdxnHQh59fB6LJe69UowMxD6gGj80NyGs6mLqKViIKXyDd418GOtnD08I5KXU0QuxEeU9yScxw8fbt++vbs49Izc+7sH5wLlq2EL2mCkshQlQ2V7ppqpNDot6QoMmgDl6FNnwA1yQufePedut70c+AyvsFrhgJz8sn7/7jW11LXG8emWr6NC5bo1PrKT+hzDNDg/0gFtnb+QBLxeX3ZAgzF9+zdvv/8tJfSH/+ifOyLcZNMkwJhM9+/uvv/+u1858uGLr77WkonCh4/zk7Wzmr++Pbz3rGtq4/r6251TQT9+d7j+GzOA09nl83y3Opu9vozB6dXV6blI6GYrs+54tylF2enqHkdhCyTGEVj2RE8zvaGI9iwNitzR2lYXm0/OFn/xr//NQgZDsUU6t/D2CGoPZ2CoaNwGzRg2N11G3PGpOYTQkZtE+835+meff03y7OZ5sKIkMmDJwbTHbLodmqm0zHMrejk95F1DbEhzTncwwrPzLNLnmMuAJFubMD1t7v7lv/hnX/3ks3YY5SIKZvMsKEYcJBIhGENMBedlhsnk28NpNiCpjmMG9dSjAi378cHNBBmCwsqcIR1jDk/XITYOR4ZlzEJ8+VAj2cweAo+opqDwaO0Nbznjgnl5tbxASwpjDdiMwfrqXni32TYgcTdOH/pW4zlsxoz71VmWCapBWl8BgsVNAAmdGULgu7y9Rc9k9zSChCYnloh2yK6Mk9XRmzdPry96vCIBgjz5hwIS8j+oK7rL6QKL2evl7Gpx8eGLn7x59+4b7CE+U8aIsz/OEKy5cH0alm5t02UJqTIWdG4KWTYIxeSgtrvHDTIfOWf+8doE6VQICtxYmE0TTzJ6JszkBkpdnx/xaZizu+/fG0vWW0SILcvkJYteZZCylIJKPXCGFlZqTBMpGp5MJjXtn9559nxmEhuv1FKaahipHrGeMab/UVUUCLBSjLJrLJv8rFkW3QQZwqxyjSkiDC6w5ex0jzUeHzyS08SlR67UqhMjgGWOnCqjp9JxZit+subUNryxMoUghmudDstdIR3mx5BYRnyP8EM6XGwMxtist3LYnGkzkaMUIYKhGikAipIkurKJRzggBhDXCX0CZaJbYyrAtYgX+MKmKT0ZQoYMUg7nPjfK3C6dM4x4yz7Yx38SxpgAfIIBB+KSnrmMCVW3byBrkA4W1bSEuDxlFTxCxO1oqDXujgmYQQi45M7n8lEhBp5PpaHedYw0LQMiLDSaPqcM2YMmKM2r/FHEUxTH3BL85EHLEDTaii10EMIHrmBnQi3H6Ppm87y8HxmrPIrFk311HuRn6a6H5Z6RwEzxveT2mzFoxBF7jJuDJk6LZfqifVwwxJcTbqCJWP2kr10eOkjR8ari9Jq+pde9prdG/+mHbymi8TG6q8nG+vIjPLjglaGbnpF3dP6zf/qPf/Inn7//7q/e//rbw6O0lIcnD9g+++mr1edvnn7y+uuff/MPf3f38dox5o77dEDJ0ezt+vzjm8fPjmfXDN7Hd99L29ncff9w/3Z1tD+fPZydX1w40c0UWyY5rc09UgnrO1DAjFiCX/vWn7fUamJlzMZA1hmeI0uWNvGstvPrjzc8Lwdnil1unV+V4+B5IGrnyGCBga68gTRe2MuDIW1msubj0moY8ca+/Ppn889+8rTYf3j77m/+/hvoEaOkurBOsakydPBYSPShvCA29uG38GOiCehwG5WAEUdcVkzgyUFj24eri4sRsbBclxOUJUA7I46Ry0wnmj1gEc8SMozAdk2AV77VZj4jRtaPdCBpZAsHADy9Pb/YXJxfgIpbXdzy0aaJjUVEzeMnobS7Imu27TAvpCt/hWYcO8hiBNDaJUZexTYoT/hPVowxSSdAAhzFliUrwk7oTDbpavk15FPCZcfSEWk7d4fsIE7V/c8mjR1nvEiCTccMdUGf5ZsJEd5eb//137w7//aA9k7+2a8uO3593wrH8+PiYr57f3+4fve4fH63OnteL087ZdYhi2eBGQ+cjWeNAtS8BnqGNPDzKDXbi9aXS2ve3G1OtCg2Kp6c7OUhL57OVG73coLbWTlEer+7o3MNwdKfOPt2P2ORHRlKp63mzCd2zD3sgJk8Xy6t3WQWXWVhTf4ymkU42BY3tiZNp4tOszG5BE9z0U0IXp+Ww0CtwL/5WPMmatLTsXHy2VzK/cKjW8be13gKaPyDvG/8grwMCHCUN1Peffn52dt3qP10OV919p0nxLHDzkFJE2kaQgKIiqEsPXcgGuceN1T941NBM3zbNrAHj3tkyU6RnTOB63BzmijeSzcQFoYW6yyl7yIco5AeFfgyVVrVhghSZfKxLCQJjR/dT+soGsura4re9JKutI2rGBrojB2AXAQwmn4BFdNPRjPZKmmqzoNg2nXKM6AEJfqgt4EommKW5AqPeWPsE8BF72I0AGGRVN9Qf31V2E9/Kc0QibXxShovTvBKoJPp+JTE1YL7gMhd7MaAmYQjyfCB5Pi2bwNfDLGoqzxCcUDW6fXrC+cQGZuFefpN62O1LKG3U2a7sbPHTN5jIR487UTrVBSJBznvZ8Ab9vtLaxl4eswHtAh9AkcZrwF7A5q+KT5GOQ3oR++K9Gs0+TLgcWFcmsp9KjDKhbtaakwhzR8KDk7Y3u1vv//4q7+4+/hu5Rjc48PN7d0DcE7Ol2dXb9ZfzY+/+Ie/+NP7h19vN0wc3NhL8vbD44fN278VNnXCjYd9Hh/ucJDnvTtM+Hm5P9xZc6PNOEJiqsQK57C8JhdFXZ52q4/ypnb36/lCttHqbIVx7NmQs9ez5Naz87V4z/mHD1srmBgu2nHSi3A4Ug3XjSknqU2pUcsvbAW4uiDbbLltL7k8eMvM+4TbZRfu0fb6A8tjE0M+XmyTAcCmtADUh5MYMQkx3U9G82tyX1iqqIhUnexI48ux8xDc7b/5q7+K2NyHKseDcOq9HykDDfXudm0iPaagazh+DkjF4M5adY6YBBoa9cBhtLHz/ui77y8vz/m8NsmJ6AeUINBs8fbbD6zBG6CZ54iVevCjp7zqyjd5DhRwxxrcMxnWWp2IgMGauTTjSwUQ66jnj54boRBCCYUEAkj4W1N3thtnVIjz09nVBReRAW78GBZWqCxXjmdrh1Y6GrZ9MirBH4Vv7dGQfvJffr97ur62K4mK+Pb2wfqsPYFY3Obd2eJuK/X+cX3722/+2avvf1o6RgYlgzmwhkcaGysAGfN2igINiSDNpIMi9Swt9nTe8T9S2Fm2p9VszcmrVERjK/JN03dDm3DNIN2py+XkzFavLqwWbE0nHKKwAhNO5Abno3kTpXTYo9mDMCNORTVLfJYuKVg+/Xzj2TiWZ1K5nu1+w+b20MOl7JS5WLXSOEPncC5zBzEf23y2tphiKR7ecICRhejj2Za6a+mFoAnEFHUUKbdc//x69fbd3fX9nTgz6jYFbUJYm2iWl+zNJJyxQRgnfHY+EwuuQH5uymMoXVRl+61y1F1c5y1dU1toX/IrguYVNNdM0bD0DbfwH2ltkjBUahgCLx5JXZBBayv1YsziWnn6xC8+F7NpIY+hcisamKnoQIIA7Ule2gfBASovNFiSCbNS6MBVneiHvub/xJTXj42Hn+6u5xsjjrEkmsQ/MMIhAIKrjspVbfrvb+hLogyzCSqEhLcgZ4OFdKpgLIlwyyqYLmqmMEKTr6X8ZS+0m4auzaH9KaoQpV1JY5vr7fU1D/Li/NIjDF+fXwJedQx3/eHt86vLp/vDt7/+zfe//c3Z6zcGFppBOKitRQrFHwZl2SIqz6uxFStmBUdMS4UB/4BhMmXGOY083E2vhj5e08egcUqq1sbfVGPUHManwlFzKgATfpv3nRzLuXj33S8/fve3v/3+g+HvzMScdlUIw8N6/9bK9vnytem9XJLX68+u3qweH7l2UrPEIpyOuD+z81HmzsxqvaOCUZgoPVNbtz2LAk8Jrz1SvBLzRUStysnkb4UxBBgLH07I1WaLsoleXa4WT1aiTjnnFPTJVct25gdMQJNwaMFQTeCJJ2ZEwsFWoYvbhlwhN1YwSrZeSc4gwvL3empJC/yr3eKURFO/0b7pbAG+QiNYMHoPLTewnH7IGGB8XBDeKRM+GQf5ftNjip1LfPnq4vvvHt59vNHSRJsJiKxB8EaWsTZbvAnbIgG2c4XRuXDmtZChgBVBuRfALrOcrLRmYYX+fvPq7Nw2/c5Bw7C2ST4fycsUVpjfsBoqOXCp7HOWld4aJyIklhJVPG3nfvtkpgYf3GjTkNWYCYwljOGP9FDHBBJ7irMXDzg83TubyKO77/KLnQ8HW4AGP2lULNgLHeEf0tFzxIjzuw/vY1sd5cclvesrB7j+wYMNq5K/bS/qYWd/v3v7/devPvvyj//ZwxdX1/OlMNzFq79b/Pb/Vk4Jp7oUkIEvEQYr+igGlclh6KtP7npaIKHtoa+O/LQuCGkHXENtvqYGcUf6SbgMkZKs2AFmyJSZox1F9lGo54hTewGUw+apmYzhWOKnAk1XgWH1kRfjybpj57XEbjnQk8w4WSc3UHSdVZlZ8QMDfSG2x1Fo+MxYKodI04Y0xkdWB525hES67XGWnvCcE3f4t62pyERaJgyMXqQBQnNXZ854SHz6COptLS0SnnnjwWLSwkyI0Qne7R3BSmN/REE2g5HhGqlMxzheBkJvoN0Q+4wPrHJdwIOlVNQEOZ8ICxnC9UjW+a/aGNoBgvJsOrA25R7UxRep08lCBrY1eXDmjw3e0JfGE6OxTIBNU+8FR2ny4VIR+qGr66JwD4FgDgqDDrGW5bUVN7OZNuoTGkWaozeQseyaQfJd9CfGBVViqhh0ZUg0mgyOLgYXJXdxk4YCxLQehGp3UGozxNilCQw4I4rJFKYgFGGcqQA5xgOE1Z3WAJ7/4W95+ufr8/3V65/+7I8vzr7gcbQ18vDIaX77/a38Bk83lJVwMf+MtIMn4el/Y0kHt3ePZskkQ0AmJ2/FtOfefgdxGcZiKtvIErjUUPXHMPtsRBrqilfDHOTxLUd7hAFdn6pEmfgzzkiVqYpDdFwj5n9ip8fv39/cW/5d/cJT905Xb7ihh/e/Mn98c/nTm5vv/vLv/5Pz1U/pSLHAzmhsji0ufuzhpKR38/h85zGkOwvFJvAnz2sEsj7bWh2RHDkTz5IaTTapMSF5WRsMeoHONePJy9siRyf2lX9B6ywfHtou1GHex54zbINRAVnmICwZhAhtgCNX1MacGT3DL85mgIU3kA7LGDfcZmDjGFBlN6jp5LxYDZozViBIsafkQjueCrVI5b1+uoKlVMmLw23KC1c0m7k69yyoxeXl1eH4G75w23h1UyPGWRP5FsS42bLeBzBjgq5DOoiHBDCLwwXc8RjBakbc2QZyQqhjnflJvsQuSNrJeu10x7a3ldr49MgP5KqjKOLiKyLdjvfBzi4Hq/cso178ZGhhayM/iEzT4B6ta+QQEwsZ+8IxHYTw9vZRhpEHu8ssh3C2njuewoPTvKVELo+M1u5JNWxNQWgzkJUzuiRqiRjMloejU3simTIm+t0//NnRr//83/9H/6svvl7/xdnpo1TF48NPv746+XigPEzuHUkao6NJxqxtr2iYVBtOqhP5kAQpqCrWUrJED1wvOtXZwjCBQiZ3KRFelDKInFo3zTMDRF/71NhAOUZb2xqe1p5rLqItj2YkFJVklfZlEa3fYDg5Ek6pbWHq2tlju/nZyStCYreDlvGbsD7SFVZihUFXNBzbxoZiaRjKdznPrvFsHaFqF5+c+GSCGmXH2SH9bRkCEuB4fosU99waPFDylnJCZ/e7tfVTsSVDm7yImCX2M0c2PviBcI6sZVyUFTsQP4sHwhZqpuz8x/oJCI84AUgLsLbIf3N/p9CgvAxWoX+sPebWR3PH7UDsWC7SAjR6GTXci0ARZyjGpzkxqJJiqkMx3GJAcIIQTAVQMJXToka/CTIqs3mUKzZHObQxiSzANbSSK+D0mxLlRULdammGKXIgy08XQzB9pNvi/AyK0Y3MgzxrrDGuQVJWs8gWPGoz0U14G6HhmGQQMZylL6ogodd6xrUSelLWvp9EU2w0V9LooC8p4bRRW0e3tpv85teieI/724e58/AJik1sDlJESZMEodqPpo0P9471RmIgt7euQeT5GUNY7Lgm3Gum2VSV1eF1PL7/5pfL3f7yyy+5Fj2LtIUXXin+pRzSRlrz0kKAQbGRRJ1eyV85GASEkwFznSgZyUfHw7ZYRMzbjZrASaA0IWRIT9kpslpffHW2+okD+ZzmvDg5FwhYn14IB331s3/x9fO/+PynP9t7bOPDx++/++Vuc2vPiumveEK5OEIMTweao+MLn7jaZaQI+jiMJasPMvbT49h446livAOLcNHmFuF8dODrkpHL11++efMFnnF4bwmCFn+ebqWR6YpRo/Gxig+GRSagIVDig8CGGDqiHe4gGZQCyYhn0/3xYYZSygrxxJ4GjXmiO0dGOAOAKD0/NSejHkNsXODuqK9ghFKfi4s7DZeg0X0tmJntWnnkBlpLWwht2LRmXheTNnQNjTOmVIDzdB6zM2Y+mRJgcQgxaZEgjNII9BKHUEWeBE5bYDLbPsvV4BJnAZuhMERGKrnCqam3TC6QSY85kn4TlMm3GWpg6kfAxup5yPHsYRqWtzoimFxv5Qs0AFUPGjYC6YxgtGCDWfQMBsev3R9Lgpw7g8t5D3WSgpG0axms7VqWQjmH7LwTGmDoWQr2GAfVsk/X3f/i1W735uLweP94/LA4++yCttgdvpCKf4VU9eKpt2V8OlpiCK8lA4E1j3yiEeS62gagQ/7j9qGNIqQ1FxMrcWbT/bQGrqPBuQym+ak5IYSNg1T9dnyOJEmLJ8/WDO6eF5vLU0+0WJrdprQeBV5JB1SYeJBHq/TtMmFTy/5pRSDcEKjWbXMEo4CfAp4893whfsQ0NcS5nYyONfGpMs/nfu7o9MKgm7tWv4DjWcaz5409rZwaOfc0XYI0LHi8la+gh6bPrZ+lFiOMqBjhLUhTJn0qGG+fZpH58pJ9uFCtpyG+ox6YELykBDwdyI/NcYiQKuBuFnKU9NSd5qMMVqMym4zHM+6Fy3zjgoxkhfwPLKU+9PJujK/OsUevSb0TpBGvh27TxlhbPy2vg92Xqj5xACkzqX4UR6rVK5nh2Lc5DnMT0pTSsHhywM5IheqTMGpBmw12PIbMJMALqN7TJKTHf1+L17qQio+jg8TvtP3QD8iS7GjWRQOXVAS5lMrwhNPx6A5Jfg4nkoiHEeTVMGbH5lyDlCtezzOLG8SCbp++WZyecdAcuWT/pK3zPGrU7RSMBpqqzoz4CLVIk6vT07XHw2eQ0uDev/3N493b+29eXX3+eja7cISr0IDdVZc/+cOrLz4nu+r3l2J6GVZtecFLTfgVtP7X3ZBQyK9EPT7JWQAJ1qYxkAfus+HwzYHglJxc/PG/+JeOlXRBi006n08P54vfPP3q3W/+k6vXf3h+9dVmcXK3+bD1UI/He57MyNRFEe3PnJ4FeTw3yaUdZ+h5HPUJsSQVVRm5JFtMQJfQaQmpwfAima7OOdzi9vPz06tXNpye2WvG+8L9u+397Y0svqPbzb0tNtl0ZMOwmBDgvk7Db7CQzGnpoPTkhG+kVQgeJiJ6h/Us/WRF4QhYWhguPTaiw4xA/YHj0BbVkA5/hVsvYkpEkX84P9Qx7B17CuHy/Iwydt2mXB586C8UlDC/tOBpjoMXo3PEoKJgRxckELNOIEXCUb4T9v33HFPg6R+1pEawa6KQDJaJAo1D3IUPmgEIbrTVl6Yy3sD2H/cLD4ejvQ3cnbLLKOevqxyjcJIggBWjnnFEj8HS3P0GM0cNRFuca4V6tcZr6lCCh9Fvt6bLi6GYPHiAzkmJkOeUz6HlXAvjSP88s1uVuoR9dDc93N3cf5Rx9uH67lwewPPj6mh3uXj+2dn+nfOUhdHFx8W/Lcw6XvzNhe0Q1x+vbS/+fHXh6Skewtisim/lOV+bZ+fSbe4YsVkHaXIkuc+wbpY+f5YkvD6fC6Rde2BxERaa7vhe+i802y28KD1/tXxlfkL1CdHzRxY7k9LC0+URx/vUjlikXcLpIvgqxCORRn1Z0NBhJtTjrW3Cs85HmfAbzbu4EXCdwskD4O3yNcolyZ4xzNZZ6WHxVN7O8Wqcj2b9y6ZsE2kbXmpGXxqKGSTNH29SsrivJgTlzdTmZzhh23PHbMxyXtBhubJ1QAmzwpxTllvgTnoFLzQN4C/vU8Y+jW2a6LPjXMa8vKSDSUWXYQUpoqNGUHKXTSdN2S1LMXkYVRKbMafUdUQxUtXJiLHlljaZRjZgF0Ma2cPRqR9EEWtgtVSNqJbIK5jIzmnnUkBYjt/ISoptNVEmBkYb2Gs9CFnsb8Bvw0mhlEmvcY6pBqGmOFT019y5kQKHB0T70MpJf6Luj7zxRXylbYgm3oRTvCIcl/ufCsmNQz34TWhznDInNY6q3dUiz19Az9iVhcb12emDExFsS9p5MOrdw72J7omjBx2hSC4lM7ZBk3ex28lNTu+kanURNMSz0dWNv9RMOsopV1zo998/vP3m8ls6TCLIkU1WZ5dvfvr0dPb6SmLpqB2eFdcgkmjfiFLyjSnXByZhFchZBGVjy1BnnDzx0KxkgB2Wjh1DykJFtciZ4VTyg+kQWMSEd/e391Jw7n5z//6vv/32zw+nb3J/9veO/bx/Xt5dN6HmH5ESvUj0k5hcMC15YB4XHlJ1bftwAftwbjIj8KEvjY+ZT/AiMdeN6qLfVvZkzrk0OCptA6mUpCzL4/nVrazTnYC7YaXC65HrpiWDM/R+p6TNFURXOdRj6+LwcUYgObUHZQY28ESo0uADNSl78LqJxpCGe7oZP0HpsB1wmHFxAaZT/yq6pM6YSBzbUdmxDdRfm/iJLQ/GADsOVwMEJfKSENYQB4CPQMdX9YlUiKOKv+ql/xXf26VgwdbqJ2VsMtBM1bHyskvEFMdEC2o2t9dNr4Nmpyu7JlNGBqyRsnGK0KI385GdNOhCvtwb+p8bGhb1zSuEgcXxSna3M7ktyA/fTqfESSdlsBY8akKTeXsQmQOctKUFk9dw/W9dBcfMnwpZnMr8OHGIj1XeeyY4vjexX96evHmcn78+OpPiZGP4ycPdmyc7n04e1sf3H/bzu+vTc2p8xrRwUwgf3XF++YpZoKwZklaWIJPvRdrtct2GMCk3zIzokzD3CPYkq5sHPMDeLR5pTuo/Sfelp35z2KG9uZa9A+RDAkvrHDO5sZJlc9/LNLWbulhZSllyagLTIiZJo1ooBDyHsiN6m0wBWi+jh2x3NPVcF3gNs7FN01W8aTej85XuWey41UK42e/OwkTxHa7WCmWoKTY+MrbKiIOOTK8YGebJ4w6srIVvDY4VmIuLFY7gi9kX8/nrFUnqgTLaMpzmAVw8PihiCnDSRKdoF0j2GxXxH9ybYZI0JbUm7Y5tmiN0J3bR9Wx+VtzI4yLgydCKgKNAe8o4JFaskyCKLExlyTq5GvsayfAxsDZyAClGJKigA1nt5wMKlMZRntrDZxyImyypQKnT6lanl/tHu5YpXBn96TLkTluBFU2TxtZggJS/ZoTjOo4oCMhwkzV9TJN/jftOD2UNEhdu6gRpdGNzamwsMBU44LUILpj6aTKbnKpFj7QcEHheB7F5wXGLoker48/ffOlw1t329mF7Y+rozmr+qhCYAGCTY5jQZYyRjm4Q+u/Ti9VOU47fbYDEBMuz948HWWsm/47FBPLNZnfycPTmH7Ed8vFTQQYwaSUkG4bGI1NavESI4GslrjnNKCtpHSql1nW0Ukjprr0qEGihWxjxcGKeH8+OJf2Qy1ng0zFF725vfnPz4R9u3v3199//1W7zbak0p+/ouqt1ymMrSdDDmWytBbZVUNg69ohH4GEGQ8KEMcz2zoksxguFZpAEUzCUrkextJQsvhLkCPkpiZXrLhpqySqVc7e54zLyWdGh7a62L91Kvoe5whvkOaNnwDobSNVlXAE1Jh8bxs3UjY6vsVb9dUaHVXyY4j4HJfqoyTgBuMiRA4aLFfWq0UE+2G2KOkrroxlT+MQfUpY5gliT5nIaMzxgkZE2FGB5W2gjYITD8AF5cU4OdDmEAGLaBR26MjwJRtPNeq472mjxtPb4wbqLxxczx3vtV8+OK7uFC7JqA7ADMZdC1c+ddg9y44lNczEM1NjbSsNxN+UHcUl5+5NZgecMPwOgHzztn5zXo+O7R+Em9OOvqaE56Mv2sAbUuKVdtlzoQACTGyfmwKXTkX6V0UKMzfU7nLxZX0lANAcwCxL2Wx49nM4emMe79WdvLy8u5qtLyv324Ser+f76fn+02s3WJXrbnbU9vN9+XK2u8Rn47m54F7fPR9dcwDTU07MZogMuWMC7+9B25zFVwh/pJdAC1P6O/cONWfjG7MdKlF2z/DbRo7UIrd1MiWEWCU8U/GiUAjV0JpX9KOAsnpPj/yhPOV1rF/HZalbEDLeb/Zl2Nh1KvFkGzAEkzEo3lAc/JpSal6uQvqTwaDxuRbGgpqRUmUCWB/wIYVGAnluJg3KLcQGL6RyuvHtksiZy2G5cbYkoF0DwwdSvIHpzEQxWOAdD9KP8IQ/GoZnSak5YaQrO/pZOAxiMhXlofYAsJE9ZkG86F5NEWRwNfLSL+XP82husw2MGYHv8dGt2yLegYFLl0YAkYWbhtQe7OHlaKg7lvuR6QmMi0svIhvokT3isfErkSXJxYEWa2PChEGIK4JSkC7FAJiNQDHqrVARi8JWYMSdkuGGjeahOONXXU9bVZxlNKfPa9q3FkuQGpZKLwR3DjSMHQ6C0p0ElWqk2BD2OYsceYkt+TakZCrebadSoXkJA8dgCaMcXrz77/PI8K3vwnAnLn9Kv7T2nSZpY0JFcFme1qjlqp0iGXIIuqHEM0LTohhJ0sPGrhZmZR8zFciA91J2+OXMMF3CNB0CGMiknrGempQX4or7gwIiM3Ms0UKuDWEBhaJTI1vjryDBnSvbEFT6Do1E2s4sL0IgMj9Z5LviDzhbtvrv58DfX1393d/sekjEG06J/QFo169yqvCRLGXRBR51T8eZG4MObBFL7eVj6dJpkPllPTuLGeOdaOGcS+rNBHp49cjOVj+XmG6pUOOH643vcIbMI2UF6Kcj5Zj1t1opjoG2iYkQe/7xBQbjJ7MdYZG4EV4ZjYXDdSpURTrfCfURomq89FTnlo4GR6gN7cdLoBF7VoSpcmGhFbiNDPWkrV4HbcnzkcN2UDomtpOaREWVRe+I2DcFfUxhC0WS8JQTNgKWpkN2rWMcsSetOvOiY38Zph+qj41Z5YdScQyrNrZxkxaY5/5HNXEmXarEZPBozSDLfeUslzZlQZ/CGROS+0VncW5X5hkLqGR/gSYmxIHxHLSz2J2sLuEmyvnLIixebYY9Aut3THcnmeH2hJCaPBQGTacVCXMoICY6cGogp9PvsGWIiD2oeTh5/+yeH7z47/vXjyeHyarn2YN/d02a5u3nezO+vHecGlJPz80JI9nPlwfQwDfHij86rd4wAF5ukhgspN0vskME6PjOHZQCkb63WcoIaCuNEg8nIHHQs1GYDlXNJsQO+JwW8MVlAqQemGfkEOtD/ZLdc94AUpoT/4UCgNlXQYDbjAezo2JFMerT2YLahYxcx4jjJUMyQ1hh7XGsOV9E4WeLRdy7jxJ1UvC+CLj2BuPDEWNLfPi0vOnSHi0MrlaS0NX55FKS3KZeFfw/hcYjfmb0S6c54VqYl9Q3QnCrppedMfyrczERLX3x5sbsXhD51jJPAF82G+JaWGR7EKXbENlg7No/NYYwfiTAbQc2TZ0vV3IVOJRG9eUAmSo0ua82uKE6BBAwmufdORGnSNZDrpu3nXthzksJkA8EqzmZl1DCn8kltblQeaKLkWZWCBph6Ld5tGEAR0jf9NdhOtZqcNvikxhITGkcLge1FSjI4eW7578oaQv4bQiR9QxuFo2I5/cSZKSltVGssZKhJTCuUmmc02KfyrbkVsQ1nzkVw5qrr0ixQnNhEklY9v3i1XF9aZKLDJMxZDFuxv61vgpDgGHTPTG+qBP44MmbAIZo1UgDRpMQzme1eqbSG9OrzL0qVtDNVTK+Ug5PLs89fXbyCBHgDSYKeGVatOn7w7qnyfutgYCnbiPYlYuKWvMsQn7S2xil9UyyTBgIeVc5LPj97zcEzpwnVwptx6/vf/MMvrz/+vRhQkzsHsu4bvp1IPMC1k8nUt4hmLkhpLdZ2cYI1lJtbwDQzLxDT8btPznq4d4j5vYi0x7MWzqaJaDH6xtqb8Vs6f5Im4TD5+8N66xmogrp26swvX10ubed/uqPHEtqkvGGnFAeHwVpc1EdD74XGRp5x8T3/IgXb//gtZwQiWNp8MxxgK5H5sXvp/JbhNEQp1IdXbYaOHFyFNKK22Z2W8Cwo6gMhse1IlNwJZJ9cnK0cQTnVVrPCqA1gPOdHYycTzBDS0wot/0NvXTYp47yRN5JWjsQL3EcS+XkHzgCzIUtm7OxyzS8+N8NS1tAMl4ImHLhLS9g7l2aMWxcxymA/w8JwjcgRRtYibZOFD3I90g/gifRkkMBI8fH48oEZ/LwHiIAwbiwwM3XpYiw1MGT0zeuP+LNsmgf5gQBjOstHimviePx4cfPt//L1w//0f//HkPmnN6//H/dv/lKEYXXxvWOZNx8u0rNUnl0kNJhIIlsGW6YvLKlwCb927PfAyzYgSsdpXXIpdefeucsHT6SjWIdPdtRRzozq2alYOb5CmZDDnbFQYYBQ1RZwO21LRItRbMyV8yPnFU9wx09OBD32HRRVtktrqjHVwsGiZmxg2hW/EUnKvTnwsrPtcRIm4MVoDeMPTyg+mkgKS/6G+nArCXTuhONuFxZubqToGuolriEtUgJtfBr8yusfrrFw3MX5WsApjkGnsQNMZ2xISWHoEDNFboq7PhfPlx42v/Lol7uzK08O8PyYpNq0hUuFVxHUzMCKCW1JbKmT0VpCX206+HThyQqE+PzKU1iXW/Oswb6JSw5+WohJUbKUyPFClg1r4DD3xREbWkO90v4xgpZfpDU0uZErhMcyKprIr8eDjHy5brxm4eCmxx4vsUNnLxo5vsWDiKENoOTTJJv1Q9IIYMHAMSdOTN1gcyyrwOKkKgR2cvGV1KF+qKCACFTNWSrAs2DqlNyBqJEZKqkq/YEJc68yEpxYG1/EO3J9alpXAhSmpJaLqW+iZwNeAbGSgZoRUb8FR5UG4wRLzBVzBnyvAvZ+UkrFsOfzn//8D//xH/5cCo7nhd/e34qVfvbTPzh/fal2HVY2XKjf0FPuZdj4BThvaCSlxcN+8BB/EljMpBBFWC40XoReVr/9K0zq3e1t3svrnxEDKG5o+hCY2d/c3Pz27vaX24ePPH3TMlfNbyx0Qt/q5KjTGGAtu2nl1OkGMW4eP/zDsM4gptTs2aVPk28HnLRaCJM8wuFOmbxk/VJBaongyq5lN07vb249KOAEB67zrWksqvngYah5ADYxpZHQ0Y+4IqwY9jR498BjJAMZoUkpFK4w8qV7KY92rA/+ifQl01kV1yxhSGgVxSDaQaZG3YXknH4N46O/uLHWMLnxcinMgsTmWUPY9XDCDxYvaJqUb6oShMGZ9zQcpNGoK4Cpx6QQwjRVYL7rZd0Qb7kpPQbwziYv/jVD/WyJVUDYOQtOujnttLT92FnrsFTZ+GZozFQ8Af9eLKwxo4KDa7gWFJG7PS1ESTF8pPhWQs3WiUk5z9Q2fQYch3Gyt2ldIZ58JQ1kr7yDEkMX2GjumGYkYGMRWHA5taxR4yUJZo+l8xZKk0uzfXWx+rN3d//pX7/99v327xaP72ZvHWNjxef15es/8PAAKUAefjgkgl/RdhAqzelaDgDcP3NGaXe4dPbRarVsdFl29HCANokRJmubFBMs2NWUtIyu6NThBHMPJzrluWwds7rbcLYnJ9YaDGQbjmYbV8ooNis0IgBUEJ4Vyp+sVUSxdy3jf8oPER6j7QXKBF30KldcDhux4klhKI1w2Ug0zdFjFZNzs7Exl5LthwkETJmP1OMx/f/h2vF9u9dXZ7SnA4pN/j3cGPFuBbK29+UgYSFm2dyFnRqJtjRAkQKCR8VYTN/Ry9RPJDnfP9mSJprM1AAIUBw0RPJQKtTAWt4eQEzFJjwwAAuhAXPzxpwBB2MXZ51vY63H3rb7jednOs+Vwh+sOYQNfq2U6J1c4iheC8STAbSAHITDa7UHVfhviMropGkEnkiB+d3yhnRbiWwWPyQfJHuDb/FdSbuZq+HOC2hjxuGHoWoi6UPh5Gb8HNWUFfhGzmFyFIKankw0xIEVyk1JxIGc4kBzvImVvOKGvubbN1vwvAzZqgMrYnf2WBiQeTBhXsxu7rI8jIT0So/bswURbh/ubkyd7G1LcSSDeO/pwWMr2+a36NyZdIt7oE6rePM1jUS8QA+q+k1Ym3hSgp6evr68WL96JX47X5+cvWqTlLGp5QXagauY3QiFPTvefOwI0pELz4ebm7e7m40sM7rg4pyHZBJrYwGrf3KxvticXH//9ma//3778IF/tN85TIWyOjD5ePrm5jcfPv7Nu3d/trn/+7HRuzVh5CcGQLh67WgHsm4Utmg5vdkjVg+eRcoh0HfqwkdWEE+KQEqC0qfVgyNz7NsbS1YkuMn3wH02FVSERWoedOAy4SnZDzcyNSD54Wk9M9nwEJ5nxwIjMDM5fDe1Bhph5IULBmamt5drA8fp08nGZGgNUjeuxYCGRGOGzmH9sgSIHmCuwOrgrjRJv7uOT4haUy6xWKouvy6HJLaiGPm7Tg44vnL4xfmZDP5gVBdBBtlqLhXqs0s1q2E/m4/08rMxZQj0FTfKzrhx9kCP2spMkTiziBJADEGsVyJhJ+LEbbXtUa55hknSyxDqOO3QzNzwpDE8drxG2q9B0XNJrUUZvwVgzTxYI4XN82ABttIHQ4fVJFeDFkwyq05kzTRUF5rGsyS02C71SRnIe1+I3tpnS7+IfJ+9PX7+r77/5S9/vTs5LHfzG1s+5hLSno7fXn382R99kVBKT5I+WetEPQtGmR47CE5yZ/MLbpRUUHonY5TPfXS8dkDAmvjZd/987zgumJjtzu0GW6w6MG1oTFvIcRSTdOrplitnAMlrFZTn8+dGGDzK44KTHqFmbk8dDqHkPm0eHG8hgS+aoCuDdBBzYU09Rp5/ivczhAlrRCO/JapKkEo2U6eRvNFoMU6HMovanTjKeCEffhG7U50NkM4k3iZ0CHPQCP2gkk3wvplVuzFeXzk5CGSe8jXQUhZ/fszgHmzjaPuOPWDWJYETJBmnG4fl2Rje2qrsLEeBFIGCQhxBADEvShq+Fox/6FlApmMz2jjhaH57d3t+eWEOzxOHbWhldLyGBlVWhDiHL1bMmhCCcpvpeJ4AWyWShFBQA0kxES6EEsAiXf9aUXcQvBQXACRQcJGs0ML8EbGCpuWs/JhvdNO3SQEOeQqnCWC+IJxkWRKfhgBCZM1FqJvmf+TeP04kX3j4ddkgajrKFRGCgVY+2Wx+DBtohleUIsEu4aN8sMRU5QKK9gCiVwdS+X178/H9xw+O6z4zzwK0bU4eInR25UgDWzV/+6tfCgLRDAm9F3im1/hZcwBNtCgGGKVhsfY4T9DyA6+9cLCDExyQwDPnA4EHCoODBGgM/5a9Hp4yVGYdXEYzIZSwslqevvjdUkTldv94oZvSqa3LzZ5fff76+v3s9v13+4fvLLts5pt3c15iIXq7gL755l9995s/2+3fmW9TyYIPWMYZUOAHRcGB8gaju4Q9goe/zIAe70hE3KAjkwCjzlnMz5JNhL8HB5ucUOaE8kRAEu04qekrzjOxMBQH/bW+GC1nD4uj1+f2M3m+GDmcvfcgMXNBKKD/yN0LJgfZQ+HQtF2M+v3ULrbwjUkPQyPo2XV3w3qyj1cS+RzzQYdRb8iVYnFaejrCDUbPhcdik15P7P1CiDHvt8nKQpwpJ0WzenV51Zl2reBAXVynA35GxUcVbfcHtCQwafai2oK+yMsIfnDwn6yctsUJqQUFAas79wzBhF+ccjPSOcF612R3d+Y4Xe2wEmDioGdeE2msYsyytOlcwQR7R5Xj8doOq3GeI5VNZfLoYhIB6efjzWFDt3Uqm/lbNjvuDEohRKyWHkHgJn0IyB90Dw1b0geJQRtmSi+9hwKPszOLnp4a//r87Im2pRmejj5ulx5987QpGSbJgXEiCvo8x4hEa+jcY1rYIzPrtcwBdyypo2aUsFDGJDqPczjA9o0AWPzIUxnDU9Jr3dYiATHRFMNggQZPcN+c51KOoPOZyxCwwKojyxAl65AtR97mu/BOhklCKLtbbhnb5oCdd1PRNTc1ddxEP4c3o9Q0oNH7CvOS/aMWVatVkoFqFFUcFc4IiVnc/Lz9MutCKB/FwalZuJiJOQiJnDrY+YYQ7W9uHzoJd8pAnh0cnUg9UmeaJEnWug3WkXyQRoQsqyDnCCbzxZreDIpIwDfxaFdmqjp2Dz+IGLdziONq2f1UZH5uCy0bp8HfoIEljnuPUDcE4g3tBRIisIFRKHCU5NA4tAPztTix1tJqVi/cWd6RaU29KZZ5pKFKvUJCOQW8Zu2RBQCTMguLTprDgfZZw6KQYy+kyDzEx4Ad/JxF8KKo/ey7fHXdE/q8tNZp0qyu+q3z6mBwgh4/IgFt0xigI9HIoxKxQRa8laIFziiWiIJBWpB7QGCZxKYCBKLyXnuQ4d6DSI0DIU4fNTBffvHFF+fnF9c3Hzbsw909vIGjVl/exxfjB9z4OrRBSsuXNjI09Xe6lJWsHo1oKPzG4YaN8SulVs0NDMM99z/ZaRwWYqRSePzxEbG5f2vwi7M3J/M1HE//bLniXWw3y8uLyzvTuBTHvYT9uw/yine3H3+5ffzuw7u/pwxOPZ1i/tluf7c+43mYzlqk6yF7LKqTvDkFKCsGnQyORyXCOCMaEeoqTCeixj7IEBssnBF5cALXwmOuxHyvj7C7rE/tHd0IogloZg3YmB6OZ0ZuRr17vPrqwrPE7u/sv3gQdZgWgVWHJyjoD+YGafoyXjF3CIrQPlMWECTT7NSZPcK5dL7aKE0PUikYnFCgZxQIu/FpzgHyqE9WBgW6U+awu+oXGxm6GyhxG3/8+Ond7Z0Ys7bOzy7O1nbOSqhMXaK/wo5i8BXZ8oXwrPdaoPRd1F+deg1uLpqQW0eXNaMd9UFZTJPzEXJxL23balVJR3PrLI2C/hQkGo1kW9yzwAn1lJGEo7FoJ3bxsOHiNcQmbciHlo1MtSaUyXSZDXa03dvCK+qiJWZCGMYXKkWbxFjXPvm6qQwCzI+UNEC5Wq6whCN5C8qTkvInxfhPjw8iCXa0bE/PxPsp4A5OlP4odzGnVxW6L9FD3GCjnKKxYPs48YZ7IvN68AjRHcYF9jhdpaI7cGHFnfj/EPVnP5Z2WX7fF3OcKabMfId6q6urqruaZJPNsQWBoGlBFgQYAnzjG/+fvrJkW4BtGCJskhIFmlOr5xreIacYzhTj8ee7o9qOzIyMOOc5z7P32mv91rjXlm8Lnwf3ebKEHvxUikEqXvbmx/X/TpxtKzgtwUD5WZXb9dY2Zel0oclHNQjAsOSUZ5sf+osu73NKua7luCyTPWL2lYXwWY/m7wHgxCewCHUyoMzD+8UHKv9JH1juseI2LilPoCvwoEieElQnOVbU9LxaPhydpQgxCug8tQe2bkeQ/v5aOxC7zcNKy28UZopIfg0NTImdZtoANGu/XAOmz5TPsuJIhsyFCNgGKEC9CZdpTOQewBo1i9dkUI6oTRZeefWV8ySeXiYKuijMzlfooRggPg2ym3BiHZoWoaI/QEAshOU7jg3Hq3rqvAFmKT5xOQcxKADSndLjSrUgw3OM92hUfpZoEzsvPcOorkI9smOIpurJxuaJCSIxagksk4sbES7yOhPBeLrSXRDFxeNuybIpuJvbWeIKPcXFmRaCPNXNTk+nVWV0VyNBVjdI2LSoKmOpbUy/D88GHUejdMNCXo9tN5nOUYw/XXCTD5WLk+mcwWGYA1MMCAHGuLurT1aUhl2qlPNKKmeYh52Nq5sCuxoZxFKafRBnKmNA/Zw3/oqvDC9euIbk2xdFb+J1d8uPznPZrD89PtxEcQy1O7NjKAetFCNH5WBxdvH1j3++uftWrafTsndPTJ5rgT0MeXk+OT/78d3y03K9IsqKvbU7xt674xdbg23H1O2nQwsJA0bakE2hWuidzGZNSiVafmur7guHZFRiiGANxtjYJwxLeSBnrtaRPhDCrvvzLy8ksUoK1K+w+CnWk0d8vNtfCbtOjxzrx7kdu9WjUqQ0/0hr9cfv8e54pe/ole/tpRrgAEQphoKvRTAKZlLdWKaw2NlMREBcCnry6LLA3Tom6TEiHC1wq2VKHllIu/sw+r2I1RKGzA4fgfs3dwo4tmjk4rOz6d3ylnIeH2+x/IBCFSYFBFkgbkK/ZyjR1O6K/ujhXj23/EKhBosWBFQTZC7qUDxMVI002n5qj2GVxmIJnD+V8dj5wWlcOLdISkLBuAHBg7eUfjAtsXLM4JgqPrtGAkhlUtZs2LPGiLdarE6M6tQOLjm7OjBlFUHEPAxV5EbXzlt3M9S2eUhZaH0y9hmiI30kfkTgIlT+rd89gYN9fL9/KjjxYBuldcbgTmddOs1KOXxKPZwkY8MQF4jG86bhwQIa3jAjV4FOYm181rHEhyCOcNFLXZ7wuFgQYwwMxyPhlBm55BDbsq2tOR7w3Z4VJ7du71fPu9vdA0H1cYjc1k1SAx38nJKQEXg6xddD3rSNkU4zqKAt+TUMNqxOpHwo3kChz7CUasP2+RBxRjEQTEfGn+TeKz/V5qocewHNQpp7i/nJ5Gj3/sPy7m53eaGsV4412FosoCciUvzgqT1GqjYoPU8xKwYoJhzkYgoXgmFF5RcU3HpxFA3/gJrlUkc47CzEMVDDYndHe7u6hTejVcuLXwZ/m4Pb6Esozy7EPZ+fr5+UI72oAkZufoIAIB5lp+EKExfDXbdCBzNWVfKPOmJB+evdu0qQwIE4IIOTpRksA5etUhuX0tygiWsjrJes0uLMQ1zJIje/5DlGze5G0fLe8WsWS9BYFRQBHs+yZLYaGIlwn7s17f42nbQEcMcYbmCVW+f6EAhWOb3RTkM7boWiBqK8okk829N915VLsqt9G0OmyBfJLMxvb12kfdrsjue2bOlfSYUE1Vyus/NLx2xp4xgrNrzffnNL/hPrCxYENv6k4AiTkD/YdDbdrbD98/4aw3A2bX7czUxhTMXDRoYpSwWVYzf7k+/tbyf7qlE/fwfWbx62n5/vVy2vBiH758uD7zyBQXH+9qsj9W4nF3tnJxdvfvHx/XeaVUDAevAf382PZouFLTqOgbq/e//+cTPjYiMnrhtpLyfocTn3N5uXDVtjA7FFaA+cYSh/RPdstmU7bAerVjDMFGJxs44Pi9xy0eX39IBR1fJ4MGNo5N5RYfpdIg7uF05Sbcf+ZZeYmSKh5e1m/2lWiPV4Wqv4AWXh9CAnmowVGsTtxYjkazxu2AiQhASyKh/4hfKRthPYdJAjBDtE/IBU9wrHsQfewGYkIs8lCB5MC+hkwS0VfnD/1hc16Rgg7pXheBIHvas2jnyhLB1YyHm7ODt7/PQ5BMzyHwUFoZK/+DHYdZdiy+CW9eCg12yZDt9jhvFn63bpdGSWMTzMKKoJGuzQgE/bOBvPrhSInJx++njL+GcpSQ0kEWSCIjG1WA6zBhGe7k2RmxJU+CZ7HyQYxxD0UMgjXB2cG1nLxWa394I5hHqCFQL0Qa/jqCSJc3xpUbr0ydDHV67w87Pm3RTSgIB6jiLVa1ywoLKwpvZ5Nk062NIeLoRLwbBQOk1eFlDuz1ChYeaoYIVPt5IKT0mAjTmA51jRMgRJ1A1CIX22r2WRwDhVT0lfOEESYrEknByLDD6f8hxp7/YsK69ljXfUj2imvSd7J9snu6mEI42e24MyhgRxpRJQ1YKW685mpxtoZ8d+LMTyDx2U0WxMAf8cKYBgEYj/cYqQDjq7mAmUa+bT7F8SMPzOthkVKzPF4he0PKFXOeLr5fj+zbvF7c364+fbN+rfrs45BBoEPq+dISFqd6QIdXBpB/BBUqop96eECOgWs7JJrUFCK/RhcTsgss6CD3o58MtPUrHtxEH1atgNEpkNBvsjoalgSzQntBi9+9Tyuitv7pj/tTNFVUoUaWi7HN12+VI6mW3azdK70+ncOmAhvrq7w1gB4jvNyQ9ricTsMOtTu2RVErSLjy+MhewkEF6eiFyo/OX/3z+tUwOcJFrTK0alCzcufGWZhLygLT71XH5kEkWc9M5wFiZv18Ftsjfp33awm12MRARZpHiYiKBWxWDYOJXiTVaLoGEbzQcUjFfjMO9ZPXdPVPtibL3GtlL2rTJIBb8S7c1rf8H8v9DO+PjsXADAvjwr/Obs/Ozzimrsa9y0GfXUMMp/LZYv9ht6tI4dA/e0Xb7f7K1XAu+nzld/N5r7Ng0jcR1Fn6WsFA5NgqTumS3mIF0qttKvzstwzl7RgYdPjjxarlazu0/v3n4zOb+iHD2cMbCYXUo1b5a6Kj3KNNPRd7fXd1p37jY3K5/akjC7hgwLQLDPZTX4c/WBURWtt7tePSRnf2rZeBHK0ISCUkmkBTryfMNSjxqU9kqgm+sHxE8cUhJ4SvxlkMF3U3AgJauxw0OdwMQrZ9LqL/RcFcyMhC+ontM0dHf1PVjr53To64sh93C1vYgyXiXn2j1xRNgZwMgeeEeEHtZxoFO9kyKPAUIFKwo9eGBIWmSV2BiaE0qw+2uDfuR+hW1PxlKF4IpAKlXyE0etmYM/CMOo405ezs8FgfSvsOCWDXkyZ4wW/KQEmkbonwpvWzbotv5MIhogoGICda9aR7qEkcFqcwIM6eJ/8TbtwMa1V2/OzEJM1V3FXBlghWKBQV/FSgSMuRtuJR1PTT2IaiqNl/MN80Q2rEn6IXLaqB0s+BRD+NA2U7UgxuIV749ZJj6l75xRrFjFaL0blvU5uVQHC1ml4gCtCZKbk/Xhs+zPT4//8B98c7939H516KBoZ8PIHWObCYvAWXoq8LpbFElO6uhH3yIkn4leOSBDtimvaEovtwmTWocMJd7DUMhFwutCur9e2n6gnkZ9AqgiaJZTHMWayZFa8zX3gN0m6qs19MjdnfKe1/esL2O1C+C5nbEQxBgFlEY5Fv44n5nc3J4AYG5gxDCsjHBqH/nJ+Yg0tFTagNDWmQXsiEiQawTBrN/DW7Db7jAjKJbf4fV+50K/LBYni9nFr7/99P7j9bsCcSezqc4cW7GgxfQkyF8/zabzx3vIzLRfQ7JkQOjDc0cdaQhBX7V8LHW6wY1tCvBMj0PIlinDEaVBhocWzxCxG4yfvU4ArABGxHDMhCSBYbcBEqBZwkbGPehUteq5R8vl1l4WH7Pg2mJMnVsHJR/vb1dLTj5ndxR3Ch5q3YoximBl3asXUH8tXixvvnhju5668WctB1YMQIdmzErL6iZy/+Q4WV4BQHKx+TQ6DlGZmiRQ0J6qJ4Hg3nBSg2hv4H4zUTyUmeMFBxv44ruycSpUZQrYF4FLtpLmj3zRfYdDFESP8d05YEWgEvapDrfzi6FXzyNSwTxVnSDEyaB4qsB4KwDKET2/ZD7PZvMzTSGtnfWazf06o6a7hSH620iHhQU4DPD1RS+FAcUBeqJFu19uFEaj7eOGcD7N3+DwoGEII/VvzQ3Ip+ze0gsEO6Ht0csdqDiYE6XTmibs81zRRBH0x+fdFg4+np1t18v9A8c8KBxQGbcqviAgziZXba/LgD1iBXzsDDi5mF4oxB2dvYfQjX6LK6lNDd06sLyCzLBCn0bHgtoaXkmz/GFAIXx1yCVnVGOqug+k6fCjtRP+aag8YRqBc3qE+HOfdKRdxV6YZO/oXnGq2Hz45Dp122Yn9ZVRl8HnHgl8ChT9ogyY82OwOujcGnqHiOMVrJoD98KrLDzMLtmbSEXTlUJMrbQ7Rn9/u4GRhhVJLek40NPYNYoSVvt3lEHWQc/EFuPZfc5EwqKQs+2RNME9j1Qhni5Ob84uvc4Mywlxn9eRIRGZIYpkyHBMEftmSnWnoStAJ94lxsjHxhRu9CTaRmkQPcP5q12iJCQIsB0Jsge7j08iQjpHocxQMmZGO+UKmEvjKy5Z2s3xIBp2uhlvWY0MAwujFK0zfqjnSdaR/oOo9qO6ihs4NgS4wCxdbcQj7edJpVSE79CwQ5zsv6WLCtJ7uIGYtGWHMo//4N3sf/8Pv344PftP3+//2b/6q8+P0zupBftHuEYsKWRtDTPukDepNnDmUV/dSreXzjwfkaSt9qh7KhByMPfKNXCeS8TRDJDbDKUiyLbFCnDdkpag5w/zW1mqQRxH5OTo7eX51flFkSTGycKpNWTFEuBOGGn0Alagpi3I6bESCLlOdBxmfnzmkKqxZ79WVkyOuCN6RD7cAAOSWwcnhAfxTlUguNpjs3TYXaN6KvXoWeXOc4OREyx7G3Lvv3138fHz3fsfbi8uzrEjinNVZzPRn93H65vsd3xkZdRu1Y2DZxgvlXPJ14l2mNqdQqwjxbanVeM1EOJYXdFImUnAii3IBMDaivBM+7WcVKwmScA4RRpJc4FJ7aFmzrTpACItPszmBezx4k3RRGzCcyZPCi5dHyw6jDofmy0lvROqHjnmYjZdDP7PvZADWu8cp3W8P9Pp/ELXxy0jR9Mvathud/KI4M4ETWZBbUVPfFx1gDyXetG02cLYHL0leltNDjLdrzd8u8XkmLXIVDSWSBP0WE/8ZRGLgFWf+qLQiIXZcS5mLi6B03yhM3627pajN8hzWPOKJnEE4qPS6uH+ZNYoqCi79rCU8wBmC7JVTIFsvT7OE5lrnz/eGnKogTTuhcdxBQIjXWMCAh5pvsDRry4Aot7Qpc9uOB6YfqLLE95fqYKCP4BbpzlUeD6FnkbOUDheLM62Dp26Xm0lAB5uCHP2B+8wilsme7af7tcHt9fsxjn4Pjv/Uvx9Oj0Uqd6sVJUbFLcCe2KM9Awu5cDaMaJSi4POugqZlR3i37Y3SyMV9R/FVPhcdHXzqPhLMlI9j2dmKD7NBHkMOspZhZiWFx8VLE1HAERkkghdKiyi72K6khSylY5ielSJJ8k/0ku41l4Rbs6RibcirVg3jaARLXnFfSTJd7NJwMRwiwIaT1GF13TaKf7m6rDfZK6AP/IH4QZjSVyX1LbuotzD9C4nnXUzdcl2v6PGcVAYNdjCi75eb2JJ/DFv+MiMPD5Q4uZYgzPPe/j8ESs00kEboGIh/WKFLDmRNQXb3kkBOwdJ8D6XADWyyTMDKFcvt7/OiloKMRus292Y2WXVzJweTrHy8an0LD4TJyYI4pMITCJPTuZvfvTFT3/yBr86D3a1vbleff/D+x+uv3eyyDjZkJtOmOgLymZvWVOgwKHcAyeR9qWvsovxqCwPxUMyO0TCLKSIVQYi5fB16N1HyaOguYSfAPfDH14oz7RP4v4P303/9jeH/+LblZC4YIbPG92AWNcXFGCWoYoiOLA11teqaslQqEAhUzo6+BNbquzEoylT1fp1vhF+fZEC0TMHA9JQsLDi1hiyhmvY2usAQGxNjGfy+OzgofKM6Hn8vJFK2YBRFYE0TScJq3VTO3pxeencSgC20Pb5/GhvhovvJ3drtqfeqBYP7mqEeyBlerhyACzvyMf3tTXJV1ctSXUBXvEKObUh3JQislp4lk1eV4iAi0IdQQuEfffm4vsPN59ur03KQqvyFmOIfVISeVsIZUpdTvOMT+OlNCDXorIW7/sWniQroRJQLJPJHPNcVn/eh20UOYdmXKSWAcI8YONaMNooGGRRq0Y8pgAqdkWNtcRk1boTB8SycClgkgQG14K/hrS7E5VablSXOMlPtCCEGDYTZdBSjqg+iyXpMmxevcju0GG8yQ3G5lLzxxEtfueXSGtevVvMrigQWoeDrfW5gDdjfn46Z+U8PMC7pWEg7s31zcHD2mFx7a2uMgqpzJKIYJ/EB3EG0bySyWwByddCsDXtgLYG+AogrvdbL8CShDM6+j1kIbxWgUW3vLvHgMT6YDI/Orvc7g4/3Cxf7NGxMXv0EYHUtEW0hF1o00PGXV7ldsBUNx2KxXLhUt8LxQp9mG3BPR+hY64P5p/niqO0GpWB1ZV3s6HxkUivrcMTrpUoTZve1BNff77eLpcKKRJT9wga8Fyd6fRYee+bE9wvx1nZ+9unh1s4kxCzXsSrMjDVm9V7x9RF+z7c3i3XBAmTZlekLkUgHMT30GHboR9WFh6Q0Lcrcnb4sC4tgikEUOgT852Yl/a30QzeVjKB0YrGDBYtwl5NtqCfJR3hlFwpW2EWjeFZ5d0apOI0nsmJI3yBkJu+Av7g8VeqRtz0Nk4mv73fmyYx/EEhFcMUSMmGM2hJdiJr5cIHSRcfTgb8HcvRD+3RdkerjUfwK/g8PnXcduf4SZtaUnpSatuvMN9xcIvpzELiaQ+GvV60h5Phszg7uTpbbB9W16M1ahJMOMByufLYrQIKtkDhML/wAuriGD4IfdSDgPlPiXmPrcZnMSVIjmHHYmAdZpHcq6iFXbQAmktowGNKlEvukocMx98cfvKzn/3df/RPv/qd3xOhhD2PjljdLJ3f/Mvf/PWHj++XTn67u0MjuThrwJxMJd0Dd8EFppxq6Dw7nTMPT+dpH4s+EeNo3gxrBi2lwFwW4JPGYSS4RcGGYWqBprNTm8WPBaJJ8H/x9flmt3q/OZjcXHzxuHrSnUZERfM78UWCz53CaXUnzoGwOqaADFISNJLARWzHtJfNppvYW3il2IBwH5xq0TRRRS1mo8AIk3J37ERyfOa+CTGZPFOmt1gIu63uXnRvkjvY362bi8IrJjYQIqXmczr9nd/5o1/8kz86Eyxd8JwYlRnaTgDKWRAeXNngzhKmLB9/+eu/uFvdHa1XpBGWTRcXim2J1GZ7ez/SZHp0FmUSf2evj2yA+Kbt77QCOdc+13NpIv4cxmRH3i/v7X0r8IcDTIwSiHmgRIMDLFnxbOH4M2YthsEaMI2M/ByfzDDhAJozHmMVII7UKDO6ZSNjbob3MlG1lsCRRRJiGs5zqEd1jr05XqKxppPJp7sVNaaWhy5hDlC4nkKGPc5dREfoGieY1jCcQiqrlYQZBiWBpqd7WnDzXcNZu7VPKIAiwaVtHVpUqdZz/pZCCHViEuXH8/M3b398fvVGwajaZ9z4sFwyZbEdP9bAj0/OTxwv/vh4/XCDmJYdcUzBrAZAAUGTKG5MMhHGu1iXMW0aYg5n8wW3NfJni6Yzi64TYJiAEY3eT/Qny35fFZl4GHzmBt4K5oEz70uJCfAdz851rzMvvTPubpYiNC0bfrPewik9lhxAhnG/yNsSWqegrFF5v59AZqUwxfgPpKSsUHvhCYOYvuLaGUEXgpKXkmtqhrGOaA4xy8WcT8++oBucvloTveAt5DV8AwEYTw933Irlp+8dO01lH7CwVz9sINOToHuQ7ZZkpFwMfKIg7/VZYWE0NGt7XzW1YFpVgtS3sSEYW4ekEyuyaUcHLsMHK8CRuSh/VT4e8QJT0+ttq0CiI50FyQIuXbWRTBxM7jKrVSEY6i/EstTBKxrGt9hdWoHGTukMkhlWUoFuOBsp8aBPeyFV6hEtuZBIl1A+ltZzKZlcVBLc3iJWTlzugxm1LjdVrAmkRcm80o18PMbBREIrOPhAVPjAGUULnVl1Xjw6tmBCPO+07zjaXZ3PLRY7HjhwVNbbLXFdnM3fXVwAC360GReIHCvv4Z7tX8xmmcgwY9A0itpY2NEJXSd90OB9cVr7nCStE/zRLU9dhGN3xCAOJOWFbYGSzo2snPxhd+J84QvCOqjlfKGz3/35L37+B393MrvI1WUoTh9O7exW3Dufv/vyxxuBlc09X2fSeS7Hms8U2sNqZYYtYD6HQyKxIkk2EgxGXrMb47db3KQICNXEXj5+vBGE2ccUmnug9Q6UPXxUqLPm2TEYnt/sHf/zr97QkM+ryf1f/Idf39+da/4olslfLbqQfWyLAPcrdZCXBTVxstbHB0qGvAhhLY2l1zwOX6i5aLKmTprjrMSNYKBesrRTB33oZB0Ouz0lLj89kst1SL0XajijBQ+F40PjrEqRizZtWZyrxewPfv8P/s4f/KHAGvPUAAwBlyXHYimZXW3z1Kv84832w6eP0KEH43gt5OZXghu4a/awvrdndMtk5k+zabZwGt/5NKlGWAECIoKcuNLqgmyMAW0uZpNrm0xXL3bAiFIIebkMb+EXhNGEDQdV69LLYQsrwC7qFAY1XQXOseytkhuXuDWNgyEUgU9OJlJTaGps4CNWUBQGrt2EIhBEKshkhG5kxtBYQKtWM4dTUrAvE2iVCnawdlkAB3YCFhI0Gv4nFa6hr4OdmWM4FDa4l4nDeN5MoPhM3VKCexIqkgbCjAwF6XOhFIuhg4EIZizIolLmcKWk/t10xuGgaO/u765H4Q2iScSbis+WUbbjSc5AeQ8iAIIiowzg32IONqkKNgAKY7HE/lbjmZdncX+ECSoMlMkxpDCh78Jh9qUZBkoM1eEe6oRAgROvrFBJwnRLDAp2eIgT1U0OPpLeWF3rYwlQRKXut+s3by64W540oGRADBTss4b821FRyOkuQTZtDkf0n3bN26u+A+Tm0pI1dXJWVujnXoEu1XoCtjwHKHRkAHCZzC6Pp7/59MMv159/3XL6WAHAQM3sWagiZduD7x0lXjeU+xXDEkAEQ5iQxrZl5+lQ20E16O3WqHOEs2bV/seTcrTnZyfMm9vPMgEvkoQZ5CkoSoselFlUbR01VA0VZ62KOfPasmTr4jmS2ZfFGeS2LM28uQhZvboJjGpWNivFqRPd0IMLAFS5R6kjeIj9itW0KJ7ugW4ZTHgjN6rJDN03XvBb8aKs4/jDzz5tyExg5/YUvE50IG/3CX4bSaxPGH23+DhtaKaeWgc1tjYuB55TER6ffNy7OD8/eNxezueGcX36cnuzYuNx4XhrQOVCs72n3cfPN4yOPKMqIiSfS0c0nHDLD8znNCUOs7WHTBNi4oO9GoBX6bOqIjBocRnWK9eVZVvBreaVuAZu7u2f0VIKABNgXwWU/E3tCElgjtMzMcPkobmwNNW17J2lFEX2PI2ESkhyuBfzyVuHMQkNhbIIQ7UQ2rmcUBGPIiiZf7I2GLkalVzT1Z3RCdJoc3m7vPnTX93cbp/me7cscica321/+MFumcmZ5nWne0e/rxjt0da+l88Xhx+8YFK2l3RMVXE7RGWlBkfH6ARg4h8jEH+YqecvkMicJ630EAmMw4zQynLOXnWoXrCGKe7R/oeHpRT4sszAvVoe0IXDWVYy9nHIgf02s/tndTLsX4nthzy06Cakd/O8f8f9KoTOy411c6tiIOkAu/EwzN4TW8BHsg1HdIXFQdYsaMfm8q/5EacS9VJ39KcG3jq8fNzXDq+1L/9h6GhMigcEDz/Z6lND+EDmS08X27uovZpqpNpjob3nMwJBiNMJYVdSIY1HMx+Ka21IZTzFm7aNh8uuRlSAltgJ7XAh+WYtavNgZO6O2eF5GQaT357ZIMxClXkBk1bRhIhaj5zOTtePWz45KueshIea9mB29pUbyhBw46hYhMKCOdDt8AgNMJ1VVjUYQuNIaAEy6vvB9HlS7MGBADQPdj+dX1wc8Z8UVc6n8i5WDfovbz6JhkN7Kz9dsMFwoF0ah1Jz6Kd3ndtxEAe7DpBoKvgfdbFVlIlpTIxt+6D5N+8JPOYihlDYL9AwHcgEKoKTIYxZLK+GazpW0Efp+tHh2WQue2TBxbl4RDS7pNMoOnvY3fFdS0tM4MMFyfjq0/W9Ow4pGmgyTBTjCmw8xbAaNYSxlFq7PNgsD/wru+vAxUJB1QEPk974xCKGp8dYhyTWmMVAPtxHa5UL7XzO3hyUqV5/UMmJhYUPAl2cav+iT2rRQkoTHgK8U1l8MvsiNOzALVNxK2E4xTz+CsezO5f8nqzExcH54ng+PXSIHKNJGUVswg1kiRk8CpZi8YL9jNXLPdmPzigRTwKnhSvNHRHatglOK2HiS3te5ZNQ3gCE/JozUWczpNf4GAoXeXuKPlRti00Bm1YIvfpcGNa3DL742ZqlzRFyLHZLaOJJhuHB+KrKrLsgazk9ouCJVWCGNxYs/DcyFLcBd60qlkWIcqzBMtnugnv4ZUbkI+hEaSz4vyap+YrB2perHyDLlxXwahijPTrbZ3RyenXxFpp9+/EDazClRSflCQ+N5KmWCJOaUyogj9UctYYEy2y3pj26d3oiHTjcXLUpDE2NXzAEs8vGXU/yIRU4xB46mXovRNegU9CSNrq/uf7h/Oqq/QMjN89RXW0317fX19cKgj/88D0otuv68PxcOduchI/Fw4KGYBGJTBplOMVKtnCpV5lXltv2M/Wpy+ej6cn0Xe1hn07OmHhP2+nLp9+9f/r5ZHm12G5Oz+6PZwtpAUv87AzI3bd7uw9PW9D64DhRaSSIwOxI38H1ggfETRjeZJE/3R7UxzmcB2xhtQteW80huITB2ThImFZS6gCAbTNh57eLhPNcKh5ZFUo9PC7VOfA1iNPJ4XROIFQzP+ufIHtJMw6m2Xu5Wd/+5oe/+OJXFz/+ye+97F9BCIgYpkRatriNBDay+Xn/XuH2jmhZuWwWIpl33EkdryYPWvJsZxrdqZM2TOUEzHBc5F5wvz56+4rrqzDB3/SQHDzcPJ2+XO0ffrhWfLG36AQab+I4lSG0eFWzltfDUgiFQDPUxO35yhb9uKhYoo1ghiOGCG79JbrMY68kMsmL/hNVG8N/FGY4zBZC9kIxYJF0ZOEo7ag8QPfnElDHK9n0xydhdinwUYiFFAlnVn8y7bnZejwRj8jbyayizcoJ+iCVIFJPKMqakjLSaxVhxdOaPj87e3vx5t3x7DIvXURjc8PZogIeAE+kfpJzphmYIJaZFIoOacusQHU6/bhR1dI+8OSRgItfNBB8oATEQ2zxFkqx7UhZVaY+so2hggaL6o/fixK2oAZeMDddkFj5zwKZieWleaaTUiHMUj+3WWS9+vz84eV2yTMzKb1U2Yg1ltvfc8CuTb3T4Wdg08bjAe6X4g6aAucel8T7j1VK55KCRoA9LI/T59efdp9/uKdfO9+x8HoaoyhTh2UJFgcfmamncsSP62sHtvAkR5kow9czrF1mPlFRmPWy2+Ak/HNU/sAK6DZon83BQy2zHlaijh5s8ZqtxlD2hU0WF8rOhfUoDSy9mfHta5zr/O21UizXMZatCEqzGuza5aXQ0QJBDF4UzzRqNCpHcm2BJcURQRNnV/SwyhhzCJr1K+egipbRsvkBc7WQ4eWrDQwog/a+9f9YJtxvhiyWTNLsfZ9H3YhT4LRqT/AC4d0wa7aHIkshYg93Wc9hxyQ11KSOvM54WONS1UdCMnhBRA1+yHwlPyBVtExUHo3OruR4OfrvP33+6/fvsaB5GUZI0Vrv390uT67ERufn8OmGjSun23q34C4B+VAcOzOLakjA4ms3S/8XLqY1cx8BidCVhR80yrOWC7RCNUKulY3mrk4iMgnuWKvu5lQFtwAYEVvFKDd3yw/vP2se/eKIRuqmg7vWt9D/w6cP33733a9+8/Hjh+12Q9a4n69AVsiK1ZPpiCr7p9PCkPiDmOBYOJsfHHmcVcbOP3z39c9++rf++Hd//pXSk8FN16Bo+bD8y5cfPp8sf/N28evnp7naGaNLlR9tDs6fD9+ZUjZMDdJMV6CuZXJ/7IIGwjJoYRsO9vCq4LsfIJkvMQcDKyht0bGeBSQ92RqNLAaOZU/vbToTKVLhwBEimQJ3/AJ0USzBz3zZyAfS3ZJi/lht6FcJJETee/mLv/5fJsdPZwtt3OgbzOPpAImy6xhOpgKWBKk/3Hza3K8zhfjZFskiiPVorF8oJlqFi5bCyt4L2JkvpjZUDLdfxE1M+VmL9I6txBNibLg7NhVTnx4uXk4/r1fL7dFXV3Ny7NgCkSYXbJ8UhI6+jOFEaFvanZDYiKPXyuPS+mNCkxkIYbsTUCDAAs0K82NACzmiVkhJ80C09hXyBWdHQMGH+ZQ1pUJ8C8JnPtUb5HTqfD56hfwM+ZNQDZgLlBdmMLm2TQQ75hZ/txxS7oARJweXehe2YSCQDJ59mLRWg8IhnZ2ffyEYiITrFTdaAd1SkItVQF0I5mEVwjyscrjnQbVrNSR+qaAlcfWrRTKfCMVBFONi0SYKJ45KE4ZzdF9xJ0xsbIjjA2MMAWRDSff3ui/jx1JGD0hSD1G4mWY8YgeoBFH8y5BkAdh+hadloGePi+eJIjHB68fPN3d7J3PU0vIr1B5in4LM0u1xCORXg4hdMXDqs6d0sf+4Jg/bu/e/erl9Orv90jPPLt8SgYqTt6uXrYNNL0sa2JHFZDiue+v1979ZLz/cb/T/4Xlk+7oNZ4Ft4G5+ejWDhCHsaGQjVUcX+3RWXSU/6y3mamKH+6uVWuf0tVqF6exiNLd+FHDmPzD7QG1oFLksCpKkhPQTZabqNg20WJPyaaJJ0sLITWD94DAMRbREq+IW1gmhFrMr6ypeZI/hIL8DmbGmEBYfJa+AoUDTKzOiORDHgP1Jy/dbv+eFlGX2okCcxqFsOI9kFkVVykbqq72+bsZq8LyxmDb7iFF7YtzMtmDw5DeWHsbc6xrG7B9vKV3QRouo9MNN1FD1A+VgRG0+6v7/Bz+bXF69EfZiYi6dpl70ivHcBtH6KPEM7h90jLpk25xfPD5sPtMtVmJQZIC+/IJe9LX1D2rbxaOooe4reeGDV7ra30EpkmLFoV7sEkSwpkxeSVzmnyUpNjPqPhl9dgz0EmPo/v7zh++vLs/nF0KTJYAFJGzfuV+vlze33/7mu7vl5/uHu9UarjU0i4tiyEB1jxxhgYFHXf9kt2Vfs5yQnFR0GZMk1+XlcP6nf/In//J/+OrLi9/96R/Mv/75V28ubUz+7mb13/6r//jp2z+f/LN/uPh7/1jrh+2KlqGbd+cHB7+z/ayiWATFHnCPCOKrnWh2kEsqxWT5VRjTI1gP2CXBzT0RXcMZwgalXPghtAB1SnaCpArIrD+zl5l21B5FbnWhfGkURfRo3EnWWkI8Pd4wztecoQe1W45dsMKiOhZde2j1XKtf/fIv3r6d/4Kbsnf1+eYv97Y386NzNtRK3c/jbuX4meeD93cPd1wIXKeQPUPYAZNbeWUy4WfyiaHxKasWwXPM/GBtNHwxCHxXjf3W70CYwdIkSQ4Dr4g+k3N3djrRJvn+WdeIOBp/ZTIZXaZ380ISOFf2zdkcJxPWLn2DSsFK5fGZGJKJhRIEhKwqj5rbM/wTKIS03sN99jFRX+03pkQ6yJO9InL5CF6oi83mjsbDFawADxhxQXCM83ZnNpewiw0/3McN7hojCdSYFvtGOgEH+bI2Y5debTYiGDxjTK03LqGgtQsBRzK9j4+fEE4ySsM4y0w0BYJWesI47EnCy0DVBDp8gnyrZxKM0sSTnAYH7BWCjpapowImetM+PSxtVWozqmw5+SP33nxlMwOuXgbOZzyEJ0FbjmRJgi4N5tzWm34erIn/wbFP4dihyu23LrutYs/xtXIS+88nVxdnOqlo6JyfpCCtD7pfkDkEGjZk03n99Q3U8Bfw/c3YXCpPpbXw7nH9vPz0G8z8aTZzCV4XQrv9iLJTYVn0S/Dhh4rBjcTDBocbobLdBNnT0KGB96x+t2ZMKYKjHpN1bRVcWrrV7hlmqM4op0S/CoYliT86Wj/bv8/IXWlv8GmzXoqFdHK3BbX4nmrD/GtpGhHmt4cIuKwKXt7t6YtdPPo5d94XlH+y7X1j709xp7gFn/SvthGANe5hrOex2rNk8yfszmxPjoyeWWd9wiffBy1BoJ+bl/l5iUUDAdk8UB67Fy7Geym0vB6CkOrNry1imlPgo+5qLGrdcArDMyPA5w2N7ikx0gbS8ZhsMuY/d5ISLJypkRe8aiH5z5VYN6jGEi5GZ8yXINxphLp7ujw/e/fmEhO9/3RjsOYSoBHTEDth9EsmiPhQciFY4Klulmx3P/EWxgdLCx1hiUPGS5s5lomda7U9jQy7gPM5qIE1qVBBB7N7uH//61+z4pafPqvf+3x303Eh1ZNtrSo/1VLJxZVKZNMf7cnJmg1WS7c3zshtTUidHv3CnR6DcuhipqJ/ssUN8WVj8M4Qvf10tPjqS/imsP3w6uzoD//Jn/zF+9W/+PCjxf3P371c2hU2E4vgdm508xcKQYGq2dwBDwx7pFiCZRCcQ1579stIi8CJn7SwwFp7W7YhERQfpLjYshXCUh3I/fy8FlNSSFCMWdDn8G7Y9coDtc0mYM63Z8GdK9Lq5An5SbAmuEdvSGvAX6DhGzzSZkBjrru//PN/ax/Y4s0/ff/t3e2H3+w/3Kh10S9P4fXGccbHdh486cCp7g8dcKOl5wHATmOPjIp1+fZwK6G7j2EZcJsHYHS/FSye0n/ohPB40mSH8Z+SypNjgJ0cvDm9+nD78OlmqY62hpMMIZ2fZzqo767Xy8lzuzHZhdaO1eEYPukt3EBbkFpcINA+DHKGFWst1RtlI1criOkQPbundjCU6JHgmF13OYKUk2JV6iKNeLiUSOkQv3KmSRNma7rYrx4v2HeoaI9C0GFFqVSUFtDSVaMxoQkSR+kUSFLVqlQY7eNVa+Autn5htx+++/VseW7KWm7oqzubX4pUIAjzVAfuF70yfGivQou7sFKb+NPTszOB+XZiFGv2l1Upe0RRgW+CtPf97d3KMYRT9UmnqWZjRmiBNosTZvRveEnWgT4j+Ilwzm/CjGRdGKdHrwAUb5oezvfZ9LvlDLqF7Fm1JPPhQUXdtbCNTM58N796BfmQy826Y9Xb4YMPdfZy9fye5aPeTSPaBKC7WLAJhZ/EI2BLxrHLP0MK1R9HmzonY3KTDeMb41C9wN5Vfhy/1R4unCTYLPPmIKKWm4z/H9TUestDSZTNcThNriwfWWS0Dk66GpdlOjq4vbUzLUvMdr0cDwmsg22gUE/cqmsNlfEaX2SmEioY23RHHk8Yx/zUrM3fXlxqQ6GDwc3950/LGxE+2+2FGUtfYr4sO8Mx//gUh7q1iCajG9iZfQqrNQDor8uGlEhboipL34pQ2b2gMSYH2UKYtldZXvmEPmfLTTIVdSpmGnLQGrtpgiFGICokwuYr587BBzOHnHC464IKjX1eGmswVd2PhyRUEuuO/oaVbg0ZfRnJQEQD8BMF+2n72eQu35x/cXUphfvp890rY8VPuMHkGZ993GP8YPKGjiGHzRctiwwUzKmuS7CYBn28Xa1PrvcvF+rhM2CGFs0eG3kfCwcxUylA0HI/bW9/88v1D9//uuK0knNkweYqcWzNMAU2tMZkqbC+rSea0Vye3xhIf6uBfVheHSyVdpKCHBpraIJs2MwNt73b235c7R2utxcHjvdhkx1oIDN78+Zx/vXx8vkf7G3/S+erPO9+dfz03ip5mvIbfqad6WOB6G7WAw42YQLMAA2/Mu0IJ8XvZXJbqEu1FbC2rGlEdRHCOoQYw+/g1KNNDOfzgpL4yjx5r4ymmYjQvmJ9Vfv77dwReJevMDshwOy4aFuqvVIO82rfMOphm8/fPf7p0X/6ye9/+XJzc/erj7v9z+vN24fd4UdPmjlirSINrYXElcYCdre4Y4h3fSBAxIjj0eSa3QwPlIZhfh2TbX08acEas7kIoppATITvHLoi4mRHAhclx+7GYdCKQa3rs23D2afWHHg7NtjSe7QTVS3axta++2f9idnjWMUMLF+QFYT4LbOWd4t4yTplgrQ7UXTzgLRAKjuDSqgQK42EOfAjwUk9SEdbHnrVxwPcIW5qx9zLzYGnqBMGzAPA/8QqU0vvl839y+2p7XbaU1Z+Y2u+piA2fkp02Z3RWvs0P+/5+gOtfX7xxcThn84DPJlZ4IZPrXCVaftxTzCeI4Bawj6mIOFBJ4IOe1IfX+bMfDaZprYPe3pRXK8A3N6lsHSoHgrTVdYoBTbGSeiCElzHYPKWMY/caSviGeMa9x9QWpggL2kAlcHDJnMX7WA1mUJKaehII+TrKJtWoJmz6l7eRpQWY3xvxmPrDv6VmFcHHMapK89jCMS1tSBT4Q3uxJCdloMOGFIu40FvNDNxu6HDX2cUeniQCWT0ZzkDDbdyFSkzfnRGI/cEiJVcCDUoSyPwvfxg4AABAABJREFUOgYJXRAA5p/ajkBrp1DX3RgTtzdtepOrU3i05pYO5VVsxtq+AnAZViqmQVYYkqcxtKI+tXsPKxW+z0/KQ9u587g9caoT6jyceFkzLt2U8vjrEOEuxuc+5pWsGDVi1bUj/VBShaHrLRYjrWBhfCLBGn/jXbcIPpQ1OLNYassV+Vj0X6a9z6OPf7JeLEIrHRtYWNeMm4gwyRR0yB8hpP8zEvxnUimebtb1qCt6PCr4UwZEZDATsMmqIDk9Bnu5rC//QWc288vLzfXSGDWL/p13P1LKeKtmvNCA+YdwlIuJJoHFF828EcejwghI6gdEKuZeI0Vm5MNtrfhulg6/JfmktHQ2/glGjEqsPEOscB57iuA5CeTu+kZEztY+VUzWydxyPNy81H9NDqxnAzE5ZOxWGbMqg4agjLLjzq1WB85FYIUm56LRDMynEyEMvKIypvVTccI2wGew1QEbi7PTP/xn/3Tvz3/5Dya7aQWBuzd2oNjGydjc3iVvpa8lASKgBelT/s9H7/lkE7PhAaQMsiB1EYkjCSuOT5eE/XYIsWu0B2D2dj21unupnreDesqYkNWD9YGu0Y7Nmiv/TztUqZKYAFkP5BCM48jEwYGLRJ9NiYTxQb55u/3rm4//d/7F9Yf3AiNHF8u3F783UUZ3ty4WCEQrKEmJW/HAuBHFodJHI2CWPU6UfUdU5rY9q/O55smE4VC8T+LKOIgmJmY0o4Sq/+Kyai6dIHZ4B/kO1ta3BCEr1chxS4pCL40HB1sKv1gRjG5bht7bOJxyjI5si1fBMTrj8d3nhgSwJuy3K1BOdFnlMI2fks4M4NDb1f9/RnYtnSK5qUYXUwn4uBU5xmPnNsLMgDn5VPyDKB5Ew5Hf9Bw/1d2E4tiaKu+vLs4HItFk4sWJtxU060xI7HR8MLXp4txpi8pOY04ym8SV+GGa6uchg44pOmN2QJ0oxxMOl1MAlzIsCsiJItkR9rvdPH+6uz8+ml/OjzVaTZi73+v+QUI6bv+KN90MYfHaSI8bfwalNRkKwHzKv4s1YivGcTwO1IrVZEO0nRATeKi3rU6h16inmnnzMmenA0W0b3H7SheMxbMM6h787PeMnlcD1fnP9wvZx+np2EQQ5oCEVzipWQKjMAmVacqYxcbu7hpCHsX+RtF4ekaF1y1wa998q6ygPfLsFRUgCCHPVrfmLmOpi4rgUM8y5GxwuKyrB+zPyLHlNxc90xmlTCKPpQYLdSGUBYROtcl1P+CTrROlDIJZd3C4ZAR89+v9PBvhEwbA/pcXX8wUyCmJe1Ihze5PjlGWmBO/lPAwWbCELYqttSpYC4JcjQ9OFBMx6h4Yg/iykcHxiTJNDaEXk8CMStcgVV9+pay6OrKbYvSN/laItMCikTpo9h4fQndfCjIimisFyPPKqrPUaatuapYx0Ov3FAUWLV08VggCKtqG67TbzWclyHtv3nz5O19+8+2nD3f3ty3hkEvvNjxJpQzG3IlxY7euGApNymY1fkTW2IfkHupEom+quMDBQm27zxZOWbWFWu9lItqLanQER+ycHYxbHDhWjIJpzMRBVQqrRsht+/hbSztvFPp72itP4zC2c5jmtfrJ0kHGEc+xU2R72oLDPTs5mKiMYTueHqkjhL/YK611Pjn6J7//9qfvpl+oXD55pr3U7U9E74WV9h5vdVuWAfAMLFbfj1Yqp0hIWvybuDMRrf7Ls51WE91VJudtHTyY2Zu9inF6lwEm9GXV1L+Iyhk/It6uttLq3CZm5FZUWZurlZr6aorV34+YcBOzivD3zRXReZoeM7OcNK8oqQ6JNOVrQPbgafP+/Z+IrDp0HlrOFmsbMJ5X3+4ebo8OLg+OzxSk4EWRfmSlkgVkBblTBjprP4rA7ekZgHHZySTstK4V0OJBKzo2c7GnuND2KpUP4AmIIO6+9pREq7IJ2xYcHrA4uLbvVbXH7GzzcFscPCvG32QQ8RyQSWkiYAop5TlQ3Lr5Q99B2HRohYyZbx3EIUuN81kSLAdxiUxgC4r+BZSTRt2MwPXTpGaZjhFlrFb1gbE9wt0+Xd9SPOcq4El1hmajBRspXxxf5Sre2tMcjUMLuiVgeH15HfWiMAZ4whqsK48hyTtoKKSBjse4VX8NxpBNxDATFHBMHyQIMS6bxwMBBS7RnF8OU35HTNy/p5ebzfajIOfB7uvFiRQFpO3TvvkXug1XPWXiZt3PT/3s3WHzJwJYj4D4CmH04lWPRLm5IuPXM4CAJYYLZevckrvEb+MCNHjLYmOlxyIqYoQ0SbpnmMbAse40BDDCcRNILOf2aM82I6kPETBWuah70AUBYopXJId63d/XeHg1jj7VyiUCXTMo1sj9MwlEIfERUaBq6C/fiHAdmYPZZMyiMCoi3auHVB6RwZE5EDc9sOjhvTUKJFMAKOEWwcJgmZeD6Zxf6Bn5rF4XWacwYhTyUH6Y7nmezaob9TyaTF2v1Mjby3dY5OZAOeL6+kZwl+CiFlvfnUi9pz/PZBJmcsjEp/mYUIRExpYKPQfSt7git8arNI6fy1Bq4SCx/aLKp7KvDdvf2M6s3SjGSXUYkGd6RX/L1zJPYMTfyg0ZzobPtAqoZkT98OrIR2g09XmiFvNbWKMfGsUCua29QsV3WvCWQAHQw10u9JvLt18cvTu43rt1nlyjaal8mHof/QHyB41s6BCkR+4HoQrTSbw5vu5BzEa4d7W+F5Ah1JAZsixVO6ztJK7hxmJ2IIJqzm5mznFgxbuNJvyOf+IrVfEVZ6C1Kj/+EQd9UN+QTdTVRNXqS1NTvwiAAji6uDllycOwIUiJhuojsWBe+5HMj4e3D6TF0bRFtp0iWihFbko56A2E9few1vrPoiZVLTsSDOfa72IgFBgec5O4UArAsQvqmnJBpViHia+qNrugDkQ4OGQRSTbRqtZFCSaPbydzWeBMPlGOoSoUNbNerabbmYKbV3hUwADf2PgkH8C/sN51Khae090lcHzYHp/y1Trzy7ZQx2381d2f7T2u79bXwoRzbGIBKjri+RALQEAeLZTxa+6saQSTUGgG6wl26YGZ/4QjJ3YpKpy37pJq7Ge+GhLnMpBkfqHxLNhf+nYLh85nAI+ChyuFR3VomHEOntszW6aspmmtMr4o9zH8NunfqCuCUD0MKkRpRkaPKRLQoLCFccZZ1lYsa1LwiFMeAORyqSAbRlbhurEN7UA6Go89KEelOd45qUAsS5uBZIQeHL5HHRE7tBLoW3oRorXqAexC+SgVbgtY9VbWylx9FnaTaGlCe8AwAUhq2QPjAuEGJlj3utPbfPEJIucNU6hMPdVs66LuGBUOgrnVvV0Fu1v1TIyP6dFFZ5ukD5tpWIfVqJvEMwzBCrEfkoQFvdIawO0SCgLconMoiBiY0C18FgVRWfiEqU6NDJn3mfDRNfgvWa68HGxgfwNGzW7bnPwdWA0UBs97f8zWCqllENfEhApx7Ps50RbJ1kWmAi43/DF0C6aYq7tUNmG4eQ40FXXjx9fJjWsNOkBx4RifC5ujDzS7QnvuSZbcGFdwrvCcsHLyGkV8uCcJg/IZXF8Bqm6SXY2rAWFhaLyD2d1eKYPm4STGECpIMCJz13FfV4NsbE8r4mJ7q9k0eOEOx6fPp+4tCs0L1TgIwJQ0WzOxGM9ZL4NiUh07G0Bqq6jCwafZing95ezLKvrb//3aupk3H4Nced3VLa7VUi3SJRHbrGgZTimrWNbTRaGUWTEdzctCyx0M3EMYG8xTqdGtP1AjzdNHYnckpHAQymrgCO8nWOPa1r7no7NPFQ95VTui0Qynz5/p1Kvztydv3pjap7s7wFV5seI4BmBF1QA3jZ44a5PgAX4aOMgsQUEfnxxL4wg7yz4+MbyrTdaCBllVoG1144EYu3Pbaxl6/Dj0NMxdm7aKDQDsEWpq9q2P1acuU9b2isbtvHbuLnI192YEHjDEQOpsJ7McZlrnP+jxWxWxYozWbXdiU7rwrV2BB7sVm3j3NBeX0LB3drASWEGwjBKruRPSuLW7WfDhwbFyZCmjBAmNLWVWqK7JGqnvSC58LIcbUFOM7AsGbNuzOsy4nji6R3b6rvTY/nxyyLylfVmDJNZauf56u76cH4mezxT45LqeeIwEdtlHvFC/5MNHFceH+mAPiDiEa+L6YiwPKhpmWhx22IPe7yeUOtPWnqT7l0uV9BoyzkDxUyU9oJ7Y566pSSf8T5JgCdSes02JiFAQb0xL3eM9bWtYlSI2mQkjtpvotdKF0nxIZZiyRUtwL7q23fLqjqekVinRHQaAPqpK2TbTPJq9bac7+XBSYPhJfVQb9HvFOmwucpIgWr5Xy4UAF81nt2Ujsh5kz8FmWhf6JWbxxN6hgqexjaIEHV4xwq0dYc8vs9n+1TlZJqWA+kESuo8KS9nBpr/DRgBZZKAGnCxPzNmpzrEV0MrGyB5VG71e3q9XfI7FbDGZnw0wMhUiNKQsTWnxseFvvwhvkQZaiU250fbg4VqoZfN0MrEdt2iYR2jIoA6FOzEvPyhAgZwelxGcKxTHo3X+TrPBuP5LFAblUC3cRCpX9oli1PiQSD3uL58eJzkYPuVuAjH8zapRLS0Hsb6ImYJJQpDTzue8mQEGxGgsiEVugXC6m7+62p5XXCRErumekkXbFTvSmVcmZUi2B9ktiIEGB8WYArt8wAj1ulwmBPUNO3QyJE8Kk0zDYFn4zMIH6rVqEbhYNaxhshyNmH4EN6+qPtoE8iA+dzqtUCicgpe5MlLOH35xqogJeFr+bqQSwWOJvp4A5zMDpPmxMqrmncoBsEPB1IzKsNAA9pfShGFcbgVFz+cw62lEGPYOcuWqbYuwJBTwe7i5Ny3kGF8oDZCji9cMO7hF1yaA3EMbGHsfSls2p9xgME+xYePy7rkVKXnyEmITCO+8qrFExZ261bix8ZtX7DH+jdtmFwyDocf4aim93x8MkjryPL+N20dB5wWvNh/qKXR89ebyd7755uXbX788bnhTr8LJ5uI0cVyMNFHL5Bm3dQe8hZSCLajDTKMrRU30WlE5eq8igmVoV6TDeyRY2qZoG7K7atXKSILwetMaTORqiOblX3aKyPReGVBfrACp+Vgwxe9S17Q3TbhAN4tHuQM9qDFdnpTKCkG/autb+nyd2N+WyIJECv5O5vvqxxxePNm96POApzVwqdkBnapXbWa8fKwETGYsowT/eWsqGq3LsLEQqWTTAFshBoaVE1lhaauaFMWj3YRKsYUafofrajggo4UQ5yOAahe2shxjdn8xv7UrKoxUOmoJ682k1anpGz7WrsU2vTS6o/6WNEkQ7Dm605Fn4wD66CxGowAD02TDsOUfd+f7p3fr+49PssHEjaEuUkEi2NMZFRxtXTsFb3CM6mRTinlYPVq2iNzrzd0WF1gYld2U4UfM+Nzm7S7U3P6RhiIauOew4DIu0eJEQ4QH4+aiYgEHZYI3j1O5IZ+mvHWkbUMAiflwE6PZmTe86UxEhMP8GIkVVtjBcxC2JLxAlP1VgnjKpQw0MUpbFNi9f1rhIZo+WuaJJn5A4IsLvU7OMXo6Aw8V+Cveal6v+Tws8ViLepIMmg8fNitYlNl0v6bcWnbN44KsWtWeqZucF/7owYlczI8LBrdawxwrW/c02EkUihf6p+zx6VbJ1WYVt8rgV9wAMw/mOtJZ2ZosOjFCbCUqusbdUDYN6fe0UBqAgMG/iG5qoSKWy0/ymnfTHKjv6JiHp/d328nsyFmp4l5mhSf1/5N1rONSeMwJ6M5uFDL5yQ08t4e7Xbd//XlMcbyIuQebB0wtPt/d8aVzN1ipu1rTcFFg4FkMy6F6VIuTzR+Ctk5NC8a60FelFwSwZ1n8/uQNEs5hSAVFHkQZFNEJl7N9m/tr3GSggPt6niBKkb2x2wmlmAJANX1j1oYZo48ZgVn8y54aBfgjYhJ4YQ9QRbsw0Txo7JzqfKXgDTLlKjPOUFYBo8I8tgIqpCJLZKhznZw+6ldRJYjK+LSjxjeQxqDHogwqtpzR1CQHTkRnQ+w/39G/9KVZoFZphejYxaY3vnqdpook5psQWsAA0itJqj/R0Cst5iBzr2OdyN1nx2NZ056DysL81Eqg35JZef2SelAaJFYz9m7is3znB91jPPPt24vf//GP3//wHcRP3YJod0+GpAwbBnr7XK23BFuKiiS7bgULGH4V75YO0tigugMFliIKQjB7rOX5yePRwlLdqVC8Zw2R33ovFSnEKa/zpWGJlR38kNSjmVRaz4roFxDwB79JjtYKpg3/Kje4hhMBbNGL/bWc7wADA2IZUgCiMtAosy3dle/I+D3aPH51uLM1TNWicFTlxdunT7uDX+9t3j/Y3CGWJXTkHOKoOZRL6rtgIqQayjXikU3PHg7b8fREHbFMjG7Dp6dPs+PJfVpFlbIwu+PAHJeTqX5yfHrrNAZBoo3eoicQ3lHd84UNE1UQFQuEtSi+2UoyIazhj0QHIHsNyqNGlzmLVKlCwR0igVumTl6S9VY6p4sh6TmeCPI/qEoUHml8qpEIlQahUY4bzAGtgLU3kRzdyCcS2iJ0u32UpjGptV433LjHI5BFTjhvys5isqLz2uoK4HA41BcopWdcg3MVwI8zsZSJFgjEwhOR4mj7vOIY0IgUAyZjl0n4RUdMl9Yt+Mb9Q01mMnZl+sMBeOxtNjVyVC+w7xhxmeeOA7ISTqMhrkfKhZ02SasPkCICIHQxnZzPFgqULDmT/3gvReWzPJJoWLl9gAiS8iVGEOBl7di8u4OzObf/4Gnh5d1aZefWDLIisYCFTlIIvpgv7hYVgWyEBt3E7iasQfJV57nN43p9s3u+qxmVfRybTXrs+FnoH9PNJ4vzyZyqVTdVdyNfyG95wGHwkhQmjQP6E29kGqiXkZoxEjdGAD94zxevbtj1HpLE+Zsqq9ZFvVj7FFBcNwvLDe8IkFsOwHGH395goH03HV8AZ4yiYXjIMH6CFQPRoYWzlAEZh8aGPmQVGErcIwl3GyVkcsldTZcgsk8FVU3Hz+FOi+e+YK3VzwFhMkKYrnz1qvM6k4DXqdP00WIA3rja6ApCHp+KMRhBBnL15e5F77qNgIHQKYA3Aro+jEMNP5RLQJZBIqsf1Uv7AoPuDyMJIJ4o4uoL5yFbt6z8kvIadVyc8fvV7RoiGQVwdZwwh1tZJgXQxBhy7hVdWx+X4Lfxgttmm/Xdf0wwomrQPoIHhxofQo0fo1WXNc0o1uD97hX/vOuraYeS3TB1hzg9ctw/Sriu5WkgWiMN0vid3nTDoKILvGmGrUVPyVNLD2XltUHs/vP1Jybg26urb776ypYsjxz+ibvmeRl41QXdOnMSGbsBlVAMprWHW3Le6CagZSCM3IkM4eHh1JEPhWL1qnvUAu12SQHospJ/wDrKunPDYdyDKCwglygKAN9FAhyW6MG6EDaJBpKbns5X2jM8RVuUmbIpzGrft+8/md/81UnPE2jW0MEeOK7g/unu8fh5e3ky/evPn/9Pv/x3DuyaCqk443b/4j8dnJ79/I/fLBVUSiBEpKG0BwtWPRJ548pkHw0LbfRiW3/bBpfJK3qkD0z7BGW5X5zCzUqdLKYoNeBCHY+dpPyta6vnam1Q59r5t+T+aELqMBelh/TGCsg5P4ZEYwgpPbhFxDy3ZdTPBNcWCxQmshB5tDY4ii3wmuxe0aLKousGTYvIbq/MvSRwInVMWxKUDiRCEBCIqrqCjpObz2c4TiWkBfUAB1TcbrcO4J3M3/zw/oOwCCKeza3k4csalqok8VWc2dIaI21MlWAlSVrioJaDXcULPD6a6IcsbExfjvOcT+3npJPIByLn/9AP0dhgPFmxNMML4W1EYAZpksOlOxEHwvqS5xgAz+UnH9EuQlde+Bsp2O3NZPQUnpIFgxsAUJIAx+Mfzte2UJJhuPk4MMCOCr30MfKLmI+WUA5LIhHCRNWbBlzPa66xWOB2ReQ1X01G2u0sZNcWjjFIc7a80ETaeL1e3z4/3qrDUQCWr4Bb2ZXank+nZ9qzHen8w6GfFVek8EI71k+KyBDxyKtyGrZdagFVSKn/cl8Giwy0cQucSMStPKEpfpVPTrQBMJ+tXZvObREbIUteZxpE7PEZYVzzt3Bj9Szf+OEVX/C3d6jdnItuR4nnjqOZuo0RklGXaYn7Cufwuak5JtTWqlAIXIbrcvWeN26TYceHcTMf4SqbUD9aWNjBw8M+g4/5okZVGLV1M1xGAHmtEMsgfoumbpGqqNa6tGpRIPeIIxBBnCemKWoQKTGFT6W/xVplDQK+3jU6fw0gKPWCzR1MQFA4kBDjuypVgbQ6UmBpa5TysIvGM22wSZ1EViExQ2GFBT19vAVrtSzR0DChNRDBHADW3HAd84b4yIa1G6AJ+OB49lB6ZNvFrW0yTosk2FaoVXkdod9wQSaJZ6QIBgR50UVdysxAgqbXr2MgvTh0SEqi5417t+690xgbfPrQ2wGrlOXh52sVPV86nWQ6dRRntUVUM4qndZNWHtOr4n5VKAAfLGEHAwHpnAA7UNllW+GXWubu2+tuMD49atbaZBox1O8jj6yc/n8ZgXzH7oy4xmqTHMwycWICjB7gr2Y1+s7SCOJuiE4iitVQKy15HmC0Bw3Pn29XQFVvsurT5P2sG6OoJMOg7cFuyV+9Ovlvj9//H28ZdhdOk7owvpfp3cHx5Jd//fNzZz4f6llVFCiZLNLH3ODPjHR0LqIxsrWpItyJNs5KFPiq8aTlzfp5DZaph+K8IHAAl+JCaq4vFLDbau9odjLPdHZ+IWg7rHDWjsd68yjffmGPatqGGFZKZbrDk1GI+sn8nNTcSTFMRqx1OdHz2NJZPwemu+NODzL5hjJibOXU8sDU7UO1Z1MtYweI0udZ300jV2p36NiSJNUKYh6kQ2OvarliEG8uT0Xi1fFenZ2czbXV1aS3BJ3TbBJ5Kxa+P4vXd6TBZn3EpJ7Ml6tsuovpWVnUOELBKxA4nR/MHHp/81ifajQzC8LoNmL66aaKdKgkiedM78gvyKCWxtU5ODaRG7EEzT1GsLK4othzUEa2ZGCUBtbUCLBYNVzi6/WEIasIAuQZSY8lbNcud0OyhvvI4W43i9gJ+HSMc4uFqbQnX65/g8rTc3vBOjRWO0VstrFvkPl/ymN4cVxUD+VJbO4spk8lmgX09JLmuOYXu9g6cAp7UFo80MGOiWFBntC5eIbfBxDmUCdvAs3QjbLDCgOKXGY9xM+TW/IIC9ryaBVedQhi8ZGxB4YkVeEBwqTNLHt1HYwwkw+74mK0971//T5eG78aJMk7oQrd2MpDZOTiC+qHUZNUVnFsDes5ADzb07RQQxpKIKuIENBt9LcBtSU+483bY5TGMWzJPskLyNOtb5WX8y8aRmbgMIUzZfugARJxLvzgDqrN3AzSHa1zFSnu7BcfRVgPDzoCU46hB/sNP6dJ2Zb92seSqPCm3azI3afx4SBUWILexxiXWglaJsI+2kI+bgQ2dP99lH6+uJgK/IrOh6lDtbSKWOGVjA3FL4YV6jYu7LmbTNIZvJJEj3Hkm1XGAJHMNd3s9YODScePXui23v7tRePK6NT8uz7rFxM0MSyRMe+RTcgLqU//tTZGMmbZd/P0hPHK66XkAJnAytPNcokijpn60bsvz4+vPt9+1gELRlgcUyHSaOO8vVEe4kkia7CSxo292EXKyaVK7Atbb+UA5qAXAzlY6eF5KdLAf1dXcXSqjWc89KSTowWp4J6hRwJkR2EvgYj5nfTpJ1jv50oAqVEHMorIAVHun2kBCmSonmpIkzQSq/dQsbOGYhqrOWduZ2sCOeDj2G9pd/TaPurj2d3ekQ4jBxeTl2//6pT+0q/w4Mvt4dVXs/M3C7VA+dMWlbBoXsx0ZvFyaTzYa/HXq4Q38fxEspAx5MJcdU83WVOx84kSbFuji+gmTFI90snx47rNekKR6k7gXdsg9Idm16gS6eALu3Pbei6VwWgm5lCWKW0dQ3ooafezxv6y2EBDbJXAl1iW3tvTM92yc2CFoL2y0MVbH//dIdXZbVUZjL0d9tqZ0ER2uQ3PbCBzwga4zCtchAIe1G4W1tOtKTibfDGRAdvuH3w+6NzPlMWhswstQJv4UF99auY83Rw4b+4/pz9hGrEzZ6QxbpEu299yrVWXbh9vrSKAdno7VdYug8qj3bBuyQEoYaWK4vCdVm1KyzR9Ub6ZvtA73PP29/ULEcEJ/rITlYmU4q1zFgoSuLyO7AgGhy81TyAsGy8gZFc0XFijjtDJ4zOdgQ73VhuVRRid9oEHVMJq9/TZBF+2pu/Is9o/lERgHqqKkfFPlHbaraGtWBO8zyaW6NW49uMH0X55cOE2PALnLFgwjNANKAHMwIXoAUCDSpYNIjkeKsCt2zPYB4h1AkzeqA9iSA26Xc2ZLVtGvpsgJtUycZquiF2g48VA1R2FEc3Zsyh1NwwdgJVv/vmkvxm//ZoYi+PDtUqIG6S6hRtFIiHxo3PS5XvKjOFqE88iHIH56BDgsH3iBytLP3ue++fRvNoJjETPaLRY79QROs48krh53PCJtZgznLJ3FrL1GkPsthnSidyYbzhTcRhdQJrVHRUqnB4XR1WcM+pgqauBi0M/NE7340pADvCiYInLh6cyEchPjNAjXZdfYs7WgEQM/TzS0Zoc4CDHKi5ZHo8HylnWDIwKobdnr8G8Fm78Sc92o0HV6J9uiNpjTjFyA+M0O8Zo5LlR20BGOUOmgYEGwkMb+OaerfiYjDtEysgCK73m3UEWP46YdTGjMVkDyy+OAcwiAWyBX5WAafeqNTC2MbDxnhdiLheqN2H8FQW7Wa7m89UX5xfHD4vdwTUR83hq00XaxUDFSIYlKKJhphvQYIYjNSK1IH2q7kIazRjsifUaq1ZWijFH4ITKpz6vL1sNZqCYRk4jCEzjsg1eeaiwR1PBABirCDAbSlmhl7ISi3tG6n0H6aFcqSfEZoZnxz47N9Y1L/SUMiMuPZuIB6ApitVdqFm9PfrjN//E+S/bq6/OV2JG95vpT29npz+dXL799KubiXaTKrBagrrtJSs0SOsnPBGrjUNvzN4F1G2sz5Bwnq4eKZSFDlPWOFMtK9JVlrTen8hfaC62s7R+8/cVu6Dl3WqZw9L2MYrAZpT9c+1LWb7OvBX10a9b5ZTzAu3Hme85AucibTh92Eo6rq2pXgYCJHjL0PgGzm5RO3DWwRjyL5qzn65uxlb0VFnnKHiyR7sZahMAqi6zqU1XiYB5iOkWsA1T6NXYuB2C9u1TIlmU9Tmw1Ur+wNjYhYC7B52eXC3eyfktt9tP18tbG59elFLzL6hjxqJD8R4SuArFrSp+bq8c50LzjDOpzCqAmKiIHFHpW8xuyKnLg33q9Pr5LnuAh4SRSvLSRY6AL85DWRgJHYoNFINaeDMK/MinJUMWOepaUyATL4xq2MkNaLI0OTuZ2mMqVI6PdIC41+4GpeGXjj5Plyq0KCQqSSe4HB9hopfVKPSctQ/+9OzyQnwcm00UxVLz2nXwDSzD5v7a0YRiEyT8odOfDNh8/I/jhWdGVjTZ84W5sNMr7Jk1Bo7r8oWIu0H5FR9WYufahDrXk3GlI8UjsKf5EuyAgVajoBdCtjzuoiyQw1cPBhHlqYfGibw9uCf7aVzk8/7PmPWBVgXrthIamazX+u5TyhtBM8wKbUBBssn0yQ4YK0XLNNrGSyu4Z6AirJC/4BVGHQUvDiQKZt2OT+eT6ULN4fOTKqntzb0dJeo1qh8Pl40CD3g+jClkkjAFiDlqgzpyXnuPFlNuDf3JCNyq0J8RwONv9yIPstTzGJFJ4t4MOL8advqfAHopsQq4A8UIMuQ2Tepn9GBWCTOo98vLJr6KsPc+iThlnsmHyQyGvAHRoKWfDbw7jekPBA86veyv9Ry0UIDB7Sy3CfaxqTKB1ul1SMhHLtyhzxh+N0MK8/CIIK8XIgUZjkpDV5pBgy3dWUqo2ONQP83o9V6NyL9siXHH336LPrDN4xMUDEPaC7GJff7qu+9vHx7x99nlpQtubm4kV6ws2VAIVXJ6MF0A0Vet0zwD/USKzzgD6gHt5dqsJdoldKeOb6BIy0k4LlLAhHzCU57EzCNt5zeggCXvbBACT494o3xmPMFWldLTICK3SRqTlL/wULGPTG0hqizgTJIhSR1/CnK49GblCum/ATgvC9tGbtXhvPzu5ZvD8y8XP/mpCobZy4PNQ78+uF/+8Onpz753dy38lAsx34RyUTNfEWrFFWStUQ428oN4d6YQD0nZAFGAU6bpDYbkkBA3iInD8UgL0qS4zRSLY4xuTqIsZ5a4vgUi1Vo4hD6n+taQ6SSb3yWkzoFQnmITHqdagS2vaXK4hMsi/u2Q3zIG2zShOiE0Zupg7QNJEeUNMxu1aGCSmEdsPHFIJ5XNRqdYr9DRg1fkcskGdU3QbVnTXT20IltBjEkfImZ86IEIq87Jfv0qUU1QPz9490AHU8diTU4to6bpkYfl/uF0f3opOy5ZkmvQQvs8B0FA3UhDCn3KHQfYM5ALbwGBzFH+7Si64/3Uuy59p7L7WbOOykPbnFF9LelK2doNoLpsV4Nl9kdmNLhAPprBVuep4DtVKsIDQnCeY5xfzp2RPlGTw2JlIqbm4hdiz2o85tZU68BEkfUA6eunLagHOC9r1V0IdTSdn1199c308ivBLThFn4kBwuH1R8fddrghKfF5vcrTZfEGeQuDcHGWStIcdMRZ/uNz7cmdjPRa6j4HtwCFXaS2nGSRHOjie3F1CTr19NUq9b2O058ssch/B7iyMmLOyh8huIDp6wPyZYMIqFDoxotFKkMadB9Q48L0T28ZCHIOJRBW7hT+fHjPbpqpZ1tK8bmpJF+jo0woG8vfSwjo8zDYwgLH0You8E6LmFTQMzJrdIEm1Ucnc22+T2YqE3Ci46nWqxtMGJFQCWsMFWLEDSoKQTujspiebCpRxWXsRffLtCf89GUNEzRJjBNccTBt56nxmNwgbx5W/s2o7eC+2WOppicB7v4ZuZaEvA3LbAy8kF27MoUqZ21uPNzNtRxXDiAsd+xAuALfVtC1EQ1nJ0etc2sacaOkv1baJX7j2Bqi/fOjzo99F5bQTD3HhwzDUPENejFUxtDGoqUHkpNxVeJjlZA0yfG56JS6LL3HVHBTzEwlEq0RualgAFulQtwnTmhUrQnbOUPL6ldnA8kEuQ7kvAmdYOlm8wNoO5+f/ejr35mfv/346bvV3WdAT+9z2Xsu0GdVG3/siR2k6Y+c8EsHa+NpF52CSHuL2G9tNe1xVMxGKsX59oNX24DhQaRLSBrZ5DDb/WFOoNSoiwUR49G9IKbteYkPI2dOaF+U2fi7kyXYO5hWqol8VkOQRKSt2jLhKH99FCy1ifVgTxWbyMrxCVN0T15f2u5i//Bd8Hqqy6WOU6tfy10P8/Z1TZpnfmBr4zE8nozUKldYGuhrYfCcSISJkHeDQFnVS/VgscxV0bQPigEHBVImpcnsBWQSs6pzJwmNuxOeosQPVbCcCZ85feQ4p9jqsZiZChVlqqpRGKsM9PBwtr/nlK5Nh2luUZgKSWnK8wprJ5QIkcHv0bKSsCWF+yKOghPTOliicuYH55OVvU9JVRJ3MDvT+l8OdmY6rpHZduoU9JNXV1SVDWYhYXfxB0+ohc754mh9p7t93oF41abyy9YXOBin3cS2R9+s1lMRnZHwoVASF5zESxsb09syZsOLB4QkI8aXnYZjMzWK/qZ+Y5nXLYYZgewdGe8hCFChOJ2KsqOHs/mZdqQA6lXo2VmsBFkl1in96iyGthY8OP/Z7sBCw65zZxyXGZG5zi571OTfg0g+Lk9Q6nsj+vl8eSEoJ5n8aOve5Ph8cfXV/M2PD2dXwNRfN1OC9bRRE3knTQ49MNVC+Q/ByCsvithleAhjW3ajbwtNTAsIiDLuCEX4vsQ+O8AvhKlSRn4a8TmZTb742e/93h/8w73DmWK6+b/5dw//r3/947fHV+BI0sLBIUqnahzITgLH7lwJQIPraWiAg6G96UY5rO0nX0bjucjtj2v9B9oqcdbr4uFAfRgjy+sYDEIPnLN49o8eTacLxzRlUCvcEgDM6wrEUz24ujf6aaBUNyYxQIq7xQRhoYgIQ8Tp0+XiQhnVqvYW3H6cF4yGeXku5CWowcABW35ODmSXmAVOoN9NwNgKJ8AifM5r9FAMzBGoaiI6txPOmmjWwsak5EGcP8I6LtVY2WTTzZh8GNFp31eQzDhm1iAj5KDpEOjuGgu17YDYoDHSSLWZJxqPSRombeSVV5XaYqsbctooAaIeD44267KHOK8pUnZlbpteL+DGNGF3a76D4p7R+8XEf7tE/T/+jmtaQ19lAvxFKZ9KIUevgoMYyeVeNqAcS/TCc35Dr9wkjMHWwmXuIKQCe8cLVm+73FTGczp5yw/g4fLWNnc4Vi7Xs9yfUYtHw8PcdDZRYZjrm5tbXYGcqgrhT7EFLhDjNVkiZgT0IFzkvzLpBE87+VMx5ZiDUbrAbCvkQfH6r/ZScNHkqK8dnKoUkJyLHi3tsWmJuzXVp15RaIJbOJamSTPXBJgAqQyo9aUNIBTAMGsIwk/eODWieGKF6o8dmzXluGiyAZc9D/N6Mh7DCFKlbJvuzMfkr7ImgGy2n8w4Yxz9wJVYNlOFXcJhJD/w+uFglqVAIXgAys2KlhCUHLWAwMLiATKmM7GwhJ0gysf3xX+zVtN5BGFPLw2Bcir0SX7VDgASHhtzsUd4LQTHddbabouzCffUE2cnzF7MaCcG5hZDV5pTRZCowb5zVLaKr8X6Lcyjg5McU4BvjEY/CgfMLVcPklb62glnQGCAH5/7yyofq+TOpGY43ApFTi0n+efgmyAHZhiTL0czzuCBGLojFlcflrjfQIYjJL+SvyQc4EszJx8vfmV5AT32xr/Vr1lBhLfqADjrD2P6XQ7A8hd/uFFrpjgzZ4HTea70u0rWUncwNLW629lrLRFryJ0lWJqXhcPDGO06qJdRNBUEE/xiSBnOWm4Mv7NNU0glDyNdeYUoJyd2+dpqPJueHZ1+Nbn4Ynp2qblUiQPhyLFJTbKbZLSTzt5ZXVs1VPAKnCB1RUETLU97xQacnVBWjGiu2I1ey+30Km3gM8TZZizgVtL94fl6/XjHTbw/+Oanf1ehxn/9X/7TH/3om/295fH93X/8kz/5tP5euNrsAAD4FkMUFbES7JnADyndl0bGbvgx4nYtHfSqL6GEob0idujncxJxa4l37YAUGzSeMfqwl5qeaUK7mN/e1TglWMsBJ1cBvj8tYys5ypCbNrMkOTUAFOiRUFG9ta02p7OXxeX9gUMjNEjZAvyq9dt1QaBdZiS2zvoYA6JhxyK9zOUmJpQGk1EcxUqF866mElIz4o0ODT5WgDRYB3YIi5WLSU59EkChLDnheXWiDJ/XyDgvZS04ma4E2CYdTh7nN/DzBCQJ7tFqhb+YAoNDUxlwNPfKxIPa4DtWbaxG1D5YnyM7lBJQ7nOGwW7P2WQ5jZXGgiYYavuKFYbej1e6h1HHQEbTNX4fIva6hLjFOz7jGybqiWybFjmnJ6vD+yDJ5+S9fBbB3Af0V5VKalt5C+YC78KRPagviO/d/f2N6o7tt1dXV29Y3Y9X751c2S6JDG1K04jNS5CHlbuYOzSThmCW3/PDhl6o2Bt5yYNdMNQvbAQ5+JClDzuNVHd9BrA9FhEt3/9oaGbtwPpA5A+hIKuhw6Zh2yK1tT7ezTDe8YmwAPCRa9B4Uj+it6d6fGn1VVtECchYj5/PDnet8seKdF591SgWunAGHTYX+uoiFzuIe4Aa7GAdYju/qITHl1YESdQIPVTBFFcbRuGCPHTpzBpieyPqCIXpjKDz9nZ5t3Lglwg4YorDUA/GDJJqbcKez7kAAGKbaT6F9HWYAENrK2lXsAD3bq4Trm5xiFsgnkbX6KJ4vIo/2RqbE1PxokzPL/NzJyapy9j78Elcy+YMpTIbxJqdSRw8nTPCj0/ey2dpfqPyyRAObIUVgGIrGcAma3HP+mLcSbJwqIpKq+p6Wxu1njIEUpMbfIUViZuJgkzsMlucbi0zfJ/Odc+HvaDcKhuujAKsZiE63Mdx9FP+zezMtiUQwkd0KpeaLwfWS+VR9nb4bnXXfnmSYqXg0ZYgyXcY0BAWnMAxcj2jzhnEJw+T5+tbh1wFeU7uda46NhCzRpwMBnwiFmyJUs8gEI9RoVDMqQZiNHRQ/hc8tqbkvllZUMUtRmxjar2ysYCy+sd3s4PD2e76FrWf3vDe/DK9mCzeapAk5Z9AGVhhEMfoHAEGNo4RdNYjq41VNZITJD9wNIKErmeZl18yyJLyZMrc8Qk0hVbG5tQwe1I3N8+6pC9XTu85fPkPf/av//W/u/rim//qn/+v/sv/6p9/9dXlX/3FD6vbj49OR3iUU18fnNHzpxfTNxTrIz9ciUMo3Am2zsuKgcYzfQsQcj4bghcNyUwaV5hR+IXlZFZwCkMDx1jfW5mVvMZDB3zCfPdAsVp3ZmYmr5HeTGi9AWXuN8DIBj7chx5FHbLP8b9SLI+vchjxmFfHi8UV6814vMqi25DtJyfJ3KvpMz4cNRSZmn8PCST9sSF68OWYi+eGK6hc+1g6VLku4CToxDKLEvK5NZZSDI2+rmMWkqy6RMgjCxoX5C2eVBmaH8tBYgw81io+rY2g5vSmGILip26DIGwfNw6CvefTg8xI1m1Mh/lnf2dKASeWbxO0buteRiYG8CmEbNqehWJph15wb2NvoN4ZAyf9Gd09p/exzvgpNm5qpXB7vQ/ElA1kcLz//TCUQhd0czY/SG3ZY3OPHM+wyk7IoeJVsqSJlefwzt6/37JnT47nb99+YTfg3c012300xjtiaFzOtd4IG5x0y1hgmi0WC8ezMc5lr+hS5POjCg1hoQYB0+FOR3wkduzTglgaDrA4D0F0VIhtVO8glxBfbhJKFlo08KQlmRW3waNK7/0qFnx4e1uZ6XK56cC4jDvBwJqDptDRRemMIs9KilqcQfecL+LGhJm8PH+5O14en/5as6DZ5M6RjPcPWunAG24z+nhwTRLilSw4/K1muFNHMHSETuO7ceZbTdVregrF9MK3HSCJrpoIA3su5YGVxOH8OljIwnk1tNIYDt1TM8P4QyKztON/CBdDwy1axmjldAxBJvuCYYJdUWzWhTA7y5iuObIbuTT4w9NK9dPZpSNjz/fvP+/79fnhbGoLi+goyhyDi+x2EvHU4ZRSM54GrsXuUEt02VlenUXGscq3KYHBf0hLlGsia/Y/3S/sdsslyUHQkAbTmiLlns1W1EPztYNDh8jMDj9+XNf9+mBPK3xH7MoVI4VyWb0bBDiMfLY4OLw/XS6ftBbXsogvl1Of7AsF6GHIfuR1FSwiMshmofOK0I6UFe5vjyZxSgEoxDwR3y9UzJtTZlr6EFhwVEN/aWQrYhkshAmlknU3OjpU++h3YKaUk/Yl//a4icId/nD38XpNry8cm2Yb3+Hh3P3YGbS5GVmoLGD4QQZ9z/x5ZLKmnGI16xg6xkq4hAjDEDgD7olpkhrM9J6JgSwOT04Bn5E+flbsKsZ4t7ELUEzxYe96/evffPrZN1+/eXP17c3dv/mX/8NbxzCJTbEYLMze/vzyrSC7Gt+XTSYhUiTu5cyzxlqf2D45Spr834MHejTG4AAvkxEUtn4YHN2aRHyJbFmi05mD51kJRS/GPYLErsSiRXEM3fXlvQa89DRkF3RzMcF80JfUuhwpfK6Wkj3eNq/OlVboIKmL/oxGg7y9f7i17LIwDSAHKeELojORjRUfGG2ho6HneJMnSi4k4YrZWWIWrSHS76bcr0kqYuRWS/CzQ1yRbWDrJtZ1QGCz4XvwVKgCF/iACaXNAjGmbRqMMsIVxcFN0m/WPo/NyqGlEQ2qGL5pZ8d747dmJ0KyoKoWltHZINTgijgbndwkEEHRPtmNTPp1jdwk6metxyO+zBxF+gAwM2TT67OxNFoXanpVpK/L89sb+kz3KSjW/f2CDu4ThcaXkXdnrCxRrYVYzpdm1vtbx6xvV5OTB67A5cUFe//25lrjH8v17u2bxfRweXe9coKXI14h0t7RYir6puUWA7GjfoCgJVOZQB3ad5qhTwu2k4cbOCxa6cJqNclR40BuED/6rVMYyGMdMDIyorbPlvTxcwSQEpT63H+e2lX7vHe3VM+975hAyCBKh7U4M4ODcedpIXc8u9ke3k/evVUmI1zweKqrz+5hSu3sH307nX4bHbFHR6o4bEaL0HhYgETyxy5ZHQWRyIOFSowVLFVa7RpphAPlMGTamgQH1cjIJeyTW88VLRtMMZCgCcYWrmLuZJ211SC1a3rmYkHR0ERfJdGVLMgRhcTNnfc9ZNAn8FHCrABpOMgjH646wfliAl6Fzu8tEJRUtRN0soefX7TE0oMDGmA+fuxGGzWlqEUsBCnhkfVSTb+/VF5kJbE31UA/Epoj+fyRbyv0Z3yIBHdGJjZLwgI50BLQ0Kf9VYUFwPlRanUsk6YJtg2tbqRqi9qcIfs8dYfeUYOCJBclJ/avzs6ep/vUA/NVHeL5QtDl1GlUavxp8cJ1tErS8MJJNbsOKSYHyFjAV2UIQgKaAyJKRnlCbTyxOe24ohMGtrIi2RrGCNBkphj2qRiYHa2411KR8wfdVaHAlgqZdmTok11iy1VEduSLOj50J2r00JSbiQ3Mchgvob83CkbgbeetrW2iKiyBZwAKozFT2vB8EUnrHaOjrV+S3iGR/Y8g2S/CDKKlBAjv2BfdBkPVxDaYYJZP16s//fPvPt99vv5wrf66uqii4KdSwaKHRnh0NLeBsB00+LhkkwKzg+e2yrVyRpCTFCv3+J5N7gOi30qgawYs0Zc4PfXlPTER0WsgaN+3BtrGIR4Av4dENC3EkE1p6AyLRBUPVJaasLhHE0m1pau1rGBhWanw3RQNBnlQyv8ezeYQ1pvaPg2ch+HTLpxBGOZcGThSQkUr6BrRKTAoh8T2cjCtJU9/Mh8l9bPdUgCoDez8EvjK5FXiYGBkwHB1mxnF/kIB1TEwK5JrH61Wh7LxZYA23rC6EINtwuBntVCnMEnIhQA09PGAzNdhg6NqNxF+SzcEHKOikDxiM+LNBseqRJuhlGHK1IoT+uqJLYmf+kPi8WH6Lux2t+bk6/VCzzAmUue2/tY1NGl4DS2lGtypQTV1ZPbXp19vYS0G+rto/Bn476Jcuh4Xq0vvCCUy1u7vr0mdDgYp/71zAZUfffWFI9s/3ry/vrMhSgW62LSDYSX698/AzP5ex+Y5kgiRj+0MqBzIZv2hIzEPU60h+bJasFP9fsrLSuKPe4Iubtjq0FjmJWjUBkdZ9GK+XvEpbwpnP1gt7dzfvlUR7LBZEJYLTgdiO3yMEhL4tIbm0X/xF3/9f/u//vdku3W2tfVscna8W3D65+ez+bur088skUeOiR1qLLk6ksf4sBx1is5UdJeWFZIm9fnqR496WjCCZRvNPVqZsSBGegPq2YhEl9iXYGq/ZW+WmXpqCMyDGZiQTUMe+UiillqvsfvYSmXhWuF0HndLe1MewHBia2di+Rma/JNWE030QLfszK5qUfYv5s6vFnm3egfbzWfVVgL6kB0r2+NSLoQX4g4Ff/Zu1+zCfJcURZW7jOXdetPpevYcUKviVViOzOB22wMJt62zZSTmMhb6HguvCQgcAXZpnQRTxkXFxKyWvGTbLNqWxyieK8w4/fxZAdHz+v3tYnV87pinsa2ynUOhg8lIL8cSR1NhQzqVZaG5BnUVdNAFYoll8vKHbCpkJHi4QtGWQNCNZrJCIgfAYlgTeC02hsOqcRbOZE4JoBlGP8aBGNB6bR02+LC5u310siYP4f5YLywD2XAVprNjGvz2g1Nkjt5cSd+ADUd+sh+Hu0qDYZRkatQPFe/nOWiMoL6Wd4XOjwOau8JQ2tJOr6YDcGZy3PI1Gi/HW5aS0rTqI1CM8vO5PUe7jlXQFunzzdMP17c23fGMbm/WEmCQVF2SE9MKVbBWlCN36vf7SiOnZ1QfEkEZllCKKQIbqQf6B6KCFCPqhV4KbEIcgwkozK2QsZHxc33W0mZqM4If9VI57WTTSmnECePK0J4z5kaFatzO3TP00szcNtqpsA2bJpzs7/DYUNtNEc3bG40na/LPfGGQGADLRsreK3a4KBXkwsUiPk9csCVlkAlpLxxBkDkDg2AVC4wici3/tOEwNMVsvkzIP1Nq5aW5NPmqnIOmENVjSVnwgdnmPwYHYSrWrKVh5SPMKXRy+4zNXPziq/Vtc+cA9hWZB5aasaXukb66Fw8vBI6UrsSVgCSWzYMQqqCuSw5DOw72oL5rfRkIAwzjDKXYGExg3KL33awle/3B3c0qSntQjEaCqG1sxtQaEtl6jKVtdt1mrCuiuDqTaLzYj6aiToopnn1ChAgv6Bw2Q9WNjx9vrmcawlCyxwfnFz86mr67WV2//yB51i47CUC6x83ALlmBBFt1+OJCwkDO7znUhNvR5IPVFVsQxBFe93w+EQ5ipBLJKJ5X7LLUPLgE/Tl8Y+Vgb4MrtMY6zEl3ysDLln24nU1OfvzNGVXwq1+914qHXpCUzqOF/Sn7nRZif/b542p+6eyCye5epw8dD26O9z6f7j5t3798+93fOn36xSwSwbcFpYGMVLRBehro1FRa7yM/KRjHrQYtSg57T/cmdofLNgmqEEY20qkKJdxvoIILLEqe0GhKRxKz67lEW/qxxm9jDXn2RLSCH+EKxxnsF6Hkh2ColjEmEAWmE7V2fxz+ZuKmR4tf3YMDwZAQtmnTVVvUZVAqOnLu3VI3AzbzYASwHwRIk2NbYCQBgaT6iJ3qt0N98ADaFqA4ntvjI+Ikx/XvwPtuBp8If6pKnVIpcFQADU97y0fp4uM5Z6C+crlInI4ZpIaS9LmnZb4AA0Ht+9liKmC1ut6QSykTF6i2DMIhgSB1S87IJamY9PHq4vTiSU3B6u7W8X+P84lOyg4Kto9Iz4lnZQZCJIADfpAqgabOAKed4yHhr4wXrduxuiEAIG2a7UeW1WBS395hpwtKmmqRTNQLi0Jcryxp4JVjwMFTCUqB2eebSn9ycKh9MrPOAxEaw07cWbs2lpIpQg3YgpzCwnulz043LOWWKCROlFnxbXEkeGQgGWkJGuJkZbmCPILH/E4yOwwXGOVCcgehHbO6f3R2QuxOJx3adne3EkD/+OG7i/n8yy/Of/67724+fnz/w4eXRy3LyG6VMbvN8vnyCguCQTBGmvJCwuQYzjcPDaN6tK9exXAQvgovP1vbWBOVfNBg2Es5AfaBmRrkVwMsWn7SDnv2nNXL6SWMOEdipT69fSwQ8UZLxGSywKkFT/eO5w7YyR9A7VdJJ6x1EXDyM2hyJdB/fFyJvHOMndQ3jBaE8dQxsAFi7Ds4PHInQR9BdzM2InfR+6xHoQCCWDrGLAcUV6bqgdX+sT5acu4cJuFkR6Pd3oopu2WN+ZXVYwJ5dq5L+AllHkHZI3eMZin0yJetP0gaovrV31cyJ8thf9iMLdGoalhAECEy5tIkKZPEwGfc0nevtASZnsPD8iv6uUX3fl0wt+yrZXx9lP84S16GCSw0KiaE92oD6SvCZziT4x7TJ2M1T/JzjxoXwGVKsWNOOOT4k9ZSSTeyo9lP9mXqsaWK3CwcCP6o9u4dmVnf63y+QVr0cWs0F50vRFsr6DQfuHZcYPWS7E1i0NCxGZyNJ1SSwFrRQWqg7EKbw8wGvdy7vwkRGmSKZpcXSAdYds/yEbV2F504fJmTzaPd11+++fR5yUTS9UV+ual5jprp249/9u2f782cU3DOup7rxDNVNrn7oOvTwcH0YW97/Z+4/2qbmXk87vg0UrQmTen45WSiPCfJtqmyYv+DAweBQcgz/TVr/Es+nqYzWqdChGoHd46UOoYJplwutDIQHIropYwos1BDJR3efubdAMLaq7GKO0HitaZB2eyxCMWB6Mpuw5x/sSOCVhfDmekLwTtyW45AxbJZkLZZZBozcjPg9hXaJZ3Ylpfd6ag9l8Toz6dxgW271C7YGMf9cRBwTd2ndbM0Y+zpiODN0qYwQu0RlWkqwIo81IRbwthxcCsClcSL0vXMOJ0Iv1T+O44xHqU0yjK4BUK+h/tnl5NOU189nh4qktF648FZI9Nphn82jgEVdstZHdS34WHKiMaJhIGbUoxz/0l3MgQHzM8fxN04i/NXwoqVabTK5Ypz9jSInp1fzYidpILRmpGQvW7Wdmetl5s91Z5CAU523B0KtUvyEJggGNs6OrT6TTbNbrXFdoQBhutsgPp03HL3tNjtNtxdcuq+uZl0hkSnCWRpRhJToUPN35JYkCSPICAsaA+1gmBsRbX6kxtP4LsGU/RW8JBp6DoEyVaYOUvI7yihXf52+6MvZr/4yfm3399qtvi4OF9vQx7it9mujzgkz2scAJYsRN5q9DQ0GEX0A5Ae1lMDhh5o9foz/g6oZGZ7VzS1s2EE0BGaXAuWvGhZtTxZLOpCSmxzgtwfacIsC02ENZkilvA7KQqSYKCZEXr39w+BgCJiGVeQ9fpsV1phhU7INJw8il447snjWVp9BJqkbT2vz/u48ZKnEfluDfqiYMMWz7fywkIjRFeUEtGzxlkyFfPilZ7BpRWM1x12inpV5JjHvn69yhPxpNbXpb2QaAA/VarvrxlZJ95EatzgSbTZG7wBQFR0iJiDrpEbCZitzdmEOWy1yq9eys4Z5uqMIQB7B2HGZ1r6+CQeCrar3MQ1Bva6PMOc6pVSWjFMBG3VBoJbUSwM+ov5MhSMquX1aH89P+B3B6/01z9jx/UEk1jjY1QFTLwnBwIw4VoiEsaerlE8XiwXJwdvt62ofbtR9MY614O3m7Ec69+L+Dx6hZ3YYHACUCgcVMb3wc6AtmlSDFXZjEEZT8G09jcqAtPzeEToMjEp8AwlI0ME+WSLdyojx156tGmTVmDsgVy27qnQPzlcLNQXqfW3v39m/bWJLy6M9Y3vee/9p7tvvvpyPr3cOsb6aX8FB1h4YjGzNzp0nmz1s9y8XP8GhQQWCHGCKSQz1qY1F1bGDCruCyju5BtyRMNWIkf8GxK7HKrp96xaKjvEk51h4oBLu+pmKhdbjjtdyNjVADHpE/0X500bo7Z10++giHJNXorYsA5OZk7N5BUx3B1o/lJXNe9zjPPvLDqryYmDuk0Qc+6u8tt9sCUjWxxP3P/lUEdKW0Q414aq5EZ+P3g84HF3YJURtylYQWS+vEscg/Fwd/+yeDzU5NTCiu2oALBA/z+2FnEK9NrF0Hk7WILpL3SlHmx+Ob2Yn8hKMq3xSukNzMpCHLoDbeUx316ePJ8fLe9ePt3e/ujtwZuz4wUxKIZRtXv7H8IFZZkrzexkSc4m8psH28eDjQOG5Akk/4Myi4BJKNd8ZULtjC9b2GSixODM3z++vWbV0N4rhmK15QXE15JeGxsrmcfg4buCr/sjHpLjCflqvlma4/Wj86QPczXsrXOexGZtq00bOHRDNdD7lxOIuM/ppJSPJfeO7fm4R2H1r1ZKkClrGgHdMfTHh4OLMDLNb3U9Oxc7AaggsOAFoMT0xJAYWHs/4WavU3rtauGFyzCgvV1+mz/98z/7zXd/7QxnNV1nKnmNKFu77XaYCv3YGGwNcsFXrYoOA4SMVi1bNuYbSolwBGMDI3rfD5C86EhWF09OQK+N+R6Q1Vr52s3y+niyOFv8SLs/tQe2SDeB7Fy6yu6DOBvROtzi5bkwncAZAyLMdGMSbQAuCYH88WjPjQ7RB4tIZOVKmkrxAAKX1T1s1q7F4IYBiiLOnq2B0Av9zSjsjartNCj30hybGsToUoDSM/lilZbZ7NljHlTqecumYvQXgKWAfILKyS3mYTq2ZL/6RjjCBiwnGp70zOzr8KnRw9HxsKZjhp6IQcaTI+iAMMt2zGdqKw2tZEJ1savxr+AoBWZpGiIYiLH7odv7bLdxS1zaRLq361zRl198wKPM3EcGASm6U9uiGDEuRP8+HJf3EZ/vT59MhXR3rxVC6Me/eTctmpHCPp7jH5GfOyVoTw/n5/JqlJl1cee927sbcTnn891Nl4ripfBZGNX20iTYmK3vjs5opAoaZSzF2mXFLdpJV4HHcrl1mWkWFGtupjH8kArmCqFWZJhTzO5skzfcUcajUwFOsoOfWhVdYiLKx6iy15dtVW6+09sdZxXoaRO93nSat7rDI7u/HMj09cfVdmlHqPTz7OL0/IyvkQrWQeh+PdltZvRTyrxQE94Vkqnm0tgsV3TuFCmJNPREhaWggW1Gegbtn17flgWRdAXD2Uu5nVKSVs320fB9FMG/bDnQUhTIr62APAUwGwsM/BU+zmY212gFMSIRFs4u5dOCSGNtFE3SmwrCa6XyoK5S3I2eUp7mCOS6FfHSkFkcOiRHVd2rqtTASW2NYYNaNfvEnAQHRORAnw/d3E1P6pHPvrVmehjANP5y2vNR+xeZACqKIVYVBx7MhrJmAI1hBtIKNw4vMga22eLganqqFHXOwRXPtWNEpVueuA+iSIw/sZ+iboBGuKbGdG7Oh844A1hCiAWeSvMCZWfC3K3s+XXusZ5c7ad6ftZPdLs7ODtW5878FKSn/G1IFiYm48e1bI7YcRNSoM33H79fbu5E7BfHvA0cZWMtERCkjxY4syCwDYLyo/OdmGxHhpW91k2ZDpcVuAdBuaMvjJ4npqni+L0XG79x41p/JG2rHvanihu880LAN+vpy83F6dP6eXv8stVWxNYS45Q0EsMmENwkbFyAArYV1sZTID7iACCgh/NShs3CNcQjM5MBhIS3N3d3S5tURFGFEDTxvnWA1eTtRcFvogLdMhb7Rt78TQr9YwQNmYemQYnv1iyW7v9soziw9xpKbyU6COP52CPTMGRJgVikuPJZNHV7tLp+4+AQRySeOi+EIsNoQVTsQN+gNV1tMUpt1g18QIBremZTCg88Ljo0Tbf32RCsiUv5sScGqCIAkmiX4INdZMTUJrbLTTxBFkEy98ZwHMyiZgSTMoLV1W2415inm1bVxeAVxRdJ4AYdssqZRWG8O/SOI4KVW5tkDpkIqggHLiZNlq3PWhuyxfIZatsahMQoxfc27eC0MY6/fjelQNf4mR5jFJaiFWmUw6Oj4yjrkf/sGRGmDzRgEOpnNGrCA/3NpXs1oUGtJmaJ+0RPdVXrB9QRX/yVQmvBXNQoi+O4ohdeL/dzH+qJ47H9HLXGK16CJED3xCkn+y+T+cXp6vF+9Tyf8nFtghD8BmsofSD2XunnxlHXDsc41vp3Mrso9sBNExR+fJpMLiYTtRtVhMJTjzjGFINN6FLc+XC/5TWDhBAreg8bYYTY0KbsfzsqOeoCc8JSEODF7GAuDVetXeqmft/MWQ27NKFLt2K9NhUL3e07f/twf46tOQu6D31c7S3Xhx8Zw8eaFy+PPt7MT7QbWxydXJ2+OK/gaSF0xoNpESy6dcImkLqx6GWNCU/FwDG4+PKML/Jyey1nHLNQfooiB/lzWOkxTFjp26GjNsWF4z53xdnmkI4MTZFzUuDGRko+iAPTlPgPMhSRB47wIyMzP+duSzH4RaXlzhOLjY0cGL+Ay0G98fVflT3nr63maX8HdUF2K1tG15IGDtg6rAf87afz1kgQxhjGyrqWxcwz7dgnFpyQWoxizEMTV8sUHnEeRly52iW2WKEdBCniYHOYWAG1DMtxSu3ViJxGHbWQwjVpeiVgOu3YI5hJ+iLGovqIDdtmEVyVV4o3durv5TIPl9unuzsgwut/LDtoDpuX9b1EqODEuTKsq4unH//o5HImcS2MdighSIyxGBhnQmw1yaP7BPT4IDaE2NXMqbIX/OX5drOkPrHOeru0LJcXX16cnRle0WL5CqeDabXhFM22husBVTyB0itSR0HgLcy7/Ei1Wv40NqNWkvvg6N3J4/ydXoDcAHyKE55k5B2NJNtn8QSgqBOUsgvx1SDl8QXWgQU0sKy4I5nO1PSSAUKfGFKe4+QNX+ng8XrphOEl3jm3D/tA60CCabrFwnP+KM9STSFFqtfUfXdblMVM7jS++v0VHw3ch2CCIRQ79PCgJVxjKct3mys0QQCvWfAKIdUDPZy+bL96e3L6cvzLx0NJl+46ypdwHu4gLOEv/AN77H+JKGPh47u72zeOfvKxlJ7bxx4NxMD8xZc+NC6J6Qw2s8C7AwcR3Q8+DGu8SED4D25PtEYniO6NEahXiJssvNo/6LF1krYCVOkFULnTZrBknl294AwdjKIAnjmif7ytBI4yUYvb4jScxCTVqgYmcgXgIW+zSXtCbb92E28mLGMVugIl6A9ggdvdgSuh1GW7cjg3XTfmhRqD9XpKd3X//ht/x28e0mueORAG8V4fOcB9vNcNPDwM7iZGgFOH2mhpuzqKG4oV9ulG3U17np9SDt71q3dTsMlt+2LAFWkjnqZQSh/o2I45Pb693bv+vByekjAakIAey7hRFZAY0vxyx3GHZPQFYbfMvo4PHOdhD5Rw2/bBQeorTYPHiAygMWGOQQUEQ2eugR/YRM/i4DS/xCd7Owl/UZ/IHAWUygbsPJiqK9YMxpQBP0VrFe0OVUniXK5Wl0+juOXx8E7y+ODgD3/8zTeLC5D7q89/pT/QBo7u0m2ewTFkewwFWSEwMkAAffWlPscA8T/6yH5pkXJoLjSNbAM6EmvrRWJ5eVzuiDmsldPJ0XJ9f7fc6D9DFJRVIoi3gY/uxRWlMOpsC2GMmKeP1Lyllsv68ovkRRBn8BorzaTvxSqToQjmkRpZ9UW2ec3YOwWVWsBhBe6bRfhiINVnj1rVpL+uamL9mJnH4Hx4wTrZUQV54kJd2Z03cK4aTmwcPHp4kISqwYQAB155Lcvz27Aws2eCNJV0yS2w5tfqBPcsZ00Vw2viIpwuFJBdYmpCBpybwmz2EKj/OtJ/gsPtWBttpIQtKnffrqVpHBH28vhZwklMDpNghvn54u3L9PuPt5yLj59WFuNv/c6bb75klm+d5qnpR+rXWlihF5WXHD0qo5OF337lvODa/gstMSEoi9vrpxemv6juyb7eHfLDLGmrwBfD4sopx7Y1HFR7vJJJeKFOJolG6rXCVY4AyoC2Uq+24x3zN4+rgruXMgJKfIYuzVQh/4IvyJnbmAnADz5FzOLBAysAZTAGN/1gkVxSSr/0B4NMpPPNxeLizdmvf1j+hz/75W3ncJU3wSyz+is67mLPqQX2CbA2rL0JMa2iGioYL8iGO0HvkHGLOoBlyL51jHe85UmY0Mq6Gu1b7NQGFiXgFjeuFoGbHC6+Wvzo97/+nf29Hz7tCTYachIWdrvJCC4QkVD99TkR6BUs80+6pu99haAEoKybmDMeDsxDXyZ5tpHXXNtEfCDTPvTKC2nEo2XAK+iRu5L/dZyKaVlUQ9cUuh8hm8ZE6WJdv5ZQjrd5qWXqLLHIBj3Onng1aCgAuv/Vz0gLu3vNw4mA/iiEVdtbm1fMNGrlMfzNhBpWWpTyaDKMsCIskJECM7ehE11slau6oOQ0RR4RrjjDTIi7d1uBluHVBmgF+hqv+A93DOIN7WLRetDQOwaNb5hVBXAoTO+0guO2VrbHolvMNS5AR/d8/RoP7EcXuQQbgDtMQrSFJtR93K865GuWGz0OpyW1ooDzKaoDLl4tHqlY7X5pyuBAPnE6n5RRa6yAgGTh/Ge9dRWGp7ctp3IsobeKaEX6CFhk8fxGl2Ky8gTYkmuS9aIBS7LMXIgb8091WfSmde7S3QsHRVBNkEn5OD4wTYvfrmV4/tueBye3Wz1kd//Nf/67/4eff8lWXD8c3B989X/+0z/5l9fL54Or+4PpcFSYhD1AeitFQvjIIbWqh0Rk8kDoUP2ZckTVpJ4Ar4gOMEJv8osAfioR45M62AhSrfU74ydx85mJiRk1YXM/G9IHsotbcy6OCHhReyXrSlHxcgUC6ikhWKX9zwfnh5YBL25Xgm+lqChmGgWB9xSg6g+K7vPT5R2+ZmMYBKImUKDcwGQOoaz4meVwS+1HETq+sAfGpjX0Ne3AE3SYsMCCcZpF+5DjXwonaz6T362RGykkNIYwH6oMsTzjbTBavQPYZBHoR2C58xFYjY+j45CkQ/BvDYt6s5PtWpKRlt8Zqvuw09Q2zpjk+juDjAUK6h41WkYvM/XCl1dHH98/3yVcgKNt3tnJaiKPbVI1YeiPUR4kYeGxQhKpges7I2qbtPeZhlGVYSM98qQL9/lqvYC4RJmrSjxYO05s0LMj275IdDJHCibnwvfwWizeK+PVtCbMbb9epzXwRAGKFUYrnwQcNmyItpUd9nJE9DGAbMlHgWLs4q//wn9j6FdklDcBTNYipoOeyTgf8PTwzZmuJAfO/Dmbzd+cnwmfsl0tBUkD8jTs/VEdVvCSh+Et60tZmQO9byFboPHlv9e/4fsQtvFySOY3UCsSuGvXkrGGPoCSYEJAQc39g4v59MvT6dHabt3PN88aqihnMVBfYaJ8Qcm8JmZKDAdODEpntw886EnZK55lbD4nM5VuIt40TW6y+TaSXAMCklM2bjWUlDd8xB3dgJ0xiNZDs0fAugSPMHjuZAqaAYd41kx37Q63tvaGaAmKV0uanXZ+YfURLDI6ufgnWllmkCZuy+AZ5er5F8lGcj2EgywbW0gabEVK36NdF6Zei3IxcOjiOmV3zSB+I3cRPeh+7sRnEYuKFGMNxpvxRL+ntsdc4wF6rFfjux6Vwoi2vpfewnD2xMpkU8Qb2xjNPSsj2kXobusX17e0XTzu2xtkuBuGVV3S91DsVSEFwfhWHEBodnFxrgMJvPv2+/eprpWQyE4tzVP14+O0NmcqZbuVTLupYSGeYYwUwrDncSKbKRUE2ZyJUmfo8sztvGupjSiT30qNH3IbLakuopl+SVNoYa3xBZAwI4rDMvXJ5F09e+UR2rVSq3S66aZyelqtcUVWop/Iq77/X87+wY/P9h5XaXvd7vb3/7c/+2b5q/d/9X79criwI227tVkJ7GkOgTa0iyUsbgil5TyiHI2boV1/loTWuKrh0cFTvUSELNSH46Jo1uJ0cfLySe/6p6sLowSq7EsOgsWtXZ1LzxbOmIrO+AswwBYzSIGLL6sL5QbwLTp8C+sJvniWbcbtwT6dpIE6Uh7pgM3Dbq0B60plFOxnsLBl/YB6Rk0amYXYjTzwPdGk2dmgi6XkRFxM6phFDPCtxBh3but0SgEd2pcwOZqmuBSgGeCdV+FOkRpfEpHt81pWHBLLoWisoUayrfUBFypYPkZED5IbRRD1nHWaSYuIcBVYIEkP1YzKg2iXeND5S/NH5vnLweX0/GTW/qeYCxyxhfde7A170IH54GV6OZ+c7SvHYfPxKu9u+Baq5qM932riCVlHT9rH7lZqyySqqBxsiZC8+73jBUHfe1qWd8YgllMiQZ3aFOshT7FOypyRnfGLNx/vAxHra9mJPtAAW9atcrSq0xx7iY2ZCgPLKNCUxQl2Va8Ap8uigDz0aEmaM9pZahjXIlkjv/qdzLgi9gn1RvD0SY9eSvP4dGbVRsRfbZbtF3MOzc39/VSLQ6kKro97cDHTPMZLctLnpkJMBLV5Z8k2GevOPQpnjAf24/garyKi3na2l9nA2AAtYyMhaqBYfPHg2Hbjr+dfzJ4+6Wz4tH+rRgOtm0yP1cFUewimdhZ6Bl0nyr8aeIUPsndMHA65qzeJtc27mMSDJJwgSCqAXdEwgy9XZNz5XhKe7FRFHmZ5Nwht8EjLkC9uW2Uaepqr7ThNt9U6OlTZpoEwvTpkGBMU6xfW4KCHE1nj+zYf1pzHZ+rVwO3HCglQKToKVuJhhEasjA5DNj1FFowRYLZYkbIfX38x9vRoS9o8ejFxeBWIIrvK5EYtTATuy8L0UfzRwo+bRYLebo9iohtf9XYPbs5wsaI1RqCFZ52fTqcQ3q0UpOEPdE0LETUMjhVQsTGZCNiBkNl7vVtwgwCkr30hKVjxTIjCukd9NTtni/nlxaWdwGD95vZudXOjYQAlj7HGyYYS6DYraV9ibyXJ5w0okBxhCOB5cjRdXFB6VneIsPHwpZFCNcmpkYjTDtwcahF3kEXB1BNF4nJoiMHKJgVJTFszMFDbHIZVgCQxdyarBURCjI8+CI5i4j4QWNmV5edq1IzoaHJxPrno3BQYuJENEkz7anHxv/7Jm9Xm2/tP4iraYS5BoQb0GO5S7MBQu2F1Swamakw4GOHUhlQeQr2Xsq48fz4/vDgT6e6wRnuGqyLgQxSjFKGZuIk9QrRDR1dlEItOKhxiTDsP8uVk3oJB0NxXh6Y4c4XzYmGy7m0NaEMZqxorC+6RiIVG9Hocn09OZ1BxzW2WLDWwHrp5uts+qIt31EnqAUcFgUAG1Q2vGDYxUoLJH4HASTeLjfPY5lbSe2yjVvbjwfRMXzmloiBPNc6R1heHs7nq3gkRPJCPAKprfQCZwE/rql69QkVUKIa7uYZWgcX6ugmaF1ZYNIZjU+hyI2uZo8TJZy8Ih6k0UcCEd4+O3Mmg5NiE7pHdArM62GjwVJ88z87uYgA4bk5V1+X5yeqzxhh4+mS7kr4hgBoMkI+CIY4HwMmyU5eXJ+cXXAJ0oCr2jsROyh+2r0RPcR2vViu40srQEujGi6WqbSvUEoWcVgBd3j5h5rLjhWxhAAvR1H7ZKsXxFuanKKTHAU0Wh4u9WQrZfUlXxVmBy+DQxBnFvCwszvRBrUR7AMgAFvTN301fiQcO8QfLsSE59UnV2PZ5wFlBToLqjNG5wx+sB4ryuwhhRLBAkJ9rjOIInfdhzFHHQLtiAJLfA/iG4Bs58hdOu5nMtFd/C0d9JvDAR+Wr9raX58c/+fqdaoy/+sB/HahSuqgJQRzM7bYGg6FCm2zuUNtN+sfvJLNpB5+pFR/YrtmdMtAG2BiNASIJpBiXdYFeoXnaF580GIYSXkFfo1Q3zpHwp6YPnOGepAYUeErBO1/2oNOSK9ULBtPiDYxedG6b2GZiy6LbbmX6e5dgKupg5JydzapwGkPyaCmtZPR1IfJe/B2WQNo2Mjbu1zFaOVxg/o3K1kTI6m/2rIlU7VhlSCrTQrcM/rVk3bJp02ehv5vjET6VN/o71snM3MdhKaSZWKsR1FSHiTObO+TikM25sLV1zh6BF/MzdXkKg/S6VKlJNKv/cwODy4jyje7N1PX0HFGGLuvTIKynKhjcRd/6uOhfwTkfk7Vw3kXhHQhFC6MlMUsjm9NEBDUfEM2KlJgFxmvLCMKxWebMXZ3/tnbDnqotJEHMqydmRQCf/J12H2IiTVtdbr6IlaZgitzhovRmqM8mz7k0nEjWeRAW2iX+l3HI9SFUQg1akpLNBW9WtcLekyPa6x2sGmf58OXZZTuRdi//2WTyP++e/2RdS+ax65DFZ1wKE6sUTCjj27YEyy4zbAVwVncGzBwBSYyXdurPnBVYtR1wxJAHwi3qOxXQGCUvr9rE8/3JXObCqA9hkCCIIJZjt4nKsAt8qBCd4jAN6g6CXBxMF1SQykBheWIDhiaJRipVs64lw+DFkBBQQt6mBHOe6uqsEFX/9jbANROcZSL1+9EcYnIs26G8CdN4O2fXYlUBaTkP7AFQeQm168qVQy3Et5ks9rW3E2vGbCytIiVOOMe1T3ojH89k0HWC0ntMsx+RJEwnMoMWB0qdn0R4Cie1jITWGeOp3aUm8KsHXgS2QXIXlu05VXtd5AsJO8iZ4NQm1e7j9RBYSgZa6/cvFvQwnR+dXdhy0KYvAGGORvT8wJ5p89d6I6+L4dItF2+Ov/l6fsGe1dqjQvnRnLFwqTJ/G31RCEs93a1ZJw5wF5onDokx6bPwcFRGIIBgz1dXrT4NR2TGjugjGAFymDdeDH1cUpQgI9pFIobskyHRbtpt3Rwp8GyMVZAuPBxx+kLFxN4HXR/oxU3QnxrTyYowMTseJJwMDWO4l/UmkQhuL7wB0AMVKQUv2qHl6JR1sRqaHOmErUotI3tgfE8nkcFLMOCfskZvuul4Y2iwfEYSGoWanMH4GLDWBOr6hw+/Ovj393/vF4c///mPJ+8mD3/5+dtvv9dBK7sgI7L9BxaaumBKU906S4d6OMN8A69APH/eZGt2UvbbQ+x2BNbZW4OQOd+uDpqisBR8hCsp2EuGjLyZwH4j9QSl3G4Bn1YOZAmDmGG/RWz1Za0SJGaAVTAmgdh4DWyoOtypkGS/HsNbmeF6gtouY0+4I0FZSDDXxLJcGk7OUAZL2wxbNW93ZgqdbwEQ3YNxTLRgL+AsGGaxPTdlRQdR65v1zefa5Ww3o6KlOAeeGytgzNRQsQakt8iKSEJYLIVcMWT1ks6RNQQzb6m58g9Pc1UKhzZgOTpi+ubdgtITl2DFHto2NFloUI6urOlaNjLGaU6d/JDdfbqVwVIAZRHQGMhz5dHXbBVSeq5FtMD3zpRSH6cUilRjDfYO6qe6ghlzI2eEKztFQ+nSvZALecju8WJyOr+YP22XD+tV657t7PHChZjC0029hX21DviAGnwK0hqMWwFxt297zgntYmUHk1WVbNwBFXV1u7lhPkwPrxBBJxxOTalrD6b7VesfL4jz0/b65m7v8vRRCyM+E/B4el6RgrdvZtSlvjIFXLQAy1bRrBStHzWc8UArFhA/7G7utLxTa59OyJGtnW9rB0OZOQxGCs/0p0JyGrBpMrXPdnYW+d694Nx5qc9q3ECdri72B1yc2DaVhIU3Ao8wj/OZtKeCjftZH40isMiKREqR7WOnxJ/uVSbwCvDdhPYUT4AJZ9PnyVkte562VXAHpGaoVEWQ9fB1hz178/RRycx2DaKLWyC5aeaRQiKTpARRjU+21qdhMVPj6CMrhVeTo5lpWtIEujoZRZUPZwzkWrsLTjze3dkAYVeeE5KZjpbtOep3kk/VKRUA2Et7eMq/wnNKtuzEwmgli0mvnqPC81rD7mvIEuzqLDcoHOKQFxOBvFfns4uL+d7ydnt374DKGvdseXYHy/XzWkOE9JwqKQdDOg6nTlDzxUGH6lIQFoODkp2BSx2wvM1X2e3Z6SabJXOyflqf7J/Mzk9PFzEYQ9+OH5BVDBEOWv8RJoL1/hbHSSINkAlnncyjmMbxlL87lJnaS+xCQgLWjBWXZ+z7ooEGqoUVcfzASW+21N4lGMCKYStwxNzQgiWXzEZ3HWj8zNgPBIubvahSJeAzbTcUJ7cjhfkTZGgL6oxi0jZAMOvYOOnlAlH41eMz8lv5/o279at/QbbxMGi0+vGIGNN3TOQH7hVmwHPXH749O3QA3KVa48Xbsy9P3/z4+aSz0u7umiCT7rHlZ1fQwcq3KIPXjZDDbnVTo2iiOfYFJqIjGSxwVQCGuZAH6Ro2iLGDeqBNylzGJjBSlTnMIQfj1bZstK30VEJTOkbjFCQvoJQeT2qZsZjIZwi2AurNg/pGAS7QkQs47EH8T3BJvmCa52G3wsZtLkn0CGAleWU24SE3xQoeHP2jf/hP8krxrzg/MmmNAc1FWqBO6PGq7/I3BOd8zw8n4oG8usFqZdwMR3x59RbE3AsHpORhKhWh/x8SdGK1iOej4bxyigdFXQKDO+S92psYmdFJ0hy42Zq13l5/+my/+OgDpoZpDMUOT1LImsM9Jj0WKZYMZwZ2Wy5Eb809sGYMvtBf7Y15UCFura3Dkq629daHioqyUQ0/35adTp3EzOHUo7pnss7S98hrQRtfukS0QTTNaARUUInAjil/bOesctvSajRe7jJtzITJceM9FcyUpqvD34TBJ5Z1oAVjyGvtCk5EjLoxl3hcsy/1l3EgCUZOXeeMCgWG0nDn+Wxf19CnN1dfOAjl+fTlW+Ud+ydX2n8uN99er6svkrOd7Z1nfNtoKrCCK/kgzdc0vKD/5jX9VR13W6pcmJAMerItKyhVtSq6jRMFdKje0zYQHeHUYxWAexvb1KgJPKkYHFjuPdbFeEEv4XeiEtfixT17fFtzdLXpl3zsy6gy4Ty1PdJn4mZIpeRl4nObjSDA4dli9sVbsSY0SViPlL9qwqw9d86M1LGYaPta6fHVsmIJR+moZ7exDlIjD02QSmfhnx6utspSXy7mjhY4mNBdh1MaTb8N7RIYt+1/EdqyHniuhcOLSqH2HKuuoOj0SvvoF1F+t9UAA1PiFiullJ+DklCbneMWOKyOXmMNMvriXSjDYeLA7amapKwQ/gZpk4lMXEyymNi3Lcty9sBcP6iq0oZcsEZSlIrqFcE0RtaTC1uR9xVXPNq0R57nB+cLUXFiTjYkb+lfYh74cZZaW0Jn/zB35Gg3mz+/+1Jj887Fa/NEobGyPwH+y8tEsq4jpB1JQfsSUhjdjcQeOcD5pEJrOstPK0BUIJuiRCpVEyibNZzx5np8ggVa6oQmxHWPXKGsP6IFdyxh2gVXsJ8s56KqO0DJlmYZuxe5s2hl5sQoeeK432dgDfuS926JHOMBHyrRyBOFjfWapvdbgKGLEtiMDsAYEoS/1YbBV3LFxaoRjzCPbxUHQKOC8gpNDTFt/Pn2w48f7OeY2u1+enh+MXu+PJ99Ojpar7qAAmDK66vP/JfMF2cn+ake/4rOt9pmD7kMiouElTlsYpOStypKxGESuTQSVPF020h1qT/lv5k60TZuoNpxeNxnsgJIdcG2x1+RjkXebWnp3OZWYKzkq6aD7OLJ5qc91+vGHI7daMEClOBnHpumAAq5Rl44W1nTizTJiUnhSQRmNthyI+J39Pf/4d+XsGDAZ7+p0H7c3i7vVIuLHrp5MR4rlu43Z0FXmVRaQEQNS3fKDBFJUnd7X41yaOCLyKYsjTrcLqDAsjAD965CwTIpQzMaS0GrwTePHVDMFS/D7gXGvwNmV9oEP6ubvFTx6gp1jc96iNjWw7chFwJARGEoYSRyX3GySpYNtIlA/6wYoA8BAYOWO3c3t4Lm2JwysWBYE5mSEbxs42PLUQ0C7E4ast42Zn4m73e6E9j1kET/sV5xR8yI4XoW89Yq0h6qY1UfOFRxJujf6XCgN8GQ+wTGIxjKN3c7O4CywHxWjNP4Q2M4SshKtBoXAbs4W/C6hQyAL3ZdnJ1rpC4TL84MxbS/mVr7FSP63ens/NbpGrsnrUbKhJzM7tF2X5lTu4kcGCVGTqFsbtXp5HsoOpSMWz/ullvpAd3G3Z5z2+KQSbTkN0zneuCUa4EMgq7oQ67ONCE7Pbyj8+/sZ7IsWQZ2OjFaiS2HxjkKQpCATOSqsqN9h7k80x9wFhG6GlHdSru3mh8YQ0LDoqJnHPYl5CJbsnAU1pwPp4jzFofkPrfXUbhEV1e1DYcPq9pwgiHenf3R2VnKYbizdmrxSYy6+rZqCNrdvXh+c/Xwdn54qt2bs53FyT39WMmqvM4JB0UacISjREiHnq4tE6RRZMMPIEQSRxUruS/OxMIlneVaH/dVJ+FHk6U5RKKsJERAH/hpX9srQ0dPKsUqgogiqBzqqjKmNoPxEhxsphm28Bb2Y9A4fdeebIs+ki7kcb56+fqL87v2OhxyenWYn83kYY1YdQxy1oOJIBqvRyyv7RRwapCkydPbi8mbty6mNlgCTkwjOh6jn37RWpEUeRrlYELEG1vsmBVbQSEQkXUqO1KEn0IZfQnl5IDFZhV82ipPtFRsDUqQd4l0miQKKpRjJFK7UIqc04MjMUrZZLvIhLiaC45bAIfYgkunp1OnsxiQsbGgvnr3hhyWH/EnDZPZA68I1zCcgXnhQb3utkv615HFv+PmzLuwtb99ACsMLvPR7CaQ21tUveAPCbGEmSXKnMAGk8JI0xmOd4CwgZY1QqDDx6mAgRUjTgSAF8I0Jm4MLR13LXdKsBDOOFYuk4DSy7VuE3eWABVBjD2p8L5WURlZkCk9yRySjtVOJQVcGhBPHDrb2qodqy6R30tL06KHKnfn87n0nCDOPeunUnsrNBz4MWcQJ9xgJpu7LQNV8XcapGEPTC3q2E8BoMaOD9pbqfWo+dFECHSm1FaWgGWapV7NAlKL+7h/eK+V/O3n2+UtJvMeQEwRp8Ngk/tidw+LmbzGqsFRDs0D8cfaC7BoWbtu2vMrPSsIYMTxgjXghZTE8xGfNVpA6JUizYjKbB0Rw1QV+CYWPXb/7Pxq+E91ab+7XX38+MOH9crh1ijjYfhjALZnGJzDP/ZtYuHHUoSUJFWiuF5yQRusCgSTb1V1Vjt2741jmtHgyuARjjYi2SPlrX2BaROpAsBn9o5VYjDYtaQ50aANmtP6+Wxje6u1FoEXjAIPjOERhsPweCADm+WHXPYxqZOmdOgAF4mZ7S4lVAWyVJ2jQ6fCKlLhW3Ss1cvB2hkaY++/BK29Y04aQWpNcbCAUNR297x82X17t/y9H/3463eLpYjF3vHd6v7fXGs6qavb7mJx8nY211+5svq9w8Xp0er0STzZ7DEm2Cfzg2BjScuUZKtZVWudMaZoKeMm4z0pSispMz9+QIDMFAnpjjrJHaX7D7fVw1QM2JkzCI6kpqxHD/4ipDGWQGBYkVbmtopryU7rVXo8xwtpUKs4OdOdr0aVTMbJ0cIHNts7ulEFZMtcAhD4KMsRasP8B8u7koRsf/ZQAK3CohWpEp+taEEhlluWY3hW4dVERAPFcAUfsCWgSyXW3SBR989DapjW/dtYLRimOjCPbXYG+Aqb0Rn++VmXjPWT8whMNrxKfWbpvfZ/ICIGaOlZHnbd1TmdEWnmWGL/YF2PT+271x6rxoQJxohCOpSQRpnaq3Wy+3QtWg7tZmciJpODs0uCjJ/tlKPFSJMPWC/svM+b2mycdcVizQ1693Z2dak07UHAiuVqbCCZ1OVLAV/GAcZMFQsUaF8E9dAp3FT3byGILx9H40knHFZt9ngM3vqpYivCbDHLcxEfEzQdPBkPFB0qVFJMBnuoeWJUjLyHCccugg/hYsE5a9cARJly/Ikq74PBBL6IvaEmx+F3f92YW2OApsygZoocKmy4WT19ZTYJWOBiXV+/eGPu263ReugEJmqxx87+u3+Qpny1VoUltjuukucQ+WJpz1szPzj4gb+x93B9/HhfLAdQFzoms3Q92ECNIhPTmXQbBsHhhXzZbWHoiP1ybNQ073WOTkyFuTQgV/03mhO6ITliOrJXGrVzOkTE0phlf/CiJTwWzxHmVW69P6Oj2/5i749CAbfzV+w6UOmGBJmFLVPwTJHT00wlXIeWyIIt9BhjOrpY+JQymp9PRLwe76TJeLcboDyfMAL2675a5iFNmIbGslXzHwqYpOeG4rLOv10NdPDFguggjtHy06/ZrHFUzZYsUxYbm43jVMqIeiNewZtSEmRGRLJZZKGVwoSMqnhq6Gn/5xq4JzOR7yWslIuRKeAesZbOqLDi0bbF6WRpj7rwQQKVyZ5f0gwwcek0HcxSAFrGz0RaL/lUTnZHsVT7OIvRfK2Cj6g9pw34TSL8VpovULVMHKgVMFBw2qcsVCyoJsRSHE3mj6e6zFeXb5zia9tno9rXLQRyrFvSJAyYuq30u8cpITJOqGEYGnbN5w4YQIjDu1Utg4ipPGqaxkPtIoUJ+CaJpQDjQBbLk8FnVPEKVEpy6T2Eb3L0//juu3/x3S9//vXbH83fyEl/unn4f/7qMzVwgU+P7ycX2T4vah9R5FnW2o6hQW/67PZZawD6xPb3+UKLxmT9dp1mKsCXk80JzWLhdFkiZimdTIThCY1VEdThrA2pWLqtWvuThVYaUnhkCts0fSQ71KvNHpwML9LLzNROFI1Z6EebQ9nhDl+bzQkh4MiJdGtSdp/CcTq8alFcvIF41dHEmvEJeXSMMSY0kpWjsxmiOrMCtFYH/MJFGcW1XWDW34N0fpHecsKIRtZGnosmvMmEX9ZYSAe6XIdu3DhdQaIQHhvDFT9YX4QXX+v0y2rerYIVcI0gSZaQegVWIrej1pH4X8pBSfbpsS6imGEp/O/zykFH6JMuEeblMgEyDJjy0O5JERPZfnr+6mtxd1NVXXRyszr6vCyNjJiTg4PLmZJ5PFSJKa6QQA602AUvzmkoQaWq8OJytjjfqUwQVYK/VOPSgaX3eCA/WEJdVZAZ4PPyC/LUYmwJV7FfZ9holQb0nKfGa3PcqySTrL6buJ7RQ2atphVymouU82SiBTlPhgpiHmUCZKpl4VGidHHyExCjF5kaBh/Jfe2MgdTlQNXk4jDCGxhaLLVVVHBQHzb411tIawhR2/0tB4UhlCeISz1z010OLnxkoGJQ0CehRiBpTT3bGF3kCh9NBH3GCrIF8bgrob9d0hhC84uTo0+HT+dP68+Hj5tyLHS2AbLeRIHdOwugvInTmIkXEGYsUWb4ne5orwz3u+oDJk4HXCT0Je1qVc62ZN8AGIUJFc9wdrjyzgN/sD0jDZjJXHThRQ9sgLzdP3Guy9nLpHYudaLCKm5zKpXH1TVlImmOp5zYIivkanhDzD0TZI24IB71uxAsMUrhXzI3d1tRU3T2V58Qi8efROgjXSdT3p5VDhLuClSVVi5wlJ/UtINpOiOLnuuRRx/2+vjA8oHhVqE7jAXgjRQJNjGPdyVQNG+3bMEtqghCaiN8b61ROvUdLf3SE9MPPZR6wU8tMeEvtFJr3LPF2c3yTvtkNkXVEqoshUvHnbq/OFO1Gzzz44WzBfV8Fv3X5xeh6/CWf48x6W4sRK7VtzhglWFMD2sfNzteqcLXnUMALSaUEuf1q63G6Qc6oyidEWV7VqohEGJgF5fa73VUt5pzJi3yFvJaPu+rTIdt+BkjFZKD5HbuyEbi3SyFY12lWVMSM8LiA5cqM9AkZ/M0n1rbiJu5dF9ggv2FNCbG+8ebIif3+6c/SITsjr/9jez7r6anzzpcsAZE/ZkLlFY1HhkoTgjKvKV2r95WItk+Kzv7jw8v5ky9p6uro8uLqU557z8L+7lMiDr01/mnCuKgtfp8TgZJYpIx0WUunTOYVuTVCOyenXz19Xw2Jwee52j5MtXAu0VLfRMhvk7+nzgsz8DPGEW7o7OFHdq2dLFCmYelZ542it6t6gNXRwqZz3oMvtUWwBobVvUuLuqISZ2dwHXIHSkmYsrQov5sEuYau2ZzMtJwsJ0QOnXygys/YpBTxzX3TjPz9outNjCTYCdjp6pfOHOcADLGeRoxUxL2KOCWqa/lxQRWEzhh1o4+xm1OqySiJRsZpCaH9dn+90KplHupzIljhZhluv45kJIlbCOBqBnBwvF4zFmYLw8Tu3+dE6CbqDDx9uWrN9PF2XS1Ofz4gerXw5lbqdWruIx0cXhLInVUxQ+5ym388ZfUPF7DiPstZgHxCpAqny6qQNpGlNGs9o4lN9Bn2EgcQY1g3U0qBhyoYVM9bm15YKIHO0W/kK0GHKJdCKWaDAOirNtZ2pLuhCPNF3bHK4FPNl3Y0L4ZpPNZVdD5H6w4Ykd8iD8yhQaZ2H5goGNId4xfSN0rOOCn9IqbxjEgZ0aRHc55FwtlxqUmDCEG9Xa8CFnRxU8+0if8lGlwv3xAVk4K+4aBgi8pqtSCj8AzUhig0i81VbCSdCtGCJL9N2wBhs3I580hlhnCxXKwlScJQRqutPrB9Hhmf4bIMEXZPnEG5qAr7G/W/pnHeFn+VMSBDUM3M14xAdebYmJYLZcr0xJxu9OY5nF5ql6tfCN6WMXid+DapLTyxrWP0+3R8Z3wEM1B2swLRhb65ppkqRBh8R+K8sRaMy2UUwMGCoJXebaYSrVsykNYz7bniOQojGshyeiMYcDq82W26b10yth1XL7UkIe6QLaxXibY/xG0xapUEpW7F+qSKOPPg2EvKc5jXj7UuE6Gk03g+vq9IaEHDA4yPb/FU92uu417djcCVWkVpiiJQf4A/+F0rnWLOxgRLZK1wHDygmexfAfasP6gRcpagZU6aQYZvjA53w0czpqPW9EAyMepNUjmu/pG5alNqWgd89TEJJ/XyBGsh+k5MYzWJ4e/Ym4DHi+8GrHE8rm4KWgzp9SweeE1vprIPH/JQXL13nl5mmOLg/2b2ydt6bQdkiTTOX2sBeSWwFyADr9johIo3Eq89bTct9nP0HGTxZPhnNZWEytCvjZ3m1JjxqZ+ZgakhRS3m4s3z08Pqgx5Y8hMBmr1xXG4Z/ODWz266EMIE+nM6GmiltOKl3yUKOOb7C8uTz/frrWPfrObQjimyuKi0BF4hEDpKtqSMO4XhTdSSTzBIjF7uxNt7qSxIQMOztmD3tlP/rLTox4bmn3FSpZA0LXMfBhnrHnL2borfeeGzBnXD9BXj+g7lZ2dy05D23Bb3s/qY1F8D16wb+cI0HbdCBenzs3CDMMdt6ZMRIHTo+EsdNR1I7W4QkpgYXWEWbkBJnXfuhzvK6/EcYMfnHxpWqUtNQEawTKsjuSwnvhztd2vDSD2AGvac4NVytXmrxhMO8e00wGfFkpGQrtemYTtZqAYL8UZKU9nRxcXP5krBKJYpR/522I4XFGLRvMu7LVWBPSiIraoAscoJ8aa3R+KCyGfMAVnHXGhFaY1f3cVHlrnb6zVNBmNSAKzUWS0UmFfJZZnggecKHhIr3Q+VbwIbGG9biJ9ZThXWmC1KUDMUtYMl7uGwENNWECKClsLjyiiMPD4ceg8qE5IGYMUS2iGDWouZHtyWGmJsnOKVvkZQFBoA1K8FALyROzFKskGLrp0yN0Ai0bgN+QFBMmKgdshOH/7zduHb98P8ayc1rUGYyhmZbCau1s90aCwVRWvU9vqTjXKNe4lfoUJ0irw2ix8RVlgbaMyeUJIwJi5oB9W0bRMD9vcTAQFEkAEYrFJ9IlZM1AIEF1uCBQSm5CYvuYM4jQnTU20FBFgfuCRYyS0FbvXo68uTrQFvEmfF+vgqDP7qqZjkbiWGjAthoyRuLBzZgleukPhiGfACGffDnNcHErp331lzWdnmXhHP3z8wILOnQB/5mehYLuljJ4EL7mkt5EVwT3bsLPQ02cYPTp6yzW91roWXB9rAAWImazHyKoyd4lwxNeOWAiKaV/sH5S35i71GZCcImkNm0nWAeVc+twfWs1hXEf7TjQmWKHfFQPfYSmgp0hc2oKdnornPAgOUJK2FRmxjRXCE7DufLJloFMiY3GYbzj7lXMBJxYTOg2NMI4Z1Vje/BoOW8ZaJTFWEHU7/0lgRGZmwIPUr4imwLiYIMaEL7RReTZTsAuImWNMHL1XLW1sPi06Sdlw7pzXcTKVcdjvUENIbWqS3p7vUe2Dk6zQ+pL9W2WW8pijt2rblx845Ly4PA5JvXx7zKX2e8aIuDq4x+G3qjx31dUwvjRndsTgboVSGE/4m1YTSRYMGDlcU86xe3YeLzi2k4imRQXmHrAW0uMF2x0ma+c5vNHTycZNUQYbsWZUPpBpx4dgkhaug41iFMkYvOi7Ahm2ABaen9MmoqR7aloYqqRQGK+8wOEJ7kOeodK8n3monkKlQR1H3cBS6Pgvu7v3LMZlGEphFRJCOQygPyar3NKxVq4dkiKhz2uR6gBATB/KDLFKTIcsuukVncvvdldbZDhAeqfqGFdfc8lJY17OAx12P6aLbWWhHQAwK1zzemBLeUCDPTjmTKQntgdrHZ4hk9fo+2h8cH6eGwoTPFv0QbbTsrdRJw5VzDA8acceUCF0lbIoDbR1mzCwfR03VjOboXg/e4+TWd4JSPJIUymOIVajMdD0SBp8WJH6fnsEpG45/SAgKdTGsCSotALGhb0OiLPHw+ECDkbFXHpXS62v7HeHYLoKphTVYDJ6aH59oXF8GF2+DohgWLcSy/P8wz3Vr3aRsJYI0Ei3cQ5C3kQk9AefAkvI/Jp4sLBi+8zz7EgMAk5ofrlYMOlFt9KKyjOqSinyW6I4BiIjPfFgi38MJ2nl7Hj5RHhP2RtyZMMF9uDht0og4R/o38292maXtnYXX2ibhDczOaBanyAF0kjcHV206ZanG3aLuIkjKFWgiCPPAWyz71ZkmYEViPGn+cIKE6bAnWMhgEmgA3rGuIyxZtpoBbfQPv+SR+iUoVopAnyyAhGhMts3D4S8WDScb8DtTRTEI9k2ctvDPoxuqlm4H/YnTiz59Jx4XoalLwFiUqFAwGPsSSmuI3iFlMwV6txysbylr3GZvlWVKwMxVLAKLON6Zx19/937mlSZJKXjy12N3EMMsj0BQ6laqIH4aGtJDMWNkT1rS1wmA8DAMupgLuiI7dtb4KQJG75FuSNQNyDJpPPoBFHoGropTQxgCXySPpa0JxlfroexBJaNAWcjTXaAbSGQUDH+l2/e2U6DhjQtexNqBezpr2p0EOJw5uTTOIAueHpUU+S1TF7SLbFeIsDjDdbElQBYAAQa/JH9kJOIQVJqTF2UNHzyhqAMTMOrwssAsfJDakaXLQ14MYGeunnjwBGjVWAX/wMfH/fuq9/KfsKRhEBkaH6qgn7/qy8IumoQ/XPcYcwXgd0bxHBoSpuz0fSGPPzf/OKLP5jf6YVvHVy52d/wVw+eVs/Hj8uXu6f56cFy/+H65eOqbcCCNUrXmMX4SQSswBezCwaRwm2F61hUZzac8vy4SpUfdQzfWkSM2ikrZE1zjz1rAWWOjmx+EC6eof7hyTIj2qEFZlIJB6zkK0jW0CeFt5n5gwTCkfRgR27kKbmbNNrsZXq0cWDufWfCYGW2YkYAcyCPsdN3bEqzFu09Ib/6urH0D/eWK01b7N95ef/Drdmr2z85baN8WjMMg4Hy+TYb44GxGRJTTwRP0BAHqQqV17CmtAWLh0n70KppGec/dpkhQF81yVkwgFoVntm7+fHZbF+7mqmkhqyBzmhEa38CbstEypnh6ueDFZOZIcAUj+NGVDXlfXirnv/ewRO7u5VH7q5MfqLzZf3ozBjpuC8sRQkmh8PYNv5cZlfi+Pz05FwiXPd+lpJC/1PbsQWraWPcT1JOT/R1ftRKT+kO48/ujEN7EmssvdhT8qR81USheDiOteqEta/r3wrg5toezkoyEFokJzfw3c/A35jIPcTsTDcyayEYgeEOwsENdostIcSbbeBXV/iOnfBsUItpg17IDBWgBLQopUVIQ0LvD1hJFwBOWhQc0I7DxMyKS+xgeLBeAAbD5YqafpEiaF+C2TDFv6FcmFOIKucilMI4DBvmQ65GuZ3eVuaskw5mLgrVR0KShHF8Rnh+t+hAtRofFgF4sWtju69qhIVdFBVCUuSe3rZ79yDBvFwftjnJG55JZgCDReesCGXFfvzOjMXEB4ARKO+hcHqQ2UTK4IlJCMRHF+REMNZOs6wurkI+21D9Y9JUoa/Qi88UTYZ3xfkq7cvcSsLoEXxY9hSG8xjsDEUc1JVoYPVS39Yl4733UchgrMmwqmLyfc0j7w745jFjRESZ4AdeUzhsCjNv8YB1uO99JbyoYGJupifAkxoojy+sH5pbIhOO1k1bBy36zhHXoSkJM6G0izt5m99VmRqFlY/NdfYOkzfpESqJFXtmg/c1Nr+pq9Wlqo7xQqkdhBSp/Cb15vZGLkiMX7Lx8xvYgFvprVpVkhVH8ulCvttdzITdpYFsREQF4wGfRazRlLKxpwfDgnYaDsWYKv3FlaourCcfnJddOJFjrXyL61einVao5YrEsv0XR0/q8XCujUQYCEFcbS9RfjmQZGuTTRmaun3xb1imQlSSm1s5uOP5ieJZKicxrBKHAMcexAz8YVwG5E+/evd3f6/Dy0h1ptSTslSV4VZ8Jnjl6h++2/yH1SjFYMCiAyNls1dsh3UgoNwmBls92u/f51vrFldujZHIVyB1zZF2CKCEH/JrkNR1hcEOFeYey6MKLIE/HSnURXjHPPFEHi/Zj4M46l43dsIiAG0P9lyZqEPqR5eB7BO3x1nhjnlRHcAtv5hAxQJiaO5DDPBKI2LfZ3HKXx388P1HE/3Zz94t7BgXmtrpuTPJ6nSEpxZyywCXKpkvjhdnk8uriZRsphlfn7o9P6oB4tMBo8ySUXwEv0VSH/T0dLvUG+RZ9m0O7AMfQSEO3/6JHeiQXWDfQX+Mh+d9hbI0K5DjaWBS+tDeORRldUARybpk/1nJL8bM/OpeogS7NfV5cUmXvPKe6BYVzCCxOi9uinnEpvT2VrmoE0eha5sJqMlaT5AbFeQWlXSATnTanS+cDHOowY5Kv2OHM4GDzH2hJs5fEQ1rCjnY+Chsh0H1JghVIPbT0RRHFZHCXu6sE50qxZzfkCBgTxWUaSfcBYCsCr1EwDCZxcv68MdXzaID44Gq+Cm1mI4CvzEB85NEDRCBTMNEF5EVuRqgnIGnEJEqVwJj5PGf53oeu6yoWRVEqrFMfygQgqADoBVze6P08fQtxmCzMDsssb/e8lJiqQJcmreKB3V0oInQJN7GmyF/uPfF4mCWU3H2IqhGmJ4/v7x8OjzZUAl3a7F4X0czRWkzBXBkpRx6qsPqckCeLB4oZOqFhvRwzfvx92sNSIRsMq8gEMlcU70Dvdu+6ENVIM0joxnC4BIIQQbqXeyN3gtjrYVFfbQlDneJWBVpYpSF1IbLI8qrR3IIBjwfWTliejROy8zKPX2mAUNutsywla0HrWVYogYA9+Xon/zjf8x2a5kFTV5joVapF6gfxM0+xnZ81RbAc/1P2tMBVsDJanoxZi5jeiaF4kXepwU2eM4qBVyaSlW4WKN5Gbvpw/X8AxhAbaiReOQhe0wLKaTqdvkh+MICFTLEU7SDN63nYnry5ZUGxpxlv7otUzg3OrOv3ia1dQNWNYV0A56jXYNinVXTFl0TKXYzgGbZSs1APiUVop6iOAw/trZ8sDA0jjk42bCsKmktCBgl6K+h2XIc923tJ0+jAgmjjdlWXZtzDOMYRVoq0uv4zDETkLe0KHpgAt8MmELOPArS8QSkgPW1gRNskQ+wHbRNUkkSjLccFI8wE40pb3jgHEBUDA8TTdCgjy4kRV0mo10cOg9TyT68B+5lHFBmdTu2J6E4Nnp2KkCuitGEqpQ3HNtT4WC7zUaZsE26xXNxMI5lFYNHlq/4Ghmj5x0qsHr8NBEjeT5jVjJbSswWO6jdvDo4wRDi2WjUQGGOWuaJl1HsZp9hOtJodhEnkeLJAPVIuUtdG8RLc7gioE2SRssEL7TksCaPnpws1EcyYr/55t2bL89Ig9pe4Ikx2qQTd5p4BMe9p7Pji4ujizNUNteOdSmfzGgQCJ+oh2nD0Uz1QLHcyrHw3ItW3Hdyz3LF9JxczKFWQ3Z6WTLeG5HDnvLUDt5TL7aBnGU81LxRYZ6pNjTZYNxZV7aTMqepwBEzaA1NRFs98GU+fzlRN082ssViJeF9ldrsBy17uDd7xxrNgjdxg1Vdd4o8spCqYggO8QP+pUqksWxOUVU1P37z9vxh7X62qspPdGCRe2M8i8Kr3KpYlW4esh0spjtIYNEQFjbOzoZRylXan8zTYRn4rHykDO/iA7Jp4uwisuLD9BqezMbCH6QGyluxACLbuk0PCGJRCG1WMAfQq4BwGAToCO5oaMII5KrWnVMBZSTdlMAjD2+TfLFy8I/ld+cUpqE2MmhVqVVFWCx0N3uihEGICoi1SiUtWUWVkKMUw7DPLd5pwUCmLOvYjfIpbTZ6c7X3u2/W56cqcr55eH7D8Xp6/Ly3u51PHi/PJbqny+V6c7eq9Onl4uj8AhuYU49FxzCk4lcn40mKS7hGKcxu4iYfebBWOOJVokEGGw1bC7RaDkvo8E5vMCcz5uE71UUD+NkWPdSy4CZBnpTqyxIBfiiMGimMlLB7+rn2LYVjut4/Qdc2ppQAcyWOVtnBYChMQxt3NwMf6CpByuPBlX/7D/5OC46K0aaVSkOm2o18/LV2aXDksSIhtZAriyqDSF5J/YygGfhXBv+8p8OCDSbKxFOK5myMQgkQpor+Kf9UGEtPsdPs24aCZ9p4koGQ4Z+CpgUebLsQVcliZYwiW1EL3Pg8KjS+Nlpoot4WiqqNa2MPRi+xCw/ETPTvV09S1WBLYC+xI6+dRW3MeQti12wNZQTMJkER0r9ZCQJ3jDhRc6AjO+VohkrP4tvyDfHu/j3TtwFYraeH5cpyOc+EkAELQIq187qwql0G6jS30heHj+WwcG4xdDaXmxK7ISvJAljnmDLZTMJTSJg55nm6T5FnyE7O+pDNIKKiUJRGo0JeHWucU3/hVgzprBqpoEmtOlowbp4Wi6MZ89CAlQmOsuWnwsjupH00xDy8U4lOtIu6DDdBykEkZEiwgVa3V9UJE0olWoEh87JZ1xZMAZL1+v76ZjeZg4xalhtUtkOLbR0MCUkwetxjZObOHlCj68DLLANNSRyKCOfZBS58KsYCQ8wic83E8Qqq9Q2cuYy/ApiezF8o7Je/+qQY5+3bUs/EYOlcNKpnejSfW+yqgiYHFxslGg+UvXJ+wJrd46F+rTVelUS6DkzLb+i5Y6FGZDB96TaHsy8YFy8vF/ZCT2I73Gm+hbQpc7TGU6J9x+ok7LqznqUz1e0UgtFogip71IdHs7lch1nbI2TjjnanJIIZ7xnSDIkhiXBkqTxDUIUAoz8VEawfX+kJCVD73TCUSnBW6ziJGsPgCWI9CpaMjTrlUYs7pXI4STneVgDh6Q/lTBOZEUkz0Yfz9pccaYi3U3m1r5oFe6degZWxIDH8EY6FoHgHkxQfyxxrU0vGKWQoMo8aFsl/fu9xmIONEg++4h1jgfD2Z2dHN4U9TPhhKFqaYf3juKEFhgNkpd1p2DIChmApeKGLtSixMcat2krTSbnoYmJhp/Gyc4NYiHh8y4alf1/2llBDUPTp8VK6y7uCIqEfhGBpUg3365frmQXoPC2G1cvsaPflm6f/7B/tvpk9XbyVRf+5k0B3L3+2/3R7tL+6Wqx+/yeTt+8mHz8dffdrabXN+w/r5epIZxpI2vMPHhgcrHkDDpUHxxshmpFrY2T5G0LmfxM3bCIPynAiAKCOq9B0ZRDVMAdRcohpeuYWGhREEkOgi5nxVa+BeuZQTb7j2LHGhbC7FsBTAD4wxK61p7wPXze3G0khiqwwV6CKyB4FUd21WUhXpcwtZu4lJHJZNoLVadVSKAjof0KTqEsOuU38ZZCuyVYIhXo5C6OoRF90RwELKkIcSaSMyZVCURVxwqAiT1nh7k42sRsnuuhfhn4rndC5KVqaXZrNIhoFmfBsuIkhXOpBAa6nYslwBzJ78BgWQvif3PtDHgQr82fgoyZdlkzPXxsintcPDLYCI85l+vy4vuZHcJskSTSJUGNnx6tPvJpfmcCmydYtHKZUjgtnR0dbH8sGGCqP1QqPOEmxNrOyrDhb5VDns5JcqIZRM/YJcI4lkoediiZVaqauTcmbbTBvP3yVXrw2jggJhZYF3SKBf1bDt2Bk/LHgSED2BGHa8Y26FtozeGJkQQk42iug2E0JSAwE3RXjiGHd3toSor9SMTG82EmUNVMCA+Jm9Pdg4BZuhAPgL//fmA71Ho/v0xLxRWG6lqxVcsy3rWTY2giwkY+YuG1NZsJXlX2xvV7GWBIYApboNjtBt7JNDIwq9DJLx0Iin9aJQP5IPZHHgsLrz1vnov/oR5r5+OGehh1GLJOMp5RoUIFUsec7WseWZ+c1GpsqRGU2O87QNLeX0Y6Y5IIDiR52lnq6CXD72jLC2KaZZQ44fFLryrUdp5gFmnnAYmZhZWrRHGZmhsao+kfmNs9SgeDe0Xx6DmMPFPDCMJApeqyU8+XLS+VN+opj3JaakLY9RreZweNmwCUqGkcMsHeGok+TbxYBLlUjlEVogWZcGy6b8Xbs7MP2bjl406712KH2c52MSSXEbzzHM/1TaOiX+8nsZe6sZ5sKj2bqo1ZrhyDhu3KMmI8wwxz+XWjCf9GXtDL/RB9lBGoJFJkEDsV1sHYfSFzHbxjeGpm1lqT3pWtoDx8c0BP69AlTBBRBiHWzZt6l7o26MiltWqQ9H8TR7W1+cUKzhSxjDyVQIgEPl8gAjsLremh8Xu3+x29vIguJFmwGaI83//D33nx1WZW1ijAfQm6Gg6QHUd9XJIygvK7n/cls7+//ve0//+OHo/sv989/cXj0ey+PN5maovN7j/OJ0T/aYMVgf37gntiZ8bCqRdBd4XnFFqeHU829J1qcQyRhu+wXI8yt45DYQSnhzFTjhKRRvZYEWR6kaJelXGP+OkZIKSCHBRpaApUwXtjFPcroLvJQY6DCRBiO2FXThQ6UPfnq5sQNxlqmtmWMSAXKe1KO73COMzwhNquPQ6KiBN+4x4BV/onIH+iUYCR1nICxUAP+W95k2sO61n+/vaAfe36vWPzQ1Q/41jiaRiAFFOxQm+Icv7V2WEK4hsLITG7DUZBX8S9W91uBkXDTpe5WDNkHeX/xlXG7bRwQLrhbqtLFWIgRHBrT9uOPUY6hd2V42otu0JcB+96NX//2VLdNrmNdl2aJcCoeqoZ2ODgsSTeox93c7G0+yMTYSybHoof0583zzcda7a3uPhfjEJV9fFkXdntRToo/g/oeB+w0A7CfjESk3sUIFcPnxYsl2F/8ABCzCiwHufAz2qU56rQHQNFJzNXQqkKGqAFlShA1wvFm1Zf/ve6ReC1nROmcrKJXVV96O3SmT5K6GNBGN+yB2hdvmTDQMHQDnohgmxJR1GN/6VTI7bNiHypBZrv2XXEUcvFGxU+OV/dLA5n7bMBUN9Fkc/TXBSKvBoMc/1ADmAerHKCe9KkNXpTcwBEx9IL9nouRKdq0cjwOKmv1ZdRy+6gJo+gMSRt2/c3d+vx8+uWXi6rubEgrR124iSX9orHBs8bCyjceWN5v1PZI+EqhATXBbTXaYBAbHjodHvXwBWTxCHPP9m0YQuAiMChlsZ5fnOOrb0dcCKrIPYb25fNK5Xmfo6E8gqCv6XGCqAHBYgbc2fnR7NxyBtmPn+ESE/EhEK0ZXLKNuxi7wo0CIaU6YsLB+2R40zr7p/g15Ycp/DNWEuxGWgA53OVANzS65VEgDjysnRTzrFjope3LgY1gpqsrhtCZgsWFd8zIrMuzgBV3PdleOPry8GBl70d6il3MujG36kZbVUzK/7V9DkrRqRlZQUMYPBjuVd5a82wdNHJGGwOQdCJm+0hogJiGWOUwjMsH3/Y70wC7JojGa/lgOkL2IqiCjIZOsWXQuWacK5cCGI9yS5jgRw9iJi0mu6+/4Knp+3T6+fNue7PU/oaRFQ64RJiF65iz3SBJHbkx68lkTzPdL85vDx92i9nF0+RLcfft82pTb0OwRCszu2xGP1q9HEpyEcijqRjyw+pGKc929cnYpXA1rua7sjdUizoSCm0xC8i2fBBAHRorJ8G0vDkJlVkRPOmurKbWCY3QBiAKRzJTTL7sCRy0ZORp1CvApCqzfZAJ0wq5WQvL4RvAgUK4HOfHmH6oftgFQkD9igy2KGm6WOgbScBhC7YvgMM5A3Ce3Obagz1VbGwzwGPd65vI2kMUi4WUPuJrrHuIbGho60YkpVv2K+EZsJ9YpZ9GDMmOTVax8TGjGMv3kipqvyw2o1MrR8cCWTkmB7JBMDZRj2nl4piB9402AINxjWRAXf+PsYyLvfXbz4wrDGbw2uv/Y3Rda6h9fiDRuJEXO3izWwFFb6OreIsijAKhduNr/7S7nxzM1YaxGmc7MR9RJ0dwKiQ/3Oq8zvVkd2CJu+tvf/VX/+bf/ssfPn4fK1tcMgZs6Tk8V3hBsA9b1XHFUJRjskaR1w1bKBFwFznNvE8SG0PpdXYwTpRMkPFWJwrH/v2//5+2m7vf/+bnP/nFz4+OzzyKPz7YbSyNWxcdkPITK5TFsMDollJ1DRPS/JABFCC0V/HtfLI7uTq8Xb7cLsXLgLg0medben/KRebLsq7YftYXsCFViosXVWEjm4WlDjbGGVzzyMoEU5nT4e9InX71OYoUUIvdMECKWVs1Rp3dpbbQGpvx2paF4XPvLTyigfvsbZwmiZLFVsbScZWPHz8ro3n+8YXkc+YDA6/Dk9XZHrPUNdPw2T0dreoUTcgy1eULqbiC3gx/HkieWLFXJerRhDgEaDEW03745JhzEtdqJQHQAOam6k1fIBQPO0WuZTVNIDWYCttK3O3mHfe4t+al6FuhOhRXDQAmDIwDVqX9PVSN7DM2w9/FWLSbkiqV9qWFkTaezBjBwPdaOjs3tKoixmOquxhPoV6h3NpEs5Q3d/cKhPTOKD71WKNHi0jFWRrWh8nlzjo0utorsC7bYQMJEwI8cnruHDqgKeesJoC5R4m/dNipXhQFnjQiKfIsL3tyqtpZHXspLPO3exnrFmRMzqwZZrHOlStTFQ/3RdtZEZwPwIbA4RwOBFZ5B/5iJqxTMB22pyCEkqPFyWKKMSl8r6qkyM02eac9Y5MEIhIlI4WJspmZRrjkanH8R+/KZP/m7nj5iS4zuxDBWD02ivrgvV2L7gBzxSGLkUkhT227xrsCcYdzmnNv3wkMn++3S4sOV9UNKy6cOpRqfbxZq6IWydt/uTh4vhJG07pKjxBttx+dZl+YrJ5M3GiJ7CgJ8C3Cg003xyU42WOZ1dyEGiDgxsqoUtAwtnECIQYAMS3FUvEtqto46A+5ax8TxnNTQ4XomZhKKg2gdlCIF/DurakIn41H2RrspDxG9MJl2VdEsYCS/2O5AaJhqoFjOcbf0e79b/aX/2HBQvGSMvD9L59P3xxO5k8nQrx4L6s5nB8Iii/zhPvdDX9rV/qVVz1QNDG2VHSLm3/6s784+e6XihOcjac42XGCm7sbh1cf/vzHe29/Mp1d7ql6+ek/elHEOtgkhTVGPYb9qhAC/yR0RCHGLHhZHuc52MuFfhqXjCG5wfjTe17vqsGDXTy+Xv97HX8vuP3rPRg+COSYb0h5tNL/81iCmjrLI9ttuBpZzUIg+UwuqXRJw47d269+/LPf/9kfvL36+r/7v/x3t+sfUIIt6UQtdXaeD9sUBYMem4IV+Rkwt5KT4F4MW/JoAPApd8GkmO68d06+wfgigjaLsf/ET/Zefvj1n3/47q/++t2b/+b8f/f113+Ei0ztbyYL83ne13/yp//x5X55u/wIU3YdR2Gs1dhJU8HBwEFEIAYF5w2DzjfGUP2BWqKJXwPJUkYkrBIL+RoKHQPlo/pdFKdTWNqOgDnPFzbjhap+QWrfS0phIyzC3ySjCEr0YkFWpn1FXctCcas4BIx2byQQKZJOZ/5wXYQ+Wc+M89CZOBoYHny8kYRmOmiG58W0XG1wHp500JJKwPBMMCd9qkningvVomBDhhy+SRO91LRDJ2mxK9rRiV4enBmleKfdTVDMWohRTQq2KKmFEYpPFDRIGMJFsflaWiqN0kfvUQ0+cZOQsQcLB1GovqidM/OvFrYTnoUf8k3U3z623+pe9viR3t13DiL0ZFjk+hY99mj7gIc+AJxK6nj0yATqTYIbVXWaoSn7rCgSYAwX6vBprV5Byap2PXIC4fPIEcOf1hgiyIOgC/SE6bupfXOGSeO5hxuKrkgwAxN6NAW/0ON2dnIxn9G+n28/bx+v947fTDUYAcvPJ+oQbR64vR22Jf7GmsPKjmqhObhnH2B4uhGEEAEINzzOhHPgMMHzESZBTmrCSQ/5LzsCENNU2lZgyaHq3AU7UqTAtZilk4wZi4RIAJ7B66MqdCtBtCab0+3E2aybT9+vlkvBnfC0YJCRZRBhK1YSrsqMqTjFWKXYnOTMtGQHt7NC/a1FqEUWQwO4Pm2dL4Rcb9/sOWnubru/uu22pF+rGU163Z+DTena66cgYezbqli8Y2QDRULJ5CA7QrynGqngEGn/fKsseBNggTl/2KmpXCZVE+E/oG0lWE2kITcybEqqgyDvZshzc5e8YGgPEDRyM+TSkhlPXH47d4MDSiSVjvUxWDogUncznrVLhfFfA0KGlz+bYbH71b/b+9V/f/R0M3HTKd335uH0Qkzu8cs/2n75xxrqkKAM8fCSPdMCgOD+uHO2bitMHgYThEjhM0dhd3+1vTm5/iuHx95XE94Bintns/vn07vddHa7t/v2fzp4+RzK/vh3Dm2Czx8Zg7ZuHkhX+t8ZAwhR5H1pkZ4Pz2IxIHHqQKzzYTe+aqPkMCnxYAMabOe7sfgTu/lUb7z+HSNOJQC08am+xTdekZM8f7mdODwBdu1f3B8stCxjs44ZgUCLM1bE1SlsGWGEmb75+vd/8rM/+k9//v/e7d2x+/ngoU8qnjfBqC7dW0wWnlX/08KMUi+D502q5c6o2txzxhQAPMsTKuORtbOWMWWVozWAUS+qPE2gmDKyDpVumQVDi4jw/NZP335+/Pzh7vFuIwfPvaLQGOme8LCCX5zLx070UrEgjikR5Z4k1THFvFVR0sIpbkZoGAg0iIAif9rDjJafaAzsEdWx4YgARzkFLSf1zCgEGYwxAUf+vMUb7NFBjCBMJaJgN5ysbjrx5888MZfkhpjus44saO+SRne691gvBqHbITDtgFvb8iuaT6WcHJyduQMcNkx8k0FoiWGNLJOmRrZAoBUGbR1R3P/uJy0BHbMydZLOvGrLsBAJKdPUn0ioITYS8z50FOJTJ8TUmUaPHcEiw04NuZOB5XLZgoUbds6Ps8sX/GZnWlN5IwRMpqwf4EVu3kaHoGXxsTTNhfsske44N7JXlHp2EIJoN2eVYXyOF5ajXDtlFJ4gO22d8QU0pKYKUScNRNEiyGFY+XFaThXMDREdYdneFNvQQDwzLICAw3wG7ErX2x+Hn1iVRru5l9XX1GQt0ewtISGJDNbKyfzk4vgLlauy9XqWzyiPy9PNEp2XKw2GqtkoTJJB7xO6JXp2EbL0uMdhD/BlKNgE+A7JchmaJTFWgGSwZoF+IhlVkyOmd6A2JDhAcYsKrzI2LWRrXGloryPl8U6lfdtabMb89nZt28mHrXbRa/NVoCv1kKajWEb9AgGrmMgnUdNAk3lYZfvxiVDv7mUFBcnjnp00D50EVGeO46ezydObqa6ZZzosfbjbWFNC3Wfd1F10fILv030ghJZCMjhc5V4pHqmTx6fNWomJPTPKFwBFi8tdIgK54RQAu0IEgvsRv/e2BX0NzGdyVWNJP7KUOiIFi7ObiEN1nWjoBQyAHqJoqGm/DXYSvdXFlMtP7QnolRHL9iLNjBVv6S5T8M8bYbWx5KaI5dZEZH/93cnq+6PNymYbGL2/+Xy8/Dx/uTu++fObg5NPb/6YuwFmBrBmrA1YGyJhjUIgz40oSI7A1sxSN+M95Pnq6fSXUH2jFHV+Nv36/Pn5buoApMU3JzefX/7y/6NNxeb2l1rWY1S2yWaE00imocOK9fvvV3/+7/dvfjVzVPre/eH8zd7Xf//+8Xrzy/+0m3yz95//FweX3wjFca7Sl83NKCJnmG+l/OD3vsVGzf519bATFvD7sKyMPb1Q7MrsbBB6uPjh3y8Ob06O7KH63eX07yw5xZWj9JB0nvXJbCgiIGVgr6QF1UHn7/69v7fc/uaHz39OjOFH98Znr3SKZFCi2B5/UUDITfBgv7MRa1El0nH4dNeBYkezGhyxn6B6GvuY+qlib754c/6TP/i9n/7+F29/gqeNYjxCcIDDgPMe9Ni07/3Xv74xXDYGKCGoBoET9mc8Z72060mNRZxByKZlVshYHJ1PL+aK6J0Pw1EoL62sRLxZljiLHtiNzCdOpXbYldgAKyC1Qq5gKLcguUOb1EbJ+0y2DJSEtbA1F1xoEk+Sw1lQq70EZ1mD7orTTd8nyb/DBkiGeQEiD237lOykWr/IIVRiFfdm51NlV4Aw/4rVr/Q+Z3YHUIdpU11a+Zsds3cCSodVys+K642fzCCavHuzJ6mM5scTQZ6xmcBMBXg1jLNlAT8wqQSLKO+d+EkdUmsTo9If2Oc4MVU8N7VRStIBZFr30pGasKdziJ+lE1aBwhLgHgTBx4nv8DdWnAmZ1Cz7afl4fXKit5pWSjbc1DBA2Zw+FwxMOY2K1gIOTjSG/i0LCbfYTDC5YMMzC5UzchnrkUD+uHgwk3MzYhM+UlFgyUxZRy+LgOv7IZdg27awvwMv7tl3coC2TVRfr6HRxdmVc+ecL/bxvT1oGwWE9hnLQnGDp9OnwxM9rHWU4WaUo6JWrWZIm01Y8OYVJ7ySHhhgIY1rvqEWpslRyB+M/1PwI7rgZ/JqsL51UxxF1tzTmmcnteVQsC/mC9QsvgjsVMbq4WBze/fhwQ64fT2dqZuYPvMmkOputuqZbaKLoXpka+4+Q0GvnubL+90ZAjJ96CDFo0470kT2ZCfNf6JKX4XlqXMuBNwf2lU7XG7PL29PlxWTeDk6bYHYY0yr0ylOwyaeoRJfFK52v7Stgo9KmjokW7KQrJoj24iaTiG84o8h89zAgYHTnYFqcTzlQqDd630U67kY25G7arUlBVyUMmjDXQlzSvVJnIW1t5NI56+a62xhP5I/iGSH5nC8irxbC2LkgYqZzma3T8d7pxenl1fUmPhirvVuc3r/14tf/6vPi7/1cHJWU+Qk3YqYtv9aoIGtltY4wroBrwNuvRVMaG/55eO7v/14c93WtXdfvVydH77cH1+9oXvuNt/P3x05Dfb5/i9efv1vO6Z78Y747C3ePe0WYFVZsip++3x4UpN7DdocjLG6+fTd3t3H0w8fdovVp//x7nq3XVydz3/yjy+/+XuHx1cNZUB+P4wvlP4bHdAoG+Hr4NMG8RrO8BN9iDeGabo+Wf/Hi8//8/71tyBz7/LD3o/f7C6+Ke8xjG4X2jC006n3wycE13H/4ezt3sk50ZxP5seOgYLt1GD+EKHI65XlS+SBNPOHDaA2Lh8q/BBAoAAYA1ViHexdvZkuVwwktARMw7nzMelg7X0q/Fp8880f/fx3fzGdLqT5yLy7DZamZhjYeJ+dIH66ONBQrfKfIS/wAA42WZhGjRkdOiQUFshP2BeP6adhyD/84ISu/UtopKlyxWPqKCu0ZoAYSLJrFi9OdKkJzGIWKGavg9va4BErt6fl8KjtxaYs2KJzA4VQ1AHIKxXWwazmV1W8sP5VtlUYmqWfGmOMtGCmw/rR/vlvrOnKNZ2Ua5Map6UKDPzOnHnNnpXk07ZUbNR2Xw0wtrzk/bOFOVtZhPWdzssyzc4Kt1n6AFSQ/O4WzNvYxSL24oAsFCxAHUax4vmf9itZ0XpytbVeGMDpCh0m5qRMzl9MzyfpjBq66kWRYBRCCREHOMRvUuZZkXL1JLS6rIQEL1cGgPIH9Lo7v6K5iDzSaR/tmBvgRKm0l0UpmnruImAYqlm0u0W1DKy3/DbZ27rE2huGiaRffg1csjkGEohu4K1cDcKvjZFb7DpXx2YPqCUpI9RxLOqD+/YPdfZwscgCj2gCrLY6qG33a/1ZYEnF7upa54npmy/myzt7MTcA52Q2o9q3r2sudGbtMG7YF91j+EZiObGNpYf1XuKPoq0vFxb38H7mwtDhQ167vvfCD0FMvOKSwaVaAHVyW9inhiC7htsD8Le765dtO7e39vM4K6mddx7Rhxj5VE7GSQ6lG3kQvnH/vZ0kw/Th4Ysfbj6df3NxerxxBtPu/vpxu6RFuI72zh/bHiiS/3DX/sb2fFfSNEaaCsjlHkCccoPBlicwyaWGfIQFhvcR91Jc/jLFAZpxeIW6rAoJMQRlyXiAQNCMc0BBP5EzoVRwb3sBQ2+YYyY2vDprhGJOJWtPFWRI5BPJHitv7zYHQppcfj/oHwOMsnysD0vh+FDArwHiB2AAhJCKn3F0ePazzyc/3XQuW+duUDx7J+TUtvPJdvajjZ4bedKFetLOvr3O15wZ1h45XmzY3T0eCCv7XSHV4ctPfrb/9X21aF+84S7bZ6oWmgmz+P0/Ov3yZvK4umJ8rv6XzccPW7bI7Kfbk4VYWKCjC8p0//DqfHk/7TSo9ePTx5v16V/izwOHOWja8ot//G52tv30cW93Ze8IuUZNY+yb7+nQ8WPjRF7/jZ9iTcZBQNP3JoVb+hHDSeDNfvjV8V//1Z5jYTVWuN6cLH6xm7x9ZkBVS57Jd/9n/3b3qz95vP5eiPfl/N3+L/7Zwf+XqT/tkTTL8sQ+N7d99z32jFyrKququ3qme3pmmhxKGIoCCRJ6QQnQFxCgLyVA0Hu+kCBBAkhAhDjDQc9097C6a8msysot9sVX283c3Ey//7UsDi0iPMzNnuc+dznnf9Z77qPP8Tyz/cEHH5xPvpG/kOVGBQkC0wajK8WqKeStBg7wj797s51NFhiODwScQc1ocar7Oi8VmMRGU06UL9ECY2a6co6TsvlQXAEORcKAmJA2OV7cMkE3VyM7nly5yoW8UFqsc5waC1omftzKDCz4VOQHOcGzqqtIz3G8s+mo2uj3+3J1zRCxHPinksce5ULJA0Vbcy5xu1tvSYSPOUm3jK1K2AlzaJZJZNMdlFR7fDRRqoHfProdrHfsH2OHdo/6JSoYnnFQUSEsUEuSqRsTW8I7DUB2s3QonD/Gv392fKAEQIDaaiH6KJRlDeMr5aiVmUQ9N9dSUW/bfL9ImY6fJlXQZ/Rw0zeICfIkZjgrgO89gTY6WrabUqkE8STpmROhabfPs7fF0psBIMNnVum1nK24N3JquyyVQJ57rU940KIQ8gKzpHJsYIZgzYSuJtRp3E0/txLWCD1WqwJ1Ecpx5mAO02PkoURu2cipGnhnGQkKsQQzToW9kGq8WFmr4jSPXeEMl3hEHGGptnuvC29oshAyGoZqX+DH6uiNHkWBjPdRV+nePJ2E5tSjyX51Y5L9vKycj2eXs2k0m9XedKw45WbMnWgzfZUZasNnIpCgXh9JzpJNbPNaCJ1cJHG1Ro0IwBNc2YsGmKKjJPRons1fGM5Y0Yh/EbruiRLjMpNYcNT3+VN+BLxMU0KE+Q5T0Db0AD+LkzAm6d3vHTyVOqbN5V5nW51wa+iKWXYdczSwnwz60lxmZTscHHz22Wed5mFdKHf57K55IgNob3N+eztKfSqTLwW4JkOlK2bv1BFjoB9kcUoMj7JCiyd3mbMSbnmfopTE5R7gQ7F57m5M+cC5VfZvQlV3kCQJ5FfqQXGcJaBlTaKDRVQjPN9hTUMHFlz2YkxADZJieTTrqGeknQxfl/MBcF2aCFFh2e3iAjmMitYBL9IhtiPhL6nMyluHnHSnLIh5oE+wQa0CzwGICQ/e3v9HNw+um7fX7PPu4amjlXAXzU4NseXwqeOIYj6xS/PDPISYMrf56W8wx4izTAkR+MVneUI2mbBebElNdreuQ35qG3KUChqQUD5j/+a3FA8pt43B/U3rg+rZP+Ol7OaoVYWDmZ3rzZMn5y/OQk7zmVWon5wtLkajr794Mbnrn/2i3z+uPo7TGhSC4ELriB8oRv5HBOla+Rf4SafzO2ArCgGdVd8DJhlBKI5wRUr786uVmB0pxD26eP9y3vp40eJxFojcTl9/tf79vzm9fOWIyVWlx4qenH9/9/BHyUS5vR0+/Gjzxb/WOqIj5T1FlwjP6AzCgMUVbleHeSvLVDAX6lI6iHkOCNkcEjCcIrJ0TBIpbbUk1UjFg+Ar64bsc3NMaURS/kQuexlCBuyZ3BFYkfsinAVb+XmcoCzX19eZgj1uz5jtQhyGzrlPIVQLJWfyVWxfkh6ihEDNRpzk3+h5pdZlu/I+FFphaS73Z4rhFKMCmdKX46eVkoR/CSVgKo9WnY2lg0qWoxS1d8CG+J6Ml72OdCZ0kxheFGU0QJGRPqFkpqMCfcEBA5ayHzeBD38d+2XT2USFY5JD0S42B+JKrZOozCRf6qBx2RP/MlSnY0mcIihR+9EqzAKYKX8wFSJuDXr19kA9AGY+dZWNv1VkX0EyLM9vjjEYWna6SALylsxgOWHZ8RigS5tJSgt57DBz7qrY10sXVxyvdKNy5lpKFVPVuuA1pkMUDjzBr8WJFE2RKsfysy0z6Uf4IiEJIBcBQgsr3JQ0odCLp/MKwms5SICgwfkRA8Zm3kjoaIIsfSQhORDRWDZTZKV5ZqCJskAppBQQMMMcR4KrC0KH9OqkOGTbxlatoCCd98CJ1FtSxxwkY11ZGiSDEVLSnA5of4r+VyaIkEsvDmmGWRRY05pAK0kjuVZmE1pDCgYEBwNnBoR3EU9yV5J5zItWyC9AH/wnLEOe4UdUiBzovEH3Hzg26BK1JQwbkVU0zx3Bh31RDsq+65wo4DCYjOrEMcLnCu83DhQ0lL7hvt2tRCzIjs6N8T0wx7HVf/Txh8fHH76/uhhNmnIet/VxZXO1YgGQZjEgaCocLIe364OL0frd1DbXnL7CB+/Z6m6Wmlo0KuWWyjEh6Mc96NskGDKZHe4MFlPcTBPpkagMucSLCBP4M9E4bPdBGXDclzkfx4K7nQJZNHptFBAzm/QG7UW3tZYRC55DK8xiUeoyzSEnvE9pIZyDcSY4sTNcjC4wMlmIKnLOQ4QuGZ5jDjJHldpEOaTP/0y9cQ/cdoaeFDwJYyNpAyHPkudQ4NJE5o+JjCQI8ARZdstmgegBmfnYdxG+VhBBcGPJJw7QGrdPzHESmbfjRbdxU2/3Oqt6c6HC35498c5CwL5tqahRkPypbjofH8R41hFG0WLV7E4P7/d6Wq8rxqfOQ5mYMLz2y7oXkopObB5Mog5Z9sBfKKiYBq7wvmBphpoOF1oT6Ky86Ty5uvdXm/mr7v5k29yb8xXsjRQNowLvS857/uvt6HpZq06ca8hD1WwuN9Pb8bTmBO7p7fpqrB8ooyhqCbRCqMxG1jAIGYakKppb43HSj8B8JXu1TVxLBipHRA6SlVrTJickP65I7VSESPeYFahGZ3eWjlFlRTLmMBpdw1tPdgVyAKDcgGwtrgJ01o6Gop24RDJjKixyFCpkIYU5ykL8FUTFUV88mJ/FgQn4Gre7DHQrqmElSCfIsrm5rq9nohYyu2Tc84qXSlBhsATaGJTkuYwFk+A34gwMoEnBOtSAdNjCxcFCl7XNKpY0zmp15MrgGirZTNqHbkO3GGRcEo366Maub8oKwwg+UQM4TyhoiX3QmThsqBrJ3w7BpBYKGUF6WlfIbc/z1Uh233qYI6+4UFLHzIobDk3Omtp4ZFus4vu8E5rAw0H6mN3SJPYOhmK1rL+KXWeUt8ViX46ITbXKhzvzlRXP+S/bzz7bTjZRGw30z24OgzHJkEdXk5fT2Pa62qc3Z5urqJxYG7NCR+KJzUGSlcmCUSK2TO64PziJpeNDk33smDAzySBDL7ICVStqbPtANdYCBYMfJ5w84j7KdrdtTnRImaLsIZ3PUwJDsPpw2CaHUB9esNZWIZYO73ncE6sD1ZQEE5CR/JaoK5YxVowXZk/lqDFhZTAhniQr6l9MHbI8/OWEPtwfSZ4zi7Ch1U76o78YAPmQYeFEZBLeC90Se4aOP1mz2owXLCLf9TshFCUecMaucg8vht5HtYN+PnC+SrPfrv7kw/uO11RhqltbtzeN0ZTP/SqyJQ5bHaMmJCiCSQoMxO2uI8eHB0fHp2u7Nq64/2+2q8u72QXLmw6dZHzFg61Brb+3d6jI0vXNZDTFeoLOM4gk2Bs21HHtGkeG768BmTw9MyyTo8/lL6xXejKacRDf1/geNFthQ83sR1QXxHWBRuFqptbb3RMCgcjK8DMxbnBzMDXCI/u3zCiuDxYXH2eeklmMyUSNyAmDzOgoEwX4dAaIEvOKbYRE8ZfLTWy90TvgTUyisqOgM7bIaFNlWBJBQgV5pnGFYIucy4NxeVmVdDs9zxzk3jICdW+z1JmTyP4iLLKEGUsynniMDn6+qh3K4csONVsdHM8Y4QQqd1ejALgVXxY3pQewbFQlrrcP9teHzHSnK4MF10cEhDLd5YHprF5oI0/VK/OVD0M6hpX3vo4KmjnW5/zJR6jUj/3F6YOVhJLKTe32Dfm36R4xXrvihlLDsNPg08Mn/1Qp9wUteHX3bnSDf+rvv7YFylmtb998t5hw5JpxHWLmyPfI5MRCLgKxdJIoTszOhFL06P4UYj0FHFZO5/BlvguuNikDIQaLLVMiFphvQ0ZZI28pYFEHLCJ/9a368/RmrlLWnqCZBewMOAoztgAoUpPkCi9aJjat2F7IbOIOlfNqM0gapAlzNWTdqBUNfmqNrsYBtRihsohyrDH/QHQVUm4+U5XYAkRZM0zKiX6aeIFra8KENQ+CmU6iePs2yr3QqZRyPBZiQQG11ChWlIjXRD4MwwlAe/ywX1P702pQfI2Rty9pS1J16OUGargeqRwwvcn0VeTei99FYKBSRcXabaWVoaN0vQTVR8pXTOVJbvrdvRkdgoWyX/W40fV2OuGG3/b65ls+kgQ7M5Lj21WGJifE1Qt8s5+gD75KONeamdCUrujUy/ntjm1stnr6W5nnjCB7Gx3JE7+A25CyWAhB0mk6ahyZV8cjEsfAES21D/1R6UP7HDeyWk2grAz17oxP1DfFq5KE2pD1z45OjtBqL4JP/dhypov1sqBNoiDORsWWoumAUi9Z55HrFM/1VnqkXldr01bO7qXOR/RQ3a0VNHSqhtReNgmwZEW5VQgSFlBlNMHdbLxGw3qw+qYoB/eGj0osKYlJ0mkte6wBZo02C/liSddZqQIGNA86nDaRa5bJF5G/yNL1yF5eVyv1HFn6oCs7EzPpvsJJZGNgQC/8RKOmzhIJdHhY9fxmtHh/WZvd1CvTRqu3HQyOOzmzSJvJQ44vWisluShsEAzAVq36EDMkESKHMG/mkivfX727WN7M9456++KlqjIbhZodA+fcbfZ5F61UAtAIIgwZw9dLi0BJqgTjEUcZnu55IWVf0qNUYKX+Jt8VKFtLypuVjfGmW5mZwslR4ANVcczSCTJATyoXR/XKY1wYIWoOirEWysoEmhS8yW1RWtKvAEE6iZCya4z+tE8ma5pvgM7NxCIAXOAH3vdTN0r1FZEj6piMVvRLrbJQADMUotFAY2aO3Y3+DTQFwfMYunoY0GCDsdscbE5YgVkiyihCQszQ/AYUtJVeuDAzxWqUudG/a34auQjcfZPgqM4EnTOgfJzHU6Az/ugLEWzQdK869PidagzXMuEhjgAhEVRsEI91S6EaF2hFtwL1Wsz/JveHf1Ksoo0H+0JnTi1BeCGg7l3tVOy8iEpHK1UoxnsHjc7Dp9Mk190119M9Qej+hYTRxejlatuvtQ5uKyP7VQPQwJC9bLxswLhqQxhWXFQTmbOdQxey4oNvsccNF8Ga/rhF/Ni3cdStRF9u17VyTWY2HTWde6n7yuvRG2L07WQ8vrq+nO/1FMbxvqJOz2TebctSd55gZEIJRVjsZCxkA1yseWyRxaIqUB+oJ8ELUQeUQI0ttmw2I+8zfpXSsy6pk2D2YHXcOmrsJFdG7NE49V8iFqrl1jXanJZHZBM+3W6zdevY9MbRsAeLpW9mqMGoyC2eyfI+Knawu2GzEqWe0zRZQyjEGvFWq4yvMG6j6aJ8WExIb9Wvdsa7Adj5IlCwxIj9Qbc7sP0ZYFJPUvSWmCZ2aHZjy3K1uolnjANoPp/aRcWNg1Gq9uuOL2fL2yVAh9gAUG1NK8XLb35MgcFy/ri40F9Izf6tuE3kqAikEkPJ3wap22kO+yRUiU5ZvD2RA9lB9sBZCzaTHWqN4wHESd2dbBw2PiRrvlMAz0IbcHxWC9Hv/dlCNgaCcYxOjSIvfi4ZzV4Hf5MXEWmQjRTpRYKrjldr2mSJdJIdQjjLJ5b+z+ZUm9iDLAkr01mOffU7uKoVxSpTSY0iDAxgV0/9DohrBNZIPwMWodssSEoVoUiPwmWpjmQuEEyIMXvWMVFMy4gGZKs5HGIFgjLeRf0F8/jeAD0XEcRKjipJScLrBP/teDvhBynSPejjRrAYIZJ7UaYJ1jZUMFuqsDiYVdr04urV2/fP3x5sZyCb4+CT/t7T/iMR6vFslNRjFXhjo5QdIXgtngkZA42JIXDq0fYWWrzdX56/e3nxnqGZsIt5gY8Wnc/x6MGD5cF3dOMr2yaAcVDDFJgTybJ1kTwJW5SDKObwK4ImKcPxdgQVzWt8FzaACVIkBAdwCVFEZWD+WPAyrFyNF/MpAQEViiApl5jhncZsOq1F1gC2Bjbkn3Pt0HsoLVGnAmyogiEbtUHIYCWdyel+hJCpMdfZZs+8ywF0YSyUoYiB55Nf5L0cwZVSyQoaOPCTRmhDnRqi4cy0nBfPJRwyOkvHnjBxvpKbkin1RYFUyJS2s/uahl5g1U15mg/LJUYROI8sZ8CEa8h7HS/ZhgVePCOPM0lF8PjhsjzCg6LpeHC8ChTMCJlsa3Q1JSr4FWJKBxjd5amZyQjjrFvRRGL/usD6B12EFnBQdFGEoWNZXMnqdB5mY9dV9CcLihksigWmtW1uW10VrsiHnIE72Bzch2qL4ey23h6B71fPOEk9lHphhtG/Pf86k9VOtRlTsqEraknnsVM+340svIURdA1qw30awy6XII6McJqjf0RrU+40I/AMAmAyHTXbA6SI0CY302pnIK/ZEYV0e7o7wQatIaYjIEkjDzUXSSmL1y6mozGZAvmYoLx4XMv4eZsFCW6pbCbklo1IH0DYwQEJIxKJUvnZ2mDSOOask1374FhVI/eHhD0tnmO3ZBVgE2WtSxRs+U9VJMUHeABEUTiihEi7VozIs6BFHir9AvXeVlTC5GWQC6bP8CKrlegmQkjPEyBzrlXROFKYKNpBHM5c8CDYyRghOBUClhUH86LYNTfBwmbsO7aB7aVx18ZUodiS+4uF5Bb7MEITdH1D4wkRwU7ttnjpkEPSSyiPQiCKGJlGAHE7SGmsrD8qlLxvsIZcPLiVrukW59suVSB0XFtT7Tj9y/4CG2zscoqL1sUU6hmnsn6O7STg/8m2An5CocfVCoyqG040L+0LkW1skFELqvHCy89SaCVBx+JRlKGYgk+BSv85Vc1oI1gMQWwgObccJWJINFelFSArh1ziEEVlSlF6+/M3CiXdOS0s53ZGIfBd7FcyGLlrLDqph+/W3rO4Zng6Qle4LpotdZvcNVUWZns3S0KrtbAM2wZ69AVyyRShOju4AoVF5smLtacvabM4OVMfhmEWe36y5mKpRACEW7Qd0uGxmk8aq0V3b3vWq88e9O93h0NbxRrbpwO6mr3aLTwT3meQ3HJJxb/uyWZG+4vb2ZvL3+/VPlk1BubLAWNqSV5dNjm+GusZYo0Ow7BNFLXS71YOhwLtxQGL7NJ5JCJmBicyT+zPoKK4CwuIoRTg0k0PD2B5j8Yd52td5OFwyRUQsBClO66OahiRE42GcROLzkfm0ItTFx9py8Vl2JkH1lY0f3OXUD1fq6kLQ1gaNLkz13ISp21VlAyOBtE9+BlXgao2ijLkfS7Wy5Kr5pAJHzvAera4ujgfT67Fpoftno0hDXmNUjFl/VIhXTGnPnEHy+Ep2VzWpmx3KuZPvApYDpWASR1Gi6angGx+K8M1dUW+FdwpH0UnYOyYs6gjwUd35Bvz4X2QOdBZVIdo5j7lOy3GUXC97G1FL2J24SaPNDsmTuUwNgG6JyyzXmksKxQ1Tau+0iRmcQuLPa4RKbhRg8KVep+MXEOxrJFnKgOjbz3nb1Emub1/N4Mb3G93ja5MCsGoWn0lUjdd4JwO6rAs1jSCWlsaYHxhH+wYkkpej84Ylmn3rU7uBBTDKiYTRnLYY7I8Is9MhYG5BC6YbJ5tE5WZ1i2WtxofmRwrkiNlU6KMQEaiyXixxHtTNR545JMYA7R41KwSp7/6JzlIBTOT5ijHQxBttAj99dbqZQMpuoo9nlQZm2hvpcQ1hDctOydHQTqAroNRaXACV178maYwK6lGRMhhp9eq2cxkR7KZgLKZQCJpvAWUzdA3DF2a9RTcX0u/MO67JGHd7Q+GnXbbGSZz5hGRag5D5fYfaCeFrJ2WkqjlTo8MkjtGcjJXSGY+w2kENdO6QK3qj92NJJkEutXGqdCvSRvglSwrcjIcWdbZHJTlyHFv2MNMapUqzWWHTuvOWQkWukiCuNUgkVlIUp4QmzMJkrPd7eRIkGS1Erey3XptAQBKmOW25UsPzTSTKJoinsw+QkmvlbnCPhQh+yQ2Uh+sO/4l0Jz/U7pg7ZWvzG48TleLX3wCSANWRvvTZDoW3dHGU3UOPYLpRX9ZNexQiwbfVGV4c3V1vcxBFcElDiozLGcGt4GN5ImHZdGsHN/sgYg/MgxlDcMo/gK47CoKQ1u7OB+SOZenm0lYakhcNsjAFcFqaE0VSEGhhMbZDdlJxTOQOxBiBEXEsJ+zqaR7GhXSLYoYpPYFWJBESdNGHKjElRaUbOGnG93UnWrpbOBe17kMz2+uW83+o96m01hMFLoxn4DA8NJ1A4yR70klM9bZq6Mvfv/ltjroHrfqXW6SvdX0dqQ6oWPGjCJ+dRznmakcbOmzBMg9jIzbooBjHJMYqUJWUCKjZZJVPvMlrMlcFFTJPXJDKFvsDYoCDRxxh8n0CdvRNQqDU6/hYCgcwIcZxXtiIsURJHTno+IMjxoPSrSu4UBs6ZSV0CAyBziWMPLJmX2KmWDNoBhJYf48IGpxMq9yjT5rWzORc05Ync3nN/P57797Nr66QBhHvd7J6fD4SJrlAaVhMhpNLt+Pb24SvnZqbbV6cNQfHh2UNClUaSqCx7ofGkiiWJHk+CcLmT95oSiai2eDxSLBfJZBUEij0xFuvvE2eGxIQC9omOkya8nuMN2GzPmMOOKTxrihDPuwFhwScRTVeljPfZEMpLEa8VauKEsEoK7gdvqkh8MjJBFduDyrsKI8hHriKrIn1yInjEetWBBPhA2ppbPd9O1uI6KTZlFRjbalXK5kiRmrqtIYHipRfGQVkmMY3ildoCIiRSmP0b8kvWQ2gHN89uRE3tuLGlDnDmEuRHfKfEXbjZ+bWAjwYRYzrE2zFaJBGQRzErmSMowY6t1eP98EVQI+JalD3hGvtJBsxB0GskTKHpgA7SWOB+UpQBBtToG9o+oab2FubKyzCV0YhcSYRms9VYZ/Ipmn6byzmJUN8LSezYSRi0Ne4lDGCzAC08aDSSw2VuS+GI3kzBdXeJc/VEE95R5JKuAa4MjmrGxjsTPA70h3YF/AfH7prJeDjqM8MpmRK1gZ+lNpIjLRb0Sw2SRI4A1CsS4xZXEb0K/YSMXIECsGytXGYH10LK4Qr1UqKG9uB71tu9+wNzZQpgKrCB9P9DSYl6MCZNVRyznSUwgvuWy85FH8AG9mOMcbWARuklj09NnbO7mefe74ukoq6LqED/btxNUZgoZZIGCWZbUSuHjPccCkN3GU3RuUEHtK5RTErZ3z9HKgQnb2syq6SV2SH+EMMvWpamRfsgBjkkR5NQcWDHaYIuIKSxszLVDtGrko85vb0dg+Bz2+s8VZtD8Gcsy/YBXotwT0AmMyiwmP65aDg1ZrRdGAu+RdtIfKAryBEmWsHFPZrDRJCGeO7i/nTixIV3UkEEuCIN1CZti47JzDNYkIeAJaowUJPkR8mZYdRBA+oZXgBFQjWT3MFCHD/KEKUTYTrc6vdIWYxZGNkQE2V8zNvDzYZm3dOz774OjzB/tHjc1370evZ1xmseDoijl6KcXZPSdYg/JXi8X3z749OHjwswc/ZWG1K3dX8pJtAcNT9CqzFdXWtTMkCaebKmRlqgwwMg7CZ9YiAwK4RSvNmEKW6FdPw+ERAYH/Ih5hcKKCsV4iGQJubkVNUuJlfqZZnfOt7sGEdBP8G2v0HlQT69fFkQNFalpw1kbytDVpboJjOME65XBp5BpAKVkctpuJDLEkqHJJmy69TeDHE9Nm5h+Xy24e9i+urq/eXCxnN2pi3E5Xg17rsF27P+wJwt40Wr8fX8wBP6Ll2FRPcX3b5xNW0I3jtyymoaHF6EukS5RfXTf7YCqg7m3GQosKtQI1upetKHCMXAoFhrFAX9FBIZ5JySDcl0BwxAMpnvkik0tEXcN20VSkt/Czy2bFOXvKg/B2kX2q/muPzGDHutqWpBncQMvZMikTK9kjNBF0Rg3i01jVbJyQNRAkjdlleSJlE5mBF8xXvZED7ZL67aZ1u+3v7Tt072BTO1VFBKoztNQ7m47fOReBYm17k6lhliAAK0loE+YB1JykTa44iiIK+nIv2mtoCuk7SGeZg6iFIZUfyEv5+8SBcQ5ZRQmVXsEPi1LSbRP2/np0/8G9RERiC0rGqcvxjw3hamkx5GByEHmDsGjWm0hgClkORgh/4Hg606Q7AQqGNDvKmUUNtIrmmkLMJ9Lgk4FQzqjhOapOJvLrhStldHFhxclDjjDxiSPUrvve4TR0hWm5hyi3CqkTEkydwjA+1jl94GHXTQPhH+dLxQyalTNjm8Kds3DUOEaTna4s6RWtmZkL9HBFpysgqs8pGGTIosrx3ZU2Se1YzJQm3JKsSXnu5hyfOCDIJup6T5oPnUtEpBwFajYZJISftiy2ZtUnrNpD6aTEdgfqySk0ZAJATZhajZqeiEJKKvI7hH6RSFgdA/J3Uq4Z4xJJbD/WK1ulOCiNEfLCK7gQYSXz1pZMCfVshtUUJNgAoKeporHZ79WrnYMqFz0iWKS8w1pRIgWt6/VxiqnHzLPDlU8m0xuoRNqR32LTtJGwQBZRwSrhXGhl8tmzjpjL9rj4oCgYsIZXO6pw9kPd8a0VqMAHWI1Qck6x8qUEdimRE7aD2Vg6AMNujb7BQAB/8oYdZgeBc9CWAFCMuZRTEl+OyoZxJL/LRKrK243mK3ZS8CsoBeS0iC+gLeL3iMCfmcYsxhU8ik6cp+DVJOOYaINHDyawRBiDovP1/mSzL4GVmuTgULWjMO5hozmsbT44OP7D1fvJVHFuFZ/U53GqDB0pKKRNvdwpUt8/++3xg48eHEmW5xm5G82j8ux1e+PE8dVNzSYaioFJTlkXK5W9417QP0o0SR6VKuqcfke10i3aToJoIf9Qt1VxhfeuiNFgMNYBa3PO0NxwabTegDvJbcjaAVs4qvjkAQCNs4Am5CmABBctlokgejgR4osP9ReeI4nlEgQMAmG6k/nMmRr2orOIIU1yfpgHloBwdBPCZCNGxLJc6Tqcxs397pqdX28O+ywrvli+0fP5ajuVPNvt3D8YHpzeK/nS8cs6wt5cmgVNw5fd6hXkikshTw9dZTgALpdE9EVUGqS39ALgGPGQr6xpEY9RcL0vnS/ezDInJg3/u4K/jojOECx4morESZuMR6IFPQa+2OW4sqATbYK24OlGjIssKpgXV0wiSAQfLvcYbFQq7Yb2EmrnEo24AdDbMNCIV3Cvo/Dn5vZ9t9Hpt89UdJnMZ5WD22ajD2m5Y+Klvl2Mrm5Ws5Up4scPqCX8apngF8ZNBjd8EpzBU0rJSpmbT6SQ65jNbUxFX2YuNWTCMnnkvE5SP6y3cZrcEKmPXVf59TdfP/rwSbbFZifX5oNO8+2zcfjF5JoVGoAsQDAhf3s3p7AN8dqPmP23EmrVZzADvo2TROP0JfSMeC1IElgyUXfSFund9BvMo1gYLJvO0onCpGA9aghmpubrvCVVCFgLuh2hF0ONZFbWuD4c9AY9STxc0tGEPZEdIRguAuXh9oxRlKMjr7djonyzdzSMF27ieDljIC39FrAnMDQeaUOsmiDUiyyo+ZvW3vQmE4wjaCgYxsSxIdo9LhJnZe2sLDtwsrXKC26IzqjkRelyznuB6btBTz3n/Z6dKw7lss2VQEWqkFUeJJlknsk18WgsbHiuks3GHYFyY7Ht2wJ2vbVLlkajWD2yV6E3VE8wmjL0xhefoK6TgvQ0uZX0FHOYYK1PLXKtofQUsqnPFLe/48YJhqJcEXEOdfFshEaCeUBCi4GfBEKIoXormysjJ7TLMPIoKoiU4lSg3O+1GgddOx1ktaqqEPMxfEF3M2zSmPiip3EF5+xPC9jCVaaX3KUwIUDA6RUurdzZpCg9WP4C7w4pFZOjMqs54LLeljtBvY7ahIOTAheXkeXj5sJsGD0xATPtVvpLwIvnyeoXio0NZ4KjSyLcZHeFiKL5RTnkzEg4Lf4PdEZ7DBTYLS/IW0JrVKXJ8m6i6LYjsO+qX59f9zcroXOJw4vVhLJAyAaQTBm20hUbxibT68m0J/W5oSb23qvL4MRgUX14itdE1xG2oFUrIYxsx6EEWAcY6nP7MIvZqq/BLu1SoYqKbzdoaMvVobC4t3Y+XleheJ6D+BUo9iCnoBbuY7hFPBp9oMv4qItZWRF1kOdvnDvh+rwPMMYSMWexIz09OnfSl+lP7k3+WUKG4WLPM6GMM4wDG+W+sYV+8FLpnbuL9cC2YyPzeDhAqnv64PG9/XuHfZQz21tdvzt/e7H/HoluG1zbzkl1dqYMAunCsskClv5mAoJJxlA65n+EHIFQhh92zMgKpGeg/qZP5X9amAvTiqZcEjbRGDAqs1Nad0emOY7OQgeRFaYG52SfNHmZu0ojQXaXFI9AI+AZERD1IjQTAChPMGPRJtJXNAHxHKe7U1DSxUQF4iDFfFpb3mDSWrWnTka18WRxdwG8hvvD1VahhPr05lrgCaR6aHqdefAgxvPc7EfS0i1B+Z56D9GcXEJ88UzH8w8vsB2HTkpjIqZIP4tiBwvfgslE6VbaoXeENtSDrVSE+IMiQakDIcWD4WG74wDiQhqhLc3SO+ku+IpoDlEaaZlFeS+0g9ANSWOfssU3G/oZSwjTEUmRK1FprA085ymjmFOOc3AnhM4Q6b0ARf0yD7oTR3XimMXSoB2/HFYm1DD5QFJ1Ulx1rp2ExdrtPXVyB+2uM7bOL69trbM40jQHg35y8OzRygHZYVAKcnbcOAMALTkNjpNZEqX90UEhHY56T8siYWo15pFOR/JFCxG35gwREAnMZtIsocPn8m1NwhpSSdwuQYpV0/oYHeeual3ziWyHaFDOFe10VD3LezRED6D3scamqnnJpuhiMB6lZc8CxY1EYoVqiLhp9Eu2S6IdWHtqp4AL+MpbNG04G8cbLsSlcUkm0g3EoqlYYvRBMkF4hyqrBuQKj+YqAJatbi3V5eIOogZyGFoA9m4dKEcPylk2jrlyvzkOeXi+6kJW06+mN6tOIjh9TM0y29Xb1V7CoiHvwFMkoOWGD07q8UQTLYaTxDxWDmJVBtkuHadoJzlD35EOhTjJY9w99rmBIoWjG+3BgVpxclwTA+Jzi98avXu6LhToCptzFCAyNMnOQUh0Iq4tyoT6+iDL4qHDWFphE3p2hH36h9YNHlkSlZKbY2aw5iM5yvpUlA+L8yF8Z9NQp3Y1WX17Pu3XJtK1t43KYpz9LHQEjlUwi1KDSng0bUYI2Dv2+7/52+5PHzw9XN9cX11ecRN1ovUc6elOjXKhADLTyKkvZhOORXREtwB78TS6zLUYLW1H4dHHzCAOjEYFioIERcGhwcf2CkTpfzjILXDGjww0bqUMNxEUrjZgi6YxaabSDOp2ZLS/biMQKGbU9yJVC9BiwxyHqFygfkbbJDhpAHao6C1S8CvaRxpaiA2RXul9ns04JdFVleUF6nz2+Yfckgp/zK/H2Y1mV5LeRd7CUZW1WruM7GJDaLcSJbyAn2Uw+sgcH+SHnmcykTBCIC8jJFFF+RwVApogMtgK1GpJJ/2ud6XF/Mil6XuAP0/PJwYvEKZ9UGglfGL2IyMj3AONucFaB/OtdC4on6KbNIAog4jeYgZf5pJcm4t8mA75ShN2rs6mk72Nk4CGex2bJ2d30+v3715cjycnp51hlU99rW4gd7g9tlnRdD9vaLI09VBKuCnz7KQjy6trAe0ixdCHtSYbEi2zkz0T6BMrl3aAB5JyUtnCGdAs6bRs0b1C/H6GN/CTyJhd5gZh8Bmc8/8gSdL3MwvxCzUAhXFLBG10MTCa8EIlKWXu0fA9JIwqMWymIgoBRzzSCITwKUWYhIrMkXBFOhATNJXsMC65rm5+6uHwxUDlONaCsmRABmqeExdGo7WhsmdU9uXN5RUdGcmIn6qhbDnEzNFG1o8Hhi9kqZqNyZSzxB3B2SSxkymSCuvGGGgxMh3z3u+Cw/tt/4dkwlDVbX9QtY0MgkNnhieUgdQRX3w4loRPxCzoawjbiFICiHUMnFj8jY4TE4l++TNLR6TYta3Uo1Ekj9TWryTj06OyVbL4KqxFUdbsA3fSryx+Gn2SMYArFyynAV8p/TdYYYGsbp6dgpdU/2T7xHEWPjRRd45CZhiElGvOIKa8OaSO6Jm34Cr3CtFGIKOfeisEUEiV010YShYAlTzkg0a2LH3viSI/k49ZDILwuFXhPLQvUDposuyrorIiq1E58UcCQbiULDKvIVQnF4DzvU5P6gjnkpNZozq4zos9CfPosomKcIvwDlervW7Xobnj+dicaN5yYEX8aV31PwpGkkiTJewBxGTo1TWF1TEITMrqGbfTCEwU6tFurId0Xq/KEdu8XWg8ml8YLXnHDMNwGIGo14f2k+/fHbH5al1RgU8PN29U5pMLlQwiWoxL8rfci+GpUpJ6V29efj16LOOqs7cYyTRwQkm8bCsOhLhxaDt0KxIXs1Ag2Gmp2Mvwo7b98DLzke4ZqtlEIOyZHGwXqEPIkW90BTsmPYzci0kME3AJgtlph5kp94RSIRrKloOEKaXSZGRltoJ1+SiJwuEAs+XvbVJ78h5FxNmJBSJysk2SMDeNJkdf0pTJ1j4RHWW50I97SkpgrkOEMWoofIoPI7R+r7Vq91vVw8nVbYeTUOwJyvH5qaLCXeSJIX5jJsw1lmX0IKATUWOA3ulJVjgL6bJ0t3wYTvdReu+LXBQOMHJMlft0uDTku3JnegvkYm0nYEr2YHyanTXySeqFN9rYLjdZWTZCFkM7bvJo7/PYTBEJlAcI5urA7s+u1251s8kpTywksmMnBjXqstzz7d1EhsB4tpxcTiYL22aldd/sTaLxLVf3b9f98hitZ0KCLre9dpumFETN8KCnK/Qpygo8ocyqsa+LQpTxA+ztq47gOuggGmQG2dK8cWZZ6EYxzPgr9A+7BN0zRfGHGA9wSGpNxpgJLRqHs1ApSLdTpQ/EZqNX8A/lRI14RTJLEYu0uGTk0C/SMXMW1xIKy7kccDcalvYWfNR7t7ISbYYpcsTY0C9pIQ/FQDlrOIlUTeBXVkuwNlVNiyqRNSBSipueWbBaAohUzZWaZzJVeVhVGADQh4usLBZCBLIMhYCtNbprVCcUu1hs+3AbKiQtHRGnmAFiYz+BzqRLgkpCAepRa82IaTOHTP1UEJ2zIWI/UXZirNtXpR4flYkLxUvEbzqm85C+mRQ4hXY2kiLDxwbn1CIf9g869FKzYQl8wWFlGx0ZBApir0XnEjeWsw+8uGWyxubOAqhE0MUxDiAvAGBpIgiKE4kCzQEoK9dITS2LHcJaUTIU0iJZfIuNnLYAfHPOtoWCopGw0QiTizdLwQgaUTjHGsTDE9YrRKZZhGf9AL1OJ7FNrVylm6j5ekEqzudEfGqBsXUkIonIEqskGEnrHQKMecPbFsWl2TxAZtm0FgvDvKAU3CZkUBYiZqKTXHmc5R1JEJgvHcdQAt5JZzSxwMRY8id5KWF1lGMmgRSKwtWZ7jL/yEZVWunR0QdMfTQIAwohwrwCWTvdHxkUhkUcYbFm0nz29mzithnmNIrvHXo3rKen9+Zjp6XJZFrSwLLESZ8Im1ukTJYI4Xb93dXbn8jK7tzrNMSbRpdm3LYAO4wjH5UVatpnIC/D7EF3zrt4s1B+RuQvpitYFkeWIcbuwWVokLlGQWIVIQqqeoLVqSgV1Qcj0vFizXPzy2k26RgmeT56F1cCI8oIbcuRKxc2SH5WLXUVc/5dovn0DxeEMzJVkJBOH8CD9DjCRzAEl8eek59mX28TK4VEma7EWNJQDSFIaC7jf3O3TxcoT9RvOb7qyv6nPTU6w8P79EU0BWqTMtDp2O1okKjG3ZnH3FzkS3A2smX3vw6ZD4QVANzJgehomXe/5pUh5Bo9u7q++P71i48fPO20+qYHJ5crPKBMKsrfrL99/s37i7dHx8f2NtuJzRF9PXr7wf3P7rU+jPwp7QK2DL606wMsEYmaHmaoucRj8w+Np/fpW7rrMitXFjSd+qG7xdkLrS2D7REriXyLm1HGVK1MZuPNTM72rcTPTz/9KEuYoVAA+FOyF95bpIs8I7j1D0xJ6EueeCI39nlaPmpFeuprkkGSeoATfJnoYmc63k9x9o5cSB5XmGK9s53LwoJ++K/fiQBZZN3fTUHGqGUzal/jSBiR005ozAd6EMYGXZn+IA6T1ID9igr5pPj7iBzCAXYkWY//c79qT6noHSVMXQpN0G5RbXQSulfu5rukRDumw64FsRyaPt5WU4yQjWRxNQ7o2b9V33abm16bUujosb1Fq3J7nkKFJJ8cwpyYAv+z8HZ1UenijzIJzltTjFpfkT4NTJyAN59hrW06mHR1I8WMilfPZhZP3g6VNNMi7CLlw5EWcMyMpNjiypqoZgy+9EmOMhPb8e30Tl4xK+ZKf2Xuml6dgnTytHhWkDlbwqkdmkic6G4pncjMxKZJ6Bc2S7RPpTZEi9K4KHKYe4LJRCZHB3vczl4DlaSL1QJkihrBBiejZWc1LkqRZhqChY8xqIZSFGw2eYgVvOf0DHMCLCtJ6SvVfs0/eQCONamHGXywAzG7sdjTOu6p4tk53tCWgogHKflxPCKglOEvsypTtXcnyV0BeOnz+8qbwl0yg1lv563TkEpuGhEDy3gC7VXwCMp0EIz6kAR7GhK5FNsF5dFiQsE7Kw2lJXnLclpStEcPSrUryJjwBKAzs2ansB0+DZnJtmKy2dkHPPmk3BPWTbg1uOY9NhDNouwCrLg2Ladqf4kWdHHqXn18u56OVge3q0F8jpVuv3u37Mq85AcJe2ZOgxH04SCnMinz1bPL6WL/o5vKX41rb3v9yfVV7Lhhq99qHe1VjmfT7s1y++56czWjhaAc/1jAMQHLxJtPfYEYgcIAnJm1qQwdmFt+ioAei2c/uJ0l4srLHZAfPkiiidTXGaIj0Bj25ODVkCHjsVxI9TJFRaWN9q994w7axJoP9sb8jtrCPYTgq20tmCk9wZFy/xhcHhWvPWve3nHBY7zvoAKsl0S2VsONuNkaK+yymk3ZxII8QnDY0tHtTCHpjwjePhbUH88cJdZM5iFeQdO83/2qXz4zGRlHmgVurvUnc5/rswTlXT5MX43kenL19ex5Zbr/eefHQmSm84/Xlhs4LJOyFFPl5voG5+E1RzzjWCZsaVgHXFmelP9K0+VpP/zwxDKzaa5QXCY5z89z9Px/vmE3ioKhpU1fUAsrW+TQedA9GdyzT+K25OeS5xfn5y8ur7P13kp5OE06WrYcFTs+EVgsahYgzArnK7hW3JqudG2mxSs8QL0C6PAmyqUmkAHEY2v6IDkw8m0KuRhq9GQgRkDy+0BxL/u1SmNZF5QNwC2rr2i4gDOldwI9xpE1CT4jSCub47CZOLyFdvwsnKPrtDPwGTChh+YmPgD0JO07FYZ5YOJXkkWuEhKi0yL0sWlboAI/ZK6y28jJWZWK49ZJgORYNWoyOONesHYofC39tHF62HAZUB7PnZMsg0O2WixBtEJHz241LvWJYVQcXsHIu1aogUDa2D+r8DsR0YVzstQReE5pT7a/yHm2j+M4hwuUyXXoeVWpdFbH9bXjW+n8PLiVrlIeTaCO0K3N7kJGmFJOvE9SmrRgP3PsBTk80m1EEdhnIhDULpzGCKBqTacahybsFXhiNeJ4ZwuKKDSd/CSiRQaZYQJXrMGmn1ulmxNKgR0+4z7H7xgyxJFySZu95FZZTVFf2jSnbfznEcRsK8FNUp9QR64hEEtb4gAxnGJsYHtLaNGwtO4w5Eh2G8U8LLW9928VsZmMqbC7xTLkwB+WIbs8RXvCUyReUzXaWuTixmkoxc9nerKogexk8QvTogSPKrG36K0WrSib0Yb1znc2UzQHjWwHpHiac+2CSa7jeO0jAssWlWj9Fosk8ieeqozN2ic2TgB4nwvS0xh5camSruZPOM3xy1xYyVQKlllG0kQ8yy49kaKGg8GoSHaEqT57vVSAtj5Y9ygQrepCNDviB/GUVcl0aQOzxP6uVPubvcdXs+O9+slPPn64+f7V5Ww9ODxrdj++3Ru8u3r/3es31+ONvROut9wRHzQq7BbPGwrIfGKYIrOicvuGxmYTJS3bIF1ElkUTTRigjD7KefycCW79UIonJJBWtOWjrJIp8c9HeRhjLzzCUYe3HPlcMoLgOiwKAhCzmrRC1IFQmtWIomZbIwGUGr3MTdGyOJ6KM5fEjsVKrajJa8tTwRTCEGDXxMnJaWy89CVrE3ETEyVVQ/XJyHUtdFdoyf+ByxBLiFHHA8BlftP98kHGVcZSkN+3+b1cHh2O7XFTX82PGq2zlqggO13LRVyUHxF2EXmPnnygsu1sdJO8v2plvFiqWWZY6UaZsjD07hWt+4fOeVJ5WHlg6WBZMp9l2P6GMP94xX+4i0D34e6bWEr4nfNBInmr1x+WsAzuXT+6d78dP7yAbRzphqgLBIDEHiuP7vVM9lscJfQFbp991Qh2Itvqy+k0ySQr4CU3otvQ600t9YGnKvNdDAugqXWDLlY6ngolRwMtnpDE9TO5RRIW9o67DM2VCWY/43NzbAUFhPJwSFv0l2aLKoEgMIzBJUtMFn6vK8uehYHEHHtLc4HvqDneaocDUBR4lYxRoQTTQ21HiBSJgDEss72J2KDQy8tsVzvQkCnu0JXQEgjjj04Y100Onbo73qtNNjdTfWfVVJaz7KSjK1NO2acc7mQovJ7P7IWFHuwDItSGBo7KuE3IQdFR6+KhwDlYSp2JHpQyR47r6/faPQeDOTJwLlGdrzVJC9m+xgOawdKl9L9K0aGsrCytRxQnl+m0/zZrnRr6NpBw+dpRGFvbU6wCIglr3FGceYdl0ooURc8i5lrtqgLa7vA8riEHPZl2BiExqjOZspLgofcyDrP9MohEhsmCqNmyZvU1a1ux8YkhR/QoSsvBEYc5Q0H7mkhqgIaj4aNxdg81SPalzB0Eh6zEGChvgM2qVzdXN5PJtdmpyUuOpzcWbyLpbrCMC5fOs+e9TSvcEMm3I0cbcvDRSMgxUxW7I75MnA9yGQdJHeOmoLp6irlIHzBRyD8Fb2SdSqamcAcEbXnj+ogWaAoIMvQsO06WF3EqTyj7n8LrYeAoAAiLH8pvBgbMymDCRgbvmR6edkKb6Ql+UeLBSqA+DhN6wGbzmrWzWtO22gL+69pBiwHTt9uP9GOqofZUzsf4RbQBTf5AdCspYzGeVOrTk4dnrf7y3P6Hd/PhvbPb+okCrG+vV394do1KpnN0CK+9IpyRjZGb8mAd6sZXma4MJul7heOC80U39CAr5f6SROD/sJCVclf5PI0G5AKs4S9vcHnRsYww4wYw7mIuYGf2UbjYAmo+0elEBN1V7s+HxolGrWgSuQRIUvARFcdVYEHlsEWQ+MsQNTO5l4t7SfaGsOUuBvs8Nn+oseUX/3lIXvrmVSDfowJxBXbLPX4Jau7Eq3emIQ2F6Aoga3/3Km2n5cyej5JQPLnoVz5kZaVFP7zy5NKki+TmNju85gyB9qDLTdfsDQ/lI9kPsOtuaWv3GFfv7s+0aiRPzw/wkqUnpEm96BPQpHyXJ7kyN2USQnC7125UmdxdI5aTKMR6Ok7Wmqs/+cWfYS/9tVq5p/x3fT0fO8JS8kDk/34268bmpTBEZ8gq5kQLo+GQ1St1V9yWCBkCx5IsnEBbfNDIB/hStaIkRgFBwTm5NMgSjEeSdOYyTJ9Y3VyPXWi5GUhYK6qcFqKtW7w0GKb2yCqlOrY8K0qFNV2CYpwdUV4rNV5PKdQ6h004uuTQNZctIdqQaBR6Ay1qPyd4fBHlsCtT4natl2cxIEA5tJJ3SBWPZ0DaZ1wThNJtY+9WUgqdWf6r4iPrrRI/Zsl2m8Yo9B2PO89MNWckSEy0LoUlNM8bbh+aMZYtYzYhBjayt45wsYmMBzMyYNPBSjYvRBsWKWr1oKTkotvUdcjcYS+KM4pI1WmZhY4AcQZSPC7JrKdEi6dHkzXFlFkBXcZmqmpQ4xC0OZS+1bR4ONmy8JIy55PoTmTEkZY11lUzGUCk1wrqIAWwHI0D9JfodFOCp0QA96aWRbb7Yy1nQQA3nEdEAYlQ5doxLPVey14nDTqdJPqsNQgyGx56TDluJIPO3KQVpgzIFM9JVTVLWRSNJFQGWjOX/kMJaCo0q2zheEzMLiQvceJb5boDa/KogENhX+0siw+l5CILCgRSNZL+UsYJS/H7jHYjjrhpKpOyEipQ7YxgyMqH7O1xyZGK+unoyUytU2jUqDGHUaYy8SHXfK1iHePHHMPdJANzOUpssa8+3uj4vZPHDPxswOzMheQ6dtixBnlnuKNmXa1UbsccHEzR+mB6d4k+eON1pUj5QFjYICEIJ/jU7jeOFDWzf+ZoWPvuu/l01jwZ1AaDAyqbYMn5ROHvBCGsWUADbXqRJpyypji2GQC2dJbXnFqzqAj+kHlIJQCGIZJQW/S3HbKhmuC5dchCFhAK9OOfArBcG0DU5JqVsliuzwQy92kI2gcIYvIRaF6G4xUnYUbEKNBwrJBchvysisP91H0SKXG40OKHY0lpNaAG4TNZV7eLm+kcIwXfI5GDYwGz/FfeWJkMwsss5h3CCQGYEN9Ezvki4wiQ5md57W7O5z98Vi7QUprxvvyETorUriqPb5v3t/fFnsxm0Sg0Ua4pV7nFwn/48PHe9hFnyeuXz9+/ezndzD55+qf71dMImugPhrx7fLgmXQlF+Wf2UPlqvJxeSW2iYLPf682PTz7kBckqZQmM4YdR6x2aK10OfxRpnqnQZhzseVn0jMInTnMwcV6hXT/w3vruzZuLq5FAUrhZ+gYndBg5skE7yD3Nx2Av+VM+1qpAqkmkV1EEos6pUmVvpb1bBS6ovaCDcJTUQQUb8dMt5449N5QPnj7xeXTHoldEBmwrwtWlPyGWBJdRjz7osDexQOBPJmGQrLNo8XzcNoh6zZcAnT2yt5g5zpQvG2zGIkiS52Jel5cGRtA2T0MmhkQzdN21DTuEiNh9RT3zlIvJgonjohnPQLXSd5SWPT0a0gsKylbGYzz8+GZR23v7PiZzd9BXw3g2vdBFSNpt48H9xqo2CwtGdsSWiL4TZwjJT6OP3zN7WEpUlsIihsoekSxvV3ODFztGjATS7qDjXJTbGztrozEm5p0BkDEkJawxvCwJrRyxGIJxmf6RJMK2qCv8EHA2LL4SWl8is4VG8aFTFvYXq5yeR9rhSVpVINNyM+NsCIq6qhBjjYJqqijmoI2Ww6/vxF0KhOnjbbcp2oYSZNxRmri2t7QhFc7gx+LnRZo8RbT47SAkGkU/xFCduXHmKHQF4JQkCe1ZVr47SRuBz3BW5XbuxE0RFRZjQu5uNRYsXNYgNhw/l0AvFLcUpTIFxx28YNyY5zBqalGsi89qZUOMSEzStvmpsCk8orJweHI3iWqlekQOJFiKAdEUZC+vHbSQFSYQ+ZGS82JUrpMbTLa0212nlJGXPAuoFuOg/1iggM0OFakPmUOyh91JrumL6HAyUlhPgWEjZIAtpgKyqi0BPouy2EuNvXZtNV3VptXWut3bm9/woIalgbg5Cq+a6bA7cVKKa1SlxFVro9ny5stvz19PFr/48bFj53jCr6aj6/HYoxMcDfMWmVewIgNhpyOU/NUmVOQIlK9M/8DBUZ1DD0nmFtxJXj8Y8lRXepN3hUWDEhla0fELvBQtmyqCrWP6uSGankkszn5PI2mtcUy4nRSJ6k9JjcK362WYPPpoHkJjYfh5IJmCctjWk1vcEXEUbRiZbJx+A3TNa4FkXUnXynDLB+mdf7t+5hcv3QqU5eNMZj784Zbdvfk21/nWlbubduPc/VauCn6aUJdVh/VBs/9Bfb+bHdi5r/xIo3lXfisg2bDhFkFtPvjg06ePHo8uX/cODom78gRXlW7l9t3T/e4ZeYrP8MbrVy9e37werYQMbx+fPfrk6GEApchpj9o9KMMp95e2duvl7jTzx654X8adj0s/S/+M1BcWz6y/fX19fj6LRx1RIFVi2RpqlrBBM5k8ILWMHxNluY1FHOSPfGGqM9ZQOC8CFzmtTQ4kTTCyGaIkkWz1/v37d6/e9rvt/sHg8ur6+vLy+PjYqms1Ux5CwRwRy7haJyiaeEm0FjTFW4ik4pR03mSOo6Y20RhadfU6sylpafcb5Ub5BIDT2fZaeqvicZWPQquGka5k4FgqgwUiSa+KOmQh+JGyEZSjkg/E2XLxHuyt2TaL3v6ws+53Q42QhDUQRwD/wnrNaZu4ICteRv6dM9+Wvc726Ag+CqhyLKjfzx3C1rFz0gQnApiZzSvuZ6ozp1zirQA9jhGeepC8V+/cNQWPnBrnZFeVm66dAANXgIwGrAQnfoA6nhkr6MPi3YjOG/YR/LKNRGgEG5Y1ivdAtruLuV0Bnd3JkUkptsMNKy2wFNnmGwGrUM0GMS4cxlViJakMSEXXEEGeekYggigNVyePTC2j1bUKpds9aVQeRlrbks4Ygsi8NHZuQmFbc1lpCX1vK6MbAR5DB7Mb9XNcEGOT0NE2ucGZuJbspEymzdRBpqL7x4ELImFwAENlHpTixFfJrlTllBuyKGxB8iAKMriCHOjEDgzRWfRDIpLAscGoC0KKkgJiPYgWxi7fJIIUfwz/oqFFs6rLIvFASEZqsqG0Z3oI6MxwLCc7TKfi70xf9hUyA91wkgBwEFCJxwfVrLKO05ak56IuQwiq4BRGNb1u2Fqs262+Suaqp95uXnAeLib3a+cH/ZpqHIvNor3/7bwCxcfjyKuC1+YoZpzJs/YpariI2dpe3tVejhdyHo6OBh4g++rt5cXN+DKxVOQZuMO60aPifkFM6bLlKCydgARnrpoISDRTEHsl5b/C76FWyxrRnVkNMGnFL2HZzIWWWCwJSASwuRaiBGZ8gceod97nq/hsxW3tSfZFpClSzVCsu4n3L743eVZZhrBhjO2cy2RPOsTXGUEpJjLqJeOVolIR213az0b3zGzoe/cvsi2TH/DzWTqd331ZcDUSB2L5BQgkJhjGi1zb3aVnuXGHmrs2c2d5mZEfmvGrJxj98fDh9uj0NnG13fOzxmmhXJjL0liaTj0OwjWkULl39kEyFcrnu6YzAr+6NT804OX3jEuhhtOTU/kjvZVCp+0Pz552U23NIqUPubQM8IdeZ6Q6lunf9T6ixMuPXFzaLPfo0+45eSQZW0KCznzlW+YFkNMWXVsYkH9UVrhNKYw8A7AC2fKbxyBLLQjOxwVUYlT6noCh/4qRHqZjMMfqMvCoeb1uf3R5uZCg0Gv/7Kefm7PL9++R5en9+3T0ysUExaG2gKVyjHRSNfGDNdH+0muox8p2FJvtm2rEuBRTl/MWEqJCUzbDNKv9+t6gra6W3V51x4Dvz2/HMwoNOrfkWtGfEKh+Uq7RZ5ov6l6MjQwBJaauEXU5LlCZ8gxxCC6Vzdm4nLjxxSmgxsNjfiCNmLCibncqcylWXCRjEqWKazup+swhMyd23XCiCfHBJmIIO6h7dTd2fgA3hLiIPbqOI2kcumvBFYyNmre3U4HQ+F1WAgJxjUq/Ec+OKxfsY04mhKgA+Aif5k9ijHBwpYgCX3rSiiQGBX3ECqhLjrdbzu/U3M6SZUElU5ozR1t7jxuifhtna1BCCb6mpKSgt9lNwiiDBrdPnXcXdYAsCYvKsYnbTUJKmA6LOBxG+e0omduc2gaLEdSmOobaCbGKZeC5Tru5bRe6sMo7xQ/gRuNQpiVOA98FTapxktCtAYK2VaYD2rzx+kXNVqVjuZzym5ETIu0MgJhuCbJaX72xASjBgOytS2yZogHDKZkpqcIIEwQprUrUyEYTcR+yTm/iYBT0YhvdiXOnzeWyaR2hUj/gl6LLZGdC6NnK56bkTq4EZES6hRj4KihI8JIsBDW6XpwgsrFKTlCWiifwZyed5ln/pLduTRrXo+ne+9Hd4vWP93/3tF9Z91/e1oeV6tWouf9ivbqsbRU6NqYC0cFxK2sKJpuljYtNJ3/dDd+Mo3kMuz0Yo97rxfn75UpOdMGTME7+IQMQHwiHt6lGnv0T5Jd5Rh/4S5cjsxAK/cL5CindkRAG8jJSbWihoFNZ6WCK2Sg2irWBBTSY26TksXg9SLVRdQ9pAAAku6YJe3lotKeEABntAUM9wRo6pIeeo0mfq/2lLLk02KmzzMLjJJ3KHPXBUEvyFWqp5SUFKEJiLTki+XPa0J3SUODmB1LMsNO0V74tKOs7o0NnIamoHQHCDM6/dMB/AcoMRw99m2sirXxW2oVnLkAnuceMpcZh5rXckEfnUbtm3ZQlyIVpMVOPook4ipomIjNMdEAnraXTpTd5cpG0fiQHoHZydHY8PEyAJL5siQPQP9/tevnDfWms3F+GkIbSmf9lk6VTf/w2X/uXR/kTdvGup9gKs1hWGrRbrxSMVKW97aRWmUuAStkS+iPrfSGclxx2PeAf4eclkknmuBCiH1GtVCeQXl1xRjyE0rjdAwrnPDi891f/9C9bneqbF69UZ6XCWwbx8xjeKh7MZ9KO0DadlNamoImnWSrigPjxfNwbUiqqeixTqmU55Rds7IxuOeyH3frAxZYOi6qsJCP4rgqzYkCwdCMPBRWsmd8zj/H9W/fizYqASGHhnAiDV1KQ3zQnBGiLFkyInwTuhqy1OYd16FHMozhStEnNJhV5Wvi7GfTWjgjklqf/1uvOoD/o0km3M9kDdjZZ9/36jBO80e10z+6ffvTo/mPkwF/ePTsdzWf2+o/evb69vZnNzpeXb6aTK7qvgnfpEV8S74RgxdY+v+aG9pblJMWourIkIXAAA5FEY5JlymVD2Y6iypRQaVTfdCvuqciFmqMllbDmTChHmMUxznSL08ra8X/IOGR/yZ9x3gNYoCrSigle7YO9xC6ywSUuozyCrOauqqcYkYIxJgBnExtxBWkB/O9vCWlUphpLVC9IY2dHUjmSrMHWIG+CraLkVH5ZronbhlCZA8JL8bKj3CAHHTCrSj+AvMm2oU3TiwtRc1/NVSg1RhZbuIt4ykY53hxdLCKD67LMkac5MgLKFXR0DUIvkiyOL2xh3SFOrK5sdrE9EPkQyrGFxpOlu0yXYKBvI+iKBM0RiWVsKHDJK+YVHTpmGxmA7nRYwe2OIMR+cpG71VW/Mno3/WZ49O5Qu0KErdq6I1CgRNey32RcZn9mQCJ/ZNESrqojrwZHjcX48uXb6/F888h5EkrFSgVYrJQvDK6YbMQSmo9uhPCh1A/+H5/E/EnwOphFucCjkeHUBL9g32RnGXU2aIZjiksARriqaHRR7KIfIPlY7mmZgC3bcuQI8xHSyBSy0CzO4fkhPQqghjJBL6C3chGS7Er6Y5IwwodM/8VyzaxMQt2dvbt1FbQOhtnm5UvT67GGJFgSn7O08fmqJK8VvkgTENsl+hLoyxTsMPCH38onoF/GQYboktwYse+d52d5yvtyrwlHYIFaf8oA/aCnBK0CDb6PX0Eb0ScjPghR011u85V7TGhpocyyCzwpWkYoLM9Lq6UP2vhfPPc/PD26VnmCTEP8lWe6JWubEYKTdK/8lq5pJA3loeW3vE/f3ZOvNeAC73z2wyu/ljvFDtvt09OD9isU7ti/WBiRlIoPxL3L1a72ZBaVkStXDOphJeuRPd1Uto4dKTRNRpmcxRzf2qy3xtNVo7ka3yjUCG180+pHQwE6tUdPPkRHmRtGtoCOxM+bqYqOjYRAS4ejk4vFCRwKJLrQFqts1s2IQXaJC1HQkiofB0/IW53HljCzvH4Hh8q0uZOXziw3DlNoC1Kq4xaXlKwdeemV6jw+Q1BmlLw2opcZnzB09vlWeRz5a8m8ZpIyrZvYWfxLNGuloLM1MhmYXZlIE3Juxv10d9Av7kiSCRUXfYraQuc0b0g1PmBVuL2W5lYWY6t1cPb5p4+P7j0+OLx3MDjlWDg8qX70wdN3r96/fbt9N573jk9v9+7VOr/gaXn95s2rV79fjV8P9tfd1ra5nplHdjAoSbWymFzAHGlACvqaKSrrbPpQeeK69Mf4InLWWNm+TQ2TsEUI8cTyVwkOC+zfil8rtccBs0m5LwfLyP13Zbet4Eqt3TVb0IH6aSrFXcpW5Kh8cbt7lJHGa029ggQ0asW5xJalLGTbBLstzj7UHOGhwzpkJqiiIhtCW2pzJbRCxqesKSkWTyQnTknpjV/mrqYOkwssjLVIrm72t3ruSuEK0SBeLyegJ1JAZQDqbC8ZTcX0ppZH5KOAHHgbSPJHXAgmSRNWbhG0myL4DdvBMtZyP7mV4UYXjipAkjRAHJvKTCIb25UNJvV7Kw3J1tKfi9z1IFU8dN02rJSYIjsRI7EW+zKRKBiAFoU5yAjWkUDxZnZdmV/p8hhhKPpaFWFO4Ki1N2reTWwIpNKgcchMRWFTyWBQX4Ndvrk9Xy/ev7p4I+J7fPIwuzIrdxc3N9PFFIWHy/2DGQUq/Aw3sB7DxyYj2JUNXxDNleYC2RveD64hl5NF7INwLCZRdJ/TD9dn6P4wG0yaU/zMHiwNhka5zROJ0212GoqQGKMFD7Z7dkAzIA/5/VdWQTPJucXYxYEs+W0znjh6WrSsNhy2Bgf2MCqVYUXiYNRGRlBglPfNQgoEFAsgoBuwS9e8grwZen6UScg35Y3bo6QkuAk0IkUYcubH50k60bF4QzxF1D5QVEZkCGlHu/7fPWoHtTtwztBDVgZaPnbh7rqgsTH7WI9yrw+K1Mkn6ZKf/ss3HlVkY/A9FxbMLr/kspj47vXPVGdwuUtLEdmmxM+0FZmQzzw1V5ZOlCeXX1yZz/KBV3788V8u1IgEdkdwcpnMKF/ZXSHZd8H8nAmLbfbaOHBfgX5nVyEfrBf2jXrGYGeMK7C1EAbABV2OjuyHskNH6THMieRzbNHJcZ8PhJkZwkFZURgtQLgf281mIzHPskefbmcfaqiRLGJ1Cpba/MmtbC+HpulZEnhAkQjtNCxEOEnJl4xNDBQnPrpGgqLFFElH8XJDIJK4TyIq1NpPBmiKu8YLp460YmpI3HD0M4HaqHfEGD+jOaEPxz0JNqI/yw/y9aY2LmU+2wvKGJSMg7LHgWPAEJ51oCURNOmC2UXF8Rkvip1N9sXtcENs98njP/nws7/48OkTWQ2L5Wh0fTE4qn/+p3/67DcvX7167xx5irn9YT01Air73Vat//jpp0+fXp6fv/nm6/G775rdO7llPQwPQcMUJjIj4GZJBkvdCby8RXxcpjLJj0y4kGg5I4X7h8pm/VMqYVNV0uZ2SoOzlcFRbPze4lngQVQWDwrDNPrHbUzobDTrJZKTEjjcI0A+B4Nx4qfGtQXygQRcVAX/i6G2X45zMtEYLN6YYr8CQTPJJsjx3tFLsWAz+1Tb0GRPIVLmEziOrWxMmIpjBR0wXUKw8f6zJBAgJIgT3ozHL5EwZlxM0ssBUaBKL4kJbEH9TN0RPS81IVAb2lMmAdPFBUFrpX5SxIEci4Fw8RySw17JxHIJgGxJjosTNJShZWcpQ9U2xwUBqWfZmyjbk7vHzGIKlpmxUk5kxDnFSmcLKuxWKIyqHf8oV3lYUrbY1CSkA1ru6tnk4pagQfmn7NIyPqfMhc+MR//on2BX+kNzc127dW/juN29d3agn2wtgTaiB0KYClfD2TC9e9wcrT84E3OIuLZc7IIMIWjPAvNRMNYrUxOtAflK0YoBYy7Mh+QMsxmdPdIXoXD1KDtoHnYdLuhc+lseC0yjfwTP41DFPYhBb7LA1JfEnaNBx2bdxp85mbD9VLdNgF84REGR5ImYQ8I5sExEG2NRIyJ7Iijxtln1L3Cdzv3wyq+Gsfu8PNIEFsyjfoRGOb7qOWEVvameGF7m53PYYTORiQTH0phpM3ux5EMuecIPzyDOIvEsZ2g4M5ZJy6xRUXcXhb5K5MqnbvdNhJ7/0lJ64r/d/y7ze27T37SUVn3v7W5Evs1AzHw+/A93l8f/sUulvdJg+uSiXSuB/HJvbktDZYLywDzijx+mYQK11GDRAYIPocS5cT1eDuzqWudE6ZFdDEv1VdoHB4eGIuljyo1NK9huxei5y63WqkdlsbCif5IXF3abMZOctzXsNckX3QrTx7OWfmAF40JjqTRcnTGIoRdvjzWwACiGPmQHt/tYo0FoX9MXirJbVGu1bqhgDcf86q8kAYxOcUzytFMwnYSUDV+ERIieOkavBF1ITkrVner5+03bAyiwOUPO/mHavd1lFPXiU25JCKTwU3cpofH0ajJckE1SENCRLJsJiReLnLCi5Mr358Gf3ZIZ+oae0GrcJuLB5ZTXOJpqjYdnH/6jP//nH/30L5rdATVzbE+BQpQH/Z/97Oe/+/e/t0ePQ+2oM7RNYyD0TCNTkmIOauwf2Ny79+FHH3368ttnv/2Hf1XfjmhkaqWxveAfLw/0iY8l2OekAC6Werfflum6UDfO1FE8F+q/8hoTyXJ85XlVxQ6NOnpo4CAUHBYlF4mftgOWKx0b05SQZYmLTe+t1Q66nZAAtHmGQkAWo/YwKgiV68X1ZrKTxCQ4T6rGERcNTeQm1hGdV3kPtBEkTYmCUCmhzRsSCYy/XS3fzyaKkEX2dyXXE1TqGzEcdoDEuZ8qrBI4ExO+0+3pkUbPfVHln8TT8n+SfxDZAKuAPoPVKQBJD4sPUFQmYUdCJoRBWgaj4EyyDxNTjrZONQE3KEf/6SRoIsktKD3MVPbQ6OPE3S4LplFwOZ48qcCCeH4UHOwfIyaWn+UQMEDzpK54vuraRmfX+GyvfhM7pNXPOXsOvBZen93dTdRWMgWsHFwZ7Czoy8/gr6mWX6R87529EtPrQbX19OTkqKU2aHO2mL2/HMPQxCB0Kr0ylfH3xLWTx/sknJdlZiraj1aoV68L8EOq6JhhT6gXnzN4iWFEbRcuj9ZvtuyJ4Rki9M1J8X2oL2YS3EjQIiXKuunzaIhVIFA0nsdAgpQBpEO4mZhDIPHq7tdRJmqC/tKd8W+HymNqpK7FRgl4IpUfMCwyMADFcEKvZkUQ+AdUC6L88CpvC6qCuB3+ZVS7Xygu1n9vk6JxKdl1F5yTnObM7cUMRQ36T9qVQw+F/snDNX5ajKkQ8EMC+hRMyySZiwBzkWmYyNRZbw8yLVE04ukpVINlSLmN3ZjTXt05ZchED4vnXVsmO9SmnyEvo8Os3sUpGYEcI96HRTaU/3ONe7LAeXi5s3xWPi8fprG80p5Pd9NR3pZv/P7DdPrVL2nC03AWpbAeIkyqRLFW4vsTLbv1P8dP1CiFMBW2OO22W9Pp7NnilXwM7KJICGYCJzdAyLGO9uc7KHWOgcj+cvBs6Cl8mj67fteR9CyYYU4AKnXVc8yMJE6xqXwiJQP8olrXxXjkW3BZOmxsTZ5fT6qsxyu7gqtOYZQNL3eoRxuPKEPhsDGZGdkXIGZI1Yo1kvGbfrAK6cpcrBWHp/FBJUjAqQEDJJm4QHGE6NFaMx2VHD83nepvTkxwJ0Ws2LIh5VLnJjJeMruQLoYheIQwXJo+xpDee/jBj/7Tf/m/f/zhp2WgsMgu1BlAfvzk42++/ErBuaOTQ94W+ifGT0CEr4M/tbLt9jo34xFZZl4ffHC83/mPf/er325XI0d5ttvJlNp5bCGtOVqu6Fr4sDIZc9RsLq/sjYj8xiq9njRWyqNXU1U99Y2gOHOAUS63C+8VN37qHaEHnUvQG4g5a8iyiBdbpxw73VyMbghC6ltJCYvBBObtE7Phjl5mqRVuloCvqj6Rya0c4VJIVpSaxwbpEsEJxZE3yE1pu7mAXtyJalyLOiAR9wNvE44m1AqE9SEgKUkmJkXHEpPyFViKcwFWeFNiDDzw0DEcVGyIcBfPi3tsNbSdAp2LGUARLKAfoERHsAF2R3/41zoHbcKEhVJZpKiRBkvWZ1rDj64xXl/EnqCz1Jv0FF9EuUu7sRni8AkEgszID333BbJAyolVdHiV9H61V8+pl+u9QSyYVOdAsEJjueHOLieWQYgVjlpT49QpugdE9h8OYT5//OCk3lidHkqI2V6O1zcTdkccNQUfdMl43RxI8fyQvp6YnKjAPo+mZw2iBmMX6ArlojDlQk3oswsCdEFuR04F/syZ6YnAzbSak7iVYLHLA025g8QVFMa4+przo6AfbtBQ+lEmluSIIZFQkO+ksmGwjQBhR+FmriwQyTtDUXe9JouA9xRdT1uSxCjlolh4MriWhxpUUNIv6XReu//9zFz4dTcUl0Gh0fjmzXZy09peXr9lIjYV463Tcqfr6eSTSudBQz6H0j0u5bCjlOjbXteBd9ZAkiznmzoTFCVU6IeBcJjuL8ezawR7cHgSz4JEt+WCa7MIjUz8+9G7b56/+MnTT3vOLXC0HY2g7BQ3BhaEsboydyUFzsxKfEsZgWgU5hAkl83ScCcOjj+Ozqgy4273n1GWQfqZD3avkLnB/3ECzAlqMlG7KcploXIL72e8MlmFbE03v2W9KnfLvQmWjo4TBOwP+ienR47npmHayd7pdEYTG7cJPJVY3BENZjSFOxPXswuZ12QnrY3TCAhjrRDVbgB5eIAhrBmhbh6BMxVAMR/jLx0L0frKHBTnQlQaJKh71FxVCSMg547Qk3vKlxLPQsrQCwGYw9zpy2K8KZnTrfcpvXR3mlf0Kell3AtwPqkqS/n7fPUyBj3KV5NgSRwLhIfTp1NKvLLHOcbgoF2aLkLCP/FRwj1ijW8qvlSRAQ7psvsD+1D2bFITMFCgutF8+uGH/9V/9X949OQnyFm/U+GNKFnPn37wxJHeb9++Pjk7o/7T+LvCjhYDQlAeQUalw3KRCuDxx0fbr797+ejxQb31i1/97Rc2OiV5Og4CtrOtvy1Cejrb3MzWkxV36kTSPR0fdbD0ja09uet3NgPLxpQHhVEoQTUNN35rS8BiiLmTRQKIkaDMmtuJungRhbwF87kj0pgu0fI8FJgYfqQUSagaYKM+jR0Z91ES+xERhdFys6+FvAuxJZXLXU7QpE9E/NuDLavb+Y8U2814lMSm+Ochh81ozbiAzUcI0vy6I7mv4WjNMj9hYOyCKIsRNdxCwjjT2ShUn5Axgoa2XNKBJHDlUviS6W+6URshk4j0lG01qIBn8pnRLgGl5xoI+eWBhW/cEld8YaJwjW9ZF2QdC4B7CkG6nP5AUDm1Bpa6E33wmNk5Ef0CqBCzlizH/tSlk/F7ucuht5GIMlilOcPOzSVRUJA/wYbMGBWUCl1xmCTEpYNUV44x6B4+HZwNz5b9/sY+uJHkGWEbjwz7kHRx33vhGx/qLMXCgAykRK/F7cLWnq5jZhgjl97nk3BPucW7YnwX3jVXnHAMW1CTudOWXgvkxeWo2ejNgJlO4nhj6kqenY0U9P/QC1qJWusm7OnB+pX4DSWRcRbE51f0eeR6oge+Ls8R64Ig6JPKRU5a/p3xGKuxCIB0xSs/vA2tWK7d7xlFeZ+l8rhEc6bbxcu7yzeVd99+/W1LaD6Pc6RRf9D9QHhmvtq/zSGN2YE/q8y/uv7u7eVlr9X6dPjhaffAvspvL15cLcZCcQ/b946aPcAmgvnF+JlpWL65evT4o8PTY0d1vCryI6AAAQAASURBVHj5jLLUbfWO+mcyXSaL+fX0+mJ+85sXX46Va67sPX348ZN7D4W9J9Nxq94+HBx9f/n6YnylbEhim/RWWJici9p0Nul1BqD0kwcfHzQHnogVyqAz0gw9P6NaGGX5vfzIkLPwnlW+DtuU38odu7sKD/gcgZWomE8tDD6h+bk3NTeKrsarmKLNB73e0XAgGddE3jaclt5pNR0nvJYsoGWVOXAkWvenRCL1MfEsAoRAjRpRuhKeyuXlN0QAaVHszi8X+Ay163EGiN4TnC1OH1dGp87YfROdda9Ftyh5FrFY7QnYr3brPadBO7OMZ0AcjlK1VIsY1sgpjRfprkl9hGxQH+olxSjkCDvCYfy34V4wY0MvJNk4RT3SBlna4DOdOGAGlYo/oqLQZ1xdcfgYI3EQP5XWeBficKGtREO2Py0IxdX9L/7qP/3g6achWfwc77mKbPPHTx5JFPnu5evDo1M8kB1SjkRl/lg698Pc2aLeafJJRj0XJt3cffr0o2+/+u7o+OSjf/q//u7f/j+XN1NuECYKl8B4wt+zd3G9uLhSGqtJ9ValuNmutfiJsCGDRYRVpfz5WG3E4UB6UKPTSYYVxhWiiHpGEwl3buzXo1ztzs2moqNJJb7Nw2K8N7tx+mWCn/EUJQ3M2SNcbVBM6Mi6U9sIm2yBs6a8aMBO8SQ3O6UbJtOikGGILf6EwC7lAARB5+nUeoYYJSIfDBo9R6EdOFeZB9GKw5Q1ccS/EagimjgQSHH7w5MIS6krYkP9mBk4YrAai6yEqoXjraeEpm8UFKRjMDY62dft6yBS5MR2md0SqI+Xk9SHw+SZD+xqdEyzAxri8/ZZSDPYhIbdxajy0mmpDtmBUTThwnNZclGQ0pH0xGomXBCTIZLkZjYa2hQ4v9iO31flejm2ypHVlSX3pG0VguJNbtDaXde5EMQo402/gbWz/yxVtvfqHaPSkgkbb06hEOt0WxsvzE/OHUJ56as1Ma8UyiLKCNQELcJ2QW9zVt5FPhgiMs836SnFPRScQXKAywk30yEmpO4+K2RWfM3EKawcOZi8ABPi8rB5OqwFUEDhyp5/KiBm8UCkTfNN4SmuOLtCOHWxe0GqrILnQAxZQ+lJwMwtgQP/MWUSn/eMrKGf5pKOmVXTad0pjXjrfSY8r3yTl15HFchXQY6Js7ebi5dvX3ALflB3GlVXttPN3VVnf7C3nVhcVWQCp5XK7y++e3s7Gtw7mU9HX43f7PUqX7365ndvv0M/B73BwkHQXFWLyRfXz75aXDw6fHwjmj19dV2bfP/iWyh47/RUHgmOY8mZesVkJvPp+6uLg4MDaRXvLt7X2sqo1/7N7/7myeOnT7t7X777Wk+pH0jTImK8HCdhScnYsnjVSevzdrdlTqKQlAFlfGXAWbGy0LthF9H/wwRE5wz6G5JJdpnP/W9iMy0BPmMt3lVUUCqgFRIhY6KwQARMi4ToiCn4jEDIaJqS2J166l1bm+dwMT0qbOcB5hqfoEEfxwzEMQyBWJrhDj2hIxVlIKqH8QLONIhk0ym3RgdJO7qQPNLQaxoPiVJ4k/ln+f2Sq7MdofP5n/7TT3/2s3qr3RlQt7nOw2YI3Imqs4u9f/Wv/9tf/+Z/7LSGnzz+/PpicnX+TaO1ip+69BuC42H07ZEoRCJQq5MyhKgg4kGmSnxIdvDrfXReLGGnJ+KWDBQoMyNym4SL5dRQAw1IpEEEtcUx0ATKWPKv/tl/8o//4j9WBFi3c0N07aWD6mil3//uW5LLEbbT6Sjoj+VpbooutBVTcvZvC3dx8dP1lSoajUYcBz/64OO//e7b9umn7ScPL3/3ZvxG+e0Z5hyNkz1trmqUZhtWbZgRKAUitjxU98fji9nNFX0bz6Dw0WzbdSyCuYWWPMqruY5ZK6tFHTYxeAyBmBXrliEpijDbjkfJhjJ2ENU/qHH+dDiMlJ+zOnvb0c3MZQ2bpZ0embB8PGRioT9UYeNKZdimLiYdcREHQN0ok7UrWjTGljPN0HiSrEQyEQOEouJGNtsx8fQhyTHOcdQf8V7nsPHkk+G27SaVK3mi9CZHm6kiR7SwJ3KuTklYSFHV5K1KAWNiK88Q8brYF5ZHP0nq0XDyTeNvyUNkNPiCIk+sEo3SAWLlQjCLEeUkXORvIfoQZyg3zBa7JLxUjAuU6WrmO1jzdB4hKIliRYwv55Pau8XZ5upAGSOqIfljL0LoauzU4uawXW0siU25eYkvFe3Zuph4emFzzVgCDHJBkc/UhhFnZXsucp2MpjhLSD1gHdxPXzCue3VOWA52s7jY5E5VSGA2WngmKkKUJIzp/8MAMJ8W4APJZfIc1xWnTULXcXQbMOrQvgk0xUX2W1SiJGlSWfUgO1khOiVuByp2e4k2MTezwyP8E8yInEjaTyQusRXdCHgEb1K91RqgwxKCzc8I5uL1sQRmQyzOg8tClG4bYtbABxl3+Vw3/L9bm7zV8xjt9mfKIFotnAtC73Foe2cwHE1e91d37W1rezurdPRsM9msrm6uf/LhT1Wcvd6rvH1zObpsvHz+5rPjz1lbv7r4dy/Hf33b/7OftYfX66lrjiuti/31t6/fNO5a0/Pbjz/6+NOTj41GupzYF4ehDbGsITW+e/uDg2b7pnJ1df7qZq8jcuXk+hfbF6J9jf3WQfeAknlryyaB2WzftpdMB1kk9LDzi+8uap1Hgw+M0HDMUlmvMGlWOJ+a0EJ9ocPdpyECH+Y71/yHD/2S3wsd+9/cy3gQecPhMrlRfNQCrmTsCgIwUs5CsbLFsnYXhgAv3Alqk2H+bARNbmZUI//0iRADxXEDBLyzDoGXPJN/wW5azBDtyXdZ811vQrhuJNuj6ekc4g9b+RTUxvLWY8qUjsmxxLwWdb95ePros5/d/+AzH1Mb412LzkBENNRVubtX/fWXXwDUs48+/ad/9c9rNzf//X/3WmNIjHEdq51aleSZ9MszUWcmNN4mdkCFRgkxALJInRN6h22ZqXEQgZvq3BGVauF5Iq7I6QdJbpBRQ/gz6KWog8Bt/eT+B/+b/+x/pyCDR2ncxLJ5TFVn0H774pnQ9PBgyEHAdFCJzoMBt+cDN2n+wBXNWD6eXW5u+yBno4WRPb43/Hb+9qOnj/6HX/7d6GZ7NQ6vuidHCZA7js+N+Z0DBqi/ysex22fzq7vbmXwbiq9OjEUMV9uDfsfJZtDUYlkbf+EFRlQiyNhjm5kny+e8sNlaScPlrQP4iEJVaGJ2sBhgUlYEVM7owZx3wEcEY0eJhZFztrPlz1IqY+CrxD60mjI1cUBF+/dclYWo7ptquxPY1FanWwOOsgxySI7KoGgjNpBQk+NSgj2ZYl49/QtUIUinZtItDCF6bqjKdLTkHyfn3mUQ8PLKi75ismgWUTfQAAiLgyGaRM1GU24+SG+SOPoXjECJz4Cz0OPOF5rBBGXiYKETkOU231EFIx2iVBUG9DMsGAvSlEe19VsezIkByLvz9Whj03h9XunZablp3bXrezfe1Bw213oQqdS86t9fVZsTHoawNeLeUydEvaK7VXN/RoYdHPEF2TEeoGRn3d0SwIG4MCD6K8oKovR1sZmSQJseZhdM9tvRv7M3wq43celsZGFouxYrkh0mFchbTWIi+mZiJ/RdIzcvZrb4dSN/NWQieIaqXKws5iQYF6+OOe32KLp6FAZmECYoYkbE3VlZ9hDiBMwin9gOcs2HfaJdJSwUlRSVhsEj7AWrPCXKakYTsRTpakLYbD9AmJa98mn+D8jo/g5tdt+EtMuyidCThM4AbaO7VWM6ub2YT6eXq/Mz1ZWcSFPZLOverV4uzpu9zr3qwW1l/qtX5yrivrg+J9B+1v+gvX88O5j+zdVf//vRLxvtn59Ld9jbHx71Z99PFSX9+MHj755/T/3q1po29EgNFnQj7wyKZjboDx4dP+DYuby8YbGd9AYNKRcZbf5S2/rN3mTpBJextWrVOgKAXdaveCRZsp4/v3h/2LnPIjV9WSAzhDjy00zk19DZD698ks92v2bxdpflmtzjLq9yr088nW4dNwjQzryWtaJLW98c/tfkjKV5R53h4sS7UXp5AZy303Rax2IxQfy5lryIrRf9jm5hragcS6PH1vJkFipkTeXMeU8voxMRE5ZXLK24iyy+XiHDKFqldxL0jDTqV8TETooA7YSqJPXsS3ykL3EI3y4noVR8Leckqo3bNgjQjikJ7uIWMqttMTz0qNmyMUz4k2qUuEUYItKEnuIhuATcALEQerznJC8lSf+EPjS1bmkuPBCWpvXrR9duLB7d8Ixl8dhkuZCFYo7zTeNf/OW/ODi+N59OOFuIAFKbfLC4i+X8/PV7VgIgpcZy1HiizsO1EjWUeI7lnGbUBYPLPalOsKJDjVXJwDEgD9fL8/3m8PST5fp5Z0vBnyROGK2Ow4PvQorPcj4THzFgKBUxHDeGp5DbDWENEdeJBJmTY0kXRs5Lo+Qc6z2WDBvdUoLawu2iFdyv8s+rnLmRwJGR2a9nPSXiNtb12YTqHQ5P3qdvJvodFqZ0rtdOVycLCTZHVzoNLZI5sd0S4zOX3AbGK/KJ0z2WaPFQOoUSb+YxkjAGsZhvdFUARDbAZAE2XI4QIIKwBelCeijXAalhbCFwzg/XkE9Ulza1hkHNTwMAHXECbfTeID2PqWGKmCtoGqWhHdTPHkKGotyMwzILeTTAQmIeGqM4yxsjNMGn6aKleqDkA4vkT5gKe6HlwnFuK/xk0EaGtuu1I9Ov8Nb6eLAadSspRkePcPaxorOD/ZoY5HB/7/io+7pVneKCcGe8WGqEylSr7tkcU7kT0NdDRGezBv0eOAoghSs8tfQxFg0bDiGnuHUMCcEOIGQFC/egilg5Ra3Gdz4tVA38AXK4McQsKKTvGUvJ2cuHGCCyLhBUVDqMQKrbuEee0B2JQg/lP4xzn6vWlMV0Mq9pJCc6JE9XobCNFFJpdbxMTFYRUSoF4ZGx+ocVjDsKqGcwLEjNuJalV9lZFg+sheaYCqGW/pWJdkdgIwi4g7vybQESbWaNdxgoKyuOWawyVli2VjvpPpCs1vAMlUjuZjZkaFvxsrODs/r+4puXX16Pp6fHj8azN5Pq7F3l5f368Yf9H9/cvZxNRpvbm/NX335w+pPFjT3428fDU9Xk17VFvV9dVWeLzXzYHYiKz28d21Z5dP/+47vjk8bBs9Hly8nVoD+8ccCHYvQ58wLh+7ftNxkB/auplLilvPstKy+1hdf9enc46A4OT6WPZZj+FGos1PbHge4U+h/moABofoSCCtB757Z8nUnbzVOm64/yI7gLfqMaUPIK3hIA3gvNM/ZbLsR9iMmuQyDAtLPUBLcEG61RNIovpYqlkvQWj43SCQnJZqH2929Go6+//Vp1u49//BO1jx1KeNjqkSNkj8wpyIMIaYHwSgBCs6FvVh448kXpdki7DDhROrunpDneVfoCU7aTLWbE1H4lPdM3YBRlF/HU60KhvFnddWNyfk0XNqd8FpZY47iKLirymY0l7Fm9QPCWBFny7LBhmau15JjiUVQcA1KhhVRjMzqIT3syxpI+eHtnL6bjeeGG0KOuCD+C7z/7xZ/TsKJBYYuYrqEuSufbi/NZTuwxtaIU2EsWOEmGW+zNqip/ctA41BMhNK6L0e1sALw7ncN6hfP05mqyXU/a3V530Nt/lcNULSMpHLt/OictpRMubIeNayshLn3FP9QDRgsMoLNG+5ZKSXmd1Ya9NkFJv3YNz7+vUAduk62XxMjwoV/jZAgv4sDEeK0arUzkyzTCkwIWkiTMnhuKFpowkrLpQfpK28HKA/uoaY5GqBkYWtJqYLT0wYUyFSYgNaKBvYl3Ga9PnrvZHd0TwaPjoQ0+Oh42GnNOJybHSTizVJkKgSiCFK9V8B+ExNXIMg1ypDi4mdRhfiEXERO4JzRg7SwLCrVAxH0J5mshurB/Fo2xaOZ2XFPQyQBRTRCRKhqyLxcyUDyQroSFoiIHg70Kd/nVdJk5P41eh5m/tdWEUL89WGxfXM0Pqo3TB0+aakm1Hmwqj26307vNN9XpZU9ZQSwQvx3NecWvRr+yEZhA7ez5VaCFRqxeAjeKWtykFFFKPGCCMDlGjicoyxGRJVRTrFzQZ93imzKIWCm0HhOWZUuHjQD7SLP3pZWKyPMzVRmivhgM2klY1nqUGlXWG4k5xVdBVX7EjB+bmtUo7aaILmA6aBiIH+2RZfzbJEH4V8P8ytTlJPUV/090scJeebK5pmoJ9iSOjHuSPGRxvM+dJE+5INOrXz7wa955lV/yYdrIL7u2/IoCFWJq9QeTm/N2t/t0+PFp9Z7aojSXpdyfdbL9EB6AkRr0h/Pfz/fHH9172Kme3O82/9XvvvlN54vbs96wuvej0+Mvx8tvnr09qjQ/qLXml9etTrtvUxD2j9Or/mZypXIuy9TGGszTa3fu5ovpavn76+/ejC5kJshBH08vEovcri9nN3bVhIOoK9X6cfshLWT5QI7Sajqfvnj5bjoZ0Z16DhdLyC8jNktoyixlxGV45iZvdzPg3e6VWdjNy+6i3OKbcvHu9nwdtC3IZ/lDSEz0zEJgq5Txk/YXXDTxXB50SIwRumCSr/hcY28ysV3d7jpMi6OAj1YvGYRgnU88rsBep/fg4eP16vD+2VMAz6HZa7O4pf0xMez4opuEtQrIk4ZJTOGMihzwLKp4WIpU8R/WTUIPhKBBQLHUxOGtN9vww/XGE0IJMci2qLSFeybX7191NmuVN6W2UmkD/1iH7mSh1xXRUHZVEVg7aoF6uNg8mAXNJR6BAlXgcvBuClgk1zPuBqnPNu/zbfJr85Gx5yrLaBXuQ5+f/+jzfrdLLiJEHKhIBE1Ujqphvnn5JnpXZXN985aiJN7Oqc7igmgUz0HrwAxIYjWCdrP5sHHiOCQc2Kx1620BNAf/OpFgdXJy8Ez4fX0rHD+zC3S6wvtR+tJvYOStKfXkMCPkWTBWK3OpOO1NjgB2ZM3NmAa3FhM2r5CdtzKrn9180X+JZ3HXpAC7KrUl8olqo92uxyBOilTAQtl5ogDSljx/wIuW7QxoxAKIU1D+MBcjOifX9MvMRpvTHxNMSE1ne2rw6bedBywidnYWwoXRAFNCTB4AqSrPWIZMt9viOBIXoYbKRl3NI5+qt0IUBorkgGTg0iqyBIwa5YhaqkyAwNmlSLPSbThtISeFGZIs2tVKcCZslZksm+B2EwcrIj9J/VBAMCZSRb/0yMoHgwwgCfzR/Ul8dLfjxKy1KclNkQK5HB/lIE0YSPMVXrqtd1etxmp2N7pcT/ceDF8/6q65hp0oF9NqO13dXqxGLDiHpwJGQ1w3tg6N49Vchjds9BMXFOPilldliY5PEnha7MvUXsnQE/8lxaMqEZZWUCvIAfdnAWL7RkiSgpgh4wn7F4GH8GO8Y14MT4fQe6j8x7EETwhN3AneA7ccmlkpI5RMZZHjgtOqSfMipwOlBlUqOSPv9KSkG0TVQWZ8fQIDgkG0DVqHzuZWVFLmzlwkNcCzop5GW8xXRRh4F1dFWYv80Gr5NZMdEZQFSxfKKri4DJutdbfq1Y4eH35WcTDe5m68leDw8rpVNKPZ3c/aT/t7PckvWnv25nWDubZKWcbDB43j/sfNP6n+8vt/9835b6Dit8+/++T48598/vHi/IajatraO2zex0EAstvqLG7Wy/Ht09Nhi1COPK4Ou/3z2fXFdPTy/F2r0X48yO7Y8R3nznDb3GMMOf0GyD2/fiWU2K2IGffV65pMLmQgdA5aw8MWKf/+/OZx99EPQ86YMmREbhUyM7sBl5/oLiTr5aKwgx+5fPdZ+bhIe8uaS8rcZanLtKXFoh3HMSRuw2Ozkk5OwnEx2wSQkIbQYQmD4i9TT7F1d8dW4HrDdhzLbw3wRvaXbdZt/oe4Ltv3z+7NZxd1ycFLJU8sH4bCKYgsaw4kIDgZXDgpijwKzLIWgxSVlbB0hlcGTiDSVW/n86nHIYoIC7Nh6QOsOUKEKI63n7Bp1M+d/f2OqTB2JFeNOzX8KbrLOxnBYUJoixKEgBTWoI5Hx6EIx2HqwAmDQ5+ge+9ysWor/galsrBsNnuscqI6srXTYHHLkRhbEhxwJH386U+Ngu6WqIfUbfYQ/0+zeTWeKI9KjX1/cXV2ekoX6vQGuqQv6FTclooVhNnY8ds207FYZRvPUyeTumBpOdC6fIaKb7TkDbV6vS6aX718x1+1k5W66hYomhWPz8r0Zmv1XJaXANpWJAtQkFuVt9ez8Wo57NQGXTr/bYoH8cnINXR/dCz3ogLOEohZoUE75FLaXiwCq4clcxFhk3i9Dieo45sSRFEpesoKFocw17ErLad7ysYuqRRgwjnG8+1olJiJ3WzgIC6gABJi9af0vawp/ORDC7EBlYQ5/a9b0vClbMsB2mspm0OFLFTjKzZkYs2qSvBdkUPmgLwzoogwJWOlftuEy7i+4yxTBsunmgQ3+kSyBVDDCtY4lSx1P10KbpnRmKeFl6TGCYMprsohFXun/KVhZBLKBZEVPgw7eRdybO2LPTl4o9qazJrf33UXis72q/Nu/91yMR1J7qTOvHKE3/uXt5cv6t+fYwdCCF5rVmgpQRfzS1epNOyUpVz7AvXHEIKbiDrHmpm3op7p6q4ngqvQs9Si0B/jCmMVYVDEWYHaIphDMeU7t8Zm1HGPSJgEMxbQD/MlO5lGaNWBshmy/SVTFS0SztBrwGcazi0UKegvJc9uc6EQfOQfj5CvZLuoFEuc82jF/Rq5kn3jpc/YnnSK8PDTDALRRBRcmn0Dmo6R/h8sgDIsn3vtoC6LlzXwQeR0huFXT06u32b9uHX/wVn7+ehc4hVN37bHljqSd/uPm4dGhKxP28evb97jmfuto4fHj/f2e1z9j5sEx9HffPW7q+X1nzz6+U+PfzTc660OB1tHuFXmfHxNpTxm+//JJ38uVX7aGHcatgVF1ZnZttNovLi56rQ6v/jo5wPBveXd+9klq/7jR59Q++/2li++/nW93f7ws4+effkVbFtRtZKj3b6RSnKnvi5fZ+3+YBgiL0RVOMSIMkQ/Mrwd6GecPvlhBjINu0vy8z+8zEku8t1uwjJLQBur878xWRhDmfjcTm/ZLm9GsaNV+ur3+iE0NcSRsXUmoPGMxGeVc/hbeI5T4T1RO7zjCbzOxC5FntreFGviM17NKute1GQqF53YgvD8cKdY7ZiZoMrdpdMWL+uF1XG2mF28vSH20J2CEHW1A8eXV+/fvHr0+N6W5I4qSpYbnLJ2YntaQ6MgorncW17Or1+9fkUmnWwG9sSiV/F2SxwqiwzDagI2tJ1CanCnGLzibKgzihUPt4DnStSO+h9EQI96Q3YIgeI47qrxcmWLnCo4xFvVWQGHJyZERWytBsOti6yDxeLq8kJF7NsVr9pm2pi1Oy0yz8A9M+xkT2J3QEk1EFkExRmFH+lkyVGMgni36feGk7evhx2qgsAZbalagMiOPNZGOCzp10G88qdWHTT3B4OhvNips90D0gE7BzpwlhFylyNnKcAZsZIOC+/2VjkkrqS28qCiX5PpbDHNKoBCkVLob/IzATwvUYOtnHTMUArdoNGU6UCL55pIjiafIepxSvx+Fhx9kYQ8NqYtJVGZLI5sCC5Y0OiUViuEnJSSrHycE14keRkNLFBm5444LqBnmTFIRwxjT8m02p0oTUIKUXppuyhre3M9me5PI/7iaKb/x2qJTyxjSSUcWkzRF6wOxVq5H1NzJ3GpsuIVjhkJ+HBG8Dcwi64oeEmgCbKb5RidYc3ipST9yv2utAZckXFpo47CaAggeo1wqy3cDLvKeL833u9sFBvdtn59d/r67V1vjGIbFIjxfDJ6/WZ9+XK1mLbMVEMWAI7EKcaVLXiCcdW6I9PQE7KzzsKqkTB6hEz8bz794D1MZCfXMGqwYARbUJVDhpAO45ltvOZiQgvkl3vBcQCcIMnL2lAGHZdKMTVo4/DZtunQdg6OfMQpbzjCgCFvGc6skBCYVSJURQ1TZMOM0nwC4qyEOLE9MNZVCc/bu5hjLQpglZ3exFyESTR9ncxDU9XD08y53fk0JamAtICifvjMq1CJn/mblclnmDr8lvvLbwalhVSA2k4qjYHS8d3+6dX+zJEM7EyuxYgjhz1xQe5VH/VP7w1OReji+VZ2GB9RAW9VGW/+xYd/4kCkDoratIkzJSj1U8WUPDyv/dOhs7w3jV7TwU1OmhgLFCxmw0rt8fHDh4enTZrPYnm9mL67vnh8+kTel+ppQvT3P3z8D9+8a766+PDeJ3YzCUJw2Z61T46bx0Kc5vJkeNSpg6OIPSMKpMbRnvHkg4zcKz91wof5NOCe9+XvH3/Ph/kqVwVfw2TehXzNVSYd1KDhLIlNUv0eRTfCFyktUoeXTWQuRAkXi+sbcTd7d4k3F/EJcgTAIJfKjObZ00Zr26vc0U+NEWuuHLDS2r/i5k89GA9HitEzEGPULxo7pvJcpFkcysgvulkcMek0OgYiNtqmmtksPuwc1vvlr/++yml+fP/s/gf9TtfBvPYo9Pp9OQ6CU10RPaejNFvsjkgD+4nZ0Awbxft5oDgmA5QoPLpTZG4y0+Fj6o34CwLi+4RyGLyyLypvKwCIRaTFlYzP+SJWTmDWuHRFgXTNYoL+2QCi8uAJcOMlxG+WPcNwrka27N/WliLoRKIDbW7NLBI3871Bh7sDepljq+ZGTWEX6o8PTQ94jUxxu00FaVckBhO6tvbw/uFk1nj/+kKfAkJuC2Q52r7+5N7ho4cPpuOb0XL8+nyc3DOJ9XZGxFQGutW5ujSzvYOD6lxlj7iqHIBA6jaklvKuBJGFCTDDfkJSxD2NGnQmOc9esaksIAjE84MSUnoITHv2VPWIxV2/Xx0O9iQcWVoQKiassgVao4BPlAKMJ9gUW/TM5yxpAhY6SIQNxYCjfSd4GHd/8MgGKl85DCYAJW5BE5SKzAUFMiJn/Y1wck1eUtSLmj9bjoXeiw6JPJCW4RgeMnC9NYlvTP1O0MXlZa/A3UaJNyqEXnlZeZlRbJMCekke00cIVHYp2wTCwjHcwGkmPCpyMGv3Qq54qqBX5IbdFRWHnOtsox0PzWZ/mOu6l/PKtdImxfPBILy7U+yJJ942b451JrNZ1zrrKOaZ5/Go8U6xw1ie9u6Lj0JsPF3Kn+zQU68jhi0wvUIn4XYyGrSUidTlP3aRsNP90GbEA+0ebCIfvwamYyinEkJ23cUzK5PVPAh3OX+0XfrmdIPa1RVUS0k8bF1ynbFULYfNsJdkWJD90bKpD54UjmdC5Cmwwg8zVDTGwL4AHn8Q0yHT6Lpk05ngDMBo9JvQgQKoFgla5qxbSB1beZtfYmjmV+9DBwGOIgIMmTugXhsu51OVHKt7fVKPO6O96eKhQDx+Y3lHamRjkZtjDcUoDEF5NnrsNrtqG6Zf7HLLEUzIYu9ypsvjcXiCFbIbQApE9PS//OSngoiNaqfm7A3NtLh/Ov/ssNczjYQZat5v9moPqh/0nEfU2+4d1DsPz3qBOzIrZljsHfLM+zwiYzU2/0W++UjfPLSMNr8a6O59+Zkf+bZ85o1bc39u87MAvSFjBhQg6BvwtUiZabGmbnfv8NBKKyOZlDAuj9l8nHgA5M4BkAooRdXxl5yHxzhIW9xEtldoJT3Mbr+WIjE5mYoGl6NcFs39sWniAMxUErtr2RGZbX0I64fSw08JRnHmqNiSPmem9Y0anuJu0YdLPttq/frZ95OL866zZg5Oudr6ve7B8HAw6FNShkenthgpZ9reb17LcK2SzfEO2zecgjIKCDlhTiEVraMwW4eyu9ZycubkSNWczy2gI/XaxmYJPz3HQEoinieIJkTMbS0LGyriPolwaiFzKaX8i3ms7neHOGGlaihTJyEEeSMWEX9sZRinQgO5Xhtcnl/ce/QwKXDcKE4+EqHddwBhnO4QaD6fy2W0H+pmdB4HvTj8irs82imLM+H3PJ3KzKMscnB4dtRXWuBmrAKQLifZ/uiw9+Bs+OD44PCot3cynM5nrdrFd8/fqm0XuOMQi8vbkKtX42X1on501JO6pmYOPZ2dIOqfDBScAu1UkhCpKTsD6nZItyRS39gRPZGSLtG1JQSS5L+o2Xz8UC5HxAgLCTiQGeRUsjYSHd9Lks9klj1iAMtsp2RGDqOmQRhX5gLDG2IoCLvxawDm8Bo+dZyZNUj+OK24QFI4MumyUr5CzsiXLV7p9ZvDPpCtzKazq8lsJA6AYHxtV1p2tCgjER5iZCVKENcJiagbyNBnOr/XFL1KKIq5yaaJ5g99XAoZC7zkWS7OSpigoj5bF6C5w66iWluphLCMRzgQytXqncJa5KdL9dWawmMji8LqTTFiEpBJ1SE5+LKMaM8OitkxLPdLjG+rpl8QktJFIdvwGl3eSMXVDX03rgCx+c+8hlQCETpJXiLcPCY4EJMzMI3lYn8lKhDRVMp+l9bd5JK8dY/nE9PAGYhXbVPZt1S4PweeVfrqqxLDWRJzI9ChqoeSWWaAKRzBz/V1p3aAXUwWzsZCTaZPpWsaDqRjwyC/tSXvRbgINZ/rDhAwUUWjMe25iU6Ii+LVAxZBMr3bDan0OHjnE68MNe92v7iVOLo7HVSO58RIBCiTTZgQwDL2XApczE3g0qgzR3qpD6R9LMdwSZmqZLnzK6KiPCBP0IKn5DGenNZKoSIGZtQ0Wad1hofF4LujBmIv7d4N6cgxieBRvNL1SvOxLWKewZ2epHeOFCM3UqtCzUIveWVYGVAktr9lRjyvfJaZ+ONLZ0KkCCEDKn37X76J5EC+pceI1hhjxupktIBob/kmRjsvSdOenNjpa2kmeHTJZzzOstbqJw8Omxgrib0OtHMYOn/INnkt3AkhOEjLNxB0j1TMUOxXXP7h/Fse+g/u/2yw3wrN6Qabjjig+m4gmhc0RiKZ3OWd4kKwI+ZjeDcCIOo56KJdJuKeKNT66vrq6nq0/vYZvZ7HstcbDA/6Lj89vc/VeDjslUfQJHKOlgbN6LXyDoJ+EhVzslT83M22wwjBXnjEpKkNFXWkUnv00J7u1sXFSFr6aOI0rBgrKioQDnpKa1gs90fqQpd9vngaSzklIchJ/2TqgJ0oBNnqYyXMDUiaOfaCl6G+HR6cTZeOGOZpVqhAazV5ciqD7cSdJXHIGmOg0+6MpzOuf/1T4QGjMXVqramtvXj35vr64dlRp0VANz795MPzixv8o/bboN87Oz0YdB2BqFqZfqm2aF9Yr1MbPvv+1Xgxhagh9UhWyuTe5aWA7h6bT88giagDEWM69LnTq/d7TJY4cW1/tpjwqdHYjCYy3JCJ/D+zSw/I2ElFQjvEm/Ry6Lia2KTGaspx047zvRuPiVGWUxAezfO8RTU22nBUcD/CHgN4G/4iO7EPnLXXK2dnxnkD9Sm21TWtkjfYxkQ3Rjfj3fBue6fAR7dZdxLRatjvT5YXZMB0OnEmDvEcLidKyGPOVf4ohT+jF8tHYmVFF/IdhPZo+col5YE+Ah6i8hXiKbyzkxS6GZMgVItxcSb1r1ixKAF4WHHd22GHUVhgA80GBE6zQEvkjb+lS4YfZiUzbmuWqy8GSSsQ2V8kdxNPaDtWa/YmBv3kDnDMru14ubo+d+iqkyn0D4ilHSznbyAktksapnJlHy5izxVe0bbycIYEXoneBfiAQbyVINmAs4ZwINnBwCDhd7Ia8wm/m73NzOnbhmataPeiRyiJCHHim72FWlHFiVMcxuHv3WrRq7BtRDlR4Olm3oZ6lhhNnyTBzKAOIMaZVoSp6cg8Uf5JLw5S6k7EA+3Q3cHfH6gmnGUgXkFu1OxdPsoQM6h8boCQJJKCEQZV6R6+jIodoIrYDBCmyXhWNBwc0Kolzy/cFrnc/XqZAFPRzkODGizNZjbLO84ZXkXWfR/6Nd2p5l/Rb/Val/JcEjRPj66brmnLYhX3t69jYSCb/BdeiL6XYWhbu1EbdM/b3a8/2AHlAbtrNFvmLbPh5h8mJmPJ0/JUNJdL86e836EtOohl7TN3JU8wylwyJGUi8v1MR9nrQYhyg/KzdNudXm/4+N7BeHr31fffqq6K+eLmYPfPtoqhUOI8S5LNhoNhX1Z5EwzeO/jsuP/JbA7WheFij3K+O9GP77PpEChyLhOzW7CQZeg2nyBk0G9di9AikiXzwmNomPWBwwnmYmboKLXHnqPrK6WxFsoJVGsH0/mEjq4VMpuzwPzZrqVYND9MXZ4DnAlUGRcNRJpCRV5a0tAT66r/4qcf/+f/xZ+/uBx9982rd1cXv/vDa6KuLhua4pPkEWJprzrNBqWTYSfNp2rqekq9fTeR9WVjyW3TjjQp5ZDTWFIr21mJ795eHx6ovacmQZsRdddsXU5uaAQf3PuA9JstZ+an0+0QomDFHl8WJIOAS90cGufd7bTW6I6k1UigMYNI2lmP7boEBFNwetzWK+p/3ItWKyHt+IvoFD4cDmT73DvoN56/e3dxdWESvaKHApvNxgkj3EtO4fCep0ieFZPcUVmeKdgphVKaUihPdILiUjlAiM5j5srq2MdI/iRwEernBSemIvNJacAZi2M1EyNf1/iUlNWTQwCkJMeol9pMdAHVJqIUALO+NIz9PJGqC14xaxAqxT638nd4bDgB3U5wZ1c61wzLgAERxk+4G/pwSCkE0mEPbrdCKsebw8vrq9ev786vJy7Eeck7DOkk3Kl3nInZYIvKFAfUbdpukEcwn29TnWg5RktyLuxJzAS5k82Vfc1JZwrF6nL4jkTZTZDGk2pQtHtubqgBDbZb9U+DtfHJBHSwYoClMGeBqgJzcqioMXTEHL+Ummp6hfStlSfER17v8u+zwuNn3988VwDEkTmBMFNf2jLp/sBW85+8BogT8eVR6SQ+TifjQwvCZeaDqelt6THAixiI3eblithYumxmNSf1meW3soFxj6swpV5zSEPKn0HDu0b9rt9LBZNIPkZMy9mXttKBzPVY6T81uhJOyl6LwG88TlkyEyv3V0jEWE2pX5NV6/nRIwFzfMS8KDIZ2DhJ7pU0kYkvEL9D/4yrYEfWFaaVgYUeM4T8msH7EBFZ/1zr98hLE2AdXLijCHiQT/1qRjyYWshkZHEk+p72UMm769f3Ow+cc+p3Vr9JNC+RIHm2vgdu7Bclb42BUgovEr003PQZ6eZ5cT9mzQzUChHYaPoHwZ1V8t5V6ZdXGav/c3c+gVlaMuTyJrf7k6/yewH3cl2uKPeWj3ZN7ebIx75KW67hAzMNdH/MXvQYNYHbvOGipNq10tc3s8XEzCn2yxUhra9V7wyFhG0ofX8jUD0JvJQu7Fq1RPHx8BYBnkTXaAodFxBdWlR6SUIkazpGBlAzAUjHF7sxgPRoUzGLjTc3ZaKMPOxtgIW9N3tQZ0VBklWXyL04GfFjv4Jk/NOzw9FMKLVLSZ1L+XNsatACV9e49jRAbJh58dxusppV3JS/lFbY+rQqrmzsprTOvXsPPvuzv5ishvX64Od/9tHsbvWnf6Fw+XV2HjiwbyPzXCGd+eX55cVYyZ/T+c3k1fPXDgCQC/v+eRzPzZ4LsvURFu9mZreZ7vLySrX/+BzFt5xyd3vXHXSdEz4T8l/v2c8rPRr7Oh7AvNyl4t38eHDUrvc2jcr787dqi8nOev3yOxJHBE38PSkmnDRt3iz+uqLC0GITo6TA0T7C5GYz7iM/ZDKd9hu9zeYP04sLhVujMvHHFu94gh+hdz4BWXtVseJ9CbsJfSaR0z451UoAIqYWLO1GitvqFaGAfpyZq+60imtVaysNVKzVpoEUiwb/C8KQZ0mwgeciC2nBbTDPRkkUUPidXC0eMwa3nWtUSB13K8sSnIQF8Zu9V4iiqKs+gRTRIeQecG9bZCI5YzTXjmW0gbHbS8emE/7vXost2CEnshskiKsLZipZzPKicvwgYRP+ClAGgARbA/BK+iX47owyG9KiQ2s9VImgtOLieNP8bgyiZQHU2AkWIT6r/LWCQMtVJtmOOKsQdHODf7ly9y6sHnUvDJKDBxxbz2UpscdiEm9362YSBTEMVkm1KXc5UYkviUwejTNFRd+3CyT9iloT1IGt+hmMA5rp9g5XipcLiGZHVQYbO89l7oA6JGGGGJLJo/2wlKmjgAGNMdeZNfdEqKVIkWHZxdFKzW2Tp36GVQ4r29S/uZuPSuRhf39CEZtJc7JDMznHUXhJTXkDCSfHdjCNAfZdDEdPSzZwpCy/F/ZNKkmTm9RFwkKosRwOnqXOamhLn/NU73ZzGoX3h3f+N+9l5fw0knJ9sQh8hQs9xDD8jQB0XRR2Ag9FqHQFrCjG+zaGq35lT9RsMhexEve8Hl2iMGC3Ws5QipnUhsmuchDV6srmdhrKqfdaXOlJMJwxUoOJzs8UCdBVZOx5OA256VF8BKY7VKWd0GP6mSFlKfxSZtXvHrO7PUudD8Pgpc/5IBZEVtpXhIqGcq31LP8xYYr5kGfkmjJFbBzribnwQnwRuSaPTbPL5QySTZ3RLE8yXbLUVP97vcHRYnV7fv3uzeUbimrit2EAQEQz9gqa0gDYd9RGLdsxEBYo9L7raqGzeICQPCbx4a43gP9/Hq+Om1Vf6Kd7jdyV8ILigtWTB9loMuoNxf2OFiTQTS61MZV3pE5Ox9yjEup1T1qBVnRPCww3XWw5NwoHcDKvBDNqvDLcOsIGom7U+ydPjj//0Z/0Bz0Vwey6GvZ797qt0eVsfXBsD2y9OqXvg6b5aknzuffok9c3EjVuJ+NXX/3ui1//7sU3/+7q3Zv3nY8OdDp7FYCpFQEOzneEONPV2/V8e7/LyU4CDId9R8nrFFe3yBoLSTnlN+8uOh0ha3X/u8WXlx0m49WMV+7w5N6Li+vzF8+n5xcK/uBu6TvZgGeiMn1ZVdp3UCKsGiooUINweGaz7NV2dVjrnp4cstkvr+eugZ6gn+fZzXZmtYX4sptNRr8KE07mEeKNEoRRMYKor23YSGNO2plypEFKgzwEHLKhNmEdFQdIAofukh7kwT4cGU2lEaA9pMHtq6wQhOKtsibpAZg3SdlJjtsRTVGbKWyRZGSZaKotbxwQRZFC3WgYZCiiG0WWl4TZne1R8IHzkInIU4QwTLrdfOq/iPdkH1kym3NDlIJ0O4krIUDTFObLVAWvhUxNJZMRnQfJMtDYBMmoCTHKR8xE6gNm4efytCj/GtGDAE7YlMUc+9WMFJ02XOdleXJBGDtLU+g9P91iaqIPhlL9aUvoAoQw0W7JHLdgom13jPEQPOaIk3DI/XnB+sk2ci0HCdKKudK6d3kMhgrTwQb4XtBfHCsOJF64H7DRsJK1GYMoPfcTGdFgA1WhXNCejH7Xc5Sl74Zknb2xVuY4+Z4cCOYL4Jt2fZQGJkgtruZ94kkmFYsWmeIDRpgduPYVYSSzkwYZByWEXDjFZ7GvBANS8QluVpczjjOLk51sPrTSKOGHIZa5zGDL5Bbo30GeZjP8TEKBwkx3YZDQqXH6zbCzLlnaNBcg0gPXgRPunDgxUsdEYp0w5mJC2leHBweruUOvku+XUWV/nDtyG5dSNtVTJum82Yne1QMJE7QfVrOM+ZjHUC9IlkiUxU6UWxcstGdyDAd+CyWFWqwo6y3j8ltsXJ/5p+M+y1pnBtLdaC/+i92p7+HEMELazVLuKC1flOvTXN76P14soZD4uEwpjeaWe0MlRDlQIjnOyCPQopAmY5eAaPQOTw5PHpP46zEZZyvOOlthjCJ0kFc2BbF7gLLE59ChTgh5LjxQR/j6MyEWL+Gq8JpuUJF2BJoBuyjjclvms1BhSDJElwfkPwE1aoO/fCO7+Iy7OEglXUArBGjaYmQ6iWE2ma4mDQgGcyAEIUYI0PQFq/cbvYKe4jCcyxazkX1XDIPFj3/044+ffGrDDX0TQ3Jx0pb++m/+9u//p99+9/JFdSmtRZXp7kDB1xPe+MOfrx85KGE5umosl7/4kYptn330jxZ309F0Fv8vPdLxggg9GqWog8NfG733V6+4sB+c1t6+VJrwxARKVmSs9H9yOBlfn7+5lmB+cb5+/OiR0LRJM/nXV9eJm+bs3bu/+eu//v3XL/BUa3035OXPJmTzFYjMmkciRj0ODaOx3axlXkM9kQig5HbzwaMP5GiMxq9ZKVH1Uis1tpRyC2OJQIIZNQ5Aedyx7elAcQtW+e7HNmylyDNxS7Wh8XARRZ2Pnk5HpS8BC9CsOXFd3r1iPTCG4sG36lpjbTArulx0KX+YExSKqzW9SBJFUTwdK4RMmCyWAJMan4+TcdYUhYzHX7Oe7nH0wkAtpz7s8VkysqAE2bCwnZuWC8FxHD2ARsK3k1Rl+kHEoS3Ku6LTPD8aw6hBFXTJtmNTmkyfECEJ8WBbW8EZQCHbTKwpgqvhn92lpgIjMB080jgK5ASAsiRaNf1lp5M50suyKGW1fvhRyNsoUbT149thT6yJSAxD0BFD7qekp8qWDQHrWbvX0oFvv3/3/NVoVWHNxp8VpuE4MRMyN2LVFjqw5iU+HPS3eWUZ9DdBgUB8FaUtxOPSKPYQTZWnUBDijcjzRQYRwC+ytmTbhthQQ+IlEZ86T6YYFgqITm9XGy/rGPnE1YVWNJUoVZZZF3I4Ky4HqYgtAsAV5lKYlM1SBGpCfTt3v8+FJ73XWZ1nYpRFohWoxpKZ3WFZ5jS/hbqzcPmlPC4M4Ea/RM74CgQiMSuVQWKFpHqUFDb0a8aMJrNhmqMUuEI/0VTw6IdGtWPa9vcOdo83FDPuk3xdsDYPwBkZ+sZ2PpBabVX6mqbEyFVXcCv55ciZNuph2MUcZUq09EMzO/oIz6bJPC/j0rXSh4iKQkCeaCzpWi4pwzTACCLDzOiypv5qpPwrIiGN5FFliogMC1vygKPDGQeFg5nEnWc+biF8Uc+zXS9iy0w5LVjeeWeNQ6R+tDoczG4LS1hK65g20hd2Hce+fkvBSFmeMr0WMYI29VioD+El64BvsZEhmX//IblkHpduuiZwJl0ydnZpVs8RZIV3gkTUV1Qo4BAV30hMuQVrtkG2EmAzZwDKPqdvilnUUWEYv+xMcLA7NxINYL/JjWK18d18vB52az/7xZ8++eBTDgwMwuDppQI28L34v/zf/q8XF9TfxBCSARUZpwhp4+zBw3/31YvH93qPH5wcd/d63c6gf/T5o96biwnfDZkqYXVWdlEBIE77+rb9+Oz+23ffvX0xFiTr9xNbp1QfHBxjnj/sf9HrH5xfXN57dGp2vv/u2enDB3CW08VpAZ1KbbqevH3/+tXzZ9PFBAf2DnqHXYn38fdGPlqHlRQnwi+QGS0tUdyiuiIFSxNeKBq6JbZVv6TIg0v4AMdtirL+dknxqphmIe3asnhrhfe1KTN6z9nuXW50csJigEb8ymzgGQaQ4FXsgCJDR4xJnGMvI8vp8tOlDPeANrK3kc42cJ7gSFsmG5VI38EREa5RyCTtgHc5GTfIRhLMrWIDhZiNzGpQoRLx4Y8SztFhZBcvX9TbVBiA0c5GlCETnTM71cJYFOqcWIMcqDgG5xOfA1Vhrbz1cLvZoRwlVlcQaTY/o0Z9xnceX8QddWhHh0GJTGZElKkHHUaKm8OLqBfImegMp6g4Hod4k1+V6j1Jli0MHJ4MG2qC/ZOiIcCV+9RKtPaa/fX0Ai+lG3FgSoni8MzoZISt1qNOrzKbbP/wzVsx1+QzlN3aGopGuXP8xWdj6cOQ7BNzr1dUckpEYVZ9DwQQYL5zO0Wu10PRGJXoqUnKdTiXgrVaADNQSmpZlHQcFqVVp8rKBf2iR5shBFmyxs1bhFQkt0mSx5xTJK2ItQUSrha7UZZDTlfAx5RF5hPGKQpESMT2pFmCE5pJdi565SxljeT2YAYxqzC6EVjvMoXBN1/7YbjepVcF64GRJXORxbFEkS9ZFU2WmbUyACMf+zx/85QgP7BOdFYzfmgjjQdkvQrOump3h4/zVZ5e3pqXNBSlPpWc6Q0B+Tgd7F6yNI1+iIC0NBhEE8xzrybMerguyO2fh+jkD0PQRsZZGsbZrkd24IxbftdNvS7jdpn5Dh1qzXWwNrflbTqYjnqVmUj/DTQmqo0Qro+AjfuY6GqoO0AxS20/6Y7JcNc6xkCLMr/3bieJEm9u0QbNmSRAIeJAMsNQSDk0KIQqxI/b9tZ2yXG88pSJ/lCxnXYbdiy6SRwV9urTOdkP6amFJnlpFXFIm5nwNfEYe6mk5qJBeY9FAATPTBPK0VjUpuxRVJyTQwqXF/P1bmO7wNF1pdO/f3D4YHw1ztEcGkBjaDM1D4S7G8vbRZfISbGjm88++8lnP/rZnLEWJFA8chp1a739h3/7N5fP3uzXD0C2vAtS06YnOrEsqOXN2xsFBH83/ter21678vDR2U/+9HM5kNVaZ3BwqOcW+2o8v5nuHx8OPXu9XgxP+tw+r95Mnz1/c3p62Okr9MZ9NDk4PKD9UYF7rfrk8ooGSzt984rffP7wwanuriY3L5+9++J3X1y9eH1/2BmNJkIrWOPqYrm2p3Q1hSJxF0htCsGEUhjZwMnSYuMiDtBwxL0zVSyJZKgUM2jUZjOHkNhQoVRRvaMkcVzqIg45u8SGxsjbvOKExpfz5fguGwlSKELd5XCTY3/sGYzKU0oYJZpnHHeTKRaIs2yS6kTYTPhovx+fUuS2jsAiWOE5CBdA4G5hhRTlCqan9JB1oAsmgkZWJ2OXHc0tB8boo0p3JTKasYIlWJxuWjH+il15EknrwIc7a48zMIUt7PWRqiivF+QI4CM5KqoV4uNhR4AcZuPtnVgMmiLzPM+zcahoBcLM1IXmJOkWRTGeH2EoeyTNAtjXyULHYbLwGsln5jyqzD+ejswguoIhO140X37Bm7twKH4JXofeReyz42Fb6dRTYBk/79YARLGgoKXLpMO+uZiadPNmObSEXey0TX+IZRwSbSrErD9Wn9JFVvGngN3CO5GNrnBltIFG7fHDRx8//WzQ7Qh9Pnv++nqsGMGWSiMUOF+qC5spcHjPehvzSdsazmP1Le1oJrilKd0lJDSYNc7SWVyUEB4PRJHufoXv/pEcGIkuyVLkhgoyx5LhM1ksckpoBECQjORhJRMSvJGqmavanpgFgygGk9XZQa6+ZNQxNIJ12tI/KoN1idT3e0HH3dswiD8uKROUJfOcH9ZmtzcgLWggvGSQeVNWNtyksYwn33tY+ca3PtZ4cDtgWmbXWucp4MlOKFkfjCPmWaxcRFt64DIdCdwR2Ky/CICypsFlsjkU40kZSelAHotMTBR/U8bmpmRWpRcFxNMFnyGaeAsxUEQChoGlAfoyN4EDt6ZVf5RkLAe6OuV1srxLiY4mYqHWOfpVGKPT7x/TINChcgBS3/Y2U6Gps9P+7aZrubjlqQiZn5wJIlqWMjzQF4M9HJw+ODxuSdDvtxkBJJfREwdWGrB6uFDhR08/GBx0FMbMkXAJG0KkQD8sI4R1mvKRmTWFqC6nVrLE+VQYJYg/xX615lkMWQIn5r/4mEyELBuqF5vkRa1VjtoudFYi5EsYUgJJNqS34Kzzmabz+Ycf3vvZP/qL1C1bqbmLkZxY+N6moL16+7vvFLHoGZ4NtLZ9fXD//snxUfPkpC4gYqA3s4ubybPv354L7379TAnvh0/ukaz04548zIMhmhCMfv9ewn6TMKx1mk4Bey95e7549+6qN1/0+oK3arpNL96drz6+++SzJ8cHR3xIRjeejyDVrLJ9ryL5s1fMKlUAHj85mN/ePLnXOJS2ifMY/JuZSlLNfnVxC9WnQEcl5MIycbHhLz5a56lGY6aIzWJ1mN+ujcunqjDXRiN0spdy1Psqi61mTgFeqX4aOY3xlCBl6UkqwtV7m7mT4qGs3J5Gp5FtX6LQgqQMDppynBV4Hp2CG4EvVAeyBZNCpa2mnSXtgaohtgUKCMonTCZ2Ui0wob9KNXHfQweAq0H0kQ2+1H3FRaBauw4UQtTaJyKcvoBGETEGDD+hYsZZCBqDCDvN5hOnbpgE36q+N7VV+3Yxlcm7VtuVhkdcVlrzRVvA2Sl3hMRU6itfLyJlu5iAbL7TbQLAMAI3iYR4IrsCEtGRKD1ozux7MILRlbhnrQj1JwNGxYUnLU/0ueQEhpfzYf66JG+0AQICrbkOkWtWdngS6XjlrcAuk5zxYWRWIWnTyond7d1MOMYTTs2jordH5MfZGfXJwnlHCHlwpqT42YIyBJj+wWl9iR4WENhQGh48uv/hxx8//fBHnVZ7dHP93cu349lKHnj89Mo5VSqH/YHac5K5x7NJZGX0t4JIQTxt5DneChXpD1oQSCoyDEJYLALXhgCLHIO+OJoKYhWlN/CcTCebdWLikfezoD/WjfCS20SUSMnlAMxy4gCxsu+e/96DqHw5565ZV3IQIlAHs/p6IQM3M0IUWZHoCHyBepk5RSG2qKNP2JoptySBThOh8UC7MLvOgBoj1Bgwdk3oDo66zgUkeYA+i2n6ysJppBBA+T7all2mnlXsYQ0jCJZfZb6xhyIfI5ryYXlqnpGHgGc9pHfwkDBmi/cx8sPTQaF30SSKhAsymtToUZYzRhPL23nJupOMVZfHfGVoOKeXClcdxHBMt00ncPBUQiv7S92+WIx48J88OulJLlcjt3tc3TYvRt+PZiMzilftpB0c9PvdIc+A54NoiXOcvY8fH0M47l8paTi6geOlpa+bshQBQkv1GiX1p/WXX7/b1F61crYSr2GsDXSpI9wMuj6aeEqlP+xROuCHz1SiKcSfMVoeRIai3etX64/2U0KkxE3IMDNSsW0Op/obwnOHmbTW0avi83XckkmqZIuW8aI8y3VLCseXpV7DmT1Nk4vFF7/+8md/8qnPeEhBHQ2X8nzYf+AwmfW89aOP/+yXf/haGlu/Z9PztteWZd54/vL5Ny9ft+4cod7t9nrNQau7dkbCcjQd3b2462CdRut8fLF9XW8PhofDA0mfcQvKHVqtTu7fuz+eff/d9/JSHIviXJTpZHl0NKzXbv+nv/v348tUCqmpY91owmqk+O7d2+cvX37w5MGTB0NbBWvXg3/y5z8/HXYYk9dStMSinSHbaNmYMQ+ELh1NIIpzcvDQXjBTCrFkCoqfTqa8Teo7LwmHBJ7ts1rPO4P6xU3ODxCWW22asjqcr6XYMd14Hs9uvdodquk2XjoWmV+AJhCXnp2C9U5vkR29o7UkT/YHpWAqQmGqRZIj469moyxYRahi/3jQJgob+6TzstOuyRePh8Y6UfukxLpPOPd2PbaN6K42X+7P1zMP7TebXZpDHZq07ciqSc+yfqILa8UkEqVyU9LUYS2kuxNqonilHLGpdgBfNOFqUzLYfDMf5yQqTog5ZT28pA5MhEjKWMnCevv+HBnR8xlDEmJAKLmES3idojqLNHBNkZnJzKE/F1FK50B26A6HhvdABuIGDGE0nBLmZKfQJooKlm/D6YVMgyS5Dz0UvMLW8TpALB9DUe6BXKclDnXKSKmYIjco8J+TVrjj5+PpjVmm1ZFEUFUvEzym4esLMCJBCx+AVKaKHgVACtrBRn+1nvkPBsYBeHx8dnz8UNVBJbFme9UrVYlupo1pbbZo2mb58OGHTx5+5GiiL79ZzV7YS46RdmLXOIPixq1BP4Fb1j4uI0MxGBE+kjojDcyTbrv3EC2PRjU6IUZqn3dohbeKn/96JGzP8WC7rBpkeNSwqCJpI0hoN8pf///+1Wo8H/aGw85Bs9tpYjg/ev4BCy4KHleOl9Tt8r9eMCXj60a9mXZBkhyrJp22RCEIgGBv0CZmIQWBDNB3kJLULnIlMBRjSZczXwVbwaH9MoJ/E0BKOPA/EN3w1cke8g3Ojg6dnIXllYJMApVtrduJ7TKiJ0tnaSEi82X/qEqqmTzZJ7za6301xWi/1ZwTTRvhRSUT+BUhfAmoONImtsWdHZSmxOhCphQTC6Lcom94QJAE93vqi8nX++qr729mjb/6x//8o6f3s0bswCjSxkcxTPIf+5vJvxovJvLfMdjeC2r6fmci3sYTuVcZLN9evXh+DgnwJwcMr2q722/2U+d3cvv++vpq7FQFyTZidCoxHD+p9of2Ma5v5s355OZm9vG9E+j0/vKaSx22eqKBGtJSuevsrZQfNqGXk7D0HZyj8gm6MdsUArRryUx6yRZl1RoUsUwpyvEnuCF6WOKC3qmVEXmFwjjceLcLDaDs7KeE0uHP/UQ7Ocg5D1RE4+d69u2v7Nbd3xz+7Of/6OzePQC35W6WtMOMsRWn2RivN3M6++Ds8cOnKjLzR1MTL+nj47upsw77pzKcL+bLN6M38ZKHOAQnqu8ubu62l9ybsldQLOLpd1qHB/3D45OT49NIs17385/9yLFY33z9zc100rwDiGtZ/XRuy/v+fCLa4lBcFw6Hvcn5Zbu9/4u/+Ivjo+Ovv/r+7/7+i8XCPfFyHwgCdA6I+KOj7j7QFBeuOO5iqcp2HCXL2fnNnMWAwYJIG4qt04lQY7Aps1jdG3aUGN3czEenp4+ur++WsdwpC1L7nKbSpEhzZvFNKSXUWnbltALhCOCgV2NwcLzd7y/YUMv57eJqu54vnHjVPKxzw3HoOLaKr6xdPz7RyZ5anatbijhNDzM6scChGLLpqAR2FtdVzBUXsBJ7d47E2Ht2vXJ4liMxOA1jEmCd9a1c89l4ArwtJ9s4hwSk9KhM0qadvtmHtprerVkdRLjiBUX1S4ii2RUoOXp4cG95c3N9NL4abRbOXBTIJwuOqo3j3rDd6zy6/yOswSE5Gk9GjjVoOGvTphZuajYNY3Uq6TiJqgKxCAlSUFZwa9ACUORlTvAS2IC21LFwKYKQJ5I4gd9ABDwBS+XlhnBrbtUArI8XlCURFwVhkIspC772bfywDjOw2SZgFpMAJtwxVnhfMXwglU8B3YuYaxygFnWR3q0LgYY4/b31NMBAC4uaGH+UqYqIoCIzFoj1erVjK+J8MXlzcT6aEf/8onK4aw8fD+89fnp0+qSyeteo9eeKaVqQHPnBm68r2cmVAAAE58YBeGLW8dbGEAmr672BFPted6LMlthJ/DMRHMljZpIo6SFZSK4RU8y8p4pwj9LQFprK1IglqdkVgzZ7hpQoaJy/fvvqxXmnOewNrGez26eZUcZ4msGBlTCjEQNFJIk+JEidJyf/Ved5AtSHMfF13uCILjI0M57wbTxbBXcIsajWzpMzGfv7CMXmkqId4MGZLNbJaP7rf/jGXkcOLGmTDbRvFrb7p93uP/nHPzu9f9hz0pBcKLG09vrZ99+/v1wMzs641y1LFj5GGATzX021IWjeFqTipdzc0gFMrPihrcvmMrIF+m5j8sXFadkYbuSGKUeU5jljS9VGDBLRHF1z8/LV9S///jfv38uG2f7XB//y9PggYIh+M8isimytH3308f/5//RfX1+8G42u3r68XExGi7uJaiUq9DqYrLp/utkOst40n7u7YaulkXbvdDyvnl+N27P1qbMMG0et/kL8Rp5sbXhcUbbYYl1PDzvH9XZV3Zu331396jevZMum2If4ve0iiTw4/mxBqjOfDUJnshiprgk00SQjLsSTSgu8OlicihgSzms7d+bCMmaAwXgVesKNCLHMSJSg/JqEkxjD25oyOyq3rHeFw3JWT8W5G30QO11v7h23BsNBNAzGTQDb7XI5tlPGkeNq79Zff//7N+dv3339Cl/bTtA6OOwf3Ds6PmsJHt4qLuJa1bvtktrOst307uHjk/PzC4yX4FiUse14MmaNXV+PX714xb/Gp2a/8tOPP7p3//73L5+/ev5SxsxCVUj2h/hYZx+7S6GQ3UnudzttG80enjR++4df/uo3vzduu3zP3xJWObrM1ii+utvVzWw6GgxPjd9izebT7XpBq4IsXNzNapvY6zm/Zn9vPJmiOZFeagq4eKu4T63y13/767/8Z9IO24LMqr8Omm0nIZPm2SRf214vp6Yf5yn9c3TgYHl1r5ffff+id/RwePqBM5TU/KvMr1bjc0r5/sG9YeM4Oiu8d+bw7fyLL26HfScYdPvHR0qcgrOV2AkPy1wdNzHexZ4CXbUZz5JI4Xx+PZ7cvr6ZtQYd4dSxVFNqB51/c3dwOFA80akAfoORVDnuJ8pfqzdkBxigvan0h5jxrrAgo6j+B0NZe8cKOU3EttWvmI1Gsqc6HbUi9pf1yvVV7W6GZZo9e7GFO7ytKnpVa8ZCsrwT5/CQcNOr1c01zJCa9Ls/fP/1N98kMp8q+56F54KzgBLphGJLfiocQVA0dy+aC9vazihf+lteWLD4dJIAYlm81/G8J6yTVgWMYiLFeyGvBl5Es7dbRLpMzHsQpnQZtuTLifsXEBeFENnHwE84RUtxRWBbzJDwdcA4kj9iC1ECDCBZcA7jqK/Y1uVmq0vd6rX6944eNzc9FQvbvc2w52SM6727Q1i1t+9EbnZcIDOT5aAZ/nvqqJYTu0nk4wdsS1cSJ+Dh4/n0PeVPb/TW5wbD4YNbdcucQGTGt8Ro15Mbx0ObTZmp6Z40ilg0UAsgmoVMUaXGt1y/HL38+ptee+/28r06Kjan9g8Hp8eHB4Pe4eGB6hNCMzRYzXhgNv3QFq2SbbYbWcnr+ez6zfsXb66+lWlabylzXie6Xa2EJxHp0Zga1GaSeTPZ7faESc61c0dpTD4tybfN9mx5NxIGJXJlylu6vQrEQChO3rt49arV3YyvqfrAvF7pVL57dfV+7ICX4fj60nGupl9NPJuIooVT/t2eXUtwTt27IqNlhVb3RwoYOTVVJ3izmHlMfG8RP6GJEmJAxYtnTa0ISkQM5E20kFu1cNC87a0Hzy9u/vXfffHho0dAz6mxUWSiZOeMkbPjxyfD7nWvOx0//PGTvRNBuv5mvqba32C96uZwn89DymsS5mqKUCoLTAD/v/7v/+bb3/6q3jj48acfnD29b/ufqpNOE5w67G11x6d820XF62e/f+UQ14s3N06pohXgmka///DRw+Hh0YOzk2+/f/bi+XPVs813qQVDqYKWd5124+TYATmqNbVte4oTkaGDI/ABtGdcbmvXN6wvG5IQFoKmOiaYg2c65dRzFBapiN08NP5q+ecVBtnBUa9/glBq84sr1fUU06dJ9rotmwZifu3Sk/QCPK1t+5qp3fni2etn335JqeFcv5hesmbOHN9UPRnN3k/kX8iaVfIyJ9PMPJFV4uwzalzy9rN5ErvrAPpoxqK7XacSkOMOAZS6ip322cN7Qiw//fmPxW0vz9+9f305EjDN/TbT2hvdk0p8ev8MUf/qt3/48rtvb85vOCpsp7k6X5w8eGCDtWj8u/ezF/NZz26ygfyaw/nyxiEr/Fvvb2VqkVemUVG4utw/ldMu989xdavWQj4jR8ULjLLy+k++++784QePbxfVN6/Gf5i9u1luHp+eHvSigFeupiKh9GR+2VfXl5TfLsdru3d5PR3NvuCrAettp7BVa7OJTRV3D54+Xs7fvH4xHo0Wl/PRdDzDe71+52Q8GnSbB/0hOS8oO5tOo/ipy6QS3DweX0tJnwUfCSTsbVXgmMzmVjt2HZt2dQohoktmZwkdQ13kfnvWf/ObP0g0G3TofVVeKjFQ4kfquW0LvM1vL1/ZZkHnS0EgUFKxXs4EObio7t/ccDeMDygNcoQSKXCYVSA7u6Y7iTS2hJloD7D0djm/GTkM7cFw+Jc//+h2dkmCzqWm6RinaEjQXp8ENSEszIOMaqj4yYmN/xzDRkQ6vX1neWFSSJFx5L/AH1TzF+yQ6RAeb0fK2XDN4xbl0fAT/CTNDS2QabMYBmcV6R6zD33REl3npbnSrOaDKeHz4D4dy/+kwk42RC4lbRTv4Az2AIpT07DeVZKwy7g/PDp4EEV0HYtXy8P+UX+QwKDKKGBU/EVzekLVjslBYabJUYRSBgQmEYuM9UQhSG9qa0yN0jVgTIczM4g8VouB2oMyFyVKMTLaYafVtT8Ad1CBRM4IDCRhlMW5lWHsWqIvr52R0j48z75lAZjl3fXN5HoyfveWkZITQQ3k7Gh4djLQQ3ngjElHbTRFhVLbyQfiyE8eP/n061df/dtf/t2bVxce3O0dKCPTrVfbrSSaFVlKU4zdILCYIDrOrCi+McXxLVktHad71/v3DhzySIHmgbQOzvNyJp/Kd98/e9bi1OUPd+AjvWfVmC/rL169W7wQ1lMvhR8zvjOykBDoJMTBLcEaoJ2S1uTdyiqTiufnI3XBpLyZRKowAom1yBSE4QQqYzFyuGgVkVpxcMUmdEkcdXl+rdUW3vrbv//iy98+u3+kkE3O5G632/1Ox5yoI34zv7zaTEEY1mwNjk/b/e1WqWvnOa4zTLoz+lP+JuEyron2+2fP//DbX758/q7SmM5k0f92fqDOelUZNUUW4m+0Nw7RCjvOlnOeFq5qfloYH/29Vvnw86ezkfTHWxFOtAVvIaMKUsqrffjxo3tnJwJ+qhfbj8zD5wR68pE2psZcSMpqYzRnJW3unr96+/z5mzF38vJORaCbUQBlduncN2sstkc+osSoWB7h6OyxIziWQ6HBcU+ZXTUi7pTKGc9nHx0+tkjMzhw4Ev109fb1uzdv3rx6Twpea2a2WXb63Y8HH9/9ngO5fdg+PeiepLpvo8qnIhMWa8vLnN04yMP2qAUjQJejg6neuXenPunZ/RMkPx7fcPcjJ8EIyDIdj199t8zptXYj71WOjg4ePW6d0vwpfZ0ej8hArtvRYDW5/ne/+mVju5pcLRQIPzwcMh+sP7+dSOXlePWrr17JlDx5PFyeX0vl6R3kbLnZu9m792NR4tr4drEepdQFu3KvZuVvLl+e1jb9en1syIMB+qj095w9+Zs/PKcJHX/4+HZyfvd69PLm/WzRsct7tZy2Bi0V7GfvrnnBwMjR8bDTa28mspxV3enyVXIc17hV+o41cgDc97TJoYq6ndbqvTCPbI4182e2XJwc9kWYwTzhhkTZPIgYH1Vb1ZUAmZQbnjySpBlJz93dWLL/zKFtfYEDCoQhF92TLuSgzzUHlCJ04zfXbyfLg/5BUg7py6uZ8Ib6TvDR4jgSUq4ZWmhJYRAc3GyJq9ViMh3bMz5ZNBv9427vuEfkz0crgQcEo9yn5DduaPxGb18vJq6ezjznUq1QVAWqYoRE3c4/4S9BDSIW68UHiY33m6IJo7WC8I4ZX7cqt4Pe5qRYCXGCgMPIgGAvsCwqDD4mOcClJuk8ydlhRvgKqkjsOjjpyw6rbVfImn7oFEihN6eJRkXdpqysQC19zT/QwM8aXC7YFQHDaN6JGwaiiIs9h1RGiGtSoHhcUBAkRR1oFNgHgjqaguq+t+msbw8E+RUEVOjL2XEp/GOvdtJ4JJxlv28GQl5lswWkpmNrNZIlzob4awtaKWpCPCYugBltY8YDQSvMKY8AhlP45eMmMWvfya3KkEMsJ4aW/ALNhIPjJ4CZ9N9sDUzpshBRDptNArMBB0wzDvhAeZsorP38uf3ftsj/+PMPda3OTHAuWWRpveNssPaB3eIfffgns3Xn1199JQ/wwZMPHj467fPWxKJhqgIQkGIFjBX6p6NZX87eiFcmvi+Y2IztxetX75/94dUcsfNuc5wJQMUG6Ysi2T2rRIEODo+OjldVdWa4i6ckK+XcKmf2E1B3SgePhKGwa6kxiCxru1gcyh+8G8Y3CJyyZGY7Wn+GSpQm+pA5DiWmo4lzJOWKt4+zVQLXeqkCpR3w5pDM3x+t6lRVkE4vbPZPhDXrw6vljRL18/FofvlOusCfbZ/cf3qPReNPREsKf+Pv9LvZb4sj/r//7S9/N5vftPtw7OaCc/9u/2oWr03OtpR+I9uBmcX8Y7Iot82VBGOaWsInbYUWN/PUE6Bf1NS832uzMC1pde/xvZOnnz44GBy2m90bnZlPXr2/eH/+PT8bSgOtC6qCUEviJlZRdr99qk1PIW7vH1clLIj+VNSqlCqR+IjRm16hEzQpBK4OD5Wf2ak+2Uy9dfJpdEXjW93co6WOWwdH1+MxSv7yH7589+oNXwFvDvWJX/zVxc3Pfvbzy8uXLdu/2t16j6ijXm8ePXqiY7EvJTYKZauTW99/+ew1MdzpD969eS3ZkjR3aOX1d9+tZnPuCkuQ7IOK6mML/SUJbFVT1cdEvX3zNgcF1xtJjby6set6fD39+suJpBzxGy6Kb16+ta25fnRAneYsVvzBUeoje9Pno0r9pNt+gl3O37x3ctn21VWtuT3s9qqSffbBhzPOOY0ZLL29vX6zevrFb//24GD/6Sf3P/7Jyf2Hj/aXFK5FXIqV6sNPTlHPl7/66tmXX9y8vl5xMyllYevv4rY3HJwe3Pv++Ss7qS8u3wshtTo9vnhqMMMXxBzeP7F/uemvkG21TeY9fngPVb9+9ZqeJq4+MXgqw+yqKee80aTV8D3WGp2zh/dpJZQH4CW/VFOoDe7MVSEfjZtdRV03N+Pr0PRWiWkv8fb127cXb16f339yapf+BY5X8I3j8eCgGU/s3eR2ctBvgyWai4FFKkcd2OPhcenrt5cz3n0GzvXibHVbfXfFa+rsVeVsBaSULWDDJcSUPd+pX25fP03+hnN8/pae22p2U9UBT9qdxJu12hthe8pZnClNKQ9OnZqr7repLQxYtcTtortOWc+wLfrwE+Nj5PAXMCYS8ob2XOAYtsjsoNLL2glfnT3q/eJfnEgl//W//S6sv+nQSdaz90e97TvxffW0sH5qQBE+sq0SGQv2wn7mEjTIg70N+GrSpdxTns1xFJSwJ6ak3hlurpBeTuyJfsu55pCBg5FoJEqiaxzspiTJRHFDiNgJh6R2L/yCl4kvFG+uiz2t8L+HB+Mic5ITk2xcTCzCxCtDR+q2nS/ufMDq3D7vslmEOcFND3pQ0c6ZH3BjxcD4FEqL7luzHx04st5ssvXcnK+e8J8xe3IeSFSkTEC1zmmhqi53jV/gIMBkQDLpJHocHRp397PPfjw4OphOrwZyHlkKzPUUgsz+lmLlRKL5y6vAEKGbs9bKakWx3CGx4FGb1+f7NwcHvQef/sTpgKubCw7dxZpW1LEn3nbOdqN5+ODJTx//FCTczafnby/oivwe2XnC38BAnS2upje317cqe6kRjZCYlWbR44XmG522c3TiuivCNXqBFaWspC/ljx+sqrKeBDSQyQYZ5v/t/uXVhR3tjnyyIV89R8I9+7s2UuCJ4uf9wVzahXizvPjL5eTd5ff/7X//m//yv/zfNhsnYkYO9eCpQrnZRN9t/X+//uZf/90fXn9/0froo1NBXK6T6Q0aI3XpCwJ9imZkTdh/bfXD1Dbo26tkHq+cnqWIm2Bdp83H0Ts5PD5+8PhHn+H4FrtCBmOz3q8nfmOexaI7rTmb7cNH2/Ey2vR6ciGEOa2ro7kG97LwITcUTcI5mAmtbZtthefpJ10zNp1MQ/PUlA2vAM0sWhKljJbjABRq+Hw00ttB/fT8aj4YPql3u3/36y+ev3rx8vtXAiMq2gBEkSgqgwLLk/kS6uHk9tGxMPZtk0G/RxyN5pM41glIez5yZlfxyq63H/3oJ+dX7n5/eHq/19el5u2CfdOmdIoxCn1YHXrcRKKn1SMSZCMoBG3LmCA8DsVxwKfZdnqMM6V/8YvPh4Pe+ft3cSZCY64rKQQ0UBa7aPvG/trxXfXefv/4bjqW/HjYHQA7jbM8Bv0u1dVTqBPsvWWlRbcif2unDy5Wr4SVH530nW+RqDm5S/m2w61Wn8/2//zhTx/Xer9s/P7rd9fAqLO3f3N5udez+fnxs7dvpB7p5WJyk1xCimG7t3/YbQ3694+O790feluvTG8ur+6OnY9zdn01/f3gy999+7vxfJoQG65utv7w7bf3Dk9sp6eJSVjaLpipTGqcLgLvrLNue9h+fX5BfRmeDB8/ecJslyy7WazOL97dyLuYj+IXqVWv3r5nen70yacfPvzwzas31dX++HK0siY9RUL3CAl8B50Ut1DPBd5HzVcagvC4uoYY0O3y9eyUW7RfHxyBgT4Ef39xyUFAo51PVvXtcthv9AcDoGLjxINO5/JV5c27N602Jc22C/4wzllYzz2mJHI2FlDFVfG0QHvNTmK09MVb2sZt2YpIkPHlF/yICECkfhDMtL2AZGF3mlp2tAFfP5NSX90/u9f67LNH28rh9DIxQ34guzK22/nPf9q6+Wr7/SuATvtR68IeMvkP1E3QFX8PgAKK9EIoggWKDinLMAVRSiZd7A2VO8EekUFR0k++iAC5rLto8yW1gcsmH7BmZab1kMt2LdWYwprc1wwjHqA4haSDF/lWvOgRXlH040dPTEKqj/0ZsU+04IfyUOwYT03mlZw9+odpS4FwUC6qTMMjktjGHpHZiR3D+508QFV/O7VFuyaKJkKIXXQDJ/kpjsfKI+HiR7ODg0/0qEvzNjOZX84Dmmmmnud+fOvskDYVuNltnq6W7YTVEkTkiUkabmSJv56flqJ3g0Lvy7rpUZC5RFNklFWSCHk7Ou4PTu8dNHsHi2Hvu2fP5R9wtfBuJDtgvyIc1Wwdy7xjs7ALgItAWUmFWc1H1+/fvjk/v2JuI6xS/5Fwosqi/JzGKE5sRQL+RlrA38OzLhF6fs9vWXBY7BqcIW1Z7wwn9VgczjdHSOiBrOIqFjqrm0qCdLPsbqfdZrVbP3izuOsNHy1a3WcvZ61//8VPn37S6wzriflVFC0+v5r8/f/43cXo+pMnH/ynn3/cubOpVXK5440knYgZzq5evHvz8jl1STyzX+tYbzkUrcP720ZvOltu5teXF2916edPfvTBo5+2ht24yaNhEQDhw1QaT4czno6zxNqKId7dXI8mztKcXNFFHGJ41wbzbJq7UfEgj2+uHXOSMi81tTDpnPV+ty9j+GDYQ7gIIulGyifwvsbQDhF5gsrJSK0nObN6/NHJj8fLxb//4u//h1/+Dy8u5uyCRw8fUzTsmVDfMqdIwZ19+4g7qBda8UwkpUP2ZO22PeThXPUHxzQkMkWdf9Sihub2lnh/v5goJf3waEiXUBInCSRyadYHQ8esZMfT+k4gd3wxfvP65Wo8YQ2RUTppqvEKSjMPM3MqCUyxy3bzdY4RmzYpl3ZAIE0HsQndUt1qd2+mo2tnLHftq1yc3L9/b3i4GI1ubs4ro/mK04KhSuoqyy0WYPtQrTbvbFVVGQzqnz78yY+fPuXOarWOituBZaZOEesZLTfrt9tHJ48r9e6k9cU337ywaddUvLl6/euv+bsaF5c38oDF2cwzvxc6PDodHh+0Umh0v8IXe3398nTAm/e03Ro+OF0OW7dXF8+vX79cbDeT+eToYHjKAGHA34KNFHGSjKA66+X5OZWUAFnNNi9evpptJn/5z/7y00/QoR1v7AF6mWMbxi/efv/ll19+//0bCXfD4yOpTf/TP/yGq/Lx4aMHZ4+/X39Va9fUK1LGTgxL0hv3aYmQwUjFDflv5+ptTM8vxR2kUvL4Xo/qk1X3Ztu+ZHXOzvH/4LD/+t1583bzsC+btn8ybCkfuF5NN1LXbi7iv3CSq/2pARyJGVsJDlW7HOstqA0piHKmZi+J84O92sSe+O0cYDA+WXcCvXlFcYMKZdHBH28CZIHXFj8JitTluPZl2jCcNvefKHXIIBDh6otl79UHVOS9+vxPfn747VXtxZsbHISLyIbYAHDbEwMP8fQH+HnaAwzxcCZGrlYeXSUugaBEjhald8WxsamreGa/BkR3e9wOcdsE5YquD1+KZUG/u8tJUJLW4qNCs5Qwblb4GZlWZAL7QsEROZ2irZAirhRiR3BdLguL6HoxTjHeFI6uKzbl9Aj0TB8W+fZYsMCHSh6BPyCYTGGd8xWvgdABOXH/jOrSNS6O6SQNpgQPhV9n6J2N5Iclvcd31l6sBssI5NCPxumLPaOyQ0hk+1PlMCiRa9tzs3UrZbAUFwv6o8u4gLBkUCMAa0rjMStrnlWOJNgNl7QSF6VF8ktwCDlgTBWgwWRO0JXViBlGvJlF4QFp9cxzaksnhbyosOzHxc1+ZTQaxafjtRKNpLHxHVg6dguLJ9v9vdORUA0hlr8+gPAWNzMefxpy2U3+rrPptQYrgp6L7IGR1XLLycCil3pHzgt6SbSIl0ukhRN8W/v69fWm0jp6/PHB6Rm50+jV5ba8u1h89fL99+8cvnjyf/zP/uWB8NQqSSYMYYGRHrOkenbbbcwO1/c+e3e+PKePNlaVq6tLBt620wd463bnpH72o3/8zx4PD5TT05Hz0cWQa2vQc1DqnkK88iXkw5ueaMcZSLslx3z05be/Gra7Hzxi43NZ87yi6fiyjbWwiHktgSwRpgw/s4DQY7epIoBhhGFDFtGjEBL4S43kmLucGtSLwdng8HZ29Xe/+u/W05vj44Of3bv/z//8F9cX59PJ5TwOMC0hDo6Bw3gD5cxPb5KjpsoEj3WldjLot2q0vMrN9eygNXj86H6r15cM9u5yuqodzMc3E5uAmTPrHD5uxY+OBv2D7GnWW2Z699On/+5fj9+5YGFMYXXAn01VLOf0WSC3yeP/4qvvcCoyZN23c85JcIPigJepEIIwStX1u83N4qayOVitJ7P1xMFpe3vzxBFTtQwH3igxz3Vr/6izpzB8d1P//NGj+5IlDs/6XXGH2cXkmhR2KKJsOnPoRT846h394pNPJjfvR88u29vms/dX29qgH88b3K46XQw7iKt22t2f/ORnnz760InntcZa7kLrs19s583KGgTz3k8aJ4mb7J9nrNQ/+TqWQwhDBTCzzCA4PDtjmHf6j0mD+eTy4up9+6D9H/3inzz98OfRVPkDsnxiyRTFytMPftwb3Luc/X/evLq2/KNLx9s3JNhNThfLD56IawvEpSqUJCGH//CsC0vBj4hXPL2H9+UMdqsT55Khp/tPHraGfSrFi2/eOLle8eWT/qA/a9yulXSvqs0dT3fCbcpg8DvNal1H8sqDcKyMdUwMjq/RqjmCqFlrJ3AA8OAQhZBniZuyV3cCHAZb2M6eCj95IVUvzLz7E4xORHknFYqGyhsCVdfyaBut/v7JmcwspydR7aAIpbp1RyHptpkm2WFSm8BE/WAXawmEwEtEFOuE46uohxl83LLJimPr82UkytDg8td3SjlIlJJSleiYkz8jMfQyOiUeE6KDvfQWPRT0wmBsPMjvC3SbIQQO5YbyrsjkQ8QelUiDZCECgPGfsRpOzvXM2VEJ1bcaB7Qwp2IhS2SU1nKbXAngSyhgB04HkolOAOesIAOrTBIN012VxkFfvIbTDfxH5pGl5BvDBKvqVBaeZu6FxuTXiDU4wJWSN5uJIOSopYHoIo7wZdn3qwzYlvyXnbPhRYgfrRgAGtZEWSi0gNnzu/EUCZCouk8ZJe3aAbYSm5HLzAeCPpzTlDx9YFRtyCCimtNG7XFLvN+RI0nmDV4BedpDKeARpyMfjWcQQDpJ4Yt6n5IamF62RpbSTLpffyKdTGzkiv+0xLhhb+mSi8Fk6SgZQb42+wfDzcU0eYN9fgH7Ort9FX1ULOCNnmD0/QYD4XZyhacro6un956cDQ97wxN5Fmh7enn5q7/74tHHJz89utefO2VdfVgA06R+wi1P4uvp4k5pD917e+vuqgOFJGDAJydg2/WvurpTTVq82P3Ayj6U6bV6Z4MD5rklp7yLAGeTDs1aYE30dptcmu9ePl/ejj745OPjw6OqWtQ0hFKzJTWpIgnNg5/Fzxg6NCkB1nxsvuY66W32ZpB0mdRYGECYRCZJhCF5g+SnzJ6cHP3oT58OxqfT2c1/8R/9vFPtvt1bzNpjAbZ6gjcOF+nV97qq3JjpivxGOyzEvSU73akxkGw8qvr07u3ff/Hbb37fGA7un52dsWsX20u5D3oKzmWLYquTQ5Oxf9bs61/K82OX29E//cUn/+ZmuhovBQ1tL0PM8aiTUJ0O/wTlrbFn8/B0wozZW3FQS2mMfLT8IWvHbUu3Gg9aJ/ePu5vVeO92bLOzgcdoPDxieibYY7UkE8sIUpea18xMrBZHR53hyfFtpTVe+FSqQPOwd4jWZpWFBEnSZbGQwxkb40m//08eP/33379/9folP/iUBXE342nsym/mqLJXHAyJdi0WF8++5SLmMWz3+ozG48FB9rgt5+ejm9XefvfBh+Nf/m65cjCljNijR2cf2cEc4LOxs+/gDN6htXi4dLrL8eVqO/+LT3/8kydP5BW7lVUn/MM7Ec3bOVZ7lcPDe/+r/+Q//3/8N//NpZyqxYrDum8b2HLy8vxVkqGd+dfp3GvZtkfBCUdgYNxF35QZC1Z8QtVr7W8fPj77y3/8Y1kdv/72ch9E1+cDbtXZu9FbwX/Y09gOBtwavCFlS6wzaKS5bGZUXVgs/VZg6a6q6pOsAzucDzpCMgpAkTp2kaQ8XhRrse0mnOPXOowjecevqDR/s5BY1zxgpPJ7dDh7DmwxEocg7Kutu5ODJtMRINJI7b4Wj6H+q4ZBTrWyz3wGkAI0tEYwAQcovd4AltTeoTZStFOstwQ18YIXH0nqEgZ8i+NeSjDewIn08Vi+epMMtuIyUZlOzkq2KCSndTpL5h3uIhfk8sb/BYtwu8k1ZUJykuIkOugHdl3vqwWzXrCMkwxPJLKfGdKHVlr8uuHMy0R4U/kuDysYCfqStsIGMH/ajPlC4kF2kBniv9sTbycVip/DxYk7xJD0xp/EnROBBEBJrPIrIQ/lpRk4c0qGk1XttAUGhJGO0b1v/c2UcBJtu+9X87epsjuWkmHza/RkHYH6Ae144NOZTG95G6VCRzSfnYJ0ef425oimLI8BGZsL3W6Vs8xWyWzld9IqGmsgPI2AwRziadARMWHugD39xaNMo2fmsW5NaMV94en0KA0W+N9RU/qYhv2WaTBtgtSmo1Y9PD1iQVmlP/vFzz548tHZvUeW4WI5++rr57eTOeImXdrz7dC169s2lWUryUB+5OHt/tXi5g8//7jxwSeD/dH5ZtHgrs5Wlyy8PtR1b7U3Z1KcNY7u752NbhfvK9fv129X7eqqvhGNRc+pp2D9nGjI87YYIxL7m5LmG/+3XaAqxdAxOGi5Puk9BWHXq7Pj6unpJ/tde1BvjnpwcE54cH/zbmWPQCZH44WnWug+YTBzmMO5TLf0JAEV5bco5OMZfUPqplkpqTlqrmeConi3On//5fP31/xwix89PHv+5XOHqE/XF+vNa4bEfm24oia05LnjvfVsPJpEpb+UF467IuJb+FT2z+ictdfovH89/uK3v1+uvrVlWrLs8Kjb6CYAroqmiTgbVrqDBocycXtzM6eYT26XtNFPf/z4H/3lj60za9dcmPb45/hGWk0OjXfnt99fvvuH33w5mc0kBbVZmZJpcyywgVfHN1Mq/X7HAax7tqUxLmV43XaVTbbxFc6vKLBAmpYU27Y1jBER7XtODjoxRYwAAWuPOuWseZLV7N+MbhC/kEWOduK+ni2fPHh68enF77/8un385NGjR4vxd6hK6Ir0E/PBe486vWGz+/DBIydA8nfR10dTCUuT2Nm2oTc64tSt1R4jzoGyzsF5/vwl6Bp0+lCC2kKthj6OPdirHtvFJr/y+N5pu3sgSclBnOBovpjSd8wkyWjtHUIxn88OlSdBNZsl2taZ+517eFqXptNrSRmDjuWOV4J3HEqZmPgr8GlQRmWQ/TE9qdPpf/TJl2PA1ruw/WG17OScCJBbW07HvMhL+9OrPTSJYkAEbuVG5VFPkJJWz8FvRwV7Y2//8PDp4+PT6c3bJOmVI3p4YyREGZYTCWSZMkPPHLsc3vX4IP7uhWPDqMEB/I3JMQXbzzN5iIW49iQkSmhUdlEJItoRJDfx9l1KvudeS7VDelGkCLzLrdED3ZYD1DUS/TzNJyCQPBMdwjTajzAM/gMf4YA4AvhgxLZ4sm1mJSUyUfAl7gGjlw9bt3c/wjVeoJR/Fj+HLtggCAVgNzmmglEhhCxXMRmhUmCtxMSGRLHGGFLO45SEFkuD0aJlp2yyBTLojByy6y0U9B0vP6GeqcnIBI1hHbdOHfjIAM5edFY6PGQiuDwj9HVekRrxLGXUPoGkJKOGUmaIz+zs3ofc+1z8qUnw/yfqv54kTbP0wM9DeHi4Dp0ZqTNLd7WY6R4FDDA74BpW0mhcsyWNXPKWfxSNZrzgBW+5S1vaYgEsFsDOANOYaV1dXSqzKmXoCNci3MOdv+eLxiIqKzPC4xOvOO+RzzlHxrOCSvKnpdJYjWxFtblz5+3F+Je//A0Y4d27sAn790W16o1gcI0ztkgkdVSwYswW2zeeb25WmYeHoUNIEDNZHmPxWnwyrip9HiLPxDuKR2TZFCdwtbUOV08+VERRFjUziixzaXxagR+lSlA4fnwFVuaWcn6/elm+yCHDytNyL3oKD4OkS/YtLJ1M6a2trY3U4Zpuruk8Lbuk2lwv9276+P/6Qqd7Oi3iQEGqeV19+fzv1m4Oqptb37z43dHF0WbzR43lw43L7n6YuRFTLWnTHG3li9H110evFtPXOzw34jQrytiO97SursLFJ9qZkKbwpa2BBrup8R2hxLBRAAZLnyARs1CSs+AUQyemu7gqlX253FDaoE4xlOQzHyQGY16FRgDbwx1gmWD2kKKotzCJFwSYADw77AHtDKfd/d2dtXmdnjteveDqbGy2llUJsQNIXcdJGGq93Lx/ePj8xbt37/rXg9J266a1y7MCF+O387fn5/PhWWm2DsWxnA47oO2jtHGkt1DOqFgB/S5vhtfQigGp4x5qFNlMh7Df6y8nhQKDhMeT3/zuTU2ZN9qBYnscqLFO/RZTK19ddpLScM2Bgsg1UPXk9Z2D1nefa0fG2Uziwi81tSVo1RuhhsQy5/2rq2at+YMf/vD5d+/eHZ8+27m7mHLN0w8tUAq66jKmHD8jf//g8Kw7WpQa3BNEJeOjLftAh0jOF/DeNCPC95ymWmV7gwd/PITBragC1djZOH7Hjl+Kkj14/OBtZ15pV5czt7gB/aaUviNYaagOtGJNpWRurleRLIUgKZOBqyseNCp1zsCr25U1tsD9e084wHYP7vCHHZ+cETmOJLIku63mxcUVAn/v6fvVert/vaymV9SYDiPywGRCbU5qo1Ebj7jxux9+75PO4OfyQhl1m7zIVr+82etegLkImsFuXqPxAhPjRBDy4oUpcF2UtEjgs7Wzc/jsu6POq9eve1LPLP36JhRfsmwhrx4c0mBulzquaeqF0wFyLjWTE0KKOBku8LuiIkaLn/HVd99Or+WNwRZFCYyCNpmulc83S6N6+aaxfQDT7Dk0x3hWii+HOIc2ZznnN4caK/cDpDzMPycUhr6cKwsSzoFXE0CrKldRlsa8cDyZSn8YrmNePJWGGn00vpLiOfbIz2EkDl44V9aRz4csDCOL3uyJwQ4mkFGa8ujLaxxPriLfuEFqOxsp8AgJSP5i0obDv5P6TBxLdI5oxGjdc8latjhutlCBV4PrZbdP71IGnn6nloh8HsBsFkc4IsIxyCizPCerhX8fyJINz7ZyqPKmwNFupYIHx3Pko4IFhyXmlyvr/+Jf/hwiKTwlHpjCG26SeXwezKKI+8VBCCu1tAVYL0nLwnei3hFCGEzWAWcqkpj5xdlsEJ0XZ6eQBle9/hdffcVp+/TRwz/43icP791LYcGwn8KD453h2mFFvvGOCtBnbbN31c0nLrK0uSDf48neE0eLYVG3IqPD/bnnb+nAFdkONxZ7n/3DG2LZkDlRdwkJstZtJutXETqRvKQ5ZcGukYsssrzLkws7KvQUWeI5liEFcgcig9BdrzVt7oaj1Wp7V5Px5ckZgArulUYEblmjpOtdd32gOttid9hr1lYe/PGn/9v/6ad/9U/++uX3HlZ2Hz5rigyvQM9fD27Ou71xZ8wV0GyW6pn1lK7d36oAXUjL20O06IQEUg3mZrUaul7btMudyytF0Lh9rGi5yEorl6cYiLx+aGFYAUYs+Jl0uojB9VK/P5gOgl9CuuR4yIHMZl77JHIbGAP7jXYiENpjOY9kbnY6F29Ozr/dbTWe3v/TrcNHK6tdEbz+gHVy1NiqHuzfrTRaORCLawqR0OB5d3p60u12v5LcQJ8ZqFQ6RZ7CXRaTEhhHQhiIrcg+EADWPOJW9AKxkYXoFuYULceqROcBJIAE8pSt6gckl0NWRLS0nPmQSSGuYggWB7TY6MKjRU3VOQutC0bXmrjoOrDO46f37x60IdlRCQDr9Uhn6a1WtfJOycaVJXk3uzgaXV/GcEaNi0kViUwnxpDelOtrNZ3taztiPYAXq4txtdzUlLLOj1PGpumSkHK83td09I2Nfbo/H2sg90T1yqqHq2mXEGLFI4mHMXWHdikpkvhDXwyXzvmp/kiK2aW+/vrmoMh8roBOrq6qrWBl7j29L1//8qr79uhdd9B78+71zeweR0BXGH80JvSoFUoevTm52Gm1rCZpvb17yLVSa9Q7xCAn0XC4Ohq0mi2DvH//wbt3R++//8HP/vaXDodSExD9UIQ3umw62Mqn0SSFGWhYE6EFxOkLMYUlUH6pE7b1TrPZnF1/uF0r9yrW7u6dPR4/+kht86BeeQIx/uXrL4MlDFSjrM1T2LHHhB/axVgSGF6Z0rhzMJsJA09EWbR74PtV4UkKzGx8BGqy3dzYVrt1qRnm8UbjSU9PnLCG4r8oEhmYR+X4ONpEMYbsM6xCIkBUe57aJJpEz3cpsSIjMR07iEOQgu5o0EPFbihYSNCzcUs79IXnIqzJQQkfwYGKHiwmQgGOXAgvyR+ok1J5cqNv19rR67fnF0dWqVbe3t6b7t/jK9fECIlF+MTjbp88XC89PgC8UEAgX4iOxkvTT4h61J9Jzsk5AJDelIOFwIRucbni7BZsTxKB26gQuJtAHoFKcyvYXvRlC+KqLIJ/ioln5pll/kJU669fHylhZ5K4Sz7OXVmeLAOmX7DhcLTMMfw0yrC/zcNcrB3NzxK4peCPsayQLQZVKPCyPovc/ZtTKPQXL1+++Prv/8lPvv/JD5sqo+Z1EbP5r/gyjcjchdqB4ljqE+SJWeDwqVzumxhbhJgaQzTVKBOoqAAqhZJcggMQ03H4GCQiKwRBnhPp5vPQrTkV3BwFuij1MKn2Oa/srH4A7FmAYtmyGCZerERm7ZXKuZ69vTh9ffreRx9ut3YGg/Wr/uDt6ZvTd695Szd2lEAYQMkiaDqxA9QCzr+//2rBr/tis7rf3HtPHOvqfPzis69XryrtZqmhk9Vu+/HdB+v1HRYaA4KnM2GO9Rs4dsIO6zebOazuZER1o1sRtw4VfqdwzWZ91QAuLy55rdfG5d1meW/rwF6XVfDVQaE0UlmBYd67Xj0e6nk6Ho6ucgTm6falLjLBX9Krs1oZU8Ruyifd/uu3R71knvYV85HUJNJavlFHqXzy9ubV859Xa5+rdkdKVFuVJx88+oMf/OHOwyfP3x0fvT6+OHqzW2/+5NP/7F/927877xwz7mlUUjGQg0AXZVsrcmmnuLW1jcFD4tpFuorVDvWSzsxfOFu90RF8NBxpCtw0Vj4pELKaqrX7D9q0/m4XsPNKhRkjscnRoX5v4TlLrCLeUPRg0RIbNUU6AidlY7Py4KAtwohiqRmYNW823tPT7Hw8/ur4SI4yku4Ou91FY1RYSQ0ocVSZ7GoeJ250cC1Sq8uwSmBOImdoRRwwsgzQCI8TLTdwNITUinMgdDw5Obsg/aAhxQiVcmhIqB12JAFjig7aEP5mPNwo77bbG5987739/YfirtCxdCpx82QVYfzqCTcq3774tve2397cPd/oUQh3lqtnZ+cEqpi49A75gFz9m5XGxWXv+dt36v8YCNddI8IuzghBZ34hCiRqJ0VC5IuFbAAJEDI30THzjxOjO7zaaJUePNhjG+XcZEHdbSuirLqL6sUVRtWk8mG6DLpR/bK9vfXp490/+eCRYvjjm7EEu+1Gk5r7pjd6d1mhUmB7lHbU6xzx65DXBR/JWQMdwdLIv6ZKRlXZbSvJLkmWMlcW44Bvcdhe3hEveNkZVjemO4DLcdH4ulWcwyGKgxt+bLj4naNtnCEOcM8CMUTLgQBHGQnExq3FlaB8fwLPQMGxJ1hiUZw9xB9lB1LcJ2igaKKhXNqowBhBEA9/vD95mRuYVlgFTu06YI23l+d/9fm/U2b8o3s/Ise737zbnDQ3H98ppYg7S8DzbsTwLYVb6c0xAQgb8QYufhWhpkvJmDORPxDcOg9voYxjCfzEyNtmRnFyfTxZUXwSq8ZxE6iISsy1U1zgElOFe8C5kVn4LSWXY8o3cTpFJKxv1tm3qoLytGQxfWxWRmZOIY9I0UwQRfsT08DwrRD5zgLxiePGLRW6IHw4tIMPZRvLTWSHOhd8FlCMhia09MUXL1iIs+v1H//wDxUPiNxwuMPcs+i+CgCX+kSVnYODjCaAVKtgLAWzdrHtMQg0lOCf37sqkRr7le234R6ZPSzMm+y1DYruHjXewFdhVuSLthRo83jz2hFiazUFUZEfsKDCLMdvj7LEtwMr5u7RyMbN5jVR7xgmcF4e9QWfa8eXJ2qQXVxeTMbqic9F8czqJvz5pr+yPihvTdck3opqLfqjb/D3g2ZpRdurSvPHP9DvKi1s65vb64v6VDlGZhNDW8GAMlPUVoldFgkLNjTYFY9ZpwwIirCO4fyrmysU+s9+9/lPf/a5HIOgH4eL7z3Z+/M/+3SjXj0ZXI2nHXm6ZWdVUctSfb1RfXJ3lwt0rls6b60CWPNVlcTULPvV12+PrwZvB7PzLj/u9eN77f/07/3gYL+RU6AvCv1XZv90+/Xp2fH5Ua93fjw6vVe9/+n3/9O9vZ3/4V/81a8++7x3cilxgbWyVX/4d5//+uzyckO7MCcvRRe5dqRRxVZFqJlLQKEkrgBSo96SEBqwF08OMax2hZmDGaRZKYt6NJKhRJaeX86uroazs8vFd28IbLy9EPGlTaeJ3x0cpcFvz7PNNoyGFn8mDMJaSRlpYUdkoLrGtF+u72w70goWNdTHwh+R1yaU+nQ66I86Myl6skIV/VhlZUN7sk5m1bmCSyl7gAeHxBFyTKelOnHAcjfyJQaTaUM6jLI8c9kXEFsJm2UknPLjsb9FsS56PS9zQHoag4pJsrK0RBXSkOFRgW+eMAIugKaGD9RGZdW1d+5yK5XUgpJ4UdY1r8GbxqrCgnZ39vYPdr9+/a1jutXaqddbor9pNlctdTudycRJJ/hX95pbTNKz07ODve1375J5JzdITTAYgvDIWF2q4qTiGH8OYXB4//Ds9AoXxfGa1aqPMQ9Z7jGlimPq2OFQThMtLW4GeuuN9TdjzeMIQsbjNeDL/lZNlujsmqe0hjFoeaYma7u0BtrhseKBeC3MALenPAXvcLji10SX64qRQfos3nW7zL0xuB1aZ0zN5XivbW3dS4y82tC4nV+bJCoYZgyJDA93M9xwRmfeJ4VakBrpoFTJUogZEDsAW6BQxTp2vc80DaVcOe3S6QOlYidHXaTKYyHxN2CMBEmURrMNixSt8R/XVLi3NQmjKL68H4ELGojECP3fKHAxo1dcnU4GyhOsDiZbix3Z71gJTo2PYlNser7IPDQo9iL6ye2qyKzqfrQybri6t+OneblKk+GyXN/8U7YpXmMhaFvhkeHNKNOTw+nj97IKYV5uprP4yAwKdwnJkWPtEfh7lGkAqAISZB9yXH2ZVrgpBcfTMeXAH8yM32C1DqZQcU69HI3hwhZRGJts4CGs+6QH6dY5r8MGLhaXV5e9zjnLL3zZ8uoBNSu9fnXxv/zLn26utD/93vtmWFgWGWrBcm/FQZTywHAzt6Srh/uakYHHz2Cq5sO/jd5YAc57XIX4s8vT9SDSoGD5NhILuuUTeXo0Mk7jvZ2D+/fvwUGrf1/UY5A3A9HJHwdRNWIJWOJcbBEQkuNLZyHeiUGAWFwltXTMezm4urq4PPUdYFIUlcX8cjCoX49bzHlJAUKRCTLQoT0JYG5lc02F4+/ev3/vj1oPqXN3DsVu0YKNH1yXBggiZbhU27ealFgFMlZ4hKRyFjk3cvWuhY5gnwKIoRtNeGYu00r4zZsTTgKKw8XFJbzCefd0VC5/8uPvb+0/uznjeD+l2Fs4TtDjd3KwTokvfeD1VUQowPEr1Wp/NH571GWzTCNM03v2Dz79wZ9+8IBXtgN7gmsxOdemcoo/erhzb7J9dTn9YDp+8v7T68Xk//H//H/9/BdfYylB9pdWXr09+tvTv73kqZB7OVtpU7MbSz1h1cyXnNRs1+/c3b57b29ve4fEldWlAkRiGpyG0ae4oYKlBSrvDsDMxKhUkez96McfQYP/k//f3wyH+Oa82azJWTm427R4IWOkl75WESiqSRfulyInJDrHlCE5BjQBdVCX4GaDc6G+wYWDMFYamzWVICQEXAOunrydq1zZGy03BSMmDcCHeKkmOvhoyqlXi85+kV/IgksriobCQSX+fvsu4nrZ7WBgySvTTd5m05RVtc3VuSVuK0FYNUqB5gdDJ26L3acQbOC05QIKO1U1ng4CmuR6R2ujpo35DV+Q4KcRijfs7uxvNGqUhKsLslXyQEde5Bg4kmsseY5r9HnL8fTZ+0KWg34fi2bnIOGuoi7dXrm9tV5Wh3FUWaX1j2LsotqsEwYh4jJSzuPy/IILyzmxJY0NpfGWUu1E3RUAwECpeZZAPc/i5Ecn3liUBdrhCPALS9wrwFGtzZ3FSn1KJSwHHJaaxVWNR8WvML5oZkofCaaVVrTHlPfGgcJCsVTwbNNHj3a3msnm45u64CC0v2gjSq7hSxWp9G+uL2R6Q1opYUA/COA5X5Hi2ZRwCERY/GAf4lXBnsRl/CIcLE4SxxnjCGcJ7BlKXCFFtUwTasDPEzbFfZiMuQNDx9HyQALAfbgrh+pUdAkWDxuKg9mF2ES2Gm8uAA2YlJh3ee3Tpx+8O309m1wM5Wfv7jce7MAvFEEGIxUuMHVKyaoiBhjPVFwMypO4i/4Mbg5cGVEbI/lGjQbWVnITqFBeVLzVLHEm78XicCxHNz/7i9CKphXzLKYwIZEbsEmKiY+oRwlF+yxzNgqZGlsSSMMtrZf/3aZWHtDZWEPTa6pUUguIXEeDbjoXqGno4HcrJrL8ljIcEKB0LlV4udG8HF4IZ9Ulbm61ht9Mu1c9hnKSICyoAc/n794c//RnP6e7PH5wD80VsrwICscywgnVUWp2Jx3xuYg0IzOBcO/8kesogwECzR6yrKcUnoU/Jp4neJoIFaaazXFPRBk6sFhh5NZPvdO7u/v7LYhfL0vWKNYD3ekKunDnvOuQIG6v9dL8cSIdEY5rwiTecnhYBhLDEN8fnJ2dlqsqLxJGGak1V5xX/yeclCdOXi1/0PV0Qj5TDETyFV0FS2ls3Ns+uG85Uv1S8nVZFzCx0SlMy/UyiH+1rtREoxHcjOdyPocSW+lBLHl/uArMmQ45Ae4fDTrdIXNkVdnF0ZCwTF+l1b/6+e9+d37xySffP2jvrNW2Z2CX14tO6nVV9+8+OeM86Z3P+gqzSIooKzd/dgZmIoQPQhZNBwV+++7k8Z26b6aioHGCZSm7085kcFpaaQrZPXv2hHH3f/9//3/efvdK4Seq5QgaJ277kCzHlL5OO/WtWrnSK82Vmdl7/PAHH7yPce9u1QoPffaLDprAM73kRnd3OQ9BPDDcUz8ae8kVy81qTT2Tqd4I8sAkDq+tvf/+7pNn+3JNbBm7Lkczqlly/XnJLru4H2CLVA2KfPGNjI3Az9a46aXRVVu11sEur7IjkQNVmrI49rZbv/r5b9dKUozoP+WNRotTwFhsPiWHN8HtDmPaJxKRQhpB8eEgjG0xaaGSycX56Z0HDzqDLpKL+y2VR8aeZW6+GUpaltU1HJ4dn2no0+lesO75STyaVwltEgndq6vlYi+eibX1y8t+sxkbQrKhKu78VNKqlOAcp5CiWkEJdVgcz0/sXKnS5A2tXJ5d7CR3uGrjyBvlteVV4f5u60kJbLKFWnRWBOWQm5jJOGzDMb+i0tyjjhDC9UzWOTcntUpk13sxSyyJoEICGKPDEh4SrhPWEbUk3BSicXRVdWDXW5UHA2IKggV9KFVCzVJ5QmLOcKKS9UB5+n7fISVJlGvcrTK0Sv3xNSgARdir81iSfHN9MLgkLjTSoDcc7Nzd3mofnR8zKy4Hw421BsAo9cixsy/hWWHshdYWTnfLuOOQoBaKyBYnXXQqzRWCipuPnXi7p4YBrVXyVmkxgKjgbSQQV6XdIy1JAMnKKDiA6eb52GPW3ZKhWkwUeSRGkNf4sof0eD+YORnRq67Nvv/xR4d39nuXHZbCwyfPGltbtGX8CDEKeMWdQ3rjY6xwYAjcB4O+SZJNpS4mbW8dEDaBISl2aKO9ABMyX+8pqCxBDgJYxKCQZpRN47PBXCOpjSZzmgaQ8IAnRB64rRAEeZFnY2wZOSkQSDdSz83FnD0h2g6OMdSGgoKhMvt60+9HsxGXcrPFMxDr+PZq3EdvHzafV8SSo9rVqv3pTCEapTFhZjpvz/QqZG5klQxBJsF8+vWbr+9+e6e9Vd9qNAr0UWG3RT5lCThn540mN7oz5jb81jT9jyb8TaXK/xLPtBHs9eezIV0Gm+fKY5nEQTPos2rj8MmfwF18sdgMTa+RbbpTTIw4dcLiPb6QjaB+YOih98jOkE9oy1nJOhECvkApoh3YG8AyvB1hB6hRRHAcFRKL/+TmpjpSmSJ8A0x/Ohx3iYXT1ydybd+cXKnJ8+ay8/FHa9c3J3Y08TC5aaVpZWMivKi/OgzxajyFsFXRMYAEgrVcEVUhdBRsl6d506BWj4aNykhfldC8evHyhzU771wxh3gqpp2rr/72b76h+OtC1aT9KeBRfnB4T/Ka0hH7w51k8fdUfesM0t4DUD3NXsQWWDhYyunb3q8qZw09FrHCLDlOSRlr7TagKsXBh2rT/fy7t6/6nZ3DNi7Ia09N4AbQ/qW+X1d+G1cfr83kBMlTF3P9x3/xD3bau2OJIyRcFBaePYuMGBLy4pW21tI/HQd74de8oHhKijVstsVBVpuze/fvq2Ckay8bQilxieehOFIL5amCFfudp0UWIWFcieuYW7lc1nE9qO9FuMzxUZfuAojdbJYnw9S0nM+s+ArNi2O4H0wBGbOvGEqzvcebz96ee0cijc6ScKda0Ny7OrSu4yIUbQdLrPTo+Gxvv+XNzSEsZKPXmS2p29wHLF+urDkvgFTZs7NL+XxX67Xm7168++x3R9//+D0VwbhKqM/4Dv1BTWnNJIS01E3j0lFkI+Gu5QJg1jmoR/WjQa5wXr4+vmRMyJlQdJHOk8jWxHoCdxKXKseqv0/5uLGC0mguT89FS+A0+P20oSOpcVjqRJiCgrs9hTwubNtvf/15vzfRCcSXILClMzDwyRB/8kCxiFTVp9M4FlhnsBQrZayb/qF3jW4iah0ev73Yqr+bqf+CHTqTsIYE5Ly7MulJAI4pM11oJLAyGSiDyOu8xtry33yNp+jRPkzTU8xXY5CblauVwcUHT97f6/R4wGDcHU0TcjZ51XfaNf7BVDoIIeFghY4SdpaxRYUM445yHocPfB4HvsEGbzPvXA0wfjWiBIAX88F8lfODR8gzMIK1yTWHWPIiC6U+pFhw2tgW5u7BkBdlx9MxoTpHM8yvQrDUXwsS0UhTXJ1MOsP+u4NnH9Vb29f3pHPI71MYg1ppg6O10AXX13EbQK1uL62FsA6v4uTFtC11XEnhOVl9kjq1CKw64ihc3po0hBrCEjEnO5+/0X1SYjH2EBOFIPU6HMxiA00lByISJU8mw7JWeYaVISIsGsGLj7kLn7GAZnwj/VrAM7zQMKAIMR5VcGGLR6NmVUI5CrHSVt9DcxcYA7NBfujOzs706IxZUK02Hr3/3uXZefeXX7AzPcVzwnJLGir1vnrx9XuPHyrRTuXCYr0z+1Di/GIB1EfdPNWVkXsZoVfl1/72Lnof5y9ovCWg7ClGaJcBoRyZojwRbVozmSD3SNJk6ibRpqzVDX+8MmOJ3uPibMLC12VY9ppOZ0ejgiGlMH9r5+eMNzyJh4aKuu6ZEeO2XIoPfV9pK3FUU2IfeQzB0O07FGPiSWEHavr5+RFmD0u/vb/96UZVe4ir2drv3p7vbO1sqx+p+AaFZ816ai8S3Z++hWrL6zXbDZZg0axC8LpSm3iM4pnl+1J7SGGkFYYisnYqU6FlW22GTZUetRxhfksTFmjEYVVd46cGklQvrHd2hqVlF5jlajovFBtQUKMkswwsLZK4tBQrUOzs7flkYzjflq4lXQCI1GFanTbYCBubs+rGhSBvf7D36M61anCjqS7rlkyFiWBOyYM0uoppX9+Tb1t//969e1sNh2ZF3E/4gtERvJDtRnaUqeUw4cFknzuEnIXIKqHi1FMEaZ9oDGBnriYT+LCN+oZz0KdRA23otpC89iBs2EbWg8rOYU5gqaxk91wlYOMwU7XEHRzvSWf661+/5Gn5wQ8+SQ3irJx0vUuuqK1We23lxMpWynUKqlNoN5U9hrCKbbwQZchHybhYgXi+pn2U6zXS+OuvX9Hwf/KDT+jmu3v7AhFil5gsueygstWuzpkl+vkIFSn3NPnqyy+KEGwj/gJkEwU6cU65itxB/ev5q6MzfS5xddi2zZoKz1QAcpnepHLP1UUH21ryMVO9dQoWFo82B8t1LYrR4zWlUADPhEMQQFNNYfovj94+eHbPy2GwYz9wbZWWCnTXNysc34z57148//qbr/Av04WJIXaD1XIA5lPFuLA3NqfJMkcw0mp9U2PLCQQc01MgbUOKuyIxe5/+8JPzM6hHbdWo2I4ihgu7Kb65uLu3kwKCMnuvr0+G49VBZ2N7f7y73R9zKSVQtLW//f4H39vbvqtk1Bh8cDn74OGjw7v3P/n4/cte/+ztu/Mrfs1UfuIL5xqOgy56YSjGKmIQGEUCm2EtlMN8X3AUikkyRaGuuIsx0bO3PQ6JqN3wUvLDcErRMWRosedGqKSBMHD6A9I1sVXP8waanM3yEkdEInxeFnEQB0N0w7CKsMliFDaKKrJy2j27Mx2qbqLInwVEaRQRiPaEbDPiNZR5DCrXoZlAiqviAAKc2WBtpoQwV4kS4r1c8b0eKkaQd5AxppFZIsZIKN4JT7ydPSmHlhKIdX6iPJNlokfJwHId1pqzEL9gVi63FeJ83ZVMu4IBZzLhDVx8gN6tNr1q1O+TC36B35Pb875msCOZyWpFRk4WdxiMknRp9zBVWA/fF8xRHn6+r61Yq1r+8R+p0fL8q68Kt5TzadxSlBbHRyffvn776PBBq6J0za0ktYrh8K1mc767w7yNO8rIiti7Tc0PEU95CCXw8K7CMstB5wSTQBOBnKhxYoISJeoqh0f2R6SKGAuk8axyVDt8dNmo/57KECAGwuMzEWvG0UIqFNPK4kZHLVbb35EH8WOJttkmUyAA4C4Wm+CYhVDPcgt7XNTUrZ1IYfdGzYemF+8uxOI0TI+6SjutVVcqTYUIOInVHovTG0z5GifDCIhziBcNYTidU9ZCav6wN9UG2PZTRKMx24vYLAjWWKLvUPaylbHqIiojHIMIXmD8GDrcBSSngmx7e3tSqE0VtZMi9sDdtN39O3e2dw/wWcaL1S8+xcNXu4NxqVu6OBtKYU7hvnhLljVoTAFY6xqZxzec7Hj+QJhySTV4uJW/WVf+0LnjA45+kSoYzfa7yy51fEar9RjhbKIbPbHa1krdvoi6kVlRHdxQN6FAG6EVbFKN9aPtHF+QaoOTC5ctNmVsXY/A2peg4UIDaZxbxIIy/xB16gbMh4O+p9i0Aj+Df5KUG4xFduPlxeiv/tVPr6U17O12FEyWBr/VvPvg8JOPT7/88hsCW8u42YiZUiNJxwIDPDmoBK83ax5sa0uS0GqpikSZxe1ff/XFawrWw0cPu0MFq3lHzxAxLcNgOKN0wZqvzRV7ANx8+fKlAss7rW2ygSR2RhmSUvpp14XvfvjVF1+rIP/mnSdEiJA5wf6mbuPqcngl9AMscNUdvn17asnjNV4EbS+NS9U5zgvdBRi89AYFPbektpbm/f4E5Ozo9aVCuKMR5nqNwaB+Lx1sqGzKQOn/9Ge/OTm+1MPUSRfLBn3F/Y0acaUY4kR9ZgHKa2FznQLQOmVJzGyTDFpdnOhCdz2HoCw6CeJvWvBoVyJdRhm3WWOHkX/oYPH8nJ+ch8ukaZ7ilHvL1fbVxTWTFDSToalg5SChklQwuXv/nly+yaCjCQJpWisv7u+3R9XqxWUfL2ygniroaSK3xpKTjPHxfdMbCpXcxwX3R8v4aenhB4ff/PbLQi6ULo7mX/789ODppYr8Y29LDpYFccpXVFlQZyt6OPEfKo3vj6LFRLAcfH4+41nBLnFxPj5nSEVEH4ZN4CHIr3BxR8Nf3hy9+/be2audrTsCtBGGKbpLeHErGao7eZKgSMaJKJtB4g4FBworDzcysbC96ADpagLikfgC5SanBofLgKlH9FTf58tjmGdRYf0lmdGB8i2kArVMyUcMIosSqYmTUDV9h2yi7CYZwT3BsFkva4aF2HjD4YNsJCGQGyrOmHDGNBTWWQkrYxKFJeYrj+I+4uyTri53A7iiCVhGQ5dr3ZId9FS0kNtn/Or5d79XuD0dGLk3ePPqzej731+0mrEmGCeF3WOk6uZz+VKyueKdJSLJMofzZ2NJAygLhabLh8o53Yy//So6cVquhjRLlYZKljFZC5OGx00QQ3dIfeTTuZBGwkrIZtyuMZbBsVYwXzfFqRomeftb7zQ9ktOeRgLooTSwCJXWcr0+W/ahmhIm7K1eR7vl0xwipzncSYY7qev/t9narx3QGvCx9cVIYOVGCXFYe+Es+O23Z3ZVciarRL0CFjLlEaWklreqBZvly+NTUArmzWXnGDekJBhhZmU0hX5yuxoF4WRHvKX4j/4SbwB/AIcAqUnHUqKRRa40OJ7FaRJenwIfv99pw5XQIbZt2iiDHzwmJ8BpypgXarJ0gphCy4nkD/IVAs65tY5CyOKvYuewqZgURwMOUoKORxIix1B9Mv83Li8v5SpwfGrOmwLp8W5aWdgACgNnq9qskpPjYDAiVUDoGXIoBSYZdlfnFy+fvzILrSNwjpN3XfxF5CD0HbdsQnSohh5k8PzzeXDIQNQXD+HxEFoYjkvX1fQ7VitxoCfQsFf6m//ll/cOH+oCyTZsNqv/8q//7QvtdABQEy5edE8JvPUu3jmRqQRiVJl1VvvguKnH0SycETqXztTG3Za2sQog2//y8+dqmO/v7IpRb9/dkqaJiljEnEVkWCqq65+IoEqLO3cO6rUWf5UK/qOhGs0q8s2pAWURa4yy018rHyNQlGDFrbb1yuFLch+71uzWxoo8Zb5sfEwQgOR6a6etNMvmZmq4DoYXg16fzorltLcP+BfAB55/e9SoXuzu7Fhii1+4v3nzSy+/fdsbDk9PeyqJkphcXk5yzCrpyVpXKmQf5pFhq86uwt2MiQG/mEYbUrfiEZqOhmm2MeleHn23pWKjQA3LeDjkc1IHB6BZociJxrT9AZfA2rJ2Oex++fqbT1kZF+UrWsZisdcGyap+990XOsPYgYcP7v/oD/6EoXl+893oul9luLMiSjft7aUqVotep7m3042rMO1cUCsb1567ILoDInA2CpMgqqPTq7nenlzmSi/Vltano8Vv/uZq83np8EmbmaQK+I1CS2WRgKVOUd0hhx+ALMeR54QJEghxVob3Fk4C6LIbruYgDxJRpIlZi+Kq4uCgvOKg8MFOJs+/+PWTR9+vKrzKXrG4/HTT/s3kajDsKth8fDY5Pn9XFLzBf4IxzWSoZLeqKQbnhLB2UxASicfV4Rq/vXXUY5e2JfTh+jBGf/wQ0t9Mo4JE8kgVDC+bcHu0jdep4aFKRwcrZlZ+gr1wWgpW5xMPykU5ZEmslNOyaDR6/X5OWGCGCag63Tl/Wd7bx/gsvMjoY5rX4grl4VOXetYfrm1vQZL94UcfCZj8s+U/f/Xta0LI2rL+6R6vX7z44ovP069S89tMIw9lwdgHQSTc3x+mX6GI5wVhxzn49hlfvgG8ULSS9VSw7Pjp+OZyZmA6C5RucBaFNcz9ZIUVFUhTJ4sYARDGEeFi7JGWGOhcI0xMUy1ayo93oXWfW5JcFChLkmvViBWTAbvAuSjf8RMHyaFSgBAiSYILXSeVbWPr7p3H+4eHwSiW6k3uwFptuDb5WgVGftCjq05eIPQjbsv1WMIHSgP4FOAY9T0blZXJClfnzWhZ6THDVN3XXZWT0FnEL20EV55jQTYxDoydwiU9M4TL0pQ1tFnWeuR6qBzNFmvj4mJARajRnWrr5yd9zujJoq8peKxVmnuYpg0JfaAha4aXI3mfU9Ltta3JyiOJvJiLebw557hyMOP1KbhGagLiR4Egp3RK1oUtym/VHylJNrQt1dXKsDx2TgCF9/e3FbBoNHeullcFi1RzRmDfai+Gvd54dMrxozuCGqU4By+BWBn8k82ij0YNM9iQPUoKUYjMwV6y67Q+RkCMQKCuaM9Gx4EDkDtVQ5QHWeNcakSCa2e9+buzr3Vcr8OPblYCOY2msyQMVKo8OznxNu9yoIL3Eci3DCxcBsfiXPWidqP67OEW2DfG+PRRpV3f/e2vjrpjEJ0LuhaEbjS6MCDHPtSOkvwdAl/MnA1OFHX8mS54wXg4cbEIYDYh15odkG4iP8i0CMDZJjU9lK0OY87JpmKrz1f0XINYdRCSFrtY9K+G/bNRghVp9CGmCT7fF95Qgvvt8Tn14eykixD1BjKu/vnV1fmVyLMeQPSGKKAxoW100qPoEJLUwuksMCs59c0kVSf7iYYCZyFbX+8wqmyDCCTRZ5PTl8/HAeMqZxd1JmXirwbl2VjV47XZqDJZ4Wu8OMNLBtvr2923F8NV6W/aO2/pyeNUAseOhMsGAz75j58u9w5UbWgXNlCUv+jihuR9sFz29mYCVkHvjS0cXvB7x0kWLZq6fyxVPP/evrmbFkvDuEBUG9+AIh2/W16Mh3cONr73UfjQZrW11KxTPCfGpNvx9yCJEXF0Oc8iBAtZg/sYQLiNzSwclZxE9iQM8xZTkOAXyev3i9dHLz776hcffvhDqjB/z+Wbn612j3duOs0k/pemm0/xvf5gEw35cuTMhCIZXmMPYoNh5rHzcxLTR4ScoxIgj9B+LolB4DgmFFAw1XDv6L4VDIpr0SXF2cj4QoUeQoMJdpeRHR4YEiXBHOpIntwdoVAsKcOASl84i5qr4AhYQ84fWyQxARDmMDqzyFcOIV8VE668cTG+lvDVhAXX7CMZkYDZjEZnc+MHH31qlP/0n/6zN69eG0RGvCh1r7p/+/NfKDzy/U+/J65gas5BLBIEzSg2Coir2FRIn7KT/8w1JyVqu6tSTyPuM1RvybJumV4gtvR9rDS8LFZH4TRc1fZeCUmowdsFtijR75GRXqPlNYEH263gG5WMLh3QXqd7fnqeoz9RlyoAwG1Zn/PFPmj5pO0TEe/6wUF9T9oOvXDEOINkUPbnycMn7z38qFFZbzRU3PJhvaLAeFo8nt9vHT549Hj10/rzd9/KZqrBzm+uAkfvbUlMUp6lqmgmE4xyWNOfuSKHdsBMt/46+KX3FfipCGYat2nczXuoKnUK7lsKlZBp4AIxKkNgGZPBXHmzi5Ojy/EbpCI/VFG1/pVuH1fprgAeLS4QRmV3nPS4G0VNrKT15lvgU3foA3sKP3FwIPUrTVH0egMnSj1ytiW+y+ybD+l9cg0k1PB1+UOGC/sLKoMZDcaw4VX9gtg2HmeHSVIdhLYqrd98/puuCvvTtSsFgKjfQY/T+6WPUHZ47YxJK70QpuHZNZoy6vByLEWJw2oVqQMkq/iNmEBi/FiuV1dF+IcDLbbIcQ3rNX3Rs25rOpjrPTi0ljdLi4VmEYfdF6EbBH8R8BzZy3eo3qfazw4/YqOHqZgS8YVeEYt1V3SP724yf/u2P52PSLnqdxUYlVajFmfPBH8Gm81BvWVDlAQiMVYlClYgXipAIFMTAY6vfvc8DxRJThWXwn0Vy8lJRb05jKH2yIO82YeCQDluSCGyn0+cCs80iFdXtM9Y2Vu96y4ZYiIOiPN+zG+2uorRWJyYZTQag+FzwOR4SDcbvGW+t4x6HtjtKGBmurq2vbPTbm4JsxAtkvcWakFMe6ckMRNUaZ6UWrJmmC02Ey/KfDb97MuORXbC7mjzrNIqxKMYeb0nF5g/ucakAm3dUsJ3Wm22J6r2DW46ww5O4fhBN6jRQEXXw2nYv3jx/Bfra9+TfayNpzmS0xbvqjN9++6kcnNdHZY26jtkDm9pwROyN1YmXxhXsXAIwn/5PW5AItUrszknJPUd01Ta4nrcnY/k1Ku5ukF74JcRhRkksyjOE9vuMUqhFE6VrIlnRc+IAR7OKFqWh4cJZxkiWcKPdefG+m9dZ+XlqHv+85/+Mz2j77Qa04vPjn7+z69VumrrYc2FsG4msw5kN4Yt38cmZ/gFd7PDIQbczKYzm5yKIM8Y3pKCnIsIhhCBrc9cDZbUKzR40iBOAlsdlblghh5FFBJa0T8it2JMgmmpVh3NFKTR+aFTcLBYvcKFFh3PADwhL6VOl9Vbj3rgqeNJYWWApqeKBgXR0ntTHJQifFZHZai+LNJe4NUJjBteFs3EoON/8N6zyZ/92T8fayF0nskCNU7mr14d/d0vflNt1t97+BhqMG54MQawWMvp/5h52LkdygL5NnIPzWaHV3Sf6oiJqUrtcxfmOhshrDbnpihSGrB/7mvZaHSpjSTB1CvUKSVobB9zLhAo6pRr4Cs219vVdYUiMSCix7rhqsAygt6wdJp4YHi7263dVnP4Bz9QnIlgAcNYq+9LmZ0tB6s3MjlLUl517d6m7pd3oGtmsy4Wrfcl376YWH19uh38FJV19cGDH6Ab7bxwAW4+62nZlX/hZqMn1tst2+/k88K16Xux/PRgIXRTIYoXj3UAIxY1IRCNVJHh2cKI4XnwTvATESydeizlJaTGeKqp1suX330xP9k/rKrifmd/K/YNYGtpw/7b+RnsToJPRJ0qAItZJfHXWS84WQOejFeuOqtHjBxl11ZWnGmnwBIbwjwhtYV+cXVe+wUuqE4hxcL2rfa7lyIqF93BjVwsELF4jRabrZXT4aCx0T47vzo5PtPBRgI2iZEDVVrw7CnliZmKZfnZHUomYzpMbcnA/uGYEmDNnLE8VMpbQRkRMwMOVjtUwsLKilCqSTGcdSJjnOG8yboHA6ukLIMQkNssEkpBxdbd7ywtNnbd784iOUL6HuobzkUmS15WnArV1EJ55bWrfhaf1kKCvnh1UQghOXNJQ8mWYB8xrGKyWFwf5i7Wx4aS4OeiX4Q9f7cpRqTncBV6ZfhAKDtTd09xS6L+xZEnAp0159RYGMhcPAbIVuSNs4s2RFEuJUhlnnmykLU9DdBV/fxRH+bNuWecFuyDIpjXjIa9Ik5YArXMOWVgGWq0S/G56D38eLzQdo057bnOFS+fyLrAuCVUDDe1VkWSxQ2C5YFdKDHgTvs9GvFmnRka/NBvXwokqwksp0lH6479UN5dLB22WZCsOpntt+vXgz5IR1ORwY14nM+P3zkYO3tqtrKk07tGQ5uvX4sf01zWhhul1upWVfzZjmRBCsYWxTl80xJlClYyp2tZ0bB5MdpoyjLjg4RSRie8lqvpYjWw0Orvml7JXtrsRIwQKLLDnmS92cKsR1h9sfIEM3QGRQnxRd9EAKjdWYQQN3uKJ70hb0e7aHM217Eczm67XNdS4WR5+JwBvNK4vrypY9EbF2w3/Dm6M7uuSNaKJ5cNEdU+3FfQPRXR5JtjeZE8WIfHZ2MyTVIRUza4mOrZP5ox8ojVQuyHJWOYLnOB70PTCCbUmE/sNXHnyQoOJLk9D4nc82/B/GMShr3nyRRFI6VbG2k8XqKWXO5IG91lpSx1aNQQ67U6PGLn6qrVonet9QdC/dvYovGSDWqC/uCTT/XY+J//1b8eDEHVPKkkae7F1893d5q4/4ODQ8oSGGcawwGrKDFtg1NeIzMrJpOd9Yc9wgX4WhmUb151r9jdwhreYLTFaKD35LE501BbkeVYIlJONByqmprMDx7idsmKSmba3WMv2roQiNFrZcaaqP/RT7tev25Mdbo6L+s6sNHWDJ3N226R9BHaq+ujUh32kBakMOf6yljoeXN9ogrulYZkyykbliysq5paU8oy+rT9cpCvFmvn6TGf8HkaORhn6AzLiKMZk7OXDPuI8vCpjEX7aKtP7+dkt3NIxRSSAU55TR8yF62G71N7JSzEaZitg+1pUeyrQegOZ8Odi6tn33vy5P73Hjz9RLeFdq2lUURuVBaXmYUA1nT6hDkGR2LiOcA15dnY/LRd8Q1iarnSVUrm+mrjehikONz0RAnq1fnf/svPz4/4N8fd4YRrl4aHQiwLlq3E48zmqM8GT9zQWI64ZR1U+b/B//d3W+v1+rzbTz6HOM71sqW1L08Do//WmUe1D70HSgFILkG0Sntlq4hmZ4/CcoElDJ2R1hmuzsMorWrk/lynTNAVO56/bVmgGMJL1OBZYFd0o9j31hfl5xU0DVSElOMQcwcuynO90OwePhKRh5bCJ+1AQE363jXQd23ZUYeDu7lKOOcsoDkD8+U55HuhMxbVBqq1iXoNsxvJd2FceJYl9c4Q6S0F2HFEYi8yIBcUOqeBSqfKYc6Igi+SPrBabzfef+9+EXv3SZleJ8ZxeTUQGBdkjt8pFciCWUzki1qRUH/qKMreFXEiGUdQDByna+uJjAxCkLiai42e0I2Sl2mUDFldiq2dpv4zSvw/uK/lZ/q0MR6HAmHcgDmVuAfsbbpQ+tFij/tO1M2Vqk38K5QLZdEWgeSsXfWKcyE1Uuh1vHZ/Xm7aiokaFjoK11tbB3f2hGccN867SacnnfH56+OTTpdndUDhqKzUdnY5dFUgvGXOJGVCmDYVY7ZpFjYnBtMEBb6RupPOpgSV2Ye9ZV2d8pX16lSdpxIAniCD0tCsSo0vSLFwUdMuJB/3QcS3j+wvQRl4bA6xjYurgnoup4SpwCeWhNngJayE8IzG2Wub7Qbv76LRvCndXR5+76K3Zm9o9c0V2Fa1ReQCeFJhPERfSCQzAJfsQpD7KfkcxkZVDxUgClfwHHpTweVxBxydaUK6JT/AjkcCGkK4IYoq5GEIyfcoHXHSIopMgqjW0adRFF9XJJ0DEKL3BJRlBQsBZxkKHStHCsv3S6hjyj8dgJ/EGrowI8gaeYaFSjBjwAToy37eVOHE6mC7ZA/tR9ZJc7v9ox/84cVF55e/+jVYdxaXG7Xb/eyz32HPJEILGDwBgGvWgZ6mBoTI0KJiACYbAZgzn5lrh3T66rs3z79Ok2EDI7IzJVwgBTHHw+n1RU8idV1O3bp6NnCj1aBUUlWMHSQmmX5ndCSYFI/GPvJo/xWz8a8VgGUm6qI/03D4WUozD/N4XW+wV1+BBc4dsPmE/b06b1dn7XVZwA3Jnmp1i06BavCEWFjR+DGuqgaDig8Kd26o/V6F6LBHfNLZqQhmkSwPjezxswCGkmnMEd6RMaDQqiiB1iVkU5iDKxSRyni11AouDkXi/iHcQIGd24IDoXhdhCvrzc3mvdnK5//oH/9fhcl3d+vjyXZlve6mPA3n8+qQ3wjRqd3pPKUEfwEQsKo5tbHUcc2ZylYbe3fqH91fX2tu6mVWXry9Of+7X33zbe90OO809+vvvfdwXTEXtroM4kqt1WgtsJutdl2TMVxduPDigs5or/m1f/f65RNOdNctVbkQdJ2kCCAet1yed4YXF2OhZCEI24R9cYPZu1apVZ6okI382o6cJDJWHRG+t90W9+1eqfgvC0RYiw9XaKHRrldh0SlT6gvx8VDwcSSqDc4L3BD6kkicsg1OCJU85Wzp02GCOZmW9EbNtO3tKlU7myPTkI2K/ukuWMBMB7Lr7RbNPshgW85XjkKQLxNkNF1K1nUuaGrhiNneWXO7Cjo/T+JKpLTmx+JVAK4QAEV8IhzHwJxC+0IXwBgAYwR4sqFOqqUJo0XnkAJyZts3Cx3m3wl1LCc4kJ7eCEVCvvA1bhy5Zo+l5nIvx472PZfm1bjUmSCdoh5K9Ix6c7W2JVwJ3Xqt0YV+E9rLvf9kT9Xg3/76m9cvz8yQBn1ycYUTncOQjqeB1DkBQRnESoGIoRjTZ+lgYVLqcKyX1cwVSz+7Gjdq7DpLF52VSnfDqYOLVVbqG1Vl/+cNWcqKhh09ffTxj37wfYo4bIAYKJzAZVfKg1HZh8AZYNNEnN+PMbgZBxSJY5nC7R3cHNoopFGsU0QLrxcOk5QS96O1IP0w1jARy6JQ1UaBD9DmTkAXaEM7dSEDm4TX01Gib4cT2hC8K+wljBFV4XiJu1HQ5ovRKIkM3i4AxwhAIFGkV8AbQLVpM3S0JIyVatxQSrfwngcsjrhScYkdZkHw/PzHnqdXuDlfKZ4Q3GfBp8PAPfP2RBd7GCFjgrGAc1YceJRsYWVisdiZghAvAVFbHoP1fyadeLBTV0hIEsF8oiTGOZKEtNAUURMeXywlOWgRYwdkydzFwrHEpAcdXchnmqycWt1ykxu5KYh7rXzscnJxuUwAJKbrPGATxSOyJBEW8to34BH/6Cd/Csf92W9/ZzjGZ3h6Uv/qN5/RJ5/df7qLVFIhz/X2iTDjzYH+HlskwjEpE9eLcrP17vLi6OSkCI6Rb7bMfNxh+61LdskJVPkyBYs4uxmbtp82nWXUgSTptiEEXewc9tJ1mG70tcwlQ4pgW0jnGk6GV71LTXAUXgjFV9qLtXFDdpXvbaB1n55zCC83ZGyuKpw7G3eoMEM5vdfKOMRSkfWeUh3gWBiNGIN/yxXbtnI98jhWSmHDYuXRRY2NKEJyMdEQSzTNeL3XKqlatQ4LNGe+rFxLJvTQkBqwqWXBf9izeFowhTQ9spTdxneR9mzlJgo+H85/+JP/c73x4Xcv/u7d4FIb3Z2WmuVRS1MUKVsYQzP9g8B6WDN0aI4lzFCAdB7OnTCkn0mTqvrUG12lDabdV7/65ou33w6Gy2fvPdxpfUKFwtjxGe5wJLTZ3gHPtwjaxYEbIkKBDPx0a6lvSYIPewfV9k6jXtrYIkkX9dy3OLgcTFZrzT4X9nHKQcyrS0UwVvrDDSnNvFxyzTmTW+W9jz/66sWRwAADBFBie2tzfXr9NKeXXkbEcwwCw5Z1TO9e9ORj37/THvanQ1bKaNEdd1dLQyUAr87m333zDhgpIaxKkxNAYUDymrDhA1D9G39pb686v5IpooVBmWqpnLzGyCUnnVAhMyTz0Q7xrdmsCkPFWJHcw5tm+AHP4yfinIrXDRLneHKomAqci7KmfMAlLd8xT1TrdGERGE25HWvFDig8rrR0SU9esZa0ZA5NXF7BZk9cUStPuxdvy5s3u9uLWpVeNlF3ht466txov4wByvN1mSPhTMSoIaXY9QRPmJvUAXxh1mxU96GDFkstqfkEryedgwd3tw8OX71+89VXLxZgY9Pl3n6zV3jkIocMEhQubarxH4eGG4nRhYaKXwV5Is6O1Vy//2D7T37w7O3FxbvL/uuXFxdDYEAXEYcppoZ7y/iOgSOHZWdbX5wvvv0Szu4CnQhyKbBaaeju09E0XvbmsLfcLDV3dsnr3uVFdaN3c9PD/TCxCEynNWIgrDpc27AKXuF0yLZzKpwO6GVuzCxwridZ+WkGY274JcYw5T0VCahVSmiRfzyuyihGxbOLbS54MBmP8UctKL7ABmg5VCaWs0hYMidsmiF4BWYea9lUo0IrQg71JTWPW/U6HmfAqQC4bMqtqRfHvIfHVGWlhKVDvoQF2XcPisByzqMiJr0xih/27kX4CL3INb8XFzFeMXokHNsie+J2N7EeiBi74nP0EEU/y4BRkhm3rDPCLZRiDGEst0w9YiCLGaNGNRXa8/V6UbJoMlPOaavR5IDMLa4oBABThaN83Kdk0cAnk40kmk+11QCujmXmDcqZbj58cO8nP/kzBU3eHb8xWYMzDhmLv/3uW92V9ncUR5NviWnwqkUfNsIwKO/xL4RDUGgeR4vCUvJL0ttIM9YoaaH0oHetoJZEjt9N2pZskgciWtHFKPuyC6NLudadUSKCIMkTrAsytXJjfS/H4xdfPX/78oWSCEDJK5V6+/Hq4f3tZ9utg/Xp+OxCqGu5vDjYgWsWQdgYLlsr2390sbY1Gp7RO4wmVlZ0DhMnXMn0kt4p89VrJUI3Smo+aRcTZ7VzeA3jkPzGBiXTijvvcUqtlnrDKU/amHskgOnaRgq3VmhuAJMZe6wZvrkcw0K6A+/CAoKBJU2BMgD4MkiGUU8TmJ3N+5ed5/3p59cLsK5yb6gSUn1v6+HuRkN+GylLKaD8hkWk0J/Vzl/sS+ehsmxgc7DtHEwDySGL0aurd7/99a8Xl6uPHnx8796e0MbV2RA+9BqKREgNJ1S3meON5cnM5oqYK45U6ndGl8OrOD6BjCWVtw6SwjRfXipLtEFVU9am+ejg7kaz1luMqqX+Rbc/0Cq5NGqrj3PN5NeX8katVNUjLeSH77/P8yUvua8VijrU48rVkNSW/LJJl8OocL0LRvpqaffu7k1Lj7Kbgwd3uCMp5WLATqAWSz+8enf+9myuh8qs3OmAtM9K86vwZBHvnVbicNJZY7ZFp9RcMi4hwK6bdakd1imQHO2ie/oKxriUf1FZq0kWIh82RuPuZY+lIYIu9kvH26ws6oFHlDda8/ZuetlRSWpNtQeCToM31TmAUeU8y+cUPLJvWiuE7YyWgw0gUUHn6Wp1URncDC9J4NHeAVqs7D/aa1QAkaeL99qkx88/G/zq371ipSBx3MdUKHo8aNuN6v2HgaoGZl2u8NNKElR2Zixs1+04NDPZJho+re8TaPsHm73Lq/PTq6Qr8MWcd67HKqk06b1wxLgS0wLHc3ScesfORzk+YTLOo9JPldfvzlRDU+tvS2Ww+7WfvbjqBY2HPzreFDynGbpoY0dx7ifP2vuHzz75w5XrfkiZNuMolCrd7plFkZCcLJ5yZbQYG0x7d32y7ADFapiZ8x6nLyZnllhA8ZfDZt7RaH0XP5CgtZByHES/B4tG1rqpLx9Mtdf5pJbkHsAq0t97A5O3L+Gr+E20bOPlp7eUxaH2y/zOe3nJKZ+KqMciCN/OSHCz4lTKKCPukAwpJQ6ukm11cz4fJymT4MLawm8NNNw4B81EsApeCULKztER83EuiFeDm6NgglF1C0Yd1oKV+X0iD7HXLXt6XceBFzU9i5H9KKR9bk54lz7BT+w3noP8fSvcYOMyGLOgBOalea3pYV+YARaQFxa+k5XKrFLGeIk70MMpdYNW5H0hMffj/lqh4Vf0dJEihQBUmbJ/hoofF3wwD4TPefbs8Y9+8qPeX6WiWT5ixVxfv37zRqWWR+2dnaScEpLQexzBlpsgNa7QVjHI+DA/ePLgq9+97c07fOvZF4/ITA02DhVCttg+8jqbYQ0phbg/FBOYb9HLM3w+MywYpxuoRZ5hsUNHLISbuWTat7opvnjnmOJSONTl5Jt3r1beVde//8Hm0w/vP/no2XIsyUCthyW0+ZVQEwDelLndLtz4XhHvaNbT4PmaMPXq6hdnb1pDGZfzOzqqr8h7XB/Abyz77erWdsGCs95laVjXX788G2NHK2uN2h0AFUE1TBrLCVIni0bFYOaptBXDlNshLVzFIbVxvO4TD9MereNU1+gQ9vpKZ3E8XumMKucpOcenthzB8A9vBEp0FDlsQFmHXyvSyw+K3GK9KJnHZEnswnKWhtzCyl6/fHf0+vzN8fG7w4O7P/lP/rLd3FuTMrqysiN9W75r0O+AQNf1eMRTvho3c/Sm8+E3797uSE9qP1byApxmp6YYTKV3dXoyOKeCa2x8t31wePCY3tY5O9Zo4bB1f29rTZWx0/NTHt9Gg79K9RaTX50yidKQs51+MJOuLItWtUmXnNZGV3MJpiON7Y0al2dKtbbMSgvDyVVPyL1PB2JYiGjGnjH7DXXo90vjCrfz3s2sOx0NLjdKHWHru8/ef1Krry+qXG8583F4iJnRMEMgOe4JT+GHqvDPZ5UKXXl1vKj2ezO1W/Q63mzNJxuXb7593eI+0iu73UAE0PzypCrsw/GKSeylsEVLbhkhC7l2U0QTwZW1ftusljaa1PiRmOX1RMnR5RXdf36pkQ4ITbO239zZVgkd8qjeruFxwaxEyV17cndleHfrrNuByaJYxn5H9nBuvKGL1e3N9p2DXVAFCRcYE0a8e293cSh6rwIf/VRof8+5mK9cTfYbn37vqRWbMYava6Ouzp9aw2j/LrvgunulOFtUSEcmwctkvQ2YPnxssHur15XtarteI3SAw0bzYf/9g8Mv350DxWHCZJO2oopvX68Oa6VtdcsPdlvP7t4ZX3YG4kjyr1ZuBJJWSlNOrs7NzWZ7G/SzlLqxjLDJospI7W+UakmODwTEznBO4zDYbYTB7ZdjlGDttfzFNGCI2g8+FzYSfIFyFkNwu1KpsVhWV+rL0tZsccwLyvvkcGEOgREUjD68Pc60gNNSF41PGk0n3QohAGWExSAm/IM3BRNlhKcul1XJFSSKgSTax8MhygytoQbiv+fj4T6cN8IoCYDhTNg3bo/a3MacCLfHsMKVfZcfY5eE2Xomdu3zKPdsKvoZ7oC4ef+LFXGQw9BIh9wcL4hrwsfIV+MhO4yYvlnwOw/MQ11IcubbPD5cxhvMMlzMT3wNsPf8JRwQDhYkDLeZSzIy1/tuKVN8XW5UkmqsQ5UwQIXERJ7swBhCVmOl3qh98umnF/2rX/z0p/phYsXO5Kw7ePXd8+d372w8vUt/i3LPeRD0aRDKv+ejWYfM2wQ0p4TtoaMVxzHj9x732AbrYAcFTQgSv5BaYEdYS95UOA0z12JyUY0iUzPLnO/fr1q8XtBiDLLgXKK8W/ab/rQjo2fUry4ffu8H41rlaFHVD0vlc8aoOiHgxuJI1KtoB0xM/boSi8nqbUggYNGvb1yvLn9c3ZqIf3BQxiC4+O3xyYuzyf2DfabRZDVdOHQg1ITxSKLiiixgHZ8rO0Ji8O1B/WeEZhzxFqPKMjApERkUN512U4vC7qynJwX39fVMLKarOfNmc0O54fkU2v3OynyHkjALdFbguNxbYWUvh8vF+wrZKMS42Ex1qpsJwsl6ak5gONIUZOyuHj3/7vO/+8Vn4yvV98o/+v4Pf/TpH9Qqu9goXAQ0gZE4E3qGtAvmSmnrqb7GzEmt48poOHrv7h1RRBEi61yvbUmohILfbLeePrjbrNcPEmOs9XvDy4tu+76MjDssg0FfqLbZbVenkYRalUnkXlNEuravktri6N0x7I5iBZJNZIRUxYbX9umDN+RaaucCukwo0tJMdis7F5fnzcmFOEz3+Gx7uwEAdnpy+u7o+Wh2dHfroX7un717MxepUdX2zv2t9w+f7H14uLOvSGfOgfIADpJFjx5ZHIb4EkL2OUS4BVdUEaKwGBL3+8POUa8DzNA87I0gR5ZJgnMyuXm2t1p3d3QIAwwW8KqmreVG1ZEVY3NIE2WkyDmjUTITmFE7Q0oCD/x6Y75en+yvjVY3b8AUpkPheQDSRCOEWgyCqbG26XTMtxqHf/TJjzR07Mkru+xTwtTX6Y4mpxfDi87w+OxLHupEiZy6+O0pTqtQSdq2fvTBQ/375jedtLWrqm0tkDqqt8AupRK2D/Z2zGQeMeiWHLX5RLROvZgJ7UPKIOzyxelZT8N6TXYWDNgqD+x8rbp3b1eToLWr8ba4bmGfaoWu0CHY1j2FmZat05PRZf/noMLkcbIvgL8UPllZtu7saJG21qo0rpsaoYiUYGLykbQjh/O4mV/hvdyRy0VFOadrdxgTzx0XR5iFL7JJCocExaaHkpGSLmwbk1azYeVHxouyxje8lHqzz6ZXxBKzUqjYLptjGEpiLXYZY+NcQXylal0kiVJja1KJr4juOFbh14XXVJHKFb7R0kCEiIcnJ/OWO+L4iWZyMnI2UkLDkzFvbJg3OvgD3rnwIWwmEQaahVUuLBxzDtN0aNwSRhV/T37KEzzWb2JSsD+TkU8X5x4pyCc+nozUZXHeqqHhbKf1EyHKyskUDaGwX8LwCwXHTIp3IQ6foMu8N9/5ihsRU3YgSG9xUOlmohWGx1yIVpbZqMWgQ+qmIJHsR2eSx1O6pwz1Yo5SEGPJWE8CVcqVbtXDQffzX/zGS7Br47m66v7s179eXU4e7FKClgJqxXhQ6u2CmTN7s3CSLCoa7RwvX9J5+fQjWVLxx38exvGA/8sU83N8Pcg9JyTB3nC24sv8nZbisdH7wUIYsalHSaSZjhESGJ5IuwFtjf9GS85Zf3VzWWk2n9w7uNvSt31daHgged4BqiTDI7TnwZHPHOzh/dkFj8rWUaCtvZpvIn6cBHHFDakUzdr3dttwKq+uxi/KQ262Lby86OD6kLdgo9rAX83vJt5J1JiBZFdY3DFWNabi7ivSVmj1mMKUPVJdSKadgUuv7pc14SwzEBNITeZSKd3p18eVTaKI8UHzXFteX3UuX8vhuLneqjb32rsBB9PJ2eJp5gj8y1f67jdHv/7u5XOC/aa8eHL/oz/58Z+q1Daj7aHA2fVopTcW8lyoC7ad9g9GeLNs1uq1leq8rLJtysYYr8TcMv3YWZQgptnRdNqSmwTDOtf+uPvu5VsbZ/3AdRUihM1g0jBH1q4XezWY282dZmuzuiauqEUBDr9Vrf+P//O/aDzY/vSjP9rj7BfTodzdJCmkVxq+OTpm0l4MO6vj6caDg8dPPp4dv+S8eXb3vdSJHowPnnwwglnrHTkD9x9+78/2/uQXP/2b1y+Voz8/ujzCNvbu1+carwZrpVgkIRtVJ2sfHTHHLyyGdRqqzMG24zjC+uZKj+XGzXRNHdj74Q+34TpLtFqWl7OBmVKQ7anuuvBZ8stRpfzvlI7w/LAGz4tLIVxF3eE04SqADkKIsgYhEjCquch3c0tcyJGicHKwpYE7BUS0k/uNUnBnue9D2HzVX8+G4/P+ZPb26vTV227/HIQ+nseCjfnbd+uDteM3ZG3pH/2Xf8Hh0Tt74a/4JKv0r9W7za21G8I1dgbbtOD+hR6qrbJTstKO7luKgcuDhNSIsfF19d/94le//Nlfffb1i0/fe/Lw8O73nq1+unjYuTT+Sacrq0Zbz/CTbqd9fr6yfbBeb27j9fgJfrVZqe4cKKQTVI41VWBZWaib3tW430kAj5QIBpr9S+2ggLOASxg6AThfZxXVHRdMIAfsZj4eMN+v7+/vrBGCCFREwBiLLysMb2jI89n59XDIow/vRrUX1fXAMJRYF2GTODBOAvamsmxYigOODy6VR+ONtj0FNXAR6oybuj0r03JJFD5x1uLoIRVMj1izTqwbIRPQZo4QDB57wau8q2DUnkDDo9HmmXGAOwPiucTe7Ze5hyMaWfw5SNH1iNFlHpq4bvRH0/I5NkGQeVQYWuhWnMHIwtgjPm5v5DSCvuAjiQ4dQsibC5XGoxmPhSXw++kVcyweRCsWlQfHLupACkqQQsUqxERiIzhkEH7CxL5UPJ+MtxdtqqoxeQPfmuiAsYFm8OHd2b87fNJ99fptyJiXZjh58/LNyngw/uDBDz59j3+tGG0xkELTImUE1Oj2vcsxyKIllOQdiym7JaZb5ggRxAPD1v/VTjkzha6D0fGcoHBsqNDlItaL45xZsxupwwRAJCZeaWUtVAS79XBX1Pnh2trk8KD8/e//6O/9+EefHrbl9w3mlb361r7GF8wFEVexvNiYnlEcKjQUNa6QBvyIKTKFZKSxW4fYCP7BGiiux6MrRsJ6NYGnEeyGuyYkt8GO2UAG6qA4VLKeMArTRDOkVR3vNX9SVyE1uiIMfxbxuu79QGYrk93N8v7uXbu7zguXiHLKNIzp1Wvlq0qZs0G+vufXNE+PHW2e1avJzcX10V77sC7atLbszbrgkuOby+fvfitpq6G2yfy6tVL58MMfrJRqgy7jLGyKi7pzfanspXDa+roOWgiCELSIiDiGHBxTYC2cwzCpIhOgHEVNOk0xt8RYY6RiVmgkObzsxchQuhRkqgqsMiHKO1qbNyurHOIvXr886VwpoaXg0qPHz/7+n/991srWCriuuhq88smrsAzkJS4gvtreqP+Lz372m29/+UcffJ8ecH70bnO9oX2aikLsGJ0J2mlJs/n5b37ZmXSVxLumMFXKSpg8/+bXx8cvPnr6vacPP+K3t0HoAsUUuhE6CSEVgsA3doMNS+SLv1Uu+p1//dd/ozH69o6OWM0HssE36ivxtZAA8U0GtZZ0joFCTWugxZWW8x8mQ4nJKkUB5BpwbpnnBUViHnE2AxrrUtNoNRxZVYZAcVh10cRssSwARMVuxoRErMP8HP6bRROYYHly3vm7X/7u+ZcvV3RTCfQ9imOilDnU0VGdS4FuxY86V+/e//Tp4WPhompyyxuqdKh4rY0jRTnwYh6ccA3eqrhJcRPltLn0IiPZE4XDGGVft3cqH35/57SjcPf68dFlq1a/8/Dh3sFetbwtsWN1ow54o1tRgGccj6WV/TsVdXpZtFRkwhSu1+9kggOFz9TMuOzcnJ3Wu6fA+dPU2NIrgwZEZY+WVgBUTJsLrjzSZ7i+x6KB44K4ALp9O1QgvFtdLOsQEdq4RVoTYfQv2+WgUdcn/dIQlIBzHjh0BkAb1SeJVyFGSxW/ckqfWNdoqonKxuwNVy/875Ywu8Ajj91HYthO/9jOnANXOQphA+5moOGAQemAm6d7BAlQMGAepZz7SLdCCQq/wv6812BZZHChNLJYB/A8BuSxYbqBu1BCPDwlOuIUCofzVmcMA8EzvTgNG0inDDJfVBqUQsS5UOjAi00vh/WW2m6Znh+LjzyjUGN/LwU8k7tKsS2BSIfVcjjnvmyhuboYHlkRGukipC4Ctdmq2XClJF7DK3097U90wVXZYKw4l2MstnP48CFfwez0goTyUlLj+Ezdkur93v19HmorKV057mTSlipAsZJFsjh9+923n39Btya2CydSAlL2Kloa8oRlWUIOgatYlXXWBnrHeOx7diN7YbxZnmLmxSraWXO10oV6F4BWZCgHxmCzcvPke4dPnx289/jB/s4+J+C7s5PB8Ghav7vVfqx8N4WdBcbjJJ0c10d8hZZERMZFYDOSuuAXMTC8HK/zXrx02tMxqDf625NLTSO2Y8RFrleuxTTHncmKcE20O1xhfQWsdkvSungiHRE0ZkVrsxaNy1GgI4OO8Borz+blQYHezBrLTWdbWxbpT2VZs3pMB0JE2e8rinO43pRR24jqAQpdh9NXv92YmFcSv6qyYstlPBrkVwrt2+MX15PN7Y2n0+WElrZX32eqq2Mr3LAqBlLSjUDz4Gm12sIY+kSQdp4hw4i56GcBs8LNcClUnS3I2hEQ2fVEOLRekeYz46SaLRR/ThpGWMCqmH1CENPS9c5+Y3trm39Usetv3p686nUG00U1GXeN/YcHCTPPjH2tOz3WbXE6d5ghzpE/PWhNAabFfKRmxT/6ez/5zd/99c9+/tOP3/+Dx/vvw9Rvp1yd4vLydDrt0o6A6OGj1mf/7J+qOrfZKCuQbdPEpFl+b168rNT/5Sfvf/z+o48a1e3U26HGpR9MDFbHDok4R2GhjqPk9t7wv/3v/7+/+Ltf+Uj3JCxgq8HGqROnOezry96kU9uQFiL7Ss9b1UmqrWabMiza6exwD9A6WYi8hRJ07QJCwnoIg1joAYkgy4lC/2sNXS3LE2ig2XKDcHK8MYjkrEXnkUhHu7URfcXa+pM7e3v/6X/8R6+f7fYv+jbm7PSy3wG1SbakI2HFnGP9AsDuf/er16++Afpk6E1lI6631hTqodRdzXsX8wGYHxcficyXY4KImUjnTKMrcrVhwZFg/NHr64NRr1ne+Ad/+MPFJ0rRXQiE11bbs2GCDlOkqEQEV75jXZ7BxFkIVNI764DRhk8ozSamD7owEuAgOG+0p/G6QanCKCkQkjzsEg5uJoVZT6LykjlNOk/QmLgiAdQFPVBmTXRdAzIHrTeinFlc1l52K2zd2eS9n/WnnPvxw0hUwtpL/REpQuKStVFuMQhbHuGcb7Fgi0xEYSIF0yP+sNhsfnh8did8w0U2g0LpDPq9z7D9UHd4bAS8X+cHoiJ3x/kg1O4Jkfc0+pTWivnhZvfmSv87rU60ORgI7hGbICVfo6lSEd2GAiIOkIJrEL4OXfnYXAmGsJE8BOOJxoDbhw0KOsiFZPk49nmqgRX2DXJGu7YT/Rmyy/02XNNUrSArRg9P5f6YQCaZaWL/GSb/WqUqnVPqoKIAiuTUhIzSHAN/wqg4hBWUHuumdTWA6bVZ4p3l+uGDx5bn9PikoONV6R4vTvrtk8GDj8otySMKeK/xKlifDECREype6k+dnnLS4Y6Bed84FAxlyAcISIMF5Yt0wlKtVxAamjQp0CzKxlUWPu9VxWLnb6uRmWUJLWdhP4lv2cuL7tVqfeU//0/+4Q8+eYagEBVCuxj2lLj+/Lu3X77766f3Hnz/yQ+5NIGyGw1Jf9AnM81019XjWNlSmi5V/EMf0ftttm3T/Ody0u9d9IAcwQDVanv/QGeoxTo93hECYVYcdNq/uIJHEbwsHECGrxbEqDRTi7O82Ndrp1LaVYJ9cwKvZn/FGAggLH6sq/i8lwgDdU2oQBNaxjlAJ42irAMwz3xNraqmrXaC0q3RweWe8K5Ek7kQatoDleF3mLLD0qz/5rvPSZXDxtMNuQDy+CtNmmXn/Px8+h1i2d2tppx1vfH00c5orAjPnlYQJLE9wlg2Jdw4PBIzRkOKjiPESMU6tlYayeNH7a6pVBqNFquAXxp6GO52cDOOj7mycmfn7p1W5WJ88bn+tr2ueLr+pfXWRm1tpI3HVCGGMbBVfcLpk2Qxp17CBx7kNDGZ50p9gu5Il9ra2vv7f3y32z2tWDzuvU3NWCTuVLf326Kr0ug4mXQ03t9v/Pxvv9hfPdQsWFcJxYpno/hXZr3h66N/8y/Wfmqq7HG8WREFRW9EmlIVIYpkHPBRw5bLk5Ozb779hktchjA551Qr93Q27Ea2RUqIGTMD9PAxzuIjv/CNTRR9Vbc8jMZRcl65wZMiYHlT1CRdwpCywmWbLd8Jfcfj6yr1dnfUP4r2Rz9PAnt8T6Uh6hfnT4MJamv35Gh01dtrVO9tbRM9iw90pe4I0LCkAzJYL9ek9VZrai1zTmnDNp4MKyXnpbQAi7qcTdYGXPBS4Tx0ngn1V9p7MoHjP0weYwOH4DJEz8pkB9AcOWaNqnua2JYGB3d354vNu+3tqcxsCZkCh+4TWyp8gMzvyVKNDjjXGYhuCp46zNOZ5Pv9u3fv3z207DaodHA46kz6p1ejyYX6ehyd18t1mgcWlElzsjlaLGKeNCEXKhKr2YnTbWOlfX4lV7cEtM4Yjf8b77PsgnBW+qauhMpOc5eZJM95Z7tNaaECcOwFzyqYiJmQBrk1FBsDIn4naBlyJIp3DnaYdvQdWiP8SwGUwplZB5E0Of0hjagISN6ToxFZaseV+4XkiSs97MZiMvKD14cmix86NyTrFo+gH4SJY8vYOLPBqfI6Bcq0kMDlCgIwHjOOYFqr1nb2dp9s1IH34qMKg7vVyVxC62OMs5ACWpVGFB3atiVIbWEKOnY1jkWsRoF1VWSA/zz89k76NZ9GUofmGyyNUDfO6S3eHelDdcH8PTfYgvHq+eUVbREoWq8WCVy9vhrAw1ggRkyJWFtVTSX4YHULzq9iRi3XqC1ff/Hds0dvD7baiYvFBCtCQwHP8uzXP/jwx297m5/97BdytEiRbI8/vAZGQdiSsVlrLzDZ5M3wgAjkiTTLZ7UUmD5BRnnLImda+RPZlx+ykQWURYGQ3sePH/4X/+AvpcKKcZmzknAzcKKb1b3Wzr/7m19/eXZ19updu1Uz1fXNhpR3LTsOG407tdb2zoPG7oNms50NLdz1GVVp5WJw8vXLr68hUtZwsqLCpn5+602WWCYS1oxehxvintcqQ2wqvBMcnl1juDa2F831P3z85G5lbbsBbjTbWOVdkS0/WS8LvfRfnZ8Or8cKUijMJcGYpUnXYAAm2V19xplC5PEnCxjLhWMAi7NStWG5rT+h1WLmSmHT0KtSl3j7737zd4juxx/9SbN8mBjsKu1+phj9yqwMgOSGL757O5wv7t/Z7XebQ3S8/mp43aF8Atym0IFijyDQMsvwaBA1WTnc9CIr7CE9aja25Jg161vl0oZkgFa1db99FzRk/WZDIYHmtoawy6+e/9Xvjs+GA4u5JdGc3lGGhFytKago+tIIIBqzNzQrG0pFtNnzvM7Jr4lXjDvXg/PvaB+CuzHu4mXV7h7LFLSvriv+Nr4Bq9FLq/r9Hx08uv/tt6/5DBpcStTQWCFcHti+CHzabDFnF32q2lXOYSirCN9FFWMbIz0Kaw4QR5CokCW3dYBZELwUtzAJffNWN3n7eJCRGZWKbh+ryAHk23CrR8Y+L05roR4hR891NB3CuL2XKxxWGiMIKUFRSnI83L1rEddFoCIDuKJodNc6yYX5cb6NNOsa0DmpAFYIaj0lNxVEU7cXiAcd3+qZK7Pz8zMFRXDnxlZterk6V96Q9YkprgkLzy+Gg3dvT4N9If9Lk/cev//HP/ljdKI+zEya45psxJSgUH0P04A2MDzEx6Fuh847vfpma3B6RcwpkzJf6iTJd6K+XwSHzjYXb46U/SsvRPL5iqqYLbfmWEQW7WzwkAnhslRWqvvrzScPBoOORnh4SKcnMXwkQ3qDl5M8CFoWLrciguClDngYkiEuq70hIgkPdZ2VjStYfXiBYzaBIEtOSh1lSkiMhdBQAQasj9FBWERfxun91rMKfh8+Ex6BV2TDf/9VuI8DNkGKqYpI6be2tjfausszGFuer/wYbuPp+SDlfpLf4Vv8n00WDo8/eVmYwa06iqKlQIjiuQoZhdH5Jhf5EXcoQqt5CYaaX7mQGrNba27fWgWIKI8rUtpidoTCnJXoSWq5QmxSBHFdzoVo8yEUVGhsBlK4lYyaRIiAsHOohtM3lWNXK9VrGIzQsgtiPhhvXkVuGglBxzszmM1efzfpVC+Sy6nLK1PNyTZU9oXZud3SgwO32zd37qoy0etAZwHCzN++PvrNL37x/uO79BrnRR1/I1CjDHgYbH6zefj9P9vSovTv/ubfsnKyaL9fMwtgKB5sQbL6qfmkMBXsoDPszFmzYnqui18WpeRi43WT4piRavZnMJ70uuPDw90//4cf90yCZ2owyGrmLG2iUmGqv/z7/+Cb19+Iec67bC2uNdUsp5eX87drl/DE7fbz//g/+Y9pVlooWJXoHFn3kqo8J8ev2KzyQiRUU+TyObEmhEGlsz+6+SwWbaanJrYQZkKEGScDYTYb1Xda7310+AFo+qwsPwCuVcC9A1GvtQl0JofShrYNmqyMBxLGZM9z9dMUYiaZMLC3apGra9OyPo7lTSKSdnF7KEwNF3DoRn0wvu2t2bvnn6HRTz758aM7z5Q1SkUqm1a6gR7faGxurd7taKl15ymTb6Y7iMaHsXp1SbMWYLMailIB0q6LhciKpMVyr4a8xEZvxlVJASvtxXrrZLI5WdyUOxptVOvL6s6i0rzeUQVmaYDJgd/6wXv7jc0m+35Aq76paU5MXbya9fFXR8Fs1sfX4mQ8pMg1OhfxKZeHiFnZ3K1KUAX275sjneca+omZY76OHAVfjimTa74yG92020WXI8ePd0sJl8vzcXkYsIPaUTN5nhHddLcxlq4zl/Q6DivH2/2S4gVVYx7bRHwew3T8wgCsrqSdVUQ3RXqU2Njl45vhdDGRYctRyBkV2ELCinyb0Lu2mAoelANvBXSQs4FcCwFAHV0ZLa61Yen2NSTT14xPu9q/7FyfnWq+VtljfEIiFHm5g+vh8aA43oQG/Syv8ZAInDCiHA6MKWBNB57Tkq3XDzpcB9LVi+Vz/tubRQ2odlUNDgosV3sqGDg2kU5Jn175rPt2MWo3tzkl19rSiFWJx5PUC5iNY/3GkU3fiklix8FPq62Vo29ff/eiJ1FDpHwKJWhH/TPtuw948c7e7r07B5O9lenVmRfMpgs1JTe37p90xt8cncsbpeJgKFgXuwi/02EDva62tzbXmnPcejYQU8QAnDGrHPaCISQjLUrDZCzGJSfeziNg1lfqKLH74radwRtSfQlUCRDsqxpSGVdJgH7qMuCUii7RlcOWw0xI4PC/FELQJKvgpFkUu51871ugIf6RClPMLyadUeD1uRCf8UQ6Z9oKqSbAl0u/u5akhEJTSwA3TkS60PHdcSsmEgr23oiMguVbHM5tNGcB0B1u7JcgWKBY+LOLExORuWLFhgi46vSFduPyEk6INRCxZTSG7chw4XgMv2w642AOVPvss1OT7UQvOLsbIpNJTuufinrOg+w57vUNY0Y3CSlxcht/hsM5o4TakDnIjQklxglzMlR39tLKEgiMlwRANIwBRjcpqoKTlOSAzZ3d3fSzmb4VPDAE8LJf/eLv/vCHTz/99COeENRqYW067wGNCUh6r7F///DyF2u/mk16jITCCilslUj/rHfxn7fQf4l8LTjC6W2VWclVtxXxXfm1BfKbQmq4xeZiI5arvrW1eqHr09rJxcka9udzCoHu2rN0BuaM/97TJ9XNtbcnp1Ie+mNOD5X8AcsbrDkuhEuFPAWxVoYG5q02IBDy1ZUTbVbGUCKCDHSgEGRMMkMwNoczhmVSF8j1OvBy+i8kf8bAoB0UM9uQhHX0NvCd6eoAVGM53q/tztdrr45f//bb78bXHrlslCsN6u1qOV0YOVi9PMHBwisWK35jtjFkqDPRTN/LIxANUt0b++gf/rXTrxsrpfff+8F9mBnEJobNBbZcVdtBd9XOisKakyjINwMtEfjVypXtVl0C6usH+++BIXELn8/PehunlFbzItVANiwa4LZjEq8WKl5wYAdSDBFxU1KDeDxaLi+5v/qqZDSbK4dwoU8bB2sLHXdlQIlrL0bzE/6Coe13uFe1xLzBcJPAppDTmmzcbDwOQQlWYaHVVAUDTkN13CZKXW7M1lrqcWZxyFrowPhCSaa19f3GvYve5FX3QraEGgjXrZ3lo6cU1bma99w4fR1WRj3F4iU0rm+MKEaOTQ42mW7B2B/MdBHX257GVtNYXZtYvZnt1jcbm4oZCDuvL8utSUUv6HMjlngqTC2zr3azLpNtpSRQwI241di+U2kG9MvJY1cKBd3eQI9gLzNpFmppXJ6fvDk6VY95sjY7OReLv56fTqo5iIIfQF+eRuMNzYtVJhrJ5kklnqgoysUXnv+4SQIZL61OetOCQkCjZMpQV65L4keQHDcDJg4bhfMhAWUSFrcmMRXNm09+Of21eMDBoSDNrrDFSNHyAd/tQAEb7IaMlGsmjqrIhfKtl6/P+x20qSzztHM5EMG3OJYRj7GI2uwowPrl1y+7P/81XzmGRS4KkHz2y6/HOiLdstVsbmEiJVJWcRyrrd3H7/2gwsdpnhtLcKpCRSQCCs4VToe9OPrRRIPkumV8GGv4MI6jCbZSBQ7BojcckOYMASV5rUm/Nrx0pKnm7NcUBYKdI83CU4w5LplUCBbA5PMk+6LAhftFfYxPhhZshBVwQSGeRHJ4SURzUnaTA5mnRWcqHnGJiTg2N6uGQKIgw+u47fCIDB8ELRpFIcWskIkU5GQGuBR/d4qWhJs5rfh0KoBDRZWznzzkcUQN55enJ6+buidLYCcz/adMdL4hYQSBUZZHhftptBZjMKiJNPpJxflUSMSQis0J678dQMQfyy46MMVOSVvPCthf3gcyp1QG3xXBfnV6fnF5gVlyX1L3CZbL/tU1l+PlwGrqId5u79RbycYtXGzGILgRa6lWbezvMrSvj46OeT3wRiBoBTWlnQM8h1xyHRUmODNapqZjgmnaII37/c1gpaLfhHyMFEVbs6xiKMwCxvuOvsMFPZh4ZhQW18fGK0SAK91CSyoWR3jIaikmcfTm7L2nO0l6wMLq4JXGNAaP7w8uOj01Bnpq3263NF/HT0leKJSJYqD16YrI21bSV0dxFNhB3E5550Uwl9mjSCJGoiH6LyPNmDKE/E1VvhXnTLmMqSBecgvlaeP62VdfIaj9vR0Ryyd3HsOY96ad46Pvhoq0AL4TeIv13qIrVCX9OW5P+oiH2KXIGgK3TFOySGDJBX7j1lYtlCSUpxjkm+er46vGs4/Veju9OGPUZsExJNSwuvb66OWXb74cCuWyTzBtzajg1Hl71wcbzWsdPBR84OjWSWuGa5GadIqV2sO9Jwe1+/v1vdmodz49e0fFdhjW5ELbL61yBiCcqEsusSUor053KpPtFSWthfWkwUJpMPLlNRNRq3T1BjueoGqtH18ewVTAiqNatJm1VJpRFB6hQ4SlmjEHyJpW0e212d3aQ98zTxQJ1WIdJjAK8Wb7uy7LqXuipbs2liADygMRUISEwnUb7ZXadO2uU1OxXuH4a/rRb6hMGQpKbxqiLGcRZwhdcTaE1AgEleuFchGTsueXqmJR/gSyxmtr48VDufK0AQHKurgLK3xnrbXV0sUhzY6rhwBhSNIJLVSYqAZhL1HGEkuc7N+ZzJ9p+6JD+tXw8sUXr4bMNoTXH1jvelULqHmrDVUpb6oFlU3samm5vtFW7sLpueyccs1C6pFc3N2NZp1cFQm8lr/JMp+pBejsxuvOBtGYycnBXZK+Gi3WsUQHWgxttnebxre93/zw049WJ6Xu9Lw7upTwwdylAMiDu76h3aMdT56VGstpSYWKwUSDCHVFwKflDlgvLsHy2tiRm6B+KKnIMEKMu4PLrHN1wfaoaRlYaUkQk9CgAp2EL6kv1uLtq2/fv/vJX/7wx1fdd30WAEBRsnUpdE5TuD9H73X5emjvF+PEAHGFODHIgqg5qwsgdfFheetrQpIiMCK73gtARnSRepxldE3UGTNG5SVKe8o04e/2Gi/EMeNMkE0YpoSpOmy8BxSoFCHJbv3+WEcgxo1NIWPaQT606ptN/XLrDfoe69xzBGbWJ1pzp5BoDDXKlick3afgSGEIuELsKrSGFKiOOEb0Dmwqrj9HhzPJlOP+8P31df+q/3atqTCJQrwb+hS1WtUthZ3t0DrXcPgtvI6/1wPXGWqCJ2kpFXExoMiUsE0xEJFjekQRCraugSZpM1bS9hN8ilzqekgJJptncMk92rm8GlMNdUocDTdqdUhfHRMxHxbK5WVX+1iv4Aeyk/VhG863yhub+nQRrtifiaC4dntroNZJpxcThPqSmitSwendloohE8mV0ozXs+r6uHkzfrq39QvVa4kjblahzMTjqNEYBc7uVsA42K4Sg4KeZJN0m6HVxBWL1WcLCxSZv005p47SJFJo0wLHbO1tFTYNNMKED4qvCihOwRR6EIFNHW/B5ujbippa+sShTcj4RXt7b9EjkwAsa0ZvRVGkwIJ6h5ZGdMS+k0XMazfyWyYaU5ibljFEEz6b+zIif+XfkHOoQFaoIiYwtiulvZ32futOu7YNmeBsdDQklNI1pIldO/TCo54ZSxI9ZClzP+6FS2KRCAZfUcpGE0pL4kiTksTL7k7b9r9581ZUoia/cDZujHl06KvKGNCy1tgCb8/fnHZPNFASi7+eT5wY4FQHlftrfYgvW0g0LJPXBKM+llcbgEPv3/vR470P4BOlih5qhXb8/OX566n+8imjG3lkMM1S46PtH7TvPGxWl+PSOQNWL6dv37wkDhMO3axzzDqBk1lHpoeO9832vb31revRmQoxka+oFgfQZjLcp63De7lc264Poz7sri2HHYFfTHCsJy70ipGtN4AU6aoSfBq75bXTdXqoc43JZXWy/sUZRybxv0WGC7pC6GDHtSI6SNcDdUi2c3TZYLKssuPIH+8behZbxcWP7n78+MHTz3/7U8AVGc390ay2W0PTbECEQBtNDVpHPgVI8MyrenXCa0LoFnzMahaxDkSErhVZA2sDUGzVt5sUvd0PH34E3i6Gs6YjzNHJ3p2WaLbyPhZsfR0aUkCO+rrOGc/1mjYXw+Grl2dXo2691YySVscaOTiFcoyerFg3QfSn8S81FlXQcJO4QV3gCJFRq1pCuLSaMzpnUJ/H6aizMq1t3b27eqDEhj5A9E41jHm+kofFanACyMMVARFBXoJGTcyheqJdDP70qkfHl347KmEgihGq6REGNOYuIHrsws3Vctxu7fDNWeIor3prUTtEVsiAz396ebglzdLqMZUolTxu7JQcHKZNIIvj6c1lxaohc3qtU42PYtt+udokiMJQST2JzjiMsyEaG6d09KM4sBFZkeVbHNhCBjpZBhJ9zQrwDmFbWDvGbhulBcXsc1vAWmHFZhI0Z7hq8jRhQDEnzYftVjpKhf/E10AILsXeRgmchfzU88OiY1bOFgRPzLh4Kwgu4EZaAFIR9o6/5fYlcaRE5IX0Et4j7JaLar383g+f1hr3J4PZnYP24d07mi5IN09BMqKXPHJUbKtLWSZm63HFuTJggJJCqqA3y2NpUUSm4HhbycQ5uPEscnd+ZWAy9ChVuHZ/0OcY8Hve6vgjiSpH26KvKQSJopwnz3NapIcNhh1MQloxQg1Sh1MyZIVjpehBSsAjBbKqVqumLgqzR8wy5vYcBoOcuB7Cts+3NxY/enZfybm3l2fWNktugeiG1Hy1iNl5Sz28Klur5WZkh2LK4xCLcydSBT6X9UsmT8Erw2q9N9JUcHxRYtKkQD8PDFue2wBtwTs6vgAIKxspOmM0Qp14rCVU9F7HeIu0uj48H0rxrNQafO4hFq63QAeqAiD6eseWRh/ei5ZpyxmvmdF7sugZi520ajYpTlo09L8yI9RvDOoXUvJjQ2fVnInlTG6UEpM3QZujYa4oFMwXN7N6KJ0OZ4ienFdinajHYU8SApU0RLTOK6SLWkz9lcHVoHM5WdnnfrLJQ1w/MnG9zJajYHPh4CDRxjjRU0cR7APzF4tWYbiJc/rC0gLIcohTJ5HXZ/3BnScHrbtezr1AZdBTYf6qN5v0HQTroHiA2M+0oyzF2quLbz98tMP9fV2uzsbLs/MTydev3n0l7gzatKJfQBBNsWQ5I4e9LkeuoSlEmp1fWdTxTGSw1qDhzwZXy7XLuXKl0+UAKilqXFODYoyV9sNxxBFpcURvxBa2q+uquV6sKE+OwikAxb5Zf8cuZ08FCkuW88rh2qxvtpstAKdebzCr20z+zth0CNgKO/qxNAPk4OhNYoz269WV8R//+KNXz1+uCV3XygIalsmBldQbdW/VNjnvZQKOZIJvvB7NS+m5RlHPvLJ3OFHOeThd9IMl/1Zta30rpxfTceD32qX795Pbt6EzDFCc7eqj543FRr0uobmiXB5fPr/FxuM7r8+u1UFcuWmiZioaNsDRx+Ulxq+71+RmcG//foWlrQ7h3DI5ckYDTIf7EfiR2ODgdGDB7oCz9O2NbkXk8Y5yKxg0VbHOTewsoubU2lHoatncJScDZyH+EHzcGUP56pPOoD/q9K46vcvnz9+cH3UmnfGkA0dOug4n+gx1z/Zg7A7anFRJLx/DUTPEloOz46+e//IP//QPvvfo/aABF6XOdN5Tojp6dBxMmlKVZgzTllA4otTHgjJI6UhB5bRUc+LV/guLM/SYWtniQn0vRHn4aw5oBBg9qOBQVgDshtaqkc6NZICwUSfV9cG4IZtAfGyHpxTc335ESlCLSDSRlskV7JIwUr08lIrDJYBlJBmwXJ4JVMaRGBEChhTmS28MTDJGUWEOhMhDDf7EO+iUO5Jh4FpaJXqIv4YcZ1qm73zy4Q+//8EfbFb3oY5Y5bB6wlboObcYPeQ3iuJnCHfxuHAf2lMRKYh8TzzL6XBLDkk4TXKQHFfSgLRBjnLA07l8POHS9VgipHCOeZJ6wHqnKyQTUmW/rbXbrnCp8kEcYYW6ly5vOEThBcIzw57jrJKYVtR+jTttudg/OKhtNqyG4G9/PHn3brDZZCtvObsin/ywu+1yrXFv+8HBy4uTq/PLy5PO2ZVaA0n+41dWxV1e63uPH9/ZrfR7lzhcvHmOkDLhhTim2pFp0bYtY7axWEKLXiyU/jDTRmt5fTwbjZZFkUcHU5k7UyOmwQ3Y0YSQ3APyWdQjHqBJHK+1Sl2JEVsxGnT5AC1fqACWDwpmdaFBS0RKXhqWbFGTXBmenCSGRAD9ZY/9qvAJucqXbQ452gB3EhmxQ5TcoQnh4grEQDPDvADZcazNsR3MlAvAlUBecflFpEcvChtM8DJ0c0vx5F5AVt66ICwbZso5fNvx0aYyn82V31VFX1Tg8PWuLlnHUZPj2mcxE5JKauMJiBwXjPfNolrErO6Mr3vzoLGHfcR+VtY6IRzFCS4mgy67zUfu1Td041rX4/bevY/2HzwRjpN25DGrd5f9r399ev6Z+lPwAf6PxoaCkudH5YnsXTJo8FC4S9NeU0VSkF4/q/azrcqjO3dev+qcXo5ONKW5uT5tD+gW9Up9p/1gv/koHgctUjVWS3bRDTT9hiImyC4aYpq3SCVit+UUhicQrZY4IhN4P4mnFE9VMfm+ZukBjOmIVMaCDBdAgJrEDSFQKxtAriwn961v7z2cD+Cs6uv3xRDpt2w2mhe9acwLUWvXF6LG4K6LBuWQiSISrK8lEev4cKjxSRlcQhf2MAWaGG62DjEmw543ij2BMfAM9ydvs3VBFtIVSlUdhlQ1ul5sVyvtWu3uvZ17Tx5qpkTb7s9VuBr0B50Fny7QbFOBc6WJEt6TjkL9hOQBiBpMBo69chZ3GrvkQJyBYR2peyP+TvLhhEiLsm9DGHWImR3gR3KIwAi42sIgY1SMdFJId0KmpbaHdvLVjf1tzPgewfkP/9Ra3aiCBxXaH067g7Px9BJeicMVpbx7eYwCkJCZVldK7Z3Ns8HZoN99/fpr2AxwCdB/qrQ6rjEJ5FXUNiWfb9db0+HFDYVS3wiQaTUoUvZhuOxvEhH6pRH02A4j3drmVEYDS7abtvfpjRGZED8f86JgkgkJW1hLzx9hfjh+7LjI5pgd9h+PLTS32CIWpzjQoqSMEPxPCVlibb451hInZUEdFn/CeRNQCC/CkYh69/EdYZ90PA9HiQXLsPuokrwtWJazHAFFCHA+qMsqOKImW+Pxs+9/+sP/aG/3cZ50c41BBUXgKTntYTK2ScySWMFw51XlkvIqS0OIMXMpSQX3D8ew2sU08l2MHStmsNEkbXYUYA9BDd7jLMiWMx6LiA8KX9Ixk6cjJpQYntylRs2vg4MgfMONkpxAzoWrsaBku83nWg4pgakoBxl0/+COQptXCsR01TNe+ezo4s7+4eNH93odufqn9/a3lFe0yxK9tpsbizv7vSfjt53Ou5Ozq9ML1TYPD+7cO9h79uR+vbzkkrkajbf0JsJsqnVC2uuz1bFQ86+dw1HMJCOzGxF+pffvNT7/beesfw6R0GYtT2/octS38QDXUG7Tlut6YfmDI1huLKuo3hLJdVTbazE6Of4tu5PdnDin8MNydnx1piS9QrQIBOFxg4bOQnGJSkdeQktyt2fvrbjFc9SoJ4WYZ3yBWNLcabDizJpYR/VMZYBOfxAkSqW0tb+uRfhWdefFq+ngXCVN3Dgez6gouBoKzbTNrLAxQkKGLjyLQkqbdXYwfWTF0aipdwFnImzJt68Dstz7EcD04rx/SsnAGQ0jEgdAC2HRt5BxhGisG76Q+J00yVmptiq7+4078x4m15VIj3DY76rBqxDFmAEMZ9WrtcxLvbezc1A9VAu20CXAdISIRTBUst8QJwZyYDwERZnUDpkciJ4NxCVM4ZEQkDOwujZGwuPKREucg8pyt9yTq0L8v+p/dzE8hT3pD1453lH/y199cPiDj5/9gbKsUL2dzjk+GU2dntyQCxFnV2YgbRtZJmITueOd62kQmcJjUbQsmQ1DMvSKG8ZWpbm14xCpi+GQ85VrBc9KLK8AlljuHL+NSlIWpBfhBVxagu60pRuQqwbvYeWvvvyfVrcWiMVpZUPTB+OQgXbQxUjvrbXm1sa93cbBhvoMasMqUsJ9R3zgZQV+A3MVKreDCk1vtzcvemeXl5dBzF+vgsJeDbq49t+8+M2d9vanH/zFdu1BvXxAiSBdHq0u+/2jwfXg+Owq427Vp6uN85NeahDb5oyezsodMdcavn/Rccz397aRpQA+C0PNKzxAKhchmCCMbpB0f/SFp+rDvJommjq7c+9CuRSloBnDmuglBKC9m80vs8WTmspB1edY1MmXYRFf9Vbz3toBn0X0J310NTd+ddK5uDq7OL+8uNBVUkGa717xfFV/8hd/9s23X/7qZ78cTwbvffhBW2MKpMdr6bkbzcPDpyKQjIGdxpac9MHMJsIpc5terFY2tWwUqizJyQk+znyjKDr+BApHFsJm2GTzk6ueY1vUT8kxisMkTipUyFXjCJS0Y2N6xf5FMFgjCsXy3QxB4seCZKgWzBcfoYE4hhGYIFh8Nk5nqsImrhCGGkl0m2qCPSTTies/sAtWk+uJANLd2Y1PB+PAcw2BeVYrb/zh93/89/7iH2/t3Q/NkTrEGssiHqTQK60xhmQkCn0MMo4HH6hJECTv9ryC+RES0d+Lr0Im+sujvApvIgF9T9PzPI4IvDv41ZwZIwgzpQqIDzsAwurRqCxVrhWaCOSUvuIU+Zn1E67rQWRG8SVMC0coFMEw11JYja/Pn3/LubRlaLxBtToyah+0X371ont51NiYUwHWG+u15ZrWLxsb9ev6tbyBxztbl3s7/e54e0ugtN1ioCrpuLl/JwZGc31NcZ3NgPvyzt9zrgiAcMpiVFlNW0ACgP1NtKt+dXqxq7b6vC2kp9XGP/8nf3N1eiUSj05kPGDYQtE6j0h2o5NReCvV8cZmt16+UQBO/EPuI3LBQlo7DSZLY/O+5GgWN70ogjPnKN3VLEV/oGwi+5FPA3kYIBJJAJdTjbTgw0VEfhQ81Fyif82HMpcucH097HQvAG/WG6WdtdUnlbX37rdu5r1vuyKOsnvtdEQspZwpG8GSRpj+jtMw6prQS+T/SgMMoqTqW084cT7sLKYXUjcn6r8uKzd8wjC/N+P+qEdCcm6IHxozcYmWw45TgxWh4Rgoh2to0SCGSo33Dj/c373D5y9APSlBigr2qS6hQsPW/vt314GVVMpHprSi1fXD7QPpRaqp8HLxxQx6Ax2WR/0hyQROHzoiBLi5qIgJkPGnFyZTnAloKsn0SJlE+fOf/P2ffPD+2dmvB73uwd4HzebucvmtYxkuTsZz9q5cX0y//fJV6U9++OeWRt1NBTUKcB3bZEjnv+z3MOiAdGhl63WnUx1MHdiZ8ghjvNK8WYdObzM8AoNAtZ6icsbFlXiso0FxV16e24T8tC4YEdcQb0c/vbVGaOvB3mO2nC1HgMUur9699+DD8sd/+/Vfxf4Mf+CfF4zWiWGhmPGqMLlwcenFzmj/0fYHd5tPnVfcPlpoXX6WQ+1BMbBGo8HajRDD9v7W1mWr+/rNqbKgyZ0b9zkuG41PjjsX029eHByM2o0dIrmi6QB35dru5Hz23uNn8v8ATWeb09UmrZa9n/CbPAbZhPpE6HZzfHqKWAYynvuDjdVqo22f245qRYIvA1l/e62vSS7TuFYvkayKW3WpYmr6FVN9ruF76it3N2W+i6dTmkC5SOzIW4CuXSHz48ur5ewydbzI+sQFicxYD+ZWbqw+3X/6o9YflNeapeH86uzdN89fKBXx81/8G4Qx6V+/PXunqsAH73/cbF9XZ9cMWVXsH7z30Z1H9at3b9YmuKVmXfKFrT2dTCTQIlP/8XZ/5hiuhXdEIgO4tuIsXBe3sEehclo3IUeI0ZPXFcfASUOVNBAcmW4m+u2o8kRho+HLYZpoM+H8wt6O6uWYZ17YpcIuQnVK1qtAJ4UO1wkgJfooREvYT3GlYYTUwcBZi5Enkcmen3TWwgCk1PkoDDke7Mqde0//8Ed/ubf70KnOL37//vi6nRnUGC2wGBaZxPAHTtJfhIyNpOcfJ98KHdF9udhX/nWLuWc6+dtPJKOlKIZSYKBSWazAmpA1TJQ4ok1myWPCxWuqxQJSa6LERlQxYjOyTMUb/GegWSOnwkxsgUSm2tpXX/zur//uzXat/fHhk43a7qKlxOzg6MvPuSUAdb/95qzZqO8+vLu1tV+WGs/6A9vWZ6gJAtmc3p1Jwt9vx1eLjQJCRFgi5ZSLI3rCE7NqWaF/PykzY45l1WIKYGdqE0ldkwLV7ZJJizZo9mLt9AQ3AAuKeCe8TcCcqX5B3QRat1JvO1kWkt8/UPaYQHE0o+iEX/wXzKwlYEYqakC9iSBX07Fi1WRFIQ7JkupLyLHdWMeeuFTXZcNfKP+ynG7typZpcWQAzEDQn4+G3cFFj/LSlH403xhPtrbqfHOzyUBJjsZmPQC4omy0iZpS2D6/vDW2z9HweFJSvb3eBJusNdYqD3ZaX3z+xf33nm4d7FfbW9SHeVfPQJCauQoO8g9uRgxNkinxf5kVlHcmvUXg8YKOl0wEckq1PFyvP7v35P3H712vVhWK05brqnc+HF5l7W6Gpry19f7u7mEgfToZjpc1OGz9FYyrvNa9Op/0z//6F//moz/8U4SUBnvDa35kWj4lF9C5qGbGnI4CFnGdqXFBMSN2//f/xX/14cOPycT28tnacHZQOWzfjDbXl0PqmoObWByP7vhk1JsuTo46b1rVWn8y8vYN8c5lZU233pXF1btXL0+PupPBKqwe6w1SxOni5CX9cvC0c1lrrDXfP/jgcOcxFSBh/Pxu7fPvfkMxZzRxFNtz5L05X62Dyct3LQKDDtSk3//T95cK6jkmofZYeEJAG4+2P/ls9Ze9+aVXhDIFTxbSbLi2wRh4VeZDKdido5Peiw+3v/+9x3+h0VvuDfmiIzSoWY78ihRe7U1GoshbG7vLg6qUr/POhROrKDMKrJTqg07nej5+WX6LgTRKm1vl+Xt33/vw3qfU3NXWCi/f5eR4tbquuedKBYikzSrgid1Sfnpz+w/UU7r47rtvfvfd2xN4iN07tfHo7uH9J/X6A/pEd34+KHXAFI4uX7UXy/21Wlujn5Xr6ookhk1Z16322tngVaU26fX7a+vy5NtVnRWAEZxHxWkrtX1tlVZWv/z2q41yY6u1bRktEN5DSazUN0XRXhw/v3gxONh9tN/eV7Pqk8NP62sbwC2Q7/c/fvju6DRdd6YrA0DNyVlfhSoY1+nQbJ7d+Wh9uDK+fkUH4TOX9Ftqx1+B6WOFfCKW0O44iag5anBY+Kq6I3QjoK9IAIZDFH0nKUY/L3XYojMgiEyhU6UmcCrnIRfwl3CMcfwK5DjLmIOn+QjxIJWoXmxkLlAIYUGqTBHNOJ2YBQUtRnT8UAVtuzSHl1yJk57NlSALp5PLHeDicfHHuHajufvRH//59sNnyhq5A1/1iFAI4rS5+eKdI9gLBmTwppmCTLN5lU8tec+iPu4x1PBkq/G//lVw6IiRIgZARfFMyxHyNbhEJqNUZiK+vBGvV29SEQgwCWjZmA+xhbJgOQh+8K0xRtXBEWNQZUG0k97Y5B+SZ8EKpA++OgVPLr3mT1q7Kl30dAraubnhJvbrb14f3VwMdibTH3xY3m87ImFpQuv8DG71k8TCZq0mSzCba+7Fwls5p7XYxmKBCqGWnSyiKxlHsdwRRfTSJDTLTV+B+ZEZFCWj0+OaLRygmaYTxcpp4J5p3r4B4QDhZ5P6/a5YN0PI4ngDW1KttPjVyB+6TcQAnd+PC8CY+FTVLr6BWrSdRYiEYzUFbNGLJb4mQ1rlZqc35WrdbgFazPb3tgaT2X/03zTv/fDRZXf4WprlcLVdK9d3tm62dr46778Z3Vy+u9xRH5o6AVCukpL4n93FpmSf0Ia9Lr6GLH+Xjll5SwzwPg8w+knjl//z1Zc/v1qpLtPLrsR1U5bSNV9Oj0/eIVlhevoI6BrnALtxXaV2PVqlKW30xV226o1pp3y0GNR/JBz3vFoHotS0YXmuGOXpd9PVZat5vUuJ1sZFGLlWGg/6Tj8b983waLxcNJtbtcY2r0Gz9urpvU/3p9eVSuv52y9evvwckpWHST0RFgAKihId30+xZJHCi4Ot/e8/+ZGNkTgNbwzgN2osh5Xr1VZRYy+xc1lgpepqc9Adl/rnR9++2vroe5x3KjClzIpGb+i/tPb++38o9tn97jeCySIEaNTCKfZkwiGVNfHp0rS8nL39ZrnYalZa2xqSqR0jn3Fr6+3lG822lDB1HBwYEaI1TSjtKj0rAET2c+lvv/1Fe/twr7EbmDRuQR6urO+s3L1XfXp5eaa/faGFUflQK27k6CYCTOGalaZXpaHc6LX23Y93fgzTmnOKZJ3HUC6PYgXQkB1wcdlfK/dTS7XGUgo7vJF4ro+Y6vezzUW3pKcCN83qzTmA1FrrfqvRpLOMb3pygSv1x4f7j+ReaRM2vLq+7F2+Oz95XXmjhlFbPLhUbuzdq755+9uvf3d8Xt497Oj3tbd/ub93r1TmuB+vzyf1AVWrtboxbE7frffelqfTu+1nXd3lJs0H+08PtjdfSO/gL56fcaxPEozcJpjHyx64RUNriN7WyVEvxVKzcDTiFGHGebZaB/sPd3/9+ZevLr9713nNFqHeqfqiiWWj2eA0at7ZOfig0WrvSU+Duf3m1dF//0//iQP9vUfvPfrgx0/37r99/Vn5b/7u29++IAkbO23tx9WaRTrhYoUemr8YyHS3glPj59Y1cV2qf/h6QJT2Aj49cAqCKbiMYJS5Yg0V76JcBflMqwMdAX3JoxIDR3sxFQF51b8aTo08aYYKZ8vcECqhn/PfRR2MXcdj5IVMDPwam3UdHvt7X5Ngmz9hxnafLED6AZPyqCmcdXhA96865OvehA8n7kDIxN9jYgZcjMJZCdHoikYZ5LoKn06pdXwSOfkV8XNrWhRS4PZDnIJcg3TCNEwylxV8O4wd/RUYk3xHfwlAZTUlSQaMxd7adtILDDgHIhhNYQ4XRRhE0BVlOyyb7YzGKy0B33QNoT8r7W0fJoyAj9/MJGTdbNT/0T/43+ztPxDn/vLN6+/eHGkX1WrQYBVJERYqAiSRdepAsRJT9xuvjdGSJxpkhBapVczfeHJwMuNMxpdLsuL+iZWztjKd9lZUEHI9hnN9M1hMvjs+4oBxcgw912DfmxutLcmqNT8oyTdXIRlqDupOnYWQVoDT73/8wf33H5yddMoNPRJSDJUkBT4hGQWlhcvRweh66Go1MEh6Zh/AJT2bS+mg2eQE64HLdW/Uaau213fubw1nyy/ORq3fvfvZ57+5PH39i7/9Zuf+veHJuPvJw1fHl6Vq5d/84pvRl93yaC1YzRuBevMiT9IdO7UNAuhCGkt9tCArzG9DcxaADqUWFqWPP3y6uqwKqYrb65kkcQ8EPhinJO+1tmrlVluAoKnWghMwur6Kf1IIYq0BRrI6xgn1w0mIdDQqrV5diAZp2Su1+1j/h9FATbC9hqqbVXSkPZVFLtriqqZZOukcq6Ijh07WJizxdq2hvdZ4OmxulH7wySdf//az4aiPwVnSYgFtNge90jqRo46EmYqCXI2ORGBlIoME/PbV568Gf3WpfsOiz5GOzcrkMtEVzYE4gmc3zdXS5PxM35jRuDNcJ+ia64BjUoI21nb2WpvvRGCVO76li9t/bqkF+RYB1zIfyMG93fuLRTC4mup88OTDd5ev5Q67IJSG1hIAoAM430ifMcqpsvqq9+7q7/67/+Yv/o+bJD7f7liIA8vYetz+/vPTLwZyOCrYi2ai1ESlngFXGUIuDJxSYY1Bafpm9OpZ8/sCCDgkAnYzg9XRyx85qlwY81WFF6vyeROPlduVwzcHWAJpT+HaHOQguJbXg/n6z969++Bm5/7BAVhL0iNIK81qVPJvPrrZX3x59tnXr6/G485Yvuis11jbspY//NEnSOdvf/Hr/vJiW3HGTqf25ithud1NSr2en+u6A3TUyKo2mbVPVqbNxeigUTs5/Q4nPS6tNg53tuqHCO7k6mVpo0VNXFttOIEoCTt87+F7Fxe/03cGF5sslUzEQm84C2vD85j1uwc0L9F7WjGWldN5M+9rwMCHtNqfnr8emdmydLC9fffBx//1f/WfKwBXBUtXOWtzsv3eoz/ebr733kfvvn4+LA140XjUnf5C++YjJmv8h6IcbkEgcS7xqjDPcDAKUwLGVH5Qchq+C7EKlFCoCVibFeZuhS9iEgrHaDYE3VBe57j0hZ17DSqEqFrZqNkSfE1VqqRcS6fHZxIRjEvZePCbW6mDebEUsWgcANBSZ0tZwPS3sDpsBB+FMpJhYsjl9TsHNJAGc5M7Ho/mmGKZMLY0Qw0/VxQAUwUbRCnh6YhpJgrPB6uh6FjdP+omgRuGia7IAM+PPhpxY1msEkIzxeBFLEjs4oBHxMNY435r3TwW0zO8cFspPIoRdq626lup4UkgOK+yvMOBIz28JdIiNpQ+LdxRVjyrtKHYebLF+XolCUYnm8vnILqQ6+auKicye9rKcj44+OVvfne3VRlfdt88f7HWWey3GJCjkeLhPLAon2SeCsm2zdeAcw4tbHx5hZM1GloOj0mFAopZZ0ELsZBPRCnnEycYEFoB7+54dLOC6pLqYR74p+Hb+2JlU3ox/XjJc9igPFFv5GyRxdNo6Ysvv93Y2tnQAXdvxyFDNJEvRKaTVpxZnmQuS7JxN34nTjMUFJrjeFWZ+WD3+svPfgWV8Y/+0R/95T/6hN77xVcvj6++Gbw+G03PTaq5sdo9Otuubn/wcP/RR+1vT64+enrv4MkP2+Vt8RZzh4VdrmqrIl9P3JDKklkYHDbNPlUUDklpvy2nGs7zh3/y/evZZmtvn3GzibLojyjpeigYv3VwOeEh4P/d3Nxq7OqGJk0LHkwIhuNbjQwBf17z2lqnsTn76JPGdHa5WHZXJWqVytInrMD16rksYum1O7s1cTXIXG40YVRYMvDwl2enzY3a+soZX/6Z1IYx9E+zUSv9q3/7z240BJ+AFeaAIi7aD1g96JlPhJ/EsWFFfvmLz2obZZ0LL0/eHp2evDi/Gt6stLa25Dsq4sRRIHO7vdGSjb/7bKe93tSKvBuNi45R9QcbhXfCZNExn6GmFUU/orBehBJLw99RgEL/4cbQrpCfXPW09PDSxd7mgbh3d/wWFBo/sMZYvtuLKn883RGGAr/ljebbizf/w7/9J9/bea8VPdFeXK9W9gRXtkp7nX4XE4yP+BoVCaDojyqf0gAErqLyK/xan2hfizgTdo9+U2g4uIzViMRZWWTrBCYW63dq92XhXAxPBOUR65TDKilrjtxiUIpoUbdlcPPy/KLzYPbg/b331HeIR1L1zYkg9sVo1n99/B1w7HqtSiyRIcWMAAEAAElEQVTINFeAxKHcLLf/7M/+8uHTT//61z/rDC9G02kfYvfybGfr7l5zt8mjVgGTFWDcq1QOqvN39LmK2FCz1Z9t9Xqbe61WY+0iKWnmrGSc5OIbVX1a/EGAKaqGPzh4cnpxpKEnDjy+RqiJJvfGV+UueypuD3XnackEAE8qVgJJGbTJRhuqsr/oS5J7/urFizfHH0KNPHisLgjuGulHyaxt3fuwcefOg7Ozt+fnbzvnJ/AMNpxBK/HN2cyGaNQwkbMS/JUoJ8QwRy5sh6wKm8dXgidkmfl3KoRRAsM8+xilvFjWp6lA+H7yVACs3dDYeaX57L2n0rA8XHqsrllRdnmF6CMpUo32AQpFS6w65hrZk2SvFNKK8YFhQU6ElXY6FyfH56fH7969e3PyVnISpZMNTKFO0l61ef/+Q49HElQ1ijSfMUjk+dUVTsKcwtn5rIMfEqhmQDNiyITmRgVE7z5stgYNvJxCe/lKLICLmspCFKAztIy8/Fpsq/7R/esHO+I6oAui5RgKHZB9gqvjZhEJAiJLid9GPjvYb9zd0ySd86NGXoOWQwhhoOkvHUUKe/Ev8ZRXeZQIEfz5i+eXktcBaCtBFvBW9FA5jRpgIEF3htZqaX/voCYmwOU3uzl+ezx8cfqj/Y1HrZuqUr4NVZrhJTYUJtRtiTJmSd3CpsA4dCkKtJF+ZUpEVnFkMvRCt2RNOdxmLLPrctSvtVRCrAuXXF3I59Q0e4pRYqGutZhEoKUknNc0rsfv6XkUh8QR4uYS8MCrGHQzGfzds6fvvU+ax5xzMqMMxicfeYMhCWE39T1cH41m2ibLyzCeBEMVXwrQfryxv1rfnP5H//jh9qZc4kGlOj86+XJje3UF8GQJqF354On+9z56uFxevXh5/vmvT15/PnwxXIU4lcMFiYukg/JKTo8AlG2lnlgZLoT4WJXDUpsZbO7VN99cHJ3+6599xvEukZUM5PZOjn0Z0mpTBysVs8iC87fnV5fd8Jdg7eJeI9Y5RRi94+lU+WCeW+WF/+Iv/wSGa7XcP2iILjbfnp/1a3Z1rrngTqnBAzUe9QQYcU5nif5+9JJ3WDUwQ2sS3O8d3Lm61En9ejA4Bd4WQr0ccGJo9GhF43skmycSEmIoLRVPQFTTk/7/+E/+LV1BJpa6PTP+3XJVlix7325srs5Qb3Ox9Zd/9o8fPNs4PX4D1NsdYHDfXnbevOl27j56xMnQqvEh8B22tC0b2mvbFb5a8Fa1WnVFSd6VKLi3sNg6l+pCbVZdRp7hHHf3Hr5+eQTBROunhgWKydOGSmbBFuER0iYTwCnXzk+/e3V9szmr9ge98cqgDTO6Ut9e3+7M7+jW2N5aa823BjelF1dfEV8OpsMOkdXe2P3R4Y8+bT696R2DYYWgY4jTQ5AyFhIIU0HL6atDUtKKH+992H91ZrVBawqS3Jhf9zkGFMwTyMPkEFiyJXpKx/U/vf/ebn1XbCYejmAKW3d3n0zevb4ana7VMIz0MqJazasi9NWH20//s0eH/+4XP337+tWkr1revD+7PBuNtqsKqTSqrfr5fNnebJ2Whiuanl7r4qh4kxK1m7PSeqcn9xVjX1MmfIeC1euQvOgVoojZfLj/UKTnpP9cp0k4Y3BCJOIgc24DcXJtYPdiuNHh7D/kkLZMAIrrfJUqWdSr27X7B8+Uc6gq0KilGdx9mFth6BP5dRWzGk/3tw9Hj49ePb96/VaEXnzYucB51YBqteuKqEenxfQpNpW9alU5dpDDdqXcJiowCJvLDQT5KGcvalR6XXD0i/ckhsAdDcOLyQjm+8VWu7X60ccIF5vn60ksAffAHQj0KIy4QDTKWBEiEiiuCEMKe9Fu4kLiAER2+AKv+nByftp5/t3XXz//7Ojdd5JAebD0vtg7OLh7+LBA5DKcJE3OVew460m/Hjvyji1wgWeHL9GDfSOahiv/xd//SycqJST0UqDEyeQwDgqCYRFGKIsNb36Sc6RooS41Vw5FXMkJy+lg4SNmJXlNEbxgXlgR2HkCl+yl5FtJl2C2x6ckOcqzTTHRPNzSh7ivUZShtwkJQOohf5XwyqxzeqKsJBRdeLelEaoW5ZIY3JIIwiek75pNvXPvsN+9/Pakp8bnjmzkZbc9mTxq1G/Kvenw/evqJ6p8L1dHkzXJtyonoQCw+fl5X4kHq40bx0eWoxsXXMyD7EAsyjS/AKwdXb39yce7O3c/nK5v/exXv/3Fv/uZmocYc3Y/5g5noTMdw4gZ5MvP9pN/3YPS+Sl9XfD6mEuvX73ev3O3mUQZPD2lS6IYRpN1BNMyd2261moeVDlekp8lS4UxWTga1kojsfPV1f295l65HZm1Wa5uLf/r/9v/rrNe0wWp8/VX23cP/vQv/+QZvOvKFIji66870+6FLN1NeQzlNcX69faAzgPoyXpqtEk++UJmrCql2CFbpZgqX6IP3872ww+eSQHC9HF2YyUnsRZXo1lgGSHTlQpre6L0owfQvWhFHLDBAlJlsCTpO9qDDUu9fql+0Hj56vPKfkN2gTzBoQqi1VUo2NWbDs5Z2tI5WDsdDEsT3cm//um/UtyHtFnbqJfKtd12/dMPP/rg44dtQrH13nsftLvDrhItSvMthb7HM1mkx6+sjZmskUBJ4+XZES7HdeXuUtqUG2WOT01zHYZns8yhPzw7/+Ld8Vb3emNnex8uSzrwN2/f/O6371Zbm199+3Jj7Q1f3vsfP7z38EmjvnE+XPNCUl774GwHYo1rOPJgDQpMA0ksvyF8nSgcy0z73GZrRRe2q8lcmihq8isahXtoOsAjbidCaI8YaYugE09arrZqO9uVPY+kGVSq5T949liVTSU9nxxsdDjExtWbjYfrpQY7A9Ztr926V99e9k8V1MVkHFNvYNiKFwkmkMYEIgEg0Z+SQ7sy4sMdRVl2vnn929J8uFje4ViWt33dGasQQXULtcJVranOtjI+7jM6fvzBn2hiw6dEZTDA1mH7yf33vnn7/Oujz3TxYAGMVKuZz7Y0fnEkp9O/+PQnJ3cff3vy6uLsWKk6Kb2jK0VIR1v7uyTuSChhdW00K99ZLu84Es2brTa8BvQ0u7AGWAUEFHTE5rjXv1xR72+lliDOsrO7Bd8r9s0MuIZt5zoAB4rhGgi1mQZECcTDpbYZYCxEFh8hUHrtydPvqxMVebglqM/FKO0fbs2+hYTpexFhYmKVamurWdvdPtu+f/n29fD0FSZgZ12/Va211eCur5e3B/arXn1Sb324tbu/stEkpdaWIxWGwv+CCKZG5X9M2k7Ez24ueU2AnvGkBH+J0/uif9oO4KMY976iL+ZzCoafcaP4dXxiENGHo7GaZUFt/kEzGJ8E38361t7hs48/+qOLH3/55W9/9btf84XDV6pID/Am7mwKuBEOpeVed6TckfKLKtRMyCnjMH3P8tT0ZwS9+r/8H/5LOBeoWDWpYt4yD3Ek2QEqyjHpzi8pVtvb22pwDocioNDcKNjI3YwvaC7rmOFZlF3clIAhAFSUKtwksp61oWb5M/IhXRlxjbZFJ+BCmIknC3cgVCC5me6B1DquNuPmYW7u7rzuHckVtqBUayKTj2K/0tpf25mNhODDpEVSdreri1nLPEegqCuzJ3uzD9rUC+jWxZDzS1ts5dKaOxItczyjb8PiD373/JTvpOBr2Hw4m1xtm0Xa5ZQzTnRcUm+usvJkf/rkoL5WV5V+/mTv3lerv66VxZrgfdmMNrugKNzcKWDRGCt1KzxTgUOnHyIsCpr9BI+Z9Ubf/vaL+4/fA6ZYV5PdV8jCRaYHoIKURbrVrrLfoVOfhmLwNiqErV9bvnf/jnCDwq2lxdAwW7uN18c94M/yfO3wUDkigYRxvbFhAtIMNvf2D3cPG+ps81CAwcbXHC8gkeMfC4HYwIRNWYga0cJrnb06Pj46rYKx1uBvuXmhIwvVxHwyCyuFgBnda817dyuNGqNUdeEoJ4ziKgPCkqy5Uc91jZwWXQVBJ9vCobSklmrDF3jN2bsjZYYlGR+sN/7iT6v7+/uUqm53LpmcNrVfP6R7W0yRM4Xs+d9/97Of/+Kv/4qIXee8admsMYdctaqa1NZhfXU8H31Vmn711VCzEoA2ugl5jqwpVs4PV0XSMpFK/JNOBdk/VWaqNdtUuIY+urNzqHqVhNit/dXW9vR42Fvb3BJx1Bbm5Oxie+tgZ2XjjeZh77rztemdxzvtnV0xGWsgoK43NqupMlu+/uqLzvG79va2I6f0HtDYVe9y66ZUU0oDGBYP8HK6tMTJCd8Y+yu6U9F7neeF6LUekNil9Uksb8dQYgfr08H/7RcvV9Zf1rfLmjATx63Wjc21d6uLy42179R5ZSgxHJMHQ7yYfbBIvNiBbZLv9FZRbQth9k7+Vr18b2NHARfxstZ26aq3csU+AhtoVUDjoQRogxjCyrICPtHrn/ED6dvkec4jipzelO9uf9io7Xxz9Pzo9Ntu73ykFer9OzAPpvzB42eP9rYe3ld1YHrV7b05fffF119fdC4uhn1wNuZOq7Y+rm4MFjf697U21/aTWFBar7ZhyZYR3Ko2TTm2rtdvtIwUpyA5J6rZlia0PpIX/IyPFAeZrq1tU6U1qZ6MRP20zGa4pta7OrmDAWY7GF+UYOgqP9nfecx6g11Ank4YjRcVJS2u0LIxQLotHhI3xNr61pP7GzuV7tu1q+Pj6aCL2jF/vGmyuTLaYAKKz3y6ubE7KbWC0uFyT06YYk4OUux4DN05DQfB751+Yh+Lx3F8Gl3Ee3znj69wDApycaR8EtUwakLuccKiRST4SZD7k7oVUTgi2O0ChuvLNGy2xk/rq3fu3tne3X7/409fvPj6F7/+ze7BIQdmnhadFpmCKFs11KUUMpbOd6+IGUcnO0miaDyHxrYOCrzdpPrVk6BAtpkPA8TYGLA3N50rRfym+wf35msrr85P/vV/+99NLnp1JRM3JX8n+5fCZkx8CrkjSjOFItownc5amxQnL5NdkIfgrDKtG20q3u8loBgLbPn1hP20t7vd2ATohyVdzusKBG9mb1LfCDZgtjFda0zLB8uN/dHqbKjZgFYp1fqsfn9jmwf7bElNmkiuvwufvQZ1byjxNGz2O6uXv1nWtpTRr6y3btbrK4z6ySqUnD5AQflEMcM2YoVYZbp7cBZshdKCHgJ+Wa3t9zcO9VGCO4by39vb7vTUYTgzrQQObHimcL2+1coeu9/MURpDVYJvHHMpYRSBEj1/eXlyIS5F5+Vb51rxhEL0x+GUhpDSYgruH64RLp/FQxQOoadqefL00ZPV9QbHg9SZ8ehtT5+sd53loHu4VT28fygMXd9k4g0nvLZcUhxuOUUyrdTbBT3hJI+tgogylFhVOBPu6Hs/Q8pZv3V15bonx5Dg999/0tzdh0VlfhJghZc1G2xulNim3rxbe+A/oSFJKsE7OQhCQyLN6Ku083BlcHqu4zffV7W2ezW4/vr05Li3/Ob0uNp4tC+ct7mj/iXWJEKLvYsyD8bna+3N37x4OdJHPVnGKu/xIRRAKJQ0HpX6N1py8y0LNU96SYK+nveUFfzjP24wRbqdm8v+8PwcukeZ+Cld265SjMP5VXIaLkisYzU5Nwb7W9vTzfp8pTWdU2RCBhu1vXuPH48kmseHl0x11Txfvzw7fv76q19+fXJ6KZzWvvmoGt3ZgV/v95SzUWQOQPzMCaN82SAHnjiNjsEExhjIMdyhoMVoldCfQtG0JivvhDlchKsrigazAjKsYHtjN/APG+ShkrSc9Y78rWh/N6dUFp5m/B1tkXQFmMLm4A8IyaNCPPhLNB1kyLEeVEdl02Pn12p/k1mcFWt7PArrG5dlMWYh4BM9hxzgqjietJR0rFwM11YHny/PgGoIYNKoIHReuGFre//O7gG7T+pz43r+7qsXld5Y9FKK+Pnbq1ptVKnPmvXD5t7hnf0nj+8//fr1t2/Pj/sXPYVQ9UhX7afHMCqVd9ZK/Y2uIqizlY4XBp2dmEOWULbvkFqSsq5WBJeUrCV3Qrga/AtIv3p1dr3YrYvs1TdpPHGl6yJroey4NXViKPa40suvfnnn7nV7a5sNy+dMxVG8gXgkiXNq0TP5iF65Lt0zYwil4NGDZ48r9eq7777K8s97q83lpc1cGdJobtbPOoNfn19R0hpc+HX1B3muyjUHxBG1F//eleBf80gr+jQFoCYndQxLd3Yo/t5vYivjsUxYFoiTrXxwdov7RB5v3P5+gmgw1BSjSTAAFJBzSShZqCARZXonopbtHkKwfit7W1tbP/zDZ88+4Mw0KR23vA7dga6iZrIgpWvMwzgq8ShwAENBEEjFUsgyyZrEYxSawpKc8XzFdnGGGg194TQ52ekCDInWV2qL+rQ7ST0nqKRorBQHnUdbDcAdo2ej0ARDiOLN/HlFicTki0cJVR+K2l+SF8M7lkURq9gA+KxiwVgk9xHKVouYi0A12zu7O8PTnjqi/cXV4dodW5Sw1aL7ZvTm7nD1QfvR9548/rjVGB4Mjrujd8OT3dLbLeV25Ic4YGaoRKHQIIDF0dm62uLlpiSJ8drbcvmBDGLDVhLTOhOBRUaDw5c1SkkvS4+TATKtj7Qv6ah3ec2PWYJnMrYkbQAnRbYVh1l1WGUUhX6ycmHp2DYHoMcrd2SFnE2n06VYA6Xpmy+f/6Be39nd8uZoZ95PUXR12vvSw8DICpWg0P9DJUxwXRtnS1CBx48eEowLByFlTzam6hH1l4TDH/29H8o50E44utBsdnXev5nSu1SUpBMScqYZPS4MohiJwZi6D7NIBuf97IzWJrta+oVcHWllX/3iF63dPeFTjeVSGzEziMTyZbSeNRH8ja7jGJnH7ZdZM7H0V1EIeyDiirMY7dr8Yb87h3zDXH74/v2jMW0BPEJBzfGF5gFUntL87OL4zenRvQ/vvbocvn51lS5dpeXZysXyyDIbf5bQuxwuS4v/SZDwBFX5RbX0XEnrPu7JjdazR1uOHWYhOptzKDCvrxe/D4fHsH/R7bz/qPnRwydJvAhIacLamfJYjUt37j3e2N59fXbR745wWZG5t8dHv/rFb6/OxHw4cBbLzuj0myN6a47Pil6MLL4Qv30NsceRUhQb1KveFzoKezFwZC8vAKzTYRVeJi0dF5SCPRTi3pPpc7TKZbA3EQDMvgJW4XZTndBUSJRAPOxXwgrq4dvSPJ3qWexf5INXhOqcvmSTRBsJKtHaIgVR39Jo3LM7G+sjEQgeLcx1Pf6OpIHw14KdQyP4AFlaas+hEyQBSTQv3C3VF9bXXwpdGgIEmedL3rg8fttsN28Wx3JEKHpAD8B3GQYvCB9LKDnzpYf2kJrXx3zifuS0+S4+nFCNekSGTzm3Ggg0mXcoDI0lRUWUexHos1gpDUavbz3Lfvn2N3FG473yxxSbwGyDQc+S+x//IT5Pvn3529XjTemZstnZyOhH8ATDBHLyJm8THJKAaAycDIp+pnxLuaEy5mj9slsedJmj843meLKuBd6sLON6fnY9BoPbh++zdeaJbfCVmLJiSpOiLJijJ1UT/dP55DIWEjoOomiV9hhTAlNYlvrXs+5Vh2PooL3XaieUHGcLpzeKYK6atsiyuDwqCu9gHk7PLjv0xUaj2mjUhGorXIURkB6NP1i2EFyjyl2lnNz4atxF/xjgYKSHhtBZBojU0Uod/rmALmzqiyXYHJNlRYGQ5YRD3UkRgCXUKrWwphw5GjE6i0hR/oXvr39yKQS+Vqs0oG5Jopw0mZ1gwl3faoEN4RTzIU5FCTs4qco4K1pKIwlHSkwKgyPPSDIbQHlEh5E1jNSITYp3IqMKbEognPfqYAqVtcZ1f3X7zsPqEDhlOqpXVjZ7/NC1zUcS8eo7ler+Pdm5H1/LErxcOfuVTbpa3yvVJmCGxGNJHvnK/bpUkNmwMusDpjaaZPfGn9x9f+IgA9ZSO1g6kpQSFbEAfHLFRgnhTbUm/nplPiJC1F2XoDucdE7OoN26RLfFcYqdWGtP/bg8u9A3HHnlNMX+dnSY1KnvZW/CvBxI8YtI7NLxm7eN1mZrdxshxWsRRRGJxE1nKbiMshgkENngqCpWI4SxXIhKbe0elFbr8PtDOzsZ31Tk4PSePL0zW+31rrrvPXs4uzmbTkcS5WnE+k45XYnTFJvoePk3iujtSQkrB15xzMnliHy0y2NT1p6xtVM72NOmadjv6olznQLTt9RWhBatV4RfuESEF0Uh/gqUeuu3RKhr/AAD+bSHe5P5fV4/hpDKz9dLidm1lebm3jaoJaNmc+jTOWzUysWblzeT3spN9/7d7b27h5/925c6N4ZZBCqLAKOvWcVY32bg9ZBHY/0jHRxD4YAFyrKTfobOj/+npmOWKB8y0kJ9g11RW91TamtRqz58tLH85GBvf3Vur0a9PhgGZYY7VBjjyZ0nG83GxcXVbBjUod1q398bWpalYsLr27sPuCxG3YTUgIM5CePa4/pnbOL94elGVsD3IhApnH6bEL7/rbwFwtvxY1ASW5vAGrGRI24xPSZbg6oyH/Z/vMjZsEJPvZ0x+ReTNatgbfKdq7Pm2Q+3OUR5icYyDlUss9Cd30p7SJJVUXcESFl8FSvCXZ1efDHXoMCgi8JAM+TY8Sj79g//oglGscbKDTPKBLMGg9GodyP6nP+zIaJ1KWW8LBWs3oPwl7gAcn3iohwQxFds2qI6iYeyhnKEzM5Y8MjsZa7PxKIV5PJC22DwqHxCnwMni31VdGXMOYuDhMYd2WHYli/h0iImF8ljWUg0fk8uyyjbbrDKno+3YiGkXtYYAyUzEFuOZkR5GSh+1h9s320+3JnXt4acSKs3tcXsnvz6Sq0N8lAhUUUe1M9QFH+azieAgUigYHyFJZCSEXzWsf7o146EN1ololfGVWcwwm5l7DganAG2QpomX0Fu50mHUjHxaO7WMLtrgIARQHhBoy5FV4SymCF8eisBmGLfiMpKWAVWHrBTahTqTgLaD1DdYf2l9uZkGGi8LNP1zWRFxS0QC0Xe1DqUCLD3JWTJBIJ96852i4NGizcI6SBQVhXNiLp/3pXkvf7nf/EP+a/Rn6rEaJyk4v/CadkalpcrGBu1o8XQcypwvriDNUSIIlkLIRUkH90EtTnVlp07zgyyYzbIs23G2vnF4K/+9q/enJ6Wqo1Sc3e1ooBQX1Rvt7k8aO23VretGmMmNR5pElTnylap+SejtDvA1nrrYk2qMKy3lovD69/+dPXdVyuLLoG/sbK/uvXjRusAElPEzrsMdllqh+rFN0OSaBNr09uke3L1ItHxUV8s/kallKNvr1JzlF8hMh0VhUJDtiUS1DJUanS3nGN7YDMplh7q9y5wcvzLGiNKzs+ul7+bf/T9T0nBHHehj1WpWUIImTupEMFgdIUu5qf4GK5H91ot5ie88UWn8+r87dvjs9mFhb8ul4bd03d39+/hYjQSpvoFN/uMIhhpZAPEDxwqZJTURhSVYfNRYA6Jw4cWfBCT0dG6Was18B+eZS1o5fiL3rl3q9Go1OpxbfkKTXqAO+LpCp3GuelPPvC7AM03ZmXJVowanB4NrdYU9BfUbberHblIUVpijKPO06O3ZyejRb93sN1srLf1FRye9y9Pe1vb+llzgRqitXSWcEKiwFOCTA6fo/ALwSbo5MDA4aUiKfMlsCwOaz23ptcXV/wOhSVlu5x3B36x/GVl7X/4l6/2Dj97//33dTL59KMPdw8Ut1/vD7r12QFkTnl9sFBUOMk565Dwu60Hzfn8/NXxy0GvqfpfvWZY4hNA5XbO8hVOBWNjLWM+YTG3fCbapWU3DZuKugOdDrkbXuHhD78N3w/nD9fDIVzop4IUbYc7s6T5co+rcmlxRY4XqeL3+Y2vsGAP8AgPCWTJluY7e+J/L/Uj7i4MTn/za8PMGhaDyasNzFiL5+OW3lFsZvFqz/RW1/gssgoH9qQMKyTgP5hWjilDKq5DDr7sSN5rLjhj0H7G5dyESPKmvIA09DgDvn0KPSy0ZPDZUiykmI83GlohplyaK7CtzBhr57tJWl3hnAwR50FWw//OFM8mbdp78kpocO+iIeR1GZnVCxGhidxYrJbyJF7PdkidlTVtYh58cPfxx7AWX6zMLrcX7ZXR++sbjwDNsDpZO8Y3HF9fKlZ6DXvsuXlSsc234Sc/q9Cu7IU2nzI6ovhxtUxKaUPBYwA3B5PUamguHZqOym+cNqxcKH+FCljsbZSK/N48q6rX4OF2QriRTh631z6VSr8ds86iuZjITQHBna3tm5smrWjYaEUVM1oG4ACgNttSBLETQo/Dkm85Z4hXQ8VNyIHVNXMCXdRFUP2RxM3I2PRxbt9t7VlapnFEEtqvicraHm8N0d4ScmgaKiBjtv22wulIdow3FABElWZiIFtqX9nGkIONDNUj09CiD2zq2qpmXGGBy7XDg+367vaKMFn3Qrmdvd1d/eXoYIS6pH5uSw6M7Kbztl5HjNSdZalGI0l+udixsW4oNqAUKCtrZdSv409hVb7iaLMebjcSRIfG86QckPUiC0N55c1Nwt0Vg37v9ZvnOLWqJ4DJZLEPc5+/TEiMnZMaxzV0djICZemHNeVMFsfEKmZFECCb9fT4WPLwg2dP/D57mgMq3TPEHxJNaIpeOVepNv2H0lJy2tjbnSU/cHoxvjrrX/FAKKuk9ItWXHsHW/BnKWe4Vro817qYLqbNSRK3gMhBag52tlvNNncwPdf80O1lp5sOGw6Jl1sEw9Q7UKnUokeEgRY4C1lEW8Ne7+LsvLW1aO7sZgpZt9yTDfOdf4t1uJ1nWNRi3jk9I/yo37wyolfYpMjYVnP7YKd1PTwKL4ZSX4Ps5giZaKecmnazUk2nya0FRECvN+L/dqAZgHydfNnkUarNBDCdEWSJbuV0wnj2IMuFnVncHBWyBrY8GAwXWsxkV9vE8B/dxmL03Zycvv7iN9+a+6O79/+b/9N/8eiDHZYDZyRfszkl4oZsyBfKxLqGu835Hi/OXCP4/b3HtWZbOQyXpSqLR+SvQsBbkXzvK/9aq4zKcLwWvfkuVqMtLjQk92SVixuQUqgwIzfgEFQIyyehrNuLbqmtuC6X+SrOTjhkrrr9KZ8i4ozBt4WouaW+LEuIzAr4wEhy+Ir/MErfh6VHJ/CY6JO/f7ozmW/zKgPzzMicYm7eXbzCrww4Cxb0W9QXV0eBDUvKGS9MW/eHTRQDuj3gUYqdFUPIG0L94esuY6rkISjrVgDklxwdJhTGbgBYgmttbWoux+y4Dooq1VAxQFA6JjeBY7BCP5wM0fFda9VvR2S4FsHxYjwCPhWKto4qDCBhBjElm6MbjCrPq8I819N6fbuxLL2rr+2srN9fXZXTmxImuu7AJUGgXSY/zbwpKMXM8Ue0Fm6RtWa4eCnXAm9bXEa+vCOZGYhsVq+qgGs1fVCQTLGgBe1EMvOk29piffI0/2X5iz3MVkkxg9ydXJ9ddiV+CXmruJeViRTK7VbX/772tncMhVMDNiDbojgvPQ41BkWPVVUsO5GWxbU0KiAB9qb9NevMy8Bq6KjmgaOZTM5WlI6oAMX1IfOc+FCvhY0MCAGEXHzqklvqoBcpBKO2N0VbJMNoQj7Fcc3cbukmr8uD/H9LErXq+qNnj99ejt979gmn0Xh89Wr2rVYUm3t7qRV6PW/rHBXqw4l95Sb/53QlX8aAvNQY7PVwOTrX4pqLJyZQ4AAJd+REZLUyfDcWpyUHOk8xMXs2U62b70X2TF386eWL12dnVxvrjQnLJ/N1f4g1+3JLscm3vsaoeIaRqAPgSWFTxuiprs8OmiLS1gD85tV339KQt3fgi4FtnCQSOKohsRG1tWAWOSashhsJaLNGTRrLlToNp71X/fRYol1xfc7373IMNm6GKUOMbfLZKBjEmvneDz949/xlbXXzow8/2t/bhecr9hw6SSGf5ehg+1e//t3I8mT4Js0FZL1yMouzaZjZC7u0pe1YvXF1cXZ69G73zl38OPPIiv/+T0SoFQhfKc4zr6IvyLw0XhQNl4ytc8Nlu1T/YGf74uhrZJLa02vV3d3mk6fvD7msRlMlqWioMI5OhOfnbMpNdJbBiD3aR3hyUS0X8CV/QpeRDT5FBdbaFdG+DCzn3+nBTbLwPve9U2pH4kGKn8XDIplic8+mpydHTx/f1WNR1diaLeiKP+VmlkoquKhGIGi6f8Ae/Pb1cXP7kbrKiuqYJCIIvdwuX2i/WMmCqkKYPo9UvKUvg0Bi/kZZxUdZwAw2VJhTlU9DI7n89u883LhD5cVnWe7QUjj8/3ptVjwfFu8u/skHxR+3hXV6qI+KI+7KUFbYzu1rjDEvKB6Ra3Nd6MHX7WPyu6xncSZuR2H3fFac+1yYWE1e5Kn58q+Fcc/tLKyB611Q7EN+755sVpYmbiJPKD4FJy/elQHkE8+3hrcLUtycb4vfYCelrUYN2rCvA9VVFzvjP/GphPd4UMJoaX0SN8stOembAjbEQ1B+2a/EPgTU4nKe6yw6VNnlSoiNnre5VpE8dnIOH6KL6s3x1fUXn0/+eP3HzcbD8tpfbGw+KZWulFcjZXS70tlYwwIBoczIIeLyzqpSOiwfgz6z4KBqaIdQbF4WyTeUdBVtTC4VW5lhFAILkB2y6JlddCPrkBBmsXmhjaxQ8R6/yC8dfNLuZt7abrLy+WM0niSFCo4akvON62OGeqknFU8oBALLh5MjAZXipdY6OCZp0hIXuJriGIwnLkW8PSCHJO+zaCIX2gWbULYv+INsvx2i2Jhusdm+cZzyWjcXhJYRmJc2ALN596Iv52X/8f2dncfGmq2NPCooLY+MsMvU8m3+toe2+cGDg8PjjpjEyqSrsaLd3SzXHSId9MZuj88ssTVaOTZWrEsK73C/cWEJoxQWBPycep7v5IfH6RtXTpoE/v41ebUFi4qBURdnIXSWnwLr1OpSmILzcvz2zfFnX3zX6etUu+kXi6li8MZYbFrWxA/+BjKkYsEToUbsyfQ92I7kgtDFLUsq5mibp/3R8bdvuFAP7h0qswyoE2My6yixgpFFHpsKiYZIqDC9DRmQ1yvHF4PLwcW1stMFugBv3G5tMwfJ+PDDlfXuFehGeUcWb3Vv0ujff3R49/AuOYTsrIg154VyIaFR1ZGuyzdjeP7iQtEmjDWPjG+pCAEhC8O/KcNC3bvfubq8OD3avXMvMqCYRbFpWa/iuGcL7GKkfsEfVBbdKI/gLJICPhtu6uG62kx0a64NpJzeCVNSHYzrsRYsHfkJtlEJfRGnrFx2KE/2bcbsdcXJZg6tAAgsBvYsxwY/N2jrldNEAlp4sscPt7dn5cMeo6Le+h1CdFbXjblPjeV67Tw9dVd/+tVX8+1p48HhYEVybDrU8z3E/pPstbLa3E6O7quvLkzOXnufBxQLlRkXLDOj9WX3sza3U7B+xfgz1jiJwCWItHwVxyRkfzu+PC17n58LXoDrR+f29EwSjRZ35R3+zw//4YPiFT7Pqkdx9sTiYp/fXm6pPJTjnwJIRt4+MHueh4RNZMB5Q/7KPb7yTd7txjClsGLf49ihD/ReDLMYLjc9SZkFCXXl1Rnv7WOKN2RJfJL7bp9fPOl2ssUIi4sz/eK85Bn+ZMEyitsn5bfF8fEsiw/wJ8qFSciqhXXB9e1RvPhx5BtH8OUR7ivqxagsre27Bc/sDc6Z4oVhGK5u4Qaie/vv3rzdau/fvXP47vj1Rq356tVLSRho7rtfnn/U/FH72ZPV+X2eURgdu89IUJ2+N9GWLuVnsxThginGJ94ZMc8hbxvi1sWIcvytWa4zB+ppMbvkVcKg2BNTzNSKVXOzydHBiC9E5lPTKP5k/QrOVBxNJVeKbsJqingM/47MtxBjSIz74Xb52BUejrsxePNqvy+YFAosiC2bhbOk+JCyyRbEaaCXpTsTxI7iNKbLrZImqyEBp89zcDZWlSFl3JEQXH/m73hmpz03o7SncURxs/iYXRIfEkDhZqt+PVLTo7deVXHGRI0uJJP9cm/sZbPMvTilEftUuZmDO1sD0d3xpQBATRf2lTVpyACjb89e73JxrNWJI4Ld9IVGDcaCYADGap/yTcpxToeVDRluej3sSyYbXqwsLhal94s3G7U3ZilIpdttyM/5xBM0yGBp6d82+9VXz99eSUUBklxWZLcP+hKMisH/Bwr2JMKFL8OMJNuT8UEes7oQgkt93fJGr8xaEbXLaad3rFPV2rK9t8cBUwSxULDrnS9EoypSLFuVLG9u+uXy/PXR61cnPQ3PmRrRJJc3PNHt6i7vRKvWFhUfDCenbwYAr+2NBkfP4T11UluG4W1ZYXeYdnaUwa7pA9xRNjAfZ39vNirNRK7toWkVJOh7uITsjMTU3b1yun5etlptdbrtb6FcFGuYZfwPqqlHYTqNio6049VVhapTlObJ7pPSOK0oMTboGWyjX1qMSivd0TktnOEm23I8Wgh4oMNiifJ3lu2WXWal8xZH2ZJaWfMxbs5jIs1vXJdh54oQlTmYibNXfBPGZeIRE6E9PCSunsLgqShhrI3A5c3gX//yZ62j7c3G7k51V9Bx46ZGZYDXg6cxn+3D2m9+/lWvfy73MPwkNFsML6yt4FR58+0gMpCMJRwv1/neuRTJd1KLjzIpdxdTKG4qvi9uyoe+3GSRvMBvfO6n2+nlV3mPBb59RnFVrsixyUe51D9uzPf5O8PM9qBrxzX3FUuUB+a3uf6W2YY68vD855t8Zf3ycGuWx+UWxIKbuCk/WVG8/3aMuc5HeXjWJyPMk/KVt+Rt/55BeNO/n1Fxye+f7OJiw3NU8nQj/v3tnn37MLPwrVB6Chmvl+skPviKcRRckByl6a8y7DgHOXaQokdgbt4WZbGIftEO4zoUXxLuqq3eLT8YXKVFM3NcDXCgvjdvvhPo7l71fvObX+we3N/eOMJklSXj9KN+9IbSpgvPg1MS7AhHKo7vFcJdxYoZRZxWfhSphETMumAphTpVqM3AnGXJMCSAEWWKKNX6QO35R9wYvWSNPTGfI11aS0RsnA/FwsUpUyxrqbJqSCCkYDxAmeLE1+LFYAk8PeGC/mHwe02GFuOD9uPGItrixRiM8Ndwdb2+uNlYhQmuBoloCGT6TPiOH/3mGttNzDjo1CTSpoKE0qzrqRCPsmJFiLHYHtSQJcaZ4lCkN/B2iy6fnlwM5kvxOcVoBp1pudGOdST+DtdGa3UWTe6WcG7BRwU39lLpvE/be69xB/Xal11ZIXT+h43Dzebebqm1HCjfnRIhAEbhA0DsRkdqAUgK1iTGnfWbs9Uffo8W2xlcrg/f7BSzT34+t4sVRecBu8Y9XFgCtiJEiJiEd6TPyH2+6ne0u9bLPpjdqgbWw8LwpcQnZcFEiy+rFhrPNqtrsuCdV+Imyqad0pR1PJSunSdbQzvjzX7ixFc0TBUjynW5rdFZ6okiWTRtgXBmHs2QvUHxPo6mr9+dvD4dbNS3V+UDK8k8X9MmT9NKxb5wc5f3e/JjVpv1rZv+rNHS/xYGPn5n65tB/vvTZFQejhAKLhIp5RAiElXtQh1Zorwyy+N/f4eV5Fq+JvajQqfIS6G2/OL2YCPN4vvizvS44m3jmpT/a5RQFBxQO+XKgHefguGRcXHOTwbn1yv6AWoyMqkVhvN8XdkG2hyHaeFJtVzFG4oBFIvnBfkk48rfOTS3w80w81HmEs0nPt9C284xK0Rv5lOsgOn7nq3Q1K+rtac2xcnRlUopZ93zTvnmLozaCgyRHkJSJ9YnsGkrpeF4dH4+tbii8dbSWnidHYz0zNPz9+1X8W922TcZid8UqisOEI53O6Pc5dvbCwwv4yru8IuI/9u784icqgw6jOD2plxZPLd43+38/cpX7rrlJnm23xQ3ZJV+f6mHFa5lP+ejcHu/ux1VcVUxKJ/GxZnf+VUoo7CZsNg8MnpliCH8Km/wF1XAr1yYAaCsW7FbLFJuz0UG5jjmX9eE3oo35e7is9tvfHt7bYacdxX35a//8OUKWTR3D/bDkQF89X8pc+WEXNBcnsyHSqliY6qwFmXc+B0ppnzMTjq2zYoWkGaXBS9UQ4Lw0Af75O12Q/5vbWv/oD+6Pj96rQHa69Pe715Oa9vCyvwgf64sVbcPhoNZFBMiF+PYhwpxxlJOKLvk4V4gsMAAgDxNNk5OcRi/5KsgxkBINwW7pCwXZdXNLisYHyeyTGHwInHcKfEkz/MLBcmxUystvhHZuEiN5TGIhrnrhoTNK4+Rv7F8W+sWpnzcpIE54bCqD9NEA3mygEZiF2hAFovUWv/Ni+cQ31Xfj+eV5ZXW32oD9ys3ncTo+MKX1bX6/p172krKQQ16dF1SRKd3/kp/W9jV8mKjxtZfx3ZnGCuHm2oVy5VNqa2t9rS50v/iRf8blXIUGr4pwa7rVMiVFlNHDrEKE8CryQX2byr1Fw7eSnlR2a3X5roG9i5mnavKbkN+2WpTiZb6tkLRq/ODppSIDSLVK43QF+OH4Aqii5qFuycfmv6vsvS8fuejjb2nugHf9E4Hk7N54xBZFme2IJiQOHoLfYYt5m8qn8TpgXJyNk2SAUjpRrMW3BFpiuGuD3FAixjyuiXQiOUQsH98iptG3Popi5zIhL0tqLSga3sYSZ5iDwGK0iEuFjedQffkQuCUAkP6KiuiqSEBSkBKlQugvnKnP+1E81EOYL2hMp0SBXsPD5PevQ775cbRxcV5kQV706itVlqb/I3Z7JzcQgAUI7s9TqbsJBdnEkWEJrzT+hcfZSI5OJlSvjLRnPr8A3u/tbo+6HUU9VevvbgyS1Cc6VyIHRDHcA87m9WDWhM0abLs721yIk4vBzc9PVUaKUfK+L7snHjtaLgi4La32V5fNJbXDaFplrnTSaKHVcSQzJfB5OHZoGJNC5aTAYV/3fKZXB5ucbslv2ch+a2PXOgh2RGGeM4ISIy6PTVBJSxlLKdutuyKui+U/RYah/MCE1dHm5YQ7QLy8/K86yyN5Nr4Xd5YvNu0aWIe6tW/52pZYAMrXhimb6S+jBzbTMQwLD7DyQ1uub08A8tAffnINxFhhpm55MfbX7nm91cU6+1B3nv7q1xSPMLlt1flyuI7K1C8pfjAJroLBUZdy925PWvlW/95pAeF8eSyTMn8i1whFER3KfL/3eHzjDgvyAEM5yteowlC3HIWpXjw79+bd8SIoNlgdN6q0HTYVfF5hlV83b7OY/x0u1++yer9fhb51IhkqrcbwL3Ou3nQcdndhTeBxn2jPllaBoPNcfq5Euv0LmoHkH5WIRua52XsJmA1MKTy/5+r/2qSJMvyPDHjpsS4mXP3cA+WrJJUVlUWazpVPT0L7GAFixfgaV9WgBd8JzwBDxBggV6RWYHsbg92pntqildlZiWJiAzu3Ny4KTE1it//qEdWCyw83NVUr15y7rmH3XPPyZBmFmmUYHYN3CWajUNRywzKLjrC07PkzslmXXld8j7q4/KJ5z9xdeYc2kBOZLHC8hD0AReCL1CAetMZ2XGQHpAQ0ACUwkv2FGiKXsG3ANgacZf7Av1AxwYreAUKL+7LoOmqrvQHYBoMpBwjKpF4PZpOODFuCVfoPZ4WcpYg8BIANuFGVhCbwlv7D6KQxFLqQxmiMnQnoJPapqBnXzz7uh412EpAygd+2VkEr5px2FZcZINmQ77Fj3f+TdXb5gsSBKYgYrr/x96z/PDaWYViWTqNSIBAIsMpkinabjxeHO2WPqxvPDfO77iDa+h/ZpwjpQPuWRxUmxLFKz8jYjJgZFkDQBAJzOBlxGt0AgI6Eh81wjmS45Mfle6Xy7i1E+1p9puzz3s9p0KIKkJxQFYV+wQzBfCHvcP4srVCqZHz7h7scEycOzA5HIUJ9MgAs25zvrlLwCfi4tAfGAdQ0Fq2Cx0XlOgjzJiTZHzTY1Ym48J4USZoKyciOd82wyWUwNOVYDYF2eSQLGzVB6xWPXw0e6z19BYYCtOQqwrtaQZkURAGSleVoCBriewRPgm7hakci4cnLEkyG036GPi2tjoZf4Wh8zefnxGxA+dEklznk2ImUSKJnd090W08zXQcPiK/SclpTkaLva2OURn1RItbI7ztqgYsWcgc79QTfWhUqZvpkH1u73It9NQ6S5cNAAZALGOSH5C4DT96r1azlUQTBgkjA/SfeMpY+kYhwQSYxMgl9e86vlmgPc3rBOrGyb5UGt3cRETYDufreabhboPok3hNNHkM9tgk4UnWa9Wrqm8HoMvbMXGb9cHY1APuq22Vs1nRbSG8PdAQUxbIs3SOVUiSITHoOSnPeYSCI8cQTnAS+XQd4s+BTZSMv8ST4DQfOjVSn1sszzi3jNCFjzRxywmYxzvaAhRQDdQmrwEmFhmABy9ZxuqS/nMhZV7Tb6inXtHFN31mBYh06HH6grqfDk1TAJUFPTVCvUb3bVq55EMpXegpF7r+c8H0u97RPZpnDg0wIlhCSavQnlNAiEuzlEn/YTSAMEmIRbhEgSA0mtaUeIdpafJwxHas8H+FDac7WZDjJI7ZztJKUv/5UJhDycSuQMGFpmBPHgcZolRqDtISb9BTXae8xIj03W9v2FfkPCgzIFUhWQJR3pGWjELa4NYkPfaYEB1QhcEAb+wayyVHN26GPQgoPYFU8bZVAF4L/gIzLj4Kuk5mCpJ4+5wgae3sMOBpFPdGyen1yif+xvDpaR8rcGXJWQG6QBcl1OtoG6ePZdbHIE9wcg6sYUsnHgEhiRkrY4cdEuURLYR1bQETQCtMTJIzeJ+gYaxhmKs2LQVa9hL4oDWwly0qxe31atBjudyMB1O8NOUP5/nsR5LaFi85cV+hHEK1beMyyxqThoVfBxwS0RNZE8bEGmeGsboABEAA8QG+hd58GnHcAcHZ3SyKymrDKwrWuZjhPcse6nLQb+98+En7HUVWJmRYKet3Ov2m77rbhWRcRv+BbBdYFuvJjL4ggK8Ltby303DX5x4ryqlFXlmeVZzv1OkL3C/QG4lVJ/O9UBL9Ca9DLjnGo0ArONtmxuv8rLiDLyWhSeJcheDi/nJDzquv19GvBwOfMCycIobs6dAMICcBFx2YkfcuN5uVk+wPenf/Vz/6CcnA1BbTLCMPEMBC5cKzcWelRbspNZ4lREdYefoFO2YhzkEgMv8WByGuJ27dKxMvnqMz4SpwKieZbM/sP/SX+RWeCyfVivCSyoy+a5GKYjKR0DLGyAlOmaj4GFXggUQq4RLebBz0BqVoFwc3SAHJ58mZ7pa9vZ3t+Xw6Hg+Cbx4xw5gscXcPyDtDDvrSstr2icJZKtRwoplPzsY9d7V0NvGoievtHFcu4QUN0C8NV6ubDjM8WUbleqmFQP/Zl13gAKre811gUOfSr/zWuPQFQArTeAfvsFq9gS0If2QCB9Fx0E/GQ1XNXrbWyA1xKKJNVOQcGYm5cg+bueWQ2HgIIaA11qkiPtFXQ3J8y36K0o3CenOD7x0twdXpm31oTCRRP0Y7NYx0nkTQZE/jDg/1MRJ321t91UTow5pKa7Bq9FY6RDANKYIIyRAMiDtnQzlSClRWZMDMzElFQERl5g4GQQA0AvYTJZjx8YsohZiMWb1YW9U6tVNpCjzqRuhbKMcq64yG1H8rBFg1AXSZPjMaeyn9bRI5NFcdE+Dt84bU2Q2bjXRq7LvmiHZVXldCO6Ga3k6/Wil9s97pse6oBOIns7iWLYXv1hlhqpBFJgI6IeOz3uS25Hn8qRGhOdOMSKh9I+QzJYIWYCXp4/SCzIYYSGgJBTQocVw5lerEkwA9JREalHJWgrXNI6/Rwp8Hq37pv2bNhiT6dTu8dNZUwF5R2BGIOmyJPtsbhtuqljEgQN4yLZ1ThUOz7ZSv+3Xwvtu/wT6OAMx74tlqh9VvxlY6iW7huuQQhZGhZRNRPEvEosurSRS8fBYd1mpR9DwYe8GySkH6KjkBVDcFiDiVxIl2yxgzMDwwZrwygQw1ATCSbuYJuCjLOQBcEzacVhXfTD4mRJYlSJTgwEEFxoQWs3EUH0nMi+Dy2tsMx9c3V6MbjmnN2UltH2xVyfiD1xIrUZSHP/QduMFBNHlAQXxNrizgJwoLLWsvhKhJ8CgRIxOtRJmgX5hJSqSCJR60Q9Rggs+bsyo8lGK8iBMrJqY4/PTz33zUfq/SOaZyWD0ngTN+meCVBb9QXa0a6PtlDk/MJsECFcOrVAsrgkyzoTzJIEFhh0ABAJGwetM2Mc5l65dVzvCdGdCkw8fBP6aUtmGVWO44n8P0gTiLheKQzstZuCrc+eFWG8t9TQm72QZFg8Mog+OWkg2cdzMXLwIc9/7w/Bmnvv7tD3/KtgqiHHUiMbAGaJfwNigZkEF5AesfS0C4Axql1l1enHP2LVnly1XSpRBksMLcESmxjPDrxjHhzTBgsMmMPRyxHSOcVcAkGBKLKxhqq25NhMQ3obNuM1CtNe5qztJ/OghOQEw0rRrbNqAvOgAdJto9+7pEjSP2Zd6pwBvZkklgYgW8JNkPCTkwHS6DflzOYWLPucF4eTYuERoWN1AFzGbm5zNOwws9mBVaVcOwHMDGQQE4vDpu69/cZ29dFtQpoUa6PtMRaSHzUef1Wz1HkCiwLxKEAaDjdAhTqUHBwhW0lgA7JRyMwPkpURrBcvRKhSpgEx2RkRPaKL157K1DIvhAORblQT8g+ljNbWJcRKATZlo/RAfUB7XLD0PQV74zXyKjIlR6YP2kkL7qDfu8udCQ9ChFNz26rY6lAKwBa2Zd96qc5FYsQvmNw2RXpCCqKEsFDAC5hjBEWEYJ17eseqv+ID9DwGTl0Z4mnw/ApVZVLUiIp2Il5BQQq9y6+G37af/SIXFtb6k/dq3+a1DWwW/7D+oIvqJMvCDLA0M3zFWLmgzKvwGSeiETjh7xERdMr1WpXgS2hMZnseP+JzIqB24tDg7nMXTzqAPKxgwkqfDDGWNORJNvFY8ORo0wifgmrm91q3X8ntGfeUv/6Yk6Y13QL/rOb82cOUpA3HiXElaAckCQL5o4/fsWEgKEWlf3+dGlPRXLh1iIaqgP+gg+9F9zIOcI9gEhX/ywnoRI5DKquvVVfd0bdcX0RWek/aT18jKkE+JQ9hyCA3LGyGezDwZXKxxtGs9fET529c1Z+N5RNU+g6lyj4LYJQcLOAfp6oiQVGeRm6YFzNF32HQguguII1SLq7TziHE2Ikx6CLPnm8FeUFRkSGIyjFQnD3AqDIhgJx7rwgtNBF7emWBks09UmJlbKRX9widffkhgQrd1aqVb0q9gtmRyoHyqZAGN0n6GYFMro0bCoNIf9WHGqgC6iMe6wSCTi9ulapkA6euSx3Xr17QfHxH+5zM4GuQ2RNcj64MqncYWmi/rBAg3PH3/xm//p/Z/9b5KiVyNTArvCxQp8GOtXPbu6m8+2SCfC0VuXUJmc30HQzQXrTZBv9LNTjBowYbY+mBogjz5JqB0zhdB9o4WsTKJamMICIaRO5An6x2zmqhjckXmZcHJiYLxZO/MNPllJOG3lNnUy+2WmzQSuW8GxFjv489qmt7kCu1D9/unJn5jZ75/cbzeaFTYdtIaIdgUfgn0oujoqKwfUUI7AI2GjENkOFK4X/dH1JM7PCHOEe37MVi0bmXS1gBtR93S0iBF5IKkcOIIg4Idl6JOisOGjYa4Jp9qXou8gnIishgvRZTgiRpomikPsYDls6iwWA53DZGebovYQdF7qyCEKGQ7IiM5ERhU+cyQbWdotlnpBhGFttiQPTmE0vARnyHRLTFz0GMxO0FpieyCdqT2BEzas9c76ZKEjvQpTcEeC0y8Xvp4bGoF+dqWVZBday0Y96bBQjmGIRKNHFWuVGlmKuI1OKqTSooP0IS/iRwbrJwkMR/ZgpYsgIdIEERkacLoNoXyIBlQvr0oZxI7rcXh2OTzY7vS7z3gTHDHg3C58uphSCk0QHUm7oG4Y8NRDLlN0NoCmU8ClnvBRCVvtb2r69jZYSHaKXC2OZuRDv+meD5bjyoxEpKQk4AxQfRiOyWxQdf18BemQIJP1wesR7MwrFqcJw5fSjWefoKS5pH61SQcFYlR3dgs4mczcpyO4pXLW47Q0D5gCjUrDAVfSrunPmwp1R0ik0MyIHKL2uByusFYp6RU/TAZF1AV7mwJqT8/sY0+tX9y2R2A1s8cEsUdkk54yE4g4fRZ4VacM6txXtYyRQ3klH3oDkTcCghyhEy6io/QHVsirDEJvs8hu26U/hjaaM3UOUgJdg52ws8h7xlzstbTrKssLNgqDBCOgRnVHEFDn7anCzkPdRcokvvDQbrPcwBx5qKdqDMydmF10EA4otaRYblfbFB6MoQ96W31I4USnEdKgpAiytTaHNKkelwzMWoSbm89XLy6SZ6/Dh9uZBw+OvOpbntOpEIkNcwYxUjlyHiOWReTzQdRfBNhz8UTkLXJdkCCFQFXZOIhpbTqPkiX8YCpnHenfxE0lKUMwC0aLZYgnTkBgEq/6/vc/YWUQOXY6nly+upoMydDpNTvtRqvu+z7xZlgcjFjdhYhCkhCXNN/cMJDAOLC2EuN9tYCVCbnARu2+yDcSAKsoveFN5kQcnBNDW3t3S62kUU7mVwGJQ+Ulz/lgfNORQinAsiPjWfLVy0eV4Q/brX3cWUJ2zoT5GBnWFYgyu9kEHMHdBX7C6PDBKo7w0UQMXGxqS7iJnX5g94Njx7i80zioB/5yQhNyTCsoBrJRsaPON3FxMXadxCSqGYI9oF7BfOW5BbWu55yKW+fV+ToIV6VVpjJfFdE9q6DWJk9qDixBjJiKPn36CDv18e7WyVaNROrMmoyUkjDZ5dNxOzk8gR+myKNrIF/ykE2b7iCcrzhJKxMKQSAIzp+teKy6cBhPBrjkA02JDewsCQOZT4ZkK0OmfUkowl0k9LzLaeU856mXUaR1ANDhBDrlAFPACsU9bQNQHF5C8A7tUjEtthAxwBF+j0Bm7Owj0AjPtc5QfLU9itmtuX3H7dwlFvRqUh5trsLZ8GA3Pz6bQBrOXr0+ObqPVxmrEVqLZsy6ZDAYv9iPYlmzBuEqABnQw5Ns+0hWMSGIkSI6xrUtPs2FrTOtR920b7eYRcpKzyNmI/oQQQtBF7k8gBbM4DJHLAx2TlBvlHV0NVhEToV4PLO60647Vdepy4d5Ua70k1nv9PLi8joIjPWlYr5AKAAZYA3puSNiKnJz2xMDqUrB1FVaA1BX7ZOW4ate5rcepM/1WxiM3Qx2i7ASzt9567vvffDWs5dn5IAg11x7tzVbsNM9K5UrWx0PNZqgjPmyH87HnB5qVGqXZL7FcktXEDGt3rRRGhH1p5/AUWtMK4gbdFHl6IB1QV21oalvhi63taiTtx29vUqfq//2ClRZ88VkqSCiRTprAoJBw1q5vfcvx6sOaGqZGlgIVIT+qHGqpSHwS/RQV2pPN01ZpH6mUuUMvLzPgPgY1TF8TrsrC5O6qNHRBm/zVa+kbZqpm/UOzQL7WTs8VgkVEjOyN+zV9C1VpTqsYd2nYr2j/wBUuy84UNBjG620LyQnFp6EYnDBTFK4siNHYWlhSTEW5BVCSVdayJnDSU9VaKEZDARZu2TLoERuYTKOhNvujrPJk15gb7sznA6vB/0vnp0Xy9XD8tZ261D+KpjCSeC4qODxzTFi/ELRbLM+ahQbm8tifQGMMVSNw9yUZJjJpiatjLGXMZP0Oc0zHM+DLlT/5vwyXiSjgEC0nA/DzYU8e3tX52evnz8qZhy8b1q7BCavg30rcn2gBVotAM7mRVDhB5hAGOFb3NYhsbXcFqRmySdGBm/Gyz+bI6gNuG/oyGtQ7HcOdsiDGmamaL9MEd5A5MfmyAoHTx3OhSEzAimX4KKX3VdfddaV2KmMiVw4i4Xdi0WF3XhZk6GoJkNIv4TRkxgN+gozoWiexw77IOSdRwQn1D6nq5AbQDRJw2AwFFS8CtFfCEb3kMTpDcFBodTaXCiWZuvmpkxGuYBtmDxbppVWaS8g65Nk4Vx30R0thh3scpOp+L96hHNuYRwll6NeqbR4+9Bvct6PVHYMDHgRJ3lRwisdh1FMSEjJ6gC8CHaAKXMekYqQmHEEBiWbCLBynALpUCcTsqWDu6AUCZo4oUqsY7FbCkDzDaOZBqEqg4HTkGgt75EeCIckl8CsyykQE8aCi0weGzla+Jo5YTTAwaqHVq4ymjhF1y8W/RVqCMErdFtmMgxAoC1mQ3juOjv95ptHtfWBQ+KyxafbO+P2fo0gRswtseH+9OWfCNrUrrTbna1mp4n3EICBTLP7ipa/RDiQFGQMQGjDAOC9slx+S16ts7SartVb+sI3rRVboMwX8hxnPsC9MMTyVice0mIV4lJJ9j5i22MThfkly1HFCwNiSpFfY8Z/72TruFzJNCtJPM18+vImF8ktYGiGZugNbItTPmrCFrzoIw2aVYNLcTGDNo+5YAUInQVJfbhHac2m+s3SsK/pE6MWektfeVFkjg08djm5Ry6RfRxA3nkbtX4YDFeLGHF7a3trDKTWHgsjk3OqjU6lOR0OI89jXUAysSajjWGtVaV0whqlclEvpol/2Nl0dgbypI7okcQFXYs6Wje4py6rRwZr+6UefvvASmqObqsW+zeMU3U2GypqMHgDB0raR68YkeMvzYC9Wp6ABw9nOm6UGK0XaAst09ogEzLcU5VkfwaCyECfaUGG6VQ9TOtNmZvsmzYGGWWoQ+XUH7PyqIu8KomTTms/TFYQ+IeBy6pRJ+ibPmkFNiq+qV7+mzmLjqv/VC+3H1ggQT7NhAnc1TrmcjXD4qSY8AE5HFmQvRsNy+z8MHwnW9j2OkxdbzpCJEL0AWyiezYB8BFcOqstfxziYDk+3N53CWBVmhIpMXrce3UxunuvX5/8ZqJQg2+xwHObBenx4J0xO5csBc0qvQxnC055Ej+lfzMk3zIkhLAVRQ62E5eZJLOY3ogaih/nPBwGg9Hri1Ekmp2Ucu7dB0f988tXj149ffHMqeTff+fjO3eOqq2qxAlJEtJ82PoUamh6pETpD6AV8dcsUQj/Kh2DsBVknjUy8UkZtYOlTPbtvg1zrLc3hTtbexfXkxEZ2witgbyrI1wkXqgwsIiBgcFJWELITpLB8FG2fifsEczmdWs6GVfqQgoml+GLcugEnqLFw1UWJP2YF3R4OiHCJGSeQeLgSpQhXPot4QWNE/+eMYDXil4o4IEWiOCG2wiH+EQxM8Q8YHfBYRcFzMkXxlC41exl5qY87eEXVPCwm5H0jdMQ0wjQlEhMJoTCACHGwZjBlWWGbLxNLM+raS4LMyYqLylWQ5Qdz2sWiUrPvgs7Nigokle9Bcx4lnEbBFPDgT03s91ZdifnCWEe5GbJbgx95DwhUMdeIXwFlvAu/tg4UHhK9QrHbTGeurglhDhWMU2aLBZaOmdMCeQD5ER2MlTkXJ9C3eMVSi0sQna38c31Nh7WOCbYlgPwgk2Ro4rjspvFeNIdDad+fP/oeBFvOgdbz74K5yTBmOdH3T5Owtj9cnJDw9iY8eqkaKyRz6Czt89RuqsbnB7pghY4LdJtCUpsQvGxMfBXOEb3bvst6sYE6b6InxRDKwzGZ9mtmU9DoiGVfY+1Vi0733l4vLPrDxaL8WKsaHSl8hCTZHHuIRO0CvNywgm1RkUW0yvSrUxzNbc9jaYRyUCkmyCeqXm1LOLAP6yCohiiguqSPaUEYNK1dUprREYJWyrqWvqhuI1DpYyIfPtAb2L74m4cj+PZmMgubDiBRCSo8OG0hAEiyThYa5synNIhpm6rsX3ZHe10pljtqA96qMVpnaC6276oIbUGMiPvYrXRR52UqANeQ6EEXP3TL2ZU41QxEWI90uBViK7rloANk9VzURh+GSysTqvXfum2Kknbe1OTfRMIWKj8B2Jpu8A0nUHbNZU4oFYFbh1XVfcApmxx4AhAV2GrXBxEEp66QceECdZvVj31/4u2hTjpO7otm7ZkOWnpqAuIePh6seeuVjXAf/Eqr+krAGHKbUg251YXdwAp268i9dRiXIs6mFnYDyAzbgwa601Efrg4DvJWufrDKkTga9Xb7A1wvodiQjW1wfBllUKOJvxUvVMlq89hpt2se8RNJmTn9fDy7Dw4vx4c7C8n409XSxfPUIgJx8VGURyQsjyak7dgOkYQCslHEScBGjbiIpMtSw3ZCFcheSwg9GjEMkAAQt6aJjcTIoSSG4AMU4uzi2dOyePEPZT+3t2P75zs15q+3JzwvyefK6ZcoM8YhEB8DMs4rKWwspIqMRSwyNiUpIhmWa0zLFF6cFFeN5jykAJFgVIJS9iLVWbei6fddTwmtS5gA+wkaWZrFQs829ebOBOSsAckSOLuxaL2+iYcX331T3teI/PwO+Xt+nAW7DKbSqogDQCJGfkVYs1BN/yry43SZEnIJA/o4yZCDxBjWTrMIpd0BPjIM0x9RXZnIxJiBHAUmcKWssaAgyI+d2yTK3DdKu4GY5KIV0h6hbPglGo5nuU0atjHyrGsUEQ8wggGqHX8bAyZdvBBc7DW5VfavDBfIA5WOK96wZdX19Vqq4g/FZnEyXawKTfyfi4cIo9Dm+HxmJK0iYKnMahBpG9LrSAsY52I3GhuDFfT0YjCAEGIh8NOvefjL0wQJAID4kXBkGHFPBV244BCgGQLjQfNYkYYGTNtfiNgqizHeDo32JYiDC56CI3JmERj8EU8aQmFXfpf/9f/uuy2pqMsHnXrYguNZUiI0Ok8vyJxQjZZJLiXgS54+BCMn3QOlxddzp+X/Mr+3YdOtc5GMVZT2QwVTl39Ygz6QWywmWFomiD+32KbXUq/oZTNHBdag/ANpb5JFHY2KFSyx/fvvvWde3fvbb+6mHe/+LxAVCUOh6ymEdBBW/DZHMgTWnaKM2itQlIV9lyx3K2AFC6jDA9op8REi0e47PnlvTs7UOTpeIpLAwmysepK3OEjv2RWBHMlqVJYZR8BWSvFCGh6iy5rdOljjYruKzYWet1oNJ+M1p0KHWNmEAPZf/OdKmljNYNseGZItZNJ8Ma6GA3PBt+BoXVOoGTMGPRSNt1vmxDMDG7224gl3FVEn9YZHLf58MeujCXQT3tfC1oTwetGZQ3OvJROAWWYKqZUhFVYpMd2wRNGqlJGHPirmQPY6pT9SluzGdZ7osQ4thqy8q51H/OEkUJJlaqZRqxbkpAFRKrnNr+QJKGt6aa3+AI/wpd0MtSm+medU3Ee8BrVoUDDNRWuA4IkmzQGAsUz0TQZ8ASP9NIaVx3phEl7oITGZCX5g11DoBR009HaKzwW6RdbtlGzmqCbrDukKgiM7usRBKe0296nJFRe3eVjPWZ/jKGQiLhBksg4wIhOcPSZQ17V5kfvvj8aj6+60WzZmK1x/rmK4upsAc2/CRbLAPflEQd5JqiPSUR2RSzDCeRCcQE4H0YTBPPSlinyNMwLvUOTqDwUhLEwfiAKUFyNJ+NRFr/D3Hd/+PHHH/6AzDho6CTzgZURl1H+uJJuxHOZKhPWslifZux20BK+zJAJEXYbkpJlSjZFfsFEL/asZnkmgFEICDI7ALHwbHb6TXb6gvzxc2gQWTcVVozsyh6H5UoYcHKLKeF9a5tHI29aefHV6Yt53MjsT68GmdYwd3RAAmhiEdSFAwwS6HJ4khMBxGPsg2lfkpKy3FgFEcG36AX9mzGR6CNkMCFMkO0FaxrpNcZjoRwThK6onGnCxMyyyFlq+q7I8MV1kpmXiM8+i9YFUlC4EWWQ67NjBXby/b0WDh0wH/ZRobjACbUhCTcvRpNfv3i5n9vs5mcNCA01cXaNmA6T+cVksRrMUXgKxXkt79TyjVautll1p7muV2jh7Ya7Dcslt8CMR8o5+p5ScNAaKslHyJjip77ZOAz3dCYN2sKcsIvNHUZPYActZkoZvomQ6wVZJzWlqBqzBU6yfGiDRcnZQ6eywO2ooPRBMyJHwCE7tTaTM54OS45XyeQOt5qRX/zj+KbdRh3CcZSMGUTVsch/xSwKHAoSwcbZ0GFZoMJw1EFkdpZk8ReVpxGTgZFGuWptwafLGLALVfiIxGjEutAMpwtRSCQ+oNta5AwDablMlj82s6JF/M5PPuw8LDdqEQnVUd+gkqTPlXkJFbGMQ1XEfqKDm/QyLvrreXkW5GcueTfQFyJM7TkkJWqmCSqnbmCCB3mr6SnBU+EIXBgPxuxqgPDILkFAHnP2szl5zTEK9hyYDnpkYNYAjEJwkX4gXapU650HXCEnAPlwGl1f9faPd4g4RTAA3qJqrEPAGP/FYdDjYBvxzjfRdBSNyVVH8vMqp80RuUQKtSxpE4FUy8+osRoxmihAaRBGBwkMAOVSCQOoPYGDpg/TPnMtWgRP4yAp6qf2iiTv0V/qZN2qCVUOUmkQIr6qTr9ScNmlfmmYWkH22IqoEpsyqyqVfG+BxR8oBcSPYazITExRsV77EZeX06vapSdGd+mL6gWAMptoTPRH6pcmzr7dvq2XrB/E0CK7oyIJIlnK0EfeCA3rzz3TlXVRr+q/IMHbum8f0/jsFXbR7LbmU7NJo+oAb1A3UOFdOswfEBtPeZw+ZBinq7SOyS+bI8XRTnsXLjgJx8IY2jEPJrVDAr1iHh6AGSjTzAoNytWP3vlxztn6x3/+v3/9evr2nl+eDS/OR3hDr/KLSRL0bzi0M0zsABqH0HCww597RdpxZAloPysMsxdQgT5rZnGBVzhIpGCc9UTS4ZG4ybCNwMZGtfzwrQ8fvPMRJ5SxL2NyIGQkidxknlUeGNUh0IAVGLrxG0eNku+4kFGwStFNJVigeHWtyO6K6xJKvjiDPkz+bVwj2AiLu9BfRCFmh8WCrA21SonzBc0qyUc5Ecxx6vWslEwrQ/ZxR/Ny7pu4UQwOa8SMcDZerUyW4ekgNw8uktnNZk74PVaL6HapMCUPdHk+Ppt118XOQ+fOA//iZsjgA2U9k7FdNBAsIFSDNGLhtH1WHEXVlg12GxCSMStsY+b4wcNV+ab3YuiSDn2+dlCGscMDVUbFkMkFQOjq+YTdF9KYtgorv17aEOlUfrbFMoFr8vmnj5592etveZn9vXqrWj9sHhPSnePedEiUlWCwRU7jgnBE3AE1QQFESpm1sPLMMNwtMyNykOv8D3TfBCYmAKVEeGOwBvMYUCody/eXpI0KqsErVSzx5fJkMGLytVylPAhREaS0VgzDjRTBn5kzXhJwbCI3hUphVSK4vZh5kfj33nJ7pzCNc5k+OSJInOxl1kRaS1bTq627CSxG/EX/QGjmHjMXWw24YyIsk1wvWQSkS8iTjQyLG1srMrZgBUWriWc4MYNXMnRr8aYk/89LUMuSqtKx0rP0u3WeNUa/zT7FW2RNmEc3wfXpeHJSxfiJF1CZWEqzDSmDM8rTnLi4DLB9H0Yk5MU7LltdZj3S0DBX8AO5P6EEghIahVBEsKJB10Oxwz0I2otFK9vaaWoXFP19uQg5E0Ho//FweDMsZ/AFYMK0uS3A8rGeq5L08+09Xah+hl9SRvFq93zC6Dn8O2E1GAYiU1VyLp4B8/UUamwTxWYXnSO7FgngRGOEgPKNgbbQVaGDNWg9N0YujzZ0bp7xAMBCniRRWwFJOnz4rmmjAq5BChFeNuUchZEHH2wwVi19Fq2QZUMhN5FjwBRVbcpz+ja/DSmtMr4IkPpjt23Q9stu0M6fn6qA3MxAA9mIGR7dtbJSFNGwIO4mYEvBp/tGb0VxBADxEg2K71rOfGEg9k218EjXVILsKyDZI60Fbuqj73z4Zd22wnbDhqIrPgYfTQL/lwRnEqEHB+gvtEJYyyM1Si3Wb/XAKsQNDrSSvMUqSPuuOhBwvcPtw+enSNgkmmaQ2GHwlcF8W0TR9736KpneRH1MeHHIbmJ/MBsSc+Hx0wt8+d/ZrrX85mlv/OzRZ3kfb3WF62J0+N4soNn8nScmyIpSsX5FiWlb1hjgt0Ejx04vFFIAG2gmrbPCSdbcuvP2w+9//L2qUwGoUA+IOJYMQhnh6sHWAUCSQwhTLkSSox2rGIMHDeo202fDNigwJB1oxoynK1tUsE3YIpor/nmCt/avMhzZ37rvzI8IaO809k+2Wy22uIo5JYNRKpKQFLxOf9GMJ8dBrp5prAudLCdSCzux6/Sj7MXzzHDKBjVe67HMOFjGEcATtKC5UxqHSNS7znlwnPN2i87BnvP8KuwTfAs9Vp4v5CTCkYpMW+Qdla2f38SNZltWSL9OUGw8t9TBCW+WnN5cVNxcLZd9l3Pgm0xvErFfjCZGkFLIZq2crRbyB+vlO0e77bfu1kgcQ7QNohsg2K/yJFT75puvfvXZl71M+OwyTwKQf/VxlaS0N8mwizGBqB2IP3itb/A0XSKicHT48E4HhxlwisSvm7iyiHODMUmtMWYATFuFmjzDWyEduKzh6BZqDsclyaZSQ0Bn7gVqtDPcSJCPtMiYN7sQKhsv5yVuaB/I1GutagohLcKOcAvF8zOTROzJF0puthJETkwSHDx7HNI6L8L1BFSqtxY6egE0aISdZHrJXow8R/FgwqgC5pO5TSyBUxDZeWl82puWhkIhhHLSJfau87Xasl7JFTE4UTkD04CERrYitWbpttaT/vIOlyz6VBbUXIHs3EJ/VJ2LYDyehI1JieMnWxymJV3mAq69gd5ziKTg+PXlxp3hK1FWFvmyVxBDAi8T/Dq0SchKok7BAJgipHCByMAzydksFLFOgM2yYi9ETGc1mwZ4v0ZkDdBSM1Mb71v3bQi8BkzVfYaiK5sGCjB6FoH8O0ld+fzxzTvfO0G9ZL9HsRE5SQc1YA9eOaKpQgkVUQUYoeKu6GVWnHRr9dMc/+WmqZsUtsaYVpQ3DoURqUl3NedMui7VJftr8NQXenrLRNZY/sgRwpoVhqgyKw8Y6I7kA/waga3OJag5CbwaVUqU1ZCNPB2yNWS1q0+qSZ0wAOirrlSFRAYeUpO6YgxYb6pHqBjalVIfhPsqDsIjwzEf6osaE0WisMaeSg/cBEOsL3oxpc9MJh/Ngf6on5pIfgQIG771RrOsMtxUKb2jjvKhFDMms4Hgom1HeS5IbpL/J6xUwLVXQSx7k6/oUPjAAy6NgY+gqHhOVOx71f3t/Vdnr2DiUl8gyniaE3yXmjeF1v5ev99F8x+Nn5AQkTwcOLol4/l4GEfVoFlvNTMlIiTOEOOZDmZa9kRzwgE9EKm1RJANuA2XVvJzzDVcLdbsgUKXifoFeScLIkMt4UMPtTo5Pvnwne823DoDRTpDQ2B1QwKQFgUq3TXgyeKpOuQNoiO7EEJgy/CBJGMUr7Zr3Ip4Fe8kYhsyNN0EgtrXhVTfRp3LFTqbSh25rMpUY56t+ssa1XHOQbI6PUTDy+xATpYH68zOMh+S5VZHBDgu8d3tEAUpfyLGqlYRylIDIoqMQMA5E9SvMmY4nUEj9uRq89b2gv4wcIyQQh7lBy4AITZNyJ4VSsHBA2R5M1uGSnqT7DfaHz28l02ixsHB5Ob67sHx1sED8mdGwzELnrhcAdsj5VzVyXV8r+Hn6yRbZ7z0h6P6OWLVMcxM09/ZrTvv7u3g1ses3L2/V20fDpbFo/fi6ydfz9DUkgQI8Q5cG/2E3LKOS3Qy9vYXYRiReC3oT3VSb53BSkMP4QBvEFIjF3bavOhmdrO1vw0VBnKe62zna4PzSw5kaf8mRWvw0LR2Rs/LNiPpSqEOWpCZzLCQ3dJZsQyfLLAzPyNdPFYc0kMSDwSkKmycCu7CRaJlEIt3f+9wle8iVVgGbxEOBHwIJJ6LOUxuZKwTB6J59jyTYNwNJqeABcLB7gsUn0PHi8kknk7LVY7v+Y5fJSSRcscgvMJmhVUa5O2HbjNIftkANAaDgCCi83YQRlyjqCwew8DKDbKUcXoIkRVuxMGFetnf9bdbzj5yCC7U6F/NWu00P8amL2EOmw56ALgswmqTh8CLzQDWgmYI8efgO2teS4enoidcku2I191yuVFvdpfXCi+iPtItFVA37c+3lISadQMAgA10C4MkoeucxmiUDCej7rDL/gQu/rjCKeAKPAmyiPGAgIJlZ+MUOQNsiV/lTieN3sCj3oqkqGpRNS4NJUSStHZFL8WJdXKGUvpPCf7wTBCklzyFk2oDySgjeJJ2UYX5EU+mMMuMPsMsbRA8+fMEWXFrOZ0SNZKOlPch6mlzmnh+7AFd04X9iISnl3ovBRvt8Zbe0x3+qzV+2GJjNOjCt1WlHVWr1CFE02gNS27rkohkrdC6ngEb8XWFxLXloI6oBaClP4KIvWm/1Bcu9MN/AxTmHGRm0Xy9pMZS1qV3VVBA56Y+iA4EqOEUlI6+MxbbvYA7CJh82o0t6M/51Qsbk0QZyB52Ig5+l7zKUdl98ugzYq9BePHf8YoVBI2rbu+4wwEYv7FVP8m8883j19AzMEEGHVE9eRWxkqmeX6A54esrnCnb2mtvdSqtNnmS4uEgs3aJNl7Ke02/2nL3TnvB6eD5yYPjvUYTFId7IN6g4CLCKaP0cJ2UohVZJOk+MhQYwodBggpoLnIhtOMzoKBmSCuJ4QMfaQCUAE8R57VWBELZo0zPwxoG9AoudhKO0kK0nBx5EWA39BnZQlyK6D8E0QeK2hLV9k9OAZg1PuZeWjn0Egub4KzJYcnZjzqnuDzMC7yLUw9kgsZhjptt1DXeZs60oPkjTwCZ6ngdH0fNHDx0nS9h1YU6cXwDMYeo3nte+cwrbnd2fHQzto8aFXZR2TVlHQAOaKNxdK02Zpnu8C6yArvKTAtdqpLe8J0mirwIGp1nD2qBu1Oh6tdicg1zLFY7eXJhRybGf59okIQF084K4CrC9VAS55BX2zrLQHk1ywqZQcJFEN3QDRGilH340ft+vUJEqmQyG3YHTDFNIZIzEwwWAzBlgZcAIEQFGPrFjNkXnhI3QYd9gIFTL7Yb3gDLeGaJZwKmZsLURMs8m07s5darkPdybk2iLHyEnWmGFNCXURDS3IwNKOEr/IATFIrADIiYD8lO6FVYjYQ7WsYCFZBnImez0WyW698ARwLR4Spa4AwxkdRdIk2x/+TqMAHyrc4+0RPDLN6l89SjJUeVVIhVEyxjd2sVRYtJfrHXvCi7Z9GUMHrV2TJqev5ffv/9w85xudDGKy5cEk1q4qyYhUo/HsFukejpOHRB1QJXZo6tIiixPJQYBkeOyV9kax2yzSJRKmMydBClkIRiPr9JbW0b6SasCqYML+2oXVHCvql6SAOrQ2e6CV7KsXW24K6vRkG84AgIqTYIpQf8QhBYJxr0ns40FCrrRY/dPOjDUsnvAK7EAfswtQKrkEEAYRA0wgUtSZACtahDDyVUA2hJoaCF4Q/Eg8Vp900U14uqVLXY3xTS2pyA0piiz7ylDVtBK29Fb9+0hqmEe0bqBAgtYobDj6i0dS8FszXBpVVpPdcYuKEupEX11BiUKhS9pZ43dVsZq0MEnGeqmuJUobf1RKxNFSOXMHJ7JlsW+08CBVwBOvXmYy/bi2kX4RaARs2qP1SOlggK077+YKqQTIYdRSV4Q9Kx9RlyZX/BfYUesa8CMZ1gBDYgdWS7tY0BuTu65nXB1uYUWbR/dfXh/bfDVrOUJZAke2eZZDwu5504HlwPh7WGe+dwH7vNl4++WOVwOGHRcbQJFwx5l5bxZFhnkNVI/PjRxx/89Q++d3/7LgfJ8fWnv8R/QHKHlLOvSa+IPtQ4v66cFWrY3xWQUaRIqsSKWLmjeDjS+SpQRWysUNZixOWipijDUGydScNxjbhpS9vrVfeNvyFG6hL4ElBijtTE6OBtABMQKV4v+Eg7G/x3WHFKXcz5Js0JTWHxZOpQrbQdB8Skg2jSKGd186Kgjsc2ti8tJuE9JY0wiP9wDZYZ4luTGfZxMbCpSRFniQMQDLAjR/wMoZ0kKeg1rBdXcnzgYTjoP3iD0CXin2Xw05lfXnCIW4gitQ+fTUZHFDTQSvjIEksnW72kEapjHkAAfReFReuhWbZitBmdJcZ1OO/fEKkMiCMB8jruU7A7+BbRO3BkDwP4kZusItjMoD9lTOIcnNfOZlrHO2wPYlbE1XcxmK5xwmH4G45ENWrttsap0SaFGQEkIryICLQ5X0f0ghh8IDzwoTwTDwpKHAIYDMHu6I8+gmG7Vd05aF8MzodxSFhDFkuSZ0MgH7Ep5WT8rRITxlGFbATQdH5iMsZ/PcJ6AWfitAtARaiDPyMqyQJo5F/sFVkBkGkRiidJYAF+mlyiFzAFsBmQOV6GE/botPKoHJlAh+bybsVzPA95gUwpbBKBgJxfw2bGOzJtwuHgdJj7M/nhIHAXs4M7jRInQvK5mFDV8+Sdeuvh9v1KtTVjZRBO3G0dbT/43W8f5+MNsXsHbGmxq2orXfhEdeoAhiUQGfRcs3GHcscS4Gy5BmeWohmx3DhgkM0RqrrX66P5gEG8LmLBmG4/NlJq1Ch1y6AugoDAhi9HplR+PL2IN69++9vRw6O9vcoDEi7RCPvKxM/CRIUDsoh1lrMdubhIPjpkgyXKLfWolzBXo2vUTBnB9rYdLQmtZoyuigbGsrEOacGZqV2SAAKVUTC6a2IjvUTzBxENAlQgHLEOUxo5BeKB9qyFAXh0//aTXoL7b+69+WsLQF+AiNrn0vDM7qRV6z4dB+pqzPBBVQsnuZm2o4v0bcguA7Gh6L10kamY3WN1CbHBLhXnIzyzhk121MxQBBCIUKUFbDmIWqg5KrFhpa9zR4WoIV0l0G4dgSEyC6uB4xl0BbdhFqXwHQqoetOlpYpkJ7IeqAviDPwWboGh/IauqAi2l8PtO8z1JBoDYaZBKASTXwcX/bNWu7bMhVfIMwH+k8qey9yPemH5LWyRE9pdrCZEYZE9g4jFCKToj/LzhEtl757c++hH77/11vvtylau6NOWqB7yN9sMOGiLD63dkqJO9PpXdeSgSgUcAPGkKUKuMRtFkYdgCeVUZ4mwzP7ZYk1I+mWAE0Sl5m09PCY4BHGsVuOAo6wzTCsceyb4smgspH+jUIsYAiQvCfJQRWoGuwATiAcWopuz+yEfnSJHVuREo9nSNMmyg7EM0Kp58SXq1PoUCHkfKzlXqUwtMi8YwzNSXm+ijWDPZDNOiR6AiB9Nr/6AaZQXy7WO0QGL/6BjwDTAHEI2uSO8lGios2byU1C9NCSWxBzSLbXJboZIGNVSl/WVlrXFbXNsOizNWzlpnUiPkvx4PeFEP1vXm7wckmXzLWQdTgM6RALYObr/+uyq4jauhyPi7MO2gCz4Be1rHeyxBwuv2j4mhMY07PYiPP3n862DPdnBGAlxEYggf9olHhrellXfqxW9ST9Qo+AWvWc66brBVD0XCPiwIAQbm60cJxJhdA/uSPSuFNf37lXHwfy3T4ZRyCHazXabk8bJchLn1g38fuDHbGiwJ4Dgz3JiIaA8AhsCUUvm0mLSbzisLAxqUi3SnnRDuY8hG8gAJ8xATQbwlKEUirGmj1xvnHrfBLMRwZplZDP3FGRt9IW8Q5AYCcPgBOdbfKSSzWJyOkH2ufA67viusxiSYIkt+qZbx71iOVOmG4QYPH2ng/HFy9NwMNHUaYroFktJ3oGaZ+ktSCSMhrlG95AllyUv/Y19QKWzIJ/8FAxqNFss75i0o0DPJl0jviUo3NM3fXSllhi7PYVTZyLc3xYEJuew74JUaWf9sMH59hJrHWwgpjxHAzxSz7GIGDlhB4ucJ5wyrVGRbKEsM/ps+Ar8NJGi/vy1FvlrH26BpTazOJrakgLykvp1U3irAvonXLAbaUffVJBWozLCD8i0ZChbb3zjHdWSfr69eHNDPbHa7Y/qVnfTDgJwdV118tGlaP+//JoWTLtmY9IYDYb8sUsaT/ueVmHzZjduh6LS6WX6vgarF7GXiJhozLdVpZDUsNI+6L4+al0jlJgolMVPCTUWGQvlDz3MnukXoihNgYhMwm3joi1qQn3TE5Z2mdjpqisF9W2bqLp724fJBUZJuVKqPWhlNn89Cpbl/NbWnV7Uy6zq40Kp330955wgZs5ZWFyOPzg5+X2z9PLLoIRQjcEAmya0Cgtsybn/4KO//clfVxqEbatmsw2wBxIDGoiMQgCEJmi0Lm4uw9GkVChzLoYBsuFkpIlCOiaPTlDBk3Wm2yxV7VGzknkXD03Mu/NJMDyvrRqV+ta64t2MAkQTjrXKX5hdKrXCCsapSd5XAqGta1OoRNqZfAZKgENEeQrJlALsDHg84nUZstPeSpIxsLKrnc53ylJ4SrWA23i4mANWAhsAZAedg/ck8UtsV/tUam+AY6pO3FlijH3lqdBaFEgfm3m7YBnT+IYojDjeqT0gwx/BT8jHd4DCnNJfES9gI1JPW+qqeD4FKKz2hQ10FVoIk13EGD7YaEZ7ozbVZaa8/NL3yHzVw/Ie4HA+i4c9givgKS8yhPOqNjUwljGdsL9Mzt1qep06VzBukXZKwJrIndJqOu/kp91u92qIjsZhZjwlddRMPA80QEIXQGmTd2mcH3UZ2i0BNuf65Xc/6OwftMt3Ku9/cO+o2XRr5FJbr//hV//+n/u+U9rddgvzmHWQW+qcHTC4uVwmqBnSYakNbAfXIPrqGkBgkkRKIT/0UtewezxTpWnSMl2S9RM4CMToDzoQwgfAUxd1SLKSJSbnE2mPYUut5FQ3zpfhYpbD+xLTPTvyBKzJNXLrKdsqhe716//0/JnfLHAKHoekckaAhZnRM2xKsAuaDMM4IJ8lMwc1BBYiizZp+q1VzA/O44CetukdTJ0e89d8WDNhiDC+Rhdhz1Y+1UiGSC1gmcagkRviqRJhDd8FZMFDqM8viWmb0Wjc2G7aKQunuPEQlvAs2m2wiOgDB2dKZIEj+QLqDkZS0olzGmGWx3lgUskQAQujl9Exq402TG6nA2oeABreMTI0bm1dcFePpI/xX+q0Oqe+3P6/vVYnefXN67rWEDQjzAQM2IYjpBebYzC3hYVBGue//Gjw9r5uqj1r0O6gX0lQ1OK0t+iPLlJwUZiiajOdGSGRyt2CUX1LO6+eGVGx+tUKL2gS9Gb6lTpF1HldRJybGgvbdAWO1Ktlnkm2tDrt/dtG9DYftSyRbUl6DAmreNMCP/Y20aeN4Gvt6kNdSDKgt1VGJciX3GYMtKCxrTm0iHet3K0NKOqJmie1aqUdtqPz6wvzTFR3QFAcWnok3CoWv/feh/PJ4GLkf/kCMRnyOj49u/7+e99NJtc//Pjo68fR9dlkNp2w0ckWJ+fHfvwXf3t09Fal4hNi1sETE+JKZyQFII5j3sDhXpPIsUO2P6dRoOQouUKIWVTx60wP1hZ7hkMIXoZMWvkkwwlW9D8liZJn+nKWWyS1ajG6uYhvrup3c1mvUXGc2SAiWqUyWaRwkRSsTTNWPr6teFsoNgM4y4amqdEMExMFIlUaMgxqLBQQxAGW/afTQBBiov5r1vgqwyyzRR2GPIoDnOIQ93WHYqApQpuUdMMebmj1Ctaqn8kwCYbeGfhZiswb/EoGVz0Sw9BHyCKGAIVjB5D1gx4g+xhPRIwpLCERQ4ehDuxOKxAzEc81ANWgLeoUS9S0ugdQ5AdJUumpAr0LF9DH9BIyPtlpJPutFsQG52wrx7en44i9HdzyZDO31cYZLTpGdRB6RqYeMgwdcwCpVARqhRWJU+S1SqN9FL7+7ItgFDIwqZYan9QASB0DE8/SQG9/aU3ZNVsfd9rFmtvKFzv5bG3j1sebpD9LQn8QFL5a1ztl563CdIdNYe1RZmfsS44vOf1svI56dbAZ1i7sBz6ARVwJZUDnlgxukND5EnpMrFSobq25Vd1ps8WNpZPzL3BGxBhsQdqtYOFZ1CCNFS+v2cKsIdJz4IRl8lWiSokuoWvQ+0XDzVdxakBNwOSJKbFIzks8ocmvksefq0jkDs5qc56a44DF9SC5CdlnyefIwwfeS2gQJGhHQEmBwdoxdBaJlpCH6Cf7oyQl0uAxwHq9ijccZ+t5yJuiBcCQGmxtU4v+GvUSlvACaGX4x11YWjhLWkX4yhxaT1h4wnaFqyFxjBQZihWYdfbrexuPMPcD4rtjGoAAZHFcwD9OVE1mBbWgqVebmj01ot7rYxcqoX0dloPat2kBJ9PZBpG0rKy0Ok1N6Vu3r/OMO3qilagP+GpYJD9q1cFzG561lb7L/fSb6lIhWrEa9D1dorymW+AGNWoRwX8lB1hd1hvu65s2TrGR8k0rWBDmNq/y4Z79Sr/pTkpZWe48ElRMWdED9VOoqPFpfaPXMbHUlS516y1PVB2/KMqFAMNH30UHkBHYeYOMGf1XQCQ2RDU6qqRdfeCpapqCdDGFMIIz4FLPuU1JqKt9N4ikbwkS3N1u7U6CYBSMuKuymRxO/RgJR914tlzd2ybsTJxvlN3drdlg/vXZeOubqzv17EGztVPgHHmklACl3O5B8+c/+y87zTuI6yU/TwR7nYkiio+wW2OXIqNk5mARO5RCeg4bQsz4DVbxGAoCPcPwiZcEiUCwOTEk9EZtMrB1TJxHHQzlYBnRGTKwFxxTSFfulUnTNIQoc3wL2MmTkqoEQY5l6XgUXmPa0mSKEEf0iIWoiBqKFCxp8BaVNR+CliAAVAxw/OJHZkfByy6NLwgNuKX50RSJSVAMk4FBDzTV66CPuqKq9NHs2rU6BzzoLGvI6jGDHW8ICalKHbD7elN7A5grlninigDQZ56DjxTnqURXKkUTYPlLtAI5xBPQfrRS7KgKKqJMRdRMtzZ5jkNF44DUX8wOqghhA3HWw7QbRkTlG5JuGI8/grmNwqEOB8mziHq00mhQ41LtGrL90vgZi/WdzqNhCNkL+D3N5tN+P5qEAFxTTo9FU7XrkoI0BbRAIihyU/ghN1l5o+H9g5srRMrjNDMhnQiusYlcjwNrXmfbv5eZYnhfZcrRpjidTZb9azTPDQHg1BLTie2awLIsM0g8aotPDCUxbqGSIAqD1uETPJTi6YCDywWvRmxaNFLYKIKxdufwaSaDIw5aYSyjN4im23gngFwYF4mBCCWypSdrHAYTxJx1e7eew8MNlYSIw6gEHBKnvFQj9gx0cGFJoJIFphQiXeeHwwvmS0obFZOvAwgyfencC8oQJkQqfSQxyaMBKNshb50wI3rejL0IQt1yGAyOBdAhClIlTICgsA2UqdB4DcYptRGCqi3RPKz7jIrUC2W8NbKOP08G000QZLsth2xrDa/QuNc+afi1J1df/9Oz3yJdyJ8ti5tzBByFzhCx1GhgTegXA9BkCkn0TbY3YKqRGb/nLq3fPqXPVko3DLlU5+09xmotqDark78MkHtax1qC0nyZgze4pEJUJCzVm3y57YxdadRCX1O7rUK+qlleMYTmBQOLes3HHqV1WOvCTjqnl6xaPbdGuNCrNly1zbX9Ub0Ganpqy0Nv03GWJzlB0mGqqvQdPbRVZV2zmq3222r5I/7BR5CURwskgV1R1aOFyFrgkbgCJVUVH67EHUyMFFrjOKvATMJae2iDU3cpi/zB9tL+9hF6P8SVfiGUQrHBtiCYvHrx5LGf3T06QP0iwe2yXOMw4D/+p0//i59/mHWudw4GT55elvJ7n7z/nb/9i48z3o64jKNEXVgMWYuyeGGmRn5H7AOF0CZZqGwH49CL1zF6a4aIw4hvQEq7cDKOcGByFuAeT84XXNpzYbLOuvF6ycHHZTZWzmAi5QQc7plyYnBz1m+MVjiplYA0C0EDh6TJzKjNwwWZWAAeaoASYbGFitc+2rIgqgPDKESSSJkjfmkSAJVhGd3hvjiC5k/QSrEK3yYxY6CG7M19ppRvBmj6b3WYYGuoIBrFLVrTPGtWQFrJlUIfyR1S2micJ9YGNWrCVDHfdYsUbNInGFaYzJwolOipQBUgATHleBmjhniT1BTtJDMGgJDRwVdUBmVF0FEqDGo8VYYG/CcrDhLjIXH9mkT4J2I+lJPTbW53PD199lX/sucuvN3dHadex/dqtXmF7ScdOpYIrCdSY3UwSB1muqDVhrr0W2ioL4wLYYW+ye0IdaA6n4WyYQg2TAoIrB1pMAwUsWEKnsb5AA+iIhv6tdWmliwd8ocSndTi6YH7S841VFaZgwomoU48HbMkUYLhj6PpYjRhENQhGscREggn278oIgAH41EW/y6WHTvsSNJgIuCCEHDJ0WriWleqZhazJQ4VBVWIfw2aVqp+JlfXfgk151Byg+F4FuGIJJ9nuTIgkxP+Q4sFRGFNrnO12jyH0XyOrFKiAQAHMhLgg4B+JAkgiC5RNubaii+tS1fnPZyYdeIajoF3MhMmPBA4+QWAgbz5o+aJhQu60W9WPgoZzU1HY3jGVruFyz75SlnpSitadSt+Red4kabwVmabZwa/QeOVTCBMBvfAQipXx8wJDb66mre9TlKrFSvtIH4RzQezVXe9dsulGvsWRASTkIKZ1imyuNClyYA1W1qSZ82zIbXgqVr1T1VrKOA2GJ6OiUnnhvRyGx1l0g7Yhb1l7+khbAxc0QNVpl7qIyoLbPhIUtf2nggbH75aKX1RKXVA4NNL9ksv60I1UJZ+UIjear2rTpWz5yKRWuh2S3XYPwkutnnIV6viX7agttP6tRBpR79EQOyPVZte3s6qqL/aswUgzxIZ/8wUprLqCh/+aCy0Tsv2zW5q8wkLu9REamETXqIlx2UgHSwajRXA8IcO0420IyJR3EZ4RQYWcYDUyWLBfKYNUU4Qke1ZNplatbbV6lxcX1qN6XhVEwsC/7Dudc9rNxoN7/WL/owM0Yvgsy8/q/34zvGDuwRneXjvB3f275YJn5AvkC6JWJDZMpuuAJrWHeQtVj4orACE+IgUi7i5S3NVtokMhmimA50bZ02aAzJz/LdX2aA37k3j0maKY8DNpsS5VRyJWJ8S2Cqk2fZx18bNulxcVglaRtNr/J2wYpDDVqdqEO9x6BOURHLk6AMfUHQ6fB9IHeV47FCaOUzb27AdIazAaBMJNqRU2CZDuGBTpynWKtIiNUICBI18CeZcQ/iMuKfoApYxH+wcCCmYB9pQaRCEOtgFIsUk72ieaYv7bOtxDXFJEUA2a3jXbMX+Ho6RBMEfY29eBDgsEY2VgvAGztJhFgShQUH6tlyTl6b/8vTly6srfG/C5QQfKEI84c/JyTnOdh7u7t5/6/729s6/+umPOGiN4wo4RFC5XKn+D//LP/Xy7s5uGxmW81AE48xnQtF11gUeIG6RtCbAVlYIwyoe6a8AJCzit8EMWiSNR+hGfsrd/WGPWZZZSVQTKkCY1zKmdJKkKMSSQKGPgQQwyAOXkC9QcChrmZ4jS6CpadcRl58Y4lZ6cPyQvWpOvMr7Jl9ezkrXF+GQTWZoqIFXLErA2IRzwmVkc2N+wYjkxGnb/Wyws+dTcvwyK4p1xQKXexAvKEg2XmcpyZAyIScg9AgWFYH8Cr7brFAVGhm73zFxDxkSWbJZCxyFYTeFXSrPCwvVLOomThPwQ6wrOQVCoRpF4Aon1WLLq9apNMo6zy7HLH9kNozp0GzBTwTCEIQSKMJwbD7pDgxxtUEQttrksEHci7FHzm3OkcAOdMoaYqJE2DjprmckoIPNs9NcFmIRiZWA6xGyHfvwZiUAOpINIaOckif/b+nnf//3HAS+iPtf9X4/ipV01c3PtyurMieCOISPZwcD0iZwxnWcMDuOk5Cu0qKtBVPpAB+Q4T9Tqgsu9YeOEZyWW+A6ApPWDy+xFmw5UUDon75xO2TLKiU+pTr4pAWozVaius7a1H3+86YwB1jZfQMdV7c9uS3EH7tS17QK7R3eYLHbgpfOqkZoQCWsUho3cq6VzuKlSu7/uUdWxqq1mnX15w4LBmrk9mNXqgZKJ0MfS0BPrc8alRXW21RvrdEryXFqAyqmoappegi8dfaNOsAC/lLM7EjgqaoxsVRKrzrKD6tQ3ZKsyQ/Iz2+ocFqYaxuQmjW+h2WBfmX3dvbHkxF2ed5I4Yz/ZaHsKy4asvp0sk20MD87uhhiVHn1anr3Tvm9t/7u5K1Wfl3DnIKwCmEk+G2ASwLbBQongxK8wEV7OsadZISLHWuP0GVsJrZ2W7hpI6KBwvrQpRQw7BKwATkaLm666O05f1Pxt5zOLof/2RIgtGPB5VR8sYI3aL1Jsk2QfBOJuKBvkE7Q5kqOGgjT+IyFk0gO/0CUqAEmNYBB7YrbbPgRijteRfhpIwXCqYAI/Qc0cA3ekLkEMBhwgYVNikhW2lXKabmqx8IdXsT11UDOVNn7EH+mEGSVJwmLDTjLlsJOO6SBQBcz5Ci2WaM56c5CriS3IbgtcLvVgVAzOLBKMZAhBkK5kO58p1+v1tvNWqWMUKuELUQeZWoJOINFm74ESfTF0y8eff14EMZYwvhh14x0mEAXSfpqPrnBkL7T3Ds4LGUVLlPqFiAu5E9vrp+/fIag2N7f7Z29uun3EVlfvXotv5rlqk4iHmTzhOcihxB8locUICP8hmJaLzhMCZ8NaGAWzyEud96+uzjcG1xdjfp9dCvS/hwcdAbs2U8vIMlMDIMV1PUjkVLQg1uRDQ0Z1PEdlwMg9BIukBsFUbZFIoD7N73pgr0JTBJFxVQhZ5zifQi/AbImRYub5aQJ16RQqwkXdpP69SPSZCQe4bhAJlTkHAhuyUWsIOQYiw242wEQBilJjQGLz0pfRbeoNghWTT+1QEk/BAUnj+VkiCssnkFgpMJ/0280KwQgnd3PPn36qlr2H9zBI04HDdiDGfaGeJ/ROU032zFGkgQ+8Anqj0iPDMNJsCIralwiyJ3kJ/zfCNU/ZHSugx+OhEGGiSkojqdoe6uRdvWRsNicYOUSSM4pEv+iDa+axWR36g4HA+1qSBZhhbPPiw6U7RzU/ULpaNXYTO7+5sXrcJYZlpJVWUASdWR9Eu8dtT2DwxBpm7z5FPtT6NaqAobgK4w3uNJzPnZXsLEHomFGjbBjq5ip1EyJqatWVuXpNvCSt4GAbEyFO1aXyvCm4Qas1KZAWrOq55eGIfVChdOmvyXQfBVArY+Uswt+gWYQHhEr8FVLlA9YDNwl2VkBGqMWEVahtNoSblqDwin7WO2qQ6O2kn++rSsrd9sn66Z1j7fsHUTdPAGVEaegmXqsBnimtrhQ5dxTPdyxvvGbO9hKZnIDE47SYbRsrUjKs95ARr1ondWLumL2rPs8YR+UPVFCjyjtIniL6G+t8lz9RyhgEexs7wavnmnT3qpBDMV7iHhW9FEJU7LzZTnXHZzW3b1idu/Vs2ndCwgR7fkl/DiRg/AfJkcK4RIGQTyYED6KhREvIHPzCEMqpmwtUmye+ewnzifIKKgEdJD9cKyujBYcQDCnfKtWef/Bj532Fn7fcbQeouznMCSwOPGa5l+xgjDKAFlh0LiSgxNIHI4QiaEWRZydFFCyhDODR9olpO1i1ik5kN1oPq2Wa2x1rjhhQIzRp5NLrBXK5w4ENIusV0YKVqARMBcsZu4zE9pNhesKTvqPTiEzkiii1i17jsAb5IXgakZ5kXNkFGTvVMF9MOHALbCXLPJIimywjsPk+mowGI5IdY+pGXBTVgcgAAdCt6RAMFyKG+svnX1Z/Qqlaq22u3f04OToYK/WbJV9l0CkYAGHBLSiMNj1r5VqEJMOXzFyqyY8PJEv8dMFiPirZAn4hQsBGoiQgHEhqxPEdRCNa747GvWjeOIUmtl1sXfNQayV9ugJSkcYItfRbOHTg0rHS0ZdhTnicEYKDeUMIOniBzdzJeIBVZxyy99Z3yGiKG9xMmOJTgO0jIOKvAuD+ZFdCAzAL6Wz1Wo7lUrek9PlYunhizLJDCZLt7MHeRuR7pH9AcIMEKsiWiU3eNowRcg3wAoJUw7jQn5WiC1iSV8pMZJ0pYaYLdCdH9YHIcrZ+1UBugS+a3et6Dd8KB3JQuGOdtyOjsh3GEEDEiRbmORfAEj388jqpBzAkO4UQU+mESc6AvtgYeSgFUI0qzTbH4/+51//85PLx/cP9u7uPAyHmdFwRB4ELFP0XOtQ6xckU/eApxI1KHmnbsEeImmHGOzZfCBjEniXL3llCAH7ZEwfkGNtcyp4g2RVLmNWZdboG1VRFz2tul4L3rmzR8Dey4trPsq1owxGOBonhWSGlwFH4L734K9fPL8qRL5Ty8IJtYMoRIdw6BROfhmQKApfYXaJZ7PArVaBZTr9ABKAg/ciVgZd/vIqv9idAFOAE2tGi1XERv/TUvZbb1JSaAC+YuUQr8VSwSq2BrT0VC9/wRADDyNW5ZTTAwHtlt3om9F21Xf7kHviGqqDevVR61rIXNgl93VBCe7xmm5SUjdpkxv0n5WkW9ZJHqcShGoQl1Tr3OR1lVETWhPqpG5zrbngj6DJm1AKJhw2jHVOnmWqNoWbWrYaKKRhUQd18lTIzOsofLgphATVLxdcOievAL2hjvCjZWBdSu9Qv/lqQfBYuCuOr7AT4NC06pLbye1Y9ab+Y01oVButRrPb61E5HQbTyN6hzX+QH/V/vXKcnQ8//otFGHd2quG89+rmm4/frS/j/jwgx1D2Jgy7nCkfk16LzKHyembDDMGWaYUwE9gTSjEhfjpeo8ucVy5h3o+mBOMnWguRH1g5GAs2hKDA/TtTPZis52enXYKTOS7JGGtamTpymvHYGySNb7aaWTuLDK3MqkCxXAOwy4LD4UWlgyKqyRTniDwRDeJVVK80Oq1ao1Uj2TUcZsP2A3LNf3z8e/CMI0WgnIQIWCJwgIBo7Pj7AXqN2bBNQjwTAaCEnppWZpcVApKmr6GUoShAHfhwGgGVCAlLtl2+EorYIevJ2omCpN9DGkaMm+hEDfNjH6qknpTAQFxk2Je5k9aEDuAA3UPEC+Lg6vr6yaM/PTg5/M7b909Otqp1djmhQfRmiWN4PEWqIKpbFnddUAFfFuwLLFnYkHmfZAl0R3Q0OyRleEPvsptwQWDvqF6GNWZanW2OPNEyci19kpyCiMuROc7gKsJoDEYwl0AhRVBqwR4DaFKSQ3W2cFifor4AUrwNVyYEbU0fmETKNbn0Uo76taJ0IdgKnPks/vb/w59evjXNbfsNslgk2Fzqrd4g100WBySNJssxHptMGBkKChyFWka9Gee4WAtULkKg2qxxXVgj9kfj1H3d1cKiFt3R4uaadajSsFwUMbJaxIR3wlcZK7xDxlxAzNqQNZXyBWg9h9OwalAJZnGiaDF+jJ9iFkj98nPF1lpAwSUWKXOoQqWGz2mZqymaz+vBrECCMI44K3g1+8ImBIk+gFpa9ryC5ie5AwaM0RSvEegn5ncQbdQbYH3qdFowHRJWm1fQKghjOotvEjpAEesTMIXnZ8oyD+not3YLWWCYwWrNCie0d7bbZ6evJjGx8liksdbchjJrzFN//dOfv+ie7XjtWq4txypimkiYUpQRBopLNhlj8acKknGLCLMpwI1gA0MRt5RkM51GjwzChmGCuRaYLSJGyk3NEh+VMbKnlUZ0eKQNEz+1CWn3tSKN4FKAetPyIqiq83a6uaZuYZ4oJogvGBhy6Q6XwjI1pl/2RZipIvrKFfgp8gmd1aRqXCrGP5YiqClxJ23S6LEQVb1Kf/S6kJ1X9JpVSCUaMLOZDllPIN8zOuPBRWlGVhdr0X7RpOAgrpb2UW2rNvtlNxE6JIIClM06iKZ4niFKifqLMWiCoReQUODGiSjJQxoQDEAiKfyGNjnEWKtWAIVsuZS17vESY7G5k3gEi2g2Gn2kE+iGvOd1gIDs4uznYtbcUizher/a6vdfLDdhqbwJJ/3Ls29aztHZ+TVHXIaEgubgezxFRCDkMw4UdIERaQ+OkDLhEgGFODHVotuAEpdygxX2oeE8icgMnOAmga0Y7yPMhgF5Gr1qxb9PUjrcQUkJBv4jiGwWbnZeXmClnOUwS5GDBo/u2exmuhpOXI5GzJPxajNBT5add80uIORpcXX+qlrb/1d//3dFT8nF2PbL+t4inBT6CdkKxVyZEoV7wFbAHCCsABQWEQzJgCsDkSGMCS+6BugyWMACbLqAlN7BKA0jES9hvLYJSs5kohZsKg5CAoGzu/3u9WDMXqKiZoOZEC7s46oFRDO1ixkUxiKXamINEQ0T0jUiQYDPdJp8/sXX5+cX775778MPH+zsNTlFscBpMyD0PcH4sA5BkKBlaFzCAlYyeM0U1morF7sEWW0yME9xMnUD2xE6SZR4h4RyII6b9gDiKR4wpOqVAKFdVZ2hYrMe0S/2s02WhEYMjIQ9EG1ZhgQA63EKPsYl6BtOS1TjHaoA50DEmo8MDZFi1Onqt9GKpVYq5XLbeTyIny5Pnc0T4jGMSt5kXWgFPg5FW5moRqyONWNhdthnWiyC/qQ/RcDRMGztpBPCF9Wpf4KzLcVb2gGR1UP1Xf8MzOwDSE5XHZTlItUhQC2McsGU2zAAvBq0GYcjf5MUbQ6jlbDK+oJVS7UFVjqMKH7PWRVpDgT4k5roNbxchSONaMBamGQSvjnvE2tHKI2LG06cWuZ0iafSYYmm1+zUTDsWD8BeyKRnEnYcZng6oxTz4YUizDCbnUxnQTBVCjcseoUCNEHqOsmnleC0wPpXSAz6yETIBQLZIMvZvO39+uyUPRJmiSNFC/aAOSkBm2k2W71pn30SlDHQU8QQWxiD1zHnIid+4IksQ1yvNLGy6oseqXLBWPDTnNtsSKKyx8y6JsKgzQqypWP6gBVWEXsq3IHh4BAC+FkFmhnNjwAjIQMVG/2cttJZ083bx7cXNpV2L31EOS40dpXj580bfAHg1nD6IL2hCUgZjKi81o7WuLBCRWHujNee0BtVyT/9+nOtulSHdZ//UkGtmG6m1ch3QM7H0jWtC2oZHKAeNaPVYO9znb5j+oduUTfwhb5Yyr/eYIhkC8TF7W0gJuKzjcW6xNNRI9H6tjoN+AgUy8IC40jOKQpB9J4YgPZIUQ5gvsRRxAyK5FDzq+1Wo9fryX8NwY7kHDruSOy2aW4zxZSzbneybv7m+gv8Owi3PhyOGwdt3JsvrxDoCchILjIO62KtRLDQchKBZfJyWcIzIz2Sx6pacdw8oeaXMxJEDq5RZJFusSwqCBpBH7PZLR9ZZV2pkRY2WofkpC3mRnI/C9EeluSiwQk6RC1ez52g5K8VK9Jb5Uox222YGeaLVtFrIfLXd1derVSvN54+HY0mszVqk5d1OJfO0QF8W6qwN4GKiSUkAvYbvjDgN1KF0FsWNDAPQNqF0NfItebLZh9VgwJMIDo4BQE/tchmrehdpPMQK8DrLx8WsPm+fno5mShYDVPNBEEteFGcEbzXHgLNAzE+EmMgmloG1K5VaPigDUOkS6ZFx+Iue+PBr/50fTP66V9/sN/xNvPpsNtnsw8XWSBPZdg3IN/IcIyYamTnirPxIFlvc9AzgTooUoKwejUNCVCwrNd9hAzWGCcyxJZJAE8PRAhQVIUyDDqKZw0ENPoGRgkc5ofELMPhDI8pjODJCLT67SPCYMO0xcOzbLPdumYHfz6Hc9BRkU5xQERMAtWCfM7Yz0eIm8HKL93NVPZcNzzuLP70dLLlJZwzJqcfex54qyWbLMm2LjlPRQ/T5rR+BC4N+LZ9LQKAYbfEQAVnvttvXXOHklo4Yml6ZExL9Rncxf55Tlg5pk61R/E4ypGph7Q1JOJR7nmS3iVZb0l8agAIWS4WV4TyVqwICO5qUaYk8VQLXEvCrTtuFyWXw5E4NsA04gAAQYiZeOgCgtzeyUHJKw67PVyYcPlnjwc6TXcQ6OgezBgdkT4LT/Der1baW+3pTcB00DSLGY2CQ+0ZYswVsPCvsQvhWc3ZBLgXkMbnmtC+0HcEO4QxGEYQJp0OXWDGmFQWMB+suVjYtHShhDj00Rag4+B4sTwvVJJh73yz+p42z2jQ8BNgUUbwtP8GvPQr94XwAixrxwpAEOxaJCrFojfvsTSFVfIjM3xLkT+t1haGCBsTRAmR1///DxCxJkR4dQF+ow4IXXVDn2/foT/Wc0192iv1UFRWMQO44ofW6SGLEhwQMZD9Rv1VRWlT6qqu+diECIH4RgnARVetdpUX3quE7th3po4h0gftxvOGBiUggYcqYP9ViarWh/YgMSZ3ypVe7N/lMC3R2ySG4OyoVtOK6JSEWWYziweIkJiVzh9or8uOrmwT1EN5RpaDSE/nWGCQV9QaD9l62j/cw3DCkRh1l8CW+WylimTRzy4G2ZJPqsl27Wi5Grx+/Rzr6zgm7i7Gh9mrs8D1m6AY8ihQEp7SBpvD5Id1HHZx/QopzT2fAF5lzswv2Zfq31xNJmOYhUzhc/YLgllIzo5lKZp/9fsvSjkCL6Nz4saH/SFXrG7K/kGx+LCeq7aLSbma6SBa1baXXtQjaeOsvMjW1jEbnJuaOFl5OI7Phr3x62s/uzw8adZreaL+hqMxSg1BzWCe8DdBnB2xPCOFBEhW0T464gZzJ/AIqKhrCfdTWxsTZTzgllTb5GlZChutDLiNcyUJtvwi3nsIDhBb9/rFzYtHp5w04m1Z/GkNGVOvgSV8ZeWnS1qWOU2ZmqGQrSlwhy/8BwHoDJgiUsXXAuLh1988H8x7P/nhB+1q87KHURjdgV0WsofBVNjvYwgSE5jYdTHzOhz98cWL2s7Wrs5hI0Wi1aFBrVDYiD1X86qgBk74m2UYTMecewIXJVJskPtwBVHWGgXjJR6hFp+GDpqyNFITkOik9Ze/t32ntxqk+g3yCzv1KZQr/s6d/YtHT4TUGoiGxm2AXWpUiVBccFVDrRhtz8PKepJNzj72qpeZZbO6TVAyNlWxhq/LxXG28DJZjGbk1TXCYQvR1pzIpSpmggUxtWudE+DVPXVJINUy4456Yf9UjA5rdigqdLAbGpboIw806EUUZWYSn7NDCd2iCPlM626buE0Sd4iIkSPtBlZzCxeV2ZCaxmV7ObuAK3A+/qC688v/4ZFWCFCRM5beUWegU5sF6S3333nQ2tp6/IffV2s+GwCwVOmU8k/VRjXhiPAFlkaCvA/nidaVamWVKOwgAdm1WZsthYslpxw99mCwFDFKvEMYpPkRSuanLQQPIEkW42k0HgcILegKoCL2Ilgasj+8igDagIDqYDlSZFBh2OMoZQqN3KiPqTHmcBuzr6lVOX6AuF7ge4q6Aj5QYhoEdcBOIRXTtS4M8Jp+IKjpAMScbECZBW81VSrIhf2xOVQNVEbX7IE1ltanypk164aepu1QKRemblCJmr79o9lOkcK6Qim+Urc4i/VKf4CbEFmkgHUhMkoV0npUIm3bfvO2GkobtbHo0lDPGk1/Wf3mEC148VSWIJ2RFpDsBRtpCkLVazAxFBTe8ZXVKmsP+ke1Uj04OSK8QolzBQldyi0QKFiRrFcoDBqp2mBItuhUk1Yi8hZWfakRyP64oNkYACe7vDLwGvhogzBuZbfa7LRvrvroBox/OAuD4sxxowoA2XjVYgOC7G7f73eH7O5C7s97p4cHD16fz4fdAHc1YsJLXdZ5gFKt7tXRaGsEhSH3ILrxmpbYycKKhQ2To14ozsw4LnUYgRRncJ31Xf//9N/+t2+9/YDj0pl1aRqvEWyvOaMYYzkvx6RQWmW8zJBd3RfDJDz9ZrHuL2bRKFxNQuIMkTOEUMGoNcAwh6sNLhZsX738XXxRdw52KlutglctVXcP2/sn7M+xnCWWsFUnlADaBmjxYE2EIZ+Myyk00T+FFhBE3uI5CCtdUFPPRhkzhpzGSwt22fcr+56znaxnKNg3F/3TZ904xBkTw7oMq8y80EhNYLRlaWmFsiJFMLVkhAmK1MiOj9Y/8r7sOXyVpU/kFPmbr7Akupa7PL351ebRw3c/jAMUOQlX2l+VBycpCmQlRr2R/LkqXBHh+dnwB5/UyLkrfxG26MAXjobN5rVqveri+M75WiRdjgIHzIoSBDA+qW+wSPkgYzWGyXjwNslESBwipEye7N+6IZxKUVhA0VfpNyLC2lAR9HhK4b0HR6Snef7FN8lkIh+YAsFlkvSYQt6to3CU5mTOijrr4fZ8UvavPa/VraxmR++PvV3kusVissgmVyFer8NcQKgqbf/afNGsMF/TogVAm/qXftJrhp1OmZ5ovpgOKyOuCjKIkek1rRnd4Z+kQL7wokbECgJsql6qs7ZZpEpxLBfgIBPL6ZYjaSQoQIVbBZu852LNLFR5yyMeUNkfXU/GnLjy6+yK49xDHWlbmOpc37n79v1Gq767u1f68LuNJhFos2gZ0Aq6hIpMmFNATuPaOZLNdIlDLZ0cDUZY6cI4Pr+8vLoaLgktCuA5NYDrM2knMAS5bGMgr6tP/LA7JCRc4yw8v7zsvv8+4T7J/4s6S4BGNyY/Gcm8UyCYic8plMcxW9N1km86RAvl6OVsVHHq4pGCioHsdsYBhQAsqItmGhQFWPuY3K2CKcnkZZVLYUt3tA1AB1lk0CtVoLpVGSV4qrJAQm1K6qId9VF305L6a9+pn0Lc1JxZ/96UVnWaXiupR6oibQFEVaxl9vBFE3TJE6ucxqjGpintajqotGIe3F6kFdEJvSQo8Mrtt7SffAMNpOoiKTABnMQjIofGhOBPyfRNmuCja+un3db7diYZrJQPLkm0EZi0sjgts4KPqIMiTJQWwtISX2AW6oDwF3SWwKcOpewKAqE5QHUXI0K5w/yoF3mKawBng3eCYYgPOrdAM1z2XaciEQEJARq+DMuuf3L3nadPPo+JJjuMm5Xx8V3/5uKV47YIc0kmu63trc5Op+bLNx/FAuHSVhF1EPk2Q+JgokoRRBRDDt1ALkH1ZFcDj6Bovv5//3/+cfEP/72cnuZocQ55kegcEYHZVJ55fqN2WMwlbjnDluSKUL6KZybBl5GLoNvSAL5YDJdhgkUWAWzU7f22e/OLR+x0rlq53JZf+c4PPhHVRwsABOxrQTRtxlMw2RRyCeAACBBlkkUBBUyqFjkQRxbQ9UPn9IQPxZgWWKjrIQLG2evL6fPH56NJTAEwG3ICtJle8ADHVfZD8HaUp43ineZIvSjsV7xR7NzilFSIfyi7KXASYCV5XDwZPNLZKs4wsE2LXn5zMdwsnzR9PLzQytECFuViJYQNouItCZK52mk2nFr99en0/KL3T7/9Q7X2V61qFfVDDIepyWRaLaKVoTlyBld5RWaEAV8j+el4HbZlTiwh61okKvwdJ2QxlOkHaENTYAJmzFa/hZ1AjVUjuAEOVqtQktv8A2bgKMDEAMrR2E7b2bqKQ3b82diX3Ywl4dRcnCwLYwSO2SpXjMuKUF0o19debV3zPu/Nsuc38eoyWkw5rxx3rxfPr13YPTqBLTZrjE5ILKUdumYgFCDT/nDBFy0GIyZa0oKj9ZGXbDJtbtMRyORslELCafqQsUn/EXFgjdGWvoM97PngiYl1zJcLj/nwgM3akJdnGbhJcg5bal735kw8Ud54osbgPXUlSfJX//on7733Dh5zxw8e7B4ezra2wKE4SBhp2WLgaFdgTWgmgRxshZjH81jSExnHjokaS8Co7Gg6fPL89ZeP/jQ4AyVQFOi+TjCjH3CliEUYoTidQBK/KCA6GA4QQQKD4JAHJ/AhA+jbHnvVWLz8ckX0CixBpgE/1+X1PFclgEqBvBGbUdjdb96l5zbPBjObaAYFqARkPbIJl/WDj5am4Kgrmy0whff1K8UW3ecGTWKhUmV8uf0lnFKFov46U5rKYmnTQre0qj+/wvd0hiA6sjPawk1LqUk1wz/VaQhhaMsyAAP5zrzSSU0qJVRGL1q39SqP6YWaSqmAMC3tP79TYd76YZ23gmqKF9RLXtZbNhKWlOKfz3n4Bj3Vtv23/glU6ittMgssDzFGilp+cxEroyS4nUg70Ztpt1RePTBoWUftm5YDqp24K1q4ivKWtQ2CGg1Q/SrKm8tVeZUhlgMR4+UDDwgh1TMMtJi4N0RogzQvV+7D2lHSvHp1/XqRLV9dntWb7ePj2jKutts7J/f3vQonPRmA9cNaV2uiD4yAatDj31gYQA0wm/WCX4wC/qw+/fxzyB3wMelYcOX4Tods4KKWs1L2CtUZyxPHdjgTpz0MU1ohPlRNVRJbdbiSyRe5vOyF2bzXW876M44Qr73iphFHX/3i93IlhawzIcyzjPf0DanYJtHuGQwFKJ4LLpBL9Rww8dgmRvdFElQITmIbqATbL+KulyOYxWRx9urqhpyZCIkGf+aRV1HhPbxnSb+isDEoItr8Yhh0wZQ3MwkLZwUr6foVWGppHIT4mxuCCuc0U9Ywc0okn5ubm3lUapGwtbBG7crFJG9i+wF9bxMGJPXyI/IL5vCbjH71T78YXF//27//2cnxftkvrzn9VCjVsaZhz8UAJGtYkQRBLBzgT0t0jKHgeUlQBZJDjnsDwhDjCgOdI3uAAn4QLAhaiIVAaAh4EI01xTbXYJptpagjApyMTBqXkLDR6Uxvxjh64rPFHYaKmOFXqlW2MuJRXFrFQMitdYr+VnH/w06v+/TTX59/nisFsxICQF6+XC9vRoRRYD8DRU00h6mnfrEh1oxa0URpyaWN67dmWff1UOtDOKo/eiYk4C43oFZ6xEEK6lQtPNEz/mgNMb5U1NLuMS1r9KSwxjzKqRT20yqkCS1nezE0n4zGCydHsH4iK2cX+enZ9bmYnWyx5FNKd2iJFlf6b/4P/3vOXTy/POV3Zln+m5/8eJ2NX758mpMnL2do2JNB2Fnhj4tJH8M9QRH9lTvoj8rZAge/SEVApAa/vXty99333n/rv/+//r/63Sn5WyhsQ4L2QuDhXfiVwtPZi0OH3qCrvH59ij4OVmK8BJVdAu9FKxw4FqAGB8XR1teDdSbmIEoQzKslLwpuKuX8GM8/SyZ1i6eAysAEoWLNQVKQw2y1GEABuukALE66YfOiRS8A60X7iBFvOL0MBxCsAbie2IRoALffYCLcFiPQGgDXNDWqRReqzGZKHFrTrB/94r4EEPukf/TN5tQKpG1p5VMUeso/lqqIw7cd0btpA7cv6qvdEqbd9pMbaTPqtj72ir7Yq1ZeEqSeaBs/n5GE/eYdyqkov/XYbvNLvTRBgy4haXKJKKmOWe08TMvzhrBe9QK/FMcpY7RLVYmKisWpPKTeOqBrqwYeSa+YEP7yIyehfKHdaY8CnMXYLxQFXs3L8ggQ8+CoCdjM3lXuaG8fI+IkmqCf5KfDe/cOSrn9duNYywPDgDou9mutGc+S6QuyzlIgIqOseTEzrjO9ypE0XyqXKwK0zZ0iT5EVXdOBxlNsYnzMlLE64qM3KeBBAv9AOqF+ITXtQGEgn0AD0vOGAMkDZk6Kptw8wwkcnB0G7DTjB1nIdsNZgeP5uLhKTGTEBkm9LtiknN8UCxrQQw1BRIGuqTF9KCxxhwKi7zLMAASgiIjUvwzLmUW/Ozi7usQUD65TDERhCepwDg5ZJBfBWAA6y0KrRYGpB+1XOyiyJWF3EltWgzSEM18x32zWRwPSgWkvUjyPWZGoq95QnG308ZKkkk6jSnpCB7wKVhCdTF3rvMrxzRxxtJHrIPCLzevXl59+9ahRLR1Uj6N1hqMJiJTwYCCN8yPGBE4qY8jIlfxNQvJ4eCkqC3E68+uQo69sGcdwZszSM86GNhq17RZsRwZjdBe6i5LLGla/WfXy84fcwZgha/RV/1P74zrLxlC5Vp0PieSAayc5Kd29ZucQDSCOh6/HrN1crrMpetnSGlzb32mNr9jjSLDBs8Hq1LYH4944mABaJStkgjRR6VI0RNaE8fkW120lWQfSvoE2qUBCJymqqU/phRaS9V3v2mLS7FsZ0SyrkwKCFS9pMUEBwEzRaYRs7e5mpmxM5Jb9QUzKNmztpWXMNgqTmizdq27COTemBq6F0EMlighR9867N0dHd378k58Mx5MfvPdBw609Oz8lJtfdw+OmWxn2R2E8AWCFbAXDaX2LdK5kMxuRGuFof38xnU9HU0JlEb2VLft6qfLw7nEw+EImKiMKqGryvBIqKSwznQTBiMcCor8+Ow2jXjlfKebbTBh5kDBLhyAPTnOcZCHLTnW9Hi726juE3vXLm8fz3w0Wn47DHtFYPKchWqtJBfysPIEEhV+Cpjil9Cxt9dOePkb37FKgRoDlniCpqeOKxzqpJIcs1UMZe6g/9lXdF9vgDfgu+pOwX3OjStLK03KUsNuGcdY9vquJ9KOn/Kj+9EbaGh1mwRkKC3NVBQiipu1DIfuqV/98T1e3vVQpFeJ/2n5630qbCElZ6tMzagePIIbp29Sgt/RcHEsjVF32I5DqLu8ZNRWOyilfha0hnhhQeAsyYpOgh1zqPbO9YOBQ/bqlEqo9bZG/+qq66KY4hK7sLsuW4O6c+9NBR4IwZNFF/XVjlVvgdg4uI60tsrOm750cHHz2ZMSuUZSJLwan33n4LsG4bNlgs5I9RgNG2ZCFgBaEiKbP4EzOaf/soDdSYguSUMUBwf3ZKK76jXq10SSnbmdX9tGiz8oZ98fjqxs2v9ibxN4uuw3igkZByxqFvtNxMMOYAFIYigvchm94ui1jtqwK9SxKbTHAhAwhQeD8wdYdXoJrgCjqoL6oDoM2nUY8B395JFM/VYnc42EB9AW2FGpwMR7JLCB2pwqU3C8Y9PvT+Px6EMzYhAP8DBktmhMNSrPBVgooAN3R+f2iw2JBEpwRNAEBW0sW3YhlgC8RQGYM/KJzTE6WGNnTHKGAIe8p7tNv2ZR4BqDRQIgsyebLaioizZ5JyynvYVRxKjcxR6KzVezABZxoNwSTfP3i7Fm71tndS0oFTBdVzi5k5Gu+JAoksIQBwBPo6QxxHsmTo8OgA6mBFRlA/jfyeSWO35KIb8iVCAssXuwwCwlmxN2QXpq6ugmngAtIINwTG7RVTA1ZwrTdfe/B+Kp78+IcmlSt1+7fvc/WESnjYCc4YZbIlUm/i0TCAOHWeUJD4e2VKeAlyYGVvfX61c7NxesRdAdUUzuGzbQoKqFdB+MMal1Ljo/mjA93tHbEEoT29lr6THNvlOF2GatazTQLyMprIFaNKgX4RsU4nYZAvyF6LqxPvm+aj+wMc/2sMB7Nn31xcbxfc+qOT/TseTHqc4zBo34O43BQHnpMaEIsmqhCRzhL1HZO9o9ghyR7/+yzz56ePj+/vPjR9z8i4/vD4zZufLhIwCFCEvKQHTnn3PSfzstVkgqDw7gBk9It5hhOEO4d7H3x+ZMF4bZQGsoljVEj4D/aM+Yg8S/kDa/khhMyLw1Ir+ThmQcrypKTLroKXrQb7mLjIDW8Hl+uZtm97f1GcRvc/ujk55lk79/9h39H6EAYgABh0ASq0HvxFr4CMqNkAiP/0iWVXmgO9MM/ozniqPpOGeBsyMyUCI0M7iqsJ4aV+gvYoNTIbAxZ+oCw/9smKKAy/Nf7LOrbpnRDbehP+tyK6NpgYlUIRAYjo4TWqCGt1Wfd0z29Yc/sUu2Ik1m1VJU2qGJcWZNv3uGGRHj7ACpr6baroozUQ836q6nRq6pSTafN3T4WZsvLQ89F+BUtX4FRMIKb/x1dM/Kq+JyS0hA0jAKnLYkSs4Y0UXguQLdux/KmEatUIFPbHByr12ocHoQCUACaHxPrqlkb9q5rUDHyhEIv8pmTw8Pz69PLwaBS6+AWcDN+7m23OfZj1FJ0TmvI+CikRDaUckHZ+TCKFgrtrd3vuc5sEiI/JrN1tVV/8PB+p7Ujr9R46clvqHg1DK9OR1fPnixWg00EORZL0UE2O3YrMxjAkgCtdSuWA1jMKRtjp+RpwL4pkDUW02EC5CRk4DFhXtIPvc6KhACiDqxkaRJQ5nRlGMeE/AvI+iXrBheaGNEN0XTNGrXptk03z4Sa8qudvVpdP3/cZVeagQJjCDkivONJdeJ1yLwCfekIUY6gOHhcEYGDuumspofNOP1dEI0dYs5AsSmjx6fqO4khYcicrjPSJHymqNgBnKDE2c41CdL6IZY7sCiXd/NF6M5mXVuXK7jyrmbDoHg9IDxBMurf/Oc/frX78MNFhbQM0/39JgdZkd3po0vYuEJ+xf51HNAnspdwumk0C4penbhgeVIYsx1CGFEOpVpWGT/yk2mJTYuFvBiF5phjqAt3BC0noTEgFCAEOBBd4qc+Qk85tXgFzyP6pltj36SorRKYPPYkLAxkJVsunU0dy0BG+gxTREaz+f2Wd6fihWeZSTDrMXYkFGFB+s+wF1UAHsWkIU+igNx2gzvGFuBPtrLpXjp3dPDNSqPTqozu6bc6fft2WkBfRIu0JPQjmkEeT5dpkhUKeQGZgci0m9wYm0xG3P31RTBO5m6r1BytPMYxkuNyATs2q5ZTGwUki41XqV1e3Lx69v/8Nz/9u8itHt07mUaZ0ShCJ37y9PFiPiE0mzO/xxufn7++unxRXZQaO3uXV+NavdIbTX/x6W/fvfdgf/9gGSXMzGw2VXBvvFBNWmFLDgO/NpDw+1bYCQRdsvjI90KmyjAmHeRxjiNi+IZxPLP6IH//s5f/+axfPqqfLFclQu9y+svNecAf/ytmsF0hVF6uPzjr1O+wNwQMWASS9sUuJZCBIgAHHNDaAcp8udWlhAr6Zh89sw9QVTF6lq4uQVYFvy2gesVdGAWERbHRVTm/dJvmUhzTJKZYQD16oPsSNVR5WqNK2FXaC72u3tAQBVIE0ptc6qMe8Fz/df3thT1UMT63zaQNqzb7pwpVwLqkttWKymqBY8eB+KYHaFL5wwpbcStrPdHojbuoL6qOuyIf8oKDkgEJERt2d/CdxIWS54w03U7E60xbzZC+9D113AiYbboSzE3SvUfGLV5SL/U0rZt1IYKmpqmuXq+T+w+N09ZvfjCKtjqt45P712cvEPvYYsIM6FTqb7/73tUvf4kg3+xUx7On1+POTuUh3MekcagrUjj+K+xPIiBtPHd9fTpK5sF0Pt87vFMpHqIIRyHhCEKc9IFPr98fDHvBaP7k0dXhCSdT986+eRROrlkp5DCBprMkYf+QX3WdoQFX1FlZS1iY6jh/4Yt5BB2mDDq00L6mBit/WA0W3oAfNDuvPgYpI/HCD9EJQ0FmSRCBlMEkwTHJ6gaTtAUe0K6wht8iBBqnGJD89BerZDpZPH5yTsQwiCcmEAgQJAjxXw7dTJ1YL3Z/8jHhBLUJwxl0iunUaISHVEpxmVDhu3wVrdlwohojA9vGCN0rHKrWIflc4Pl6Se/IEkUNCnDquvkDtkwREdjZk9sWoYIabArUcGAPF8GKHXyIgHYTF+PSo99dFo9oP3G9EkDFWrzGiMBJYRCPLs7Yg0f5o12hH4yasBkYEubJnD7O4THEHvAdoDYjH3GJpAGAmP5iMwJjbIdYdJYewhnpKtirfyxd8XCTFRmm2qOb2QzxjljiHONmawwndIC32oS5DfmI0fIU9dshmshyfbhT//7d+/7CH/hrv/j1ZnMt8VsB3URvUlzW9Ig/ixBptmjcFjm8lWvgz3CEMOqPuny7xm2Bp9DkPaEKvzUEUTiKQgGNCGgU4iVCLzpJnno3gxurqkNpZHjSHAGDTfw66+WJoD+PCYs1zYw5pbHCF5oaIfxQaEDG6PGWiPqDnY4zGt+MbqbuVmeNG1SpRLjOBgmFi6UPH358NZp++eLVy6uz4/3d+t7x417/j68vvv/+d37/1Z8u4tOPqu/Xq7XBmsOVUBjO/cLPRfnY2oXTMBnABt7KMPBzj8njhl/XasPpQXJzdMcxzHZNaCycxTekfNv1c83sqp5EBEzJL8OQXSDObbClDUwxW7FqKoXm1WiAOoHvLstOk6zp1YWgINCl1IXfkCzBkIegKhPBhQFehfjoGmiIomvCKKAyfCitCu2SMvZBrClAPvkv/yumgBcow3+VtNJ2SZXpxOtZ+oXv1Es96ROTglVn2h8xdZ5aLfqlPty2efvNXlXPvu2ecTWB1AqqZopaM7dFrKz17bZTKng7LECSwkHdYqIkU2r4ak2l0nf1TR97T190X1mvOJCFgTuROKagUWTfwmmDA+KIlvyFWKpfRhRF90Ss+MfHgsWSOAU9AjcL0DAFE01oFilHUyprXcJlAOkhTubIWPQK3nV5drX9/r2dvf1gSJIO4puvMeQ83PnOxfHgbPISaoaPf3/6ulLc8p0WU5pGNxATAG3yhTCe/udf/OLymxvc0waL5ODgO9/54F7RJVUZ+2GSRPAvQHdhp6FWy3/w0dH567On3ZvLiycyCTBWeiurkOZGAgA/IlXadGTFsXINcCC2eCMrFCsFBJjzk+Q7K3lVMvix12ySNt7NigJWszrEOqxKKrwFNV3XHcFDsEvnA/BpIvioFA9AWpVDBbP79GWF9v27F+cvb6Drt+ZvxH9sOXABLb+cMtKMg4BMxmTfdhwi+FaJ18jeM23DKoyUg4t4ZCtGKwuHEUAMiWzBIJpVjwMgTA8xNYlFaYNU56hWisBi4bSJ+lL1C+veYELYH0SA8SRZeuVqlehl+ASV6S2xfAplb6vld1xvE2DNL3RaSHRK+ooYvoj62J6mkwHhhFm52qvR6oWqEYNUwteGRCFlD92CQ30EC9SeQdFh+RKHWtoKXbElyXh5C37OnNlU0bJ6qnvibJQCL02AwT+dl0hD3KhSiEYIPSdVUe1ye8mu/Z17x48+7yLRYo/EucwlU9GKGBXAvYROB9S0lDRJwmEubO6YLmF+qiDxRUIT/IwB4UOFQMJTLVaEAmZYVMBq4EqUSDRDt+D8VqP9Vq95L6UnArqhHEccfYcYCxhLKUyiUY6+xPnMDC5IzmAIFR4V2gZhEpcrvIG5xjQlpzK5PGrvCP19PnUz663abhQlu7XtWXdKOKTVZHLUaP3sr392d3d/Ga9//cUvXl59+Xff//HJ4du/fXXx9Ysv/vK778zwdJuFn2y/+7Z3x01ybNATKY+ozRiXGo36aBgwAIJbyNvN5AyIA4c5EP9lLNZcMM+bX/3ij+2tTfneQ3ADRlAicPimAtwS9q3RAQtkD56xA+HhjQDoCk7da2w19p9cf03wyFZj25aCYCOQ6RcQ458tFomw4vxamnbXpkbQlvahJwDGqL9mSkRQ0/AvPpoiittt9HCwEeGCVUCOWhqzgmlbInG2VNWQXetbSlUpZnN8W68m0ArxXSXTNnWlAm8qpYSe6Xd6y3oiIVM9smJc8oj20++Mxb6mNQkSdj+9aX1LX5X4amQL5FUHaFQ16Hfanq7TD5VYGX6JSVBCINNIlz4oh1SNoYPVr0UH9CD8SGuyfOu7XlD3+A1Os9xYjaRORPyTLgytscoBkbDaJCF7Q2DQi3o106w3hqOxwCdY5oPZ6sXZ9b393dJ2GUs6mYJK5Wrd3/37v6z/d7/4v8yyuOGjZfZ7kxdEXeCwGgsIegwSceaYkA8vT7/59Dd/CsccRiT+w6T/8rLj/x1hg5EukIY1AUrGQXpJxGLcQslzHV1fvyQtB+Z+uo/thCXDWrLOiUSoW4xNQELkkugj1kAJeYtxMFO0axyFvDwkzCGHnyR04cyKRiwJ1RQCUQBqSaGvCeA/tJie36Kj8MoQ2RBCOK4iJsHaHSsJtLABrE5fXvz+s2ecoYP2UCd9Y8McqRmazi4hmauIi4rlhA0Gjh/DMBTJB82OfhJ3HV87YoepZainrRwNQ2cC8IVk+EoESvYmXGM4HJfJTiZTIKbe0D8aoCgJaNkO1k43WV4FGIIBAw6OJdV9P+8n9dqsOZydDWb1YsnPzAaD5/PX0cn9w60q+kVmtpgS4sMtNN595/6zR11oFTENkLYEECkxZfBE9IuPrFq2tyS0Eo0Ffibz6hA0y10oZfwCEEi0wAhI94TlvKy/RoHXRCGCGoGXMMn27h65X8p5VIrsnC0AIvmV8skm4QjDncrhJv4NnjDwm61mB8azWOXDZTbAGAr5l/OqVDwhBv81g3TUJBq1p+mC6xihkU5nBdUVQ3d1Rnds3q0GPTF050Lg5cduGblXYRM/uE9jzF0+U62Um6XyPMIUzw1WZRELHdH/0FlxUs5kXYZHjAi1xxEtJhbqr/7ZfhXCLH5WkLOyG4SLmlNuNMtsiF1dB3uN0r/5+c8yXseSMMR/+/3vtfzNT9/+URgu9kru//ln//V8NHh2/ero/Xf3/CZ7t68H1+eX517FI53q6ei8WqsCVSg+whdR8+A1nAoJhyOQROgNVgjPMRrkutf9//CH37UajQed/fU8Ym8hlyEJJ9omnk06Zj3LLQdRv1XvIC6gWZRX+cOTuncWdgevfM5tEJKQFQdvkClWkAMKgiRMxpQBuQboluBscBfMEYp0UzRI9/jwl17Rrn1TebtpKG7lqJ9ZBH6Ii5qi27rSyVPlgjDv8Cq4z/O0prTgm9+8RZtWyMrcNpO+TiGqF9VQZapKFarjXL4pzhe7TEuk7+sF3X/TBe6CZ2kNell1aJ3bYWzWpgLB6p9QSKsqBUJas+7e1s2L9q7elxQBnnOJDjeYDDqVGhZllpYJakwj4hdrTfBDFNHi16sihTIFWUNQf5z6aRcGgXOHHgvmtxJUCrw3A6UC9Q2vMyqGa9BL6AjWg/ObcbPWPjnseIX56Wj8qnf+5PJ1j2NjZBjtlP1aLXYyL04/XZY3B1vv5cr0YkWMB448sPQuz6/HHP1NaBxNeDVbTs5PX+XJ55IvYcVCPGf9cwIRf1ACPyCMFMuFi4seVgmMmOCWJCbIMmNGywYXJWWCMDo+Ij8VAR06CwQ0w3ADbiD24SgNPsjqKZ0AOxOe2thmcwWismjWNOOAV6qE0TZuaG2Aa6pR8675SbkBdAJSxnfNA/cFZKCkY1fscERJRLRFcrTKvUIzhqLBIsOyIpQhRNNwOEEdIVQpFroVu4bsGJLIrJDBvxWcxcgDrNUhSKjsfWILGgzuIlB1Jf5WnAfKgEDE+MIAgxWJKecAoFYFOQMC/L2DDMHGZABg5wAyLZEclQixgISHYX49ycwHhOtYFHoFYrcu1tXS8f0Op1U3a95yV04DMkF/G7XKMOQcuBYAqd3YFqBnkFEL40yAA+CMComGQCc5sAeLNe8tpAsxB+BHl4S8wkJNB78k+9NZXmSCQTq5wGKShhjBZjJrYj9pvDj2kgcBlMVq4WwC0u462QFbOEU3SnqNqrNT6+BohVzKEUHMKjSFzhuH9EBNqb/qvpYF3wzwtC0c0YSYSQ9OyQ/TJxTnCReUYwSaZOu05t0+qkkVUozv1G3EQfcMx2yN59dEZu1sOezwjIketJ7jBEEwFFs+YCi+YXoRSLJuieDFoTegQ6sCGoxV20PoaK2d4+9slYp3P3rIjk94PXRqhaPm2xGRIBbL0XR01b369NGn7588jOf55zevA8JCX46K2aTR8MNFfDUZnA5v0K/xxhqOp7iK4b/RaFRAE+aJ0eFkzeB1KhI1ijvQffarEE3ATfz6Xefwzkeb0pHjbxGudZNL0I9ZRtLVmOoFRrrVxeRyf+ug7W+DivgHtTrFVpt9LcxZxJNgFsBnoCYwAl0ACdIBNsQHmwaDruDIhX1UOIWyXtK1NGlmT8vbgKvJQacW/oM/6QoVzDYENOA0UjwMkKh4La1PINYy1XzxW/Nlj0A6bmim02ZUOf/UT7XKdfpQ3VKLuqUy9vhN3fpuN1TIbqoh3dJ33dFXfVM5Wtco9Nue6vltUbqmcxUSVXUBr2SvC4Js4kZap3pkFarj6hO/WbsQMNED0I+buGqfd3uXr69Ijy4bNh7B+MUp7zvOvS5ZoxS+SXKyScLUYOMCWaHicjgXMgMhKBYOX7LS/Hk4GoTRHVtIQBQ8ZTt5SdQ0ri2y2yJZvbq4LhdX05vH//G3v3p2fj0ajwbX/Vrb+/gvP4pySyI/lEvLYPr0JnYOHry93gSi0vKPI7sXlIPIkCAmYgUxSkphpGSUZacB2uC8UiwSBrg8SUgkEjLPUPFSOTsOEpK+Q0otmLmwyCDELwGHNQuiasLVcaiKcCaFPKPD6I6fDMufe+tVTAgXkmCE2N7jpNDrD6C3GjH6A6AVjhjMxb1Fl1AwDPNoxKaFh2rGWtfvlMYBGtBMK5q93FfPTlFUWGaMlkNZOsCPYQdwb9YI4+TyRqBa5QrVike0fVE7ZV8h24iSJIhDYZ+dEe0IbyD5OjIqjv9jgIPi531QB7VGXJARMTbP9xgqjrT0iy6wA0l+QA4HOfl5CTd5Bp/zeJ2mb3o9bPaj8ZTD00MSqkeZsUIW56perVNxklUAN65id8q4clEqbqq54KSzuyZ+ZWEOZ4V26jSNdC+apdeyZbE6ZU8kvg1BwlBelJMA6CtOPWAE0w2wtj7oHx/rJVMF9YcA01/kFBjAPEIY2Lz1/juNZtv3K63yTv76OQXEvory0drkCVbSvb+38z9+/qTeabVKHR3wjvPTwZStakKFEOQECztsUDNCQ8IQ/RZnt+kS44HfSISi38CDvmjJijrY0gV26UdQ1MzqwzXFwXuRj5Tw20KygbCE+KICdLLdIY1aq1kv4Zc6zxPgMNlMyWNnxlfxMQQBoKJ9c85ZcArOiINhqdqSmhXNSL83LebXL1/iPsHWS/7jk7cGveH/8uv/vNveRUYYBcNms0lul8+e/HG6xMwDDKEEhHrlbPaQNBJup4nXxPB6jL2RhQQGQijxcgbN4HbS4wjHi4JVKISYHMFXCLSNBOiLDRGKPQnLBONETyVNkIMSpq7NZW1eRPPoanL5289/9Vfv/SWHhVkOhSJ2ZKK5hGMOBpYJ1iIBSeuGt5RjQvwdUENMNCVAysAKOG1ybH3q2iAIzLmhcFVgOPghdFNxikI3UDEBs6aSbCCU4ie/JjiLFn6qLlgLCB56RbOij6o2IUBfNYG6pznlj5XQF7ul0ulHSGsIYOigN1SP3bGhcKUtNVvu1nmTE1XGflSdhsfItUrSvtC0em7Nc0+mF1kAaUq4wwahGKT2CXnIh5bBC1A0pTz6Jjzig9AgWgVgySOtnfYMvsTs2rEpTzD80bCbJLh+0E9kTgKZO4QUrFQaNb9WIS+Ei+mDNAJIbMR2I0UgIcWkFKgpfAdvx6hRMxP8psPpyQBwn/FWKxXiX2nZaF7odzaK4m5/HA6m43G0miWDi96gO0bsO3tx6VVPOG+Eh5DjLp7/6Zdeo1pu+IjwiOZ4FeEuwWilT5gJgADGg8G4fbAoldcchQWnu4N+sYOPRC4ZxYQLZaO51ap1e2MoIxsRAFLkXvRY5AXgMgTWMOqnbgIfI8aMQlMAtZaMRVEmQ1G2JCmj/YBishrkCiKzmh/NFRzEcIxr2wuCX/GQyvkmuAAVlQMj9Vs9oDPwRL0rUoFpabnAPe96MCX9E7MF6QfYtrKYb3KtBkSDIHCzGDBSVYT7JZ6hWNBI3OEXiw5BkEjCzrYKbFbWIuYlIFA7ewHYXfnBAYcXiJRnG0AEzoWzlEoePkHa1EXwloIkUZwG8htCNxZ5EASO4zPk0Wg0HxOmrxBimcZ2ivKVn3HGlCBluUxQXJOtkM09dgDkN8kB8EbN++lP3ju5aI5y0eVoMBggahNupCTxAQIBTSBsR3HJBhH7ceQZoHl2oDFnlYhOAlqycwhMsgQZxsyfzgHGPTKYgeryC1ekRW6YGQ2lD5Z93OnUShU2mdlXmhBLXFxn6VXW60CGPBLU59Eak9Hx9rsEPJ5N8FDaTMIR/AGKRlQ/rUpNE5MBimjKTKrhO7fTWeOv1hD3U0YhXNc7IuVvUMfwRTduPyrAh6L6R2X66Km+U4w30d6y263G3tZhLtNuB6P2tvPL3/3+/GYiWQEGjy+tzpRKTkMJBVEkGItJphf0FY+9fBKOHn3xi/12+/zmZafT2d063IwXWEinw36VKfIr1zcX8SS+xoLkefv7+5WKH3AiRJH/N3Un30dPQpia4LSZsAFAe0E4IvwhEwt/xV8A/wMkQ1mHwUwMazobrBPISEacvyFK7qT7e+8BrqzvFTY+06LUzOsFnIqCrAQwg9F/efM1U3vYOSa87XJ5Q0al4aS33I4I7sW4mFGmFoWmzIIz8z5ZOFalfJgEWGdFF9HRQQHReK07pGSZD/lhRWIkYnmyQ0bKA3zktDDwRrXUERHKa6HC9hdyv5uHtJWrXjRnz4mQ8yj+vAfqM2fQVCFSeuxAs66FaZNEoXQWWeyaupQDiD0Yb9czlaYrQkl7UUYRYZD+IMpxT7IELA0aKHsupSXEUISBc18qryiEBFHgoLIghxriUouKN+wf4iDV0jM6TrNMvaaE/3Sf+9yFMuPcA54Iv+gUYoMC87G2SG0K4rAtgzQI7UrG0Vh2ASIAE36EBh2sqbwXzUMCzueu+oXyBaJ4hbPdPhF4/U6nXfKrVKtT/YT8VdcgY6AynWPA9k1Lh47qm5YUwMqT2MmlelYyz8QzcATILZF1ttp3q1v9r0772AXKRY/4LM8+f3rv3X0M25gJM36juje5OPvqqHCfqYzmOK+Tf9BV6i4kIc03R4FyvUmwv1hVAFAOP0mvPx3mxxfSi6Azi7xXqXIuADfmgCCQMszQbXFBKTgop4ZDghuisXoueqM+87E55x7g1qoGPFq7rEiO0EMqIcXI3lYI6dBGLRSFiQlFNAW3uENhXemWpoinNilqils8UVvCQBLwLvsjciEMdd/0B/F1HcYHdOogQAfeONMTmR3rFfzB9ch7UsWuzWnh6TSSIsMBaFQdaJQakNCqIEmkOlNkJeBD7AgMHjkCMwu3FBSQ5H+Qevi4bF5MGxjFVyTREjlNPEVYgz0QRWaEcXq+ns75itsAWRYgm8VquZwNYvw9lOQQkkxShzghsNhgjRaS2TrZ3q8VD7VniKNQ4gLxkNzMeINNXvZeXYcDEj7gd6Do/ASLoHW4A2oiVg8nDwlB7IQSsFxEpVjdnJIlyFCUNPxqyc7baP4Q9ioV8uR46yJRwpdx6Jf8B3t3P33xy3x1c3TcXn6RiUZugLfu9aoR+AfVDidB4F/jaNQjP8KGw7dYpeDessox0QAtXWrpOuOGyI2oA7mCCGyu5cVNJkKUQCtOM6gJ1lrjo+92DRrwwx0mzu7fFlcbb5BDOOCUC816s+a3qpW9dqtZaeQeHA6+enHJIkO4pm9OYc5BPtIkcZqBaQULwAsJM6qJU5UoWbh3ZtnnYhpxuh13J0ed7Kg3IqwPAbPYHkMoqLj1nc5+MBr1xqNHw6+3jw+yFQyA8QauDgFgacijLADl6BI2NjOzJZzak7cPTtDYfMnrBJ+E5NMNk86hYdBbxKd5iBoxn4cvVslVsXjCdnkz7w2jsJJvktJGx5g3fYWR8BovSPOUmZ90CCA4YhgJp/gmNwqTLSMeKDBlTHzIPgBfHqHZocAXN7PJMIkIFI/clcPHlzCoaW5tEECUH28k2Rq1ViXf0UHyu/o+wSrIDsgK4Tz78izjOe5Wg4gmFdIh1Ct+HlEDSQnaJ0cTJhYqzF9YD9RQCweyyiwjxGnFskKZK1mpJJIxkwAKTqQnCCMi39rtBmiEQRxd98Fm8tHptHsJDdOVvTnPCQ9Jf/PJDCzmYJEUWO3l0Gkdn0BHV3mO+OOHp5h8kFkRd6GPKCy8FrOP6JP2B3GJgaBpS0N2auEcOAENZDnQIYkzMjIrdyBvAkuQTLH6oWVzsgdOxqM4CHAd0GEqWnUIrwydxIKamQZjovkT4A/jMHuBmKOD3ESS73JRr1a390kodafq10QUxX/5y9IEAsJwwUVoCaQUUY6+6usKnwboLXSThaKHMDkcLHUOsVB6973vEZbx8W9/dfX8jGMBWO5fP7p5//2mW2LZLbb3DoeXQaG+yYeZEMzh8GA8QiDCpQUElL27UJyG5AecNGt1iAWWrIpDWF0kGxrHVy1sNmrf+/73Tl+8Zl7IeKouQPrFclWCSgR8iLOkCy1srX6DHpBUJelC1eTzzagNOiVCWz5XIQ8eIxEXUqUMjOJGGAw/hCyaOYGE6u33LaMAKrxn3F5eMsCDV1Gzse+cXVyxUcvBZVAKKVgV0yd23lkJuPWxx8t9QjJ4sHNkf9yfHJLLjgZ9Qq9SDP9OmARhu9jLR/CHogKKIBBjQBWbzXD7YWHjAVQiqCqrSMMm0FupyMavlBntezBiqT/xItObrhuwjVKBABvBPKv42UyKOAQG/RLxBo62Wm9vO8NwyB7qOCFRS579S9omqVuuljkfXj+/ucHzj7j7MEyWGRtAPz7+4Gd/919xXnuWm9z0zwa9/kU3mc6X16+vp/3JYDRd5ycFZIExAaMKOjiG0o4oqX0YgkwT/jtG4/MWWKaQ9eXzgUZB31EXp6QT6vUrzdx4efH82WNOoDZytXZup7caEggWR6PtRuOtrZ0OMcXXwah/9vvf/emzP75mEYaTUFQPYRjB1aYLhGZJwXDEy2UclDHi1qQnUROSB5C07ijFHKVXQgDd1qvc1JowOq/p1wP7lT7SJRglOFMNZquaXyHObbXsEn8Z14g7+ycN74/43DaP3Ds7VXZ+B+EqMysnsVpmN0VIzB4Ue+xqTIIMfb8aX5DU4WT/Tqe9h+3mxemrcUiypGVxXmYZOm69H07hsQQFuelfffGHy+1D3H2rePggsePVg861BIuUHrSMswCSB8YAhH/kRcJSSAjgRE+5hHkWPkDsEBsKqAzxLnCWf56tsIvw1vZNOXMHyuRucr1g/CpcYBUaBCEzxQnGu8cPJ8tiEp0Nw95kNK8V2YQ8Hw9eoAOiIKAugOHK+VwszKL4myfPyR6+zJWgQ+Q+FR0kOAaAg8xCC7UhjUQHCZBOgEpMrxQPi5UoOUxr0/XyTrXZ3uoUHIxN86ur/uNvXs+zIrBbjWp7u9rwK/lVZnAzHA/GMA5c0lwSp1bKtXpdANUSFlEFBbQSiWuiFQDHnAVTMkaHwWgAh0QDwx0PJTuZJsxnFA6HvR6EEa2bkC0QV3KQI5qSvkSRMZxC0BvOxoRdhD5KN9VHlIORcIYCBlAuV0hYi7Dmk81C0ZqFbwrBQgBMCHpMrm6RphVAgwAiC+rMFH8w+JYLPi41GNRI64btgAgrnOtm7zC3GcfzYDXG7il8BmeAdr5UqVfqtQYuIRWvImxdQ4pLW1tbBweLaRRd35DX6zqckU0cssB4shPcOV8+H1yc725tb+8eVRttWBbSqJAZOCH1wAmE7WbDhbjYcTMIEZZ6+soJd5ltxCFUCFNFmF/iaPCdu+/Pr/tEFQc5Z0n51ZfD41bYPgb6ONts77z7zp8u/3C0fT9fL88mV1gP/bK/9tjkherI3ogMOu5dbLfaotxMBo40cvahcdJZD9D6t3f32lutaZDAkrSvK094XWl101cWlFg8feZFWcaMjRklhzzqJjDUaS0t6hX7bxlS27eqza29JkHSWLB6mcXMH+lzts6NH9i0asfGVru4B3duGYIKqyj/DRrSAGQ56Q8Gxr/1ChUb/5fJifHASVlpFCchA2CHohOql/NcKGuzGdI6um2xXiNORKni4+i5JjwnMgVHgbqD8Q3xHXFdIiWT6Oiqltn4HOKQBiP3U4K3cJvjPCIupuhIUMkgUa6Xg7gMqV8uQunwCP4ZMqL7jrdTa+7s7f78b75PwIj/8FV3WV5G2TVpctgSmGfmN3EPmbS+XSv4xTnKBiFGZ1kcvjis/eXp67cfDAkcBH52qrv7ze337mUDlPGPPuieda9vnj27fAzsZyw9Yp2t8IuJkVzg8zrmMZyVkhm+5bMuCQngDaWZ43EcEJ5HYCji3eGXmqzDb5588+s//iLJJ7mX7lPXqWUQ/xezwrzszf72L+53qlVE2dNH5/6i+pfffXcwYON6c94nFNUgwzlqxTkwNZ/Vj8yFxRY2TFwLZkPSE1NhFJ/pYkaYT80+M6j54u/thX2TyJDe/3MBZs/+3U683qe+JokU3AqR1tmyYKUQAdYvVnfqreFsdHJSeeuQjGL5J6ezcLTKkTEAt3noCmueiB5wKDEWlj/O22RVhVXPJnPisOKbu7oeXI6iCXY/TmeBXTf9y0kUZBfreqXaqO1klv3r04vO9hbucTdxTMYBJBGv4h7dOZpHU6pFhiCwOmSPQ1MYFMBzUSzQh102XKyjAsfOBSQIZK7AQaIw5ORa+TyYOHlig6ORFYaF8fObLwMitoD5HEcou3uev53vfN5/9adnT8s5D2t2p04mCk7+Kwc9IizCDTYirH/knXz29DlHSeHcqDjIx3iQIEQTGVVx8pgVHTAgySsbPcS1x8UDSQrBCGoGF4AagxLKxYmwxtxB8/KdPGRrHC5PryD3/dF1j3wJ7HuSuqTdaW3tt8VX2JECgZLF2eUU1uj7nM7D1VaSB3vzqLHjPsHnR8PBcJZMN9GYgPRRFBJmzHWwS+Csx4Qy54AFc6522vjC0oU0sp4QpJgklGaeAlUSyTJ/eJczanrOLXQONtRlBSWTqFQiOdMWix6m2gV5v8MpcY6wu0nfMRZoCoSoJDhL6gbEfLqAqM02DG7W5Yqz1dF5O5KAey2/Pxpw+AaPAhgNsbdY8lW3VvO0yQ88od0QQdgp8oi2eqihXfJw1M4vr3t9FuOmWIEly/ViuZkk4XT67NXlVXtr787Jva3tHWgZQ2RcMimAavBOwG7Iz2phTTEF1Gq0UWzidq3gJTxbkIoUkeLhgw9GvdNgHtSdwuPHrz/9/NOPt086lR3Y+1X3qyeP/vDq6y+JGDMbLstTwv5ydgRRBFFJexIQWIIJyU2NbNvMPdMt6sqRJi45shs9+epzIiOLQjOd+XKz02LPk0GKqYvgmQJA7gteI42uFCrYN+F4oI3ilZx+7V2cp4YfgM98Mc3RaNpfbQr4vWm4ogKaev7qKVCgaoBJC8YSRCSMo9jXtKywgMWbElw6GkeLi8uvOVILT6dGMARmxdzQHXwkmGSSC6L7I+0h/uHq6roVANrt9mYcrykWmk2iZkMolNGGrTvk+U6nSnIXv+ocOGVcvQfDKXTcxI0c+VvA5lqtqg1e+XJl0CQUFBIHIbpi3deQ2DYB91G6xU2XjQ75hGvtZvO947ePdw73Djh75P/zZ7+/iEalyN1vNtyil4tw6AH1YZUQQKJCwFFRAYElWxA5N1s/brzl5srT3hCIwE0QSJLxMIuEWm659S1vFVy8+jrvz1r7VUZTVGZx/IRAWkTR6mKKfhIslo1xH2GiBHmaZUhbEhFmynULh1se1q7+9SUztkNSupt+NSjOr5Js1Uk4JJ7N4vLj4HCCkSlfOrs4Q0b+4YOT8v1tsCbK3j1/2X3+qPv5s9PpbArSol1iJ5I/Eoq2UBkTkf0VmjOdUvpBDqPgAIxZ0l1m+Q03ELpRgBtCCyupUrzER+tE0geLAeSp16oeohvgsUVkocE3ZL8glicGsesgwIcin/PdbBmveoiCWyOtIg5YOALOZStXC6xdYtPmUHJh1+zhWXZpGCgBoquYPLEUzyIci2KwfhFMvJpX32pG19FwNhHN4V2cujHAhYtudzALerNgdD0Yvnh6yu452UlpApREpmbPkAFQWEZ2zpPqZL6wFdfrsEca12Z/ERxt8JQgDlwhQq7PuWy4gOcwTq3IAma5wif33/6n4a/7w15m7rODWcgHbEhkSh7IJh4rY0z2+O6RNh89nxy0EHwIDEwA7FYVTAg9UCBeVCBWO67Y0ogEVNk8ATfUSIxahBJTu1YmeEhioww5PVy/Pdv1xsPJkP3Dafji7PRmONjZ393d2SqVK56XxVwNavW659HNvN5qoxZMe2OUU85dBgRmQY+OUcTmOonNGaaMx74ZPumr/BySjeoBmrBno1OuilMP9aNvcIIsVjj2IDkAY/b9PLHtC25pY2f08coGRJRETZZEIAhoFSV49SpU5ZIzFLysxBFUhlUeLkc0MFfdhZpzzh7xdtTHPRJPBjbs4WHzEGNKstrZJhh4+ejeDme7x1iGwIMS1iDEDVma4J4SIHiFbTadFgLN2XESCcU65BZK7Wp9NVtc9YgJCC3C9Ez4HvZOCOayiKfJKHx1NRwdnNw9OtynQiijMFtykvQkKpbxGhsHnM5wnTmhgXSp6DFYIRCJpBK//Pjw5PPnf/z4B8cf/Ljx7JtviBl4uFerZDvIxPW8N+7dJCUOJ/uYf3wUGuKZkLm9oCMdSCW5tXtzfU1wF8zoIAjNg5YYqZuVFsaSw6OjLz5/nMsOC2611tr65IefwNLgmiwXsEN8X0x+HQaBEophEsCWvkwEGtlLZKcjyPBmHmSYZZF7t9rY9fPY0vOF7b0jDUmr2fDOxgkQhIygoxFTUQz+p3QVCInw88uohd5i6YphDga42OCKyA2Zf7jJTCA4pDoFkg5Lw0UoYJ4ItVpC6HEurrr0u+o721v1urY68MDJo6dTAXE3SdDKoOJkyho5PNilC73hFJnJrDhw4xxmH52zYOahxCAV2aWojgc2FFCW3vEPEDfa9TuHO+++++Dth8e7rbYSv6hYYTGZDYYT0omEsyXm2m00bq+KnmhbyWCBCCKbgaCEVyM4f3z/4N0fP/gLThP4a0xVCA00kp1V61ec3SZfgwIG1coNb1GaX44HNwMlEwdsbF1plzO3ubN3x8vUgmHUapBUtwI1R4wqSOzzaytIievUaw/377x6/mL06qbZcjKlGZaFTdaJYhITF9vlZrbanJfXAQfnBtfu9tZqFhdw58XJd7VqVpxWx3nf3xsGCOMlEozCNCakjI9AdpLfEqbTAMIyQRZGVTQlSTq45ggkuWUCIjb2hTLpLEvJMx7AkFNGYOZE0EvYhCTiM5Jyk5RKWoECi6aAHAAEsua7BV5KZlPs4ERbQn5ELsNviE1M3HMQoGidiIds8QHvFQZur5Qra9NA+flmHJFDzJwnFa9ON5ATXTnK5NkuqtZbnlefxKFMygyJQC35zfmwd3nTjwfdZDJHYYSOIaGgkhoCC6lZK5gmGQUEV30V1+Nt6MZ6NmX3ZzHGbSAT+BwvAgi4f1RL5O1gqUt2ZO3mVv5iuV2oPdj98PzmqyRmPLN5pk/uZpzYHMLEm/s5Y0LKqdUaQEyry2QUEQxriMWKCAaNhEoxSgmf6iH/1SNRIHVJXeOPHVZivkxT0WLCgJv1Kx4BySsceAzjQZ9NiOjrZ6+fv+oesUmyu41+heXlTvtgOBzenJL1NdAOFPFrl6t6GThDeLWLVsEMy/a7kiJH+cIaw1WJA9eNWrLhaF28DOc4RWDCmgTYo7N+swUDg5NRzHXY88oPu9HF+XU4HuKypRAHdvRKsVXlpkOoCvzjFrKUs1OhTQlCfbD76XZ2mmUX2OAHKAM++ZjJNOcVCuTi2G5XEft6U1LpLpRUXXv0uQkZHl697k16b3/0vrnvk94NU5zrFBzy+SEfAFvWPpnIsacwKMQJMSKxVQC/QSvd3oJnVAak98DzhVRiaDD5fIBXBfUnK9IUisSMh3dPjjHCMC0YqZBRhNyYbaH4OIkimzB16Uf1aqIYJ/NpkmUuzia5Uu7g+O2vzh5/+eT1ft2v5ws/+eDOSb355GlytP/dddw+Kz2bZZaOX6i4ISFrL/s3CeSCkzLaDclEmaWPQDQjjXaWKRJ+Co7g0RpVqJhzpxxnxQCeLXouxtZajnx1hM9iaSEw0EkCYc2XTr5M4E8QBzbJKTlDcBAHmRhjO+cisYdw/AJNKxsFMQ5yRDeXnTFdBIwH5LOVIKOKKAC/wV3xc25rOTByyfy2pS/k5KbgIOkF/H39+uzqqgsCCzjCXmpjODLa4IAO6hDnSJks6ThpofzyjW3U1Grlw/1anSBtbATnNggEDCiBXcPo2Vxd4eyiqDiVmnPnaBdGPyZsp5yCzAdgnikmxM6RhI1xCecIGDumXs0MzWvBwQLyZd/95JOPv//hvd2tRqvR8UoePWddccYiIIOIn+Q8J8S+Pw+fzU87uQmLklGhtMBX2YxwOXBYcO7nDvdO9gveXmmN2QofHbmy2c4Q9tP64VHlzgm6jvOi+1nma4yqAIqjS+A5XVgRMUL7kPwrF/db7z6fvByNr78+e00qgJwLKFq7tc5RufnT7323uV2HoNbef+f+yV2mbTPvJtHNP37xeLVVerUadvK5JvR+yWZlvHXnsFHtcHYZKgV5YTeEHcZyDc2ZnmGEyDoV0mXlHQQOYtivK8ryTnxLumFOkUAMIq6EvxyIZbGIooNIAEb+1vSdr5JJzZ4mQcAovzgCRYQYhh/MGdiW32A4K3CMQ6wYqRGkFNFzyX8EoUELY4dSgkBuPA6zKyItVfbvfGd2cTZeT2dIJyKA4tSsJX6xUcAKJLs7tiBULqQcptMpOuMhWyTJy8nlXqG2o8Rt6/lkTO60uLgmakrFxe2H+H7x5Wj6+tnpewd7hbKLbBQNtVGJuyASCzMBzUVeon9IXhojX5WsQMdTGCK24miWGS82vU3QzNcjueMku/utm+dTpLyJlh/5YK84qYOt427j6I/1wfPJGXYaxthZzyuygbMitKAQiICwZDPRfxue/tC2gKN1JscMNYpxVGRefVFkOuBqlAtYstD0Ir+lkkteMX2eJ5oD7rJ/UvTQPIvFrRaBKpJnX788D/qcHdzZPRCrYQo6zQVBBUeFes1pVCpwXO2PuPjRYSiA2IrrV5SeEBMWgaxKy3mebHSL3DzGuXHIJkGUL2McZp+GPV0M5fRYTtgc8cZYQ0xuz8+E2KQI6E3yDewxZLqmlgIxk9n8T0iqNxqRVxVkyZKVtrWzBUdEoUc9BRkYBFwI9zeJj6t1HM0I9MsRknzJj+eb7d0W7tXI7Bi1+EEbfvr4qSxEOH1ESI9sXMhO5mPkkjoB/9EOgOYYeipfSX1oGJ1mq9Fu7W2u+4N0P0mnv1ZYYhOiRSrMJxOSLLvPXscX3cmdw93DOyAtK0xyDctbR3zUQ7gKMpzQ1DAf7KdyDYwJgv8tN9EaPbxxfPeTr5/9ej0euX79//HfPfrXf+mgIwwmYXO3EWSbg2iEqLLxyyR0rF6WJ4N53fcwLJx2rzD/ksIEww17KPhWSUnE2sUsofet5sT7wuMJDRY3l3kw6l6eBeEcwyHOYtIZGQCCrw6rEE0TriuWAh9jJSvuEUSfFVTKE8+StQrgyT15eXV+uXi9QQuEyTG6dFCgoTQ3UFBKp4g7+Mo9voFv8tJgsMJVbV1qTVthVFoAT/j6P331aAp1Vhsp/DUdwAgTDJkgRaBdqAtqPid0HGQ6NjzZ62m2a5vVjNE12k2qojPQcRLwSOJZ51n2yEDs+GILqNWcg4Od9cUNq1DGCQkZ2ODmoAPtATAEgQJSDrAwRJC4i8SHl6TrHh0e7W1vVxzsihgNZaGKEPMzme4m6m04EkHUpEw0jK7m00Gmj6dGtcq2PWoYGn3iLrPtTfuHx59ExVyIcp0QnAffQx16gvMAYeDO9jEcFxvly/NT9rjx6Niwx6HVCyaRYxa8hBLkOJq0U91/+8fHuez0q2/Of/H08WjRn83CXnhW9hbZbVI9COMhg4QDFZBL2SfXT14XXo+jbLeb/+nhhyAvNpNGrvOTn/y4Um+EgyCLY9Ni5RCfYuEVZqX6ph5iIJtErPOElFYKTsoCw+20xB4KB3UxowETjJCQbp4i9MYzUE42RqzEVI/TIx1OtUptI8DFILcYxeBqhilgHDeNUyjWFXjS7mwRWgNtjGWjFSsEWVVrXnmAxkeHYUmsuA0WLw5xI3RO2VDB+JVzo2WA2sBzmWFQ5rB0b5Bj4FwJbnNIk345O7l54W3l2t72dTDYqTRPmjvs0DPjuZhsfJgz+i2vqGjR5cKy2PFG83ce3EXF7p53g2kExTD8FvryirgQh+wUsEMp1ISdfKQPgQuZJEBKXgbxfIK5YTXebKLp1eUHd3807qxedc/hAfgfJVscOsuVFzimVo73/FeXyXyGvJbMp1dZd5vKtW4ArZaKoSE0FixIFxgSq7astLLgDTyWy7JWka0mcSWEe/VIlgatPlAGpz2kQeE7N2098v22DKNwsbpBFfIZvCe8j46G173BoI8L2tbOlg6+ZTZEt6tkfKbkZsoZ+Ar0UhF+OdOuc5eAgJ1YTkKJszOVTPRsPLQJZKOZ0Clk3IxR5DCXYVsQa1LKTLyxPUwuzVYHURQjOK2g8FMr6xf/Cqy+kE5oo/Yx5QWMYIS0L6MKNhh2JEA7hqk9PzaZRWFZ6OyDsGfhomXFy1V/gMtbnszsTAsUwPH9ZLE7DKdXZ9e1BmY1OsJmNoZv3ENGdw6OxUyoxXgAo1A/0Tggfuh7y3lveKOwANrqd7VP72Qc/KtyeVKEYDOZhSG2aLxthr3Bs2+eXp53j09Otg8PWWggFw4DQApTC+IF7kjUyeyJpQt3bCb5o00MUniyJ5vfqu/dVI6u+68uF+ve8+st/8l/9V9+OPr8MtxwUrK62EywYq+93NHdd766GF30zn0QJs/heQI9yto0GU7rx1WaZvWBFhBDtsCjGdvY4lSAFo1qOu5/9dkfBVKdD6Ff9EVMQBKFsUD5l6c+l0atQSg6LOmKrgr9kVjILoyYLJLEMoAa6IkGZXzZLiWTgKBgKRyagZJxCVbBJELdYU0ifBTGvMykMvWFPIbX0/MuEg2TQQEqAVcQEph13pMfJsac6QrxgFG5buO6O6Bl39VCbOH3xCZabl5vVJTBDyWvSf7YRjIj4GoeDkFyTVYkFkxOC2Co56QAlWsBcVw2RmlA4NUI2E3DxERcbZNAtWDoDO0j4GD8w/kbIsYoGBZoyspCMH109mI8mADMorySSuv5moOs6EWj1RUzCroSmKI8z5NGp+NdnOB3iPOm0FyyPbRR53fL2RIcjK239YIx9MIBBA/QCuLQS4Ro1GxkHtjgNGmTxn16/WR8uiBQPpad9sbHixMPZxYQWZqxiyCRslZssRNqlJYIeZephNP5ZSbyqUxCEAs2k50mExygzyc95NRmG1exWmlVbCU+sfdz660kxGcKtOLcwxA1AzdaTjJhb0H5yXPQAZ/CXGU+y8MHMCghM+ALAKFh6SBoMHMo1tBrKEMSojNy1A7PDeQG1YLkSGdtBUBUlTuwVCZiYgPEYg9PzrsSreerTdTYbRQuMfYo8hRIyj4/8gxgcWtFlFnOUi0y7myjTUUZB6U6cCoaqxxOEt7Ga0dLQu9N4A6lbO7s5VdO9XVnf/84926U9CfrCT3JZiarflgEPLUyy3hF9LxSlsNoMxJ0R/FOh6A9CT6eYKwEb1FUYTh4wBEOC4okOioBT+RUvG0+nWVCtPGEI0V/7MPIF2EwZBP/bz/57m9/XXYmi/6L06BaJLnrc1wA3cq6Sl6oIf44bOPEg6er5nGh3JZwrbUh6iDLuUlR9gsYQKIkgsHxUgDCZqGaoC4d4I5RGJCRH94WbeB1eVnyR5qBNmO5UsW4SGpbAsBhppT3FwsCOSkqeaAlD2Gf0BGtT9YJtivLT4C0y9glR0KUWbyiF1JY4PrUK4UnkyDXY8ji7CnmY6jyco4/FbwPGiLTOoIWTXIsAnMQoCN7GvhAl/DERgIT3WeoVMRhfFQsvmByJ/KCPDBBLX3UMiKYgjoyUJL5QiwkgnJklGUCFhExE4d6DuQkmwgH61a9xiJr4Qyf1JpeG/Fch2ZANtFfQZNc0JNpQFvE9Ga908mUdELXWHM4iwNw7TsVywqgqqOXCSegqs0GEZunMhs7pJTQisjkuhfdYPTs8VePjk7u3bv7VnurHpPvF5pVdMBsUA7rgviVtEkIjigdF7gVMIH8yM9gvd5qbD998XxRWu15lYvf/yH565/9/O//zX/6T78hCUngNMJF/+So9HcfvPvv/93vxyEzAWWPng/6rUpTVB/o0X08pHVOSw4SwANTWjiZyGzOIUkIH9IJpxiZZcHXMEd/DYe0JQFScA0lFoHkCjTASAD3kvVTKIbGwlMA5WCSw63RoKLhaFTCW/7zpn1FmkNboyuofmCBWKxM2exyYdqASkEzkNnm7E5dnJ/iyiqg8GHeZRpmwxcehTwNtycgP7lUdIIL8Z/+jUYT0lRubR/F04vAyWLRFB3I5vYODo72Dt97+ztnr0bxunRwUMMneRr16DLxN9ebWQXXsnKBKNNIVhoqIrh4I70GsVdyH2N3OIz4yigAiz6MnQEoawJYzgYja0vsbRhMvvjqEZkmiRONp9iSIBy4YRSIWwbRhS3jc4CSwQnV1WQR/nLwmX/sNXNNbWtb3hMYmzkWaRvMhDRx08l4ItbEJOLGJ2AjB0GKsWaXiLt60b/5rHvWz4whOmwuEGQaH/EMZiYkPGWDUWw0RkSHxQIgsIU1m7lsdCBjugSMYIngZ5LJk74KPXw07p+OXmNQv+hdrS7Rl4u4ljY4Q7Bz8jff+wv8KVhvGHgJtk3sDfzlOWEHG1iFnLabBcpy4sovKtIpSmJUATYMtuuEY9QBdJzMo4ROTQIoAiY4EMgfx7lwVlGmZJYWxxYyOoGJNQojL+6YOOZqj1kTkiksS1Cddr1e8xvzuCfkZMsXV1600sXaYc3jkwJrZctA/JH34AMcbYWUENkBz9nDfG47mY1wDkOi9cCyvP+7Lz592B/9/KcfX7IvRGC2xQxXFly8Gq4Xr8YgJBIOs+95E6iLCz6zm4bPIF5AQuA3+E2nDbwIPdr6AMzqm0RtUALNAI5GPPF+/+LFbLhT225v3cuv/U5m9ydH/o/23/v3v/yH6eBlr9IKvMJgVlyGBfgjFJrtrJugv7fGYalWzKDDofFA0uCkYLSsWkIPLRe6oUXJXRoVeqhv4EKKpLrUDgIPrGuCDiuJhYYkbUhBQa1OvUStJgUxEhYY1TNi6DIOqNDSMvycwAVYEGiQSBikkOZwHDtyyTKKiJiDgzKnTnkoXY026CdUbMEh+gAItkp7RC2jSaxTGKmdYhU7gtwQICFE4oK/oFcxHF5ERcMZD5qA/3u6XwzbItp9AduyXDKgAHIGKqHL0mENnmwc7Egy0chf0G9F1KL/7DrATLUnIiYF4qL5YZtj6FBD0Ba/VZGrRg1Ll9KhSPeW0s8RoyTmVAJu0kAIVyMROEmokDFAtcoqXhjJnQCVDvIgqRNRBulktZlt8ETU/gE+gZUaJtpWe3t3HPzqP/7iG0IwX5w9+/rRR9//7tbxHolGy0gZ5Ty8xCBuW47MqLQ1yTtMInXi2gWHY202Gq1Oo/Xq/JV74l1ezZ+fnn78ydZbJ++9uHycy8R7jeJP3nsYDAbZSYKPI7g+6K+P6nfuHODaw1ZiGIxn1apSE1IbAGdEWrtIRfAwIpVFrCL4tXwJ5LXFQOkDd4QFyI5EXTOmr2Ak4Ah3oNHAFw6M9A5lIrJQvioHXRyX2JRh2lZ4OAgxhXLIy/wVZrIueJe2ZDAAhxktJjBYjva9qQy7seRvyJa2t6C8l+eniJnE8gGbJZhYbbLe4ZYjtz95Ey9iYSHxOghtHwbkzdzDMIeNcTCaQbxqqJRbhz/45MdHB3fYMJg8efHJD/+y+N37T5786fnpl89fTyE9aBLK+ec74vk0wsxiYiJMErtAGL5BGdYf0n7EWDQxopcg+Xw+nUxCDhV7PqSQfSz8FOnm09OXuAXXGlUi7Wgd4CcFABgP7EHETEgsDRwz3GZJSpCLcOTmyTyojU1jMJyk1iJnmNBmII7ZmhMyaliwsTK21KkBGYIZvBwMRxw3KqNE0N5cCXa04sEtsHoK4LQGgJ3+Ix1IdEYdQQeZr0O0RZYwnBtEJ2U53jXj+RQTisRyxSWSAIVRdYBvhVfP5yvSOSQjsvjyHjt+7L4rWBadA1kWj1589c9P/iSPTLZO2njruO1CE/WYM0sIZXCO+SaKNlOZfwqZV89fVwtZLPhJUorGCoYMmDhlc9WPC/Gi1Sp/8ft/arvLrYM7tUptGdEcniIuyHDX3ztnBwTDQrwhZgJsbkNeMIIYIIzRrRxHwaebdciepRRD4m8k2Xkvat9rFhK2H4Ob/gDhDYtWqVw7bD94dXr6D//j/w3YkCMDIxAmU9w8SIs1Xib1RgcNczHGjWez8LkJznIKiAUAaeQD+RRK8lt4LnovkTklFkIFiDOyFrpbkjjzgF1nISobU7HfaezPcd5F0y1n/3f/xb99/Ow3VwhgJABFNRjHb99769WTKyzTBBlPkv7aa1GpFGDEajYQtRkqMi87D6YTjhZLYgKd1D64C3IxSYhKcvvAnQxQmWgSchcaxrqkhPJ4iNKwGkE82gKrWXFLJYPiI+ImmgBFZp1L7CPOARgpAq5VrPNMUkoF+1mI/We+ZEtWvJZeIdNKr4Cyo9vhEBqNss4qaOwsyxG1leb4ClE7W4+8RV4kMtHFIDfnA3gdmoDTPRY1HHsXU42MQaA00AdygVJMu+bsNIEA4lI81nAIc0bWDvVTbuz0j+1VDOPSNyVDy3zDQtJIZWJFpQBy0t8zy2EgqgPVp1IC+DA66RRLtEbt4mjfyCaYbSMdDFW4M1uG1I27E771BNgkAjFUkF2AVTKJiYgmd0XwTlCcE8QYEaDOoeG7D7faHQJ8XJ2dcgi8hKshuVosCQRUcMZxEXmO4aXCWSLMWCUINCsGNWsB/MYTTMetDuFc9mu79deLCJs83saNyn7Ln1yuvnh7q9OJ3curoMyub12WVQRFz0XRTSb97jxc9dhoGuOSy/BFyw2dWKIoyEOO1yB9QzwXjAW6YXgGSsvGwiSCLRJmpM0BZqYfDmXkRMZnJpiHNTxrt3dQ1HjEB+5R6PeukFVEK8XZb1eI9CuuIUJs+GAegUknGaxcNCJstv80Y5YgqbXQPqlRWlhiJrzMhSYcBcJOUsAGNqEmX4Qvm9VZ2EQnLftBj6z1DU8hmu++VW7vbB8cHeE5d3r6+mrc5VDW7h4n/j/ePWxymns8+mO2MIT74AHAAucYF96+NBohHTjMBTqqvpIZvBSxE5B2k3WUg/Gcvrxy8x67/PU624vkcKx7vjOaBPgSw00XiPtogEXlHMCcKZ1ZPBN31QUJDLGw4pAGZK8vn933tjZLvOzANYMQBiFRey0+ho19CaMDDJOpk/QmUr5GgTTVA9RFV1qTCEvuEtqMlIoneiC0Rh0heg6BB4CvpApqpwtMEMMqEgtCCzqBgFMxqwRtjFmkLRYwDIgJ4VAl8zWX1ahU8+7ig7PKB7QGd0EGAxa2PqWMU8E6H59NLr8+f447hNqysdBr1jQeEuSkr1f2Ov6xW25zMnHpFrM7lXI59txRg2RyQzQEnMxC5MfOUZPQe8toMry8uLg8/ezicqvVqceZdtnFPkxSnfsHO0klGiXuMO4S7BOjDmRnsoz2Mwk5GQj/w3n+aINRCgaKSJohoHR+NSvkSCZ3zcn58XTUbFQn/YDjtWXsHIvSsD8hCMf56YyD5FWPw/2ViCRy+Vy/C9mXIbDkcFhv7gC1XNK9noClLHAEF0Nt5GddSPg2+4RQWYPnv8CAGonTyyoOnFq1UNur720Nn59acQSKGAIJcf7uWz981p/+cdRv+LVSvYUFwnuwvwno4vzlo88W29lyoRXOYpF4TI6yQMguMZ3itocMxkIFkXRmkiPp0Fu/Wd7d397Z7uDziLWa3kjVXgXX/XA0iEBG9tGVTVLEH4TBkC20tE0d+XLwQJ1nDPwI+VHOxVt4ROgj7HZML1EmYfv4hbBJBFEg1ZGD56dkfggEuCA5mwgnLHLhMdb8cXh5PZoXyYI7d4i2siknkBRUVU4tQPmxO0N1UflZAvAUyZUAE8awdOslt9aC+yXJICKgC5SSzLMQfSQcA7K0cACglYP0A6Ljr8I6Q8wS5UG8wbqDGYnOm1AFa0SpEwWEzkNgcdoAgHgQaWOWLQaxNEzzHDEQUgM8/IKgbIyKV8SOMGbSyxKLDCxAT2OjhO1sziggwhWxq3OKAHdSwMGeBRSQoyccMCSYVRJtXFiUU3z69aOvfv8ZgKfnzAJOpwStwVUlHI5ZvmwJs81Gc9iXi5AEtm/Re9j7ZidtFu4/bN/73sf7nV02HEF8Ila72VI7t+Uum18+fdHvZ/zOYeamNwsjccdV9qY73qzYKk3qLbYSGsE0pja0E6mOyqCO59Wm24swujFYbLOoMbBK0AJdwMg50ygRh6Hzm0nRzhCx2Hlf4qwmbWurxfKU7RCSwcQBJjZ0Lq7PzXCEqJLSNF4EbkbLVZ/+G+EWHQG3wFGbPtVi6jsvZsMg6vWINy29TBjJO+qdCSBCUt7SQuSfBCE49WbdqlUx3UZLZ4GzxQpPMJKCLdElx9MpEPz6+ZcgEk4whOAiMISbrZ7sfPL/Db/o9QOYIy7/FfZ7sY/j6ii0VaRW5Zm0jfvyGienYgwQtGtD5znHtbk4vSlt/MyRfJFqOKyL2ueJAqSolLlcteBPCV/BIcecO+mP114EHjog2oZNX0yhRGgKOaZIBMoPjr9HjGAtPYg4oNBHCA3gxW5hzMhiJR5rI5rtOdADrQStpeJW2aAfhSPiQ+D4aQq0hDLQk4mA7uHWQM62Ci5zAjHQlbrFnkt+2azMDpJg4m98HVQGrmyAKUaQs7iQ+ZUFSNPAXGQgRx6u5d32ocVZAP7Mtj7qJbxAE8uUivVb14pIyKxuIY0mLTNjka0XpO5CRzlpvNfyGig18Wq56zWOdu/s/aA2ePWSURDMgO3chFgUScx5Uid7fLTXPu9efDO7WbwMG5tsLbP6wYN3H977G+I6k3OhUGq8eHzJvhwaCVg0Ws3Po4lXKg+WE2Cb8asoZeBOwqoqrYiiNVqNG+UGygkOfFEwxc1/QeK16bSOC8nW9unTV3QeQRARGtmKCB8T7EnF+QRU32TqzXpl4zvNMjtBzIvGayKLIAB8oHzGDuyegQWgfLtyNplwQK551+t0povSoyfPt5H4ggDnZDZeJNhjxciSX65V3HSR7XY7dy4vXtbc/LsP32Vif//rz5998dubc6mCjpdl6xKxVKZynVKWghYvp5IXINULjg+Umo77s7/66K37dyF7N9cTbQBpKpDuOO3hBZPhP/5Pv8wg2eDNJf2WExIVliNBYZDGF0kJToEpB5sK6IiVnmziSFl0j3iLSGZI7WytQ6rnpH7Fw4E0pjjGJgEUhGNjRDYlwh3KQ6vlV5vQSFS0IeSknEvahDBQOH2MPAgkmPOJkeUQpRgYk/CI8/O4IJNNT9oFzAPEh9Yus7h2/vgHu+Xarhg0p7qC2fPHp5PVAiBI10UzgSSJKGORAh5MIIdYMNTBP5gWyK9sW8jT+BZB7tG9KYQSOugRagHnBcYKm5HLFsIftgh5wIsM5UucvEZ9YiMgJMl5iZBvihmWRyRGU9HuBVRbRzGQnwjgok1f1BKC6haIXd7a9pkMrJ/oAwyMkGDzZFJ3vNOzcdQPmgeVRr04wktiLicb/Dsw1nNsh8XE+mPUoEI4Dg7u7vw3/8f/LXse3UsspqvR9XjcnU7GfeJ0BaPFjz66t+t5iLucvWD9ebXGk2cvl5nLeNUICX0WyyoN3aIuM7Uv0MCwbqFKEO4Jq9k8xte5QgdwoK13qoVuVxnpITBYWxU+Eg4p9ycxVZzpoEqiyVLwtZgNuwEjiM/p9ObONqemtNUHbOTciqCL7pTh0NpLCsME9b6kUkZo7zM+ZCfplAiq4thIfFAT7QJqyuWdDQMAHMAC4ITaZpdVVZ3grzgAsySRizIMXpdaoWIktNVoFu7sVyCt3WsSua04yjMkR8xodHr6nH1VdMGj7TvRJF70X591R1eX/Wzt5IpUT8Gi4ZeatdLObg1DGBuT+GwQSI5uYaGiGSgJaiYENyB+lmgjfc1h3Ts4Or577+7d471mgy1GYxT5EqoDJ9fxkmeZ5P38N2eXf/HxT99964OL6y+DcALPXOW9hMUKC8FsBQIn8TeDU45mwFwEHgQuoyoiM/owZuN2yD3SwsBreTfQg1aj9fGH3/n8068GU0EUhE0BwwKAfUGCqKFRr6A3UZOJc1Rm+vIm682qbq/qgChF4uWVZL5Ei3ZKLAW82BiwtGH6gic2VJ2qoBEVvITlup7SvtvO8SXtJ8YOdBFGICumOp2yef6Y7ohYR6iAgF+LtU8VLDioEEHnavcODt+/yy4+EgNqN+wVfEL60Kb1Zv67r3/51eevp7MBolZUmn/+bFFxH1Q7B7vZg2Yh+zh+kZ90C2tc5lFwVqNlg7gHSL3o+vgwTWmS1Yv1YB5jxWnfxN7xNkn7BhOipAzW8YK0fLWSS7SQV4+fs5sMwSC+EPMNMED43DJaoqRlN5Wij1KPhIcCDWODboDaAFlAYfTSXyUcgpJcyybD8Bk1aGL3kR/xbf/D7y4fsP3ZifHKxns63ktm1IFFgqpwFc6SiY5EfiMoYm+53tvbCXqv+90A3frdD+4Xv+v/7t+fYhlsbZd1CI4AfqPR8YPOg/tbRBe9Hg8HSYybQymbeXj8nXiS/+i7H1aysLzNnUPtlknKR+xncyRf7vVeXr73PN+qFaulOBhj2ORcfM1vH3Uecv5lxTFlNo8yboygu45LhRiGMYuVuJJ9nTjKLda4UONKmyVqbICbO9EXkuT67BycJUwDPvnEvYqi0V/+/DuffP/9HHG7iaGxWCumSGGNbyU2HjaAEehASfQYxO6X/eS3T66mo8nWvXbZITShjnxxfAzgOm7zR/ffffcO0a9QMTysQ/E0+4etR7/5w6/HnMVnzcv3K7e9U91rV5o1l/VB9+CFwn0ICwgBUmjU7BCgE8spCTfdarOMXsm5tUq9LJvjupgEHHBbESgGgckrcoYs55eI0iK7GISATWACB7OxwPSbFyVUh+jCyBySMkmyyqGIR988++b0ZWla+dEnP7hzr5PgVY75dlOu4KCnHIVYJrLHrUPsUi7+2J+cTAN2zjik2RiPOJDAybvJq+fnKN+EPIBfcqrqzsMtv7Fplmr7eIhs5DE+j5iC2dJbcH59u0JKW2Ir4cztENcNo/v56erFp+fb97fZ1lgnkAfWEaFgzGkJ9phf4rWLPFws1pAdMXBBSpUrbDNvtvx33z3iiFL3ZnHv7btffvYpecPg42A2p+9JKQvqsJ5Zili5QWvmDsAiBFX96v7+tsM+BqwO6gzJgf6y8plcDJsvXvVZQwgOqcAOVYCoiVaINEhRFp0TL5DODOmxvSd5EHEfOoBIzweqJT1E5ETMg19aUSpu//kDJUYm0Sa5tA+dfXIY2nx7u8nOdu9mwEl0/HzOXp0//+IJPL/RrI9I/t672czzwTzXqGxNxhzZG3EIYEI2AcKIYnVFVmIE5O2dYRCAbUp0UEwx6DRSD8Cj0fWmWan+3d//FXvLnSbB9llHTCe2RVxmiv1gDLohPFVb/lt33sIcfh28TjJTaBohxVmNMygr+jGCFXIFxhzObbO28PLgNAnERN6NUnoYHr8hp2yIKBaAzo0AEfIEFnerO8fbJxxCqDqbx3/4TOyAV4xRiFnLY0eyD5ZTzqZJFxDjZr61YYbMTuqpe9sPsmv3D91vvvfwbZRNwE67SA2XwxGlkQCwdpA1l9NViEjAYLRa/uNv/uefffw37fqOoE89Inm3U/H/4+q/niRL0zNPzLU47se1CC0yI1JVZoks2QpohRbEgBjMYGZniF2zXV7wguR/QzMaL7i2trwAODQObAZi0A207q7qqspSKSp1aOHhWp3jx7Xz93xRvReMzIyMcD9+zife79Xv83J3Foa9xBkkpZjPiDEa1x53vtxXBP1k1mjWrJJNxhGwHeFAJEH7+lDUxkNDKIyEYCPDMGF4sEo8kEh+i2Azm0oKiZ6CeR4HciQfHnhAHv3pt9557crGx59/UXXV5Dcfx4jtgQWRSc78yXBlFqg7C6/ToXQ6Sd+YZueMzmG+2Qcf/35rdZlkZcq+SH4g2Id6iU4GoePxiuDnQOCHAolkFNstGJmWwYWJET5EaE/UWjkkRznhJUVIzEowQ8amM4PSAbyHskMIg+ldQ71z8NrGF+1wwnc1uTlwe90Y0ZmBPxET/qR0HRyh/IhJHoAvsHKkLDRYT2/SaTSBGpoFZ4lM5LzinD7AszohE3ja9zZy6dJOtLS8slG+ttfoEjAk7W21dC22BTcsSIKilaHmcdphqXNIl7h6GLTvUIZ5zTu9Lh6WdDqfiFoUyw96nfmMCj8uDSkFVNkTmQEcfzrr9zukamH5cyZAGJc2wBEAHX3QJ6ORlAVLySy+XqM78lMVjHwYDk5q2btkotOJKT1cwPdRqrxQKIU9zbUQN0S9oELOqTrDE+RtIgVmcaBLagTyE+SemJ1fyq6sbWzkViz4mVKzKOQfpjLW117f3j/49LxRpWsFFJ3PWMUVe6WQTlsWpqAzIuND90clVZgRYSKWg8cCYeEXCsZsQlreajHXoIjXQdVAzSU9gdgzgBuYVcF4aAILwQ9PviAoG6SijCxq+LmLNEyMbhn5eKogSH8AxR9Wnog4G9GwvVuYuNNUcWSl5xbKseoUSF7mOCyozI1h1mTxvBLAmpGtsr5aEGujPVCoDFjIeaW7s7mOmUzm3sg/tYvEzKaZXDSdK/VdglU9pY+QWISJEiFg4V3UmpN2rXLQ67WsG1tbd+9u1+OBlFUKe+VhrYWn2aM0F42OcWLPBoihEpUblvJlgihUKUSp4glj1Sw6rTqiaWkttRlP/OqXx88fPWHSExL7ybKBA156fOAs5DohQ9TymqUlNO1LpZLlYp40SES1uAoKkdpjcIZgYWwtTe6JLxNU+WoDxHxgFuLc+ia2gTziR2QA6iWx45Rtk5Taazk8mEvhsBIFyAXUZUU+9TkYk2SH4b/cBZYMZ5OTXYabLpRTz8fJcsDJIqWnAI5kIs7pOjttkaM3Hg1Pj09jdhIMrFIhv7S0Qvftw6OzXr/NM/k8ij+ykqAGchPDTDwshDQkoKajxHKggpGmj0aFGKITZL6QWl0r5PM2ng/CpfKjg/we8Nc9IpBoKMoE8A+BFI4BGF2tnQQEtQ5jUdw74E1tKdzJjWLu2tpqyIuOu044nqSwH47PtJF7ckVi7+CIVLNLvAz4uFjUYC6U+fqt93a3rxPS6zUbJOBA8DxcBhJrx8pBm7Bd7rAIbm1sJdM2r7OC2A5gpngTQEPoPWjvpK5v3ryiwIQ2R9rNYNg6Ot0no4EQE4wpEgvDE5BHRN3Ikf3lF580Gr2//P6fLxWWxe65oW4rJ5/ujsd2gr5HgM+oCfyHMSfPH5t8ufsIzlm9XS2m1smZphWDaa4xHnQq2M5kesvgUDogH9MHxFtnSV5DoOGGA+6BsqFxJOrS62zYFYXMZyjwufT2jbXt0spOu0dwYtytnz7fe9xynoDa10ykujMbz9y8O+8eq3AwPMMb00lZQRqNFRJlGi313UkatwqlxWzY2OWRUA3gjm1i6lQhUVqdy9GJbUZCoIfLhfVTAwCErOauMWoZRNvQqxjjArB4/O/9Tl8V25qGDFyWIoBG0AFyDieJv+fQqqM9zybnC7o6Ed7k6At+FrdlIpqPBKxcvDS2Bg+ffESPNogFgDn8PLikKCKy4UGTUWc0/+LpabPvlZeqq7u7faU+4Sjwr9lEWtAKSVOSOc3mCEYJkgoABkTBbDTctlAyO2c1QgVkGHS7TewG1h1YO+QfQDiBSaJ63AHzh3RiQhdIJoYvi1KqnBgxyY78rEUQ/grRBXx3Y9Ipkc+KanGQZmMQNEHN6fddYKZJnsrnrBxQF3wQnwmnCXUNf4e0wHQhPW8mxw2qBKZ4MYniIg6mOK3damU88Ipb40I5B7o8eUJ+UNbntdmiV1wb+k8w0nHthPA2O4NxnXpcUuIDdDECplNdCWHsiGe5pAUaoLCtSr+1GnNU8l6rRRkoheHMDvZPLR7RTtDBYCmcMXwW0j38vgRAdrA4DgYgEejnGMMiOqmwcDZStElwG4GyO+8TWkXjQMic0clzdKiTp1XH9pNzFYhhNIsxLUAGvQVkhG7jS+KKZAlIz8ORxgageRAW9FjpeCTYp4nXlMrkV+1kOFKakayO+MQqJ22P4NaMZhYne188qhyPjurzz4++WLnzH97+7u5PPvzgpAI06ECZnsxbHlmYJCsxee3m7sbKLq1yu4NxMgNOHVEKezZvdvp1WOTuzhrNbh88aO/v1yFEuKmcayJoKPpS/ya6NAW+Vb4IHHqW387gCwWpEg0T6hXHZtdZX1AYsI8JhJDOK4e4CJ9AB2xAZ5svHRsRFF+X3xX1B/I3vVQqYKk+dfbYJ+QNH+NQ6ZZyCnI49E36JEumPp3cUso//hB4Jboxth1QuLDLAQ1gh31yRWDeOOmMiPC3uhNUZ2LegG+7ODdH/mzAT1O/vpwBbUx5EiWlrUkFlYrJ7dl5iIAzzSroGXA3yUTVYqFpK+1rMaSYQ05Fkhwl3zQs1p08CC05kaIQCSqDyvwIkY5PnE9jOZOzE5oGV5NLuUz2ChXdCeooqS4KAC/oabOUZsH+kIslvmt4ivIZcaz5ojbxoGDk2s7ujY3bebuoOlwggcPFTHlt/+ycy6RLEsmDRqjrE3RJJDyex6ZkGggckBHApMm7b7YvVoo5gZly4lF9ZD8RFeHwuE8PX57VKrgjBIIu5kWlX1S+Wck8eIz//vkz7x//5n/44b+lKBRikOw3UoDFY8FcUuf6BDYZsZaEj5g9Z1u4nV4m3tYZVJ1u20qWxedhbRTKelM6sxOL1eVYMaKNr77JixpXEhaECJ3I107HLOjSALCQL0ScB0Y0DngRe54OJxljrmQvX988qaw1z44D87odpP4Ab55djmWf79f8lK2RGxpIkDS0cXUzEK2lpjOaRx+83Cc/nRY+SIIiJh3NPmaUPHigqi+EfYKCozovMi+IG6MIS7FHv4HuviJNKJvt4uzgBYlz9JeXllr1JvPR3MUw2ZwA1vnEPwnEQiN32Gg3Z6tLPpJXFdOZExXtOe5a8cpGciuM3zEQtYuBzFvJdruD2xCdePN6oXgjMep7w3aTOgIKM6reonnqJDqTZXdIovG7u2+kYwW3301JYBGJQpc2OQU8nzGYth64mdP5PHYAHAV5xKHg8CKjyeanVC2Ok4sQqW8KyFK9Sw6VGBTjlv1GhEG+UCndvjgMVSwLdgjBc1IRiUHai+IS4SQJATO4jG8tngqEcMsgWVG+OTcGVY9PAa6huDScljDmJG3l7r5qtfrNSqPleoQgETNiQljwGTyonYO+v5JIkLILf+x3nOpptXZ0cSwgh2GcxjqgJXb7LSVlUjogkeyjIZ9KdviZ4yDqhPwmCoID8TIFhymEpIN1U/Mjl7FEGJgCnG+c3UT1psgLVh8ODb+XSKTCTBFg2KkJEPmBEuDWMHToiCMF88As4gANCVyQWREJuIR1IOJQHP5jAsuKHhPbgIHAj2E0gi3kIKKksQAAGgVYDFiGREGQ1EaGyBJQONI93V9Od6LFt+eLNKwfIGRQTH3R5GyKmhxuz4okCMApyR7623/ae/Wal1va+Mn7f7+zeZt8WYoXCWIwLYDUt3fyN69eH43sSstZLcVJbphPYM/R/cMLMsi//r1XN1btbrvz53/59f/yTx+9+Pwo6lftvXZdijhzo1LBLKShdiXyLsY2CXTgKUyHMxop+EivFTlAISyrqj6nvpABJUYlB6OByUs95BgYJi5WoB/RofAuKVYqM6Vx0Sb5hJMCbC3BdI4W6ytqgCDFD3SZyFAjM7cybBq5bXLY8bpiJs4BUG22TzMZeLj8B0gvI5qmA8p5JnMLsACPlMZRxze9GVkauJPzWhtFtO9yrwABAABJREFUljUSv1YJOEnEhKjEx9l6UZCOLgOBsSj2S5hD/i/j0CCXHYhSpxdJp1YJpMkyUXVCgOrjbDg1AN8TN6nTcYmhRUl9YDVJ1RlHxqG727feeuVrQuZQqIM1JjUXQpKbVss9ZER4wEkLwKpQrhG5ZqBF/uDdH6VA4gmEkmlSIfGXwxTJ88M9B7IFOF4pHWTWGfvLxKhZed9onqAqQ+WTUDRSRgwKpLT3P/z82vbW3deyCuOzCUyQDQz5SP08aZwSvOK8M0vIE29XNO4vr9mVi6bfmURQzvzT4+rB//z//V9/9N0f3752SxmWDFuODkkDk7iG3FdEErkpASLCYBnFiZgqMn00H1Xa52WrDGVxAgfAoZK2E0uR5cCSs+WiB4V35NBiYKTksC8Ytbgm0CK4WcAXVQGm35nTZGWCyUDJfIBqMCJqkAeGP4nM17ffPYtfqdbu1Z3nfZyAHXfWmzfHI9/Aoq8kA2sPGr/89DenzYu1pa21lc3egPYwQGL5ABryBXamuIDjCdYhhKVMFYRolf4DY6gMRQZIULJJNTvWW3NnH5klIwZriG4dUa83mEY41mI+OjqMmv/Ukhs4OqqyuW28TYoCqTSxHM7VYAA4aTKgGmv22np6JUB7A9yPqXI+UwRKTd4MUGUWY8IYOKWiYBc7DsCdD16edzB3x4FOf+CvtgNLd61UuF7fcybVdCYVU/YS6DbwARGM8GzgT3PcOyGydoh7IupgOkgA/FoUZyDhMMMYbCCM8TsWpCicCD+C1lxzYA0Qega8hs3EWwl5ivVD92w5cGBklkCDHGiCdPFkPoorBDt6gaMMwwHTUJjDyvHEI086AyhN5JVyZ1iG6/HArfI61jHxfAEtgvaIgTgZBub9Trs7GPS4GH274/jO68FmUxV+PI0rcZi7bpC+LQCWAAkO40W04JBFckFFRpMQwxAh4keAqqaA77IP8htLK1N+NE0vsJ4JmcLD4PrYNcyMSYjYsGgIKHHMLncZNRd1QLqWzFSeBgUoU4gXSGbCc40g5z4iREFC0OcBGUBile6tBnCkLFKOwClFecDWZWEU2ZSmBwYAWi2f4yAgwAA5BO+70WgXMxIvnB1YAxyWQDbNZv3ZZH5nyRftpatULfs8Z75/MLBD+f/wP/3F6DD5dPhgsBjgrspnSpkICRCB5eK6O4t1RiecL88d4IrCBPVzwVJmeeMqYOud3uLWrZ3uNHDyrDbsy7g3MhvZfrmEDJG0IGnkRkFGVgbpkec68PcxahxoVVTJsHioKwO+vGEIZCF1WyGOx8nnJtJC2ARNRaeFxeNXfWPtfK1GDQEtUjNsHlOdJeGDrBPbLEHL+ZJHDYoxDAsnA2mJQl0U9UGqXI6E5OWQP82QqPYWD+JltdSatHFi9oegWSUTAMsDwz8DmfyoP2i6i944mipmLXYp4LEuAFudNjuKe+uxMED+KdEV1gb3x6yUxmRYdW80/Zu/+bulUv7VV2++efethNAU0S79RNzfvbLZdSKHXRCtmkHMY+VWoypP8CZFfZHV/GYskoEYWBxmqAWmkGMIEAwWpESAmI1fsl16Ix4/K5HJFZP5ZfMWDAjBIA8/n4JuGCWTQpJyauX+xEfEYQSyQ7a5KSzjRRkRLDbSlnYNPgAte0eH2cLW9Y0t2r8gK5X9PZvsnxy03A4GOlM3JB4c+hdDtwffS9uRUZcuZzTCxHIIdQLjX376++VCOZ8qsxocWTFrBjbx26xCkL7tnE+2RDoDJ4xcHA4IGXE6huF5b1yHgQKdzdnDKdl3AbVnGF/tM5PW1utMyZqxI6lUCKwnLwDLXfjsXAqtGbQN4PRrQ5ejvJrPRoIWXtZwkDinzpOKSBRfSQxGs56HyUxnXtzdrjPvOs1+dGExGKh0jtUxjb17+xsvnz0ip2QCLggxitF4//m+dRaL0D2nkIwkxnaCjsppgLJUWQ3saj+KXEeuwqWMiQjXE0WwbDAOuLtwQ0aTRqvJDEgNgT4hTpaI6QSJMkxDikqTFuML751VGv7WPILN3u5MBnh+bt28G18kIPZwDBcEDb96UmUilESBsEX2Gnn2bVo4RTKRdCa/tL7UICSLh2LsWIvJWup6dGGn/Qm4IZVXPbhCYGAejUsEDHwseNwy4W6vvZSjPT0lUiSVGl4oloNlMaBajxQXzCryXrIZ2onbyphkH5XTpTMckFoMq1oECBXHgvSqUpV8OMCC2h7eC3LmSScPCuHq+i2UO1KEWATpHhPQaWDLRFfYZiiCgyXVIAKibTyQC9itduLs/LTabPS8HjmuHD2QqVBuKTEgb8UFkQjJMBLqQqtL0g3uoICVAlOFdR2lbF8qRpJ7sFWjf7WOkyIrOlcQsuEv6PM6zToDnBo2Cq1fJoIRXRLhGqXIjn2Sw1LshG3FD8ypgrbxekHJmAZaCtJQ8fXzYQJtcBjuy8mSUxefEYsT4Yk6QqjFVCZgHkEc3JKbSEWTWhMgKk4gR5epQp4bKF+Vg8WbnFDWEynBaPJLm5HU1QlZtvJP44BQaQImFhUF81CadI3lfMLvEvBikgQbMKv6q6Xl3M6b6fS8Pag3Ku7x0ZcnXvN73/424Rx89XBpWqriskCmNZod8pPIc6HbEtkxwOXQZOGdt6/cv3vl0/ef4toCNlHcWnMR68ZPrA2jbAxiUoN0V8IyEssIOdHC1weBkFBHvSqI2Ci0oVQh1jgnrGemZ/LoJVJYfmbN1x+2Bh2CVyQQxZ/YC5aYfzpOuoyzAwNBUhLAoXw7GqPdhFR+9gyIl0AknbVpf0AjCFbPnEJfIV/s9J1SUUUbMDUj9wmikiITxa2xRG50Oc/SDwe9s4sLB3IPEBJYiiwaneYQkClqITgTogcewkjZGTFVQ0esABvHOUbNhDjm8/2ji72ji8+e7j1+evLOm69uXNtJZYvzXu2Hr242O9HzXv5Xh/efXbxwkcEx8XYIIWrFi/kVBIImyL1ZEQ6Emj0C9E+qJawYnASey/+kqaFsOlRzSAUQ7qGWTpoHyrlRsJGL8LLINDnuc0sYJLTI6cRAp8RXwQRAuYvLK1zFH55HbAYXvT88rQxqv3358dWdNZxIUCczxLSptOtAWcj7I5qW7io9yw/qLeglA1IlMaHp3jHzxXOl1bdvvpVPF+URgC2ImhkJ9Tvxm1s3u9PBWafB5LR/WklqPuQeYwDEa7APhtNhxaneyN5E/LFN2Bp4rGnYwH5BW7hWkLP40bBy8GITNATQ1R23iI7lU5ndzTsgrrCQ9Gc/aFYSyUSsOdsub5K0pOPFWGC1WE0ctJA7d9uBAT5WanaClr+4XMq+OKkz5ThGLhbScHpzexMIkD/65ivNdvX5y6OT0yooogTHFgDf9gYt3AzkPiiaB7rxPGMnCkSrfOg2sZvXNutNINpjC2KeSG98DsTwg7NQwt+fOhxo6n8gGwpoiRmwWfgNOIH0hZ71/NMILVyCYJSfD6d7uInoOkaKTmB+d72UCZT4Eb7MsnIsw4mszg+W9sSjPzDmK5FEEuFReAIEwVE4fCWszvC8QNG34wf2Ed5nUXUO/gfqPpYQFVVEdAb0sBwPgUSmiyW9hFa3b61u3QbAA7Qvjh8ov3rCHEi/HpUz8ViJuvgnX75UbSzqOVFzdFxK+8kRVKoksUvF5rFC4Xso6nhGqCW0/bHR1F3EceZR7JB4Xj876FNbPYgHEomoPZ0P9g6f+xejhEVWP8sWT8dzGTubilmKny3G+aydSV+7NtvF9KHqqVatPTl4ftxtoXYRu3boULmYYdQgP0lFAdMb3M+krfQu6s9WV+KpKO1LE+NR6qMPnlbPcKYSfGaxGJvojnNkjq0OHScXScCvvC2ilHMWWWTOB/yHd/HGGW7Mz1ASOi/vG2ZE6RyHGO0MQhZbZ+G4L43QMTmw7BCSeFxxm5VXiqtXl0bjLh0kYV1EDVGAQCIaoEKC6w0kDKkxyrJFO1bxMOkr7IPcnIpo4EgjD8kuZFevrqwEYllSG/A8KvcEHXTcm9LGNTZJxELJJCtJegZD47iQrzoZtMJgMtFO5MaN1YvKLAkEfRS9ahnn1KP9pzBAUq/D8bCdT9BcptmbgbBgWWvsaCRsZYCXXrgpf/oH3/zGuOY83z8i7Ab9ciKF56L5Q4fGjSUNlFaHI7JVQVcjcaXn9CqVBnQOe2S5dO5R1omAXYK0iAewktoO/jf/DFdAGpMCI/WT4aObouxJAOha80/fWG19BJFNGkEIu1i2FrfiMVjd8stRyxCNUAbLYkA6FLYl4wmnP6yeVyn/RRn2xi5Ky5X17XrboY9rpVODw9MaqNtun55UE9kS+W1UG0y89u2bmxz+B49fsNrIcx4EGWjQhrVB7Oy5Udd5CT6JLRz1z5NwZXx6J6fNSOhLKlp3ru6UY2OQhpKJTtY3v1JEQR4deV0nOCVflzbDq9krNCDkEZKAMH9mgEnsn6N/UfsXSFKBrkQ59FAey/P6gyFOMS0Bmh5XA4ELu0YSoDVoNDBv4C5seRVFStCVzApUf7aLOvNs2k6GlPglYcZizheAMMzCQ+Z10jjYaz5fszbhuRyAdq/+4uC5jw5Y8rhrmeW64Vwg82gAMJq++ubtf/3Oj1tHXZClIySO0kJZhYuwPQ4ANRLsLPXx/uVM6bX1m33nIxpcmsbFGHP84SEwdFW9kI5AEXLVO99aXMnG0rASktEpcaq2z3ENgR8x8k3JQ8WxpQhHILG9tEI5bjwRrB12bl57NW2XQFCBK1w0LyYgfPsnzb67USpASawKhirD1lSV3uGRIRclZMMspJdxBPw7d9P9k15gRgPnKK2dwol51JqV8wVQzUP2tLwD8YS+9e13I+RsLBLkdg/It/R6PacyHbkEUMmnODhBg058584d8L1jiygFJeBh40GkahVuBLDZoyfPnzx+euftm51Wf9AnVjkaU2qKi2PnatTOrceTjckJ+dsjktEmFGCQXREectpm8+3i69FIxtPtUJBRcaAyvPR0hhh2RgQbw3CCGcFz8ihZ0rkP/ytZHhhWHCKHdIBZlyW43DXlTcBmpixjmK5qUbtsyaIIUjzaI/vH6WGNcV4hEtxLfEShabRcwlnoA/D3eGL12hauxItKI4Ymjm4fpPUmXu9RODA1HqVLy0aqLCwOhag9m9G2KrgYYnG3Fq298yPsQQ60zjXqNvLPOFP8AbCw0DDQyYOA85VShdtXby7lyhQJYqNQnUYnMn+pcH3nxqt37zx48tHvP39Qq41scgDCCWbPB5kMlXoWQecU8BghK4ZgJs5ApWOYbKMf/GB5PMT7QtTV4OTCOtCrgFQmG4N8L5I3yVOYjFUjLe0L74XxSdFKhAbT4Ui/RwRhREOAhAVVGucPh2YKUC4+TOQARRIo8ogE2nZ78AMYV3fWava63C1Nu7JopFQqf/M7310vpgBUp8oHBZe9Ah0Bzo+eQG1vGzBU5A7oGQsPTVIJhlAOxSUy/VFzYwk7bcVs2r9JXACJhDaDj90iMg7seR8rk/DBeADXx+NJWg66GuwQWwUc7NQ8kAZpaqWwzDLu3vF/I3S3enZWPW/1Ry0SrODPIKpSBgZew0ogfXFYTcJCJhhygI5AaapvePcbN165s/rZr599+eD45eHJ6ckFDJCURh111G5MHIoBWZq5r+OOfF28SXMwjRCxHDBxc1gnrgyMyAEQYVxlvsTrLr+Ml4u29YmEvbG5QS6OHSd5a3R0eFg5uZCmLyPtqy99Siou+pxYnSqEjJLHz1Au5xtNGN0f+AlkA2EcRBmmLPuWySRJaMali7cT8QVIbZGuCmXLcdskLwD8cNEg17GXyayAcXx2tK/ctsmARGSA0AcklKOXSmrJH/2VBYAiTJgGX6CBvS6tMHASYNO+eYKHonAXilkyglKZfL6cG7a+7ANiSmiqP7paXr5+ZfVR88WHB8/cUCjpS22WNxg2g4fpQlI8QcI9PNyvvhxMh+lGFoAUginJAJ4qoI0mpA0JcEuFDsYAkScMns/BYnnE1Dm92WIulUk12zhs4gYQl0u4t49Unzs7r+AeYTpaSqMQ0RULwxO0Dyjo57/81b/9zl+ii2GTS9sbuWFLnfZkIBshIOkHVVL4F4wfPD3zvZHa2lklj547oBpgfGAgIPb5Vfc3X+iIS7nVrbW1ZyeHhLMU9dIwZTyLjWgnGV4Qrtoe9MvZIhYByQ34aT55+fS0fTKmra3Qlch8UsCRh99//EXGtu7cuepzo+srAKEXuNtF9dwZdgZRh8wt/yxx1kyul28bbsNjMJ4wz5BM6AiSugagUESLY8hKBVLX0oxiukjVa+3xwvnw2W9JEowkQZkG9XMSziZxtpaShQSpCCBehpLzxUbA/yp0jiet0+scnPzneqN7k6NmZWAaw5ATp4McDdoVvE93Jl2y8knyo/sA0YlSYSUSiLUqjXEnuHH1euWiv7UV+edn5225B4bDXoPoB4wRtO2VXHF1eZMWimyM3NJIMJRMFFlFDOb9KYnvA4w8P3ghVNPJIiS4it0rQECuRl+A50OlLDeUxfukJ+Bf6HR79ngEogmTh7VjRcezNLyy+mhJAwBTISV4M8orhkKECgV4ia83CMxaAAgmMokVC5OVQoE8AF/wMQ4XTsGFC0lwsKhgAQGRY05R2OxZa3/cr1PToCgBO4SJpfwbngDfkP4Ci4zEwBgn4RUYKrRLxVS7o2Gl45VyFhY6ogdigFIlvRaYUpkby9fAJDnP96hfJV8ukyMBKmJnMgm6jPktIkUkN1KrKZ0B41msyJdFQJHYT6UrmgAEhGNGOc4+MKlI9UV+EipCZxNdo97pIBF3QORJGkDJwxFggsrfocMONiVSArVvMSEqIp6A3YlAhevzMXRu/DXHZ7VPP7vvUU6A3xXsgJkTTq6ST0WXTYrPoCAGoqAGZ3gRTcUDJGRkwXsNERSmmpnkLszrAW3JGTt5W7KFFCahER9Qhwo2q++0MBpGQNRQkqaTgfMJbZwLsRkYG+SC3UlMN5hOxIreIEmCAEVrmFkA05CxnNvaTYO2NZ05ZJ6Re+DC7IZ4qzKpaKiUyCfIV+U4uvBdPHmBeap5cUEypGVnXvtaeuOVq47jnp5WWqQdNVs94GbYbNaLwj3UKTbJF8SgYS3hB3znoKOwky/COqPXi1MZt4y4v1RJhmvYytr2zp3X39za2rLVOYLjv9jcOv3o/Y8rlWOitVCxkQLsihadU8z9+c6JkIYrJDLOhRQfvvTidEqvzk6zznFAgLDLrDoskzbC0Fg6v+QDi4QmX/ggo3nDgPwAv17ZutOq1R8+/CSdjMxC6jnc6/QbVGAojAA5UJgukmUKPFm807jwkA3JjF1cXsokczgiUCDYACgJcu9NBhj4L09qmzkfaZmjWSqdASA3RVV3IerEJ0co/qXgUsFK4asz8xEr5LzV+tVHZx+fNk6p/rhon0CTHGUYDyyaFEDbXwpPX4UaMb90LrQarLM8W3xens7ZIhW3X7vx+q9+91OOPJvDG1If8WSoQVaWRYFQ0LpUkwF0/sAVc5zNMd9ojfF07+Xu2rVczEY5wM09CgyRZ5fyXAssZiIpg9+pS5eoRjdSwlHDPjIGjZ89hQvo3tpihBEqAkU0keV84bRWcRm0llCqv/gT3wgi8EF+iQYa/drCv4VyhOpJ4gA6HEiHZMFLx5CqR4ISw8RuoI52fnHRLWdzgKNJKyMJ0mkMQNKZt0mX60/aZ635Wf1m2spyjJm+4v+U8IIPATuFCNhN+QEYpgxHxJbBHRhZZdKwuR8elRgp4iRgUJtBCNeHOh8aDPHD4KFekJQAyeM/pMnBnM5hKbr+JJZo8UkTRIy1ZC5CJmOMQ6uYqVU9veiNO/E0vSCoV50Eg0W6MGztbPsmAW/o5pYTq2vrs4ckUFqxQIquCUg5mHA84NstrOG0QBmC5BXT0nIihVnkCQU7c6p94R7hJKFOdkoWTTABRB3QFJdJpmwxrgQ5k2UEsG0qq8OUQw0+alZRBZAVOhYcKpRMWv8S445Eek6HWlPOM3wbHk2ZEvQ/maLSUQFEY63oGItx5A7qPQRAJpGPxBJ5CzTuEg5Nc/6oJ0HKAFNnzZ8FvwQ8SestU0z8V6EnllwbSD6NMTRFOeZl6AKdGtsyRD9bMlRxB+Bn4WLoCKlNGnbbcVqjmZXO7yCM6ZQURw1IA7xMkId27FG6niJa8J24fRASJoo2zkakxcGCSARSpoqcB5QGE9hQ2h5AGCQ1GPpj7MAX4urB5iDdDnG7GHKdBIKxILnDAs5MgY6fAh1FAxAw3EPIQYg8zDJFaMJ4MgfHp49PDh/hgWeG5AUm8wgnEENcDhOKOeROMTNbBPlzf2iQTeA/DkSCuA6BKWr1fGMX0Q4Xo+a81yMBhNIN9oR8FM4BbBn1NOLLlLI5f4ZQhOYA04MwOCZ4+MgMx+5GGhFNwyrBVSvzSjo+ha3QJM6i6OpaBMXF9bA8SIcZ9WnX7Ll4SuzXybbxWWl6rvVBAQPUDHD4Vsch1HzW63RIUw6EyHay17KJtfTKaBOd1qOEFi177q81LmrVLrWZtH8RVhuS0nABeAMsGdoQgh3Ey19ImV2HWbDACKxkJnvr9ltXr79Cn169LmTBRbm88b/70+Lp6cHHH987OTjCHkX+XmJUsivcwrAbtshwDzXf4DHiy9Aznp8ctYyA1CN2SQTFJGJ1gEemXIGA/3iYz+WgE4iBRiIifoLHMatbb5ye7FElGyP9Vh2fo41WeyTvn87IV8OG20oWsYs8TQolcbR0JoPWJuIiLk+3ASU3koDEJoLfOHSnnevLO0ABJrObTJilsmKZ1Vw4H9mnOUAqnbRiCWXp6AHMBmNq9LvPf9WbNuCjnBXxRo0dMQ+fm/v7HTS2AK4MFpcwKl/kJpgTLpeLxCNHBYVxfs3evBeK98kkkd6jNWel1DcQmGbYCJQE0bFe/jn9FTgbYIBwH5Bsj88OfG57e31nERvbOVLESOJUQYPZOj6JfFNcCp2Jhgj3nn324+x3gKdiMREODEirY3xjXMDSwz+wFPnAir2ZiZ0QbDYuApIoyDaR7JK7gtERixDUUlPHckzdgIB68fWzCPgUzGC1BcpF0KnEITLutrurKzkOB/iR6LIE4tiWQIhtHQQjWdBtTqoHgTJN7ohdMbbAYNypdc/g9dxA4hKuIr40HwN0xBmTcYreDZeSaYV4QJTCDWKh1Ddv/Gg7vzr1WocvHlUAyYoSALfUk5hkqoDVGzZQF+apyPOzg9sr2yRltWpdtzPGLzPxt5A0Z/UWxnzPdSmtCuDUi2VK+U20HGU+CkWAAdogXdLjDaY5ji7wyCAew2gGifUB6cvIT4Q4dK1V1NHQz7MF7ZofHBxEIrn1lVXKaylPRDABKwcaJynDmqI4A8ow/XsAXxazJc1Eux6x2pNujn7KukQlnqgShGvByITBk+4ansbAe8D7HKblo9uJ+QOJkJ3PFcjMRg12nCJ1csjIVhuc9ZNudDrMbC6ldoB2RkFDyUUXBZUrFJ1eXVs7ae+3Jm2OpqTwJXHwXTyY/F12ElqAnwqKXNIDEuJV36TW3NsLTq4UrvJctomMZSoknp48e36wR6xoYvxIQdyq4USaxcyslrJLREG6Dn6eLu8izKnN4VhwZEwwlQdyWwx2YJJZPzijdljPw7rCD8ZwyDUlyDN0YecYUuAZaGwsF9q3gif4OLifogNk+ZNbTlGIncxYwMSwIn6wfDFSKZMha3NuF+LXb2/ZeKPQv2MYJ8WUneWg9T1XLN+osBKFOqqX7ItkDfruYaFyylAsFu6wCxoznYih3MxSivxeXAqkJCnjllwpYQRRM6ouYzivNG6OCCcPXwjHUp3pYF8iEiQLQG+BXJoZ0EIum0hZAWKziNFONDgs5GMFn00J2CS1mC2X3UFfcWP/ol5rfvHZC4ByqM5utgfHXff0rJXN59AzTs+r+TwJkkmehGQh1VWw0RbJZFM7Sr/oZZosXtS6zJHQn7ZSZqv4ItNG5BEd/4prG9EgxUt8OeAvL+FxzaLGosjxKsfbpGv647Z17eYrq+tXq2eV05PjRvOcXs9durgRbhY9iZrNHc19WQF4Mk44YwoAGpZJZRqwf5xjsvECmUScch5CBm6/kbPz6WxxMMKji/VJjjBFFc2J19POk0LOpzBHqdXyyMaL0oULCSsWwj/IxhhlHGxkAAoUzS7BiVTQBl0Vw9OwYKVKoTKMRv3ZqGQP84l5kvLRUJxuC8RREPHZbPLarauff/ECfgqVoejh6iO4RXjxwjkBNS9ixwjNqxEAN5SwlGlL+7g+fZ5DcTQyPDLoLvonkaS/upLzBNUGOASzfHb5ytrt+0f3eE8Ur2sCa0srgFhD+jK9dCKlq9dadaBcAKFhFqxqvJS8efcNyyu0O884SCRWI9h0Mf+kuSBO2VvV/1AF86zx9OvDr6l6QFoTl0hFJWCsB0rzNDIZBi+6nZczVmsMFgNhKmiBOXM91+h+RmgGnIlX79WJq0K6XGKBakV8QM4bnFAMQE+AZ/AU/lcWkCA1ccRHabRQqVXljAXmRzhJ1AGwfbPRyR4dfNCHECfTyNQb9m2UIOKGeClg+IqK00R61CVVYQKrNVxTQ6NOB3pUFXo8ON3NWwRlfVbyzitvUyrVHXSIXhyd7704fknoyFksOk6HYjCgxA/u7//w699eX1tlkcgLopC53q/W6h0wnsZkgND3cDjK4W7h/DldZC1JC3TJIYl3uZDq91FS27iq6oMeSfu0Ivivv/h10YqsL5XX8/gT02SjUouNNjIEHHQEgkSIgu3qeWPaOKW/twpSQenHOQzvggUSK4HB4uugYwuqDz7bS+MBxkB1eikzpiMuHBDfBuKZLE06yNPkFw0/gsePdBc2ZoY5Tq93Vl5OXDRjkpiHLmYujb7Yr+2l61BWYO6S4agMUEWAIWfkqgQVTDOdyL2x+c5p9/Cid+qOCAdAqwwCe4C7K8wASepAIXEhc8QTAomt9ftanVatVnsYeJKNImnjw9AQ7kkiE3V/KNowQo4iO4NOPI6EW3PX9nvLy3ncjAOn+/LoRa19AfIjWd6QmG7P7qMLc9IBXjWiEQLi/CpLJ0x3gXnKyqZCSXz6rW6/OyZMjSXC0Z5R9Cuy5EAxNTgCQD1E3hfzLmjj+FfiVAARoZV+KK6BFiIVwnft5q3tzSvy5EJeOEaCUXisN+6ynjJkOClKgFOeGITMAaFNDE49jAjSCwBpBK+EWJoVsKe04ZgPri1vp0NlCjXJyZZ1Yggc4mS5fVHSOUnFASsXm4yiHemLHiYmQXki4gGAkMk6BRkQd9DCicZwF6UtWEgwWV5C5EOiGB92QjUactyRVywQokEimW/WLnqdxckJPtVptlQIB+xIMnXllTW8W81GA08hJz8TSsJw3Y7bDw2arXHrohskjuKPZDIpGYBkPhmtjkkbphwij4uAEVPW0deX4f78D1+kRAAvRMRxQF4TXoHczfLYkZTBGGN2eud2bvfWdWLeAtnotP75v/3T2cEx6oZ4ApocZIhWQewD3w+qoFYHN+CE5NZUIusO2mPwc8H2C4UyZAnYMccb0lB+XqGEOoZvC9clCjI95OkYzbaREWz4DJUOJHuSY6budHxJH8fDpb7wKBojCvSl7wOAYlG3KaUCrQcWqIfDIammwulM7S+kGp0AmCMYAJ6EWwMbikJXd9S+cFOgcOD8xGkpbVkuMxBBK81a1CLwymFQPrWymPkOwRDdi6jtCA3PZkEbuSWGRfxHPJe9V8xcnFS6K8o0SnPwvWvvOfUWEoVqTJQT/yRUSK6C5M8JZ8uNVhmiSVcHJ1sEUcM8WENqakcXZ43Txw+mUQBEMIeiGKGGK5p9k09JJxUHAUXE7ri6V92/vrJrOAwXMCT5eVG3xNuNyq5NIsq78Bfsst2jD1ZPpEp2k1IpuFaXc0vpgpEQgdyrxXVSiPlwNpoGX7InVzUz1JmRyspAZSPKGQTkAMjlZPH/+uFvyYKPZdAJJtEIa0qhBeiJ4WazSX4cm0VlRSoHmkuMzIY0teAZwpbIGNqY4f+I9Ibd337+e7i0DFDmwEpq1/kPO5wVJddOQpChkhqRzSUJNuULKwBoUjRYb1UJIQ5om0fIjEzRbIqElGwy5cslptNccVzqDB/2q10Yq9NokpJARktv0cAOQ+VGhSP022ldpOPx9FieNOpPUSpJLr21XEr7/BfV6uenZ0e2tby8vL65Cb5uKG4hEGe0Yes087nV1Z1v4vBuuw3UcdoW0C/CjzsfIx94CkX/4c24LpXBICkslj+PA4tCBNKm7T2syRw32HUgnljEYrh6lF1BuQDK6CI8CUQ8pT/QrKbdaw4n6ioCt4Ni5cif+mlrnQiQ50oOKx4bCFGRQBRkKqrowQkfSBeyxaX8aH77olmrNE7rnbo7pFYJz5ICrSw1KUOC2oC8pF2poJotFhhdLMFhbkw6QBMzILZDDxXX4ETJg4LRjm0EJC01u3SeOK74l3JHW8XNmzuvXfFd7XutyvmpM+rh7YNFx33ACiQ63Q5uf3KtiaIaicNJJZbZd4D2DqhHdjmzmR2tAVIk24wMPCqD0Wl9BM4FRybDFjkJtDCwcywRCGk0s5x3oBkoBopncfA5swjIBNmR0lYUmfvD4GVEczp5gTgwjnFi7c4AdxV9YAJ9cGa5FH2OVOVYNp/fXQRHrAXQQIFgYk6CwsiFuUU8NaTSKgAGjNWKwwttR2YAdjIHRHwQJbJfbziAaVPeiOjGtA/6XZ9HESJrTIBoNVdKx9JRsElRUn0jyWtoXTu3wNgB5S59vTSev3L1VVrUDMkoxNZpXVT7bm+3nL993aKoGMeUOmi4Xi1Un3gX0YiVTPv9HsTmyUSaUoRoSpoJ+kjLYsrUMhuIf00e3iFdWm+gA/Cv3eidHBxTFpLNZOPq7SpIfzBj0XEQrpAsrAbhRw0LWCS5bPZ73/3+f/rrv0bmsZDovHB83Upnl7IadRSBC/GPyj5yDZNx0l2BWB7256CeRnLZeC5sdYODer1JVwqyfZC35CSioQ1gNAZ6m+WVhkUUkAogJoB0lDzHWzADX4QUtlZ/XK9U1taLVzavJG0bZkRytLLjULy5ks8r3qi4BPhPsQ0UZfgI+RroUlAK/hmq46a9zoCE2dWlDdrgIbKZAC6on3zwDx7qZywuZ7F8EXA+aVaCY9TJUNuYobP/cv83K6UVjBgdGG08g2M1gCmBvsj+kecfAZS3c3/yzvfvv7hXn9RoUx0bBtcKJby5HDkkMxICdQRaJ1vMbBQvqaSZRPjeBckJpAdYvqEVHCT9IXoq6gTgUqDik9Ug9IjhDM8mB/df7v069/2lPF2reNdo84yCs6BfEQDaGdg8Bz5sxzPlNFYX9QM4ylhsOYnk3sFb6YviiyFaSGDO8zyLyoJgcDW3Br7Fo4NnPaJdOBpJm0TiMhKTH4E+iOVBlv2Xe4f7J2f01SHX0AolVQjiU/X5LO4WyiVgf4YBB65BOrLPPwiTVB9NYgujnME+LhEN5DsJGnAnM1x0U+gTcsJPDFQvvcmFmyKdGOLG9ubW4OU27j990h+0pWei1QlwzFdt1S16qCfTiHqUTaAqStbSv/rjVfC2ENztVhMxjStWsMB4ugMBQHIIyY5mEaoeiPAjydLxRD6TzofTP/za99C6Scs7PNrrYqKhtRyfNgdOa9E7AOVr2EXBS6WX04VXksVyLpXMFZa9boUMCAJ7g/YilaJzWwldn+jFkMxAOJLxBIIxQQg0Nk/SMh1LQUIUNoK8DSW0mNQoXWoC8pQgZ2RQRsB8oajCP27RuBfOiEiE/+CEm0w7YCUp8g/rYM2ZEMocbFpGrUvnXQw9jDfwZ0PRjJXe3bp7i1g1wAxuZ5+M0FFngCZF3HihRAB5RyDL0QThg5MTnAUcIDAgytrgvFAPNRZoWJwFo0JLGHDseCTiAPsAZ3zt4PHjw2cxX9i2LFBdEn47Sj+umYf+a9vxfDYlODkSJ6fkVClVCR6EVqUhzinBnbTG9ZetfUofrVCeZBCyUom0It4jQY9SHdRReRd8i7QFiqia6xJEBiPenAv0NwgcIidWzYHEwoSnGqcWtCE9VafCWMgcBXFAnQ0UC6QAWVg+5RwiivBE4IkKLWJW2LWSHYJVJGtQpzcN0PViZpP5rZA/kBgDPoMbCA2eHCJ0BpYgQvIxYhhOj8AK+AssGSs2GhMoZgUpN4TwOJXOgKgvweapl5laQHNEwALBucSa6oPoX2yj6AHhFAQWLmTHbdgFz7KWVwKBFWXeyu4nbD33rzPpGR45YglNGmm1Wp1avV9pgyPitpr4XMBR8npuo96tt5pDBwcaQW9WkFWXjoivS+Si5GHcjnYiiuJFSAYXCsNA3+MLzzG7Tc6AnNwwTVZYPJ4t21rbfOu9r//+9+9zEMU9oDiIRwzKhAjnVLiw+rgNVN7NlNJJWi70BqAKUTXoW+AHZ0rZVLJHMy/OOYSsepCFQrhkFknak7pE3oJc7BwQKbPsoG+BOxkoITRXb9AqFdP/l//r/7lcWmIe8rOOJ31vgIrRbvUazabjKLWu0xt0O/XUK6ngrMOE6SfIxksacuswshzLfGJHc1Y0zUQY8GHl7KJdw+dEvY2KB4PU35oiJuwpGCXKBUBs81ln2PjFo59l0umt8q13X/ka4pIFgKErgGA87igXHGwsQcZfWCp9b/nHqvUbDSmxIeWXGCaLwNU8EWNXddoTWIRWT9Q8mxXy5VS8aKeyx6cnZ4cNwp8wzFQyjBRFlXZdavrG0QnJ9uFpv4l6+GLv+F9C7//7H/0A6uYGYhsyWCSaZSRoY6T7BBaxjLVYSdvU5E07TWheaU8m9Yn8lGyyvFbYPKocczTbTj9v4y73J0Pxa+vXNsvbZMQeVc7v7z1uLzo0WEZzE9ARrntvFBwtnr04TMbBUiUnMhYc27TRofEaoOdO/Sla7IDOac7h5tprN2+/Sd2XzKogsEPEbARRQ24+aYDeDACzgfqFiJqYhVRO9lzJJ5wnItAG6IF5yWHFGbcmv/vp745OD4EZBmGKRjcqc5sHAZ0hq4iOOGDwQKxYschMlGnkNw4g6AetQu4CE0hBYuDYIlzG03FU+j0X1C3cPLCf9268QaoAUT8UtfTNtNIovFG74521qu68Mhk1nFkHpIWGV52fPwjW/FbYXo3sLlmrCWqkowqhDmB1/QFRW5VqovkjzQUOjoEozwuc2Zg5U9JCSNyvAiusLi2sCMQPO0bdYo3EHqxIbDlaTpFhnlouDvMYzERXYSmo0Z7fG4aHGhmG8BRNoENHWR0lJkllmsQGPAlRh0AAJI7CsjrHirYKy0VEVg4SJYkOb4/+tjpkztJqmINH0r+k4wgHWYCU0P4AVEZaakGx+EQ56bB+MmKgL7k68YQwEwx+Um4JVJJ6gblDlfeol8xmdjY2S+EwdnfXdduVk2qf8iAytIWtBgHpEIgt8pMgp+SAIsMJnSQ8SQQt+ocnV5beydilCVkvvdbQaU5o/jfoQ980PVI6WEpyjvWADyJFZckahRWdmwEZC57TKBVOVCU9UqfffCF9kLlgwYGo4J7XGxfNKtiRhBQIKnF5r1eRm95KYuUwbVqmki5KyiguSYhsQt7xdEoqcza7VMqtkaTLac9Fc7S6pRAjRiEeIRgGpMCsXKfKnIC5gptEASyMYDp4WesdNE/U4x4kKJRt3Bq4+BjTbBr1z3IW/BgqIlMcb6LyHWCronz6gGKXM1uUMC0bfJqjQEgrV8zkdjZ3KCupVlpPDp83G3UENzowCFPWWjtRO2lXOpym0MZ22Y7FUkANWXG15tU320qEiZXQshFln+wfsX6GoifISuDsEN3SNkGwxr8PCccToT/5/h+3OufPvnzGGKRgstDGAoBjIsE4cjAitoG0GbyupCal7Dy/OV7nouEQo+YM8hTkJXhOuAaRjQCWexhN0ALjAGtGWaSEJHCsoVCLCSCreafW7GLhdt3+1yj0jceJJ3MlIjFGRkQ2vbWxzh1Qv9Ed6CBe740ffPHLQq5BXI6NR6BABjyM8eI02K+eEjA8fdF887XXAWqtNI6fnD/3x5kqETMkmxQFWb3Mg7EuCKFrXXA4wjhYjvbU7Z0+WVvf3i5tqIgSQQZt8Bmj3OAuZFnwczJrHhhFnuPz40giX+XJkCQ3X8gKbAtg5jhL5rX5jDrAteVNEnymR8dkEPRRMpr9RS7NfOejULcxPDptrZdtSk9huB54DIHYl4eHdGsBR499Y8ckftkuZmBWQ0oMKyhHdWw9uwqUUDYaPmv3sEpQJ6kwZJujofSba6/GZ/4nrQuX7uBY3wwVp5e6bARp/rW7fsuOZf7zb/9O1o5UrulZo1UuJbtP73VGzXwxc1Cp9XCiTgBuBMPbPm909ptnxH1wiNWrDbfxMhxKjTk89GWIx+xoopAFn0f5dBGEB1wC1g67xoBjsUU8l05FwPQlzZBTCDamw2KSOFetHVbbp7mluEeCmyAGUEWxzRfLm6l7D35Sqec5ivlkBhQh8BXt7IpKCNTOREYF6ZKiKAFJ4XUFCmw0y4ZS8TR9NLtD6V9W2s4nlxe0LMDrLdc6HDVGyk0ym/Wl5k8++QSNhY5DcJSReuKxFn5n2n/We3zgf4HpbFn5fHJtdbO8uVvKgxgyjA/dLnVlODdlnZKqJ9UIKtWplnoowM9FewC+Mdo41pM2DlqQPi6vwzTbPFvPFcspSr/B0INppBZJwgFUAYAgg0ul707xFcfSyQwZIXAuFHXkp+IQ/jHZ4MBKEGnmf+PJA+GqNQb0EJ08QhJPsZBc8a9ghk5bvSYLncnmgdsbeh5uKMWHGUmAXibn3WEbr2Rn2uVICoKZshg1MsQg5uyjwhrQXz7CwSeRYc5hzJcKmWwSJRcySs9zK950s9nHkVFpuDUyM5StCiFpm6eYHBwrzhDiDyqlO40zao5b7bNehRBnNpwrpgqraxtW1MZHJZcS88P/jfuMoIZy8SjH4bBxUiEPzpY2Wv4dnXkWAj6kL3gJTmAWFJEPhvBgiB0yiocyu1vJ7e0rvKH3gE4B8B6rHLFCi2APU5m0EnwLhJPYIMLAYQ4zuxyeR2v9WWwjfeP6tQSK9IxID1ExjGRWnsxdsJ6pf4q6FnUCwS7wtzRjJUodCgFPoCwirJ7ZlMAMTlxYm2J2MveoQlvYgfhKkb5BIcI/CSKWytzhXWif9dJU0ETFOpibEjeITUSZLBF3FKH0FoGYTGs0Oq3UTk5PAToMJa30WqbfAmaiGfrm26/A78E6obcn2Xv0E8TYY0WhNtguEkX8A6kpxiGN1Kwf/EpMFd+RbGwMEPEF7IvAn//o+//FG7x4ecLnGCRXaYwkrAClRMNejF9pxcApcqg84haJJGmwOOKR2QCbE/zhcQSrMTSJ+qrigt/RvaM4lSMRpAL2CcJETFEJIbARHDksMa632RKh8Ji1//x5OpeLI0iNAEN6m4IHFBW6HYaseDabi7mtIjBfDojk8yTViqhXLBZWHk+Er0HoqE4/v3eCr5a4GvoyKhc8EeMLgGPqZDA+WB4GZnJSUJQvCYp90PLjtzprH64VluWawfNzKTXRnJEb0mgUycb4k5HL8gkmBcJkTXCgi+dKxkrTRcxIYdHyCfiaxo+OnbbrrYq4C/RHlWLA36h05lkbwNjwnA4oOblEJpEigIEr4dMOLSb9rZ6btVMQseQ3JIMeIlHDlvHC5eYo3TMaiK7Z68V4Jm/1Xva6jd4p4OeC0p0NOo3aztZmwwdHIe3N9KWWM56ziS97UWnWf/Kbnzpun3IY1VtiyFPYAZAPZV8OkEX4jaa1aoOVDPSK4yxtPF3AqTqOp2yjULo9GHz24CG2r7g8nx+Ny8XUH3/rLdYpmYmO3JpRCOQoMUEAFpyUCGJRc4vkFjMl8UXj37XS0cf3X1BDwzEcODApDE5is8ya1k3jo9aTkzaricFLOV50s1T+1t0fWbECPiGiiASnyTqAyUD2OIK/3Cex5fStt169E919eIhB1R45UztZQN5z5jhw8BJ2ExekuIN/jm0ErAL4g4KXFiyPcNoJRXLdJEzaHnqX0+nXqs7Tw36g0Vn/8at/tRTbDODtofk0FSTg9CNxYfMQh4QcLDbBi9B9B3SkMZULdGKRwSYlBR8C+rw/0htPXtbq+9UqI7HIBbXgIclyqmxRQBxKZ+IFMQ8TAgvmSGSgY1mf3Ar0JCKmZPMqy4K3TYfYJChKdoAEGnVlh/Ui+41fHfFZyOSFxuYMyWKxYzbjo8gAHQwN4NpGHs0FT3+726g0jmqddn/kOeDaQwZ8nHAhlhS0Lt4MsIkvGS9cubWTntvoxkyBswSBU3tsx5NXVq9NFiPZHO2L1qCBa3EiRyWEzoLLlQuIhnwzwPuBC+J3sZ86vpdH9eBpb3V37XYpeQUfHdanBHiUSDjUovAQVMMPUA7iR45YjjJ/FTaCMcn3w3HzAajNI7hQ/1F4O8QDBpfjUsSwMyRTfEE3vqCPPFPhBuFvJDcB+ULmJp0HccXwWVXpgSY9poVUlIfVz+vt4yatqlGcMXxTaboAJHAdUUVGBwDcCjwPnmbbgVrljFJKKJlkVwU0TLW/YntiFcoZ5YkwXNjwwDf6EpDxQOQafI23lZkkISYmLMWcSWuekm6X3gx4I4Vp+ArJtAkEU0ELkk2urlIV1TprnJ21j2pEJRIT4uWUehEKw2VBRXuEinghZaA+x1gP1ouxSh7DlniaolLiG0gdRIKkDXflDQagxiDwuMVSPvVX/+7Pf/3be188egIYCPSMfIRfczWJhCpAI5LF/ZDp4BkCnOsOorE0KoGfFkoG5j4ejwFHJW6YYPpy2+GPogh64DhwIM4nwgZxTJqXYZAIcNaNec8wz0+rUM801+2n0xnUGRrN01iH8AWCDVccyxSN0e9wEZs0Y77WfJ72kcePYMJVLDdmcAAAIMojRjeNVmByMcKMbJUsPhieiYfqVZ4lyATNzczecFTWQkJG9DU+O302Wb+DXmb2ESakMABX8x0OjE2MkguzZ92Yg27MUxie2By7x6/kC5FCyO2YohgcsUN6FOE0JO2CgH4uW5zUYI4B1u3K2i7e7Q8/fp92fSSM91utbtfbSGzjr++47fPzk6urr7BpOg7sF2QhgtFR0H/mJZRsHkMAj0TYjZidSBfr/TCdrL0BHddm2BwBK39z/db53onrDlMsH0JERjF6yfT+88entQsKQ4FPYEeYpNrkhWKoR8IMp01gJPna7m7ZSubC8ZPW8fOzs5E/QRgMQc+0QBYaK4WCkyiVmpWvXDRw/1DZhMxwKB8m1KL1kOBi7eA4WsIFSXQ5TrYONr8S3w7MeoPm3vEJt0Ka0r4GwSD3L5A3rAv+DlP2wuEA+A137aR29jqdrqIjdosu6dQlWdEM3B88BkBqz88uWmC+Ov1sPHF182pr/hzlk5pMVEAOJboo28ZGoXPJ/U06JhhdwbgDwhn5UagLNKQbD2Eg+Hfw2gh/kAx+vs/8CUBmO5mIFwsmxqqTYQ6K+kejfuKr0JI5x/LzA7RrF63ccnoJuJQqbTBH4Ev0NXNEvKl+Rw7hf5dDNkSK1ag5HVy0W4e9Bri3Ninj/gQ0T+hOOdwAW4WtPI0XGC7hxDCqqNYOMgbqUtgSQMxRhqAVkwDjXBPrko9KEw1QpIJrHVlHJgxHCd8DCU2t3sW0J5sC8CbMgtW1zY3NGxRKkarXc5u1/lnXbQIQS6WRcRDJuOXIhFUIpjI9JiJ0WMbOYRB3wdaMLafW81a5PWxW2+2+1xlTREs5PS4wwOWEHDoEaEj6UCiGrgD/4Zag3z48fLG7FsqRWRJNouohenSCROw6c8xS8QlDQrwkCQCNmt+xvCEfHQwu4NhJdSMlEBzuOJIS7hlKKQ2V9BXyhKg2cKBHVR/TV7cwj+pjSvUg5CnnPFrcbEHACdBwuldvpikx42EEzLGrlAMzGqOXwPqycXrfMmOddBTJXD7T7rUwJJgdBjZ2CDL6kiYYowBCAgkMNTgrkhivh520CUqxZjrRhlg0Rw41jEKbpW/mtEiN4HVARlgFsVCITPh0s1w4SgrRjV1fH99fp310fBaqNxu0IkGD4ABDylTQyaZhU8yiGK6F04xzJl2KyehnPVzuNUmbSzamwi4V5jHuVDLwJ999e/fGysPHz18+wyWgrH/pbUqQZN3YQnQCBkqAhDykuef1BYUif9cCbyZouJCtcvDlQzHI9RTE61nsnU4/fzmEfJ7v0DRaNmvAGoF6Uev0QFkZThaO69lJB/yZBC5ewgjAIGHfxIfUlKCWVatALTWjgdXCtZRMisWApcNX2AaWC78yM4cdSm9hlnLPMF2ohLAChSg6zxIFypXROvAmKw2dsXxozHgEQb4cOZNhH2tKRMZbcHvmhsjQYiE95njB2BV5dPUGFAQBXYoYPIcyGkir5VayrvgEFB32H568fJh4Sr1U2o6V83nWp1lrbVxdg1102nVcu7RHouXb6rUrLaf54tk59iNCar92+J5vRwcOVsdEuKc0WN2V4fNd/lDzOwWSzBedGXDITHQ7NvO3+4HjL08hW9IpY/nMZnHLGZ5R5hqDKNkJwif+yZP9+5wp9onFYU/5g8DEA0kWNz5FMnqJDRBD3E4ltrZz5XWLpx83ex2HM8H1nGNwV1QBIG6qli6cxGFtOL+TK3OQqQpk4iYorcHqHEMGJAgFI4XCGr4GziwzkwMuEqkcotJ4UVBVyR8jHD4Hj4caW7w+EnfQDh9krZE1CLyBg4RS1f48Muz4T2rNZmJ0pWytF4DzpbKp2yXy9eK0FomPncCklM75+jOKfzrxKlI+nQALAUQfGJmACZXSM5tsLZczfRgA2R3ob1EvsIoraDYhuYo2yBjkFsttW/aN5as31nfx1LR7B4A1RYNZMG8VDyB+whhNWEtmih/hwFBDBPqTALBnlrH/OoM2kJN4vkHgh47xHlGjh2yDp7Oa8rWzeYCRUHVPHtOsO/ea5ILCzFGYHI9uKD157BFd5P5SlxZA6Yvh5i3YgqEitmYOl/YSskAEsbBSlEXfyHWYSLDd7dDQdBocNTq1tlOHrGW0IYL561+sLq0W0mvrmc01e+v28o4L4I1zMZi0ONHKQJmBlJbsHJ5FCsvRJK22CANdKupjOiv0Br1qt0p2EMJ4TGoMrj0g/iMhdrmQ2qVkWNkbk3ndbewf7uMhQa4FfRRS4AeGdXpfHnyoIxVFIY+zJ/jHIQx5eyBLygcIxpIwgDSMWVRiWlGMftWKQPWQnTyIOoOSCSyWNFT6m1lwaMiGTC7oHdN3oKwJcjVxbtGUwOuAyMWzycTDaw0gEPAYNOQiEQttkwAV6ry4IyQrzAta1gQRw0g4KNbYGoZhQIY8MTRdyWYxmlhKmCsrSUmj2DtnA98XegAmLUIWVk7LNxpOIhxGfvIxdHcdGolzlAyJNiYhPqRvmhGkzkXitsxFUoKb4sMAO5Z+dGhxmXl0LZ2/XloPffT7L+gBms+lswlgnvgChhM6VoY8fxgOOgG30vHTMRXbwBGjs8SzdKx4FrxFbj49VQdMoSuq9m9e2dwoFVtoC9XG2TkuAZo64TJXmqRxm8i+gDpheegXJq6so4oHRkk0Csbx55LDwjY1MU2J7yyHuLZ2GMUFaxH2abJFgyTDTia0Oho77jCZHOAIopcmriDKAohwUPSfpg30ONrwRi4pBk/QRuv5QiaRoVZw3ug61DXA4cUr4ERMkRkzJ02Kp5IxrqmiixqC5zUpGrytVeAbP4q/K6vanY5rvVoynhM3R0ohXVgnJIkIm60ldMMjtGycdrQE6AVnAgcYK4q7oPYCVc8d2bnLvdQ5mzoff/qbpVQW+JB0Fgy1BP1CUzbwk2FabKyul3BhoscRTc1n85SNnhyeR9ORB3tP/mTw1lI8B30xNu5mtsmMVrdmapoSc4E58BtbCxuJBvzEeNPpWfOw1un0SsW1qdvHIU4Wf3fskpSi/Cjlug177YaYvtkU3YV8Yfh/Jo0Xf2V7O5J39x8fVParndP6w+f7eUpTY9FXr69RndFrTjvtTsNpUA5D6BKLB6YFd0rIx1lOxJYZ7PJK2Tk6ATwY3VQxX7PaLCBZEOlIluRdUslFFJy2QODl0Tn7ghNR3J5TAwXhiuBNyhC0pjoZODhInmH/ACfDEgJskc6qg3Hr3uef10cPOM3FZAK21yLW57NHOAIX4/PmOSNDmX709MG9B8Oe21rJFmkvlMksxWLpfGEpEg8+fnqEDrGezQAEgIVhpZdLxWs48t3+iTvvOVNX6Omj6bWtayV7beZMmu6Fn6p2wnyBBogJaslCYQdyGI2H1cRSUIELbdUoRpV/Eq4QDyVjKWsttQ5ToOCA1rQEGFqDGgxFslTJ6AwfSYgQiuKQhUq5nWQ9Gs0YocGBoD5DaR48BcBVLYlca4uIP5KKkYWXLmbo2ZUC/cAQh0hDJx4iwcnA0oMfFYsM293j2gGVEZRqsdpsCwQLXUOmF92Laq991DwuRdLF+Ho8lk1aq6X0VVgqRM9dGCnpRS7RvzZJ8bTrohBu2HTqJ92DsW+ANxywCvk/ZbkRJSXKtRhMqRvvcEaSidRSZiVjrb1xowxOLEnkdG4jVNPzOjDqAMj7St0gMQKoNjlXGRpUYLihpsA6GP1MSESJMMhQWVpuAeVCUrLUNnmC4KHQCqRE3jq31NngY6AnZ0CS4WX5viTvAd5AJyUyBGS2wYnmSWRo0QGH5N3xoEcROOwVzBsWmzWGr+tOmPs4+UigQenjVw2Mj7PTcrKQm06US8UYyAe4wwz0Ob7kOpOYFO/WJoDGGIUSjEUMDaMgsEykQamlGrdCEYGdGoZlaF06GndnYXgkfNtEbJmTiAAhw+DQyTENg6FKpYOIvKiSWRXg9CkDCRtPnneVmTARHs93BAGj11hkBEsvvlwmCRetuBYQNvcV12IaUt5JukcScwD9gELB3iBDMi+wiIS+QS8BDiWrLM2UwcunxKYxSEFUsGh6hnkJJQTxhcVo5Bj7xavE1PkIS8jlpHBwD+SrCpQIL4M+jgHpgoEXa+M/ilItT5KwBQBfIT8tkn5EpUmgP221P/nZUThiX7+5Gi4kGwv76f5jkilkBlM7EeQE4tPVSFg0KfzsBxxDIs9IIgkKGCgLxKzFqdGm9TvefADjB70tOcyMWBD5wWJFELxAHA8IddUv+vpK8CT7A1LC0QQtac7sFsoVH1VsAftAooYRhead7knr5HTb3aDUklZgpaKtuj8SyOZKheJMEcciE4SSguWVpfOjM7xKMQzY4Thkq2sNO8UcJHku9RONWbsmzZ3/oA1tH7PjbNJaF22SOH/oxf5hnjxgkG2mc+zP3mjQ8TCtbAGLOZNsstCg3YJ4tAidWxG5yybS2OoWDfNAXWP5SCWZzKon/Sa5P7jrggK8t2NJYBVKkeDSanF5fTuzukLo8Wo+lAaEOpCUS2IcWfVdP+2e+yPtAYk8SCiGxtGYLVbzy3yc21wSj6In88X5RYWHKRkfahLHUsaYfpRrSjumalIMIOWR0UoxGklkwvNEbBKMOXmfZ0fVpm7aHvcwa4gjcHxGXW8OivqYoDql9W0Y3cKbpYmFjmBz/c9PnjVrQ5ToIW2mfAE7mzhJByg+sa3kRtD2zU+cQZc8TzX0i2ToLoslghWfBR+JGCXo60L3JOBJrhfwyaSxk/0doeTn0cHheaeKiaIEazJOwrSBTKYI/uDPjFEMT2oIhzSIVzkcyvpCm7iSkQYwd2QZ1jC99BwSt/GbsKecfVYgEMaCGXiYYgMtIAyS75CiOVn8ACNreE2Fc1unQM7kaJMWTcm3rfNP9EvoNXAGfHu0H7kKBmkycNY6JkEW9RBaR+jAfnClo/hRgzCf9ppAGHRP4Ib0Z7618mY5d0W+Y510/M3QtgVDEAeUTuSnfLTndokZsXecJ9grNZ5wP5gHC4Le44sNYuEEG0hWNEkJeHJzMfropI0C7XNm/UqvRjgEdogiySNQC5m77g/PEIVD4zwJIwtSMIrWtN92e41eQ41kcL7hHiZ3CGgtvD/wXCSazCSOsRRQEbTMOsxgTFEyZR2izJKiEUAVcRGYCgm0CtosJ8jPUV65wOj5Ij8IIBQMCLJ+pDJy5rEdgWaM6KAwH6QAKwZPIXQOZzXbQTgOXVgFrzxC4oi/5g9H1udzXIAoyMeVn4WBLYirLXyxeDKazKmxA0umGhaT887POGi5BfxEXIirjfLKqmO1STNQyhC8jQwmzGQ111WomdLzicuT5I9A0HylgxtGD2MzAtI82iwMGoLGx39sP1/i3DIVzWVczY6wDRoD7+gK3kBQQXzi9rTsZRTEHeBKkitcZfiTma8+wqggY26j0eNchn50cxww1GMGxuTPS0URM5WYQAdhr2XNMSOEDxEuVkN/lbZMVhDZPzgIhuTJR6NTN9wfJMcEZObnfQo5VPSRv5rIX7sL9ErbT1VwdCmdvbq2OZ57gF6Q8gxFotQbgcTSMxlGp6fDU3k4Q9Nf/WNVMRylelRbzekmW4xtaeatdeKfFkMDhMEr1sK7pBpizc+x5bgnlCNFg+gNZiGxJTzYWjQ+i+gYx3PB00Nn/PKMRGfyD5TY7T/VISTRQu5mKN4vJ1fUZV3w1sJv/s2P/4ykPUHg6jbsvMaqPdIXgzWboxU2L+gl2a5iEmo6HksGAu8fPFotJe6+csvxWuQ/Yk1TiAJ3iwdtmPndV94kS6vuXEA5cFxMG+B/gYR0OsIHii4m2yQbnJ2By4JtwaSYMC4f5IHjduCyIAYduwPrwkkenJPCW8+n37p5O10qAMtJ/nUhVfr6nT85bT496u/BMYdz0DfpAxzc2bxGWrcoi81gfekvCEHQFVeQDBAJ50oBQZQW9CqFnzQ/bRi7xebg5+LovGwc3Fi7Bdy0wkqAfGF/6BjKTMYYp/N0y+sm8ynhMg0l4cgXwVZLko4QnLdmnXCmNKx2iGvBfOEPtZp7et4D1GU9uxwfpqfxLm5iCwWE3HQ2haIiK2YhB6S/sfPkV6N+wZNEstoJtIfZtNI6fXj8CSFlouIkRsrhSkdgfBohMhxjmSTlbmCUpFfo4aKkwGQutwGoM/pPNOiPy6OCD3eRn48ZUherkBJ4dRGYjcE2oSUgniYj7kWQHBYIjw9gf6OjyvMG45w0Z/04gST0L2wyd1irn9RaVVS/jJ3M2sV0pphMZbZWrhCEarWb/WGPKQC5ALfRSScdFJ14bKGPjIDbiNI/e3rqHhAjKCZXAYvFyoM7s1v4FXRihYEV3YrtDvxetXvIuUV3kGpHohUUjfckQLcGmCfH0/FN6shaoGLINQeWTL4fhQWmYT+2WCLHxpCoM8Pp1ECfJGOCnTR8RlPUaTWsgdOKXwG+w5qTkhrBMsSNB3/k/cUIBSksgBk4shIO5dDgC4bpm5MtU21Uu12alAP9JW8TQfdsoZSN20nQFwatbqcFIjd3QHrgV7OtPF4UqjDU7RNNFaGxmAFaftxoYEXp2MFgWQzjOxUi23iYJkiTzafSWQRSkmvENLiffEZwMeQIfEMyHnx/Einw05HSP6HxcooWrb1e3YpkROH4v0jgl9bJFBPE6jHyeI4sjUsGqjmxBshjTExsA50MhLJEsT6iE2W+OAXSZy/ZgniDkahi4cgZvsGHdaT0OwMzPJqL+J14r4js8mXdjOMmhiOuol9x6/MTH+dnCqIBtqT1tDx2fBZalIPo8iMMVNo0d5TI4Bb6VaMgX4iVwwusSjqUEJ4onE6kiHKPpTxraNxE2hCHilAkeUAsi+eFsAnoJt9NTZxmPT2jxi88o6osZe3cuDGJTSyZ7ku1jnzH79x6943rd3AvttZbXa973Dt59OIhW8K8RS2yLhmxuA+/aT00UrlKzWxZTH+z16T0kjYcXIpAQkyhg8BZzcXKmMeehCIhewS3dsRIfdEFnBL2jbdck+BZPFJxMh5C8KB8Ix2JJJ3eYNHFBBI3Q2dRVJbSIhyGg3ml1oANJ2zmO95N51eL6yZuirKpc4940mC1R9oChiaRZVYWGoDgWFHIxVgIvBcqLq2MrPmH5y9zu5sZbF+vByA5pN7p1jL5EuX3yXjyv/uzv/iX3/3ky6cPYSO4O6k1RIVD60cI4WNOZmKpbLLTBBFID5bdxuN4OombWkKCzghcRHTl+PT09MjXnS/+JF0kNQtTG4fYMh2SlrPXBrfOhyQ0XRAEX7VLG6lN3KvSAKQ6gGBMyXp7SOCcV/QUjiGPkEWpEvHLxD9OuZgLHlrSfpCc8XtffPr5w0/pFUoOgUchKS1SYHVSlKRU0I42klkmj2+AZ6NWgYDKW0tHe/s0PiGihpgezPuoxDQiQEYrg9M/SYRoWJAaTqOfHRzHEnTuheiA9PVlknHy63V8CW+xN1p99lMnRVKJbdCOI8B97UnDHwL8KxgfZVQ46PdjjY6ZIpeTkdnutjpN7JknvmCK4GBw/u4r39rdfQdGqn1Vsof4HK4DkvrTdoYIOMRFbIpuwd1nrfmgjtCRsseO65iQdyW9Ew0UHsE4MFFZhVgYZ8syz4M4C5lcuvmy3ql2gXvrdP1n+0AwFWxaKy1vZ27A98madEZ0Kz+lTyQBYKKHqNX4symHV6OL4MztHtbHzVQwc6V0O5cqg4aJAwBBDNGyU4w56k/cXHktNA01BpWRcmyhDKbOZpEEO4QE4Z+QCgU93ijkDMFzOk+S+ByOpaLZZCQpkY/0UbqpPxfHgZ04dxodp0fmpexZGJzMADZelrfOKnlaGIwslKKHM5LfckmaTBVQ8pXGyqU6ZxwV/oeYAGBGFsIZwvk0kDJlYjTUFbk+ssxaQG+6USDcaTffaHQvWkI0w5YAdTiei6WvAHuZK1OBTn4XVjiSMTEDklKzVuheG8Z/cgjAzdFT6CE/mHrNs+pqcc2fysIh8Yuj2jIarA8UUH4Se9G5kaxlLjSorLWrnzz+ADcAhK6gVDBCxSXo27lcCY++FU8QXZbuiLZs5L2oTbeRZoGUheXCnWQg4HFgSEYyQEaXnhZoR3Qi2W5Ym06W1oSni2a1QpJl+k0/8jPsCuLSQou5MFU+wr2NbOHuepFn8Hkxcs6ZtB4KEMmmNXocl8pNrs9wR8ZkLhN7MhoLP+h5mKX05oUIYqQ+klJAwgfRSDWwxk2jz3FrkbmxhXQbrT5ZPSSeySwYjN1qpxXodWJRBDnVkAA8hvKFYnsxQJvHGLNSCQAns3aaNeJQFnP5UqRQHOXzhfTvPv6NTq9uz39mWJIDrIpe5B9UjWwWqVENOHKbzepyZsXYDWb24raiAL5YKk4CK4J4h9/yA+VlDBStH4BAQx7clsnoXKLE8ARxacjcJnfYDZV9mXyIo0GVIuVScG7oCC0uHgvhJUDwEIrE2+IDRywGpYnpSpxqFLLAtMIMV6tlvptfeIJZfF1ppiVPlb1SJBerPW4+OPz8+zevTLwAqfV4rHvdGloXP7RGjXAi92/+/Z+H/8ZXKNOjN93pN7FFiIkp340AacCXyETrrR4VexxXNll1F1CW2nNIp7HzCDDyLKBu5exg+YhrKkjCH95iqUL5eCmfWAplbknywqXR6FhwQycsk35Cj1H0DOGCbNV6QMwcMi6HtyLYuJfoWp8R5fqxs6l8HQg+JW4lgD7A8OfQwYep/pqEgI0OoSuM+/39/RO6DzFwoCZSCYu2AQSy4Ar4r1kmQo3Ey1A1QhFsNYjOSRTSrZ7XdFxLnSR45jRERdhJc4OA5vpu0hY7ZwhsgH6SX9AcEWUCTKudqkeNJHxZ5wTnGSo9+ZMo1kTh/IhQdFv5OBej01p3NVuiwnnx4n6xsJ5K55C8XIOmB3/BUUucWRPi9jrDeKiyvs4ZdAXL59TAT+ACbIfEEdxWAG2quiQXk5LRaGEZBxCejMg8lLeK9JkJgQRPtnqYGtR8OpEmjopfyArZyzngEOa90bXT2vHJxWF/2KDomI5KPFqaK6RE976Fix+kcdhfzW7eXLnD0WXeHEtyRFUP6Di4KAF7CAeT3V5DxEF2cQjtgVTvGclvcBWWG5wq5DkDQOejZhhB1ez0WBRCSraVoZidzNVxfYL0CWOZRi3OxJgwubQ1yMocUjVtxduBv5yovGwhlM2+10TSAVK1vrRtHB4YpWwPFCVNlJWTy2oRhZLoxDVLGJ6N55ZuMFQ2x4J471Bh+8PW0nj1pNM877SpZQPBEcYepqHdwismN+JBmiL5MqkUbk82l8VEUQNFFHvLaGO4mkPUXhGgZqBkLSCdkFswEIgD6aMveAq6jA6sCBpeIe8cwAHBcDFXJOrc6rYPagc+CmHpZE0yXjuSbJRWSxsrhbURtOt0qelChsBI4IFwChAPYQmkOajcDO85q4p+alilHE9MGz7F03WweJoeLKYALUO2nJ1LBsIxk8zgVbZTbFenUBcY9scHWDp+hf/zXT9xX3Eg/dFbsHpogCejN7JgzFIEo0nyUEQU13Mz3iUmjgovLZ4SaQt8BqbOmHU7CtTIzBaPxEcOzePUkreNj6Fu03QedIO54wIyRMIH1oWyAsj5DqLkcMxC6A2I4nk6jjRJ1ukEI7agIFw0Qpu9lOalAyQSysTzW4Xg59EvemOX57IymolsE75r4kyBFTABHwqQICpV4V/0emulTZPuIj8pN4TFo4eyGNjkZJyS3gWIlVwBqqAlZThNy0cq/cikoWOX4f7cnedzb60MT+BtCQwOsMlkoC41ljaqAYeOQWHf0upEOtOc0sGz1sFB5Xi9vKpPQtNyxWq04q3aPt1UTzErLseJIutiTbBX6R2+cDqcWAqOu+PO8Yn7oa9yc/MN3wjsphw7B1wttSPcwXNdukZ9/09+gKsYxm0lXn909FCVCV1BWbCT5F7gRzW5sCITWK0hLQH+sMBjh67cANCLF/F50uQw6uBRZtosGM4IZeKxNVyh+1BRTjSNnyXNGK6OSIISyZiN20iKMMjRdBUn51hrzYozcZaIeUJpDBzqAidiFk+SsJrk+COCAXanVRTQkChCoWDCJWkN3FmeC14xXl+aIXvOsy9f2jbilWWjLCXtTkeYO3gpyLRhLQMRBI+sODgXkIsuaU7oswhj0qNJPpuMj84vmv3B8hLbqZOuldc/aQv6j+KRKegYwIfBehDdxFAYiQwhYK8pacZbTS79aEweG8xxurq89idv/8VKpNgni7DevKhcgP8M/EkmmyXjgVUR0yA/mjRFejSClw7sf9zm7hSfah1QnM3TRVoqwmZhyInEYpic9V4G9oZbtHNIpkgqSiQzi17VHfdgQSNvfO6eB+sQKAEyvx1LZyO5TIrqm+xqen0zd90Z9c/qNCutOJMWwojdkc+HXE5/NF/MF6wcKVEqb/ZaLbfdpapLXcTZVkDSMih0uXIuthBRQH4ITjg4hULIRUUEKL9hpCgy2PpsKuJNERliM4Nzp2cD0lNaSUULIdpnzgaEeGDZxLxJ4jHl1ogjnWZpeLBY5oofgiPLbgX9dLM8br0kqWl79Zpt5WiaqzPCEonytDPICtQnEbJoSIeEJkWK63sLkuaxXinIXwlv7pbDRw0ctEfn6qweBnW4We2ePz4ul0obxVUCdMQDQDKis2MunUSM8RDdUCcTkkAa6uxpTNCGOIIkEMYcJwSjSuxFTIcF1UjYOtG5gE5o1ZMNpuIgsSCHkhaBE3KSskvZ9SwHdxEkJ2HEoogBEzsgeVsyBT+zuKvUYqQ8sR2SyYlNwFfFIDRn6NFQpRZBWpg4hYQB68KtLt0Y5mcRMW8aXi2pZf6Iw1wOXUdUAkBnni8Or34R8+cFXkJLk4jF/uJxcj7wAQlevcmyoB4hJghAyQIyd9BnjQ3BZVoQQS3IIJJRyec0POmMsASeQDY0y9huhyvVOp5xzjb6Jjw3GY+HWCgOFnedgUGWxtfgQ++ek4ugokMgk1h59kBPZk3EeIChVt/u+cRlXGKgjEDJCvyvv2Q1ifuj1zMgPDJIM4qkapXR6i4TZ1zi2vKxIL0F/PT7L379dO8BapdDVIeOtvHk9dL1r939FtngRvhdroQIEGpQmiTLIpWN1ebp4vjSBLQtsDfdUBTCNXjTlCIVQcHwJ1AcZz//5Gf/4cf/Mab4AESDD0KahSEkvuvjEkciEE2H7YbEZBkSgQz7AXscdmhFNHFQDPuzT170zjvTO1dfRxGm9a7Tm6yuZdCoyCUhfw/UchLSmLidyqDocNRQteTexPWM0M7FiS5xJUm2jFVLYqI3SJmZR9Mhshd5Fa41h8XCEaTCi1iQpgJcFzdj+gqowMRBphlSoU7sTVNmOnNi3aHvvff2afWsvLr6yw9/QVCHK0W9zFp1NCTSqV0lOWHDOsih9FPxO4hEjrlZYqA4EiGaLgxo+UJzUnwYo2HHN23amaXbuzfwvJzXToOTWafiDGdtcnai4STeSopocB9BmBQtkmpEIhcFLVaM1pLkUdACDQGpDUNhV09s5UDr+PFMsREzPRbdkJNImPqjBvhImE1wOTgW9E3SPBXFSqR3YRAEP7iODKGQb/hHV/942y6SBhItwvOT5CoS43WdWqN+TDpQmoyebB6dCe4Bei2iI526sp4v1+ikMXaa3RpD8qhqRSUyC6CjRsoFR5qU6sXiqF45a7VySVz+Obx5YBY49ZE772q9dRLhEp5/tGj2+hVfJY6KkC2V40vpRMmOpt7Y/QabThFArX0MMN5ogqdyGppG0tjQqRLsDxnjtJyz+smQjpxqjw3oDm2yjnwdHDKEy8FPovdUJh1LLZUAXU3j/m52LhTAG43VXpJMcfpiMoIxLtwJhhtZxtXe+XnziHofy2eROQ9UQxih6UeW4I8SQ0EIwc2xLxF4rKTxxgImyimD56FNknewAGMYewNLlBe1L9oYKbY6I/yVPgJB48KEgtFDAAfgqOoIiT2p6WDkamqrGM3dbx47JLP5cOin0regBIxDqh5VrOmnRBuAIadHfkUM/BeTbyPGBhOEGo0EMM+Eztlr0YZkhHkLzmeeBkmLSeq8I5rmgV4fxL3z3qg7DU3I4ESlL9Djlz2a0V8yTNpdPGHhTcIKhIswKYaDHUCyiM4FCRfkYWICo/PSXE1WMDPW1GET+t/8w1QV89KnxZchQzFnySYuF3NjxUTQ5hr9qAVhmPwuXm/+5xpxeo79H6YmISE+wOd0qXmHz+pHRB8PQn+QqGHDuFKP1kP4B6PgqSyLBIAu1UU6tVzBH7QmgamLGUuoguxvecNkfwC6C0FuMkcw3iwImdVGKtDgh2AOxaPoT40eqEQ9FkMAGHAkE7fghHBcWWlQS9eLy3W3JYarR5p9kDYCeZiVUb6uH7BIOwLYkVNzaHrQ8KbdZCzDeqnMn4uZBP/N56en5xTfo46qxJCQdrvl1Qc3du8AUmYoQMn0EJZcHRIofEZqG7Sm4DFEyUU8V+RpxgJn/GpUDIyrzUfxFscW1f7Jx49+9+03vs1B4rSQ1wTFa82lT3Cp+CdfUkNYyMtSNjwBQXzxzn/+2U+enL/0hj3s6yjuVv+81qh91P508sr47s33cOvT14wCKGU+eCNg2LkBVYTwQZAGqJmSpqH6Ws2a7gp1D/gwIUgZixYsjBCICng7MlkrlcZ5jHNjaJHMndTcUOtxaMpZekn1So9jtOyGFEBBqSDbZSYSLkNWIzomBQKUtJEArQgHNhg/1GCwNkyMlYGUFv5vfeM2LOLlJy/b82HFbYtwtbzIgtA7N69fK9847Tz54uFnbh+yGNOgbuo1wtnSaia7EscB7AuncM6FB8MeDpN2n/KABcgqlBBTq+QOO+5YeF7qwx3uAduF/QSqHewCEkbdhMmJRGCgwLJdmvPSvVkY9BWdIXLPm7Rx8jp4EM0uwJyYKu/ySeFhoKkJPZ3qqcWomIldWd2l6BoOLkIk9EuOXSwu8T2f7p+9fH64Fzq3sunVbG6VjowKIod8ViyyESmEQuXpbL3rdjuDPtCRfRdUMgW3hU9j8JHAU6NuFZBOaq0jMzys0XSusJ69ftY6PO0dg86NB4at0BHH+gZeBTfZoHsSONxYXVorbE36mWggXoxlVzZX0IqQZnwRxRQLRZ5HaIRIF8mEXYp/9vwemTI6RkrTRWFDiI47o9pg3u0Mow064bh2OUvHto0b5Z3xcNqsNnstB/t/4ksCo8v2ccq6Tqc6blNbBW4EJX2sAJDj04BDgR/+BRIrgHAWHRBbiCLjsAg4FUoPU1kqa80pQOGCXMm7GnYCmVXEAZoffMRQHmurowdFIjaIH4GFiY6CcUm2EwaKuBQnaepXWj6pAqCajuaJUGESBBeIfkCSkfjXKE7L2SkAAlE0tfl6ICsnNYyN5SbqwcoNRK8i1kv2xiv8MevGS+YLT744CBfDBLGFiOGH07nSrUyeg9Lq10+rR5Wz48f9x5Q7EAgA1BIgEPpWUtrGIogZm7OgxK4g/ZrkEWGGoWIZ+4u0ON7mDwMwe2UEp2HeMGoeL3YuhZhbmFGZt2AbnHnDc9HF//BxXc8sNFQ+q1npBlC0Jm3uIoeAeYyu5DVFMs2BMDPl0boB/E7yQ3fXtdpSrjXfeEX8/3K5eA961Pev1k9bxgrxO4ofbcHXouXpJAdPYhuHgXi1Pa6fTPrkg6PrJvAfhoGACo4S+6cnTbdaShZx0ZH3QXQYG83ciM2B3kJby9eenJ4MFw5TgTeZfZAY1oPFQCl2D3zrrTJtOar1UNdtkbhGAM0qJxkQe848WEAmgmUNfhVmn6Sndhg1ekbnRWfYy0zSnAM5vNQbV1TBP4wj3R0qoe7cbMAlNzSf5e3LaRttRWvGSTPMjYuQNX7f75/c40xvZTcfPHxy/ZWrQG9T7Ed4Q2uM/OL8KSVAu6XbQhHQ5Xx+78X937z8HExJ35T2qqSbUX8+SyQjg4XzycEnVbeyUdxJVH2kLMB8Kd2jzF2MeEGDLo/nA11BjFDdnDiqOG2guSQJcLAXlFptHtEcchj+3b/5cZkgACoZAmDRA4qrkC5Tr0TwllFhT1BjJUVH41TQyBxORDACA1OKowNZQROcNYoHqTyZ9WZNGuzKgBCHFXPkf2ZXSOby4TwQIxvffvvxZy+OP2rAEfRpIH/C1s3V3ZWlzfXl9d3srf/lF3/f7ZxT7Kbk4qiHJWOF6dkRom0ZD9gqbRLZxkIaL6KHB0fDjJCD54E4/YIa3fp4MG/1OuTuX5Ytf4XZxWoS4AkFXz75MjjqkclDQjKKGWxZJCGnFBlNkVqjhdSEKswuMF1Iis1hK+Wq0CZDPHKSSeshJW0SAEXVRE44ivBPw5Ox5ClPPqs9JjbhC77kk0nc/7liIbeSt2lxGA0MowKSS6zk4uw6wQAYIFIDnsYSKg6BcxUsfhOGxRcToQUWK5mKxsuF8l3/O0DlgD0K7mGHzBj5NDzZUUaCoRt1HIcQ8VJqKTmZRII0nScFSmo28R4VUdOhBW8Uri1/dCO3O1gaPDh+QOYNlTxaBniFSu7RA0A5wTk0cydutV55+PhTgJuKSXrSlolvYtKkY1EAfsGiSOctFuBscPzy/DlNAtECYWjBKclEwLrG0fTA9iHHFLOY1VGcPZKEzIVXJJ8QOyKa4rigbNM6JBgb9d1aIJnHbIIrosXilmYP/uCo4WKjh5ErTwoyxAM3FzY9zklyL9Cq6WJMmZ6n1rBoo+C7zejoZ4LOqjZTTXECpUAGFB8VY4P6IG14N3n5lyeRh3EBW80pN4dYBA8ZcyL5nOGfElhQtPQGk9FMqgTDxZMSp9lWolixzmqtSheN0m103C5JGGgAGTADU2mq5Cjy4ME8Fm85AXA0QZSTECVgFEmh3VxWfEl71KYxEF0ME4bDSakXK+IQ8hLagq6RdmI4sdihfhV3F0O6/JnnaHH1/fIVcwEfMKzfzABdjl/Zes1XH+cG4mB8u/xV0kXeDm5rTDO9yYE3xwHeLJHI8sBOEABGQphHcyctma5CbOPjMg9l8EjsKFh4zT1vBBI8ELLT5oQML1+e2qp8tlAMHZMfRiOHxmf3H/zRu1+XggZ75Inmi7YtP7r7x8lUFJiDvufRp6JNrQ86Id3IhyOcSqv5BAHaFsl0bsxxfKiEH9x7GPtGuphdJtzCFLgNtoXR5EiBYRoMnwMuYcIJOT05BCBp0p+HrXDb67LU4pW4qWgaDu+ntgFKgA6MBSYGoT/6j/kyfckLLZv5//JFs5EswSePPz71n3Ua3Rs7xfYIRBGCqldgFXiFtGdaNLaSz/BZ9ou7hY7PKlGAnakTIhHFY1/hengfKCBVb6Mzh7zH1n79YCtzZSW/kgGJBZbL6BbTi9PDqddfLWbqpxVQVYhLAWfDjqKBUvXNCMW6TaZToRR8942tcnKDpBqRNUNH9Sc6RgYkni3YkSJVmB8MT9Ee7eICi5+zbKE4KUyqsLhi4AQGIv4U4c+YL1qIZGtkbapuASEilQFze6O4lghmYmGLQGCl02Gw8FNx2UB4dW0bQH9v1EcLyZUKf/VnP/6bv/u7k5MWvK3RB+l5nKUXTzI19VFWKN+XKnuZ6HgYC0wavQvuQT3tcOQvBnK7r+9GQunWoF/vdoEzAOoVtwHbjRWQXSm5nc6XX/bwJSOoqJUGW0I6mp1PpUgZuUK0DvIkRKg9hMlD+YbQmT1ylZ1kXzjo6ipC7xfWa+jJFqa1jBgB73EBOweQYoC8I2BB6GUGRnaXoqnO+eHeMzWJzJdw1BDCyZLXQmMCyj2IgZu8w3AM3Bhg7xzaphNE4dasHpvNc1nHPk06JlS8ha2gtRRLbaTzobUIAH+kUAOYA+djO2ZBbL5hs9s8qp/75geAypWKS9lkMQ7ENzKF0D17Qf6y0Nfo65K8s/ZeOlJ4VPmiOalSSy0uI/7NcRMxAJUpB7DC+tP2oE1LmJOL4yxNPu1cKb9mxW28GKr/8UfXY9vRcuJz515z2KBHNPacRwJRhFYCIzh1Ri1U58XMOuwtGk7jRxIGPUcJxCP1C+NxrBn6foDO6IsAMpikWiDCcJUAnMA7VFmL4Uq9gjeJedGrD6hVwHdd0ms8/KMA+SCRyYUdO1j0M/xO0QyoIOoFpNXjg0K4BT0VVEQoR3q/aFjCiAnyjc7J4FzyRDQGAg6QOkwY1sjjOO86m0I3IOUPZYbjSgakdBfDj7mTfsDSRsVEA9tavrKxsu6NXRqd0z2XzcEI6/X6ZFyqKDYINh2ufyKPwLhMSaNKpjOh7e01uD9kh3gQN4Ad43/gJ22+COvyS5xaDIsFYxV4XW9LmhBXEhEQ1OYNXcsl+m7+sXBf8SW9a774D06hxZWc0WXiQPojB6Ne5ndzF/MT3F/njU8ZLV+PN/cWN5UlBPGjw6Bf6+aXN9RO6U09kBvJVkBGSNKSeB7I5dJEaF0cx5NFKhw+Ozo669XH8ehRp0eOG8vMdICa50PwCH2QDeAXZkybzIi9Vlwi8gNTNt5apdlSZYP97i7c85PHXdVlqSyFiZONM490njQfjSM+TiQQHpZlE9JWJZz0CfZXQkCxawAa/X561UvnQ7MNgUXen0LH5grpwosZGceMhZ9lSrEgZoU0LDPNy5lyU0388j+zGBp+yAeZngxe2lBY5wBMob3WzM7Uv/cWLcMMioC2UQqgxgJD5SD6/O50AKgY7AaOTW0urtEQ+hwlwjoJ3BSDet7Awun3gBb/5mvfRpRwG9BfaAp01qj+n/7Vv9kt3Prthw+qhBCt8AXFQaBvSJ8RF4MLQ/r4zhGddmAgm9u8xWSgPohPKA9wdTR53HtSOOj+xhOY+ySyoGaKbG58/FLTZE/TZGJCXVqUKoC4z7u7+dqsHUpcTZMxTcHC0kr52spWIZnlmHHKusPhWatjFBP2lyODaLWYD7zEgAyGllLF//jnP/6//9/+E6w/YkW742Gjf4FQIpmV6C6YXGiSrAn1AeXc5vGL86WNNKyEDd5/9jiHpl1OFIp4TTJwMwq7yFihsgndemtzlSxRUH+xRIdeH49/p985rVWFyraY0eDJGQwzVtannonzwYQO4yIwsQqdFQgFhsG6Q9mB7dIySYJTuopCAywYAVn+CTuTmIP/0eNnh9ULq4iwktOC7owwefhT220fez2/7wCGL2yyOHWRgEBmiVGrb+4iRr9ZZ9Su1utj0AZMVQobwHZLJ0OTB00BiA/ED/IUD/tcIMn0r7TADxXisU4Z5WPJSLAG/ro3qrgX58dk9cRSobQVo4IQtJkMUo9KZcwU+BoOmiubr5dXd54f339ZeQyJsrkoABKQck9DikqKM+4SZkn8Cs8L4NuN885ZKp7LhLLR4losmwa5shRb/WameFK7eHb6RcetkL1HEVRoPhl3G6UJrcQTiUChnF1FHUYBJtUMVi3vJDmBE1JkKfKgpmZIXkUfUMP2mDRrjiVpMgQD4U1owbxPsAeI7cvUHUDOo0pUA7IWOPsuIH4CDsOI4+iiucTpH0UaLOaaC2wWT4Q3CwMhGrSF8MGcOOVAthLJ8CPE0PFiwSA6Kqk96jdJ/Sn1WdA8nMC4jlFbISQq+VhhoNOoYBhOnGwKrDnq9WKUzhF+A+UGN3YsYpMTI2s9iEe2xJiJ8g5oVCf3NyXqirlSi+8PpJEBpESqKNO2QqViTjuJ5aM4MEmHHEZ4E3uh/6RiMzsOvtRyMWvDYeAzYsV8R/tXmVyQsioxJrFucSH+FxfmYk6X4diXAsBQszQcyTJdpVua9xEn+kmf1u+6wHwTI0Mcagx6mQnqKhGc+Z/biwnCpvnHS7rICAC9q8NjLuQtaVCTOEiJQ4RtkGy/Hh1X6U8VibScfr3dANjb1FP5UVeaTouwLrcS85eWoKfyUMed9vrjtM32y5XHThLus8MJcgSJL9cqraZTpV0PnzTFCagpg8fPn798fgxTAy/WTmTXtrbpzE3RiuQ79+X+HLOgmn+slulrkNNcFvPcUulB/dHhxRmhe2iEKm/cmmSW06mD2cqw0aRZYiQJ7PpydBouH9bKayn0nhm5mjBMw7OL3uDvPn2Im2EISzqt4pn61lvfMHqGPqY1u9w+Th9AfJEQ/ZsxdP3zBHQY4dSgjXFDOBGP0xePgVqmDacOrbDm6PFUKsxS4S+/OH+yV9/Ilf/0uz90nVZ/1Hvxsv5PP/2FM674aEEZmMv4mGD3hgGaJBGWGB07LVLTGmv4WOaofuwX8QhK643LlOs8vGbYR0RbzG4yDFRP32ePP3t0+AIOjuIUj8yic98P/tWtJOXegSQICDAVqiXli0BAzYOu44Aoic9RnEYMVq0AOKeG6BmFPFTZSOmNW7cb41Z/2D+nL5Kr2qr54ZymYokMHiCAfTANhfrphoPNgbgvnG77+h1Sxs8ven7gWQkkRckygoGBcDReKxY38mkaOU78eVBIJpMEzVLIIHTFVmbnzdqTwyPcGqQo0qmc9K28XYxQEIvPRDVAaj0Ok8LS4YRk7cT1nd1w2MLy4byAXYgKEiYSw0x8s7Pa4WePH7S83qxyEQ/OheceTQEigXcAtHaxFHIep31KzTqddpPePcGTRDZeKJaL6Q1qWHHRb5UynX7dAfBmAjovJMT59rCD2TG8ppA7tyAHKOyLByfBCcFhXPAyC8EpCBF7xMnmKW+RXvHA1WLXdnDKNT2Tu0NoDksiIJBtO5FLEimIZeBfr229vplerTTPOm51MCMPg3g2SUcotEqARuyj9sC32RoB8cJOg/O267W9arVxvLm2ViyvUBocnFjXErvR4vyzWb85adBWHCU/4BFap0kSvP7l1JuuLK+pn28wroQN8FTRpDmEkTTCCPWDIz7OAF84ANEPRGQVfuNqU14ZkK6g0Sk9ixsRfB7QsJ3yIg9wS0pPpK2T66lEa+4aA8aafJFYHC8ldgydzo1EG9Dxli4d7BFJDwj88YyYImtLGIKmb/NQAkg5KMrv9QUaFMahyn7CuORUhc+gYpL5AHwylh/tkuaB0ajTn7axqpTaw7ba8UQhX8qRaRXEpJMegO+VtATjoOOpYD7gtiZh17k4P8NkQXIAWofIcXsXoWK+iKQALQf5wyHhHKLeyrJANZG/CQVLPInTJjbDOvGjYa6wGaIZKjAkMRZsQxZRfq1LLi5GbC7jY5eMCHbPXvIaVyi6pZ902Lle5x4KE4vnB6SO0f3FDhTeRDbBIHR+dUuuEFs33/hVL+rzfBpJwP3NSBmqYVLikbwpxmieNyMHdpm+I3owRuAMqCqwqGdWeN6bwHaUmQyVz+an7fMXlWc7S9fByte94E4QxHxcqdc4bXYqSU2B7swbKPOwccKkJJRHEycXTjQUVwWmmCqSHqQOoFyVkkjLAgj3ot1QLpuGr1HLqQOhT+lIRbYkHc1NSQbadji8u7l2eHJKEhyRqwjWy8wf8wX6spXh/cz3cglYHs1UE+d186Xl/mp5eFErzDdKbpBsPYJhEKc2OXBv78H1rZvFbJYDKwWTWUjy62pcMPSopaSF7EPpAAgpHs9PMD49nT9caPJyFE2j31U7nF1hHNRpTwPT/Wr7vO3FfL2oj7AujRAjb7xdStrz/8df/z+9ObelyeKILndo7PKkjNwIwBMy87RRIhD2n9OABjUfLgIg7OOMJnmRhaalBLlbaN+U5xptAZNj7n34xcfwUBxCRnVkKcKZlfKfvHabRrHBJM9ir3QP5sGQ6cXJ4ZWfWxKGakr2ndoGkoJhATxbzkZA+q7dvjV4+SUxc5h0DGEY91dP2kiMxlmPyjH4unZKZXuLszMaBMJno8lYzPH1cPvE0hZSBaw3GwePlZpSRXV2cWe9hH+bTDJykqiQY13h50QSOfWZlH3eQuEAF2HS7ozOO0N236Y3WDyBM4emXSj34FQMBriPJleWlleyq+TVkPEP2yIllrfI4IdrUHF8WN1HjUUOs0ogjgMLQs1gDfzkC7S0AKpiJhujZ1Catuko8YgWuvhUa9TSbKy+E00LnQc7Yp5ZolRuGJh1nC7F8CAbUvhNbfYI5BL1dkZ2EsxU06Q7t99GfLqgPwB6BxzFuI9ajdaA2FoMae+BKqGGyITY0N9ZXFT48XDQdt1O/9Qovjbh53w8bflziXR6s5AjiYWS8pOLPfpXyb80GyG4gLxDTwK1JoHPX9EkmPvYweHiefsXJ3vt6urmxrgx9HdGLip1BAOKRJ2R8W8hcX0EQSipf/z049P6i6urV3NJUIAw94zSo6wEVEBEOE0L/HFcXtSvBHyAa5N7hVZDliWJqQR/R1PJNWgumDYRXkUpeM2FhPZOXxKOBu6EJmiRaSARzaTi9Gki6yeFcwf8UPBlG92KtEyyC4jjC6FQsD5Ten9i7Hm0As0tFQr0SEfGE6KOJ5KMB4ZD9B6diwepQQdBBgp/+KtsPiBsXZg/VpQaKJG+CNaBz9fwBgXwzqKgjwBrARuja06Pzl/tXr/rdIHkhGGjJ6mvLz4f+oD4QoSwVCqJyCZd3htwBbEStVKRRalTI/4iRma4lfiITj7nX2wbNU2/LRaeB2gSGLMwO+S1rpU1IIbNcTYviA9JbxTD12t8Ul+8gAUr/qQHIQPExsUX+Wd4pHxSuh0X8qa5iCt0I1nGuhlXcgH/eJEfuI35Y1giLBjpow9LKuhSphKikByPPFyBdg2UL1InRUASSUomAJdyDehyLV/vX7741fny2Rtbr2biRdJ48ct1Zu5+d+9+7Uki/YPV7DJONHgV95YqKdfeoLCSenZEb2CygGFtxOmVWSt3kAk6MTqhho+BFOZHNZXTgPm4wrB0xU2B5GVKNbR0odA0Bb5Kx5mlhA5K/0CWi+6Z6iQj3QQ7jWFrsfTncvpfLQWbxKLJkWPehafLhcbH46mYQVCUDxr+OZhOPnr58M++/h0/BffayMstMuuI2yIGOizWIulSsH4zRvIPWUUtkVl3s6HM0gvM9puV7Y0bQKmwWalgMuRODg/2l6Lk/AHFzBphvIS2d69du3Xzi0dHsisBp4WrGgJDQOLJR1LrVTmK2SP2DOuUv7iC8NSrAQMaEaVe+NJ4hNi0TATpwPUuRVcuGiiDYtrEtgkFHl3U3Zv4UKi2IPMCrY8m70Llg65J9DILhu7CA9EsBd2C+EHhYetZMigFuwQeQbScTnIZ2m9k4tFsTDmizoh2Gai18AJFHIne4+2bzbHOadWJacWSdNBe+y3A3SCD6Hk1n8ss2Sz7EMMjYUN9eJelbOJtpTuXFUwGxsNiMlxMp9okESUidFZDbqmd1WDa77fiDT+w3ihnNGrApY6Mubq+lYhmUSKlkKifFG4FJTQjiKkLfPTiyWWlLwvB6nAVGwiZCCWL0MrQa7cxWOb03swk/eWcTeXI7vbmazd2iWNDPrjoVVYrlugHJd6OJbA+MukMKvgcEK/p1J10vGkHG5Kc3cA0HnZj8XkiaxcWKTYPih6j9hKUZDycPaJjjVbNHbvkwcC4IC9Q5MjY1flG1kyBinVgZf1pmISB6LAZHI0yUQuE8ARoysklEghoZJOMJl69fjMZKfF4MhURxTBm+Ga33do72CfAUuv1qoc1rLJZdNgj7DucpAKl2WCIao2Mdxat8Dhya/N74dt3f/qbv6vUDlcKV0qp9fWVVegBCsSJyEgitLmDnQL1rlQtSsMd3PEEA2RiQqU+kkWiZAISeUfhi3GSsABRypJ0n7S2l3a9ee/49LzVbvD8hD8TpNuFGqw6HFG1R54MwynkUmrUw8sOX4ZYjO4fLxHzSfhHpezyjfUb2VS56/WaXls+JaDxYPtDGQKAyM3H6tokF7F/hsSlZ0GPMhzTBUWAz2Q3UsE4nYEWWzs+w01Lxx1CPIq0wV0Ci2yKsyyA5E6rPgIYAfBLOBNWnTL8SQMFIhUHs9iJvK4Ef1g4ZCzuKbE1UzmCzSvezSYi01kVOJaYpSIPHC2c8xqoAcuDDjiGgoXBNNI/PgeTExMwDEb8kvsY/6YhGt4yAoOLuSOcWB9TEMT8Qys3GyDWLq6vpExxAGgaIxEeKn4gGSUBopMtyuMjEi764kp+4we9qi9UfCoNaXHnDhYsK/EzVhuFEglAsi4Js/yPzyXs7829j48ffrr/hHbFNF3C1YhbHCDcyWz45csHxTcyZKKwUjyKZZOvcjhKhdPJQI4OTghRGhPB1GR4mAlqECioRpzxGtPhS7ujkBe/hpKJjJI6FP1ilTmx01d2bk+/P2mBkOvNtogTpuLj5Og///aXAJcqN5bFk3A1fBNpo3vyKPwAspaMGNVqwM/YDq0JC4/MJi41I08BP4fIv9I9IVJNlYDe55aMRPfk5yDZq/JDSshrdQPzKEah7icGbSw9TV2yjD4oz1qPvxb8ZsGygWroeINIMo6BpKwD3P3KZhfOFPUXCbtIszWWSowGMSUQrLgZI4qaiTdCrcxeI2aFKGn290dTNBFsE1guGd54VdgxeWBYNmFQh06rddUTMXoNXORA1h398YiAouBARRw1nsVx1th9/marx5h5X75YHHPSowS7YahKt+AvSlgM/DywasiOjkYHXn8SGmbKiV40wGkmMGgAZRR+ZjUU+yKwg0UxH6DsJnDTyXhHdQvi3Wo224MG/rTAHjiRNO3u9fDFUeTHvNHvsGSIDXGISqXVaddluShKAeAYeUclLjwX628+9ONBbnfahy+bNPBG9cXDm07aVKUQDORKZRgjT9SbhcLPgSgeX5c2XqCohiR4gVOic4UjgavRK3re9KhZtS3/7WvvWeEioXoGja+JVZKehWgkG23hdz3vzHHARyY9YTGmn5JVsArUdXBk0fVURwDBiOpwmDJjAHwE86DHBQOAFeWtTfbX9fooPlhOeNyx9kB/EdJHHGW//2L/S8rHQJcCBBg20iZogmE+4OBg7KnLDcz+rNp47fpWLJ7AEx7CAKedsT9Kpmp6pwjA8Jo3qHXkPkL7SCepwQvAH8nKx2WDZwJxctx43OtWVldvfO3db5/cf/Ti5EUr7yK1inYJFkprYsHLTHuMF0sbSuAwwMdf1p/g30eDwVOi+CxtcsN0g0zi7xVsnF7lYuY5wUBJxIrpreJik6zfoOONFcWSFiP7igl16Wc/7OF8tyhUddtkHY7R5LHerKR/RDyyT2/GcWByxd9eya9nl5ZwkYLugI90xOXTISca8PF8JsfYoGeYsxgOegfMQn3JKNgX1COguYTMVNUrJUr6DKPW+VTkiN0JI4f67S4eUVIbmu2Tbq8FpYeTMfYLyScSQWuERjhdHCQepmbEvETgj6pZtli+iiBQp1ASdhhqgk6rOS+8RUiQSAkSBdNChQIYA5oDAwPGCFmhexo2pDgB3ixmoOgXH2QqmDQm1gNPI5sC6kMYQ96sMoxHeeuSPzxeA8A9jbtMkkdjk1SBP12KB8MFcKfjN0MeiffqMPDd/GREEK/Aa+NLxcRpp+IPZINUGOLZ43rlKtKgBAxMVpACRZYODRM/5KzmVvtjYYlSpYnSD9oCZhzJBIyKpyhApgAOgmsC7vTX333vsy8/6Ht9bD3q1zGopKxzFetpuDRsh72jMAuHErF2E2aTPBR3UxSMyXBbvvmtYPpb7/wYnw35CkHq/2mPnAid19q/fvSpotPcT2JOziDmJ+bMVNkPk7ak53GBDudXEogXFrQswqsO39Iaoxv6R6OW229YWDOXayURzEdY5Rndh/mNJTb35FV4DBsJ92Uz9D86s+QFvppg0Bn2f/Xx777zxtdPqwc//eiXrn+4dWXVSsSwVFkbpWliRocCYOZLVcCiAHtAOiHjYJhYN0wFBs1/GgByndeh4vfvf+H0+6WcnSRsGbXjdLkynhzelUoBcUwWZ6fnUA+DMGPRBNgLwMtIhpGmoQAyIQSsNfZX6UK0SVRoGZUYMYCLx4DVQvbQo4YD+bNo/jm9dIh/0x2KdJHF1K1V3UA6HUyRnxWatsBXQfaTww7VoLIE6TSHUZay6OaaoMDKmbgjdZBCi5sQ7BvMY8OwfXTg73fPLWsKGiZ1yngIMbw5F0jBKOgjNPNaSUH05GnQaNbB3QIfGYVHPdzOtJcg1wwnMnlFzv2HL85Papm0XV5Kb6yvLBXzlwVfOgn4f5X/iA6vkJ8MDfCkkQAcHQwPNn5GjSyLLOUMgwqLpTme1cdJdPDxqAfga0xNr5G/ohwYAmczZoWa7eppvY+vzsJ96AKY41/JbpSzm6q61i6JlOB2PF6Ey+nGsa19xTHFPWZkxxE9JpriwHGwcf1Upk4CE+CiiMsX3tr+Bmg5wPiPxwpB00kL8Hjcghw1x+2i3lJN9eTwKWCC773+NeXkQTasu3wh8zielnAcHJettTW05W6v6UyqvqXF/ScfXTQaxCXYW/JswHJskqrQ/qh63v7z7/0P8Y9/cn5x9HLvk6vf/kuvRSaPwhvU0YnNq3klq6a08I1S6f7L4/3qCSOBJWhGHHZYqc8H9h5etEJ6GVRw8nGAJlIFloXtMo4QXo8HUP+1LCCzERgOW+VcRpoSL+y8gfbfG4EH3tlrVo4bJ+O+h0JD85D9oxenleeFuLWcLa5l12j8AhAetjFq/thBBvhTket0SqSxALIRm5WlhgXCfKjeGroC/FFQgetoS0NIyqBX0IlBeVRECuATgH7jo8ahGkt0D7uDC0rVgf6cphOcT04zOpKONseHUwAL4Bf5XcyvsloZPa8oi9RoGzAuxRS4AmLhzWAEDCSajZGfIb0GWBI8FdJj+ZCRhTgdyLyROKTjCqYk0mECoqxCgJxGPVoMF7LTHfUJiTmgprRqPAAxpsFxHaxUWjSzRwboY9KkjcoimtOApOfws1gj8zB35V78ZKagBKfgYqkUdit0nUWTEDolin+EwL0oK4JjldALLItH63M8lVAbJirGIMsM6oAVvrG2QZ2kem7jP+KQ46Cj5T1hEL+9lLJfv/H6P3/8K4SbrEcBu4u7aBP4poo8QntkpCElyVDFlyqbS4/U3jF+LQEf4x9uIswTVF/ykvHW8p3kiHdeff3e8/vqWcDYpKIzM/MhfY6P6M9XXxxlswqGTXMRHkzJIFRTc3e2RwK61quXc2sclcsbaSNYyIV/Lb9uBRIOIbRLgkAWGjrSY7hU+yXByrPZCfb84fMPDvc/w63kzHsWFZmUdIVIyOd8cTkqIS4JEK9IZIUr43+DioE6mSIHKVcV+gX3FPvghoxaPoQX+weP9+5DKvsVzruPUqdSOlvGu58vltKZnA1OuzUcOMd0ARNF6EufNYthRSxlMBgTF4nDXnJjSAhAKMhANMkMdKjluoQpSWOQoDahdbyqI/f9j+5tXy+2e42jVqWYj0+6YUoM6G3OAfQnEDwqKBp1kGFzkmNweAQB0E6U09nV//17r3Ub1Q4JJsxeJ2BaO21PB5NyPogHow4Pr3vEywiaYn8wLlKPmu3acHweSsRy+WQpnSwW8qu52NCJzXyJUBHVO+hNSREi7bheq19g4NPvqN50mo3e00dn6UJiZbW0VCrnCylkz5t37oxubLWbLbqTtbs9slzgffhJTGYN8g+PHEshGofdweCtcKbbcp88eYjHwqaKmTQeK5uyC/4kWJLyK6FsJaMhvFOBcIqsYGqICHw0ezX8YySNQATs3R92TjxOa4p2on1ESwMamY6KnFPi8RH80NRXh8Zd/NuUrXkDGyg5MjWxxuLE6TF+4tFyLHXgj57Oz8ZuH9TVMW07SEEOLj5/8TkOmmurWxYpANMgRhKpelbCxu9GYSc8h5qDZCk5GOc4d7lvbn/86e8wF6r9C5CV8CcNyYOZD89bT/75k//11sotkuPPa/vVxkUhVqJNO+eOlogopDMiB3L7SK4BC3H39jdao19VGmcwLM1LBI/TzdefDkhpO+udRPwgp/rT/ngxXtre3c0XlhvVc1qG4TSBJrFzsRtAz0U7gSPzG27DkC9O9y0Q6NZKyw+eL560H3UdYgFDxbWmc1rgVYa+ZCxHh2fw4YmGn5xe0DV4eXV56o9q3xY4/XQ+2UoYcN/FSeaiIuPudwcey0BzH7C6CD032t0BDnnSXYK+OOGTSCJFJzVvdto5CC6GifHsrFrH++MFyF8Xu9SRYOLmFEnXFg8SM+Fh7KrOFcSKqQQqH2dXp1UhYvYYbV4linBk5WhzFbow1h2lZfSVRy1WfxHcobhE4bWBOGWCZDFDH7YQP/hL4i3KIGwURgihsq/wdhwCYgYxSBb5rAnTjxklVyBcDFJJsrJCJCbYrEu3kAbMiGRbMHDZxXyOn8znNS/DXZgCihL2o72WqUyCNgMlCWQ2WyGpLJY9q43Ohj3JEAkOw5T5X6YRWJsUuJLKGf2jt1+/s3ObJudUH5HRRxkUgzS65CREkzqC+khaVBoZFRwQKfNf8XXp5sqroNrGCqcGATpNg+si0wrN3E9vdxQ1w540BdZIJTZoreJpcGXy/zHyEhYFC9lj+kEKh5ePsjm6VGeV2fKP9WEXjAXDFDRxhLsMdbZYpxPhqt0Uu5X+9tGT+6X8OlVCRix8dRfoyybhNVt+0tqXo1SflrjXT8gzw6kl4PUyv5qBRGnfQQ+VGSZgjNYP9GrycGEasWt4LeDQzoBwG8kz5ILA4oleoceRz5JEoeZOojrUDvh1UEGt+48ek0QB+B/jZCuHA/eYBitnJ3wSZS3BgU8msMPaXksJPtpdcR0WgL3An4bLDqc8/ZpYC46HyTCW5YLZNQQ+lDCY2RWCDOhzCgYEUANQmlFmws/3K5V6nS4RRJ2B7hp58XTQph0mkMOTCJFcaf4ofX/63e9gmEMqp4cXL4+f4QAfxwfOov/63TchfyTK1AdEgzvZJVWcjJpZPLOLaXN+cbG3/6Jaq/No1FhECckxoPWfnjePD1EvwKFKbJaLpdwSJeQRstenSXtRgNDL+eRKwUb3ITOF9BOmiZf4otd5Xn06Hz/KZAPNVp2QE5W/ZCrtlFavAdAQQI/udYbNp6e1JplnZChTc0GqIKQpuphvZJaXY7nZgOBtrwX6BWxrchKMx71QIhXOrJdoOZFNzXL4NCEadE8Ufc4dGn+9V6OPEg4SFSGwayRD05Zg4qCpuHTFoYGi5/BA3NOYBDjZOWYDGiSYrBZgLNGRwdQnt6mYWi3QLG5ll9Aljox4PL67dnNjfefeo4/3z/fQkUixxZcz842eP38473eurt3IWGWixHuVo1u7d0EsJ6sqkyJOjmlDtXMCiym2iJCXTMLq/sWLR88/6zktQiFDAtiL+Xn7hNDuamaXaPj+wVPrShKsBjKZpDMG1LGLxB9IgB+CkwDhh6/dfucXH/6853SkIclwDesQkEKmEC2+PuQ86G8TZ7Y4e9R85+63S/nVYb+KCwGhMvETduVd2kORcOhiwCZpRSMrCz9hhoybu1t3B7X+k/6RBa3ijaKuboG/1xkvvGD8rc3iSjpfomyvWq3zdLoAZewUg8fOkMHPiI2b3B268E3aKC1wGvqoNqD/IjUNTrvfg/3gxweDiNOWSSbAKA0HEueNcwS9nU7H+0mSvejaTTqDSe2AVbCV+qZjbtiG2Au/SPXT8nJM5FTEUyJmQWY4LxH4jSoaSVYAx0z8TXxCGaRYrWEqsIngaayulAPOMVyVtdZjLm/ILSXA5fABHyNuZTIZHok44GxIN1bJNV8kXVB7qWwwLH98/2wHbA1HiuF6xgnCrXEFaOjiUpfyTAJC+UzmFU1Gyj3F5HaqsHnjauPIO3rRf+edzauvriSz8dXIavLg4vCLD9AJWWjVlvE0YwhQdu6fBp3GCBTEk7Pq3579g4DCAsGN/PLVlU1thhYK5V5jp6R6e2n18eM9onyCfjX6EAeOsVAug7uRrnFj8Id5S14xPsZMAGsSvrHIi02gWhEXE456HKoK+eIeEso3bj2wOHfXr4EsRjEqnBHuJsFnBPQl89ZTFHpgrpfinDf1s/ZKkkgmEsxDA2Zl/P66W//5Z7/40Xs/tEMpKQJcod3lp+AbN988+vCcVk0yEM3G8i73517MVNJHMpW1lYSBMJDcyDN4K0DAglmlj/flKJg3lBMIXn/l+pcHT7tOazDrESSQfUDI0sR6sAk0E44Y4wpODs72TwE45CHykpj/zPTMvIjaoTe3W70molekyh/+skA8TktByFlAweKVmO3yIEqG8wBId62wcXFUhaWg7ZvQ6SgNpJ2ZtlzXspCmHz74Yjh1oXnCjSFwHFguHQE8U/gGEd+qWiB89O7b75L/7rn9zdXyd777GojweCbIoGo5pzEXrUu3RWcEDZicMCwYZeb7A5mt9M0rO6SBN2r1s0bjuHlWr1wg6ohjgA+Lu7857B7V2qnoIZUHmyur5dTqUnk9nymgd22t0pknBC4CSScD6mVlSdGw3aGt6tMXD8acF1Jg+jPiDocnTYQHeft5O5NJRFdWNq9QwBwJ02Ue2dNqNiHtNKomKeRUJrIW0YJscqnWgePa4anbpOhjLZV8BeCGjasULy8ocfKZ6AYYB/4QwQLHR4EH8T8KvJkWiXD9py8+qXfOfRZnHiYlv60EMHuCsaGYoliw1I4heiGNQLCQRkftwxfnlceVk9d3X7lWuoJuBqVZodQfvf3jW07tiyefkD+jnDGOzHC0f37ujCKv7uQbo/bDo6eLRO76zs3YeB72RiRNaZvB0iVvRzQJc4je3LybtfKfPvnwpH2mdg4YepNxrV9p9XqlfB7thKUuhQqXg0Gx5oAQgiAASpo85QKzWTgdTL515e1ffPQzTz265U3hnw7JzEeUlGgQBOiR15mgF0Fl+OG/vP7q10OjhVM/yBSyzmyE65zWbSGgGmb9fp/mO7kZjqlozBnm4l4whulDGirw5GjpFGugN2H1h8EL6rz/2182r+/cuH4D2430rl6n/fjBvVuvvEIdHA4RoI3BAJau7JskUsnToxNq8CBdBAmvgok6UmcX3vbaAFfDg8bDdjIxK5JJtcBNzSWkH/niWVJSeYXz8RWn0NERp9AEDbOWABDpiy/B5cSudNo49rAKtld+RtgPTiST2x2KmTPIJWJCXIhCq8/oJ84lL2IhSNhwLHUXVFF0JAWZxYw4nywubJUAAHKSMjras4RoZ4+typ1QxPC8Q6BE1kjTEFy4tCejy3ADqdmwNu4PL9UsoDQOv5iZETXiW3+Y3ngG4FQ0PboZ9U4fXwRjQaCmcJuur9CdT8XoVLSIZUjDhVxlWEjqkNk8nzaHw9+/fCCJaaj+2CnnCqlUNMNkoHM5ReEapPH66LOG6Y3ZR/hlhqOOoAkONIJ4XmtMNsF44bJ4wIahP3Kc0EEITbPEWMsQgaxNlFQYDyxFDjBUViH9apJj/9Xy1d/4PhJrE7MzLBGNQFSv3+HNX72mndILrIZ+5GfNR89jc7Ue2ljYsu+4fvDB5x98/60foP1q3fSWNimXyG6V1p9WXhozxdzrkvObTdQas9Lm+Rik6Pry72O14NfCOEJm4ZQkT1rWDAOAa4yfPL43qLXu3NpYv772j3//+3KhkEyTDilDjtALay2bBw/ZaPTs6aGLzqa9xALQM/hjnscDGaARQWw1q457TR9iNqybIjK4nqiwvWTakATLKsig+YQ3yej73hu3gDbdw7c7x+0Hesfs6laJSC7WJ8yfWo3Do8PjkxMMWrpThwNx5DPOwWGYdFF4tPIaga1g11KkW0eCo4HDACFIj5gjHcVJArQizrD78vAQ9wceAHmuotFsIkC1FMyFxWHAiGJyhddXqdnceMP3Wrvb/KffvH/y6WNEp9lkCcXebAasZqVejQeekApZoomhlXj7zs3NW1cBVEgBRTeP4lbFg4l/pev1P/viQ7NGJHixEpTa+cdk3Yxn/UZnXlEba8QWFQHFvP3a9WvZlIXjmCZJecRRMo3mSZ45EegYSE7haWUMpsXMHx42F+OD/pPDzz4LJUM3l18pFVYoemGvMHUUM1GvTnSUCXTNuoBHtLGyfXjyjCRUUifZHCiScipgZzBZVP/NYAkChED+y/qnpByekt8EXK8v3DutPaYkMzLxv7bzCt4cPMPkteYiS9+6/b3j2t7ziy+ajfp0gZd/0h1RVPPi8Pw5+tMXT7447Xeu5MrXi8sET/DmYZ+gVgnaCKOq1wuG7ESk+M4r340fffpoTIUAblm8cf35vD8adXPRYmD2MLb9FnyTA8ENtTNT2v/i3OX9IdjDiNiind5e2vj42WegBKMxw8MoosbhDjnhAoCH4fNxqX1vuvWDB8Cg3Lp+s9atdHx9V4ZuqN+7SIzdhS/aazYEnh1kcmN6w5NL4rW7pyd1jFwyeyAMJCNBV88dplLxzrCz9/JZpXJEsljSylNz4Hggn9bXSWPNL5MOp6przKxeR2FfSjJGNJLyuWMSOtTuk6RCiGQWoiuUn+Qfr+9lE/mry9fABeJFEgqOzs5JRbAsL0pk3xxhw+t1mpkVGr/4H19i+7xmWIIMffO6eIm53BxDpQly8DhkEu7iQ4bXSBXTPdAOzY0kMYz0gNWbB3JuYExwFTgQrIvAAQsqPqVjTntN1sfv6/F8tTqlvU2MviHxNH1GyTSf4BbD4qRNDpumgnfBmgoYy/BO7qp7cIh0R02JN4xWzNBQ3aQYxe1hvx/xjzKryRluuXS82W9WaHyhqiQUeeSTkWUatdynkgPEMuNCqaTOELOHW/NKbdzozR07mNFcYDlahcjnHz7967/9h4tKWyaBFsPk+sD/8ZSznDQ+iofGDkGjKOWWeDP0DGc26PXRoSWNFWxAMSCTjBuS6AJb1DoxCAURoMhMlkjRMVCMOmNsEc9mhrrETJZl1gbpP15jE8z7+k9bo8vMK5IE/IqtSk7Rg+qT5drmq1u3FbfmGrFeVsD3ztW7F9XzzgK/pllH3QBho1FePktSnGkuMNqmlNMQpsOvQWI9r4uSuI5rRQg07RpUzuuES1dSmTdWX7v1f3wF+Z8koBby71dO6AqB3yZlFwGTJwejclHVXQ1HN0Jcm0A4UQOW31mnRZoHKhkCQBfyndXF70e/X27R8y3yDFGP5jNaGA0TLSMZSvzw3W8edh7/+tOXVHh549DT4/P3rpdw6ROVmY9GP/3gI/zC+AkxQJdXlh/V92gjS2CW+4e0wwQ5yc+ZpeYJVadq25k8doYonV8hFdvOeeOj//KT/zaPyoEXmwRub1/57//dX5otglIgRkaizzEoNLBMqrRzY/vRRaVLAykV1jApPsjKRvrTqTf3Gq5zXK0Cf3zRahAYytlEmykTo2qEDBSUqEWzCQyPSzUPCyBFyk+5FEoVSy+HPL4omjCDAUx5+clx8+GX+8vLpVIhW84ndjfzOCKhyfgw4FLY5BugnfQWrkuekz+QDGYL2TdyyeyL04c/u/epz/p8ZXlrpbxBaS8tyVCcUYq4tRIHeWQ4tFpe/+F3/uLnn/7LEF8ZvQBgamQwoqchLaY9pZpIT2iFgjUL33QIoIp5Iko4pEv1vec9Pqq1olZns3AzGS+Bmw9lx8KZq2uvJpLZ+9PP9wcHdOKl/wuwUZPAFKCDcX2v5hw/DyT3Mls/+Ma7S/kl0Gw4uO7Y+/LZs67n3rx+Z335ir3IfzdFi67oZ1++7446xIFwtwzIZA03qF9JhUK3dt6BVBSrgFBQtHwUe3bPD0/RQhPplBtPXFm/Uuk0T1vnSDG5vAliR0i+gvTIdSGK56fnMuwAH+DvPvgQJJmtK4WTRpNeEzwJhOFof0grvYtm9fmgvry0vL37xnjeP8X50AKVNWanKB7gaGvX0ceoKOEEUpPb6zjQITvouWggtDkbPX/2/PmLo2SKRARYBnaKvFUMmjgDYFxRKwYGkhWj4IdjkuCcjvt0KruoHp9HafKz9VrYm560DyhHgFmSbIwvuMzDST5RXOiSKeu4iDzZTZ0d6POSl4hn8AIUbsgX7nDJc4w2afK/4JgoQFoSPmKYkTiEvsSEzUtiGGIGhsFwlU4r70Ovl4/i7T9czylD3JIqyB8RNDKGtlx+f7NG7gJAMBRkWpEk5RZ47MiFQmzSHY7SGFKruDtnUGmHiEQ2U/5uiRy+dH+mhKxC4pLG5aPHedyatjvdJW+5ZK83G+2FPxNFCxaXFAABeibpU5xvPowNSzIUh0vBXcMjZRaAn+KNFxZD1BFgtq1W5+//6afnpxfUS/IsOU74iImXY7hJTtCOjk7hDW5JKZSaHAhwyOf/5c8/PXnRKRLESSdVFrKaB3waTaNQWKJYBBVVyi18YT6lOGW7fOXUOTdT4lBpuHyx5dKxRMSXa/nV/pk3//BN7FDSkUtYGGQvRMysuO0nj39jLeZrOaolqXRlpbjUn44W7my//v7Lj1E0YFl8Rh80koP/9GTzbMkqSnTDYeBV5JYhOESoDp1P4gWnPjcTl3b75I8rEovSROILzmThT4V8//Czn5+cH+cz+K4pfUpHYvOWe4YHkyXFC8M28hhMFWlo3IwP8FQ2lnszLaYsmHETbJe+PwOa8d7zp7ncKgjPGh6mEiPlgMtLxT7OM5nSbjj228kLuAwm8pfV2ntv0KU+yNF6+mzv+cFzzDW0WAKHr92+9dv7n8ZIpsCytKMLvC9ASY+JLuhx3BO7gcJ8atmiswj5HywPY4R55zP08o3MgbRjhJBhZEHpJVX5nFhGrEMgdqgfeIWDA+TMtetZsuK9EUAROM2F9TnE7hh6c5fKJJL6KYsYblxdJZPixfNTO06jYCAmczTGW0TDn3/2CStD5I04EfF0TCoW2Si08nqFJZMlN4nFATuaUUlytlLrgh7w/MkBQGDlfHapRCg84xsvH5F4O3+K54EsBQz8KApoyP7mte+MVl//9PSDF8+ffPL0PsWDpUx+d+nq7a1d6W7GcicHgusLieLXX/3m7798v0d3ZbiMHNVQjUqiuS80g87sTZvUqZJKSUYhkVFODrgUpEVVF61W5bNjt327dDcdL4A0Fxi7MLZ8eu2tu7lI5tODg5dN+n2NBmi2bAr+nGGPdg3O7w/OnE7j229+b6NQQitojpqIur2XB6P+0L3aB/sIHb8EHFT89OKMRjIdpUriRbQw6HvL4eKV1VsgVWA34CqJkKGrzcb+G+eSOVax1WquX9n44Xe++9P3f3larcI3vR78k6gS2XJRCrqJ5nOGsaIIRFvTycXJOQVi9XYT5Q57grrH8IKKY0owqeIJT13v4MVjD/CY0zrQxPF4kLYBFB5BomgFAom2IrM2E0PFRyShhwSdGfnByomkMzdH16TgUk2ED1n5k4waMiMEQ4MFMmhRGDgPYCWRuUSWPiB/NuU4k3mj3v6w9cVg7oCMBnkxWsYVBqZpShCYIy0tUv9zYC65yVf/6ReTU6w3OY5sJiM1r3KtzhXMwHAT/ucFqXy8YcSAudlXd+N24jpf3d08T2yIF2Uh6CH8Z+4P29YRgZEhXoyI4B1q7JCRQMQQDCaLyJvh28LiweEMfaEMydnLUeO+hinBV6hhwVZHFPBg+BQ3lFjQBKFWoN3DHfWn91F9NZo4tWYF0Tnp9huDIx/pg+SqiMUjXJEBSCBFYpGShK3ga/iCJWOYEdoM4si4HXgL/kiC+y/e/3T/+JR948kcIMOVmeUfVsXMWQM1i0R1IR3m9K7f36u7R3tnsDyUWPLRYuh4UX80Zf+7/8O/f+vWljoUwOSm5IOyxIE3X7/78ckHI4ElIH91c8lRyVrJVexcrad5it7jF/NIJBRrwM9mfyTbYa18RguDiG23fv6r/2ZHyj/+9o/yuQJ3NbJ7cXNj92XjRdPr4I5i4ryuvdQ9Lm+m32GEOjbIO7iOrsKlos7vyg5UJZdsRLIlMYS9UZsoFnkzqOyME68ePmSHogx+ot9hv244O0khVNfjsIHEGDEyS1mezARmiZTDPwWXE2Fqe/kVnZ/l4UKkBTeYH9aPD5vnt1auyJ+nKbMT3IBFIVmLqplgPJb5j3/+F//L/+e/sG9Hh0f/89/8p9c3buzsrH/w5PM57iLIJbiwgr6ry+VvvPoad3zx8ji/HPuj73095gv+v//6t1WOd9jXdls88OD06PTs+Tff/mPYOYvPsjFpPK0SVIRsFMMIpuw4Zf+IKu0DCwUNmQAMvzKD/qB/Ub+YzPpY85S6ZWyMY1ImkqT7oP3RFMXtOzQicMahnaWrS1mh5A+6bgMMploLD0R/PD58+YKbElsk0U9sPorgiXQbrfGAFlHiESbph+wbsl1CS8CaF0v9x46dSp/3B588e4Z3KJuPruaKudh2IL1Luu24doz+gkUgzjbrzmaghoXfSd5eypV+/eKLtnbxbO+s0nAHr165VaTdFfY33mpiwsHAil1+79rX7734rO3VWXK5MeFJhOtYIJ0YpezIg0VBlGJ9rFmSlRuCmwHLmw76g5fNbu/O6us5a0UNmKEVqiSj8bs7b/oH82Lefbz35WDQAL2Gggr21Zt1aX99eP7yJ96gSIZEOj0KjIknMu2Do716o0ZIj1YB62vrt7beshOFg+P9Hm3hAYifTjeubDDDB/c/K69sRCJ0vehw4i+6Pco6uoNRqN1JZWykJciP0UX8yuq1J4+e06w6myVh14+LGrCpKHKMjFb8fUpqn9OUZzzxt1pIPgK2HK4gbjJiCdyW0nDIFErvXVQxl9G5XPrmdJDY+I0xpoKogoidvgNqAAostYOEDxdk9SrvkmpL43eG3FlGdBqPNj8Ka+nEyd2GYwpuCMQKWeOUay9mrWpXHEDqvQCr944PSOEkPwkVGb80+wABHh0IWAj1iXuyOWIVnBIdYHNYDIPH0Syy5QyKu1x+mfd5tq685C06W5cf0xXi6uY3vSvuonfN/S+Zku4j/sFr3PcP99QB5o8u5+9Xb0soIBklWghd8h2PiRwAupiPosxTh+liKBmmpBtwc65nAy7Tuo22qLf5mGaK7oVnCK8suNDYaKulTDm/kV3JfPToA8dp19C7hO5DUIz8cS7ktkrlufziZSwDXjFZUBo4kU0L5A2Ggjc/GDyrVX7zu/eVEwXfMzP8w/y0AHxdztzMTb8xCymB/Mg/8Qr+iifLr+V4Acc3rPb+69//6o1X/kfex4OsqAZyfT6KRckVi3lOG2mmKcNlxQGDGBk4X7T8el27wz9zdwSaeZxYDz/KEa1F5VezkFyDNxcDuzs8P+wc54pFEhn4JO9GApG3rr32y09/RaxGn9RY4VpaS02HWyn0qDg11g4MmEwKvoimb6+vIKrBoLBCCcI64CVZ0VTTV2V2GFWUTbHOYKwspLPKtYpxoF1kp7VTknhIFgJ3kiwiA+7L7VHn5Qgy04LcGZHsAygdWaiWfxhuNAqZDR8+/Xwtk0tFUgxRc4SMdTWqAvOYEJPZKBWupNOPu2SszL5snh2dt+Nf3h9TkSQzAjxqPPqhwWT41uuvkDRRsHPLa/ar2Tu4aHPhvU4IQ2B078lnnGSyev7qT/910SqRBAX1oJcxB4YE52LE+MugJ+qBebziXIpooF7oAlZSX4FgpXVx0akD3mmMFEiHen3m2y5F7R9+/Tv+RYIKzxb1BD3flaVtStSiMcuXl2ikXAgvQaVZX18rHeJz7HCdwgwU8hJxzqes7NoKzkSSOJt9vCbRbNQu5NOv3N6gTWAhe7Gcyb/YOyLTyZkAeVR/OD0MRb7Al++zg4lhPwHGlTdiBoTHwLAj6QCmlsmEl8qtJkCY41HYG+y/fOaet9569fZSoQgJjoYeNIz7YiO/vpRbu/f43kntEAwsYidwR+kAbCVl9/RznhOqhdrRfohlk3+FpMY2JAiCRBw3++ePvdGt9bcxQElNILA+oVXnjCb1R1Wn88rurb29w06zyzrjCBhOoq4Dtm+MJJEemWc4wny0RI1DDmR4NtutZMSqu9OTAyC+Y7X2GS0EWt2W0yP7ckKqAsXFuHcxXCeggrgDdHD8fGtXNjnkN67vUIBC8CRiUS1FYNLC6Pns8/sPD46JgLLKMhZUuwo/QhIp5wCNnOw08ts5emEmjmKk2JJpfgQDkjbjp4aIzhWtRq/b7uPKABiLI4tBCDPDqwlKxaDn0ErCR7shqficS/7wOagSrxqnTAcQGxTIMkgfOoJsoCydKl2o8RipiUQ2h0ceHjy00DUAJegHNDygkkAjYQd4EcFg4myGH5lzdck2xFYMKzeHUlyZmxvS1g88DOKGfXEx05e6yFCk82pI/DWcm1+MHnmphl2+pdcur+E63ZtPQ/TGdkb34oib080PEks6KFijLDQnRQMT2ehBfDEC3UAxKP2iF8348Wmr0w1rMqHmzryhiTBOsQAcWDT7I52LT40CXmJ35e1M1i69tdXzqr94/v7L6pmGTqE0MvryA/ocbSigYgByteVokuaUz2x6yhs/Ay/T+umzTz5tQ5eY3WaAWid9mdExG/3Aul++ePmd3y+HbP4zHFWzYh4SewxjXjl7TA/7ZDbHE9k53LlwSByFW0vb54/qSkSWiAWJKHrzymvLqTVyTn790c9o4iibhRGYzbrk2HhrTehKFCNHM0JFVAChQSto7LyusN7jw+d3tu+EfVGtGESyAAT/yrde833w7F5v0JfA0mqbaYj7Qr36GRlE3Rzv4T0guvHhF5/+/Le/oQIIJaZgZ3c237hxe+e1t7fbPzkYgFYzdNM2a0msENoTn/zDDSUQ4dKXS6ZtgO7ZNS0JfySCIHiz7bKUJGmJkKOvI/9QahgJ8zGW2Vmn+uXxi7d3XjfaAvvDMcMIlM1MC0q4EQT7r/7sR+7f/Zq1wn/C+2Ddc664n8ZF/mUcH+4wRdpeyPe19+5wyEYeBeOx73z9Hftp+MsXTw+fH2MpLq9mfvov/xhN0D66WM5dyeTLxOjwVmO0k5jPLoDXks/aU3IiOcQQN082BqZZR1IG5oQ0iRvPLt1FOlKkA4GJj1XvffeNZRACiqll1BAZh0gXHSipNYhMADljPouGiLu7Vyut88+e3L//5Hmz1aHJNskSnU5v7qtEY9FsrrC2vXlj49pWdj0ZBZ6IvH4vE7UJiIIiFqHNpNsPTeM4CsY0hvEGgU4gApj9yUUw1DmO/Pb2ze0oGZ+0uXWnfTCvaKRJOkk8ESQ0LF7SfvH097O1jXxu2YqlBRHqD5HMCBrlndWvP/vyouXVCKJEaLKEo9pPc0sEiaoCKfxTABXEXOIgKlWVbsY0WSL/eF45PY8G9kq2VxhBKql6tz1PLkjN+vSje5XD0xvXX4strH67Q/whHE7FQ1HCtpx32hWQeAFqAzk3MA1YLtFRbwQAhn797Lmyb1GTdQ4hqTmxjnnHN+RQ8CtltSICQWROmp8/Zzg9Z7Czc3U46JNugjuzmM9fXVndC8U/e4GDFzsGAtaRRMfVPw1cXIGzgFYOHfKT3AByAss2lLYCrRv9gJ9F24FArzWAIrXlPI88BVWjKaLLHbRO+hLDMYeNqxiyMr/Mx30+VzxJPIL5QBc6HDBSSkb1+lf8RZxEI9HjuUD8j7NqhoNDBbE3JirMK+aWOmE68vxnPq4P6GIzD32Mc8o7upEeqPwUfjOP0jfzg9gDF5kb6EfzZZ6qX3j5q5d0G3Mj3cJcpCPK6PRZ5qyjbJ6iy1g4DV8T1AX6KN8I/OnLTB/9QhdeLhZbyyX8jA4rNqf7s7d6RROVurlI4Ru1Y31KvADloeo6E83HF6Ebpa1ms0ks047HKKxAb4EXqCwRsYFqwKPwZqDFmUHjldhZ30nbZFPhGlrUapV7v38ojs7DtMz6Zmar5/9vL5qfv/r98g1+MfPRxy7fNR/mF01j4NJoo5tKpiEkpoMEF+0uArubVz989KnSKFGXcd9GMnc37ibUuGv2r3/4b//xV39bG7ShUvZKd4XwpF+AiwjHvIy9oJvjYxQ3VW2PKAcFntwPEqHVUFPohJdbwLpOglvZrcnm/P7Jg8agI2HNx8xWUPkPV4U7hSjboTaWFUZekvyI99oZTATFNmkPmi8vDn7xKLy0XI7mo6FMHB8bGVGqJGI7sGBVj8/szB0hYpyjpGEbMtCrSh2GfXNXw/klENhZhgUTRNii8csxxui5AP4JtbPy7NXDg8db5fXlVAkRwyqY1SYPF+ZOiTxOxXkqnfzv/+rHH3zxwb3PnysRiGilsd2AqOQW1KxAgiI8QhoULFAwRixzMttYzy9tfLvTbp81afe+qHZarUaDYkJ0z8gCkOXMUrlsp1KYh6S2oz0WQsHN7KpvQq2D2WhGohVixWWNd0adk8oZj1UaFTPShDn5RicUgiOldX381aIR6XOkSCnSqzvwAS03iwG0SXS7uLNevlZeevif/vb/hWfdyBmNH3cvjRk6Fxfz88rGd/51OJklzIA7bn39Ko5k/CKzoHd6fPjo8QHZT8CvYSAR5nT6Ht6L+qzf/qB6evx0a239Smk1lk6MKJnyBaKEHQCK0P7B0GOTWfvo+FBFPgXSpIV4DDb8L3/zjz/79e+PKqfdXpc5sYqGuQWJ7bEsQB/maftIwWAaW1Ut5iMIFDxXhIYBURkNKMk8OK87GRK1Jr1xreH1OoTCOYlD58HHv1wMJ2++9vXt8vrJyR4hAV8k1ut2sb2AZqNKAtcb3hGssbhcI5NqrfbyxUGnBx+XeBl7Yi6GtyhEzhbxdOAd8RNR6tFsdSnghiIBYKoQMji8wCbHISC841Dgw2RGbZUpGGMbiMGKI/LFzUR2/GNH2GX9wiPEmTRxDi2/wrj5RfTJBdIDYPjYRebLvKYbkbFJbqe5HWARfHHWDElL0nBe9cKlL0TP1ZdCklpew4f/8GidZX7mTR701dflEHn5coi6Nx/jtlhsMR0sfUKvwl8uJ3MpzvREqE2X/0EwyFiXN4Svyyu/eppurvnqm67Xs2Sk6EG6O+T91af0Mb1sNkJryEcMMTNZXWp+VrzBPODyQ7qDeeHyRX3WvCDpps/8b1thXuY25g2YPistHd4MybwKsyLfOJycUd8p1V2aKweFpg7+bm/LLnz/mz+adWakTw2n4AoqknTcOD9qnJFmhBoGbXFTFN1spPDO9fdASIe5soyVSoOWSHAMFlB7pkUzYzKzuxwtY/rqS3M002G0ZnHMrPmmNTTXfDVdeqq8PKytLW2IaSirVv70kTcsp5eL8WJ73CGSTIhxt3AFvCqSEvhYJp792pvf+K8//wcC2WyG7CfikARAiZayDsqOVeSFJRNJ8k/s1Ow9b1K7z94yT8k5qTYaEUkk89CN5Z1yrnjv8MFBdQ83FB+SkJBFJdwx3DTcHfwDUQeV1ChSQTQ5Kapi0wIYC9YbJBaS+zFz3Z6/sMS+ifWj/alKgMdpTGZgrInWhePKa5CNsRKMiNfSGMLUomndeRYxRsYhzFuIT2vEfCFiurx2Hx0+Kd8pQIy8KY6rT186YKRLQ2H07/zeW2/uv6w2WmTcKC8lhJZP/H8yTEQTGARcpqCD7kkACB8O64nOGf8f/6f/7sPP308XJ7/5/YN2jUgcOAkwCn9v0WmfdrBa46HYSmH7W699+63tJawiPgmlSb1FJ2RSMAVxef/J6TFIjTyCBTOz1rzFMNQnDEtfIHOMX59gwdlCIEeUgc5qqCATAa4t5J2ZD/QxPAT4zFkX3tcqIBehzpAMYT/wexECY2icwNOTKePiW4nF4sWlwvabV9+6Obv37PNf/uZ3zXYzQ6fnsP/5i5NsDgPN9+ywfXw2/Dx0nMyEswDSlVbsZN4PIhU8bTaGVUetuDv0TmqNUCwLUCf25fO9s3/+1e/2D46ERm2lUK8ZLXIL0mVoKFjoBq7XogBIYImTOmIV7Z/NR0EBySeTjaSpR05fdBLJF49IZ51409lFvd/sgIjheZ3Q+XE7tvhyY20DUKFwJNFot4IoIj4yZ7rcQJYS5Ul0bwgn5sNxD4Ak8seRK+jODAEd+9K5a7gdfBYsijb9m+SKl9UAIgYKOB/AywPV4EfSwk8CsYgPFGoXK4NaCYhWJ8OcVkltkevluWWPDM3CljhgPMPoa7wq+mX65hXmypogoMET5GjyaKwV/H68z25yCYuok8kVLBeqm46ihsEFcDQ9gqt4TV88X0qh3tFh0X/6RW8aouF9vaPb6mq+8aau0jdyAKlPgyz1OehcGiEDwio3t9QEMLP4LpLVYZAiyaekYeipeoNLdC8zO2nZ+ssLZnyMQI9nkHoi/2vJ9AHIXM+/VOu4WPfWEnEJf3SszX30q26nbzq6ZgH+MBkz6MvFMJ/Sg7jOWCbmQfwm7q/n67k6NDwySCQQ1QXfKLUoEYygWWxE4hyJRKRCZ4K+gi8fyoRnKUKplBCCbhR7fPysXq3ws1gOZ4u0Dl/4vevvJcM2DybBgbaon312n9RUklS4RF9m5Bq8Fu2rFf9qgFyhMf3/fzFEXtLK6R19Dg7F8D748JN3336dvD+MQoav2osFrvno7urVF1WS9H0/+tYPY9MEFo+Co+juw/FuaadkF4865wR85L2lBgjFAT6kfTBrDmuQxwRegxnAhy6XCZr1wbmUEGkmofFrPmbxFv5sNP3N7Tetmf/pxVMPdgZ1wtm4JOgrZXN05oZ8UdYhK3Fu+ZSYDho6XEltLjhdhFbabu939z4p5jaXiymUcbQ2mRsaAJIH2tbnYXRk7aPJMWaez83M1vG6KIRviGxonUQM1ZqYD/Ga9leDFbI3+8TrB5XDi/Uby5kyWR+KkoiJQlmGaV46ZMhaD4beunnnv/38fTvuf+Vq+dP7DYIt6WQqZad06gg5MDbNiPW65N4BUjDQYd+68s3Pn33QbZByw3MBZWTUWBZoujyAUrXRRfvgXz6st862337zjxEnMF/oQIeLwkawIOJ0JBo93XuogKA2DvQU+mdSECavlWQGbcfpOqA1hF44bQyeoeEn0BLp7LDwEQqAm51Og6jxg/0HFecC+FBymLhcIlXSEUmziEUT12++lrRtpcviooqDZkNXWEqJR+1BveXWKtX2B4d7jeDcic4a44lVSuaGeVJEKHsgCZ2kci/ggXV5XHeiR+drq2ub5VLEjjBNpkR9JrUv9AM5IwQxnBwfH+3vHQFMBwcGda+QS9OuRMYQp0D75wdRDlDiZJI+3AnG5vRAzde+wfTAJBaZy2fOsZqNO9QzTe2UTRpPNpyGn2fXofNFLpdCoqPdO8y8VWv3hoC7pUuFtbUb1dNqu9VC/+gROl/0qUQDmfXqzq7SVVlmrBsSBNXchVQ0pRAyHrzg8BvVK2N9EI5giZEQ4hYUjvCUOBmDjBz+JwxDQfbSugFbxXAwESeEBmMy3NYoTYxQr7DSiBBOiaog2EMuJEJipI/2D/IVJ6eHGwtD93YadhFS4oybcBioaEhD3VsfhPHJI8SGc2yRFiLkS8YCPUEql4yRC/UQiIeZwWT1eX3npa/OuEiZZRY/4oCb+6uDGvAKzIHhcBYkpJm5OWfQjskG40PkDSnfV/stfUO34Km6ktsxHJ07/aZ/yD2xOD2U7+J/+mL2elHH2fysVWOQ5lOQslkefddkuYBbcMHlleYm5lZ/uI+54/+Pqf9+kizL8jsx1+K51h46MjNSV1aWrq7uRutu9PTMYAYzBLALYsnFcmn8gT/wp/0XaKQZlRlothS2oC0ILDFQA8z0DjAtp6e6u7TISq0iQ0e41lrx8z0eNaRXpYf78/euOPeoe+4R1p8wR7OhdS7aI3zTnLmgGCP9IMjzj7/6xEetD2x8bMe6aHaE+VEymFpvQ/IYyUwsCDNFegbHp5aR3AwjEpkzePBmfuOdl9+mHiwwYdd2cFZ+uldFj9EkRa7qjfEtR2VD0wV7CQC6zp/lDdzOS2/6RT+ogeVtoKL34f3djx8+fef164I5vjMYAYhOci2ubV9OZROfffR+0pOk6hE7enge9CieO/NeubDz/L19sSzPjOjERDScSSTP6i1S0brJBa/FEFMR8MQTtayGtCQUI7WuBqKXDUzw13JI5JOD4fULr0I5DyvPutI/UY44/nBFFokAcRuLPkoULU9RniRGAPIULzUQiRsBKYovdo8G2Xz77RVPkbIp6Noqda/509vfIKuNS1yMCWjpDWk1IqEnUOCN0UES6EigkcjCQGcg0qYPMLgW7VH/0fGzYqaALKIDgIrpFhSwsYAdojBer93aSSWjsYhrNR97fvgXBOgSBCSXGtI7Mmr6sJHRhJAWiAE2TjzH019/sdvHkQUX2DE2HBUawQkHGwQjNOXWVR13Pzs9vDDoUnsPlsb0OYIiVo3qOi7f5LDyvNqqYrX2QIIYY1lcFzoEmzwxjJAP70BCNjU901k1VOGApKPN1jt//4v33r/3EcnVABNHOfAMJB0pe1hBLSkHfHiHuMiis3lt44oOfrTsTIgXvhCU+aSaGG26T9sv9qpl8hezdRm45u1Gd+Sfr2QT24UEYUzlUodDS1RfINebDButhwdHT1c30+truWAk0mqPwv7kpDd89xc/J99kMhmjTjzV2F5+9XpxNUcabVKYsPHQLDD7KQ0iGTnwdMQHF5LRwoJaGqk/uJJjpXCAIe+LnO9Q5SnXhqWEdHurl2PjsQ+n6yEHFRRdn4/39vY4R1X1tBGJoye7exWkAvm6mRrBB9QxYP+EFyUh2LiZkoKBnYESVLFLWpC6d9RudkDIOBmaCLyf07v2MVjFxV05nsLoI6QknQJxzTAECQANVI6rUypzwVpIqMA7HB18gG/KNEeWf4JCWFB0EC9e5qQ4IAKDsg3K6rXcfLAbZgl0GIA+xwZaGhPExUeax8EV7RQbBY7sFKeF3sXxJUzk5iCtDC2Cr7ZosnXje83jjFNcDtVBrI+zMT6qWa4iCdC9MI1xzM3jRgT6C/KjYyA+fBySqEFQgnZ0D2zP+mC22EoRghxcTzthL26uQJg7KUaBU7Z2l7wzE21iREj8o2XBAs889cTawmT0A2/L322oULGwjjsEYz2k7ThN87I3jZxZiAHbw9zwN83obvvKczx83hTjZuHhYhC+Ke78KgjQxzm/B4Z817vCehU3hqWCvIwMHzGBZWeOizpFwEE9JqTIOo2Rp8EXiByHGWQyCieO14vAS+svQU4EjvbGhAe2njx+UG90GBYPacBM2pgmX7WyYn3LCehd7dofm7i+82KweuLLn/RRFylYSBTS6P/1f/untT/4wdWbl4v5HPsQNMxqvZFMJDaCW8XvF6hNR8QgjbKsdM148cK/vHHprz58d9DFt86z6JPYd/qP/ujv/eVvP/n8yV3xRh/HXcxN3J/9uXgOE0fl8QQurV0Wd2UEfNdA+UXrcD5CrzuZzLz98tvDu/1HB/vgTzFdvLZ98bWr1//Fv/8TwkzQIngGHMUyA6uSXUXJAtQXDSFZ8O/EdvH5s3ubG5fCcunCN40xasXVi0k+thYGSmBgXUs8sVznGw6ttexCIgvGiFrCB6nfJsQEez5AC2Cme/H05PnV9ctFTgLwtpY8BYV5lvv5q5sU0edxXVhf0d1zbyaeODg7c8IhSgIAO7rnXi2YIMBf+KlZb+bzCKVuIniMG47LK1xWsCm8HB9gxq0s6dqFlHq9D3efrW+su8dk0WGe2MCUarnSrdx7eo8D0j6JSElAjvEJtuYOq5IoNe59Xoe6i37gh3RkU8uasCiiDul0TBjvw8Xs8OwQCwUmTZBYdrg5pxBE3mLmwWOEvhYhKrv5w+/cfjsaxuaprbqtrOGZiE/7A1gBx46wkmDEh0+WkqVMvNQ4OO32VYWFsJt0hn8D8mJjJh/1x4PxWbl9elLdTR6tbGbXVtcmw/bu0ydYfqgSf1aupTLRH/zom+jY9794THFazCkoSXLyJISO6tmka8DuDocVROUCwKiYkDgiWqVEAlWwYbgY6Ikb9lGgazY5o+ys1wlR5VfFXClooP0xVjPm6CdfMZlUQt64nFHJMUI0Okf4FOcSHoPfnDWj7uNjtCDrBdsR5o3aRsodUnsRPQsDHIw4qGcTm0TyRgkyopybkvPKWMyOHobKiMBIXqAuB0HgHayfYwNkGwhiL5ZIi4QGAKLyoHAGFGQyYpSYE6QZgxhMGc7KOsJ/OQ/H3cwYkEgXIPAySiAGiCgJFhpOay2LDrFQklERFg8lMQk5mCE/JCFANUoC6EY8cjnjUe+iCQ1ZmhKNSGsRdWH2EF/lK/1KAHCbDcxuV2eQB8Z7uKDmM9LJHgd9UfxO3X0oDYVOUe/0jwWPMx/yBwAiEI5HZV+UVNGUxS9s5EI4kba6ZNCy/OibVt+4PatnhKIZQpAiayEDDwEM/eMluNm0JQT1k82V+/RiXrpoDdoFGmKOalxv/EG6iBggEGtTbEDh6nKoIWeslpbIFJKHTIbzaCTBusvywDLSJP0RAUD6JwxE0D5Dnsw3M4WrGxe61A8dgDrt/dNnxwcHbH6BI10yFsbFeGyMDM3GBMjtg0apH2y0y/FrArrCdc1CX3id/8YnwNLqjP/9j3/5Q4+3sFIkNoTB7O0/++pXv9nvEfdBZCDqJnZPpSmgeXgvi5uOpchT9PmdJ0xy4J7Goqlk4soP3ll5aeedn3/yk7P6Hk4f6KsAFADwmHida5GPpDazm0wd06TGBPBsOOdD85B1oNvqNZyw5/rGxV6lA8P7+s03C8WNlIOvZHLv7AB9lt6ZCEAWtcCvmAHEB/oKFakdjrRZ3Nu7e/wvDl7aubxZSKCbieHLBMveRlhqclodMzouMwauMT5DDT5xSZjNwrJAPK2dj/CCO0AnoyBtcIX1KKMP9x5kbyXN005Ij7s6tKR1lflLndE++MFBAWR/7erWxw/vyzytQRg9aCmXbcKnNAd1IU8ewuPI0K/xsPnimvAFcua7ct7Bwohelm3/eWkPR8/MIoYWCG+h7Ejf1fnr999tDasBx031DqqMAyo/6O9zK5OiP4zZnuTAeEdy0iokpDmYIg4MzFZsDRpEeaGSOa4jyDT4CyvPPxmyvU5gTJVpbRJE9pe3NrdXNvkktDLEEoKKiM6XFl5EDBHKuXzutR2h5nUgnciFgUF/gpzhPmKGkpnkCjufEdp9t1GtEIAw6Q5I3uyflauV4eEJTpgwX3rF/DX46P0P6pWmE4njTjyhTgxHNMqr7C6s5cPUySITMViCEUZ+szpgAaUJlNSQxC3JukSqXOXcrpJn1+vPkoubOqYjb7tZK1MfkeIRwMMEI8sAL6b2p9QASJQ+SNGguhrgDkLfdEw0D++MUlBXblzmiJ7FHfaHDlkFfL76WYOtQKlUx9d1ffsVrLgMXiHHSpkFEyEvxFiSnaNSKgLIkZUJMkMlXmp3MDGJBzMV8S4hAIvDLRIevAAs6wIz4QlhpaxyhkxwPKhVl/iqVJC2y2XvAR0yfdRwVstYENipwvSSZSg6IlGxOy0lhiDBSwZESQ5cO8ENfmL9CQnjBriBjQQpwlwYCPdL2eMhsGL5rtaFC4YRQgd1AELrJl230eKdKrGGHBRvx+IJt+QDfUzcXqqL6CVuSQEBhdgilmC6tIDFTYNT8n96hh5FRCJccJQp6Iumc945bbBmDGD50g+i6uXPusqY+aPb9BIk7QNvGrC+2e36mc5J3WUsTCkiOGdEQzbrA2f+Pgp3YthFL5jMqe8MYgIYInCmjh8ht0JmawQAOzYxH2mJTJC1h9cgeukm6Aq8cfWteCja61GWbkperd2zo0qNcybrXgPTAPRmn+zP8iM36Lpeyw/ASB+EN1w7n8/5H77qZj2jf6THcMVWVwdzd6/Vwyf83seff+Wtb5B+m6ofyB1F3SsJj9JdUb6b2YKZX3ntrQdfPIYBUTFlc2t7NJ47TnSjGPgH3/ufVOpHv/7sg2flA9K7Is3F/CTz59cub4PmqIRIFAYHSgEGcUIA73V3J+3/+Jsfn7VK6EWZJBluQpura2uFFW0jqKbBVYJ+QhLh4ueKDEelw6NxEMWNTmYgZgKyso3CcEle/eqvPj3DERHaZtOOeKAoADBGQ2Ty1qU4PkBi0XlSiAIOTkBrcXeWid8YIeYQ4QaP6h5hjWkUkJvgB/E93n+aSyQvb17i+uHxSbZAIoScGDMygMbVqJ7nZizEmKsRXehQ6s7WkX2MiEILxLzAAi0xBMowgtTXAW78QpEYtlKCEuyAwMUgKIQqSHQT+wTPfHB6chyJrVPHRHk8x+O7B4+rXQz3cCodYlB+fIiqDzVPhzF/6GJkJRhJ72xf8ocKhFBgtKZHOoGemQ6iSyMzoyxbJQYASJmIYCVHUYqcwJQo/MPxBtqC//arbzAQZInNBqSSsGKy/OED5nImgPur9F28UvnJ63XcsRjpdVjE4BSHH6A9Ih6dJDYLMq2GMvFMIZ2unFXHvX6/0yoftY9LXYsZ0CqQCXVtZRWH4rXNrRa42uuCiyTMIq9dPp9Ach28OCw1qnB6aIUwKVgHvJMBY7hiaLjnUQiIrKIcfwMQImIRK0f9WtAdzsSzl/Pp2mmr3yNYVrtJVlgWGxxPp2Ncyljs8Qi0lQYrjY+1FUfR6sGfkTmJZIKzHdI5KC8LK4k1yM3532Qgk1Wo3mqyvSEAET0AN1xpsYI6B++YnjhNbsFTQQ2i/HSCMp+Rp5OiyySFoidu1MrQphRYTpKR1vQAE9I6MQauA20RlA1L13QnMoLlg3jluKVFZvDUGoakiTATs8NaRmUgMXR+gouyJTS0X3IMJgg+2Z4JRdyOGMRQzrUpgrQpTgMuE1cgsUojjHHJL9UgEKNkgpBfExUXtdfyj+Zj12kOAtO7SEogBdvogf704nHIUXfK/jh3D8gdLhQDm2D0qEihsObOkmBMwxKoOWgiapIe6Yxx8IUPSwwF8oKMDUesRMDlpdF9OUJ914jolAeBEoPVr0sq1dkjx1skTCzVa61uAzV9Qn1Z99yJRki5lwytrGUKxEZ4FnhAz8qNcjSR5ei/P24QtuEnH5w5LTBQNcfMpgs5MYPFVmGJv9SQOj497febA/JTjY7GM5KAa18onGMYmoc+GE/hK7ChJQ2fi39zGfyCzTAgq36hDZOmwptwSQ/YvYKLnsKqjr7VbPcGo6gTJ16UIy9O/0g5gCAmtIQAsKFnsn/wzNMZXKY6OdTk9W2sXijGCzVUmpb78vYNgC7sxDQZjlzYvHlh69ZB6fSzpx/fe/Ax+Q3Gi2ksELxQ3JJJlJNIoLk0lWiR9D+jxThBIVSYCfrVabvtGbRCFL4tZrAek1BPBYGxJMi0Dp3AIDGXkEtAFa45rNRMYI0GHa2ozI1YEwOdhTvsdv2d33vz6e5xqV6mtouZKkE+aNc61roifcD/+frq2mZ2FYbUJ8U7mO+a4SHe7LQEbbiggAU+AjEhr/Y19Ol2d2bjn9358JO9R9hGzvYb7FT+/u//QS5OtDP3yxCrUYGCWm2sFH3YLGsJLtOW+AtaPVxVy0cAq3ix4aaEwdXtnee7u9zCA/Y7HQsn+cO2ROW60UhdC5IaoiHUz55yplYsFmMJ/52HD7E4Qs3KQk2OEQy5AI/t/ozMkpFvvPEDKk/j0sX+BxKFTmUhJ2QJfm9wEKfBhVcurTZHafcyijEZba+Ml7DYACgXTeSiWX7kZIvrEIsYzxJYkJ1a41Rhqpy8Hi/JIRDN4EjS56SCcaiQXMajDslo5hSIlBrISbd/GnDIXTk7eH5YPjo76Hb29yok1WZsrBFG7+3tNYpjkwlzMOxT84P8XYVC5vKFzWjMOTw4fnD/xXTcpXIe4RUx6tdgcyTSF44rRzGOXAgnphKWj5wG7QFp5iT8e2AtKvbYs5XMXMlHQk7qpOVudKYd8raxE5jPEono1SvZsxelJnW3lTMYJzQySrH51HaCFwjIakLXqroqICDqwU/wA/1wQGQArqn8evh0V1mJASJnEkR/sKzG2YR8QA1epmpz0x41SNuuTndw56MvYomkFJBz3iROKK6pl5RHUAKYs8r6w6hkhWdIYKUNwjCFpmGHJgNQnOmJhyTlJR6QGjKREY0NZ9UldaS2WTcxCBBNF5ibtaidMFQg+4++84u2i7qHVTdk14CEvSZ5wHDxGnYrCBN7hB/Fg9WVPUMTSxWMSVkP6k73IrQZh3i42JWNRgMSbrFY/OEL80TFxqwuIzMdIotAIOrshVAyUFAhNQ7TSaqqjQIKoZQAHkWBEqGZlqXW1axmohmfCwMNwqZn89c3Xsv5CTqAbeHJ54vUIAgly6XTw8oZWWQtAU/7bNTQzpX8J+FxA02w2R53xo96pRO/l43YNBSqV3t7pW484oshC4ADXhac++OJQjT/sNGD5jY2tyKxwKDd6XtqLf/jyXRvNqtNKRijQbBmAJWxMioBl4HaIO3v34zURg+g2C/lc4Vms9nptG1CuuOcg+lB4CBcsasuwlp3tlaePrxPRYmDyuH29Wtj0gD0uujdQMwdCj87enL38efu5mBlYwcDImoK3uv/xT/8rxpT38nR86svIwBokdbE5MBDlmklky/kfvjWtTc+uvvxh1+8n5iFYy7YIskRtWsTojANFM6lbsLuhyMqLBgTNCflryZ5yp1nj289eXhj+yWwPBJP9SkFToQXerdqrAM+rGfMIExjagN8hjBYTPoHPOgfiAQq3ffGzc7sj3/0O6Xyi5//+tNSG89u2y4YDWn6hlEQ8VvXXrp14foUgW7UBel1hv1/+5f/40m7wr5DI4YHWhdGQtYhU+XSdFSqVWCvAO24evbv/uLP/vM/+HuJSFz36j/IjCcYFbqkiwTQsCJCKrHf4J6JgoouL0WEGw2/tErMzjW/ubL9JLP9vLan3QjjFDUgH8n56AnNg2QZAQKEkmxd3vztJ/c4N6b8KLWr8umw25mFQiMoFY1XBdMFBoAjtSQdy7ooCogxiW03kJ65x72uC00cRRSur6MM7aYBScqfTC3WTsZt8ipzSbt89lkyWDI+ZoTtZfSVt9/Bh4ckQ1r1uZzYccRfeJTKzScdXMySDdWKk6pgdqJTjwuddi2RiXhZNdKlzkapVK1fbw+GDCYWpfIT9D7tNio022j1Om1CBxg+vAajjSuVIBI2TL48jg1JDJXNZdfXVlaK6WjA9+DBo7uf3/d7fZfysdWUL5cKJ/2euPzTZLWEb3kogYY9BKvQnBhsSigEyRAymvvJpw+VqmhxoA8lh8L+3CIaDowq7rYSokEA3v7JC2rhBkhwTQFC8VtqPVIMmgNMl5uAHvYRnM0G5PjEUSjHEchC4CmXNanF7kAinuz3x+xXOKwgtxrmHoCN5EAvRCRQzgWrHBJUCb/BC+YQCLaHbUru4EBDm6y6MJT/hCHGCMAffddLLEEcTuxSSwxF6R4dcohXch/7HtgMm3CspMbpDCll0oJhs2EE92CQ4op6Ujya9+U/LoipW5OCorrld0ke9a3W9R/XuWLP6Kqekj7GqEhAyQ32Utv2n759eU3P8AjUq0e4qqkuW5eVQM/QmESCRKx6pllu4QnmtIwVQ73RmNHKsVBoFmIu7FjnTtgPM+VODMdkMxyRHQ97IV0gyxTgJJJgOvRAo2C1BqZ3G4Zmdw7w5RQ0GF4SGvN8PpLOx/OFBNlpe2ftZD7pjhcqlf3uYOAKcG47JAPfsFPF+lEs+OeDw3a9E4xQGgR3iHLz/i+KsUzSnaExqlb4PKmh27W2ujKan8ac0Ddf+yqWNuyxnAQN/Xjkjwni7AwR3VgAAACTx5ZhcNLn5aCWA7Th6Y2f9cLriwgapsdjmB2Y0FJiS4U2bg0Yz59HBZ7N2uVat1U7OXn25NnB6ve/tXl1a1jvlA6P37/326Fn1KQSR7tNuP+D3XuXVraKxYuI6VQiGxpPMtevQBWGbKyK+hdMpULCG93Z9Oof/P7fff2VGz/9yV/eOb7/RsSJkAaB+GqEMvYACbLz8Qcp3MTJt/CBFaRClrvX6f3Zz//0r90/49D0iMAoNDJ0K4LrWAv1AaNGydPxFC8pMLoOx+H8BR6qzSTEgVntizu7rxReupC8+I2dyc/vPGhQuwgHUT0IkwevkQfKHOdgx4XV8Y1VZj7TRcpJfuWVN/7itz9TlTQugzL8zGNCDd2oP4K3RI9mwnnWfPH8+MVPf/Wz3/v+74dkqNJAz2/webBkw0XrjQbqiZRqVOdJm6rglIRFWsnKsFxlHpq7OFH8h3/8+5+9uPOTX78nk4EOJWQ7ToUjP3rj6+/f/Wwy7yVSkU8+e9wk6SZixuOjtAUVbLNyvybJuXnuikqENhIrEy/liIGvZCQjl3rmCwajHNapPI42VVKS8B4n8QXbjB987fsXDjaeHDxojNuVbrPX73L0Hk8lya9Avb3QNBREaXHA0t6w2SHzfyIDSPGa6U0nDvDSApBafjAgfHZjNd1odqk6mMZxE69SuiHbAEXD58PAIhuk0GWTQs8ESCEDph00oHa/UiZaVrqbeDgOC15vNpNEzuBRCYlQHnGdmpW4bE4nn33x6OjkDNnz+sX8zWIiHp6Gg660Q6objI9Ux3XIqGaB4Sz2DMehYb/vwuQfSPVH3uGU7Z630h6f1oedHqVTMFsHUhAr2fWjQciQvv1uf7fOVhPsQMqTPpOMLuJB8QSnyN5mo42hxh3grGPQqldUuhAthcNiKQZT4Evi7katMj5jt6zTWlEKayE3njAHBvlVHOgcTjHYpgB/aeNTT6c1QAkSf9IGwVBLTxmrFW5CCoaBphKzkggeGJ+4r1b6HDvF4lHY4W78LwTWjpQnsNrAmu1unRWLZIVuNAieLLFZjYMjYJV4M8PVZ1MkQH0RuPCa7oTbJmGBC01zn4agNqRMcNHOAOxh7uZl7astJqP7pHwbV9Vn0ZLaFY3ZsYK1tOTD9iS/iL+YKDrvW72BHWiEkDB6AloHDABPHHx1u1gRqwwklSCdeIiUDB5PbDiYkmKzPwSxEK20DcuibbpV20YWmixQ54rgpoHp/yUgNMKZq1FtTbpVBZq4ulNvb2v1ysXV9Xr+5rPTRsbjPTjYdXfPQnNnvbDZPT7KhuejcW1MjQEKWybTi2a5124PFy1cznyLMW4ULncEk+RWJrOzk4sFKWiCvzIpVaddd6Q2iJb6ATuMFWQ0EkQQiwLw+KyBaxI2RL3bZQGQm+HzoBQLjPLDV/l7ECGrME4wCFZjrNcEJj932z3qum2tb7QGsdJh6fDFk8/jznq2SHwPhSxrzX3qdVOuqj4ufXTyyWn19I/z2+wxqPFBLVYP6kskqlVRmQFJa7pbQg5hw1LiB9EdNtdeyn34+Xv3n3++mVl96+V3cskVcqPi0cktTAZTONlPqCwKoSGwwUc2yViaMEqOg8NmrXpWbkgJ0HUdRlkH6oi8XexqDTKqgcBPSEhgJEc/Zic9zN8cdO6X9nL5l9eL29/1pA4btS6b7D5VxMl3g6eFNs8xstdSNF3WapplHgInULq4tllMZ1+UyY8tA6uwn3MA+5VOQXrQxRZAcJUL7IwMDd4P736xtnbxnVdfwT2F0XAnzBjWhhjFtQH8oaoi/ojTRWvv+d2r27dDuS0olAYYt7BReAboxPZf2rhy8Y9Wf/zLdx8enaA7olbFI+61i9F3sq/+7Je/enpYbfQoFB4kPRDdBNxUi5uTezmC3U4n1oSRq5aTACIS9c1wEtUZFZsKgCyEAUmwpXE8SySs8QqNglojzAu7+ctXLt2+cg3VqttrVGuHZ5Xyq7e/uV9t4h+ZjUS6tRop4SS1gpw8ex49fHJWezIaoOyj2qiYCmX3cmR6CMeCySjHnNg4KNKGUq0SXVhMSP3gDaDjUgm+6muxVwgFIhMfuena1SYmlxbJF3TID5Dns1Q6RZ4ihVwBfK87QdaJSBgfm2q1VKqVgwHf5fXw2zcSRbc3TNbXbAxdO0xEQIAqaOuh9Lo/sekLJt0uCuUNJ+2TUflhu1ZLzPw9cu13BziaBtOd7t5JnzJWo0UyHk4UUhi2Q66RE8LCj+vziDLCHHtgdQcrcKfEsMZuh+gH/LyB22g2IpF+bzROpbehAZ8zP3p+iOs/hi2izgK+KquNjQIaFge1UydQbzQceypeankxSRpBX+Yd/OMYGc4IuwaBjaiNMYo9anX4B0aBcBIO9oElZFfGs0tU5H3JG5ZcAqQCuWBhQilO0sAqfUC6WXd6F9rZU0wOZBEF0BqNC9rCX/6J+jDDSoTpXhsG16EyWKkoQ1THj3pGSK+hoWMsb1QLevGU8XxukU1GHIxb+ZU2pb3bHcZt+Y0rNGxj4BtP84i1wWV+hA8CSIZ7zgZ5WMybcat32DMuZuh0VFRw1cpdd6lL4/h6OZEIcSLS8IiDpI4dMtcogRZtlMY+1Ir2CvrJZgA4dEWAlWXgk/c+qJwcs+klKUIsnox71/vzMBgT97jS7uAI3+IZSc1XUiu5lWQSl+TWpOqfdCmK4Yqna7WzUZBAMXaYI45/MOaSLmXWnyVvZjGWt9qdYTvAdXza2tVF84C88lQvQO0AdgYFJsdrySYYMuOy73bD+SoGlQrfH41EUfbBX4yObJmx5rMJXa4v0LenRF7MH3tOrd5eKVBLsvvSq1cvX9mhznZ/UFdYAGwDa3Cwzw46QhUo1/TapQvxeLZ8eoJ+gaUYceXx1/PpPOsvJwVlTRPyCBXQM1zDTz759Yef/pw8xxyMjOeDu6XKs189ycXzV7euXSxepkJTLBglrbDDoblDrVpJf3RdWS7kcU5C2il1dfguD2jtNEQaoAo6AgOQ/B4RnUVsPsye8DAtI1DByY2+YXb67h0fVA5KrbXFgMP4wHdvfwWDElUh0AQoNEjZvwGp1afuhD8uR2jZqWU+oR9wPhwM7Fy6uFc+Q2PQpFgFtAH7I9zmPmiPqfJJOpAPA6TIO+D/qy/eW72UXo3nR9VRMumrDWvjdvOoso9jKilVapVd3lve3rNeNd1rpzPQJCvDzlUqG90YikvUcMYei2b/4Hd+lPj1h+RspwwLgdPlTjedTa6urz9//6nOPsz0K06Ovxl04ZptEyi8kX3w9KzcbDAwHeJiplhMk0EObJeMQPsX1oveMKRymhLCsIBXORs3Uw7tNE2xFjyL3SISTkfXoxeK13ye6PWNKJZ9MuSQcQEHSs52m/XBj//iN5XGCeYgzhOIBeuPF6PuKO7znuFKQCHTkHdc69PS5ZsvbezsZCkNjP98OIrHDXZbtHFvjJmOwio45RrXBpWzxriPbUXuOlpN5StOSm9FjHHyR1ke8peMhtV2rVyqU6/e8buuXoje2IquRpPBbIFoTAU0oYlHb4Q33/ZGc0yRHYlWlcLrs0V886VobbdXP8sP663SGQETIW9vlg+2qcHZn69uOCEQxRVIksVbCc5cp+nGeNGtNdzUD2MT6yQcPzvZCIe/CzL/NWsoE/6EGD3wxclNRbWaZY7evViqOQwQ88JWzTk70VtSX1hs2LCCk9nrkH+LLToS3K5OSVParHd0xg9DF7cEhc95q3BEPADJLTLgJ1pDq2NPQrGZJXvQ5eXLuhFbgCOes1YRpUooiEDtP3FdPrDkPAOk+WObFON7oB89Gacw/g7CgGOwDp443wGIUOiR8yg1Qut8XT4gDs8BlO6zGahpYwr6wz/rX8zWvkKsfGKeYuv6nQd5EuMf+oX2MnabPvJpuW+wfnnGBqNx6J9287oVRDGjNBq+9MRIOCnCwOTFlrs9CPixvapmd9AJhpkPDFCLJlseoJEEhIkwmyXKYI+QjKMD6wvrCqneJ9NGn+RQQHP2aHd/tigu/PNmp40bA/kCG5NRNuQ9qj2KBcOpGEf7FL3OOJ4EVUnRevYO6o8Pjgd+6lW5nbnb8XY5iL95+6qTvTSqjxIOmbkxDXXqtdGQcn7HvcV0IElniyOOYxMFSIIsL94FLFRdHXcTk5KIRZ0oCYdIcxuidBGh+QTNuyIeMuhgeeCFWxvvQipwUA1gz510+6NLl3eyvdTBwYtBe9DutonTBNpMluwuaLVsFpV1lnmK9XIOQHZg+JT/pF757NmTP/zh90mhhWUNaYG5CrMTi8cIG+PaJ8++GEBzgFkglH0fjn1Alpru2a/v/SYSjKdCyUyikClkK0Py3tAjlmkQAaYvLYgkjkRRo8iLHoQJLIxHNift3hT9dHln/f6LQ2GIsFSAsQWE1FlMMAEx4WcDUap28MEe9ZoFVxEhg/ZEha1oKOyK54V0EAnWBZK2DXoAE4/FYDACWXJct7O+/Wv/p8TxsQoMX1QKXIR5WhTrEWbKi25d+IMxajSfTq/xJz/+0zeu3BoduH74e68/Pfzsi6ePz+qQ/KLT7/75L3/hJALBXLjc6D8PVy9sIdyUoQi2QIN61/aDwkUDokZCJFVwB775xluv7Fz96W9+QzGPs1Ij5ETTSQd/FjepsJkqmwxkJFOej2MhV8rxT3rjly+sjsfZx7t7J72hD3PzcJpw4pjT0f5AcxRbjD77Jy8wryUS8YvrF5MhR2Y5+BbmCPln45hNMVEiNJEKWDbb5NHmBBRhiZBj74VdHoMH5+y/+vhRo3aI2xKH08R6c/zGImJcQX7iskRI43jkciLeQNxPDbjH9SpntmwJssnoSqLo8RIVEcGrEPXCzksxpNR6rS6eVECV/Sv8yknwY5gYWzgIQ0sQdewhHLc76IygeLQAxHbWia6sbGVWr4/modHk0OXqBtMbwfVX3U4ebDTkME8V0QyhN2FvbMXd6bsnrVimgFvOqFHPhmKZ4IzDk1RIGgd7lhRJm9wBLF7xSCCVCPZQGQby0Je8ZA+DnWGmGu0cgyAV2JIQV4BOB3Hhpdoo9UIxFBoX2buppYyhCc8ChCPYw9kASIT5D4yieAhSV/SNl9V8ioaK00e/TTVdjuUNvWTFlqnSeBMsCS4LGvLSYjOZc0xEEUCE6wnpqeCgOBhEpyvLl8hDRMQ364+WaGF5N9cxWVlTMECphzRhZnZ+B7/Ui0Qq3oCoVhjWAmGGfM6ATBZpAsxHYxY10LDkNxJPVKKx2M00pDuWgzJyEstmOKZ1GH8Qm9CA7X6tLj5PxviX87aR6eNyIvxdNsmz1pMUSAmfZYfCHhg6tgjOg7mRo2Iq6ZEbg07R/UmNBzHgXE4eQapoYT3ifq5x0MSq4HyzhIhBmz4FTdqCGkgRVWsPGDiOKwSfDgYNMpZjKUaBGmG4oMIGzs0BFGQIHhSBbaBp+11jMrkHJt3F0aPTnh9NjuI/eLaww5xevnpZkdERTpZGgbAr5Y8WR+kHd571G1xdxuNJCH0JRYAj8jAYAFDTFNh8JFOra+syJeJ5GnRUpD7gjwaTUusWcycWmzQa+Jk5TrhWrnBRHAdLvRDB9d67v6bQdyIbz+fy2UwGq2mfxLa9bjQY7/WbvpnjIYyUOI0wrpJ18txSKxpD59Q7KW6vPGsenLTLpJKPBmE+yDvs9FJRwKPT42Mq8+Gyrq2l4LhEGlYU7dI9QFUaVSvd8uLskeux0Ncz9eUSBVKEEm+Em8dkyKF5mNoaQX8L+Y29ApUedoSuzGpyCIyG9vL1recHp91BD/6BMUcdaO/MO+0J9MCKfL9n7dpGYc0bpfCFTJ9ATcBkENiJWS05igC4MOkWyGepaP5eF15D4jh+iAej3fFgibi8GxUxgPP/RIrw6yXWCmPxbocI3M1W7/MHj2Jjsrq+5Zt5Xuw1fbFUf9JFRu7W64vWNFDyhZlNts8oMEeh7Yq6RX9U3Rqjsf/iVx/EA6Fvff0tkBg1L5dK/72/87cPyIJ2uBej8lw4Eg4G5a5i3S9tVHhqRiK+1mBS6Q95ispcNy5trDZD5dOaN9BLplfRc0SWaNa+cKVd+as7Hx8265iA4nc/fePiNSRWgKqUUr1lnZMQFyUibOXtjFMnCi4IK00cnIavel0nRyeg5vVXL5+enML+qCbswpKO+jtd9PqjXDb2vdtXMhln6Ik1XWEKxnYpLNJvs1AD3/RoQqRaLTgirY67P5ptpzcdV/+42WTltZIAgm7nWFGQTPIGhn7ZTiQdjkxGKrYK64XNzPBSU1WNxMaqJ307kLjYf/5jEjYHN78/96+ds0AphDA7lspMbeGMJ5yIBjLjU6+vW0+g8gR8nGOQF6JI8U5uQeFhj6NMFPNFaMphcoT0ziF3B3IlnxK1KKPwDCCE/xPAckcSETR3mM2QIj6EM1B7h/y+rgVegsRpr1wsxPNR6nDRWJ+keDMd/gdRO1RklGOTPqmAYSrsiSDPk4MyiCWuJo0bEKs0mJDLOPIS/fgmfcpQmCrDggPkIbqQIihuy7k9CyQqMOWEx5ZcTIsppijGT/8o19gV2VZ5fZl0fKVQRBVQvXi/H+sWGSPY1JLGHNcavBwfPXroBIOdwThEHBlNWz86fzatGVAwAL7ROWPg4BEjhg71wZ/lf0YuyzfhlH4BlbhVOAYL4iLoZrtp/Y4iRFP8IIjbLOyqbjWk1BOG+lKPZXyyd35GVYRRQ0hAiDEivkyeAUlrgE0ZoSDiToITQ5UNBN0YAxdN0D1kiDsK5/7cz/RAZLFPs5NAngyHBpdhCWQEgT3gwwu3GMuJP9D3k9uZNMXe4QwfB9oj1HYcIyDARWWxPiJljpdvkkUigFvBpTIv4ibnWjy9u/e1mxfCydgcT0WnBmNMuqujxXNSAypxDaJcg2fqNmc+frmiQhN+9riz2XxhZTWRShJtQtpeijwl49EYCp+bWoRyn0Wj9LS949EwirNnIs5ZA1G+eKaNVO3PUyuf/Kc//+leq3T92tbli1uXNsjwu/36xSvXdy7/jz/7yekAJtzChOrLBtj59EddNE582imqieE+5Ju1Wid19yGudb75KMjWe0Z1kHQsseqKkUq3j1RluXnJRgNdLNNdcQm6BeTwdZoSRorImcjv/fD3Jn1ZSFEjOeB69myvWSL9/zSRCtfJbk8pK68PV81ULIb1OuINfvvtl37ywcfsZ1DFDTaIesAi1g+aMHd4fLNfveDLtbqMXNsCYZbQxlg1iCD44k4qn2lcFmUXkaJLaNKYgH6KnBw1y7Romgq0qaWwJTCuojAOQ0EQWTqQwn81DOqUjfqyCU1HSdwg4SYySXmkCYKmPDWbUmuxXu+Oeq1W7TSbyc45+8Z8xYpgV2nX7j559PLOBQzfrKKISI6w7sub6zubmwTBDqadbDa2f9oSDKXWIqxAXVc0E+qMehzBA4v9emcQSoRnkTduvtaq7ccjuFSyQ1Oa2uPS4U8/eLfSbaF3k2mC84mPPv0tngevv/w6LjysL5sudyBIkCIsDskb9EahAiAqwmL+7BG8wVKj9Hj/EHUjSUked77V7LYqTdKXIiJ4jNzTv3Ml/bsb7CdPx+5IcxroYHPvN/t+V19hkrF2Pz5LkOSN42I/pWCelJrxheus02RPDAxZPA5OQ/4QHslSJ+Ui4w8RTOHz9SkPsJTtWgtOP3wf3T38g9+dwk9hhE7yaigVdYfWEd5aZbuHtREMuZknACfOFqHkzBXxhbDiLnoRH453sSjlnlDtiYrCT4nq7C488mb49hEAjNbrJXfv2M+Whcp5EY5SSMwQ0Ckq2ItLvM/fw5MatQvrIhk9sTe4F6QEA7agQCaWyq6nGQ05IzRy7QA4mVNMmVQUDpgsVJCUc91Wd2Nrg3IXHJMDaGSA9Ff83KWli0NhLGImOG7xE/MRbxBnQMfU2Z60CD6YSYAP/ARz4CY2wsYW5VLF9hegsLFDlxpOvfmNlds3XknHCcyGNt1sdLih3WyHSEtA0IE/l4wnE6nUW2++/ouf/tzr7/e7fYVkYbcVkuNcJFM/M5KeKeguO/QlYxF5Owlzl//EupmrBsRMjEL0GFe4xjtX2JNoZYxlC6mFxIgUPoi/07r0LrVnSGgqGG9814T1rkeAi35BeJ5TqghXL/tK7+dftNHGrUIii80Nt9hQCI7ABGHZRQRJUgKSZhbbhrqQlYhNNxqUJRnGk84uiX5nkQxH+X3/jFDCsT869s2d+SwecHBV5VjTgMIJoRAabjcZenzhkHgG4LON+/5h5f/63/3rzYvrhSLuk6GYgzhJkTfMtWgAHhs6YIG9ASWxGOa5HJLEmHdeLFIQdBV/bqLSw9jSnVG5WaFg82pxBa6YjsfxfCC4jBXiBCQUDLCE2FVBKYQbShbr1h+4k9nVb7987eGnd3729N2fq9JI/Nb1y//Z3/mdN155szaoJkKxw8rpYjAvTzvNViUSjiFRGASB7ZvFtW6v4494Bv1KKNypk0arzpkBFY8KPVs+jiHgkHIKU5FgOWDL6CLww5ttRgDBlpkUWURtdptDSlmHdDAc8EW9+bdWtavwza5cudJs1e4/vU8mzsNKxY/9GR19Ov/Gm68cVOt39/bcqFVmwxaIGJxpOwAKW3Zv3CYqLOQOaUQoSnKQMChylwiGJ2y3KM2JA3s4Hm4YquSOi0zAFWJU2He4i9uXmLJEIzWudkwgMJvzJs9xcUqYVmhy5upP/K5ojAq+OprlHjxw2GiCXRAPFzgOf/eTzzYL2dXVAqanRCwDXjx8/CSe9vTJfz8Y4TkDmAAaOiM0Q20S2EzMiRYT6aMT1esDC7Tbns3j+MkHyUVIYD3alNJxd9xUGWxth6+trr3umofRTwPBaLNb//G7P6u0OjhP4FcJt+aIdkCh9uO96zvXcCfC7IQOfFCq+oP5LGdmOA1hDhMRMl1ODZjnot2u3XlwrzkBlwg0IMldcr148dH8/uHhKZKO8yA2yKPPXjT3+2GOhGe+cB9r9zxNyAdpZYPzJIX3fN6jTuTuMOpObWfxiJuOwiQAJfkzCwW/Yv2mVIBAofARtAW5UeWUTYDisRiKKBdaZyhsrr2Trrd/1M2sdWbeSTh3EZVVGKCtqLifSF7P6CUK4o3jFgoSbb46PxsHe4dY8GeeiY9MNNqqs/xmJkOx5hhq6iY1E4mTMNkM2QCPKPg4DRH8plS/cHeUFHR0Ggf/qZHmGuDsK2978Vt2WujE1G+he0kUpVPVZlhjgcviSQIGTFgrcI3k8APOunPUnpwrXEb7NODO+MnBgAHDntKuFGEjsucN3scqI390vMDU6IKWeGEIga2J/aoBMVv+yA6r71o9/HkZyaw9DcRyV1++IBuTuKsHHxlsBCT5IKwNbGNfggLM5oYNV4CaZ5lCv38EG0GZjcTwv/VxLx6s6G1cNKkGdpOOkDzCMEy2RmafE1WIvtjcitNrn2DMWAvC7Pifv2Jy4u+8tFbszG12tMwzMDkNUNPQm5ieraoEoi7xkM3R5sdXQCZc1WzVoMCtZs9HoRbESQGYOtJNsi7qdymRGguYpZ0BQhdrEP7aQiJaE5BZM0pQaJuIyztFkbB3dnp1rnmn6G/enifYxa7pCYzcZICax0NoUuQQJ1ZSzaJXOcH0ZIrLo5+4FCoMKUaRQLqpd1iZlsqHPv/J3D934uTBjRweIl2RTBbrQc9iagziHGQ2Zz4visW1VCqNmp+MxNrdLv7L6XQKXxqskcwavo8DH2d2sViEYq8IM7CEhCSsK8UR5WIE31DI5uzFi6NX3/rhj77x1s8++Pje/XsEYv7q/Q/e++RjkANELBZXU8VMHNTwRzrtNpxRUbV04J7n8pnTsy5J4nD8VX4rSqJyQIZDnbfjpcKYV3XPcfNhGtAcQED3FfsHGrZsEgvMyvgbB5ohnhOfgZFj8ccDBYoZ0xmZQRy341AN5LW121tvn7UqtcHZh3c++vTh03w+c+vKpf3Dk3gwRvL3Sq0FK0HkQMxIcq28x9Xq9BNONhGiW2NhwHOJeaiyaCTEnwkpQAHpA2ABNmie4yLhRLdeeumTvTscAwiLDL00cjF53SLUMLTkmy5yRZ90iTHgMvDF4UHvtEVVxLM2eYDZAbBVFrGhs6AIsqo4ED/kvHZUH/pbyVji5KyaSKab/Q62jVrjTIOBL7EGUonhQcN/9ud/WS01rlzevHF19cHTvQn1voj6Hw9J3BEJhoa9HmkT2MLoVEiGIXfIO4glIqFFAh4OUlP69e6ze0fNKnsV1Da85Rk38w6Foyg3TIY62P3R4LD09NO9Z1hc8rHMV964TcJMlcJbsh4SR7tH9x89I/IdizxGbQ6HGCA+PttXLx2clPA+o2/s3zWySoz76SBnC1rJCicsLheHv9LR8DadzsKdXn5OHcemLxNxpxKTDkYm5KYWwugTZzD8aTGUUG1NQg6eiZFdI8aavlwzOKxyTbiPT09Wuw/xevLEXiERDjYJOCO3aBm1UMtPfNR6wSNES+HkLJDBEoM2Hghg5HLVSEs0d0fxzQf3RBnkNQWpWasgM6BYZHPQn9ZIaTEPctBM9Se429zV6/VJSYSBeY4MQDSYlQXpA5PGhMBSxKMRYKfQJBc5gIlI4ynIniM2Iglg7kQ1elNpdpsJcm31O2NOGsR+lBRHu0b8mVg5mCgzgd/D9WCIYK18hsRR4V8Sh5rkEu8YPPJmiZG6InuaTP6INLCO77KquDc3L1699eZs3mK7ojq2I46XKp/fe8Sk06nUysqqPxioVVpPnz0djYbf//63/Y7vZz//5bUbV+q1BtF9qWQSwZjJp0MRCB7XM9mAsJwzUsaPVAS9GLSIgdFqOtA1M2c8Rh4sgZGLrYwpRmbrsVkwYrEECUgeE1dmtposz2AVNJLjbdmW+DVN6pwE0HDn8h5u138yLPCLAMjjkhjnmLBsSo0hUMQo6AFlELDBOvQjHofWADfwyX7gNuoxh5Qsg33ZiAMuVpLydeF0KQ3fTUbDI1/YExuH1vsObssd3KI5TVD3rA/LzkndhDWVaRFq6atXNCpBjgLQmiEyfDStNtuD7tG8Y0oQy8X0GJwZxRiG4a/mwLhz+dzK2iq/QjIcbF+4WDw+PKAZfJNZCir5wfWf7z8tZlcAJgNsNRsQBlFXcB6UKO9wxJCYKhColqs//8tfRf/ge+l8ptAq9pqRdDw06PUrtXq10aw8OY6Wm+lU6OLGBSppsAdED2ELwSAcv5OMZAajDmbS6SRBmAtn0Wh8svyQriAYxKEbi7Ayfij5uUBpqMpfLRCfmTbrpoVHOOkIEgGhfaKmCq4DLqQESib4BUrNFxn8M6KBYaDw+Gi33mtVu6erK8lcIHhj9cY73/3a/ftPK816uVk9rR/VujVVTmVj2x91Bt21/GqXsAxfRNhiPrKiHHUt92EJWJ1IcbasUS7xiyuZeGp7ff3R3nPQiwELjwyLoCnh9zlW2nT0lMbMTSa/VDXlw48/cQau9e2V9rDcdPXwUuYWtYIr5mRG8m2ytRM5VGo2x8+7iLpZHxMqjiS4UyKZgSEDlS4MMUDX1Ip5/4PnHKrs7tbu332CGxOZPLCFEwXpjfradTdyyh8LKkuJvMsJn++5I6jwoC2uIlgUydjqeX56ooJ2Uh3lNM0S4BLLmS0JdoKhmFelfufF9QvRZg8vgqdHe9VO5Xe//j2qQUg8et39Wf+Te19Ueu3iRpLslToxhhXhWDdnb4uHe8BNrmVcehbztuDrJbkzKx2Yu9LSXdl1SEXraOPhCg0X6cXQTabo8KTrrgdB4gX7RnRoMQeAHwgFZVgfj8mMAChADxzkOK8DghCtegU3WImwvztcjM8OfKmhy1mZL1Jc08tWx9ZLn8Q/tFCMhxfn7GRcDXJqL77s82Q4VPF7CMSlXg4RW+yt8NVlKDB3hEQ0uFjJuvuHNWwnmCj9Ybi7ayoj7QKVqFqpQVZoXdTfnA9I16dQDPiEXESHRJuB/1QsJvxL7gwDZgSEZITgOGNBQQAf0SDK1ERiNJVkQPIIF7W/kcxmskt6551xI2Q4WwaFcJIAnpoSvF3bHb3gNkIZNot6FkFgCAufEZUDEclwrgFS0jnWKD7s6aN0caXXHf7bf/vTf/xf/oN6rQr4k+nY/+n/8H988423W/XGt7/5zd/9ve/9n//3/+Q73/22az7+b/6b/80H73/40QcflUuVZI69gkaHjkZEIF5JDBwqJQ8VvFuiTqDmGusBwWBuMMq2gYqraUMCsoqyGLhuNrYt5Z7Rgir8d96EPDP1sF5aWGlrzNHexf35BiVojYGGiJkXZ3yiSWDKo5JH9PHlbzY8NSjFf6mIIm2koqK/LPmCmqUjzUPDUJPczDkqobYYBV1oNHDs/mjuphI028Fyc9gl7UOntdGKbTTZPDqLCH7PAcVqR50wYX+FazvuX/yEZ7yBcDYW7Tdw9xlqvws7ZeG1etgxcA7AK2WgKZ6Dg74FCaZi4NT2EhU+kyuAVuy5up3e4cHR/sF+OpOSfzEucJFoH4ef8WjnwuV+j6qB0iJb7WYykQYWECvVLNjqy/iFa5OsQdPj/dNhi1RW9DGv1xvF7Pbm5kqqlvA+OcbdEyHTbgx2F4ePV3fXyOsAYGVnQ/+besMeQmyk0rg8/XGIA76AS2eUydS86ApW2w3LhS4ZZQt4Dkn6ZVZs8cSCbLUAgw7exEINL/iwXDyvn8OupQQXxdDrYhJ2R9ZSK/f2Wr/69PGPvv2111962dNElwvdvHQDUHIP9FuqHv/2i98+rhwN2n0SDLx67dagMzkptVO5hNwe+6NUGqYk3AQppM0pDQz2WUYhT3kGCEbwK9XOnzx/LkasJYByl+xYM+C/JarxRa1oIqZwAUV2+aEgBgSfOxgOxH2uGkZE8R6QkF0Q1DmZZZLJbn8YDnpx76lX2CIgLEmcjNYwgWPiaCMLPJghPXLuD0+f7e+O+xiFwijCL541sA6Du6JuHV+5jp5WsJWzQ43EOS4l0ZQ7HA5c/dpVxxPFgRH/NVTaZm9MkJ2yCMtmpbAghkH2MsyEiVSCiSNyMT+wFaN0PPsV6ai1wd6LvWsXVGCLM+AHR8/IzRdNOg0S4wM0NFAWHMgRzqXMD35C0jhPx0OXSOx5woNdBnwDtx2K9EA/E9XzGUpCQVVUb8awQpXaKNkr2EJifQHyWgqmxA5Q2zj4CQoA16cowxPKwbGVgdEZ2QJ/eejjUzDxjds136QUzF/xxG+KWJZLojUSJmntuGLLpNYJCMV2pabY0IB1BFK4ciEntvD1JjWOsRGfaB0jhDDDMd/iuDuSpdQCBko0cemlTAbKhmW7d3cPyPJNAWE/lo8Ztku/BABrRuhGMkqOUpK8cQJH3RmUJwq+h524ZjDhTJ5wRZy0vAQFw/Mg5G4TBwQs/bLx0y8MW/Y3FllLNaf6LkY/UJYucCyEqKF3abc6edWkIUrAxTtuvdoFQtgcP7LJhWDFRdAEOCpwddqdZGbzyZN7qagPfxc8m6LR5LWb17e3t9BIh9NBKBD93/7v/i84FZLW+tmTp7VG762vvL25uYGnS7PeziTS6WRyb//g/v17+FHncjmWCabIKiMImSOw0CEGcwQ6gF6wRw82maYv/MfyMy0oBjZr68KKMkKtEBeljPOEJIIcwLlrqb3z8fyFQiTlRS95jMlAA6eHrPhLv+rFrkjwYLCWvsOd0qYFCGhd4kjCiVGcixl7QE8Sky4uwDCMYIVDyzHqbngruX86DQWHIo2xU43dnalvspVJlXapkT2LuGpT6hZ63OWWKzjoO+Fgt9XAS7jvkIzbm3AITR+7+t5RrxMc9EiXxfxQo7RJoXkYgw70NSKtv724zIsvXwpITIiuIkkp8PEf8R8YAMB0Q7ff9pIGX6m1OMmPtHs9DIsgAa1C1xcvXMQ1iWL3pJnCs498kzh0gjTYDpnntD+8/+n9r37rtqoyTUa1WmXYa4UjwXQ6Mq+3ZVgjFdJgsH/0vHbhMllsoulo11356a//bbXXqbKFVAFHVoRTIc6DQWjOLF2ZbAyrLjolJwYUzOAARTNkNYGjYKoJ8UkD8HAQj9cU2YKEFPxCj6Az19nkz4l3NWhAt3KS4TMEhZdFJtGZDZ7tVYvJPM6OQI4HTaB6w04it5O7tHHl0xf3273axXT2xz//89N6pdpsoc4Rte+4Iy9dvn7j8s2YkwL1wFPbJiJbNToJAI2Tz/P1lbVwINiVa6yWRSjNeoBtWpblZPiFrnWRd3vjL3MQKmJmqZZ7frKAiKjtsAzzKmqmN7C9sY5pTFhJrC445yfuAc0Stq4lxdjx+PDF1tq6a4S5wVM/KP/Vz+47vhCF3CFvsUnryggMbgIAKecw6VWHDVdT4MW47/M1dyfvZT/OULU9Fo3iJ5CPe8feJHUWMKuRn0qseTYe9DPRRCGZ0+cZHMbV6NY6pGPojYe9Eal1as0Gx38jxGf/5Iu9p1O8oHvUQIYCdNwgAuVJJDye8tFI96zBiQu5Litjf202SwUXWI1JbypKZg/NfoexiSURNsIqzwl99HLgvAiOKVRJqJrBVwBlpw07ZeUBI+fyaFuuMahgOcZlpQMCoL2ASiZhX7DbnSYh8mbPm6cfLdH//4v1sZetk5pkN+OjFNmohKgVd0E9TyQSWSfYH7prKPVdOT3jjTaEwnrAhENdTl+Rw0Q98rC0THGp6TQaT/fI9tYbk6tOXIYMfj7s6STK8GXz8UQyDiogFvt9zJkL8ke3Oz0eJVKNQyzEDG4ClK2nYjAhDtXTg+PDmo8wM0DEER0vJOxkglGFowk8OdjtE6RDDh/0PowwsXgCb5QeNYhxv8JXjfPhAL4eY/YyzBB9nCwInGsiIOF/tAXPQ/NjV01mjfF2Ax2BXGbtDjk3/K+8mceEoLza40E6k4Y/lI9PYztbaCS5XJZhw1CQVOgHjx7tJZKhb3zrb332+V3MQep6hGd7kAMrPIAhnWw+LQGA7IJHSr8Sc4IWQBejbSBkRCK+J6qRos2EuQ1pJbZLGyJkpqMX5MFNfBceYEUR2ekhkZndw2pIqeILIoPGxePVCP8vO2VV+FGdcIXr+lWKg6CsNozYdQ29T1TFfdIBaVIbKyagrq1/GmCb44kl4ycnC06lkK/8QEvzztTTiKWoXTJte2Z936xNIcVao7FVKMY2tpM7RU5h3cNxsDlQsSLZnFCdFzinK12a+gFQ9IwBAhcKN4aL5TjoWKO1PzYjBVwwkmQ6FY6GlSEZpFQyr2nICRJApgMsZjRflM5K2XwGn+Vup4tkPj48zuaziXi0UqljNgDrYslYcBxot7vgCs4LMm65xt3RBO2kEI/2M5zy4BsbHBGX6PJEI1THRjmdELDVbpVGg6OFN3lwXD5s7h1Vhz0lN7DtiqgXXRDtiLAvxK6nc9bdyWxGpvPGuA6L0MIyHRBBUNYyMD324vwBNU32IaHGQewEtv3jd5aJVLkoLuKIPCF4sKOahxzcMlSBCdJ8cHIwLniuxa/AmCwmma7JeMYI0Mf8N7M7/s2b3UH5zqM/63EZi0W9h1bpnXXx2H7w7Nm3v/bNtcK60vebJiHhq0Nq3hkt23h3Np5NxZKdesnGL4TRdO2LkEVoJZuP1k8TM6yy1QIYMDuqy2Yj/u99+/XavzksUfvV+B93YRq+uFasDQc+NokqJyIvZDtcp29c8l0+hxgAEG7eaDfa9cYn73+wv3vsdUWU2wTpw+g0Qv0VVA2Ygpidt4v60LZHsxfP9vb3+FlbGUiMjuAlKJDsICP4qBGg6ARjkXA2l2rXunWnDzIjscjNALzJ00+aoFEXRdxbY4cS8pdaNQiUlAr4yGLtY1EIZGK7yhDwekaJDkXDdEEaTDgQMJ7g5orbG2ocaGQ7M5iN9lmgOiFMiylRAP0xhQCmYWcND4BhFzhoKnqx4LYXh8CkCEym/XoHW5dt5umTrQOglJ0eX7Rt3FUKOTB1Eb5hz/P25ctWRoD6ElrLZcL2NvcT10bKf2WOSa9dSG9eTcYTHldpvbpPKOTa2fDF8dmz/cbpGcUHiOWewJ0gMJ14EHYnjoydzbtWXLn34BElMNkAMXY5lwe8vf6MEDuQHBKDZklai+6CkQnnhpi8oOUGhOGNHTS+tSo3gG+os3ixf8wmlfBQLSk8zczR0oI4hqVXiSx/l9gh9Be2BS5PIpFqtjoD8ltg2JHnOpIlhK+Hnc1KFQ5Ho52zOgcCASokURGC/RaClKwkk2m9fpDMrMScjHcwwBXy6kqx32gSRN0dNLx914sXu3c+evC/+Mf/uIUNqFK7dGOHPTQKXLtZ39/bu3z9wqBOic10rdXAyZ4qt67+kAyxyCccZ+Rywj4N1m/gYhk0sC+J1xBWKo8YlRG0dgZSlKAi0ESKsDYFrJokgLgvd0rJENnpm7Qq4ySgIs3qKh+MLtUevYlT8FKfvGkzAdZh29HDyzvFryQANA5pMIxGjfngg7Ig6QXGqiNrga/qSP3wmmeL2RcvIoRsYAnC9oEGy4o2+zOywnrGHapoEHzpmfZxrZLaEo4n1grJcZuSHrPy8PGnf92Xa+YsjN8/Hm84Cahp5qK+IBcCOkfs87AC811z1ttyAPaX/VogXyhw9gIA8Vllf40vx+H+Xn4lj/5Fsh2kF9vKdquLkx+1RkPpBGVDOACo4zHCPjeX1UkkZ1JkmhaXZF9J+AzWTF93Nvzw/rNucxCLJTm246SAzOpofu1hk8xbpCnn7KrZ8rz7+YO333itP6udVU+xf5FcSnAVjWuRtHzijgBeeuHGeu725lWyXDw+fv7Fs3uqsWrTEiS1FvzFFE2p8EVwEnA1J7XTg1QiHyZC2AtvwZUAjsDZqXbAeJ+xbjzCTpO4FFYHxyeAul/n6Hd0+bXLIjTj3+g7QhNZAOE0nAe7w7FkNJVqV88kfiAtMNDtHrqme9X9P/mP//orr73x6uU3o5CgCV7wh4cla4WOKK2AE2UZvw+bpmxBejERMBxpoe7oycAgbcLQTNxLGL7AV3t9bfXG+rXXrtz8xfsfkM5Mk3a7VrPZdCreLOFNLisHBnRIFvcMLCU0gPbkmoUSmQKSzJf0sU25e/d0TpJ8FOAlnHmnSzqhX/XIWkpdFgFoV6crBmNlfsSQwE/wdGQk57Gu+bCz6JJiScwFi4PXexe1JhouKLVyOlfMXXrlkrMIL9pDKmF1u6Qzdx1USgtG25/3cWsK+rBVOHGHtUPaAwM6JrKejOiRSATnQRQoPIyx1pE6s005dCwD0BtnEQwM5Rn+SSZhlkClkgn3xlSVmoXiMWL1qWPABAQ72hAFgquSowpAEzNlF0Ve8eFk0SUHDorwwr2VC33rxtpK1uWNkVAi6gvFNVFgc/4CDIIO77q0vCyK4wo+VT18svCPnUbCic3rwfWXZFSbhgPpMDW/LgUIhSGWfNatdpoUTAY3jLegWcP64VbYZNDNR4RXdtsXwlsgjAxhJLOS6i6lpt8a9st9Zh6O+AcYxHAFkuuatrnCZDEOJTjBYsQJwsnBkFA0NuaS1lJ8JLI5D+AzhzrgCBKV3JBgJko9tgfK4bT7mKE5pYCuCTGTPxgl4LrkAeZ4D//9cIjdBnsYsZBpQBSPtk6Mgo9gkfG9/RdfKRROqxVypqZXoh8+vMdWgii6TKIoqdrtZrJZJx6/+xmoseh22tgaSMGN7pXKxA1yfcKoBxxnYNh0U4kziokLmySyJhwOYQ+WJBfstRL8L0YmTgZa8xKR2BroC0Rm77YmvEFy+tUWTvgt1qKb+d9u1hVDe8kQ+ra1tt+NBm2ZTEIs+6Vzo8nl4xCFcVTolHbUlIam/41aeBf52SBsgMu+uKA50D6o4/bis+f4nA7BR8oQCAvgx0mtc5xbu+irgNaTcFBJycg3oYAsPK/HaEyjVqtKln0czmDu6AaQHk8STgzZSzFThJrEEc+QHxCFQSe1vAxxl1isqcLBCwW8PRED0VAMY0CtfjaZDuLJGFoJ2afIqtVtd5OJGCYXANSmCP1ouJKhtmmcJBMRylU4zvHR8XDUq9crkUicmqskkpSwdvsOj0pvvPmNt157K5EOg5yjQZskelj9PvnsY7a35WrpuF5qNP37pWnjvXuFomvkl/QzB3y4AGvGR3apDBKQiIHBxl6cHt9av5aLpLNX0xFf8DePP2UDZGu2BCeGBH8imFiLZQvZfCjg73ebrFfb18QIR16s3EqRQjEBXDyFA+ewgPDYPRN+OesckfcrlkwCuFqvsuFeEdNjlegfQ6qWyxOMBqauQbPbhJfgPw2HZXXhXAAXtoU+jLflL9/DFfPum9deu3XlpWgyITEg/GMBtOAYtZKxpC0GK8SkbIbWOjfC/Q2/JSuW+131quEiQuRlROkCCt2M+93VeIFIaFy4TcXwbq5vEcLGJg6llh0LLke0K7JQ+j8/M8CePu6064OTcWD64EEVVVI/Iys4NtbwDNN1SYiCsNEfbrEDFOG0/tkl3cHNbKDlsWgvQ2XuUI4XMVkOJhud4f5JDTaN2I3+hxi5zPBOQavtTfs7nQZVGEl9K+v3DG+cAFKt3+xFk1FgaIsuExTMKyb+H5j6MXcOxj736Sy0TsYcuA7eB8h+eDlyTnWOEeouh/NnZkJYdHoHfyF3qIIZnLGKTSx3xDpwwWOdvFFTbE441pBGSJ4x05mD9SnkQaP+ne+98up2Jr2Tcwczo3HURWSDdDi5E9hMtYYGjfOpM15xby6jd07r1P/CyB6KRyJkOYwUCJyZExyM/5Gbiq3dEHLOOaNWWYdUYhxSgHhoGXi+iuSxK4gez+ql3qwN0DQ9wICEJq2n4uc5rFokk6kSLha1KkW+oEQYOlYDVGlQjxooPIDQY+ewwEUcrz88vZAr2mSoxBh8HF0f6EneaL+Bps7WkIXWZ2lx8lRi4bW94yrv+CUyTz6zaeIIkPtoEJRhvdSIMEyJcOAM+wfVQvZsfaOIoSKbKJQPa+lMonJaRajkV3LIa7w8691Wrrhar56Wyjh54znrq5daNEi8EZYnEuNDUOzZEXYzTphUXoK1mmCSAgkR9oI4+Gp/DDmhDBOjAhtroqVhRBa6aavDQLkKY9SUBE6tHS8uA106tj/sAeHR8BqjTvFu6Nl0eOG7FsV6pBPRhF0jyAUAAQAASURBVIjRGucW+jI6MWqAETBC9WEop+aWI9Ltxpxp1kapfjQM3as3L5W48R0+K5Xh/zKwcwLsp7IKZ1YRbHOIZ5wAmAKUNBiWZ60TfzCHtYbE5xjG8Y/D+gnIsJFpQtYsq8kDMrGxgYQZsDcUwfIjN+iTyFaTd0UJzEin+cCKElrVqnUHXSSRpAcHg6VSmUY41kMy+cMRTmOIyMDHC6FFxt1FhHQHw1anjQwg3Jcjq14HW6XmKFswahwMqXIwyFCQNRGNRCBTVDUculaLa6/efKPTGHz6/M6Bv01pv6+++TIlVhtdBEKXwwNpawYggz/jlArGuNl1kf6Ok0R5Tbjdt7du7J4dHndLdhoEtOGYWBI8X3/pjQRp4olJIjhNrm84Cfo+/vyTv/jr9+A1pG/cyq1hRr28fRGlj/2vVt/rLqbzJ+2jcEbBGqWzyqnn4OWdl2Qvgn3QAvQApig9r46jwh4nFAy7wEzb2oFS9CzNEvUYZcvnaYxb/+nTn3/49NPXbrz61q03CPfRJEx1APKEf9paCCNYEUk6vvMSl0HYgaAc3LEIHGQI45Tgnm2g4Q8iZN4dh7z+V15+Jb+68d/9u39WaXbpf2N1DaTOpLPRcESjNc0DfJWlHEZrNVJwXyJU4OjRycc/f845JUZwcAIFWohOx+ARA7HRMBbDGKYM4LnIdxZFKKRbuU/vNmYtFS9xA13U76IlLkEgKKXUrq5XiODrcg02Cm7/x3/3y8JK1omF8TIA8jOHUpFz6lYANxKDQBRMGbBj444EKEMex6xN4rfpsP24513xYmchqNRLfAJJh+aki3DPm0qbuYCRzNvTYrfLSdTIiZ41OmFHI4XbMRYmueQdRkq4VuNfoww7WBr0LOvg8QzRnhNpV9yZhAuByNVFu0OOOYgLtRS5xm6YdpjiOZhsuqrUPWnOZ2SBGk+bB2FSFnK+H0kuPBF5r8pTqut19/RwaiXhGrh2d8d+RXUh33gFQc05ju64d9PLqEfmhoA/E+WAZ0RPBmA2W3IkYQYkHKAqwWzkiuNDFfY0WnV5bdILi0swzYJ8qUOVsHRPQrEo+vmIY3CAjs7hcVt6CS8htWSfI1sTcSyqnmwMUvAWW4e5GojoVWt3voICjD6C3VzFtURLLJRaLvDyYfqYTh8/eJBKQpk+vFiDToCqZRiNc5EQ2uKN67f39o9O948Gjd7m9nqjWStms41KaYizQDLb7rXf/+ADrFjk5YuyByJmEjGA0krj6hGLE3Qt+7g4Kde4KogAEojKBrocDRNY7lY1BaEyQgxJB/ZrmIabQmSe5yH9TCvso6B/TVAPixyAt6IOdD/fdVHP8JS2DtynnvXNLqCRKR6SkUg06YUOQ5d6lhv5LuKmNT1p5MXTaLfqigt2kSyvxZWVF4cHTFzxdAwJhwJAQFQi+UM8folbaTHBcr+/NqbAYZpirU5QRhKlTHHhKCl78xIIImB6kl1Q0AHRxEDtGJwBqWvr2YDgTifT6P7wTXLFlE8qyiiHmXhGSPnATy5zvO7xpFDs8ZiI5EQmSQoiJkGOXSYPJHi2ViqRN4LosWfPnhHkTW0bcvzjyrDMK/uLX/3m8OiEiorFXDYah368iBNyvyCSVjby76z+rcv9yge/+vHPf/pv/tZbX//6S6/6vaP3v/gtGxYUfuEbEJRkBbRiu4wf5agxrPt8OR14uXyvXnip8lmTsktCDDjZghTH+KzgDymVDVw05PeiLpEvmqwCbFC48f7Zs4O/rP7wnW+9unOTaCaC0bKFxEq88M7WW2ROd4eDiZXy8Yt94hhTkQgLi+4jbREdmqyT1MUlRQXqv5eE9WAn1gRgCRWirC3RbsnAdd7AQeevPvp1q9n5/te+Q5yPyA0QuDyU+iKtMHt4tHrgy/QMnEvlxfQRnFp03di/PjB5bkEMynTEvkt4Rfbv9PprV1/+7b3PMH5kk3EwABaRjxWfzV+gn7AVGOEVAF7PcLL3pkPew+OD8cz36YcvVDTC+jQthUHxRXsuPtDV8qtgr282aM1R8Ld112D11QiHm4DA8kn9oN8YyP/v6SXGsRg8zrBx86ieNapndUzbKL+gLgdOCLvNy8Ur4Qu6mU0Nh3ccQY8mpKzY3lo5Gc+Kq6uP7z/aa/Ted/sKC3cEazfGCvrCgkWdgYEr7p4i99gqRNLOo+On3tzVdGA1Mn/CDgQKN2wHdBCjTpZgJtR/xDPdPORFPQAd+T7qYaRKTBZxr+8qhzV4n3oJgIOMvFRnbGDH4SBFei9iHm6pY6z2wo31qxZOXA6m18Yscf9whFu/P4bKC1IAGU6lR5MKvrSTfr1beUzCEtQIvPiUqZe9CO4toK30aHI/KK4D7ErE06w4uqAAy3YFpoJDAolBoyRhwSJ/RCgm8TeMG45HDl18h3AeJH4BPyyGx0bLNsw4DnGF821RB4c0jXaLsncvXbxy8+YFvKt/9u5nRwcnQMaWj0nakokfsrRg1/K6LopvacGFgeAruo4wQVsWmZIgO+iObUqn2/7wNx/cvP3yo6cPLu9cxZBFISk2cO1Wmx3yztUNFPv6fETGA8cfLB2z+2+ub230h41f/+bDSr2eL+YvX74K92BdsIRXytVGi1cTitEulV50pAX9ShORCRBKFg7zoy2wtAaN1hQq3kF8lk44qt9BPL7AhiUJjBJFdfbiMlIF/iE0MbkjMqAtmzTv0oHUD03yydqD36J8y1eCVZApXDeoc6E+f/inRvWoAMkuiRv0yegJ+bBsxtpiVIvCCrk+4+R4WIxITwZyK1AYbRlxjqkYNZWR4+uL0XVAjd9YNlogA7iHoCgWEn6D4xez4Wd6kLvY+QTlhwjisDu2jcyyTw2B/2AueBRw8s8mS+cZWkVqZ2IQnLiGdM9WbBKL45IQb1bbBIuzz2tUGxFiciNhTn6a7XY0hge9wxE/kzwrlwEEUfUkh2A3Z5JYQKWM9clZjUKPjUrrypWbB0eVMYl3u4NPPvlgOO23Rx0q9pGhDTT+5FefpD2FYrRwIbNFugZMp2x4kfmoZmxitUOVZkw+02757Kx4MU92NYCcjxUuZa8+b+BVOWDb4V94L+Q2sHVwfK0FhfxE3Cw0hBZ2K9oedoATibvcL//iw58TdrJ96WL1tJqpxfvt2ZW1jcEYbW26vp4Zrq9RSFGee1gA3J5atwmQsuEsux/8KQMeMuQ5SEpbySXmMT6hl0Sx9iuSB0JN/+LOk7tXLl69uLqJEiUBPJ9TNdCFyzYnmzgdSkOFpZgaIW2LxTNmzLgZv+E4UzEc5FcE2URRsBwVkMI6MPnDH3yXDM9UwsKXrN+m5OeE+C88p3T+D9YzIjjDIhh3h9OBaHtUarZ9tSpeUEgYs5/StBBWL9GLYfIS4XWF2YhKhDLn6MuX5SWeMlzn5/ObRI18VGu6snxIX+yqHjSSYw6SEGRCROeTGkwFGjScdqdbIMYkmsc6zqxBaNxXM+n8y7d3dj9+v3Fa7aUSJ4PB7tB1DCnP/V0X8a6LcG20E3WtRN3xXKBBYtF4oLzIjUauNMbKITXYCGPGqGHFsDD5+PCdDoNIONTGwxS6xPDUh/WzimJ4DNozeXb8cGvr61RpmbuGjGE+bngDDibVYCi6GNeMF+CTABNnEgGciHzhoie3iTs3YRok9BqjY4gDIWJG7gnhfj12boN+l6JIi8GiUznsN3pOgERB8KMxBzUb6yuUJ2o2iMGQ8wMnFMCCdHDsIjmtYSH4j7NW9p2xVHpzc2vU6yMvaxXOdcWzwsEwFl5ZkGS1Z/XkNoROgnWIHEImrw3oHk+5Wh4O+9tbO7/7+//Z2ob/0f2nX//aK3eToWcPXiCIERDEYWE4tlVFYQUx8S4lngAbhMgJfQu+j5c4ejm2PC7x9ey4gjWfXDflSlXm6eGo0endufuAZA+l0snFyxens6B/HPCS8ZUjY+ofELHkC5SUKns2WoyoXPbxBx8+ff4Cmrq0c+Xa9ctIC/CBBAQcN9649TJMHtmmrRJIzEhgCbAheDTHjOKacFzGqy2CDI8yxuq1RFfAw9Zf2iv3wLntJ6GlsFESV9j4pZMEBMtPNAVIzy19Jg3sIYSHfuOAS4cxjI8neVqqH7gDJhvQWAFxX1G3ntJnIZV8D3na1FX6UzuMy9qlf24XmcACOB4prK/Vu13Mm5x9kDaCoMt6ewiUOaHCwCceKVE76DXqoQ0OOccYuHGPTMayJdced6hRWqYDzdC60AfZlMBrjX/5m3oUYTOXXDZHmD4/sUvg4JflJ6sPt4K9JGHENsKK4uYlbq5yvgGm2yMBzmLO6RqtDPqk3KzBbWmtXelxHkBAL9KefSiHcWguQAoUbtQ7v/nNR7evbhaKXyeVBTosFZxoBGBTQ6PRbDx/tvvBxx/5i0573iTWbT23jutIY9hEFLK7x2ThmXB2Ju8GlEI/pMPGGVM9+3GWxOf87bf+Vqlz8/nRF+Rz5wAMgzFmfJZquW5AHiaIn4o/HJuMBx6iiXFYnAXiwcClQmort9qtdfefPj/m1PuodGk995W3347EikqioJ6w0nIqNSb1fJy4Sna5pDoQ5+wTUEmoDSZkbTAFTWXzYkZ8BC1BJxDB/sA+PRQ0LtePr25tmU7CjDyFdPL3fvTdn7/7V80+R5sIbiClBDGmJjBg1BAVWbGlUCiZcInV1z4dXsD5LmtKBBDOdUR4LVCTifLkrC4CrYZ9VAaVIDdlBaIjG0HQ7U2moi5nHiX/8+lAgkoNCA8MW3g7R0qNWWLAEInfucduEaIKCwRUw1591tfljXra8ErXhF/n/5af9K5feS1v0qaYrjVBuWyAJXAUgtAefPY4V0yZnEYmcubjihFMNp288/obnUorF3v2IOyjfqoCzWaDiHuangV3QuHX8t21wKC2CLqKlzqp691AjjMtTpxmZGMNE27POZgwGKukrNVo/y4KZ8qiIB2StGvSeSVxYTSkbnl0dPi3vIRInynXReu5J5XxYBQidldHzg7ZRUTRbEqDERU0dTLYZMxqMBi3DseVu+NeczpmNfAhJn9ZfzFuUYki7MHiN+zW9tv7JzNwMBCczZvsQ3DZeLF3EI46/RGel0pTge0Brqf/PQGyyQIlEu+i/EScEKxQq4+NLByQ8rOYkDIaZR/TU9DrmPqGRAea4ozTBVqfDPqAHiwlMy1Xty5sv/3Vb7TbzcGzWbs7TCTyr74eJeSvXqpeuXqZrbnmD77qxeYMlksKE1ZJi8aAtKMWimsfC5LQdOTSph0Fz7YvXKRIbaNaPz4+bTRbpwdH9XDg+MWeApKDSv5B3mt2CmA1ig5+140OacCoxQaHVATSxsb6hatXYOskPqJTCAlnvFmnC+KAIYgAiSHEKuRFbko2ZTJHSVmx/Yj8L7UT5xADADFcYRaoxT9NXy+FUfNdWK+35ZT4XbZdXRSGnk9VT0synDdiP6vN5dNmZVYr9jJoSAqZQDEUVwdLkInD6idrSoPQiCQX1LiaE7OwzvWZoMX17Z29cs1EGfMTuHAyoR4de3hIEgdEEn1w/6DenQ8JM4lyPMNBfWEl8+QJxgbwWgF7NmWGp0lrUuLBLN45HHRl+dFNEaI4TsUsBzIAJo52wL4SYmCYcH+uMyk8cSU/dNbHJpiUIouo6kBR92RKlzgO4R+GVkBnGHOb9dqkDYvEUo0CTH5SzNfEB0yCQS9pC5utwbOHBx60Cvim5CwISQJOsqE75P/hPK/WfxGKzCmROqK+ClqUFwLDlYgilggNB4rzBwbAFJrpzLtYNjLhNIKTtMFMFp33xtpFPC5IdUZptcmwAweQZNaRg6q0sGWheEPSSVe75RCpEvGid/tuX7iVSOYji8Uf/eE/+uf/5r8v9xpnzxof7h1tFS5cuXzl2tYOaToIteTMFv2b83aPLyJjinKyi0hiTgIpaTtGZL7RhLAOe58sVloJgZ1ZwrhnJ2cnnL6ZzoKKACUsLhcuNm6W7zx9AB+IhaP43o0X/Rbwk+0OC5bvW1/7xunBoQ5V3AsO/Acc9uPjN6fyj6ifM3leuG7Uqq1IguRbEeJ9WUuPbxwhTa0/RFiDLP8KC1GOkNxaZhGeRV2h+tnpfIDvz9Juya9LvIWejC6W+gvTEb0wg+Vr+ff8VhEM/+tXri8pbIlX/MJPdjOX9ff8V7vvy8etZf1knVhLIgpw4mivcv+zZ7e/fgPbNH7NHpherzGcJ7wYXoK53CXfaiA8Ongy6pQuZjgem55Wg/vHzWm3/e2XV8JXv57LvRmbFDujdre5N6BkGpHi85hr3kYYMzBQjj2aTKlmPNBKYQ4CmKA4seZEgsxm5Ax877e7nsP/+3/9d9/ZvH7DPawsQiuL7porxHHkYtLed0+qeOGRfmuGJceXRLNj08BvbhnbGsPWAcr+2Eu29q1+vRmK9gKBGcosXhHl2tPK7oN2CZUmPiP8THF7pKEeYa+R4MGhjgNyjgOgP3Mi5DNMjkUmhZACuQLwxF6jXUsl0iEycQ/x2iYvjJ9gMBQzVGav4+rifjF2JQKOF4EHXyW94Tyw/+KQvQCCAe0Bl6pmo4aXK8k8EukiET9Bn3P16uVqPIFM5ZiOo3vpIhYNxwBAc5YJm5K9Ay7ZIfhfIhOA8gkDFVfYnmAiG5AYKrxz9Qrz2n3ytN6oU85t0mhPxk24r+GBbY0FfQxVpLv0x1NR5JkTcyhM8WL/KSxHmwzaIgCQ80aOH23bQblLTnv4gQprHItBVexCTBShSnI8CW+w5mF/7FSEVLoAFXEferNxQkNncV05SeolNIUwDVlRbEEQKEETFQqjNYiVSoJw3Z6Qfi+ctb40H/F92DsXZWtALi6flQDQjQzQbjCiEq6LZahlPpNLz+Qn99G22mRYi0U+Xbxy6fouzGRGATLWdd5sH8fyBfxiSe5MfkacG8kGBItEQexQdJSCdV5cGUhbKKOp+jXznamT9MXAaVc+i7Y3WhKawcbULlw/WQtG1ut04Gt9VbFTDki5E59zAU1NAnsyxRWUwy50YU7wQCOKmCKVxuQR47RgMSSlYcgJ909QVXDWG4cjnElgQQJdNOvhmMd9qxdXS5X6ysoaAOBZ1oHGtQTMnKq/KxvD8igczXk8g4Tb3/fhwUaRVHUNSeAYR4FZ9DetrWfS75zU6r+8tf3qte1NRJeguyBcGaEDkUviVk5bn9z5EDeYXDqXzKWjsTTkFck6N2699HT/CYmJALys77MYqaeQU64xxVMp2+GH2nh8//jZQenhr98PrMVS67mVr7359agvDYaATuyE0d+BKwcM6UiO05fJArYO6rAXlJcqCwo2gXtoc+x1dBlTKWkP8fpYTAmOWOIq8EECppw05i+8e1OxyFuvvIVq/9OP//qs2wJJZoPJdjL/zsYtagFC/DhIHJ2efXLni7GHWiIt4tsGCEHOGam8nEr8r/9X/zXVBONE3bRansCkmE+R+LrZlXGDeYYDvq+98bqTjVC+pDFqnx19wnDZ7S393jUgoaChv5BY6PglYuoDWC7UMurgr75xk+GubrNLy7cvn9SPNKNn9fHLr8tLfIMmJR55o9Flf1KhtJueL7748GEg6F6/usGpBTbARdcTimesksMs5rjWEuNpvMOUt+M+KjRnsyudS552/cnBbJHshzPdenqE+T7dS/kaTv+4zKHUEUQqhq8Zorljr1UmcL/IWcyM/6TeTGcEGjUp7ydLr+v5QaN8eHThSpEaPgzTPWvjTSPB4aCf5yjA7XJnFr1dwojJdURxPBnD2aGShduJpzIXx758MLoy7R/Nq49c7g56DGjOM5X6aOiLUESU3Ln0iTcOvfO/tpFkjVNWTryTtOGDE4HrgBoq4leNSdqqjgU4Dn399WuR0E36YyPoJj3feNzqeRR+T7zYsJ+iuszCIZcCLXGkWDmrjcYdJgsEmjjme08T6RTJmQNhnDZ8kCmKJmWoIH8WFvUD7itGLIOSHZiwQnbsJIWQF0tqe3c8d1k8aFLmGTMG4CtK6iP+g40A2OJaAesuB9EqXkbaXtg6rkrsfuUgglI6QyzNalgdvOVTrhJ+BClrA0Q9Trg/7F67EC8hffD/ADoVEZt0B5xZTfE28AiIUDhCMh0uB7gAEmZPsXHhGIsOfLhHIEZPM5aj5+xliCtq14CWSK1RsYfidkkHST7JvuUDmjbXhEZLKxDXrSXbzNKiIAN1qD8e0lphiuOaLvKLMNBuUoM8+eVXHjPRodsId7xxYYNk+YdO/6zS7A27fmDtcsXc5NFVCVsMQ2yK+j7yV/UTsSx5AbHGXX3j9v0Hn+OLo1ZpXe0xeQxZMhPAqfxu/B0kBzUVGw03sSPjQAk4wdKmHAyNhhxUAiZssnBn0Ipn2Z1JDsrv0GyCnkWQAvY+b6/btmJocYzjdCbvI7ZpmCP6AwKG4zGuz4lcxibCfxAbj9DE7uODmH9RLBRZftYVK5PgALtGrYB6k9HJsZtkKgiSRXDhH0RwTyMGEe6KJ7IOgIA/6V4EV4KvJrXx2fP64ys761SqwQSqVeQGzQ/TTGDj0pYrMvjJX/7kpF6aHzg49z98evydr77N7uraxk5zRGa0QTaVT6+vkwoCHQq3ioAnvBgp5JKdF+ZxlnW4mOzXzw5PDq9dvBVhp48mz5YaI6YymDMn/0p6LYyUlru05qr9nHBDS26owZvgyGVuZkHYAYDPzASit7mzCUugxVHivI8mPxtlIoV/8J2////5+Z9VuhXs1sRD+hJQPmlqPMFQ5MLGdiG/6g+7/+LP/4IVdIWo7oMbLtF4CSyB01iWegihzc1O87Qzbm2t545LVQQA0F/JJ4rr2S7ZMX3J3bMy4JKXEgl43dRJEe/TOQQGVAFxOXJjzkYUwhpdsyvCYFGEEIlb7Z8hlaZrNwnL7MU9euT8oqiCl/16fota4OPyzaAhEoPmSQB4785uIpdMbFACMh6JkyAuRZ4NMUGvmwQ7NT8RM6NAIle8sD2NZigxXU2GHj/7xeud47VYfjy/MfLdprClf7JI+8e5KKfJ0DXkYIPWYeoUVkO/kgGckrNCzF2MMKTNHYDwe5tz90BkiYHNR2ldz7Q35wCOQ11sab4Q2dkpYg2Su3tHrlkXjqXSbPgdeCfOxi23s4KHKc4HBATP6jXfookrJ3yVBsLRDIvfI0Wc/FiFKKwDqIF2xU4aGYDRBbdMQIxjLA4CjFi0CFLZflwmGI8LYw6bloCCiEE66JPYCBgWZKxItigINuFkBM+N+JhU9Xi4uckIwuThAcSIcswwGvTxXUMLA3mhTAkvzqwRgEQps60k+A7XvtFI+V3giHSp1BE6htUJ6NJcJqBRXIrdCXsm9hF4E2Hl1BmGPEzZT7GuYqacPuOYS30G9BmpQmKOQBycXt4jFs3I9Obx0qVJaePwumLXeUjqPvq2DkIBDUNg8eDsyEXRvN4hWeAgCuVO3oRrtCB81gSkcRomckUmfmPMNhc1xjIgjVkNYIJQ02ZAS8DzrI/e+cFQVUDkmwZMAJEGKHIxlZEnGJjkCHfqJv0i7c8+iNlrLPYfbS2boV37mdtFCDTMPYTJbK9fDAXhFI87rWkoEEZn/Obbtz99cK/eWVAhHjeDtnteGXU9PdJ/sH7BRnXoDYbd3hYd2nxEo7ZFgWLokjJ5WA0xrslwsewdnCMogwGzd5Xi4Zq3mm3NRyZnAxVtyEgDxkl4kqwIsJCbhB0WHBD2RzvoO+AGe0+wodNqEhaws3OldHLGNgyuCq4IXaRma4mQ/acnxy/d3ASpDLJMVwSPjAEabPep4Mix392PnxNYG4xhmbXKFSARQGVY4CkGLkERYcTYeHL+9ORB9IvIt1/9FmmKbem1MiyejhY9i93d/RhVBl1oX+5kLL3VHr35+ivv/vUHDw538SPqt9ovX31lUhx4UynHE0HZLOQL7mfyKKFlqBdEVe4THzKpSRwiqI0Q7HeHpQ5nHgGYbjZHQoe11WTx3vO7vnBA+CJXM7Q5/kgunu8M0VxwR0V9grOQ5ojsbIarTIIzlWQ0jR2JiggEc7GH6w9ahVD0nWtv/6cP/hPqlE4vxQ6A4oLNFnLDCXlbtfrOhdVYXKYeckaxPSOghrwPoiACmYGQO9BtID9Vr3SsAuiuGy9frDdL6Ff13uTdv/pQ+2g0KpZeq4vrodguaaJnHBn+zUtIpDXir+G8TUhYKpSCIITldo/uEArxv34Vbi+bWd67/E3325N6jh+MTIQB/FvSK7/rDvQBWGKnPnx25/kr6dQoPlMpaSzZcGk37u4cVSrikeDWUqBHGWmyVfNgPB6IxjzN7slwGB/4TjvDecPtIwc9tbyHdbQoP+GxoAwwZ65o1rA2nwsxQIV3FYnxzn0dWJnpZAyC3ReJEkizMOmX5+44Wa58kQ7AX/hTWGlQq9B2Fos2RwuT/rFr3MFA44k4LmJCQkV3aHXBEUxE6XORCgS96IB2zGFG2DUgJo3cz71RB4bJqoJqwH8OASi3T9Ct/AuKBOZ4grP9AMEOAiWgQsOFR7Fx4TCVo/J2p1qtwpPRQ0Sw0tigYMhC+2PA73GNlZLV20X4m8VayeDALpATTz+cauwoRMfN7D1J38XMsDCx1+nrNWyTnlmMgaWAQOXLjTzAvCNyhs9xnUsaEtsFUTmdihWLVDUQbhCIIFEN3NirxIVIV2uI+qYfjVOLZy4b1eJLQealBdAb938pHYASlA0tipPwtBCQQcg1w27U00wcI4p2SAIoL7FkDUK3MjgSo9CuHpZvhi4L74SA1gb9CRvVMj9iSkK8CpMlwCBt8ReNVNNk5fgrA5Amu3xEA9CeRG3Rh57kOX3mf/2nQfObXeFN95xftjZ4Qg9wnbh6UuxnEzuVSM2P/4kyYzkXLr829kYHi9G9Jy8Im+wNJ9PgyElFKT7WaeCfE46k0q1yWQfejF4rpPEyJj6ie8DBw2EvKUi0PDYIirskk0nwFrnN//1ul8WD3RMjot9pRtwfSQki+jEXRuOhaASeoVRfOMz3eiQbBwmknHK4f+6ByazHs2gYF22pyfK/hN/p9BITPE8pbQm1PPDK5Bpskr2jgYs7UTGow7p459ZXiAepN7rHhA4sakNvF9VLK8y4xfH1P/yK/R5MCZmAS8GL/u5bi7fjixib0SUWoE5hwEIDOmmWy72m/J9RgcijMptw3vB3vv93IYHDk/1P7vz2/t17zZPKf/U/+18mYymyAxXzK4ZyDI4OoCdtopBDG9tr6VRGEfZejvZc//Rf/tNAApNOoJDdvHnrZnot+UrqJQXr9AP1RpUQJ9IoqsYk5y5S7Fw4ZQN5ZEq32/3s3ufrxaLch8IxxyGbWzATDafi8fZZAxUfqYEIGY87FwrpfDzzonIY9CZccywHQjjkCvscfMA4eXbhYb2YyRvR46dUIrYHc/oCJueQp/zA0UmDGRARGou6imuJVrVD5vzTg1IHdQH/AkNHSIpHxPcgBtRkICVEZf3tnxAI8Bvefom+RkFcW2I69xlCCWP0ILeqZa2OboBceNfo1ZRu0iWtHp/sgt6FsWpGTwh9sUgA/v29Rv6gEgt5j48exS857Aat4aA7HPdEnVa1v9vsFdxOcl6NBKPYOgqp14fD9IvRStjHYqHy4QdD1G0qgbv/tK6zc8y6WHtUWkWqBKoxvvrUfYNFokURDsZRKwwKNT7Gror9J4WJ6tVwlBO4jsepcmZEuXpudinDB/X72JdBneAaftKsRsQdLXrDeTmuuYaap0vFi2Zo222q0eOKRJ73RTpa6IGW5EEaou0GIVTtAGRshnWS6d1DplJwT0ealOeFX2tIsG+sMeDUnCQbuEtxgo02ATtCr2fRxGgFTuDHYgJsiBdPYNruCg2nlLuBKS5BPMPTyBeQJgHvNG7NzVE5dmMjDgaiTujZk71ypa4FAoM1CsUTwQ0YFYsDB1ZvBjJQWkxDzhU6ZyJ+U/YrAM8dzEcD1I5ci874gLF4p7F1npeqbL9p4EIUFnfJILkgVqtr9oD+iidT9RxQwYgNUSSXkFuGU0IkDVZ7CmQRrpH2MM9JXqglFosRnF/WzZqOIaIa57rQVYjIb3oW3zl2xJqI8FMD07NLKNqTLLKmJwEFZWI1EJvTKDUPHtCE9YhWxdrljc9wOhuLlonp6257szkxVv7qccqYkJGDlBqDdiUc9rcncyKib67vHOx/lsSY4wk0B8NerTWJV73etGc+hK3ORwgqrZHJJc2DldCpgsbJIslpUdH1jEq9uJKpFKVIBc+5q9lpdQi0A1warO3SGANakWVKICt1MhPFwkFLGA1RsFFMKfTW9406bVwJObwaoa3A87qdTiG7EoqMnu0+w+wDZsuDR1Dkn9w5mP7h4ZHqEbE1Ff5ZgDv6B0hLoIZ7FiDVv6+5slq8kbvCiVW71H9y8PDOo88mHmonaXGlM4GMEglIFADl7farw3GDeGAqyXADXUgOewNkGWuRdYxt94gwfJVbIg7g5OSkkFxLxclHd2k1la82SifH++1a3UckKrkKQzEc83vsxOXdR9Q0q4Q/1sQVYVeN5wFNe1Dm/ujv/d6f/vjPCZQrn5HR8MXa+lqmkIGEkqnM5Y3Npwd7J5UKVQyZHUhPkDZpTcFJXGOTkdBnn33+s34X6iYTHHF/qXh+58blQDI8PJtH2M9zYkKwy3xK0r2bWxfDo2A+kkZMIpG0kMIg/ef1z3ttVLxxPkbVQBQbaBRBAMD0n5GSDliamHSl9LiziRRHhQ5VcEezJw93l2gpXDCkVW0sjAegi7BGhM9fXoYmvC+/CZOWD9q7qGV5iziVCESoa03YG1+W951/kwGStjU4XqJ8NcAF/W4t6+v5r1zQhg5bwvP7z/LxeG+LebDRltIISbvnwWQwAUMdeFwDfBQ9LkyZSP9CPjeZb+OXoDDoSc8/mYRJBuIfo3mrohiITaeGaphWOCQHS2hj1BzgXgISJzLO8XEdLgKFhH2kIaRiDGkd2Bd03ancsNcmA5Mv3phPMy7/CinfSFfsgj1zWjNqg49uQtNmcQ8+Qu6Ba9qTy0mwPSk/65Ye41eH6kM2W2xHBNWUauV29YSsLV05aVEdhZAVtL4A/nNEm3U69bATzSZwtSYHK3Uig4Ee2bTSzV597upASkgCbWYwrmApU5JPvokLsQZIBq0aUAWDjcWi3fFCbwD6oiD473DU9VE4Hu1WGis7QOgUrk71SL5GQ1FySGHBx5WMhqW2sZRwCXnQQ8FggdRoHhY5wjr5sHCzA+U2mhSpSwBphQm+REwY3mrpwTUaM6Z0vs6iZ604j+qDWKMeFPfXUgmFlj9xVSjC1BC8ahpGp7XUAPhubzwqvY3LtlE1UhH3lwFc+wJDNH2lVz2HPOR5wc06Uc98F//QhDCIipvQl2bOB15IS37gJi7ymFpGpjFp9aKvGjd08CWS2y160GaiPjU368XmIBnwpZzTIJbdcLO1D7w8l69dcwUJURpGSfnRbvnTmUsb243h4O6TM4xzZwel0HgeooQ3akk4mXJ8xzgcq+Y2Y6QxzQLXYOEFJj5p6qiQyqVBBxz9sN7IM44cQABtIfFslDy1TQP2dnEEKlr4c/k8eUrL5XKDnBMU1fIHrt+8xsVquUF6bg4nUWRAXuaNQxegRixjtg6HyFU7YVfLRlcggEkYaEClp49L//2/+DHcEJ9KHExfvXVtfXOFpImE44BOXe/s8+dPTj//COfpfDwSC2VgnauFAkG5zAO7PzZGMUOldyS/JRqTOxlILjocbDbJsu6QWC5CxaeQalbVh/hwc8qAjtLvTVPxaG7FS/h9Y4oTHhkSEDteDmDDa4TAoTGg5oxG3V6SxEekyUJZE8i0eCR8Oq0gI6qFfBRWy6ELRAm58jMrhSk54sTYLtf7jeq4hjfes6dHnTbYwFpjkZVOh92YlObULpymo9uX1uel0wbxl7irDyqlbuXhyZNABC/Nec+NctZbxHHjlCPI2y9d//prb4N2S+sHQ0Gj0pBAW6Xe7VJWhahXHYkoJAmy1LaFLbfEFG6vfgIyeuS2wTRNNip8Bmd+p1qtH+5jv5LiiZpky61YcfENQ3+wVNMy/Lau1N35S3dAHsJkrgjjeUrLSv/8JnFsvwrB+McK0Ys5QOO4JDqReiIiEFClaS8pftm6WlMHelIf+K5518/aJ3tni6/c7A5JMR+EpxEghCEtHIqyHWuT9XqCA4477QmzNYwms/hH+QMRnNEX5G9gNzrtzgJVV2Q0IruzIkEZBnQwI9mMyx0jlzIJ+ok/49QPwz/MEFc4HE9gYujH6DQHB+01xz+iNlioHY9HyWO9aBx5gqeLUG3iXUX+TOtP3LNu/bjDRiqVdDyL6LhBCCG7KqInh8POWWNvt9fA4X1c7w3qrVrQTcjyvFyf5UB+r/esb9mucWYO+gZjtCiSKLpxB1inllshPcUXDh/JuT+VyKW3tk4q+6Xq0/EcfWSOhzxaFynZG80OQiKss1NOWQGetu1AVOq2TPaLITmCCWVk528/WCjSnAcxpKGtY8BFf2ePrsXB+EyiDvQoGTBRMmhBnpNCKXENdpJitbZ6vEPTXOQCL5YVvk+oJDjAhoQ1BxfZGilSg/U2nsotWnlefDhnwzKds6QwK9oTVggBNAu1be3znZb4iOSQni73IHUrRBdTQZ8Fq7hic6Yn+MyXaGStCWO5KMkn1FM/4rp6QvxOREMr/GfsV4PTEPiH9q82hYymbxpL1RUJQ0kZ4Et7dM5YBBS1bmPVTbrC82pN78tGhdb0TF8MQXczXBu/3WSjsEcM/2gCA4pTzF+sNSr0ynYED5KAP3n52iup7e7n731KVvHOpDf3czbF8rYCIdw2CYrhRow05t2M8YT1wHZsW5kuDj7a+HBy4o7FyJFFDDG+nuNGvU6RFo1hCRpkgKYNfXmo3AkvIgkoh5Mr+QJHxJVac/LFvZdu3QDNQE9Si3D+oxN/iwfmVFSHnH4vWcXxI9L0ZHc0Ow9QMbmEon9wVJa08PuwcTcatR/+8BvtYYUa2eGIxxeLpddiDXGudrXfOW1TAp5dAukhoUvyHuJOTMyLjvwXngEJ6PENfWfn2xc3r3F0PKJwQrXVaVaREGTQeP+jX1ZODqYxHEmxLXlLpTpxcqe9ctTdnbpj8MRwOO5D6/cnkTFoTCQgSIQ5CojDSwmexAmcXpTUYe4lSdZf/vpnieQPycECuTihGOgC9LT67AvRrtjm4OlPprugK56Lt7pNjnxl1mLNOb1FFTJLQanaDfrF7AEX8GArw9ZRlVU4a/aPSIL14ScfbxRWX9q5FN5YjQRjwglRFEgqKpN6ItWPM0Nvp4NdoQfTAk/MXiI6BUnpaUl/nMRxPoenCTgw7IMPPuwVD5+cEplEZgu+MXzpNEa+iH8WXOQjDDUKoCVDXBuqXQGpRV6iDuGKobgQXP/0DLfrCbXAMKlsZfYvwj3wUeNubtQU+CNKlFKib+dUL7Kw2fKHcSzbgjshwE6PTlvtRo9QrDkliTyzkPaOqrIcxI29Hxmjv4cJhyOQiqxioAX6NOZslyviwfzi6k19nUCqp7y0pJVjgqgMC2xAWjnEuBLpUFxhQEwJMh0dnXyl+Pgvok6EzeWdI47cWql4Y7ZbjpIsNx6OeVB1qdzyiEMx0grSVH84r9SGItb6J6HY/ak/pPTjntBwGKwek3C1jc9yuTdqDFzNFk7+k4gYYHhCKQWYl28SwTSPRYYqCZMFJUvJRLiSX93auILjULPTjiYzU86mPKGxp59Zyfiis7Pyfqvfw3oYwGjPiYDP6Q0mjVobpg0a440N0DC9yuMA6M3G9UZjNkL4oTTwJozVIuNX1e2h3nG0y/4Ao5OZoZQ+AtRQ/hF8EAlHlTWR9UDzYKyAVKycNaQR4QqyQ3ZySQp61VG63WJaIqqmN5ZIkF2YXgJoQEJLdtNwcXVPP9gHbBXcVMsRDrOJxRPBGK5hFp2BEOijoD6D4DPdKROAtAfDN/tBM+NpXRCSCrGEo5qrWL8xdF3QL8aHjTwkeLhRP2gwQkr7xxSw5UjrF1PXMQb/cat+1UfAY6NRL9YA0NS2R+3YBVlwz/HbBq5e7WYuAh3Nx76rnrIMkXTIf8uRfNmkBmRDZWsWSCbynHOhS/A05EqKgkgsm8qtNQ9PK8dlAmKBJ9aUSo1E4w7h76cvugRt9bF8SLW3CUoU0aCJvfP9HD7wEUYOmtjpPcf34tF0yqgYDKvHglCjBh2g22miq92++Wo6F23VO59/+hkCaXf3xcb6KshA0ywwuSsMsQRnukcXAPY0PuxCnGwC2BkIpHL7kTYhfUJqgnzbQifHdeI+W6enIz+Y0EEbb7EXIe9dTcfTMvKBfy581sd4lnmGLXok5TDljvycGfh8P/zmH25EV/A0oLB3wJ9OxvNKEgYuuaZUaPlX/+5fnfRrY7wplSwTL53JL3/9QSoeS0XCzszNDjuzsoXE2SAEwa16lo7bd2F9bTpP4Q7aICFLF0DiH8TZ64w85k/uPXzlzbfYAUAijp9AaOicYBRKX5E4kSNBcTk8KChc5iX+AK9ZNtFgB0CUQuBVIlTPYv36Rq/dKN/vGUUJH4ReEBORBlQZG40ePH985+Hdyxtbf/DDH2USQSGIHJLI/g6Z+YgD4GCRNPqHjXJ2dQXjIw3oHv0v7Y+FXqItWgBbGnRLNmG49yHLpq7x/bt7SkMntAPrwFsGx5LIG9W0Y9EMYxWSnxOI/dEXcX9Z4KB0uW/pvE/IojUHu9hCwE/ZGcnoSMUYzssTuQ33dNRqVGgLVZCBra+tnxwfD3rKm00XMBA9b9tpWtdumBbNDZGWluyJi1QgffTsweqlWNjLqXZ4RponEILKxM6oXa8nJ1S6iXEm32pV2Jth1eT4lswoDA3fN3IvcfyaIt5P3orIbgV66UhI+nM3n8mSpbrbqUURiI5EACS/YJ9J2C1L5fYR4NtrejlsQQa7T7C/k2IEBZ0xj6bUI5gPocnB1E0i3k6HAtWcxGDDo8ohKZrDgWj04ZP9SqOOvkJaXI7mBWI3pj/4JcEZ6Aw4NGBJFl+UsEQ4tEehiJNMRFyTVijiLhRS41mgN8XLLxiOBkckTvem18P+k5PS3lm9GM1tra8TnsymZzSYdzo9zEjgCs7WTigKinI2QRiwZ8dXLKy92Hv6+ecfyRRs4SOsPXakdgtyg4ZIJQojGIkdADCfv1DMcXpBOxyCyhuHVWVwYCG2N6kzylwNqoXwKtHGAxVGvI07IQGwbplkFzaSV1oq1DycOKlqExan4ozF/Jq0zoa6ggMIK/VaTE/IK7zkk3BLmrIsyPqJlpFMSv0nlBMz5rJO/cBZUNYu6qo9zwrps77YG+MTTrO4dqtmxXd1oWt2z5KJq3NuFVLz7PKlL3wDRUUsdKZvkkHqQg8sXxqzHtJ41NHyBr5rpAxTTI8vTPHLF6qOHjLb6PkDatQ6k1hZDsSXjKfJhUciaB9eV5z0dVXH1dvz9ttdAjBIPTsdOfNeGNNFNukvx4NkbMa9TVqpWQxsIOdsQaN3uVg21g62RW/IFohZzIhbDPrQMN+YBW4ikRCZRryhlJNL4mnbo7D8pZ0tz4tZrVrKZRN4UHS63UiMslBKkkVTpDdmgfBrxCbIRECy8WSIkqvFM+iLSdn8pKoqpZp30BuUqlVM2KNFEHM5ftFUJcH6RCVylFwxHSQfqdXAPDYdSA0SuA8ojTzGS5jTwFF9jAaPUMGFzxZyiiJibMiddIq///3//MN7H59UD/szissQBzbsNtsUJYRxRPCi881e1E9nnsCF7Ss/+NEPfvXBb1JOojqqdJrNQjGfzmS9aaUYpW1EFoVPspEEldrYXDtBJxuNUQSGtRt2RuRJxckEnRoff3nAedyReHTcNv8EMU1WQFtjmURn80QkMmh0cSDT4gB14a8QC0csgUhxoIR/uY4blXkY3R8+JK0bE8XMt3jv/fefnRx2p2yPJtgTADssje0XnrHEPcXCCYs9YCVn7KbG1FchwaUcjXyEloNN9z/fqx41qPx1bu2HfDAmkyeGEzzim1giRgD2soQiCkGej7wzPI0NapZ2qTWE4XO3rI147Cje1ZfO5bArIvdJEMAmLEkhcjKBD1uOonhDbDRJ58uzQAzTw9rKGhGHSD88x6QPMDk5pNK5CJfV5Db1R48cbQT9T54fxT5zZ7NJmFA6kOH4JBRzheNB3MLb/XY2lguosFaUupIki5uyXVQBLaA98GM0n7nTvkjK7651hmzmwCHIkPm1uu3s6urFGy9555SQ5ypsWqZyWS0YKPq/DGnKhEt1JUYIC0S6+OKEdznka/FihHH1qG6kuFmkHoY+EmbB3fwwf5I0YsObJTa3ppMhagRsi3YN8yeoVmxhkAXAVSoROo4ZjKRus8HhJqGFuESnP3j6rNToLWIpzi8EEkxb7FPXVreowtMp1biHCDMYE1HEa+urnKKxWNhsOGMjxzXG2FgU+/Di+OhZu4afSIAIHsKJkbtQOtiGnyfFwtgESJfXPySANm3Xb1x5643bNCXuiynUeC7qhPEtUFGSgXUHGRgx05Q1zyaHSjuaTR0v7mQDpqh6YTA9VPv5gh2OjFS6Xw+Jl1pAq0ZiLFJavYwtPCdGxGQFFzUvzxSAxzBQtiRteHyJK1wSStk3BifsFcpqLEJbXgxdnJTWNEL7KslAH9J9pNwbnulBu84jelJrY/cAA9267ILHQH7DS42WKeg23mneXpJEtKnx8dIPom1T7xi/lDRala+G2VhoyCQm2KMWzv8TsDVVYQC3qxUnEM6kivVWieKgDm4DOB34yci20r77EId6asGd7tXwUUZ7SWeiBK6Wqh0ZyjW2ZQPnDcFNxHI8LizrUCN6HN5BzWaH+ENmZkq6jiDR2WGmqIWrxQwN1CrVqEN6PiTKrAe6T7urq9neINTvtVdWYqQwAG0wHdKjOqNgbH8QnnAOJr6G5O/hboycowvocUqMKtYYrQaIwZ50uS1tnHYpHzJxhbwUDMFoq/P3Efl/SeHCyiMnJFHFc7S1oDUjHc7UCCJv7e0/vLi+AqFqUWkUmKp1YUB/0vro0Xv1YY2EjA4x+zqdiw0jMRzpYA6jWr1NquLhLJkK1+unf/Iv/ykHBiQiJ/6I+Nr+4TTXHVIbiZNfOLeSjrjJpKBYt3FvmMyl/uEf//1mk+q281Z3cFo/Pag890TcnGz3KCVAnQC/H7us4hMxfkjX0ISBYMIXul7YXgml95/sE6mMUg/g2QzDX8ToRQ3CfkFv6jp8cOjscM4ShlF7w/5/+Wd/+vjpUxgNih3ObzzD4RDEx0bkNx+9f7B39I/++B9EI0lgxdwJu6PCB1HaOsH2ebp9HPiGH/zmQUDWMB4hq90MOYNmZ2fzwnD+V5SxPW4IrEuG+0tkZg4iLJYCls3UQBLUR4pCs0Tx5Cp2QPaNCVJCMWmGRRzfAEVkEY+TBTJ2sLeLmOl1mghnipHh79sW5cpSjgO55BzshCvqQVsdlaMirbEs2XArz9GLXmn/vi+kY2DOU+A8lJ9DMebkvuyfVvZGR6d1ytdjTiY+PZPMUo2FzOZ+fKpm6NqLF884SYvIJxJAi7+omLBO0Y5PSaAKZ0Qek1JUHAfiY4rSdpVGmaUD2cxyAWRMLSIts9ZIco9EVfJKxKwqCKHPA0IKEiAjJ34EJNJX7AcfTfF4NmdSrLQ4fJKKgoCkFwQS500sPffIlUQ3kiCZooyTp7snL/bP2v1ZuNy5fMUbj8WIIhGTD3gL6XQuzI68Vq+3Hz5+0h93OOJiawbPhXOAUI5D0qAU8TStegvwbm9ul2pHmGeNbQkdGQkU3el04eZGLzBA/hffi4bC8Tj4BSYSeY81SDfDuKBuSJhbZGhTZXWekKzCXkoXjJzjLpKO4J8oaaItF+dMclrFfs93yXUomAnQBCAzxYouEBDWlxE5zVkJGt0EwrFeJg2ganCJ56n0ILulRiSean8Nd3VhSfxctN/1vDFp8WpxXqMr2bDgxdqo8rAWBPYk8vzymWXTgpMaogXM9ZIT3CHRw8D1i4S0Dcpu02e60J8ln0cD4fRdxni98Ri3gViY6BCxGN/ZN1nzOPxyAMW+iuHphaor9DQQ0Z7wA4oBsmzRFBHe4zwfnY84sEjKQ6WFjz55OvFRUSsKg8YOkeiHC4V0MZd50T5lUhJTeom8xZuF/ACS0r4O78gA6tKhFms91K1+Y8MG4Dm/WlnBnBI5K5dG4+50Gul0a1T2iDreE5I1DNyv3X5zNCNjxDSTzzzfLxPG3avUoVUSD9BQo9FQhy4c2ga0Tf1Xmyx9aouoKUHB3jl+NYWNVZiJE00nAxEc2Ae0Cbf1tofeKR45/rqcl6UJcIpgapaNU+HsTA0Swit873S33nwFoxjIay5nmqyEvse1SyhvdU92ccUeAg9AgD3WwwH1lY0Lb//oK0+fnX7y5HGr1cCPe9DuQqDtwVjnKazYuENiOw6qKVIajcadKEG1JKJfIBGoGNarYDHwxcNOLuV458Hri40v9kOVdgkvQU7ter3xrOee9ZVFnYRO1L8lpQlhaFhzVuPZXrmbSSa+/srrH929U+3WyVLB0RuCECm33ASAWuAdZQwQ/NXTptffohhvszJ4/GKPcwqmwQGLzOfjSbVe7/bH+y/2P/nok86gd/fJgzdffksY6nKVa+XPPv9ECACDR+PwLI5fHLbqXY9LGTtgUbzEKvBnJNkAUNb6g3ly8BCu8pj+6huf9NI3dBcpu1jYYHuZfPLC1jZO5UCLZMknh6WXb78RjSfKJ6VwME6xkxeHe1d3rmCVJldRLJrEVIb4jEVjqUxqb2+PTUyr06JSjKeHDwm6Oe7P4gmoIJxVEG5C7XrGb9Sq7NBABSTlSADnArRCjCdmE4VlLo7cjTsf7YFpBKai4cJCxcV5Us/roIMtrlTo5dSYJVOYoH2727Vyq1FjyyVdnJkxX6yaRvGaMa0Yf+IDbYlXAwTBg6sClqAk5shyCb0ADrfBMeANxvB1K4xPRLdsTgPgR7VCI6ArDcCPMEzpoSX74A8z0ExnSG3lBV64B73aoT+4sbXKMOHa4sU+LxmT84Wrz568uEwhenYZlEvDEY5SsVhbwgEF6lNNdzaLs22lcIjH+9LLtz58/z326jBnjZyuVSZk0iVa0xCC70gh2y/2KB4OP4CPM1zGjm0IQc1RIpOUcLcHEJs6/1PdbglebWygDQ7OfF7CgwgQm2lXpz2OeDw3oOniVIRZAFSjFZkHeLGD4ECQaEQuSOvVzkEsEwgrVsFAB7h4WAirgwwJYsDFenDAKJFC9/y3XF79JhKgP01STF8w18JoLrYU+q5LWrilEUbS5vxX3cE/ts9oAPqskdOYMEogs4uq7quWrVemA1zsXr0h8BmSlCNy08TJlyAowLjxloFlk+sKPbpNsTp2xIQ6kdFpiZtUaOI7IpQtgpjxsj2AzYtzqwAllSbjCImzATQNUkeHJFEq5OmadlytY9gHwY67jWiojgsytmfOudQGI2Y6QlbkHGiJuFYdDCx144kfbR3iZ/AW5gexSDmhd7LkrOYSFNMlzEQOqItxnbhfoolcE2q6n5V7tUrz93/03WaveXh2EgyWMQBpV8gfbSBwOAywIKwiZeQAOwIAQ7rWSMYcHQ/QP4Fpi8nkpQuF19+8nU7gw0esJQsJAxh/uv9RwLuIJUOnhxwCkIYXvmOiGk2BSQAuZkpOCri6Z9EcN/GiuY3fnD9K9m6mqlmyZrPp0cmJZofFF5Yg04U0MBZt4Jo8fbr7zs5XX755ZefyBqOLRkJ/8qf/6unJM5xcOUnjKQbPnuZs0D7rtImQxGhGqcyI3ynksuTzJLVhbqUAww5HR04kMfB1j6uV3753Dxwp5OPJTCzuhAIp+sRskOLog/HDXpx5YMXJkwSJwKNb117auXr5rFx5vLf78Gh3MBkyMHxlDPdUL/4Pv/ejQrKIABGKkq+B5YPwhabiUawilXI5bBxOiNppBqJYXxaNQX1EkmVycHs99+7cffT5fY8TVWqbGUk4/B+8u+8iChijgweNlqgx0APIQCiSx+J0xjJZL8M5BiKoGwYt+4Vq2MRx7giajK5sryXT2HzQIdgnpagAcfnS5WIh9+JwH9wdztoYxlesllyrXiFtSaFYIJGlUgoupmelUxR8+MDG+gYKEFYG1TFU2nMdYDAsoM84qWELa4FTjAdYuWfY3iORMKwF8uIQl1NWEMrokiHbeTLcgDTfJPwWpQpOGJA0CW2WmM45q4avQGegIf7LIAUyh/N+MQfggoQDuFALSCbNVFwenFRjgN74hSiK5jROEdXyBXcRnfKTfhN75yZhu77pCY2Tu7mmKRqvpx8e0XpyRQRviyGdT7eL//GwloWOOb8+PjvinIk8qewScBnoESAWieKRMex2guRV9yUjkRjcGys5WiYIIHWbjSJrLxY76067WCATsXi93gBGxrtoXF1gCBLNcvgpE/8ClgqHerH7nBIuVPe1ObJEOHBqMgxVYzMGzjcmQBvSMDRaoIDIFCiYFb1wv65L4ho4dNUaEVvmi16SiIKoAUpfBQGbtQCj/3UrKyWhBVX6spkMaSbRrDUtJAYcQ5DlUf3lZjqkfS0lzbOuNgM1b31o5txmV/Wung306tvGpf6gOa2XWtMgadBu1E9c0X+MUk9LIupXPWMvtUZOutmsxzldr314OgsHSPGZSMdTxXQxtK5gWrwkT45PWu22YGkqj6gO1ANaEnQ0xP7JejSA2+S0Ow36o8GEg6oCpPsweGhIEpKwRg0Cpw/a6zWbqAdMhsXUeGlGjJ3/ZLUF2lR8JhEmZ7+sIwdHNl1QTNIBr03u5nhspZgDV4guiIejl7cu9rADomyPF9FAJIDHdXh05+6L/+f/+59/7auvJhPEA0ROjpuMmMMfNrWMX8ZMyAyvGOz5rBGrgYEUb3NLLcKY8MJGtQjaSUUYkYMvI0wW/qyCMpTS84VDzng2ppb28UEH7cMkGLiFtZWjNgIRKBeHC4RihWCs3XH9+dG9jdxWOpnzeyjnJ0MzQKvXW1KHteB6KdCAADYsmCHJqpPaISXYEE7wn85wcu3qld3yLusBYNifYfsNhHyROIo2+X2ZD+VnphSt7RwNL6zgO+RrUs4V/8PSMEoWvUz0wlq2tJZ4cOf0BeGk+1XiK8JBbyTsYw9BIcxsPI7Rg2wGsTRngxwiE0RN0FfowspOMbUKOzpqVlANKPmDRzWBA99/4xvpcIYCfeaIh4ZI4uA4kWilWgXAkncJVgm7Gjg6xQHZgC+riyMtx40Yr5n9tRvXf/7Xf6XS3ZRcWMya1eHwjBo4OkYBJdBOcAzkvIXtHjwW1gMD4CDREFkruMQZ0F8YL5rRi6vAEnl648ZVQv6xH7HgqPwgDmEi8dxKf+bGwb2Qz84C3rQvH4unmk3iVauZZAGcjoSjZKGpN2usTaFQlHHH428266VShaAHNkHMDLICh+Ff3AMFYCmB96CmoBCTuKbT8pLkFNuIFC4RiAr4aELcy5NwTkN5yEqEyx0M+su156flFdDS0ENKK2nldaewFcKDwnToAumJVsTM1Iq4AlqlroqWwEKuQU5c1K/6X4R13hmfrEexMMGMl93LX6CrBnSHXVKDYo0mb2lO379kKVzms8SPmYaQgvgqHR8fjUe9TCYZj6MIDnBMJrsiwAABZMTSIxoFhIxtD3BI55EBQ5yYhCG8YcxE/acTbuSNJ7Q9Qp6PJ/iEK1XFDO1ngr2+0UVL7bh9Q3EG3StMEH4ILjYH3gWfv3kxAfvMJV1lFLSuB9B9eErf+EE6sz3/JXTsZgCvxeOlpdHvrK2+WTumZ4OEJhg4qw8RuQzjB4HRGLUxoeK82JmmSX+aN41pcBq52rUBqXk+0ry9GBKLZGvL8c9SO9DNNjq1JOAvhRdfuFHP6WkgBovX0JiasIlB2xANAJouHCuAkTkK90F9QFgiDGD3T3afwVulFig7JioGh5ABNsghFVfRzguKYvBmPYNNgaba3UjiapME9DUcMB0rMPSqpI8mMwRb4KqRMxb2d5g34azwOIlfs3gJfVk+0BoGw5YwkUwr64hpBzxm+zllGmHcnL9iZlgpZOGT8XSUQsx46BMEJS0eBJlO6pXqaQUHGbBkVK2cJZNOKhnb3z1xU5+VFUKz0kmS9ClGRSZxRAI+SRoSQzQbDWuNTzZ4x9ajSS1g3DQgQ4bGYH3Ue5q2cHPzUXumTTPpfKTfwXSJoIf1EK2DTzuLBUMWoGQS5j/votYvPf1iL5db2cpvrGY3YsEInt5UFBLKsiWwbTgYARh4UslJFu5mt5VPE/eLxqTgkmDAwVeS+krITcQDratluUH7vUQoI3R1FDi6dXP7u999B7MnQf6QzXDYJI909UW3Nmxs57OldOOs13McRNsC9BxRAaSJDbqJfZk6arFIdGsje3lrJ51IR5w4Phv4dI8XjeOz0oisLkRmKC4v6LjDWLGFaewyiUGQswQY5l3JFcMcII8GbJzBKFJWukdedOEwlrlwjNzbjBJPWNkczM0UUc1hOQZT6I9CbLXjFjwLjQFtD86jcxBhDdoxRx4c9CmLDJ2Kqxo6CaH0EhEtSRbgYdG9ce2yinORpyTokLwWX1fcWzJsTymWUK+urV0cDTrjiXd96/rx4fPd3dP8CnG5YU4fqSLf67UT6EKJOGuH2j/EgXE8pRapNPGFi/rSyxGgx6pLaEJLLPcPMBlo4wJKsVLhmBZdAoSduIbIII0v23iNiLXWSCtaMUYg1sp1mQcUpUvbPMIMxXZsy8gfZg5R2tMQuP7SLm+6T2ZSPml4sFQBRg9a43zgRUfnXegz//TtvGvBT/cLuDYK+8JFrulpu18kvnyx14AWli9bCTEM5afBeFIplbutFooERp4xSdpxhpDzmGvWoxFNlmeNmQIfqfSwDOyQDJj5ctRHXRV+1y/s5cAMBkTTZF2GiS4zMMMT8DWKxPESIRGz0Y30Y5ueJmAAWr5pNn8zS01R/esWLQcUJogAAXsJUpopLwHCbtYD9mLQQNZAIYjrZ02EX/WQoGiLsGwZ3yb0H0kRztm5ndBKTzwCqfSVxIhZyB1FKyShgqxbNkBz6somYL3alNQNlzQccVt1DabpGY3Tlk9j0VPSJLlZ+7fl0IQLy5s0Ro35vCH1AsFq7DZ02gbeHKyGOCTkHgDM2KYxnfkreAc6V7wpbmckCxzKeRfUljakAHFaEncWZ2cgWlpeKEgovxOO2flZE2NgNjM+a/uK/ULfMdQZtmnvqtELwsgFHN+JoyFzCSdyPXQraIzHsKcjgLRsM4wY+VCQvoGga2tja//wsItTKTlkyN7daw0odoSBcESeEIgTT4BhkvJv2OqxeuFTjFbMBESYOqoBSkwNZEJCg6fsfuwyUIYLe4m2LLc7fFIlb1XElj7CLhbVY0QycKxYrj5U7jicJKnyn5bc5Yx600CQqQEhOUBQa4garijO9W75uHl098nnGSd/9cJ1IubI5D8bYKeRBYC5cL/IHDAA8MX8xcnR1a3rTJ9OkdLsOfBXxsIBtLSNnatkNqBX3RXconGPi7M98u897j4t9rYvpVgpPEHR/pPx+eZFPIr6U//wxu2tf/L/+A8IUTO0QGpo80CX5Zt2cYFr1+dHk3xqldI6GPsSsag35qn2Ki5VhtdpESIbU3TI53DEy5DYDJpcBJ2kC9aoqEC0tpApWCxQrTl6qbC1sbKJ/+txldqw8+nQPe6NPWSEQqkI+Yn04IQVH0SihGLhYANsYjKkBdAm1cSeEJX8sSSy5NBVaV5YOyMHaQ4yWgmXgZdoEUxDsl+9vE1oCOyQoCWSLxFzx7k3igHcnNjCRMjBhdKDW1U6f3b8rN2pr1/aJKh73GqdHh1gakil04T/cRJQq5KcchxPRPOhIkyNREYE0DFW8JPVQNEw6mGYCD44H3qrdCktOblrWDIEo6AlghAB6G4NkvEaRejoAG1+SRyMX7/ZPzQq3W1LwgdhhMQdl4zgYZiiGVi8VBKbPfiiM1WhEJ/4p/8kKNSHtmF6nJbUwVJW8pwIju2p7EhGlPazCRVrU0/SzPmAaUuDW97Is/pfA1p+Ev+QgUsvtvYwazLITduNBmelivjjKitgPFq36CHNSS+aFdrzB2I2KSIKBHIQAZZ5GIWMybTAhlIkiXoKH5h7w7hsoWRyM4RMa5qOcRDjibpA2zZn+1FDlzyln/NB22T4ptNyftRdkrKaF1/oXEJUVxmnPkhq2YD52Z61ZbRL4rf8zjA5UmYQHl+pVgMiHAoFfSERmCwfsJUJWidFqpJRwuEwVOKJICORnRfhAG4D07itVwYvkKhLQRvq0kgENXrXPDRjYms0o/Nl0n2MTWLt/EbBANjpZUunW89falmztltMCMH4wClBkX/qh10ReCxDE08zOQMMTSwXUuDU40hpUsNImC/vUU96GJIA81TizrCPrSwPsNAaNn1o4OivDJjbdZmXyUQCothlUIg2jLbu7fY65yKF9pbGFDUzww0Zya80g5hme9O17NZf/PKvUS+TIT8nodiwArBjD9W0PFvrWzuXrsx2j7LJ9EGjSRFG3IuphUTWZaNDbf3Y4XAWzMAhbDgFxgdNmED9GSUEIvVOm+ryHnJREaWj0HM9hxnIH8Hfga1OFBMz2AnHBxvRZLyzwLff/F7jhIjZlsuHcaC9ms/nM+lP733ENgEg4/R93Dw8/uTos2dpEptJcQIPYQagD1yEDvRJ2HdQLjU75BFz+Blkp6BxwBfqLtis8B1AQF3CTqEESsV0OhyppDcTIwziwiItFUfIg9SEpDg2DnqnkdVIZHWteFglaNnWUCvKCmvfBvYiIL/zje/eunidZ4d4pbqmpW6pVKrh5+4lrBV551YWzOZwVus1HKcIwhC3LRRBoNphIGQ6wLmHQ5/5/MxH9Sbf26+8Di1Eg5Fifm19+yIlAdgkkYy7Vq+QFhrJiZZE0StAHwmF+t0Rq8Z5BiNH3dchJHghHopIQPXQGhkmogyZUUQkzDRNlSaH68pKNJFUlIXXf3xS3rl4CV8zywGwKJ8dkx4Zx3BgFvS5EukEQUiRSIFTSWrSHJfP4C5rW5voNlgFcTGgcll4PsMipIiV4YgsGkgFX59CIKQoAP6GtNoCiWREhOL1uJrMVQeEtVmitqGLJCxoI8THDsYml2+iKpphffRFRKNWmIvNVV+gGBRqqywo+bx8RMyR+Ur3MUREV1ZDEA/iGC2Mp4UPXKAFBgMNk5uAjvgjTiuRaQ+ozy971fhoT0+yfCJPRiXOgarBTKRTyqL3JcNBdaB52/oLDZfIyXcGpX0JwyFghD02mTtnit4agfWMmsXjdv5pJLyWw5TIhN0aJ/eQ/CQai5HRTfCF5Odywvah6vEZeysBg8CEF/JlPGaTEaSCoyYCSYpml/MRazTmdM77DECg97J3jY9WJLNEeMIlIwBbI+EaQAS1eBYoa5X0nF5SQ3kBX+Cs5/koGGofzv9WmtfHMRwDptCgHut1uA0WqhyXyAIUJ2Eqqpq1JcUZ72FCmwGsJoWGInu5+LDqz2n5+Mdqw/i0J+JpoQqLY+96g2r5s7ys6YlSNCbxUg1PsNFXgZux680Qzh6zi0LT5UWto6EAjSBjrQkeRvPW84YC9jusBjSCYSzXEmsSOq6wB4Bwo60BABSooA3dxNC5rJGqdw2HQfIX5FLMjsahX7WNE3ljAwRUnEjjs9/v9vWI/U4jWKDQr4jYoL4jA9Q0FpNq44QcEGi7uDOe1RvNHmekso3AyzJkfE7ESYdy6+YrJF043n+feVgXrL08hQlDRekjMFkIKvscqIgfJf4JQTwwp70BlS9gOGe1ZrAQBigKxGSUnA04BL+Apj5sCyinMnThW8fBAOk1e7Osy/ed7/8ADyKSFnIV6XhWKSsugDB09BpmAn4Qldlqa2rK/CU/YtkhcQqU/OWAjHu4H8efTtyJ6a65clxzukE0qeyBQBa4cl1qkK01qjFCxDNrz1u/ePDblZ2VtXwBLgLlAyYSdwl/yE/gi15YXz+p1CAJVkzA5QamxO+uBWkGtta27fiDmL0IQFl3QvnV4l/99t2xf4jRtT8kdRfhu4Nff/jujYs3tvLFVCwGlAQTzi0o9AL/M0cgNAPttybzAX4YBBn1e5125/333/vaq6/kUxloAmWIkOm5gwghJorcoP5ohM0zolkCgHUx1VpnniyP0FQksJQJQkkRFzBiyUx2hoO+ra01aI0bWZJmu7e6Ujg9Oc0XmBZ3zSPREPKXJCBoo/hNmYcoA5RPVKXaQHJTLToUinR63fLJGSftwAOaByWyuSxrKNeQpYeJbSek44tq5RFkqwAQZRCCEZC5ElCwW2NOhLm2ax0UYdaI+zwBymu6Ao5fOiExBlpypqsWxHdZRrBaVCLchmOoF6KakJGwKxA2EKA8fSRGzJXqrsxDxNqg9phqhPMeOvOEjKRe/J+UQkhsmIinPtFkqv7Ivkd7UvBePsM0rlz24lyEcqLYQFxgHj1jf6IBNho446JkC2fkkUR0FJueyaJP3iEyMc6mnUF//1l30MP0qZ9sRbQfpQ3Daq0R/4uw+Ccc00+0J+YkKtJEYcPwPe4itz5OyRyhI2Xj8Rg2dAl/nkInIwGtyx1ORonb6XRqsrchNBazSzsXti5vk/ZdeyZhr7CZv5KBtC6mpM9CbxuKEEjfQXWGom/GJG0wJrh0nVFrO8V2RBQo1i5jpP7TM1wSI0bYab7Yr0B14ZuoR+uncH1cEGATzBmshcBgZARQc1rNMFhQmA5TxZQhTUSbQxbf5BUp7CkFi9uJGIJ8bBS3pMxuSIXlSarJZjozQNqc+MhgmLVgrZFrbAI1LfABjsI7t4NfBm09qW/MQw8JWCCAmtI6qyHdxlfNaNmyXdRlQ1MmqSVWm9zHS+sg46+gzJjVtTUAC2MTCpLLzsAOgalo6QUrvWuh9DinpBIaBgAGQ8dof7BywA/HgESV7QarCoZm2hO16EmwhImajsNPqPMU5iI9TqjLIVx/gUejsHW6iAWCVy5eXF2/RD0HzCBvv/aVD9+/R90wnMHR8dl6oRPYVLU7we+FrCUoPPSBeQovYYQ2jAvXFNbv+VEdWzwJF3UG4g8gaTCG4+QAXrB+jBBCwrDkxY6uxKXjer3sHnepwIdbzhLJMolcwIsP+MAWXfQNtFAYYf0eKiViPh5xlkXeRNljvGxgmK7HHUtyfhkWSGmFTHm+YDwer01adKplA5dtgy+4Cni6TV5yQW970b2//6yQW1F+B/1Ah5oa0MN+c3Pj1hd3ng7IvyM5jeVVeMh9EFsO1+xwDGs4K80jDCLIWfMi8J03f4ALFyZukjvUWqfV0jHlw5/uP919vpvPZDZW1jOZeL3TXcskupNBrYs/2ZScGGFy4oSw5uFvRxnkBYWdm63mnbv3i5nCWq54eEJWZA5ZhBRMmo0yBx8wUKZDLDGeaZgTUK9ZKSxAEAHYAL4ZkkrTFFNnPrBW3LFiga31PDlFgQkerjrj8pDDY4iIgV9Q/gNuSHgy9MqMMNG0ex0IkbEB11gqwcXJrAYfabWb8McImTkWs0ajSTIoylqBCZAhfHjYooycgMXL0FVILO7D88SQW2b8rSvb//P/6d8upjP5QrrTwmo1pDzOZ+/fu7xzDfDee/BxF/ekWy8Nm70Hnzxs9gaDngwDzFmMUjQoaccqQgTReDAa1+6NWkNyZJyNOOkKJgnhpmgL2eSohOvGF4B4Og/hKWxjCUwGfAoNwF8NvoLuwhG7u0L1O6LzhaiMFfUVxkVcNaMmQIYgeZI4KKUaTBTjFiFaHhf2Uqm0CBTTH+QQznkMMDQWSwInKJ4UF+14skb4//PHh90OmZlF4uIGxg/EwbRVAalhaExI+KWXmI194JopfSwKzEZqH75D8BNKhYFpQ+x3EnhstgNBtBcP1RkBBTfTonTkhSuRiBUKOVwNdf4miSleoh7olflIfVAXumgDgXXZwon7advBsOy15IbwfDZT3C5KY7h84ikW1ijIvvEcjEjsCDbIU5IaTIarFnNAYzwoyNGIbAVunD2sERGSFDCQmCjNDt7XdAL1I3uR7HzA1QC+EgAdTW7zx/it6VDkf9R5HZMAhtJUp2aKlPOZwLukbutbnS1pXVQtUPOUhq93NSCatj/Wnv3CDzxmw1SvX/7AgHlGd8jIKvDxkuaqx/WyG+2v3s6bgs8DFHsp5YAHx0H4nT1iKwCx2HOy9WkktKIPMHdJFj4BcKpo6tCOhcY3U/ezShKUGp2IDcTKZlLaVJBWbTJiNaAOwZPyv4FAfnWFuorkjSYJfSEWv3RpA++mSoPEDSNfGPMFlgfM9Ar6FYPjnBqURk9XEmY75cBOp/MPTvOwCNEr8S8TdLlfvfv5peJ6Pr2FaEcE8AvlP2qDJqssfEbRwtzqxcNI6ZaHLvfAHcQLBOyTFZhpEpfrBG9dvflXH78rtBM4WTg8hsww6h7pyAX3VVwJBUl0OB1cwJPJHBmLOrTNSFh6UHp9fXO3diB4IDSEqDANnhH2C+4GLdkOvN7ds8OvjHtRnyPCB9jQrm0led/ZWru4nj6onXE8OaPOEg0DfdUQCVzduG5jERkIr6Fh/mcslobDOw+EnEwhnnCvX6RUCHHLnU7r5KB059FTJ+65v/+i1qgRU5VKFjezadx/Ef/o8rjFq7A2R/DBYDqVglGShJRsmMNRiyTE5JdkcWEXjB6cBux0jd/ojIMR+aYyT5GxJBIcUnYW4YIIWBAS9EmiulJMgDno8pyX4xPl9mMuwFjM8pFCBl9KvI8UXAZPIakO9XVwUKEU1bDdcaJRnTiFQhwDNOttuHA0HOEAHJ6CeCX/JWuNRaLdboGHLAHamDKxUdYYm6Fw0ihqSQ1C/nn14Kh6dHbz4laciaVJ0JRgB536hj+XKnbb/Vo14o/GL25uOBfcO7n47u7hh+89Krc67DxgByyoWAtIwOSIpg3DIKiWQOJwxIMWA5cSNlSEs5MD2k/IH7EHbnI6JP2LSJDTKnFalBlcv0Ao2DVhGEMyPrVIfIJcAeWgH3FlSI5TClgMh2rslNmGg78gIyrXIETJDiL6pNEgGgJz8lP4glAzFhymq2LDkipQHnHbw+iqL+XGjarSb7MbJvoP4hJ2AxnTgA0u2lVDuxYuCR4ar2Ctha7CXFtGfYDKYQR68QsbAdI7mnu6otxxAMNdgZy3s57MmrwgYay/8rNRATtR83lzLAnkAQjF5MXB7XbIDUqxgwpJBdCMy0sDCvezwWNAhLnoCjPgR3v4fIAaEj/rn6bHtgw4apgMXvwNvqcGQQ6xcixuwloRuIaqjhiLNlZoi2hn1FzmCkthy6m03PpCy2AVQ1EQFnsBnG10qqdx6n9hPMdM6JdeVicRcZAl0CcLAdDln8zPGpGmLuatLvQkjfNN74KD+ue65qdL4lC6VzsaDZVrvFuX6k6t2D+B00xv9ptuZIFpZnm33aI3NaTm6YkbwDK2P9phKBoP4GqLyzOiZQ1MfQMGs1LTu5i/pgksmKT2uxj4ZfagbxrXyMUaQNj5nPpwtqqcRvKcTIMoPqwL3pfX3nzl6oWNWASTwtjVnaWTDmnQE9H4eNTeO3iCTlpvwZ+5WaKOU2+iF2YDpdTkBfzZyerICWzDeIVdnZOsdi8bCr1yY+fJ4ycbxWyUjL5wSq8fHvGsug86gDv+RQj4M8UheiTP+n31PnZyhsrINXkt93T2+o3Xdw+OXtT2UE6ZLUSI6WLShf3CsNnHC5u4jPs4sOEZ+Yq6SY/sTHBd5EhdZDRfzWehfLj5lxgoictisOo8K1BB5sgS96zUKu9Vjm+sXoRtQruCNADHv56ANf9s82I8tI6tnnQcSdfEkeNSIJCNp67u3BAXVkik0pnRFCvGOLQ6GHmVfpyxS0CFfWzXXYlIbDW9yhZs5Op/9OQu6n+vPipXaiFXMEyl10BwMGRPgP8HlnFc5qWz4JrVnQ6iyeDQL784tU0XoMWMHQnJjaFSLbWhqosENayJUnUZuxcqEHYrCAnfA94ZkSqUjAs6UbRA8jTxNHG2flcQ3wGwDX4NIuE6lc7GYEk0jCkWk74UgRlu+xFkxrRhKutsnk5GScBZr5ZRv+LUHkwkqEnSkxfQmLBEkitgDyAdLOMBMpNpkw9GdgI8mKgBeTy9dv/xk73X37hFTKI4EVn0iIeKkNfZF8sEkjlvo9cpN/YTsVkq47vsKhBj9/yQlNjjeqeDdguP0Jm4yUHQnzgDMj4pmROVdOByijcX40a51dKQeIbkBZhwSJaPZYFqtKEI7AevYJj5aFyZDNv9TgsrDMZ80SOtS7PwEdFCLiiYKOGxmIbEafjfjzGaE7gFle5IjxZyx+FHgyAppwnN1iaV8aAqKLoNJZ9kGmR6Gw8W02YkoSAsPHVlbNQAWR3xFBDR+ABfpM8CNMSbEJQlYjhCVqN53uAbcifTD3SEloVLGEZC0EDKtR/YMjKKdAdbhPmLOMF/O0Rduv1BDIBeaG6MgWbBEplWwH07oiFGZclZbCDSJI3ZQFHyZISgxOIwyso8C1zFd7SqPMQXEZQWWhxMUpCZ8Jt45pdKFRfBNOY5HcuWCwNjssydVsTRNGebI23a4ZAI3LBFCCJehCmENrEYEjKFM0ZP4eA8S1gEZENwCXChXRQo3jV2DUR7EwK12K0BaYLVQEdhNeRrxCEY06i9aEtMR0PSuBmdPut/oG2LosFKPul2jU0roU+MWwOjK27XI7qND+IHywW0DtQT413eCsxYLr5gXu8DOAgAyhdJi/3b2nD7UvpC/cIOAL1sDsgrRzjwRFvlKE8mNrWrlgU8ygvqEA8oYiElsw1mA0bESrh7s+nmxWvf+9b3NjOZyag1HTbZGj9/+oBslU4oTjhlu96NxqPzszoGYp7FnsBBH9oMyqbaA620vUJNIJgZKUB3TFDhnelUUoLB43vydJcwq2g6EooHI9FMtz9b9LqEU+FDy6EwI4QzARrIsT3uDufToEuWWGtHyx6Ye3//ez/653/+z6u9tgKv5vNYMHRr7dJHj5/2CYkTbAVSCJUTTHgsWtle6ey41sqQU0YozgIt1jL50CI8HHdRNdA4BE0ABLDUOQ/b+RSDd7lGw94Hn723Ek1Sl5tFE4Fw2U7R2PMfnw33Oi1WxTsl9yeWEoc8A5R7bHayhE3Ikq3WYP0MXP5PaHHoG6wgaICizlhEhnBCmAe6q0MK7lAYMzQIipAmiIJMoFSI7rvOqnu12tGVtY3ZkGC1IOFAiLFOp713VGtz+IL3kuEeZIJKZyDQRl62Nlz48foVb5H3MWyR9WG6YDC4gsGavmCYqUQSqysv9iPMhv+pI8jK2iIKayAMdMd+34cVBbLhpGI8qQXCsnKQ5IdmwUzcqwilhpjIPcZSYxtPJhOxabTTbrMVwBUNARAjdRKZZR3KkVPPuIlyqlxSIJ+4nRYOSBkD8jx5clCuNtKpBCYMEB6c4gPJhfyhqC8WbdQbk36TrMp4CKa2L37t8u0fhJPsQQ9eHHx65+Hh8SF1TLtk75QHnofKKmAW89VhgPBcxC5KBBcYOExwPmMrxqE2+U0cFHZTGom+mFI8qVVtV+qLIf0QdYGQk+YFgEAFXOmVipadJ40AE85wAuSHRvHnfG2uMmw4MrN9mCKtA6yBhIY8nOVTRzt85TiM2BMHfjIYJX1hx5k2umOFyMgyK6O/3BlkgRZaC5fw3NHiMRejee7jFzsaAP7cslwpdC9GR5peeB2qgPCMFeVEEPcrqMLnkzlOcabcrgydmQSnAkqIK8QUhksuAh/RglQqtCvlfleOdhw2iM6BqWrFAK2ULYiQQShvAZogPAg2KnxHzRFHBTcIdYY/0jUfMQ5I8KKUyTBlbIc3GDhGMyBiAaraAUAAXBc268CXCTFWgYBe4SPijjykJwQOiQeEObCQrstGVSlJYQ3CbfZsKEXkwG+39QwdYJBFA0GXwEGPrbUiclkP8QA8FNz4GTIraT3QEjoAmwPGzFLYw8JN61YcyRKH6DIviQStk4EO4IjugZ5GLYak3/hPAOWigCv004wEQU2BdniEm8/fxfyZLP+63aa29hI/YIzwT3BSC+CvZLsko5oVB1cDaoP/pg7IGI7Xa8QO04zMUIg1RkgaM3LhUgYP5NIlYq4IP0XxcE+z8ej3v/ryStRNEk1fOn564hr0PWsXX213W6NeA9dCJ4xxVPoyIOcDueZogEp4ku2EUqFqjvSFQdgUZc2E73CcoKRS7CfcPnKSkOHWzmb8udWNS1d2zo6PCYcHCGM7F2M5kCQoUe1ppzvpx5woVCtoCTRuiuHgGv0Pf/+P/tm//9elTjsdDt5av/id21/DIeewXVYpGQ6GISwUQOpAscl0ubuT7sHZfuHKa0x8CXUsvcVcsVw/nCxIj8raK/cwIpPQac3N1kLABLPdnqPS2af37r129Ras13QXnaLzKyrsZEr5Ac75UMHnvcG0wXF0WRmt9/aev3nzK7evvu0EYjTHumEnwNom5QBF1KxtQnp6NL8LWz1tgKHNgCSUqVDUJAOK5lIC6yLZJEb9jdw1HG0RDZwqMExYZGvQ0vZHXIAm3ejirI9wQsZnJEVgyJ4K8tdWkGtcVPgYzAUUAq8oRbJaKJJBiGFKTyd8Be7PdkkLavgmZ3yZlUMRGDEGQ7Lwy0GDaAZceRaJKGZX7AiQEonb4BWcJJEeIJ/N1BuUs6zi+cMcEvE4O3Js8NVKhWBUeoczSPvFe11FyYUtaA9aYCMADHPHh5VHDx9d2Fongx2kCIRxi2VMkUA4l1r99MGzXrk1neUJ3cAulSni9pJIpdKba5uvvf4OaaX3Xzy///TR0ekhmTomvYE2RAqChpCR7hxzQENMS5IZ/B242h4vppvAbBzAnOYlSpyZjAbtRouTj+lgYCgiHwUYstJlLr2hgTSRWUgGnYS4AxxVUZvdj7zxcODjQ8MYus/OqrUyOpgv6ASDVGDBLY8zBrwafYg9rT+ihbrAZPsedF2xZLhHeiW3eJMOaygdTMY7MQU0INBZywebY7dBNml2XXhzgqQAlhmJQUEioA5SfERgP7HbqiGJwGZXCng5z8NQgoxCyZhMy8hZWCfK7tFJaf/gpNVsmjIsfsoyiICZHC2CBtC2LnJai1bFVgCGLzM6bFdjE59CyxI+sQtCEoDiQi3aF4cDvGoDZOebGJoRl0YqBV9UDVZqIcBeWBC/QoEMjOLycH+e5Ace0720KZxcPiolRcJJiC7RwW/a/CM2+KSXmCPGB2x06kpj4u+5TQaTD9GGRplSCpg0vFXKEgQD7FGdwE0cEvmBIoGoCEqgSPY76VeqCifi0KpgXNKsNE4gLEsKaEPfDJHvzI3vXGSGS0CJ6euSXjTBO7ohM+CabtZvvNS2hixNRT7RhBPbGLGFQChiS8omo8cM+pIGklgQsN41CBolQ7eTy8V7HdAY9NViazjCeiX2CzhoBnICowgxNpz5wsGEEwx6vvf1t65urISdQBQHD5c3t7pWOquR/DbqDVHIFpUwEFmQKJFTeLm4ADYOp2WRYCdBPBqmex3bCCWQn8gmk8eySpBmqDssFNMwonK98ad/9hfpTC6RyXoyoUYTO0Zu2K7D9DVnUgVQfBgTLs+TC7PRDmY2KBAHIi1lDkaVWX8aDcT+y9/7Lz767M7Zo6cvb97EAvTaG7cPf/ITUTTzZJesjF1KK8ReAh3//oNPb21fdEIR9nj8SgKMCEfNi8X1m5c//OCe11FInVDM8FSkAbxYRrOTjNzzB6U9Ukmo0ooQTNEFZKvlczqR8lbZavAs7BVME3JCoZ3Z8Fdf/PqwcfqDd36YCuc5f9XBHl2wONIWg/ImpQ8tI0OVegNvokNUHYz7oLrwGc8VnNtsxYA0yVc4tyQQF9koA8V0Epy7GuVSu94ksgt7DB5+ijwmPjBAzk50lmnY74BC4JOIjWNbIadCcFEKuc4SEWSUz6dAfMdxt8le0uqRUzqVjg9qDUasSUlDYNgARGDF5sPTYqGGyihGhGZCDjSfz2Wz2dz+/mGtViusrMRjSdyWqpUysX6XLm1zoAS0UfnF1vCEZb7YcxkkIal+hY7TwlLNs4mDxBRXG33y0aff+85X2RwxGR5gBIwCdTKbLHI61WyRgm5SyMVxuurV2F5NwyS+8pDxzXPl0ublC8Vvfeur7J5Hw0aPTJiIwdGo3aw1m83Dk0PCLDjQkt8MkVVjqsCwnCIRlpCjYTRHkaZ1xx9WyaYL6YnZCQFARgavJWN9iNThKwXFhl2/N4rMj/sRqyFC94boIA7lzB5/8TCTj+ULeScTD4QyAVLywImpFxEPOmuZXndcnvf3SHaXGDqaJaZbb5QTCzwzpnMqQUsFN50aZsdhZjJXiAfCPaxSQhP8HhS/DhMUp0VEMVZsWdEwyispoTG/tTuYELgGfxD/IlEzFm/mhZrN8QU5Ash1iIcZbSEvxFWWhAA8hAOsNVfYM4G/4sHiaEJzHobCtV/TD+IBoCydSL0wfD7nOkJ6gCr2i5IpXqjxSVfnLr7pae4RiNUvl/gjvQivNu3UuCqYABXGy8ZXP+oWtctvtltR19YUkFIjrJxWky45RUEF5LMkDC96BlbMC4sYLSHCoAluZyuHMYwuwDMQSOqM4pBRK0I8ScpX2QiXdiHszHqJu8lMBA6ocI00cf5jUOA2PJFODaDCdPVv87LJMhuNzWCrT9oaCCK6KG3cJsg3bpDAIehn1BX7MzAAdT4idwCfpmo4KtgvWzIgqAUaxRoI/QJCcQA9wu1MnTVg7dmeJuPB6VCJX7ljMMHrcnHx6qVLt3Y8DrmhMWe3mQT0g5zg9JE5k+HLFfL1yv1UOulzThaTABDg4SDZRpenJ5zbKLsOeoNxHFbFgA/1svRUoiQNAGFLNNsg33Stkb106eRo7+kXJ6EkZ3QzAmZRnVB0JosA8aUoIWGX+/3330VLuXz9CmqpIbdQS5Ch9p8v+LW3Xh9fu4nDBPbVi+ubG/m13fIBohwlhbgypKcGJr7sP6w1/4d//x++cvt2Mp5ECBUCxdX0xu6DUrtChGtUeXVE/1LUtQ5G6PAA5BpGGphgqVc9bVcd/5qEk+yIYs5oFdGAQ2yKaEFqJW8Mjk0GuwnFljw5eVL/y+p3Xvvu1sZNeYXg4qojCzEdrQ/9Ye/SCory6BUoMf1wND6vcoJD75KBjAmpKOdC5QFpL+btuSuK7MrGEiuZ4ui43mnMfGFXc9CXx+fEXcxmQ0EvxYKk9JMFG33FfCpojnEjooWZsAmkUIDwLqwNOPbACRmLW0LFQyZhnqXAJ6iNIxAbBkwvflnvdDLAtERI/F1SJafDjXo/k81QA7lcrtCUChCRGran1CMYV3FGRKlCU8iTPujFHpYl9FP89CBMNhMkUTEnIiw84lwsLjQINhs0/Af7NVg34c84ndEywo3e2ToQmUeaEKwnsOr5YNzzVYmaGsyrVO+hyhupOHCJ5KyX7LnUtqbiO1kTpc9hBpN6RyGjYafLfx1S7PVHvXqj1mpVh6OO+C2oMMVQpjUC5RFX2C1gahqPSAfbB+jHySLrhjlRWbhDVG3miCECvwimHeIinFTKiUUiAX/WG6DEXpxQrn/y3/63g5nn7//df5T2Lw3U0C7JA8ftfqtWKzWbs3rD3ZmFu2BhJIBxrE3pZ5crGgiGPX0HZAEicBO8i2CJaMOTdmfce/PNV1C1ACCFJykbXq12qHiJtxukzS2ojd1252jvWMliu4qTR9lnHWDxSFp2ARx2wPzMBIbNKajJ4PWHCgOHlFyTRkO/MFYQQUxNKKqLoCN3cQ9LRmSieA/Q4fhDaAxmG1MQO+IlziYeIcEg8jDOD69Se+qF4zvDfN0ttsx1Y2R2I5ZpqWJgrfQxe8YeVY8aoJicOoHQ6UCSaNmKrulXmhavo2MbjD5wmRGhueoKD6DuMBOuwSk1dj1l3HDv8JDdK8SxUshsbmwQuI+esnxYLkeiLSUV0FzhgkgCWa75zE7cFDofufcwdWlo8EJ+YCoiHV4AUANjyBoFv2g0+kn/pGAyBnuJ/lkMZSzWwZX9p1HrVl6CjaSOWtY1/i7fBCmJNtVs85PtGLGiEYr+1T5jl6uPE5gMqTSLbrUg44p8McPBwuaG3wmTgvL/S9Z/NsmaZHeCX8qIzIiMSJ1582pRurqqurrRGmh0A5jBiAVGgEvSjMYXa9wXpO0X4NfgizWjGbk0I23XyLGZ4WBHYICBaHRjutEa1dVVXVW31NWpRWSoFJGZ/P09soBZY+S9IZ7HHxfHj/Jzjh+32bMjM+j5YL99GDDmHArZSdvd3raaHW7LUm0/NrWJldh5AwbA1gp3rIXFfUTLZneOhk2XitekAGpUbDLRaO2lr/IcfO87f1lrCtm6ONzt7mwezi1OXb02x9Wnp+LmhCW0L05bJ1vv/tH//NK7d//r3/9nNcsOxpMoDxA10te4qFG+F1P15K9/4avrf7pjzaOChMEHvwqyepuaeNLd/jff++tvff7Lt6+uSch27/Zz9UqzOyLvyoN+3HLmd4hf8NKYCy4m5iGglpTno08/uLdyAzfE+TJxUOvifH5uCfKYncxl1q7oJdYes1bi+EZa3b3v/PSPv3zWv7l0t8ZAYClJIpHGHoeHwY5M3pC5IIHJc86qhv6bLdpIvIUkBS6uhYmxNq11/KzG6eFwyokxQbe1xamxDT5OG4NFEOrRKF23ZMGWpO+Cb09sji3c0CxIEPZtXBol1aPo8EGK5NFhFtmiu4Ve7LrA9hSG1Y7dZNeHYjlTGsIZKrFuax9/tRzRzte1SVtiorPB1tYuNr20JFXQzO7evuSA125ecywlV4KHMN+D/Raum6QdZ50OTcGx6zMNXkr9wfK67Q6wFkoIcMwuSqpMOb7FLu/pni3pg8H0uHMiM+3jzOXV+e5xe+zi6MOPf4yK5+fnmosL9TokmqqNySU9MjPbXFhaiTRVE/O+LdcwokMlimpAMs02G9evX7WW1SriR2oiXQEtAt/5MKfhTcKu5LhK6GRo0YOoxwrLI1n/mXS/st3CL3oH+wNneQgyFgtaCeOi+FuZVv7b/+a/e7C+UZtbki72mDifHp1rXq07PMsBHycH7b1j50184Wicx2u2Uj87aT16/PHu5i6Zjp+Pk8uWQ3LN2ljXPT1oHW3tHf761776zS/9emXMbpJBt3tqt2Svd/Hk2SdOvWZvp/bMzpu6s8ePNiampnKUF8B53FEwo/zd04IrjFqvsSl+gjmOmVOSrSZnMJO3t6BnxK29/ZNVRr56VQwxLBpIHnQUV/BMo+I4mwcfPLJFQsg5kUAaYXW8JwCAgWHarGFCOFibrfK2nu2YhcBx9KLWJC0TKiLeXztWHdas7iFZsAueJvKeM5lCFLqK5hM6LD/JDXgY6iwvxUOLLoB1IVuzWVhrocmwxPKsenwqEEq9ZJm+oIiI9TSpHXwq6xTFVlaWRdpJJmJe17f22C4tqWoC59kjmQDxUKuR4ABBkE0JeucfF6MaFBZYwZ3PQWoVBhjpO/Yw7LHP0vkUzUN+QVG/MgxFMph8AHKWF6rodURiZMjGmuF8VkF6HF6lXMZo/GWMgZlvCIWF1nYnYMmlXCwgyunPTtZ2dropptuEOC2Qx6uTc2wyE9x6FXZDXQ7NGZI+yG7aP+ocCeSQXr4vSNNeWO2ZdbiPvvRZXbqqLU1jyowe6RxtFz0xOpEJ52cC2m1n0hvJc4hRP7NFwIaADHKsIzvbwtl4Xd4xDJEDczxxWZOTAizfefTpN9Y3X7h1O0Ywz0eHJUWUiuMysjn9Hbl2ZfX1F1/5yTt/k8Nz4U7h1CmDktU5aV/0+N3nry825lhMrUbmXrp9URk9Hmv98ff/lNG5PFPM5wmYBq2wgIA3qe3GH6w/ef/Z/bWF1eb0rP1JmfvR8eXmErXydIRiDfdJvDwZJcpzGBhqG7lggPiL7//58vwvv/K537h39W6Mw2BapiNPGU4pbtotVTw4P7uI12g9810wG9thVkJb/Gydke78HD12Ckvsnh3v8i9Wz53mM9iR0IL7ISJLy9nsazVRYoBZNoVVlKlJs4FaZGwQDUuk33c7fRuYsFbKO3M1ZUcBLkRpjFiHMMCeQwVbsBQvQ9V2g0wJyGHR94ilOtdihu5gxuqMC/sH7DzJt+EhUGKJ3rFdznjYV53+Zo9bMmLxGDtkiuWN90d6ogumdlwDE80KMotqc+rjbKpmPXfaaW91jg9sVhqxzWNchCYmdXTY2u109jsU3W53/PwJMWitMD9DPjZsgpmt1e7evnf7hefnm83Yao7FN7OcJ/i4kFaCFJAyJd/UR6OAQUmRTsLj5jo+HaVu4nSUAPXFmtPaIKspeBd7gWVSnIBjwjyTzcVqgaomEs0ALB/02apZykb/GEs9c/3G8nf/85+z11Pga/NT9+7de+nWy9WRsbmL+vUl83JKe7LaEk9sOTY4e0U7En2cIRc5djHm7JN32vxZp334zlu/evGlV1euNhZmr2TGaWjOPxqMbu5e/+j+r372i7f5dSccuYQ0qqNEA5WrlrjZSvtgb7p2zgNMBvDelRiB8S9++c25mRz3RPCTHPbuPVt/+taP3jOt/OIrswsrS/PzKzOieKNfQHDkROwPBg0pkEelGe6tXbtWa0rpblkBsc7t0MJ5cGs4gswnrYWmK7tPNu00+NnPfkHY/+4/+4dLjmAidZ31hAedwz5ujJxhLjiTd4iLVvBKQnoChTDELCUCZeRSuFuYnS/u4m0R4CAevuBiXpdkEzLM43kqjHb4aCmQN+NQJRlQqqC/Rf2BB3GVIAKulbiR4wTIkUaZFbkVsTmEhv2VasraBCnBmywKaDXAOj0Fl+IXCRMgDrzMXyHBDABVZ1FS1g/pxbDjatJP2D8ckfdhz097TjlkB9Dbz8YJC1OL3hXJqIoy0GE9Zaj5qt0E99LmPBl2YIAGpzTfEp5pAUhjtXK7sMA/6mzPLdxsOmmMQIuSE9kv5pQFRAT0/rMW9e9i4uikvXcShW6MXSyLyVi6sJLJYnDm6BVBZbwS/E5aAmvz8ODQQp+1wCREy4v+Rw3IYXVA74xW8CA/pCZ1iHlstG1rUkeDcaqGAVIB4vwWbceaf95hzrKqMmWYc6ZK26RXYlgwlyzvML8vvfLGk0+fPO1uc81pV9Ec2RG+itONTNAZ6QsAgTPyMpH+Z2PX5q8K3NxtdTRLYBm5oG4wNTJzrnxsNM5TGxz/1U9/0JwSvjR7deH6leWVldXVxcUFNt99m5lLrIZxBolzOIkWrAm16y32hM39p29/+PPrqwvyIjmpIPOb/mcVkBcLT1rMYnehsQTrygAzc0A3Fr9yFliVwVHt4vRqY36nzVmYFPKOWYEeE81ioTw7Qm6pMCBCrfkr8ImM53SAA5mwNBRiKDoJLBu3eZQVmQWpavlRm4IzjcbMlStrB1I1tVv4ArcLboG+reHgzkmvL0WEDWonUn8PRmsz0gTx9fLzWxHGe8wbEOsTzgQ5poRVjh/JAjI4l042wRc5lJCnhyIZLIfzBWesHSXE1rdAWyXIytbai9Hjn/7iu9L9rc7dgDOWJvwQh0cO8Dx0lqGkBrRslhJECqngrbN3YsAZDJ70nr7/wcOr773z2msvTYxWV5dXeIknnH6I1Qs34O0lT0ZHFpqgDYVc49sYl4/a8qaEqySuxaFXhdxtPD4+PD7sZtmTOJbIPi79HEsgQ0HdScVVaiFstLwLl4IFlsRwVypWFjW/B1PNqQ8e/ZIaJBffefX4rU9/+o03vvXmK28s1maENpkRo1M1zJa/26ZPYSvOyp6lvxOK1nGM83DkdGSyufhPXv/njirKBinsNmwAfzlud3oz043Pff6N9z74YP/gcOA8Y+bZquidi0Pno42Ov/75l5DAtWuzn36y/fTRHi8xHOOZXl5o3Ly2SuTx0pHZh+3OTK06OBxtzIrUGnn+xdvSnl+9saxHZV0msAeaxxPmndnxYHdv9eoa1se+gIHR+X3nLDSr5hI/gcDjE6e3lpax+Js3r+7vb738/J1GvekuYxOihpQippmfjBBuABYpbLCAYuyWwZc88VK/jc6b6RoiClwJ6yx6DXRKHcCf9ygQ7uZWrgfVMjWhtrzKN29hDV5ukjMxzAIqh1viItnaIQp1nqnPfA4mzx38FG4QNB02b9pgsEQKcWDSvY6cfEe3SlCAEysgpNi4GgvJtM4YB3TqOzXknPM1bFF/ChNPNwMNGlDUQXa29N/N9FIItiRQOXZRqdgLMvrcL4XKOFC1R6BjbFlF8UV5NBCNnbQP2PbgSixfnryQyTMdzkLNnswTB1Y3shWse3hzZa4iACWaIQ0om1YSk3nUevbxz0/2u288/+Z6u7uzu3MoWa0zsGUxEyONK1H9CIPwMfLibFwih/FxygKMDE7DfQMp60Ec4sFHnzhUMoIyoe3xFmRBzL7iQBCbYyqV3fbJYrMuFXRs5MaXWQ6zak7JTFSDUuH/md9Iv6jLvigTsIBmiIscfuHec5vvbnvulLaSPUFYZyIXWTkdu7G3c7hQXyWpVBM/8/GIbGWWd7sHjF16AVli0iE+YjVhgC/oxgBA4kmqsHd6tLvX/WR/q/pgam5m/qXnXybrLnbaRabrMzBzj6N8/dI7TDvLCL8spXa7u7udzakTEenyEknkxqRgl0IwU4GyDlB4ZLEpsmkKpyFCDNiUCuhig5o4HW9MjB1ttZZeuGjp7Ll1m5N1YiWSWqJWGT+1Ph13vDOWWwR+cmMYQcwU2gjOQI5IuIAQfeir61CR1oKHONNNR0Rx1epO7Vnd3XZA3Ka1eUVkERyC4klLe4KkLdrEejoJYWF+YWt7R+vVeqJq2OtxsZxOVZ22aJhpzIGgTcuarUuWzUUrayyVvjIum8XB3h7/gTUHOHvJLoSrmgBkpxuFJEb3N9s/+qv3ziudW3YiVqus8fG/DtrHzvJs7SrfPUbmA1o98wBbbvANIlnq1SbFbfa6J+9/+nB9d4fpX0yqw1PiqLHTxVGjzvscOf/1L735T3/79y2nInqDbFWHQr/90XvvPXnY7x3nNDZtgD35diJnsoRGHcmIMXZWFqIoUyyieroq7d3nv/yipH0sd877oVZYZkdPOalCGkyDNrhQX1y81nyy9fTE2oPv8ejw0daT526/MGPfAMxLrniTlGWfVM7JnDBScVDFp7sf/Orh+487h05cnho9hzfXlu7M7d1Yddb1xJyDkXFILDS2gpHjZnVue7cLC0k5GoG5QBarS3PX11ZwITqLEyztC1v60osnx/95b8dubQIrNMUgTOm2MFhero9PXnVQ6Wsv38O3mYJnGjaBn03VBfuV9C14MlM5os4RYBOV2hQLT31mBlLFsjbKbZfV5bF9yCQyagxrYC+r0YLF1TRml4S5TYxPl7WtsllrRgJkxtEjfcX6wb6IfgRJQrUCY3iM2nFjtKKNIccO4QdcQeQwgHwLT1S+vEJXeSA1hAJDxykBPOUFZVJDrpYnho8FAf3+TGVWM1WRrUrId61uMDAtDYScymOxP0U10/noVbmXFRKrvfMR0R0aTiiukVhcJvxrEqnoHwsniERbpjfzb5UvnqX5uZuqSyvqJCjaQomjy8LtsD5tF8mgm/AKDKKv607Z71mGCmJWIIzVlHjMD2GEl11MlRACHEqkuRQyx73W2chpfZxda0KA08LyojqIDUb19C5TePL08YOPHj0T/LLa2jDE+58ktYDz4ydGHB/BX2dCzO9I39YhHioEXC6wYLB1pkuRC8PxEG8ju7tysnXklUws9Gid9YAYQF9cGSf2mASqkxJJQN8wqBhlBZZF2Xr5lVdXV68nAr28jDzgKSDyCZiWLUFLu9smqpK8MBwhU0vIqPQkk2CeOK8Yt84e727dvflcxEeCxOInfPf+J9udDvtEJItKw66BP3pcLPoZAIyhUKMxvxgMXDnvX/R7rfbWj9dPRvrgkS4ZbyaC8SvoELikrjJr4CD1abf7/oODz995bqbq4FrHhfPQYkZFpOFeXnEvCr6dm51q7HYOXAhisw4kLt2afbJSn37v0dbIj7733N3PZfO2NXuJuXWCAS5KpV2YkbI0yij6LGd9KsQmGe9WDFOGMZwRVQOI+WN7OT6V7LM4tezlZiMelfnJ0WkSCNL3rawgKmKBomaTtGD24cUlzgFmtjl57fry0/UtdgazzzTkIh1ZrCdo0ZflKl25sjK+bXtWWx8yb07pcc6cpNxVp8k7Ge4I3LKXEOO2Lkw4kM6Hd9GeeofHf/iHf/Z/+j//72S1QEGSOEmac3TW32sdMFgcx8efNRQRSWWILmbCCX7J6UgZyQwFrFuq5MW8cN5ydq6XIpgABnMx8urLr1cr05H6meZwCbrnw2ePP3YiGwafPPQQ+cyyQDrrfr/XcTIEdZUszN4Ro6G/OQvL0sEOlM7y9cV6Qz5W/JitqHt82nN+spR3ZydJPvXi0kuyWNkyo175xdEIIVh8DMSqJFBGYYay9isIp53B3nn73/zge3t7Hw9KLg9YRVh8svfx5Lhly9LL1z53bfXuwswibZxryQ47dwcXloYshTlbybKSo5n94utfff2ll+9+fP8+EhAI1ynpYaAd5dy5PX0BQMCIImyL9oJxg1Fnf8CUaDJj8v4Cnlv+YS+0Ki9MNxhrypJunIqBCaXjYIKKsCkzDNsuL4odFaTG2yh900BUnsy9wKhaS9XEiFMbJZ3VDo/+CZZL8wxgVUImDOsJpw2f17vSUKFTsApHHF7N9AXBysv3vFBx+alXuZsehrLLZEeQBF38qUyPc9VfmYBSpWe84u5RFXBkbsqlcjfPeCRDLe/YbNA2rCsyRldSr7Q15gD5mRNGpWhPmJX3eBNpV4IIPIWF0TGCTx7wwzGFZgWWRTcYsSJ1RAkrQFZXOhEjQ8bNeEM4U+QtvTJyXN7FJB1kjziTBbQ+P3f2bK848W33zZyNT9SstiQkqYzPVGdI4rGDk578+Fdu3dRBWk+rfZDYD3DCkU+OHz1Y39rnK774YHNL3Z3B2ZWpOVZdq28HnJ2NTdL1za35Rwq9bk8HnOFDPcJpoFfhbRoMzgTOCUU4G7R4E46phKgFEOMlpnFbN8gJejZ6fHg6Ns2wSa0pUlVPjgZ1TgdCxS6BTFTgGk0g/7VL7cvy2Fxojrg7kjAnygLRV6CU2SqeHvWNnD189qD9whtEYABIRI9czM02P9jo2cQVEFJGoiObba/SCd+RpprgPq08njFubTiUVcWwcQXdjssgkxKtRM/KjKRX/gcx8n78ZOuTv/ftfzDdB4t+ZWSaEnUWd6xGI1/QmYo5yK4tXdk/PCCwXA5fYBLPMmZ0awN5V3/10fp0ff7m1fl+e5dqwAwBJNXxkeWlaZY1goHigZHAEhze7i2b/Hl5OXHD/sNqkneWXLQ7j6fPriOYwXY0xMD5BVGJh/h7vN3WhnEEWQ2XSCdPBqSwyHjPDg/3zfXC4kKz4dgOq35pI44wUDOCeqPxjY3LN5UtN4IaZ2Zw0Pp0HTgiRXh0a9PdbZEFzsujNublWQ5ifQv9FDZCH9x81vnrP/vZt//eV7f3WvMNNQEzjRBY+WwyNRHHUXE8l+XekJVLcG/B0Jif6rH5mY8omYkUCIG5ACPHR2YaEqPNmhdCAWrSVlFtszZNJllY6ZLJjYgSZUnOxvYTLUI1QItHaRYSWCynKxMjjz+WBvupGCEhWOM5/xkxEiDEZw60wyg/uP9BjPzTslpOWKvRzdzjVD3qy10mX2p8nmjb0OlfMt2eTw3WDz49PGnNXGvst9sDjvmzkd7hSOu0PTp1tDW29daDd16+9flff/nXbzav2EVvXk87LYIHX7FPHGOw+antxPaxyefv3bh7+/re1rbll1RHTEzGZVrTXjyFtm1BSP0MT0eoljiwEcJSG+Fz9t8V+5ZZCe8MOkf0FVYaVAdgvwGl0Lsb1uqS9alcjAkoZVCebR90ZCQlkjENLbLBlgot3bke4l5hSYBgajc/esIElBcDGpfOpMXCkKHoQ6hKkwjDRGgcAeY9TeYjJfIK+XvI/yB+KDJsKE8XGROiw3tTaPhQemk6Lx/Pg26UV7gNmjFL5UJ+5GldyCsFteFaKedqqSLiy7V8Bxhhwscn0VaKhaW4Xzia4HxkAqBmN4dqg055JWHJyGB7a3vkuF+Fdbi42cIskiOqFAouqjrvMffqGRQI0CMn5VIe74wfbQ1OWuaVXhGvIqHD3I9YoDqHdmO6QQ076x3wV129fX1/dyvyaHzQ6u7a1Go748HTzSePt5z7jH0cSxVlzs9PmgsLOAYTit7CU2b0cd6f2jT2ISQ8B3yHk+GhRTSFVgq0dHAIpnxIbJvIZUyCzkgouGar3sx8TXbLTv+QCR73IKf0GyeP6y/UBxsjE9SeOkLwQBLLFoEKYmBXIEmW9pI7MNiAESaWJYDhBC0Goq3dzYfPHr509wU4h0e6vLKyMPHJJKylAGHqw+lLxZ5ynEMmL4qGxjF/XxBLBF6xFsLV87hUkE9cl0PsCHZFQgS9MiM6Z+7Kva3tT/76R//2t7/yDyqVBSc/MRKG+wbbrdvDoNEebf/F28+/99H73NwGFdKKXJGtbKLT7zsHkFn5x2//8tbVrzhonVUYn8KdZlg57NGkRJOT2dtWpG9yLcTcLhuCYcS2GRVYZIGzgAI09mmdZAbkmiGbb1y7tdeSvt/ZMiAh+ChsQgGLsKA5WaRC+qqH7HvS2ePe1tbZ3JzERHAgMlv5mHHLWlYeaPqzY8JqM3XRnwf7R1LCAfLB/l6CRMecUGhl65H2cfeoWnfcIeEVHqIVMNQ1qINJfvd7b63evnb9SnNwvC4CzapidmFxfnl5c7uVNEf48hDJzFAgzQmJp3NPONOGe6MidoFOglA4qFQY7BGLe3HhHAUFev02SsZ4SUU6C17U7TseK0Y3U42TMcXbHs0vwHYLreitOheiM1nBkMw65mILrBylcBGQRq26kJnuHMVuUeT7Rb91dHB2MjVXba42saazPmICYCupSB58lq2OFpBsZxVZ1XsCdHjJVpcbbYhPox/hzcuGWumkTvrntTCFi/cf/Up87N9//beuVK7oy15vQ9J1RdjrKJgmb2llFdo632h/v+0oVZ4KeJ69IlEaw3hh11HP2s5WvoKgeFWEkNHplDhbUoxdJr49aAa8sIeRkMplD5pZjoMDPojZDgfP4qbYMrLmRKDOI8LGwnajy4mxSkgyTx8zGYI46aO4EvQIxOAV52ssyMBWSI6eZbgFuCmPRMxTCAlRBUWwdHNUCCxNgGFoNnfMSWgmXNG753LVFbOUR1Gx9wyzTGSKRHlUFt6l9LCt9MKT3vOwRbIZd7t0bsjuL4nbNa9C7GnW03nlsRB/fnooTUYrsDiMom7DrPW0e1QaoI4o8I2nLswlUkF5OxXggUC3Jq9h2Et4jH+lOZWGp5QhJSwq9Q+ZVzSj9Jgn2x6u8GKAycBBj0stPhZX7ICOceW8v7+1d7Czf+vWqnOwdrYAZcVSGw2xcx5KR1+pHrdbPJ2R6SenSeMzP3HS7lZZcUQQISdVO2/gMHlhMmarVGscgJLKrdObmGKIJH1jpcz4Sy8BJMt8XalMcaO29g8c7mhtOFodfO3rz99cqz/8YP2tdzdbEi9ae51L03L+ZG/r0frDJbJnhAsj/NLcZfTRlsJlM1WBs6GN3bp6p/b+e2GOXDhCzAKcoE30a0uq87NfffI3164sOwVyrCoyZJr5aYYS6ggyUYBEZVR4dQ2nP0jikYIWgX4WMwWzonlkKgLruCyCt55Kp1LCZ7SBKCa5wFCY3vk39t2f/PDTpxtffvObrzqjxgEx0XjCmtUTfEgo2tmrL7z81nu//PjZQy3rfDZ0RKCGKSM4gZ3OYf/46dOr9xZ/9PFHNjtWBEzCmqBvugorNMfAhfKlb/AoJkgbScCuhQRStXmZ0BrJkSOZHfbjwYDlSbCXgxs58AlnClqWVkNBouNQirQznYUYhf8e9Xh9x8fqY0w602A5lT1r1nZCD4qnVT5Xm/p6IudrVRouoTx4+vQxdLdugOuyRPAJc8DgqvXGjMhWCwvII28ExNIQ/QLOWzZLJPGj77899w++NDahxsmTJL+dXFhd3tg5JDyDVXCRImJBNiayUINIiniynZR3YESEftHpzZayZXpCSIPezt6zRx/MzS8YvioKBcoiey7v32jLvEEsdwT/0KRjqaUAkpns2mkx0x2erdLwBVy2Whw6tFUXimqYuU9qaKFNntM7VD4ipnVpYba1t4+/O+G7296zVdzjzvoVptCzLX38dKvd2trfaTDgDNrLM82lwdSV6aWd8a2tSuf4pN/d2Ze1NGYZDqzT1gdPfjHS3vnK7a/PVWZZ4BcaDZoyu5/kjE7MatYbxvH2L9/f393nLqpNE6snh50+CUkyFRy/2N7aZU4DcL3GnyAOMyb3hXFj8mH94xePHpewA5GNlkLZv8FsTQzE6OuhIlXzsH9hPbA9PCjKqZkIXYA8UVjUtzBut4ZWlYBKB0ExShW2EZK+RDZWAahJzwoplVdgrmToOV9KLUr7mWkoz6ZcVK7cLm24OexBWEBYf7rrfipVBjp6zrfQX6RIak6pshjCY9F/YQGUkRC0wmloWFJT6W24y7DVNGsy0xt30oj3AMVnQFIKDhu67Ch9KlYHB2U5ZheOgEIkQLabxr/aa8tTVRu3a0a8WVZhpe08m66GmREm8DyhlppCNqU/Us6MsERa7htzJhbLivBOfmbR38hzNNtWpkbJoeVmY+vZphwAjUbzqC9fY68md+4YtWeifXQxM7c4RxO5uNhvd+dhrjRwm89mG9WkaMOMjsKzdAaQ0rwMMdPVk9ZxUR9Gm3Mzeico45LwCnxTPJBJaR3jDhMNSOM0RkrAwdPe81eWvvnmVzq7P//F02eGg4c5bPJZe/8P/+xP7l25+cpzL1xJcLfNCpODvkXSCb8KRUEPMz9qPh+RJf+ff/t3/uIHP5C3KMZW/YyylnnAFCyjPn348CczP3n1hTen+lV69/LVtcMfHgruoX2QmwDLdmLquSYwbv8KqsT6EYGUtSQoh/hNK/w3TfEHZl2QOcCqwyszOQWdMulZ6Q5RoGgtF4/WH2ztbr139c6XPvfV21dvqUjAsQ7SAVCBlbiwkjdffsVi6JDh+bitvhgqSCYtaEPAZaX6wS8fv/DqC6znZ4ccs3JcB3UKPjL3yXDDKxBtLPFslYmkZeXzEFUr7E4r4FU0YTRHeZfXAWMT3bmztSlRNvc+BU8rmgwrA7cinjBNto10oUgCDHJEnAxcv0huGXTMZxCEyN6VaN+YJhWyNuMMsvbc7JzMNL/4m7en7Q+4cR3i4qmaZkFydrntCDON+u7WDtx0XI94JI1jEdqOTnU+9ujjZztbh/VrTXuWphJ6M5ibXZiur5/Je0GRMvnlfxQS+3MSPkKG+Eg8hW6vrC0+/XSLZsLWoE5zgQSslLb3NgRKZiA5iUxwFoUUJIT0h5SsEJma7MiCwdQYOE8Fw93Unkxb4JJo4cBSi9H4o+zQeGJBkSYagZQzTWNMCe+Rzqs6cfPFW1/8/Iv333q/09o9nTrb6e3wTrs/Nt4Q7L9xvLNxtPHu/uP99s6kcKfj/cpF9/pcY3Xp+j/42pvz1Rf72+d/8p//9J3ug9651IbRvsVm7p8fvfv0Qwlrx6dcOr2oDqYafGk96wuWZVuhf/LDn/2A9RLTx/9HnRnAnckcwOsebP/004f/8l//If3OCIioBF6NWcZlfS9MLwxqfPzZs012MiKuoE7hayXImLCF9qH+Yn8GiRA3nhSM8TXYkitmIspQ+FWhEsAIBoaQCAAmRqVKSVV5FUpOuPSwolSaVypCSwqWX37mqfx5TIOpJrJHwVim/CmXjoQsiubiVmIqoECIs7TjbtHOhoP67KkyqjxeGjHEVJP2SqXe07foWcNX6tSHUtrl0pMUMsrcCmHiE8PS6UPpULnlXroiEC2rJ0hH8sTAqQrqFXiB/sR0PdtZQSzuaP4aK1tCQvB3lclSsnVBezRZwXxVhtWZhm2IIjHwsL/8yz97urMltkcXbNqqN0UcsBVntmR9kJ3FDvALJwbY3IEweDfHRugmDCsNq79jEy4nSh1NMXXK6ViZqu9JwLZ33KyVKMlUk3kE2zjLKHgQLpOZjSRUOdmBcVHMd8igL0GVkRWooK6Rc0EXOIWIZctb6xOrkWeblSs3Z+7cmL9vPeJ8q8Pw0ew8OT965+mHH28+lCtf5rKZ2eV2S2h4+6tf+o3ZxYUzsoi6CLZ0wrHxK4tX/tnf/4fPNp/tn/ffv39/c+cZF5QsBpESZnJ68uefvvfBxsO5yZlr167LAgaxu72jJKdKAAdCyJyQa/o8nHrKaJAAoRdeg6ZRvwkO3mUVFKZiptN+cDTdDU8qP10xt1i7wuE/1mZOlTw9+tUn7z549PHVleuf/9wXPvfCq1V5HuzMzsYPttPza0urNUn2V+eORma21jcwoYK7Ki9tT44fHp9v7R7NTc0fDbYkkMP0g7w4SXzoOmovIlPdeTn0xGEM1PHsDSRjypzFTCtOoSxA7d1PHrPWYcsSAT0yeqeZKMB4V6iEQdJo5htVh0LPSBIFShfHfLydtigzx+0YjZ229grRf5VWOZGctuDj7Jy9BYmK5e7G5SGSaBDRX/CDDMB22eKKuMnOA67r6XqNlSD0VdZ6eoFXOXt4fX17tjmxuLQimF+eWmcZra0s3n+0HsJDrvh+gXmoMNRYTHj5Eb5FEFamJ1mTmOMt8khTM2MaHm9tTsjN42GG1RCJenJyFsqOBkAPJP8lssYpJTRLsgAr6DhAyOqsPLPj25LKZpLYvihygB+VEjVH57AXT0Cw0DjL1OwYGDsda45IQTx98/rawXL1onq+ObJtlAtUCDvv+60fffqzn374Fq0vqw+x/Zo4O/mbi+2R8fu3Z3/yj179zRcb3/jSq996/2f/r+PjbtGPR7q98/WL1sqb9/af7U1sB/YmGQ6TqXb09dtd2gkvDGYSnWRwkh3K2QEgoFHhhBBAuK2tHTwJoAplnicfYYL0zGfhraI4w1PJOz0C51BHelgMiuDj0Win0XLgfIp6S9/L1nf1pqxS2TehTBQL0C4mlXBNPQy/BbEstd0xExc0P57vcBXlxvmvsgpOxZ4fllCqfMubjhHM5bcK0NiwWHC3IGRwonwtTyDVwnxV6DZ0CJP2LQuO0nE/3fFQ7g+HlHrC2vMRxp738lCKDVvWbB5MXSH9XNTnkCv1cFiZGygDbAKez4oqHrGVisuzeT7YD/+yhj7vf/krX51r3pjJmciyeI4KZ3OYUX0qXN+eRIE0NJYS54B/0SbAK/9ae9uEDjSgRat+irioirJILkAKo1irYt6UBG6sfdjLCldK53PhmOcUMQtBYSfosDZVub6ytN3ZOqVrdc43d/ft0BXhKXY/6bJsOi8SNRNsTcBf2z4mnqIESQHdPrSox0cKgIewBB8jNXSSjjgzvfwiVRMPKpST3f5x+2Ri87DdxCkmxg7jIZReEOpV2XoxudPz063u7t7x/unuM+aLHYc9to7+4Pf+qVRcEUeBdV4ak2x+beXKlYnxF1Zv72w8+8uf/ejZyYGq2B+5lLQn35ntp1v7Wye0b05WwbnYp87i81FhY0mA1ugpa0BYYn7DEDBFo9ZCtIhgifI0qTyQpvPBDWMiMlL9gfQxpATlWG9ChqoPjtJBj8567z94/6MHD9++9atvfuk379y4xk0jJ4E2mjML1jq/fPj+q1//PHvpzuP9giJBKHVZThNP260+t8nI4w5tIGwwaK/JqL06GCngILaESI2VHJzStGU9dGonZ+wUBRmkZU5yJFoG+zut3Po+KzZcyfxgiFg5S3G9MXntyvy1lRlnNpMiLkK55nR9dEkk+OnmdseZcxWbc6VFY8evTPIoIMmAD5zt4j05d6Y5yGLuem/a4aJogCGjr9frMS8mTHASllEiUCIKCOzKH6qDKLs7O7tLp82ZM/keeMZrE91a9bh/LAmryC/zFmMZ32GhOgo6Jz9IoYTprOTsFahUbUTBmimWmSEdHB/rn50KSMAO7UQCt8BUVkCNF+pLsA9jyPlRfWK8nHBcsVRCN9W6M2Wat+7cdYrA08f7C42FmsTZUyMTNXPMuiUFk6Vp1SqMetzbS8D31n7n559+eP36la9/5c2lhaUr1xbvr7/zpP3sYf/p063thcnmlfqiqOwnhw/b3cORyamgfIZinpomQyTOk+7p//jzv7i79PHKyt3japdbQxGg4mk/6rfeeeunS43V6pnj9owA/sHTLBgJt4pARGEbVaMclWrFuDn2o9iMT3Q6yR/C5FzohsBmJOTOmy6ZP7JRw0xxAE/PzK0/2gANzAGYTUt4WBA9KMff73FrYZQB3m6Vecv0RYcoXM5nrPV5AXygD/tzKb6YTEUYHjqieqVOlRQFovifzGyWMiGoYYOpJdQUhPdFF9JkDDoZcy6i1sLbQw/pbVou9Br5EbBqJAuB8jO9ScV+5qiAKImhH5WGZvNsRJNn0pguupL4Cr/y/PDBUq1pTpHSzdKIm5d/GWIh+WGFypQCacT/NF1EBLCEgMvAFHezMbeoV1cq1efvvMRDq3brU6aIDCcPe88iTm1IwtiBLXLdQuFi7LDXsW/NeeQcesyrXLU8LTlmL7kYB9u7B9dWl9mJj7vdSSLi+Gh2/ur6449OB93xSmNje08mc7sEatWZm3futj5o/+rdT4hpulIOeBVp07cjmGKTXR56QX/khzSjcDUA0D1gNdUxN2fmddLVAo8higzsz5ydmVqYs9kkxkbckQH44tiRs8dL40dMHM3GzFE3kdiaKEltK7iv2ZBPh2rbHzsdnx3v1ybfevbBm88+eeXuC4XPxvmMe2spyBBHYnwAK/Nr//Xv/m//r//q/9E941OxgzVQNyeWDQQmlQ9kDC4YmfVOtnjqPlAyIb/58ss3rt5kNjkVznVx3OtLYiS/mQTxnURzZ8YND8ENI7awDrNo/CARdwtT25XVBYGSMme4XqBR+hckMOs2u9qNcfKLD3/11jvvf/WNN7/1za+RmbxC1drsrRt33334/kf3369z39UbtlgVHYW+FCuHtonquUYzvzAue3CAv+Arpo8cKVvUWRvxjEsMFc8BO1BCzEJm8TtSH6pT3LMnAvM9SYUNx2OJmrBisOLwlXbrRK3pF+6tLs85XTqGKKZJEuPQxtFy1hymK2ENhx2dlAHQFNniAfKYu39iqPdaLSqnYCMTLgu0bATsURRntUNPbk1WrAQMWP1KR0DZPO7TZigHZUYSgeieQMH9/f7F2MKTbVmg9yoVe71PFuoTL714R1ocKxFdhXrmOny/POMcmPjB7JK1VULYzRlZyNIfp7vlcM4IGT3rHLfOx9ZgS5EWBW3wVNRdGTthQXESx9jF/Hzzv/0//EFPZEH1mFFuZ3MLRZzXFq7euLL56c6bL2ernczTTstg0TTr1pH1qYmZ0fH5+sz6QXvnoDU/k/i/qZ82n7v93PLMEnV8TEzW9LhcqSSnYzSwFecKwCA51e335b11LSMyU6xNRgWXqwnWfXq0uflsB4YBaPa9RFBhwOI0Or0TW4jnyyl4YkCphA5YnZBPnK/bvJATkDq2tYKcMV5NZIuSL3Jd9PsnEMC8i/qPr4L9Kkv3M+bZxux0c2YumV5yJZwwCO8dKkfOmDcd9Qo/Gob/wRyCN9hTKD4PlCLlucISy0RFYuO2SUoo85fvIYloVfQbsQyn2Qnsdozbrpe1swupJG95No/ke8aWSxla+KyrqacUUF0k+mWnM3r8G42mqGfT6zznRp6KVSo4lIvlrdzyrZTzQH6XZ30oU4qWsrF2FRnoNvCHEofVF0ZdVhkZ3bCmNHXZRB52Y1h/+E7qSSNpbJgiw2Ir7rCzHLfOJEm75ClXiiRCySnn8TD+IQFECoK+gZgtVYHxuNSwWdpO13E6KwIrg/7xoDHbPO7s2SN+6+ainXvjFxUbd3u0/hmK9lln/1B3Bd+8E+1w0Gp1GJDXlusLC9Xl1aXOJ13JaBXIBCUaUh8TuKQ5GmXGBo90A7TLtOhsRq8oHjI4sznlH/zeb63UpxdnG9jd7ubO9s72wdHuQb/z4MOP9x48vHPr7vzszJW1lU732GEirR49sseuezE54CGkb0cfsb1teqo3aP3gb763wj8x0yjGMzDhuLPWxAWj1W0ebHBM3rrx3Dd/98v/9t/9SdnPWOy2YB2eqYOONJlK9KpgaHlNyABCgNlrbHShufCtN34zkC2b3XL8B9CLieKL63e2Dg63drcfbD57tP5Eq5mPzGVMP4op6FCvN198eWlpofVc78+++x3ZVHUIsgbZgmj6VwDD/VerkKB//p0fbG7vv/Li3amJ2tLK1a2dVjhmr7vbO2J9un5zbf/tVomSgA/x00njszAr8pxEZsRLbq+YprFTXKFEASLPeDRokhJ1JL2YZZalFxmQjUzS9dD0pbJgO8T6sf8hehoE9AkSnp0LBrt99epCo9h9OD6SW/lIlpr93cMY/MQrn8vWUF1YmpemptftOhEg2JgFfiQhVCySxnosCXPsM94/aAlVotMxtlAlrF/bhweabqvQljSolhjiEO1nOyQwPxakEetUCRp39jo7T/vyKTRqZ7dvrb50daE2t/bTt/5a9iG4pl0M3PBLyraJGtFyfu5YgG63QnDJ+663kX3AjojGztv7PVouZppuFrtP2QQOa4IchgeNuaG326ftQffHP/7FbnfvS6+9Vl970R7pj+9vHGwcvPHS5x48fvDk8far92aQL23fAoq9rG0wF0cfre98uv7o5Zfu4su908nl2RuYq/Skwp62D1piXq1icVakw49iT+JZ4oPFcQX2/oeH6TA4BqnB1LFtY3ZcTEr+R7QqRFUJxgnZGIM/tvGIL3XgztDeKOs9yc/CaUKs/y0E5es2g6wrWXqLwgRkC9TkfQGR+BzIZiYikkx2RakZV9eWb11d2X56NtNo9k8OEJVp1eCQmhG976H9UHXwWT1+ogQ4FixQ0BhCFFDKhRTIz5QJu3LZ2EA/Bqoo/hHdLgOJG/Hl5xkFs1c7FapuyPI8GpLzlNiYshgxU35SWUoN+hCdItyxMKDSuJ8poVf5S+sZeL6W99SfL6VSzCsNaqT0MiXLt5QZ9qSMJk+4VKrNrbyANSXSg7xSZyCAEasj9QVQpRuu53fp0bAfHs8DaSy31IXgiyz9rHb3wTjERWtJVQFkHonNEgyQdBoNXyOFsSzwybaBbK+NCyH7ESB9ju+ajO5WqfTvPNfc3D766P4vOeustezulj3kUBpZK8S+eHDnSFnhCm+ekD9nxUEuU05TbUMc3ENbuJF0cvoZaCaIhbSmmqDbKKa00uBuuj9cB2be7965cX2+dnHScRZ3rVKbubZ678Zat3d4OuK82ePefrd/5qzgfmu9Z4zXZhdeudmU9MpBiZY1cu5i7pPdswkqDykwMf3p451//xff/cLLr63aC0PDowlNVjrJU3x+2D185rDFZ49//qufP/eV2zfuXl1/uE33gT2IBItnwu2d7DcWl+nL1jC4gHmKWsPJPHFusV5O8ssil0wYSlbss8ot05xenbt6ceP5pwfP/u1f/fnjnY3xi2oGGTTMhEDrV+4+d2V+FRyWms1XX3r9Z2//LJMPQIGUacewKFU0L6vyGP6x9U8fPFzf+HRm1tEyFVv7jkcdl4OljMmhufji7D//Z7/33T/9T+0+1804TxH77eLEWSOhfYK0IKtjp1hsjuqCmqJJJDRPixhM1gfmhrjO6bUVAj5K0NkFOcZ1hDWL4g+aEYaF67lCgacrXF2dX1m0buRHumDR397e/fjBZqstRATvZkwRy3reOzwameghVx4djh94go8LbCFSsBq2F8wf4kW7uhBoPxP74NjAjhYMRw7Rg/19xj1sxIqECYpEwnq94FPWcCVA0FztbrZ2t7pb+y1bivpcV6djz1Uk15u4urT8+Zde+d4Pv2+6gZ2b18aRqbOTtetXv/rGbzh38Y+/+6cP1/dvX79Rma99+uwxMQfkWCeWRa9oH+7Pzkxjgszi+oyNjkr/czI6dToqQZZhWLHsbLev3b15dWG3vdl7Ye3N+cqtnb2fT49NLSzd5mI/PWk15+T2ubu1s7uxudOoTh9s7H3y8bN//A++svH08Z352aWZxfaIbcx0LzlvWEiFDYzuSYPeP6a2EaLhMlQ89tfEVcfQaHbMRTiVW9gJgj8dlabrvAd1RWg4AtsyrPCJsvChxyR256TvsIHxk0HlgjWOGLCT/AL0l1YXzsV79MRniN2MXpSxHzshxUKuMz3VwNkh/uRopcP5PNHyHU1jGx98+IR7pDrRJLQoETpEEsNuYgDeBrXsbYkfgcaThQrVIsKhcEhFCjsKNRXGUPgUyvJcsJ6/OuwoOFcIAfqF1xcpkO9gFaaprgQVRZ4Yr6WrB8JP4GN6Uhho2G/4/pAFhammp/7Sl3DX/PdvaHzwXKlpWImrqUPfU2zIrvO8H6XAUMilyvJSYHg3fSnVZ35SOM2kNf9MqEGlMr9KtT5w40ik1JPrwxKliTSaG6V4uRVSVE3pjk4pG3iDjmHAjkJIw5ozIYHR3zZVqvK7iFJwpiqnyrSe5oeuAiFvbVnisG566sT0CzfmJyf2f/H2ulW8fZbLa7fGqgNHoPLdkRZUoGx3yfwOpBkoImSmlwMlxKvEWO7lOM0RK1sE7AxaUaBEURl6mjQVWe8PVcp0Hee9e/e6NYmNuZwcNhAIs67L1CUULpm3JpdWFhqLizzJEr477RapdB6sy2UzXxldHG8cTdapgee7TKVSqsC9URtb2rsO/aqeSF9Sq+KNnNtOv6hfqa483/yb/7je7R52zjs/+Unv4nikOT8DOyI2s8yOTwaPam05kK8Z+zVkDmOlSMb0NF+zWU5G1Ywn/j84lux5tvDQ0pBswu0XavO/++VvfPetnzzeARORI3qUlDBOLGCWlQfLBDnf8oWrdx5+/PFOq2X80dxodnAEjzZ1LBIj4zt7BxKo2I/meN3BRL874hiCgC+okqSMZwe7O9/68jeXp2rvvvvLdzaebe10GL8NwFYeDzLeMF7Ysk8vaOiWjk7YclUAH2qAXrDAEBJWZydgA9uTRl8auOTy9CqUOZw1GOa5i7PZRm1tbSnbxZKZbUDwbGzttQ673IycubW6QyK79fnpHYlzdzZybk9jlu2IX6qkGhZCXOm3OhozRLVh7jriRPu97d2tvQ1jE6vuhACOYmhRa/IvyBh6IBDIKkX0UzYJJ1dMop9xnOP+ycMHLeLQNFnFnE6MHhz3biwuCWZ75bmXPvjwVx8/e2aVa6RIZKZeeW71St3v+bnPv/Lipx//6UL95u/+xpd+9MHsX/74F4MLoZLZzCDD5s7+7vLiXL3akHnQNmzCS/xCzXauwWFtMpl8GPfW1pbZc7725c+dtnck8D/a3Bnp9G+/cEOME7DYoyfSZmZ2fmNz23GcAmL/1b/+4/XuxepLLzxr9eoTZ7OiV08cDmA/U1lwlXzzYw4kPrw4ryZKm2kqawBQMuVcn0mMUhRkUIu6F/JhZU1wmrVQ9m9goYw4EQaxV+k0e2b/ZNA/t2d5dGIRDUZ6iPGFx45h6p/I4zTuwGMmTwsUC2SLRXtH6PVt4doUETBzUl2SCTL6C8mVEZ7+LeM2HyJGJMt0cy58KLRBH0e6lapIQai9vbXDchXWPzIqgstykMIB1exapdbAqyCmXS6Fi8A9BZPYWjRtVsz2EkekQGOLgLA4hBaOwqpJ9aJ5hgI+Y3D5QrkMrw1TDAHl/pDFgpmac8kdhBWGrkjKDStQAB3krt+FfabeeDVSS8qF1YJ17mGdpVh53KhdTak8WdoLCXt6WE9ps3Q9NaQJd3xJS4GYLnkwhgXlVZB6hvdSLD/SdrkYEJRqy9XSJX1W2uBcKldLZ1K/GVKf/6W3adBL/aWPuEp2/FLG+h71sCmh+4ka5MOdnNza2JMDmr3gYnRuYfb6W28/q0+P1xvNh2+/39qX0UhojiDiKibX7krsM2ajOYOhsLLRyXnqb+fIss1pczYx1kzx9sZOiZfGiY7JFHmQ2PUzGTEiMdpHehlZ4a72oE05GECAcdGFo/phBPZaikWGdzbNyxQ53reqEMDg+MnppdXrsMH2E/FKamnMOGnk7PHj7aNzCUq7+x1HYrXt3dx6+uBwWvhSzjDg5TwVU/Terlg3CWzYqoinwY68xwGwP/qRPoEe2plbXjpjjTjVvTMAk+gAmLPIGDmXcrk4SBOvgqdbCFgG2GnJjINSqFyR9SMj1xdu/v435u8/fvjBow8POweykfFsv7B6p1GdKf6imIMWG4s3r97Yi2EtczRUoDIvCUdEjSPybaudm3H2WpPp2iwrGHtRcCaTrfNnR+drS9fnvrJ85fH62+/+8nxwINPMWI3qLWMx262A/x5tXaw3AqvaR2IKzHtSbMIq4xP5gnzRb9RD9fIOcvuap4IiQb2hrpBQkonRq2usdHYQ60sO+n72eGt/t2MPiS65Xq+NO4xlfrHRas1/+vEjaRtOnCRWkfNneihBcLvF5cX5paUHHz+wglQ5ITNZnyHVNzY3pJl2YPDalTWRqbIOxTHASFmbphhacipcjCNZqRbKBgPeyvqd2y88/PC+ZaJtj51Ou3HTMmSMgf3zL722fbBz2DkJ8lWmfvuNr12bvXo66EDOxZXZKyuNq9dzIPE//ta3uyfjP3zvvt2vrKJiXr3Xzs+vzc3C5RFstlJ/7vbtL7z0+p/+xXfe+vQ+47TQOht1e/3to/Hu072HyV19eNrZ3ukvL+DOrCob68+OLxYtUPhIfv7zn0x843dao9OH49v/6Qf/+bkl2boF47S3R442EU9itcqsno3QG3onDJxtrDe7rLKQZkGCeJZHcb2Y+UhsU1+1Z3s8Nhy/R/iXz6A0P5hCdOHQvsUrCe5MsX3JJk6rzfGJGVm9bNePNwv/iHSflCIJMxJfHuEhFrA2V6N5d/YkGgVBdJCsTzqY2qDEKSEpbx9cIacJGzngXNZPL+ICXcQRCK+IfKKdSxnjm1+cn5lp6LgQr9mZWfjGXTrNWmcLXgkNoz5mmOLWBQiZT8qC9C82+WcBy75KwnFemXL0YZsYjSx0MKQAwiDEkNiqghJIJ12JRAoLDe/zyq8AD8NzK5y13M6lYk3DS11UT96xEw3xbED/8gIh9XgCrbjvWml8WH1h8eq9fDiNpLBO5Akfacoj3oeVDL9rodxKA+6k4ZQsnRheuXwgPH143eXSOkAU5B/2Korr8Nk8oE7zqs4CgWLSLAIh98ofGsfuI4mBFegCq/hIYQBMOOrskQS4GA/R9r54saNud+PGzdsr80vb69LyiD4SgTTgn8zUUtUHI3PzdXbU6sxsrz9o77ezypfj8+Som6ePoDbStbczG5JIdbGbtrpot4BIBwKtIXzMy/iYFNfJSCGkO4mBksbL1pJ2/2j3uAvGN1bm+o5xah9O9adzsDVUFAxo2/DZxc4hW+T5VHO0PjH/3Pwt1u1ONiB3N7Z29w+kMzzANdmbP9xY39xtiWMFJGnvHebjwL74NilUeEn8o8kaZpU82hdmGnc128XhSXumiaxkPa6c9Q/7O3uspARGElHQZtBeQbpsQ+AVMObMpU5N1KdmX7ZL4ap8L6cSUlJhV6YsKZzZVfCBSWl0/KU7z7/zzq8oRKaoOBoYZD09Ykdqt8Msx0qTzRBhx+kjJQb0gK3wZ0DRV4bfHE00/vLtm7XR0z//wZ/btnH72sriqkm8SIZIyZbZ/M5srMiGr2hesaD7ztQM32mPVNqiQrAfnUrvTJrXDvYPoU0up0UaNPo8XZivLy/NEQO0AZZqpqWnz7Ylt8nGIBb98QtRaSvL84167ers/HJ97v33P9nf6xxs7zdnm5R7HL+TPD8j3DuWcRC1Omuv7wRnDvO4g5bu3L3L76JPok4T+98XOWTI5yJ7MivDRAX2vsccDGljTnj28PHzL98UEXAyoD+fnrTbYgiZtB0ZcGN55flrV3/5/qfmCx9bXL1DrTg+7rHrCIT4+q99+e61tSlHvZ9e/M7Xv3bt7o2/+ssfirv8nW+9+eqrr0z2R5yiAjh8McCPC5JSv/Ob39w62P3VJ0/xf+ms6zV7zMaXZ29VqssrV+o/f//H64ePlpyMNDb25PEHN179phiN8+ODi4nTjw82XvvmF78wffaf/sOf7T58NPPFr3UenVZfXdqUUV1ix1Ou+CMxBIKq7lx7zuTGlybVv3P7Tk92jg4Peg526QjUsu2Xy4LTznFjJ/tS+R/FVj41OO4cJ5VOkgoJRh2zcGavw0CxZIEUgngsGKhvBX2w3URbhjVym1HY/fRKGqTEWZqjmcbkUXVQm5supgK46g4e6rDT02SWzW5cggbsaT1j1Rq1kDYsErBE5jitWmfyQgKCv4htJrtY+MLGT87v3rtrFUhwCPQ7FSzcIeNltJPdOqZC/DguKD5vcSADuxOSPjYuNudXHA34ro2qzH1hehQCbG3IRcJTXIyUiNaj19H97dsYkosfhdd4C/EZUeGnoXq/8spFq65SHynuNiVV8VRauJR58SVUmgpSzsuPcjf9cDkvhd0o7eKvfmssfYuYHXZSUVIF2DyfbqULpRUNGH/qL4PxcL6oLYWGpXz/rKE87F5pTt9SSSmGyDO/pj6OlwgMw0q1rBtMwk5QSavpgGtJa5LF5oA2gKWZOpE2i5Njnfb2ytoKjri5tX3v+RtTE4dbm8/kesATCUghC8Q0dXzkBqftyunFdGu73ZOOGHayL5XX3FzTfs6RY6klpjBZK2sBHsK9E10a7AM6IxgOJ+nj33r7/edu3pzDPWhYlUQEBkOTDgxaH5kR5uGZyvj6QfdZf+/G9auCz1EOzJCoUqZKaoJVyZ5U8HsHC35KJDo188ILC1YPlcSgnmzvtq88fPjhw6397HTeTyIqWYZsPNCTxJvGUQh54kkFSyhAM6nW166vfvPbtzaefry9M7Jz4Kju2vWl22Ibi+2QEZw2Rl0zl9nEH0MQp7H35LLvT1QYQ08ePXo2gkqmWZubyTJWjF/GDgjo8OrytZdefO3dT9+G95SzrPJ90vZxbYfPzZx0WkcsYTFxxgBeEAliBlMy9xSx2F5NtN18Y2O3r191FlS7M/lrn/vawpXXpZfrdXbPji+ePHrvB3/9R13hJGwOUW+CY9Rk1u10viCORGxOrmrvd7RitpSJtAi2aSyLYCh0bW1RUwLCEwk5OrpzsA9s7hAcNcnmT4/sQrG0OD3pUgvm5movPXfr/fc+bWPnx0cClc22SnIiumxFMAB20vpQNlKvVq/EgjSjY4AmT5xFIdzf29lVTgHKZvgUKZ2TR01ZzKfUyu2N1se/vE+fIcxYs/f2L7b3O1dl2j0fyDD4uede3lzf4yJYml9MXBS+eDJt9JMXI/eu31qiRah6bFQqqzdvrlz7e198+nij4XTNHnWhjk1GLge8hBCLpqO1RuaaIiz7FPI//JM/adSteGcOOt3/6T/8KzHHH358f/HB+H/3f/ynDz/88L4UQEsP//W/+38fbK0Lobv/g/+0v77/2q+9UJs8P9jb/KM//ffN5vgXtl/7wrzEQ4PGdP2Iy/Z8utPZfvDJ/dbgcKfP9dYhfq1rwfdwuyM6v8fTK+qv2HkwuezNGkkq4oMnArms8ygdwSmb77sXJ/bbwI3K1Nh0zaHENl8MJqdJCN76YyyPVOfxneDVEBJuJY2pxrAWZA4ywUBCiEoOAWCK8bPFSMLCxUSuuOCZxEMU1Rq6xx6FAKKp2xRM9wvtpnvRxa23wjpzMPUJhJ6fXSUojjoH/CgkwRuvvPTu+x8BsPPTQvLh4MRmSLDd7jfFg9hJoXPZeeowkjhq3Ary65l+EDLFgR90gqh5Dw1fMkxlC5aAWtgwCBXWlNulErh9yYJVZUxqU8oXBQrzUcxvpdKkgZdvYdZhvW56hWXDxcsqXShDTx2qDgywCnLA1OR7HgrXC28v10LRaouqlbb8pSOgMLxvRCnmvwK5neKaKM8HFGmu1OprHhpKAvp2HnM/A0noT3gtHdLT5llsZXlw6FsLR6AUJT7yYu+ws2BLVVUWBDxrcn75+sr+3vn06cuvvfqH/9O/PaS/R/mluoJF6LLV7i+ejBzstqSDTyb6OH7CYPTpmOnRdnvGJcuOapW1xhBzmyIKAQEnk5WhGZFohZ/+8N13/ubD5tycfPqrV5auyKs/2xShym6NQgSGWa4mF/1R9h9JJrO/1xIJWYa9V2eMmtJnIdKjOztChHqOtsHFhB0adW1qfLYxJ+n05+8+9/rtl7cON//oe3/1aONAx6AVsRSGitrBxAq6vBIdkrxdx9ubrQ9+ebhYd37K6Wxt6ptffOOLX3jjiDFKYhYs72xMaLT1TWAb6Jej8mJTJexZeR1SYgdmZX1/4+mD3bV680uvv2YLH1sTEGkHPjk58Ndeee3Dj3517Ox5C9osLgYS51yI75KDc7a+fGX+YlxOf473CjIPWkCiBHd6x6PIG0pyFiKDrOObv/bi12TOXVp6daq2jMgd8MtN/+ixiCA6HH/PJGdvpB01Kwv/gN+4VWBpGBudEEmLdGRrbPZ2QbSiM+mrnGHNZp3/X4BiGMbZeadjwTTJ2cBKYDlv2ueX5rN5IPZ4cS1H09XG3edufvjw09PTnvBSuCzyPNJlpGSCk7D+oDXFS1+pyvgkqIz673u8kDmKpAOOCtf5mx0wyhMriWXf5r7IV53WMwP2c319a35+psfWfjrWnzx775Onyyv3SEm66vW526/cPPjlww9WF1ePnVNmtGSIOK90eTrrYLIW2p7ajVGbrSz2GscLkzLf9wSeslNMjNZAm9wAICctjI5MjZ/xJROaJ+1Wd3MPEPZY6z78eAdR2fP84P3N/0v3X0yNjK+vn+/+9btTIwMpSC+qFbRQH6t09/d/7Qufm5+aFA/K9H799o3Vu3eSnlcKfsn76rPn12+OTQ0u2lKkMVQ5Ke20Q4s/HT2ajN3GNGVdnJfYAIaoMRLoi1+6+fPvbD/6qBO2jXGGG2VOE9GRo+FHRyXWctqHUB3acA79FuchS26sCOHYie/khJ6w8gPUSdHPx1lhDHO7xjilMQv3sNQSeyrSOoJCE2F8QUbMDG6pC8oIWerZKVCQJr3IPXepdyoIxY8mEh2hMOxVputOHn7rVx8d7HfuvbTGyMz1T2gxUHNdYPfzi0ucQ5KtWg+dj0pegrlMo7SYcbQdvMWFcMZAxncXhmy4gCpXY8rP1VBMue89VwC8PBGWmKFkmWtO3cLKw1HLW5hlyFQrCoQ9FMlScE9DquCyix9V6bSRFi7byY+/bTBfw39LJYpEdOW+55DWpTTIpSKDSvNZdrupNsAHLhczngy8vJRMv/UwbavSPb+HPWApMNlYWgpfNlRqg/luJPw33cxgMozic4cE0EfClo2HD9amsVwIcd4bOZtt2ii8+P6DT+rLjYXFtYNDlk06JBascZ1k99k7eHrRuHblsMUCyzsMLRNhEogINrK7jFSAAjiOQWVfVWRRIBUX9GdzljEEOWwy6G1sbm5uvfdejkKik3IMLC7Mrawuiv50DkatWm+u3OjLNC1rlAML9llQY9BgTzi070n0hd1oDNQFIMGlqWnNind2jJFzk2x1tkCZHJ38na9+W1YbC+yWzLe9zs7BgX8d8gLZs6dQ0icvGK7ZDUDs+HDiydapWPOFleqHH21uP/uT567dqowxEo0tX7nWWJyVx92Se2QEg6uIM28ftZ/tbTqSZXV5sXV4JIy2UmtMTMrlIqR2f26WHTY7ugtmjVOL1pZWnr/7wjsf/gpjs34wqZKAcMpOTFWnlqbqjUq/b29nB2sW8sFqH6QlK6LoWMIjlXxRm6QsoP/mm5+Thal33p8cOSDYjk+7uOj2+iaPWtTDuGGS08I6LIvDYJYXTDZvFF6KGF8ovUqwTvBNU4WSINXZ7dtX0DNVkK9vX3oQMTdiiUX4nNo1ErXScY/Pv/Bq5/DgYH9nc+Ph/sHe/MwyDLp+deXxs+0xB04RmQkGi4qQBPjHfU69maUZyIKBoKh2a5/859qlMczUZ2Cs7AUcCLh12YJk7WgTmbjIiCyEadSkUbfDW8itlK3fg6nxBw93Xnu5P98Qc5zjFe8+f/vDrYfvfPjk8W739Xvk0a0o0exFiFvqXEYwMJUQ5fyiNzq6ez7y6PH2V1cXp63B+E45dzJVskCMj/cnxLSuNWdkze0dn3KmZcWIfmTY9V9tI/1X7iyu1mtb262FxZkRW+wrVhtjXWcmHI1+5Y2vf/t3P9/gjWA54VN13hFQEEE8wWY0drnJeUH4q1c5UrjqBt0WOWvDrtN9pD60CZ/KLzfkGVM8Q81IZWlm7t71uV//2qvdJ+9+8sGuTZqFntF2yAltsTWOTtnya7Fkl0ZM+C/ffbG1+cmFgVogZ99BTLZlAciSFJNgHNJjYr1EgpEH0cP1H68o+rMNOWFegA4cod9wS8AjaAxETfgkU4IOREqFQdKhsp4bWDF6xbbjXDnY5agPJsTz0c2DgcMMRMPOrc1+9ElrYWHZStGMTDkAVWKCxhTZMFltQhaHJ1tpOMszBw8YWhhqascfw8wyleGA4Yu5n+bDcHJ3yGZSLKw/EmvITUMzVMDwCsoaTC+yyjNhUKWw8uUrGBhNqSFVA607ZBAmERpyw9VUkGEXmUQYhs8BrdZTf5bspVAIFRhdMfNpprTgpnIprI5Cip7JA+WV60H19D6vXMxbBuMjTQwvh1rddg+LuXyprRSOu8+Q5Z11XHuEeBCXgDeSCPBiWzM9jsI+FV9eIegnFhsJ9T47kpJqbHfjo+fvrj5++lHiYPjaKHxWg8bfHenZrbI85hQOW1UcAVTUYRqEfWTOyzPTCkXUXAqtwk50WfcC1UyXN7UZe5af4DK8FkPnQIBnb3Nr5737n3ANsSwvLc47uFXuAbJKWJrNloyEHoK46NSCnOqpitnZmU6049GEKoqqwNXqFWeCiUBgIdnda9sPfO3G6tXVVWnu+RpQlGOdLFe4W/cPd/cOtvfYXU8kzmWrPGvt9Uk7bK9zcPJhe31kZOf+B4+XVmrXr60cjh/tvbP9/PNrzenJWmNlwF5/ci6Odv/Zg49+8atvfPvbU/XZ6ZPpgUMyZmXt/+D21nKttiADR7ZT8sPSwcmjytj1xRvvffQpz3j4e1Qcu7u50yctW0zgVGO20ult7x1Yk9SnI78L+8vUnjiMMycMxqthnq3sQRFnGZy3ebDfffeDJ5u7+PGDDx9KMUzmqDnxmHCClyvOuqBosGBsbKY2Y+8tyz5hln0bcAqKwKmwwlNmKHmbHTgMaxJDz6veP7JF6YVXXvzFW7/AmISZ3rt3h/3w1tWbjx9/BDNefP75qUqNm366sbSx3ZKKs9JMvhCM2RLBWDlyxAsiXgk8rM9o+oK7DluHLAOTlXnWCagJi8xLzH0JQjURXPMJ143mOfwn3OvwhGkROXJQGVlLSjepDK/dDKriOJIUVhuyZO8/eXSwtb26srA43aTPCsNKrBUExLRURY6dHz/c63/86fbo4sJy84IHdba5KEpivj4/NTE9ON2bPOu2Dw4EOkwkrD8abc7tGqvMNisLC9MLS9V7VxrXGpM/f/vi/qNuZyQKjYPcndg8uzLzpS+/tjq/DGkxRqcvc7+EBE1loV5gsXp1cHG1sjQ1v1qtzE+enTw+fFKn/U4L5zVZqI4YMGW2WE7eXr52a/n62vKc7C1XbrRHJz9MPanMP1/CRLikYn0Q9e1AMa1N1I6iRQCK1sMEiT28Ap2x0gw1Ej0KV83hNiopDB1+lJo9prdQjgUgXIY+G90gWKexKMN4NuUkDDrUDSGV4qRym/wuTCBSwg0+SMqgBK4Pd1u//7vf/vWv3Nja2/6f/817r77xUqM+cbjXefbkgISQw+/Wy6+KIpiwgJH09emT6kyNURoOFVy3fEnbYYVh1YhiyGqCGBmmHrsT9hcVKX0Oty0MN3xfHSnh0Qgm3hXI50oS4/BwmloQRABAGPGseB4o5dFLaoVCeqnuQCoUFXU+gPe1qHdD21TpY/RenVBdFPPoHGosz6cnXrpaqo8AwRZTDjC1lyYzjgJoX8LF89sbYg5XTW9yRcMRQa7rUu6ny6oOy/URqRP2CsWK4S/tpmr9CgHkyCoeeLnCO8fnDvwZjHHhLsYe1xy7em/+R3/1A6cOvfr6TeSx30ud2btv+dyl3k5MM+zb/YOpOGTJ4ZdjwoCz+QvDBUldyByUAfIeZ7VVZqF0oKBVAfBwmMNOZdjpd/n05hlc+uRwZ+8QMgVLB2drq0tfeePVIxkgzh12Ed2ET1Jzvh73uwwmciGbwISdjVw42c6dfcHqF2fi0+S523q2ftraPVuS+M5psQYhXm3iztr1sfHrKEd0BgVn/1BMIy+d3Wh7D9d3Hj5apxo7FGXTjp2t8e31jbmlpc2dw/XD42tLsyu30Ofo8UFv7cbqxWm1Xl852NxbWB6Zb07bXlNZW508PpHqkhudjQHXjazC7rMFebB2danWmN1u7ZsdeZzhni2nrb3Di/rI8pUlTpT6anN2YX792VNLHbH2WYRT4hiGBuzrfecrAibQuXxyfrJ5sNX6ePvpg8eydByK4T294JcDTS2mDBd3of+Chy5jYuLxdYTwiLBERsgqKnnOEwq6YnhzcyJycwKMPJpHR3Z7jDtusNfr7u3tmggneQEkP2K7tX19dfnlF5+7d28VUyB5RUC998Gz2dnafisbrJJ2ZLJyenGqNgRiwymvPo6PTIyLJ9AkNmZnizZGfYRpmG6X5IGsupfNwAWdyaGhxqD/wpMGtnlgyWFl8aQ829j4wqtfIV2dX9GRIE1qBMdbnjkY5dgBdmsrC0miTKkeqeJ3nKMEjWhHcWOffvRgb333D/+/n87OTzsrhulJDBg1otGYmpkYWxyf+mR9v2+Di/AgYV+SS8xUawtTs3Oxb5Gbh4etuXrt1VeadtK+vy6JZ5ZrtbGL1enKco0iFdEMLM4DNnjUGpIs9tIoQ1bujDAjXKJT03P1tfrs4cn+YW+fBQTDtnpmXmeAdfJ0TXIGqeLHc9yLRdjK1ZXxqbFz24UL9YeFwN3Ib8wYV8ryBXyqE5xQYsn4pWS20CD5Pl6v1U1wzwkBYY/oLUs/AapQJTWkh+W6O2pSAOkOjSXhfx4Nt1NM2cJfC5+DNIVLiQHi4oGTilohGgM+bhKJJgH9HPwzS/Nywf7bf+MgvfmPH5z96q0na8vCmxq7/erV+Wbv5Kg5t/ov/9X352dvSIY9fiQbkRMOhsM0ylhpNe0F9cW+6rC7GcTlWHInq5QwH4yhsPsgSJEHRRKEZftp0OoTiOjMB1AWdGCw1GRqBW7pS8E5z2f3fMgmI1ZpGg5/T+1C0v2Oe059RbMtPDpNh2kDjP7lGb8vmTkBq/kh5FRUxgLfA72o6m4MpyQ/h4/myTK43DK2DK7Ulx4MWykXUip9Llw0aFHKe4QahQXnkKa8XDCdoXYsIMFAobfxZ639V5auLcj+IWjMK7mGqi/deelgZ3utWXnC4GJ3T4fv2DHW41NTZ4vLo7NzY/1P+fUSCcwRFd/TCRfcdFbrWikMpXwGCSLggphpL2MsJfLd/9Lr4ZcisYcXhjim9mGYcGyAvFNODP7t3/tfnZx02q2d/a3Ng+3t/qFzAbtJsJXjxaumlVEbljrobmq2waosLogJg+dIiuPq3MqUPe5VUYpHNcEKSVMuFe8Bg+VsY4aMQgRy3V2ZXc4Z9+c3v/Y5BqyL7lGv1cH17NjfbB8ffvD+Tutw8Ncb7zLrc0gkS4vkCKzYDlY7Ob7/9GmzXl+cm15ZnK/wb54352qrlgRwVZAqTkfX5mqzOW19f6e737e19DQ7gqhLSZRMbo7VxZ03MKmLvgN4J29evbrXqvC2gwBgcciUJXUUBViHvfiGzazvPN15+NQWOjuznMuA3RCCSehAZxLxXXaBxPsLrhiBVwK/HOo21RPHFdSJVkErUtpaViZ9gsXpi5YauHTLAeSdE0nFKev4w5MnT5YW5/gGeHBPRI+f1R89vK+CpWXBf1T82uxcTVKG92aaGxusQI1xoGb1ECcPLwqqm5XqPLsIDkheZyj6gJjEjUSj09FTcyyvgyT1goD5Ccv00wKCOTipbUlJNdicb7RlHzqfalSr7fbuk6cP79281z072lzfcop7RSxOaISB22H3Ce45FzcpCKDsM8Pv6rW5mVOxmXu8YR0G+BziNu5onVO2/07PDi2huU4JZcfS7FHnpLZQmV+pZ76mLHaPceKojSPjbz/Y6nY6lerc3NJ0f6wv165d6mt4hph6VjdThHJ1JKyfppYhI2kQZ6W3mBWJM3phB/7ZdE4NXFut3/BIMvYmLhT3YuOMEwc7S55s9Dyozo4tTDm3Mqp36Krof2FfhbJwH9Gag8pZw0G0jzafHhy2xeTUeIbi/4icNYnUjjIXGHr4IYUWMwFeXQOn4IfZyQ3/wzOQabiNz0gFim3uh6Bj/Y2TuNB1joN1+A8+QNpR3yCT3kkrOGF3x9QMo9f/+p9/6/73v7/xdL8ydf3r//AfvnHn7Gd/9h9ef/MLy18Wd7L8w5+8Nz9Xn52b++rX33AQzslO5+c/esuCS+VpXg+Dq/rkS5itb1EacyW9zFCAsyxEfJbrWMi4TTFew6EqZATDZ0fhjb0eqNxLC5mfsGEjLwXgJwYEHgFEaVhDCYlK5UNZNDS7535R44dADD0N4Zcupy4DADvf06kCcO1kGOoxLQG6GN4yB2UkGVmZ3YwqnR9OAfzM0KNHlfqDT5G19AjjihBKRWktDZXOJ5t2ZdxppcLq0wf2DTqaar20BzoE4JPNR6++cJvkk2vGmRMnoilYDeamd3a6d2vz927cPvho/ag6Njs+g2Cv3Vm6emv15KLW6pAuVYYfIQFifZxMS08ELbOeDqenwZDwLT+CCuk5CGoZG3I1xGG2FMgKyWoJUDP+AMmIWK7dHZrNIi0dfzGFa9em5mpzc1dvvwjkDE9SHR62NuVOb7cORFJYgls6AF57V5aik4WV+bnlZfy/s3t41jvEHSZOJDyeknyFYrawMssc8OzZ9tRt2RZqfATaFZ++u9ODSjIYM3TYHbQ023zu6tWxsed0YucLfREmm50tdqpO53BjZ/tkwJ6xT81n4jxsn211j58cTIy+/5RbftA7Gj3/7ppok+s36RECmQioGzevL1+bfrLTkfZAsKMhZu2eP0M823i6fjZ6urS65OxHGgYny8rikmA4njSbmj1+JDO0fDvVGapxaPXsVKqWI4aztj7nuHb7DzAMfhERuUAbHwA0LVoG6CYsDHzPnGEbTVD0Lf6EJLJRI3mwzcoINk7K1uCJxcpZhcHQCYyyfqokadESwXe6ujTrJHG0bZL63baoe8kqOPCtI2wgWltZ/fVf/0rnZHfnwJk+/OkizvDscFhYQUyLq1GXtSPEkE/JebrQkjlOtkH7iUyKSbXyGwqxQkChKSgepOHDJRGYyGUtm6iz+jcbNm4M3nvv7Q8ff/Th+n1pEmYMbJS52RmDJ1fmlu0uoeYSLTuHT2XfFG5zeD6z9enWW7/8G7kYEK/0dUmdnbh66wwtJcm56KeLienXXnz5xUWrBkc+r28dbqAOsaq12tjJ0fjBgRRDDqAfkUG1VrtYvTq+uDTW2qFcHx9PVLaPdy6OKV5HF7GNdvd7+7bWN2aad27d9u7cbChvcYAY8I0wJfRklALC2H5C0K7I0sh/4zBWVBE9igrv7txUbW1+8VHvgAYQ9sQWGn6EYhwjFJc9IHEl2fEpY1W7lWA8PrkiTbh+BRsUW1Q4RBbXJ/ZQJq6HpHKBRdeyLwwurIOUY/DiRAQhR/pK8x40J8US1pBkofJ5HA1ae+3WnrVWYpLqM3Udx/0t/liuSpd4tzyRSP/t954+99xzb37x5Z3KxH//33/n733pd37jH/320rXr//4v33nxuTuWWUuNZmd/vVlrOWe4eudW9/tvi+SClXA2r8LgjNRwh4yF6MnloEhYSrgHRAn4wkTK3oc8V54vrDG1Xf4sIlmbAUOEh0LhN5hHuBFONhQzpSY3/Qzp5Gbmxv20g5w0SPZmkZ3LCpRehr8Oy6ZUig8rSm/1nt9cbVRTEjS8Lm5Y8jMz6r66U1XeyhdTlafSeLkWIaxFhYc3cmvYWJRyMFB42BnzJL+uozZUoS3VaRRCyjNpz4eNliz4cH1n/2RhfjHBntAyCZhI8tmnrYPJvda1+fnpz409fnx80Z2RcvlaQkWnj8+ohwOOfX4REd9s/1CHR7V0OjPhVb4X3QBal5Fm1G7lRmYpoCijylfAHq4b8j2wCfRy1a9AlMioTSXrgGdJMqtqMEW3lYnmcnNm9eYdED456hy2tj754L3drQ2BJRnmRKXd7kyVQAh+UOaS5bkF+wks6vf397k3RId89OSRkJKzszpNa1ruOQqZDNgzTBAI6aK1dyCxtiEPeBElw5iu3lyau1u9ancoLmajKvV8fXvXumBj//Dh1h49GUnaYS1jZiJwesfPtva2dg6Z4X/13ns2skkKxBTPaXval9wa9eL/lDuh1vQ8IRqjW4/3d54e4m3SMs80JuYWpmel8axJp+w4xf5UZaLXPnaoKnlJdzGt1D0WTft3Mr/ZdJETS2CSpI84u2LKMCpgB0HJAlzKBqQXYAMfMAPYhMjjVEiSt5GZKdsGx8UO8C8kZtKDSS6hrLAsybmRcyLD2V+eu3X36pXl1tGxdEyySZpVlpHatI1aSy++fq+xNPJ//x/+OEpnVuEIJN77eAUz7zjzYGPzwePHj5eXxJ3tJ3KE08I2cg7DQs3WE2RAR2jMkU1KIQQYAuGRCbuwpd7Gkz1GJCjAhiuGfnewv7exfdATST+wPWFusWn9dvvmjYXZOQo7B6+w4Yn66YP1jx9tHn28MX7//vZMXTwYFYMKEzHIyEBQGl3B38QyXr2+9Porz0/LODg5Yb/hW+//zQ8/+KnEc51jXLk+MRCtK+KGiLNRfLC5uS9V71itSbneGa385dtvf+GLlcOtT/YoC62tw96h6xYNK3NXvvalX3vh5quVcYctV6NAJRyPhgTHoZ5BmsFs4p2wbgroXChiWyxNtJ5x4VI3rzUq1ZENp+EIjxhc2DrHUWEtGP/Q0cVK88bC8j1e+9Zej32bHOUmcps5AJJz6cKCNJZNjGLHB6s3lhZYBcbHlq4sLF+fm242cMSqQ8JPEo2NycEQAToLczNYOrbPjyOsHzOCcq1O55OPH/34O291bB3lWJqbscxVHs1RDOFE2UjGK8BeOPbqqzd+/MO/aTx/9Y3bK1+8Wrk6XVm89tzEuAU4++fmW+++98//4O+98sLyrRvz793/tDPau/X6jQhF1RW2/hlLCIfDCS65JGRKGewC4gznLtwjjCMUUBhOfpHrefmWl7Lxv4XBGEiRMm5mf1AKBkXDfIqYCaDKI0ChABXGr7SmeDiasqZWeZd9yRpCTYEcnC28utxLraWHPsRsAo03tZXHE6TB8FfkSHk63YgkSJ0It3yJEKCEE1rFnpo48dxgxhvq1OkVcsPEMRV9htIInD1HxjeMHoch8EsP07CmRdTQwoTtPH727Lkb12l7xs+xe9qhGEx+882v7j58Z7/1IWX45rXb89NXq01hDiA/ufdo22ZZW6coBtlnnt0lumWRiZIgq9gAuBHoDacEmWBDUTAmHWUnjuVyPO6XCVBsOJsF0JfQhaOBjhHhYQA6WbWYS56GlM7kQsHMMzUKWOLZqVWXavPLqy+cSHl8JMPMPs2k5/iC/gHT89FR/4BHr7Mn+wFkXrjuGLJ2Y2HutS++yOjQPzpU83FffoM5DmJLJkyDTqMLe639wdG+hcN0E3s6Ym+nZeF0E5NMrLOk69rK2lRtUijq3kFna/vg6bOnz/ZZqVrO2u4kvuJIBny7Dxjnw4VbsQtY8Fn92Xjk+oRYpZgCxN4lqJRKAnecvmnLzM4m3+OgOT+9LHJoeXHl2s2FxcVmY8m4gdfYTaRsqdYfdDKL+yx+cqQMK14sHb6E9hF/ognt34GxkMUWZXw/WBqEDB66VmApez0D0NiFJOM6xA3Oz9PvZhs/ts5rQHnotvsyA9y+cf32rWu/9qXXOBtGevwEtmovCmKaX1hgVRVJ05idevXey2vLf/Vks89jBkvle8XTuFt0KWTBXD9y0WzMm01hP8+e7C+t8ItM7+/sWdxYytBHk51GT4XykwpGi9w8CY/L4b22oTBlJ7y9MitN3dhkv8uwbwN5LXz01Zdeef3Ne61Hmyy7XOWgI6zI2durS2t/8Z0fbrdrM8DOVE21ChAKIrHGYS3hARpBXkcrq3POiTvrH5vxlfnZr7/+RVuX/+Kv/9JOBhsN4WxkJv0ZzpdQy+yNp0YZLj/Ss08ODh6ZUTZ9sI8tNo4rq4yj+48/3GudvP7SK7OO5J6MP42iDSRhHaUH0A4DxfYsCwjh2IkHlu8y+Z22D7tvvfuTWqN3Z3ly6U795Gzm3bcd5qUO2xT15rQ2OjfXWD487oRwAAwfCk1nEZBFRCE0n+LrY3W25DgfzC7Wr9gjUZuYmRq/cfvaxPSCrTtOmEIyx/Lf5jyiI6PkV2BalJACvaBlbPNkwBDVlTLJjmHEDcFMjYmCe6kdIHBgQ8kqJ5aW+o3K5KPGX/z0k28uNv/3/80/bm1uTvcbe629525eOT4cOehO/dVPPriydutgkzen9uC9n9+6shIrf2ancM8h5ecrdA7zCwZr0TyUyQg/BcHIBk+47Ut5lSoyy2HS4RlITJkUyIeLruV6LmRZ5TaHZ7mcN48agefdTYXDC0ZnzNgcii7KdbkVnqaZ4nBPW2h7iLhpQ6fVFs7lqZjtMuNp10NxdaYpfR4uQFyJ+Ts+as+EG1ogFqljbDGZ5yrOVxatkYq5UHAoLaVW76KAKnZmoygauo6oX6gb3ZW5lvZhwSjQe2PzmdOpbmT/OJwZO5+cEn1ZvZi9sXLr4nSbsaE6viwog/f1kOmnsrCx+9geDd0/HzjzsYso7dtI4jDDsJW+OmWVr39FAlkPwhqaVtCNvTvQSbGAIJ1MX4fTBE7gH9h6z1dbtXJiR+YKY8PxU6AMTKF8/6ySUp4qNoS9MJp6Q0aLxRWFIOnxUUe4Z4fjsrXR6+6cnXY3158+fPiAEGG8ops0mtMz2Y8+oJdz3472sd3jyelpJpy11fm163PShdHtkkBsdnZweJqT0Dc3r12/xfQBnCiDQionxZXm1LWFOy/eWBIP23GK+El3fWf3/idPuscD+9V29kQkoY2cUkDfyjIGOKR0FtB5dsJobPUtpih0nq/oBomNC8/d3erv7T/Ymt/7yhe/WltcPDtm6qlG9b/IHp9nT/fk5qhOTsOOnCJb4MduI2DzlGWR69gyhwsFTtlWCpjBi+hGpsP8WaxnmnAEfPaoX59l94oCETDz2Q7ODw4PGfeu3lj+vX/42++/+zYFe21peWWxee3qEkPB7NLSnSu3iCX0lteFfaFb1meD7c7U5NhXv/TG//gvvzfmqE+vhBtaGEkPZ4u0HWRT129ct1Fue3tLPXML89VpZ6VPOpPu4KAVXUFqszgAMBDBT4AVi6UJDVEMVTNfzs4PDtoWKleurIxOHVdmkudyMMb0t0KjnJ/9fG9yR+xaWGjsYbxE1r1ym9/b/2BLDG2JoQq+F907/jw8E1ZCuOyxIEm7Y/bccqueHFkQnFQnal/93BePevvfe/tvkBYlJ/K0wNRZPVzPXJ3qumDfYWa7GDA0RsC4DNShB7/GG3Z6LF4/65+sP/qo26itrl4Vul825iuHqodBcXBbjEayoqaJEWcUJ/K53370dGtzv/eo2azYbXf9RgOqfPxRp9cyGLbD82p9cvX63dFmU6qK2umETTH4u9Uh6mO6iUvePBW5yidgNcmSVpudEdUmsaioLec2N6YaIyO1+bl5igOn/8bees4XGBy3HOA8Or44vyjlkaB+gZQZ0Ji06tkyz6EoA5UzRy3sprkAknEiTC40alXLPT04kzDm+3/10/nVtbd/vv79tx5//os37P98+93HHzx6Jlq3OTEzV6v8+Ic/nq5MfvTxhh1hMhDQt2L9wtQKYwjngJYAHoCGtXqZ1yECh5+Em2enmCvwJTzRb5exjzxbcD9Mo3AZd8yiO95DDQqH93tzwcsnhqxWtMM8WjIqeTYXSrOJqI2gsyYtKioaizAJM6O34I5Kpqk8kTf3fAvHh8al1ijsUXJKvxAPZHKjSCd9p/vlkXS7PO0jP70Qg53j6aE1tYU12R+YaLnw//CAMiRi6OxCZqZsm6rVbLbMrBiW9kpFzZkZXiWrV0bKt++/NT/3hZlxse0W4k5JpBrUEe3I2NpeR8ry5M334HTzynprsNnqZWciEk3sTBJTHR5sCto/6nbwgcGgh4C0YDqIH2hvVW6Wkn046YhRcgRhmccM5xI6RaTpekbr/tn58y8/949+7x8f7h3gr4jn1s0b6UF5DecyBT97Os4wv8LYMoVJrwWyrDY5QIfPcb66cmV5/GVTdCpVhR0BeR1vPX6GehCbPDpjF3wAoyJZ46WsTZx1+lSm3ln3olJ/urVBH28fn4xNNRlG5Sk/2DvkhBzs26spycmpJHJz9bHdzQf2mQkVmWouX1lYqkwtP3f95pdffl2Kk+3u/pMnG0+fHe5sta2YhFVmj51t1MEiO7Bou5RFu5mFqQipKghrsMbk5VRZGuRF7esvfokmvLm1/uTR5vFo24pFFo7HDz9Fu1ZeONK0ow2tI2IsxtxjJARz22DBFAeIAUBigUjO6INsONCnsL+EaQZsg0GjPmt/n/goUorUFjIol2e7t7sE0S82v/qVF++9+Lm52aXvfec777z/0fru7De+9o3F+TkhwvR02O9sFc5wwm7j2afMGFOVMz64HNkeFwN2ppZQrcXcsX51j5hWput1EzczO+MdR7WOTIxQUa3kTYAl+AduxRnqFV5ajBXMGrQudbGRH7WONwabi2tc09P9fnd1bXJ+/NiG2/WPHpZNfxie0sQtcFYYUVaWm2fvPBi5qEe1gIV4bDoVdQm1laWJFdTYqORKYmnFPvBtULRQWzYITP7GV7+9dzL6yw/eKVhqdPT9IVHBdwmoGM5VJSODeQj31y6Rgi8gZ2OZvKg3p1ZqNus6pOx0dGOrNT15nEypMi6iZmH8xhTRJEKFNf6se7j/8OOHexQvW/j7OxPIbFAxHGcPLE7Pv/PejiwYeiBZ09Li8guvvdGYvUdTn+zUD59utsWBxmKq73zKsTAYr/wuWaAnr4qNFyPzMvuaqVptkBOZa4Pj2ZzIOd607WH85HyP/jAygTuP1EYO+uv2MUsvNVlpjI3atk1GiUyrWNExCOF4JicSC/c1OHM5RD9kWPRXhwv3uuPd1rOFZpWB9dn9Z5tbz6ylrzVrnb2dB9vtl59bnZ2vPnnytDbj3IvWfLNOqsUEpF7gK1wrDMBcqTLkDbiFI/jlCvTLDLqZqQz3cZlygYzKyMutPBnumyeKau5LsMDLhci0qMi5n4mNxs1BQi5gzcSoe8NnoU54LfGewWoDM0wXIu1VqHQYe67rf/7lYmkgTD/dS2H1FaTPPSqCxdplz8ttSFP64z1/ZeQZkW7ij9m0LbShdKM8lcVAgEL1MN2gVv5Lm1R2V9k4a2ilV6kisZKSx9trmrwzdKzJx483P1198tJL94wWWRoC25FWWBeq08vHHF27mHvOFP3k/ffk/rFty2ONuaYMDO39vTD3E5GXekffNHgA1Ps4wAwSLGM5qmQjReFuYVIZRpHevmd+8wsALgcLTqLD7965M3o3RQsUrbeiyAUaw5dHhmDJZJQ75brBZ01WrhT9wROJRg9czIoDEqu2FGeOl67dyQwgGGlX9h3OtH3Y2T04/EiaI2uM+dm67Gbv//IxJ+L+4aYl1GCwzviSjaqTY082KGuUUILkpNniyJQ4TvK4k9GT89nxiXa/zfo6NTVDIxWJNF+trb5w7xufryfC7+wkB3+fHklCub57uP70cHe3vXPowIMOXsTAzWIDDv6YhQIlR5JI53fa+85P/tO1qyLkKif93kP5rZ89FLBoVmk4MqgysdE6dNtjPMPJrRJ/cM54CsgABZXi+PSHMdtvK4S0IxDsiwtEXY0xekxmjq2HT5tXrtCfLEfk16PNNWbm7167LTzguedefuG5lzgGvvjlL0hF+stf/OKP/+hP/uB/s7K8et1GkKodU3SCaIGDdu/iydbDw+7J4gpTW3YUxdmQ6YUGORVgwzk2zWmHwlsQ2P2brQpx2iUYQoQP5KSri+wV+MLnXMRYIb7gdV4M2jLhBH+4T3C348H2U5aQ/rXri7P2n8XLcry9s7+01Owf9+gk1KVqIqhGwtDt+OUelmoHudKJhWAE66LAOQgXLNi+RifO7DrMXorEa2QDV1qlUVGoxyd/64tfPuu13vtESoMS6B/lTb+G9nIIbjHhn1VLaJKIzckEBBCVnkpiG8gps5+RVYjZMFhxzINjLAOWmiDzyWxl4apTh7u9d376/sanT/d6m1IFLixWF+bR5MX0HOWt0WmP3f/VtiMHll5q3nj+1sraC/XRVX4tOTevLF17fHhyv/teCDzbH5J2G5fJYOEErLX3fKIviVBChkbHZqwg+XTto+QxGpz1xHdx/Tpc4GxawPjUpCB+Lr9zLvoJsvHCgdVZoB7n7FGJHPgXhWwlAI+jan93T4QV+xrH+2hDjg2gS8S5ONYvfenzb/3y/bmp+vz8gui6K1evzzcTZNVqHdbrc7X6TUTxwq1rjZW1n/7wR9WRIwFzQFaovJC8CQhZ+PMZLhsSjxQoSOFNqbCgUHou+ZYSXlkBZCLLo5GH+ZICebow15RJBeVBZYdPxjYXK1T4U0goxqHUBy2i0pT6tQJxkRgoDOv3bMR4EKZUqKeFoIfdCZ5Z6KX5NJbFzGVR2FxkRilHWUqLhh/1IcNKrZnBdC1Be55N2vrQdv5yPWsdF3xRBnj8hrqzs3XHKwrHO45JIDfRGJoBQDoNukO6jjL91QcfL64uL8+vFAxxOmtlzAHTPYdgDeyerdDhL6Yff/x08+keAuZ7YnbtHhwKomsfHkr/LKQbB9JlBVFEKs7A4F/08tIdLZflNu4SPTSC0KX0dfgR2ZuBuGeYInIRVorp4nCUqvFI3oeTa1bLjzwfTMiNjNBltqwhwuenQil3CcQ4clI8vDWgnZBL0/bO+dl7jevHJ+3nP/fa9tazVnu729qzLj4Wl5K8qLgw9TQpRW1b0k0BdpbBcwuN/lHnIZiIijkfWV1sTAp3kbBoaeH4bLD15OC0Z89/dWbO5gAmVSkuRKxWHO81Oza7srh279bp+WuCcM5bg9P1g21HTdmaxyCHPckUbyrt0OJVO5Zwvz/4/k/em5t9Oj1Smak1T/Hv06pl/ORoPPDhmJNSFaE0U2BWWZaBiDadacBDgwkJOkvUDyTAF5CunV1lFhIuwSHBpiLT3dTYhSBNKqheBe3i2p2cW1iyiZc8oys83Xz29NF6o1lfXV37+d/8/D/+xz/6J//0D2qNJooHGkuV7vGR/Dxb293NJ+uOHZBYMkxQRUUdAj1x6NyWQq9Mk/mCs+Th0OJhIBZoVBCWNbFM/K05tYTMKeodzNQjeomUch7LlIZoMp1iVg+2Ooe7nScfj1+7uticH93cu//Cq2sv3lrDyBLdYt2ZcKezbudoYXa+22mx8kLBYrmCGthU0fGZRCfHvviFl7cf7dTnGuSTDkOSQnaFwM9GZ6u13/ry14VYvfvJg/MBCHOhewVPQ7LBvoKQGZllaCz5AlDFRloL9HZ3Tlevn401cmiCsWAUNMkxljdiKDStSyL3VWIx98M/+j5irYoJO63JYNo/m9w5GCw2lscbC/u9wUePdis3b7z+6vXa4vzk+GxtZHHB+UM5sLO/ND1/3NgbM4NBcfEFZhgWgF8Z8kVg69A2C0J9tHn7ytqV62vPr125dcikZqe7zSbt9t5ha/TovBZeczI+6C9XFtZPZWwVPHFM/hYyGB9pi9yS55oXU59Ffzq5tH0yNbCTz7QQpQgMC+IxuyE4bLkxvzpdnZg57Ut2tL565drISVfu1eqqBOd18tta31b5+au3LALa2x1bduK6DPFiFFFsQ8KBaiFcGJVpMfkh41wK8PiqAkXY7yvuGWbiSV9MdXTt3HDff18wlqBR1Gf8I+VK1WEdYdOR7IWzFlZbyCEMKhjnL3WnlUgFoHUD5asg0r+0Xxhfeock09fYiDKG0oF0SBcSdO0DyYU7D7tdELuggw5pjFKYsafN0p7v6Z/nDacwsjgdgnehqFRXGjFoOuD5Ra1RW1haoFhSViEC9V/UPP1wriG0sn7QbtP15FcTa/iDH7/zG1/78sryEnk+JUr23ErxpNs6qto4NjX28MGTR082bEMdnDj6Q9jAhL1BBCHlQs/jaII7pRORuOUVyKTnBdZZGeSLO4GCV0ZkIowyP/Iy0cMvEmQW72hZTZTruVOeuRxeKe0Br1TnLd999S/MBij8zyWdcu3yBWiYoNmLuMms01UwhtQdnKg6iXJmrbFyJXnwhO1gR1Y/O5L/dlv7LAxhqHASP2VUGR/p7dmIeuLUpWuLy1ymM43pAV39ePLgUYulVNK6+tq0NPYbT3eF1Uw3uVemWGWkSMm5CaTo2Sk5a2klDcXN+fmVyfrEPXZBEvf80aMnEoQdOCCtc7LX6lPZus5FONmVLO/h1qcCkCzbhXPNVi6474SCHJ8fHXZazLFTk3XCw+4e64Zgc+ICink7BCnFJp+sUcOqgFw2VhPEjhlv6qTtwbXFOxLsz1nuHO1zbFsDWCkKF4arkwet/UePH9nJtb27MThbnF+YW2guvvfeu/du3/jSb3yDNFlAss2ZjS05gec2t9dtniKaQmQF/OohnLg5qPySUMIuM4aYeRmj+mihYISQXEGEikIqCg2MpQyVJa/+Gg0qFTkrqhA/LQpGOELRMnD0wcjh/nm3tTPTlFnndG5hZr7RXJlvsvdrgYeHLJGLVNIp50nkZ3IA2k+eADwaOSnBu8l49lff/dlyoyk6FZlkOR/dMUAb8g9L6eZU7e//5u+sXXnvez/+qT3ksZDlOXsUorMEB6GesQnWZQxmHQlzsgoabNqfvLZYn7ljy7LfzOjGrmaJ3oq5Qj0WHJGIP/vhd+6//+6kk2okH59sTE/M9g+sJmvNxZtPLEmP9msv3bt163pPIOr5aLNSW2rMrVUXp6XROSLFe62DDXZcIAUxAOKEtpk7JBTrtBNi9dC5Tznd2y7IhPdIIjc2VZmt8vwejHR/9e7HD5+trzTp+/CVidLJmNSCYdYxS0Pc2o3eaPXoPAlZLoVewhsS+m9pPF6vN4GkIrPh2dhcY2lx8drPf/Er673x6hEFy/ZJ6UbrtYZzPfpnvVv2kDRt5bx4/GjryeOHCeWuTIrcIgBCcIZRWGeImagNreq/OySPRvBI30HYWzAhXNgXqONBtI71FxZdZiUPZYaiIbpVyiCT8Kw8HR6jeCwjBa3cCU+LfS4TmmZKLzygZJgK/sL7U8JstKJ9zbgRSVEK48oKp7xriqcRv8LD/UVPV1MMQnHap+elaAqqILJG4wlPHt5InRCGQmRocYhlqLG7pbdp9/KtDDG2S0fIjY+tXV21ni7+N4tNj8c367HdffZMPGjetIh93Nza/PO//N43vvHGc9fvCJ+fnHJm9+b0SIdh+/6j7V+8/yGfaTcpxEQZ8uxNzC0uHBzYgJTddoKAYt6KjpHh6lWhy+HkRBLrkQ67EwgEEilQelvglb7nC/CCGG37iuPc6diR4kOIpoASZRLKRKUST+Qh3zI3/spbGlO3H6Ujw7sK+pICw//pqKrT0zJRqSFfI5NdZYmZlKelUZtdWboN4JJWymZ21D5s28bVOegLsT7qOCzq7HjMdoGpsUlsRfxRgjNHJ6UKOLTJvd8b7O1Qyhbmm639rpykU3VDH7AWjZ5tOXBjUnYE4bNnXY6H3b2jsUHFllO7qzX+/PO3uXYr4zNQ5KDTEt/XPe44TPGws98/Puy0GW9gf3ZhgLiB05Ohit18vDLURuPA1kDdhBQJxy0iab7ERLlFFXCLTxIkik2Ak5O1ULa7Y/GXMzX2cfncafQFJ8/PP/7gk89/7oXt7X3x9GJSr61do5Tzgd+4de3h009/+daPX3zlFoiNHE8uLy48eTjNSDYvD87qwvGF41a2ytyAdva7DJ1pNSmCj096XZ07393ddjJlpTJtgeXPbvS8MP2CM1YDzCWOPEgKAyjLJmOwx4JB6WeJN4Qfhj9Eq8xsEsady1UlguBH//kXywt1IVRCbuNOdVDc4GJ/qy1ZW5Oh+fhccgsXrVtQbZKRcKXSx5gfScaLsb1We/dgxyorVrkEMqodf2MFJF6Ppff54uuvr66t/ehnb3/y4GHiMcU+ErpFSlG9gFq/oI3OVUamzYYYpYPW0Qf3H0iB6GhMyc4MuPCBgspKR3Mxwmzw+NW7j/fxoqOBQ8+cmiQe6crK1Zs3717Ux7b6h9ML0+ON8d7OugP1FmYXrwgOq8+t2sozcba1dTpFx25twuQ403UoRgs6LpRIDjjt8OAB1HHwrtviwdup7rW4orkBRDxfCALqjgw2evsiu0UBs49KIyRLO7vv8uI1J+5EHk+IlLN3o3026WjwQVULKFfVLJISi5HOljtCxpIYyJ6Jwfd/8Mudg+3lxcX10UH/uNI8nZ2cGusMxr7/8ftT1aPF+dnsQByZIAdkwt7bWJ+edpBAzj8I/YcyL1lG+ItXWQxGGIT+i9YZq4wQOsvMcBlj9meM4QCh+yJ/VVOoJTUMGbl09G4SFeEO4R+pzZsWhhMDWhhEkSXYGmED7XKpVBpeHTEe2c0NQmRYr9By0o00USr0WNCy1F+YW5FHRT7A4IKyIWACpwyxsKfYzMugiWuv8rz3PBTvdtbzhRMWCYGSUyI9CkstHDC/oJbexupysbS62mjMZAFgf3oRqjRBvLvCDTwmMqHOn2gvWKNZ3d5/9t3v7T1affDSnddmV862Dx/Jg/jgk2dbB2czs3PH2RPUr4o6npoUkG6FJ57BHh8di6G1jEYvgx/p9eU06BzUKOPI1wIQ406fS6nM0N9e9jWjGBtdXFqN4RjLCEiGD372JTw71WfI+QrWw2o1MywTSsql4R0FQaFIycCZgnJZYT7Lk9ErPZoZHVYRQLqQuEDPgngOJ6rOzMyuLV17kZpmI4CdB73+3sGONO/7j9vtse42HHbmSEmFeyb6amahcbg+sHK6cv1act1Vx+zJZIse9No24UHJXt8h3aecwg6tbffkNHWQI8Z3hAn2um1rNT4UW0pnZhtLK/OcfvfuLAkkCm8cjBy0en/xlz+FjTxuUEIM00x1toyh6LGUTwoo6CX3r4dKGUwusM3CnIrNxA4DcVJ79ms17tpzobE1We6mGcGFewtisYYQ11FlOnm2vvXc3Tut/R1DmJ2VTgO9I4yrN5+svfXLD3+71bNv9mCvZQLEkNXa3abExKen165MSdbGMqL5xO/rjd2Ilewv42+X4V4Uma15+L3kQmLGaanoN+p/ECXzN+T4esJHbWbMuBq4lUmFQtSZVDgzZBImLNZe+rjYx7HK5tPu//wvfrj3673FK/MLq8snknoe9h8/bsMuyfZLTtmK2LjiK3H4Qe3Jo20uTfOGgsmW1n7n0acfXlmewxpzTFehNkzAwTU2xguEFPlzbXnl73/rG082rv34r3+8vpFTNUkBYoAwK8GQsOeCvZtwGBubdv6jtd7b720cnfzid//+jMSoYFJUxjLaEEQYAQ3i7KJdW5mpjcwLIWteWbgiY+7C9alqg8BwmLC0cbYEWvQtN6p3rsxemb+1NnO1YTvA1GDnZLexNL73YO/pVuQuw75gMJnLKf5eFo7cQIjOkLm08E+GIXvxzk4WHTOw15b+aKo6LfmrIydbk+Mn23v7uzubFJKp+tTm5sMvvfqaXAAXI4bD6cQSasUjue4U0ND9Q0nF+msGeSg5/iftN7TrfHqK3Gl3O9P1au/07NN1y8ceWqgnzfhof7915erS9sahVLywkcfnoHPcOdw57knca+/PkFLNZ1hFWKfP4X94MGQOYdlZ5otAtENEhlIr4KNKtnzaTGMqYrEV2oJ7Y9/mLzUU5SIYVlYAkyjCFf/dRlLhNglrzWyYlLCjAr+Cx/hq+jJkPakqP0ohGFFkT7g/PAy6DrsNHqmmPJVJTsN5g8FZMOBJJFCuZSGcngyxIGvDaPuXbeXBokGn8bBMFfriWuocysJSa6m51B5lml4+kGJzdXXFSX6yKOqSjXr4kNiy6nRjZXZeClDGHDvwF+ebfFeC0N+9/+S9j7ZEM/IojZ5WxlgApuoetKlFo0zLErLZBoh0BscydkGXI4IlzDbDxlxwW8WVHY45UHerdFjHAp98ZBABcfpaSoRPoxhuzFp9cXHVl+FIU6KUTX2lSnWbleHXMO9cJnXy4Y8MSnntke7RsRSISI3cVASalgdSNH1yN9OQVrzS09JcOlXmJQbo0nywhfCI+WRcPMa05KVXl659jocAkAfHh8e9Tvvg6b4NYU+fQb/KxrYA3LXnn+MZFWHLAmNzzZiQox6Ajqwf7Lz76YYhfuHlW5978y6rzVGPvK5ytR05G4yjpjjbJ2eQbO9g+6Ivq9r5UdNmS7klxGb3JXk4n0IjZ5IZn0zXqmNnFT5pVASKnKhWGbTVOADCIhnViWUIkbhs6MbrO+KAeygtSDLGYexscGXtxs2rS5LO2CBdvAiEhK0eZ3ajbe8eLC13HLawv39w7epK01kwdNiLsWtX1xwr+/jRw7v37rRGsG86ufWwNP61dm/HJtDV+ZmNDpVAxEhSQ/tWqcnfHxXUGSi8i9LEpTOFs+tqjCjAnpjPsCcxr2U6TABZaAWQw0lNmRlKMih0Wbh/mbSs6DJPmfryNzK2tdn6N//qrxTiAJFsgWsqAZODi4rD75o24xWM43v1J06l7fhiBhc1XFgQG+GIKMpKpdftxD2LvRWUknuKI8EuvXJoLqfKYG1+/u9/85tPnhz+6uHu+sEmrya2jrnDrLqlTWNyc2ObhUhiAkKdzvnRJ8/q3//Zt3/r68uLJRxhiKogF3QLTiJGyQcZfuDNtRs3Fmamj7sV2gCVvU0JazPOHd184ebtG7Mvzi8tVq+PVaePK73WxXFvcvrh3s7Pf/H+4dFphQzOcTkZJLdQ0aRiU/HTRFjJZ1VzMSYH8LWVa4Px+ihhAcdOOtvb2wtzY3vbDsse3L7aaM5Wd3baL9++xiQ/eXwAaXDHAS1lbKYxXp296DcdZyTVUjisBVLiUGL8H+ktLFcYm0+OWiyssyvMgaOddndphv3por15/8ZLr8n2zmi1t/Hp9uMP5ACNTnV0PruwwPprinvdVokCCtcLXhTKNAtDzoGZW+vGJIv0wn9tQT4+4Ub7+MMPk7srKWqmZJSkj8zOLy6vXXUYkCmxogy9F3KHgmXFB2103ZSR+9H3gkyAFI7hcvhDUPBy9YDjpwPaDXtTPj9iUS5XhnysqPJlJi+fzASngMcImFRYupAGU8twTNlVEP4XbE2dpY8ZryKf/Xat/LtUqH1PB/U/qm+ayGND5peQkPQU2XBdVm7fvv3xJ4+zgwMtcvZRJCsV6rzFKN1zYkwiZakDLhbm1o5m1Menf1qdnOXVETo915jdO3Le1lPgkkid+pb97RfnjtN2ZtfRafbTA0X4dfobuGLOQbUCt+Fbhp+7gYvPDKr8Zd2QG/h0mK9B6N/svFjkOXdKUZfL4PKZxZRfRab6DFqkrnD0PK1KvfCgFhQ0qAI/1Q8bLfOQS/THYFXqJRhKV/wo4ifT5Hr6lH9wGnqoYFhJWX2pNRUjahfd4WXEOrDOpYXl2xDy4rS3v/dsZ/2pY9a2n+7LlCCYWg4ikUW1LDovAO0X73zw4GkHJ91cmDo/2tNrvGJhYUVQfK2+BKdssM2GoIFz7dubdhsn/8b5wcnhvlyhjzZmkHfVqeXdaWEfkXgMtRw8OWovbLJs3wcPuV6Tzc2qx0WDKUODZqzwgGQaGTc49IzCsW4U1164WydrZ2IcL7dHfcAyNSlZ0eb6joDXrpQXg87ayfLy8pr0saurS/v7LUFBN6/fvHDkODkoZvaYc69Sry/YKba6srTd255yojF+bV+ChEiSgjLQ2EfU68xM1mdn51gi6BLatDAoHcyqXF9NR5ltE2VW9Xpo782M0f70LQhgTWyughA+4UEqKLNjevIUa2loLpGV9PPgqMf7/cH+bj8/Q8DRDEyv5fDx+Gn/8EgERLd7urBUtzr64U9+UR0VsH9lbn7elmlZw3FfXHh8mqWEAXzcwaWAJsJzfmHmpcr0Uquxu723+XRLkgz6pj7Pymw+vfrJJ9tRWUfGjo9Ga2Pnjz9678MrE7Nf+o1abSnbxxJYEqS15u/0dk+P2ueds/P2wFlre/utzYebg2N7eqMCG9OhDecOK7YBbGJm1wbxg832RWervbO1K137yeajZ4d7m4CRfwYWA/I5Rwt6xP4Qtioo/zYDNZqWXD0T9vjhh1vtix5FR2yU5R6bz3Rld9MhZP1a8+zRp4dOsuCXub+9/XS9E11fIl5TMVmjzzx7vEFXCBXlLZZ1IA4JnJw8+/Sji26rfdDWD5slaU0Mz3awN1FCZfztt75nt37XfkvJokwKcZ9NjedjbafD8I6HBuP8NJmpMjpa6NorvMJ8RT3WrD0sQRKFLGpv3btz895Nx8Ul7FaVMsJkg1yWwCYpG3+IveyzCbdJZ0MRwYkw4tJYWEKpzsUMqdTs0zWt+gUNKYQWH8O+lSJhJaVoPmB5YUhhOb4FKGkhFRV0Tj20G8jqnlkJk9JM0DJ8KF4kN/P98qFST+GXwe7SW+/pbirVmip8d0vf0szwWnm+qLDm48Lxe80fv00ndPgDYNpdGdq2bX27JR5jcHo4NzsrHsG2fsFhWclh6074wuv7I/snp7sdGdHatqlPzdQ8bhUsA42QesdGyAeShNF0SWuAtJ2sMZmi9DCvMo6w7ECj9DyXhgDxmVnM+L2GwzCKazeuiaspg8pcG3eGl5HlvZROS/4XkLDppAjNPIKAfDOv4BeIFuDlcQUsTIYgA3ozRmoypqQRWmfpkC9FDKVml90aYoqa4J8BDDsdJC/jSjUuwdXCeTI4o8/G27GppSt3V649b4JFNnIf7Gw+O9jbPjrq7DijrMPuus/35sywKwu19l57amSmuTQj596mROldFoauWHlWkdmZJQegNWcXNbMfw/bpp07l7Z9OOhl4IW47ttYEJ53I7sAKGwfgWMkJEKQ394mhQKlBkYAKhHERC++qpbulw4VduAIvYpgZG+Hv6LaO52rVxcV5SU91nHpu9xoQeNyqxFJA4vj28dn69npPqrZOf2Fhcc5RcM1Gp9uRd5OnL/sA6HXJXHReb9bh8phuC2rEpuW6GGMFSuiRvzgx4s0VIWLBwEUprhOsztGoLNWwCFDNve1LZpTOASuAOoEG6rJycTt0ZK5Tki02cxQc8xpiVDAk81QQKGVKgfI7ekGZWvc9E5zJJyPRyLkztoiw0dHOkyc7UXZH74t3EM5IwjOOSQLIm237wtziPLPq9IxYLDvFbAKu2AV95PRsR/JeVJbml/Y5SRl/Ri8OLMGXZm+tjR/stBqyKNUnV1YaTsHbWD/83nf/2nGVziQm3SChwUq5urW5boMbzYq07L77TERvJTGkJHgywha/Xtz2rUcPP/nPDqCRU6IqGFTrUmIAWebLaBAjD+7kuERILIGyeTNAhWTCWHmMztriSS8uDg9O//TfvQe0rfaR/VsYG8mrCmwJW/cZtUHMlUCBLPeJD7WH0KBHvoeLeoAFz8Ohp9ioM72h508//OTZo8c8QoyNKifkRBMA8zN+EeMN9RTeONTmimUCkiJCz3JTYdqcgC6kQ6G0goh+h+Y0hjyhgI+0lvYKT/Fuq2RCK5ilRCWTRi3HWSTJFL+WFbnoEuva/Fk+BlXcgA+G4mtBC1fyg6TET/3QI51NS2k4SJrHslYIu8+hgIXf4ejROfxzFw+UkxsCD3seNTI9N4gyQJVGr0ztpefAEQJ1b7gWSdnh8iTtxwRROlIeAbfhU6nP18thB24u5FqBhOV/JGRgJwhkIM3etRvXDzqHrLcEoym0025qpJzvKruhc1PlCERex+2L0WnAiPVQZ5KKalS2xe3NDa75ir1G2fhiYezkRuraAIcEUbMFP2PACuh0yThKVGggNnwFdIGFEnpUyqXjmcT8LMOMkPCEVdrnv/hFKcISKJJ75V84WTAjTxVopJVSd+YgizeGjCClKqBa2Hd0hoIlrpb5S8/Sg7hGhjWrrlwZdkF1BSPTseFYhtOSTnoMJEvbBRkyRZ7KRzof3l8+fQ9HKtcj3okdpv3KzVsv3L7LeRCzxlFfTtOD3nH3YHfr8OCZ5BM2069v9GjFZVPyWKMhRakuY3z2VZ0cOFrm8OiwZdUtPU6rz+RK9TwfcZbP2GgYtLhg46aqxwxnuyxdNnEDepStE4ECbJwc7sjTteyhNXncyvVZ6hDqPJXbQnK95RWHlFSZ8nEiIGSU3ztoQ2s5+i3Ir5yfSy01mDxZnl/qdE9yWPP0EZjU63WnEGxu7ZVlhjDQHhssPykYOlDg6tWVxlPa5JF8yry59jFAIIdTkopoEOuhyZIlmB8YDjsWAgtYdb98MWEFZ4I9mRrXzXSEOoorOJ71HB1aBblsxCk1pINMRV7Dd3d8yXf/hz8ydykQ4gwqXpYoX2JEk4Fh5NSQypSWAMGAEJJZqxe2TIHP9qgcKcw8FdzTM+H+YumY3yRn7p13DnYJBsdMt1unh/uDjYf40iREGZw9NGeEpVxW8ccHjRJPASxhRTHhSvEWvTyd1MN0NNu2i+LIMdU25uC2jlsAyv8hCGyG7Vv6PaZB+8yzr4KiRqZi5vpWRCc/RVDZRWRTQswwfqtWLQAxstdwXClBIT8Y6LJt0IIzEQcI3SIgK0QwwLeGNAHzyuEH+C0KL+pHlB97LvvdHO9lJKkaicMSgM42UvUSaVGfymSEw6sNq0wvoCzHi1sh0My7P8XKpJZriuaip40pgAsgyu/MpTuyEMpYOTGJ2dmtKjNe+8Rm/3hCa9PRYkvZqMxpwfP5HZTybMRxXjGb+Su90Z8yK8pjHpmZdC4PwezU4Keca4ZYKvNk5BshAh/cCSiNN8VSUg1aw9KKTFDJsM/lruuFFV5iZDBx+Fi+wJEy0vQp3XbFXJfYgWB8gAJKemeEAO5HaTAT9dobr374yUeGzyw3HHS4Awyl641N2fVoBzY9wupNHd2kfhzZeror/aK857YP5uCeM5GOswBASYmuIGCx2yvEyQWQJZHBZoi+FNlZcLN0ofykrOoNvXGrAAEAAElEQVRspgk0FEpX899bAaQvwY3lpaWbN64CftTAwr0UMhn5HgWjzLY3RgKtsXaEO8B2p+GK35BG0ub1WAUT+KA3mcLMTeoIxNK4ycnQC0UVv/qwlBZKdwLjqFEpPqyhdDh9Kd2O5NEBrzJYdaeYOnI7A/RTowVfLsViTLGqhTeTlXrOd1pJ+/eSZEUEvdxF5MLezvrO1tPj093+Cf4qfXQ2eFGdnPMFvLXGuJyLM80Z5451GBNs/y3sRqUJ+RF6Qf+3sEvil2QjMHitpUXL6ayIAwU8lzN12DOZoIRvmxFswbrQueRYiKTxNiTbkWxTp+RJgpSgd7tztNHpvHDnumUDLledmr6yekVclIX6QafH2Mqh++TpYwpBjMtRIywfT7PPintZfgHHYh7YhCxKmC8XY6FZEg9iyacQuSYoe1wmJoYs0M9wqYIQ8VsErwATv8AGgyC4mC+QPvSVGUBZ3s5pMMn66VIms/CDfC+zqLaMP9OVyffKW/lSrudKKTj8dOOytN8F3WB0upFtuqma+pYYUts08hS3qE3LxX6r3wXo0V1yhAMnSJiDruYwnBC9V4hAj7Jm0VIeYcwyMM6HYZ9KrZhAzg9K0omItSCTYcaFY0NPmoVR4ZWIfWSaGxOIToVyXUxPitydjHMbKZtf8Vqjk7NLDZGc1IESV0Fvs8KHQ6LIIsOIHAKMYylKVCZAhpgixny/pJygmm7Ry43PlyFEXczuZsXyL+Ib7ym5uOL2zvjSbSOMq8nL3BtE4rmidKdu8m9oCC/DczHlU1SNEQDDb8qm1fSmzEyeTCf+toGIF3cDllzPHLuS6lAQDYXFc3ZhMUpGZE6U/+Gzfhu/urWXhmNHCvOPdCkarUkvNZIy0DL5+MxB8FG3C49QYbpc1gFuggiUVQGbSLg/VA9/Vke+p0f+TD+STOc0qbm0XkCZi+l2epLngCnoEQGXoelzeQxQsRXLa31hc3DVxGRsbP3qEdhzOSY4NrRuZUF0vnbVoVgrz549gwcWlZph9i3HTGABlZxEsTtYaK6IxLB/ksV56+AgazdRd6enjbmGyAfEuLW9oRvJ/kyCsyaZ2rA2XS19pJB5gZ929T+zVYAbOCdswxXXA4Tyl/k0+Cx3LhFchS+99ILcs/3uYeYbHA0nH6l4WDysM5WDmq+cQKGDxDTg90WfUJfFI6NUUfaLGMmcRLNxn26UfmlXn1NFkQkFvqW76VIqN4RSTqd90X7oMM/pdfocXPUazliup3+aMHW5Xwj9byssz2B6KRUtPRNi0hEJ2meRt9XyvN64cvu5XzOU1v4uvc1JBH05hHY3Dru7NnI6TU+TJKncZ8ejvIPUt2xikGZN23CECCmsHZOy9dW1IWgLFIdHq5cOQjCdcF6CeE/kQdboNOv2yBivAPvVmFBWEUtLC82rN69kck/GJBTZax84cbJ/PFZtkECHQTPm9YuzvV3HpHcdGnB40JE/TzQ9WSleVT5R63DmJlbFgDg6Ifegg9ik5OYfz5m6omnSz4uLeHphQNGpYbLwGOBxBynF8mJrdPJmiEoqeO2ZADqjMAHBm4Js4kRzRfMZeeBcpielP3ulZADz/38nJfIIYKXM8Otnj7lWninYFyVgyIw+e+bydtECoeklx0jceNhpuImpjpk7lA89NE8jTS+NMb/KWApCZSZLJ9KLcIajHF4SrDPc9KKokcMehpeqhNXGCUhZb8nsfM7nLD+qNQXNF3Ge9CTCy85wJzw7YTTbOli5UndqwrUQ2JC9cKEWr1BGgRojg8OBlUlreWHuhpAj3NOf0m2NhzcZBnsG0uIrcr134iQzl1OqdNBbalExFcE3z+cvlJMX0kx38s9VQLmEgoaSeDqKdCnnvprAPmRDoR3O/LArae2yVy4rqKtDLotyySU7GKeqEwPhrymfwqnKOMu2+wJZLUfvNmlWN2XcwqrdScc85YFUqSfySEUI2FmeiELTTUsBo1JnWH76Naw82FAQQJMm0+P5Yi5THR0ioCu9zISUMXoLHaSc/+rCIPJgminoossgpq2I7UCL/E/H0KlK9Ly0or8ZaPA04FJFssF46o3Pv769t+0ATr5BZtyR6AgndLLOyWBxfnnXXtT9R9JywT050q7Mr7Q3HlP0Jqbs3mSYPhHZddK36d+WAhlAR+YWVpi201DZCONLpigQ02hmzhWvMpwCiSBEOpqxKAYKuVlMurkYfaE2U3vjzc/jFcdOYo0CSJlNLHhW2yRwshGXuQhAUjX4Rq4K1xh1ChLYYgMAPBZVMMBwtKoG/Df6lI5ppAisAEWDAOXNawhHZfIjpdVfcBF4FcmcuZXpIP3zLc8P33wpgyo15vG8FAmPL8+U2qIh5nlcIYMNnGKmCx9LcdOHS0gID0L15pX66AV/MkChwYEcqtna1bcp7ejIWTI96VMqF0dbO491AduzlOfmMTiMG7Ao4q6nxmIgAblk8E1kOjMRXM0GMZTlu7A7WioKC3DHpuiLscczKJ2eC5944dVXWbmfv3mVgfl73/3L3uGOLQ1SJfDUCW+P2/b8fP0Zf+PI9uY+TiKZmArtHiCMt3d2m3Um10n7e0ivobmVRh/3roPGpnKkLRBAdj5o9iBQKTAboavpeUEd5Fk23ulukMBKNWueQCv0hXkFwQNo8MTZ7ITITBWIZ7KGgC0fBc/yYNpUPvM7/Fneh2/DB4ffh1NZavBEypudYYXe81X9vunqsB6FSptBkPzpErzTGSgwHE8pnvVDHvWQAhnLsCul/nI5E5e7qb5UmYKX5S9vlJbTRpou3QpBcYBVzmzj7lunp61zRAOQ6Dv6rtgXnty4K4QJWFTYGmZEeT6NqckyxFFIqS2WDqVdjRkDV0xDlwDLeLlUh8WC0JoNh/HhSV2yqiirn3yn/SKWy27mQulwOj18pY00UxhiuZR6y4C0j1/JlJHQNSAa9lNLvFiXS8LS8yEoUocipfrArMDNr/IgNDENfsXpVzhm6VNKlUGmHAKAYoEI2gxconCGWsOtsRiPZ+LSN9421WVUkSzgTjwkGCF3VZHrGVN6kZvRbKlpeGwWUOFWbpU1j3r8At90XJPDQZQHQ/R5NLMwHKGfl3/Bj4LjQ3iDvUmLGCiS3AMwMXOdR73yVdcKsLCze/du/+ythU2uf2c3C6WW7CUq/EDefLbpg4ODZnNOBjApwHjNDw/btt/IISHyziWGM/MJmfDlfodRwoHdJWP4sI+oJF3xXyltZqCXdwpx+GVcZXaHPcu4S8cCMg96wOvunbvXr9+gSMKuRCACXXY7iebFHKMyQ7QhrgW0epaZwfCzKC4SWRPJnkZdsXkRBgcjsdwCZVPqdlA4k1DQId89WIRI6UFKpvdDpEkPvYaSNdI7vzM7vmSa8tL9qEVlFIVaAnT3y6vQv4f8C+p6UFtldjLocL3AKk8HbglWUVuZxhQqJaljlfqMaMgZ4eDaIxXHz443Hnzs6KrBSSdrMQv95Dx2tBb+nnj5WG1tZT613sUpx3j7HYeQPmQO2IvO5PuLChFZmG4QI7aDOsM8LoHxsd3DTtPO5EUH0S7eXFu8GOvtbK2+9dNWjke38wPEBw7a7HrQXkLrg16nj1kP5DgC6+MEA/a6JwpNVmZ4TyFMlAZpGDhLJwQgSBwb/Gb2MQvGGZeDiY3Wj8YT4QP+pi18Krse9B5UEFeAE9CDeeE0WRwWUGfKcjkggxbD6Si/MwvlmfJeZibF8ho+Ofzump9lLj+7PETbz+YyLadE8DwF01y++R/8GdaS30P0uLwCyLAwKSLKnF/2qJR3wWceLG8FCTMZw2bC6y7rHOovw0JpubT+WYVBHy+NXozUzF5UZnH57IehW5tSqG5MRaJYsSB7BRz2sb21A6qYHLuuWvUhYyq2+9Qd/AxtqNRcUJeGLHxowFaepu+hQkc64XKAVmClCv/QafFopv+qCeP0zYOBJMwJPy2mCXRY+l6GcDmxAcAQ0goZibwcEaExYWabsZuZ3aJCQQtY4idG4JHS9cJkMyv5+XcATp0uBYRRHWIGKCALB8ngLYVcgItDEok0jmJF9xwWyDSpQw1WEhF4WgzepjP5SPPpC3CUi/GTaykYW5oU65C+h/YyT7nswYLMATH2HQ06lZRuU3PgdWgki+bScqr6DN/SZCrwCYDhYub2s5s6qeUsG5UJvNJzl1STCmzMe+Pzr/3p+jqiA1gKY8aZGH5Gn7ZWxIQAFZ4hAswpI8kE5OzzkWqjITNEKFKLkpEZF8s1HVDVUcVYA7gONBS2qiF9gwwZQvqTt7zykf+ZD6C7/BWaH46JJWTqy1/5qh0tPFYWlDkY22b9WLjP2J9kcQMuYPQvgymywBdF4EKQ2HDxCuIgrDq8PhPK6ml+A4F4FTQabu5HgJjOBTT+l34NPwKr5HUxpSildDQF0m2sNRgX+KZKjUcDD66nrtThcrAgy4/8VCA0ku+Zjtx3I+PNK6DReKnabYMoJUsBoDYhpVSETcH8LF+y3qpW67Y2oYPwTBVqIQUS36318IAEocc4VjTrCAQDCbMlIPxiHz7BsvEEW5xEBAlDzD0autWGR5si9aYmXn7j8xMnHQFh1YnzpQXRSNMH/JpxNafHqhb0MmeT2sLcowePmR+ZgE4EOZagUkewbPR26xLqdUdYHxyfnOVOEaWS5O/vd6j+iQ1lkjAruoTrF4oznAJ54ZIOq8pMB0xmTf8BCJBMeG7kMW+Qx3uIyPhDgwFvyuRLgFM+fPMrF8rU5Ut5+ZIS5SNvBfz5dPWy+PBm6oVTZQbDH1JgWLi8lwpT9fBOOjy8O5zo4bSm7SGmR7fOfZPhPTNTKkgwSVqIGUBXyrNDhElnU74ghHEz0cTenv4MawQep+YBPYnvOAeJ5iozchFWRnf2RQ97TEtn7ZM2XQATTiJI+mupDrS1gWxSW2HQtMmI4jRfjB+5ZfDpbl6wR9uBQJ4oHTcwbsjhAiKShvaVxw0xnS6zFoAWWOdqnnYhKF9+Bpi57y2N5h5QMZVBCQHUppaNkkyzowz1eSzoklcmXo8yECQXoqbuZB6G/8MGSo2pM4AtfcqVvFQTjpWmQjwqy/ToXtovyzef6AqESu/SoFVJYax5ulTiLb320BBXS70uRR4UiGo0HCedLggUYtRIERgeylzGbZBqSiuqLQymoKBLfgeA6X4a8gS+TwJlQQMUxZxdSgy7o8JUftk9tz1TFjQqce/s/N7tOz+bX9w52nCdlTYbAhlQGFvEbExWhWRY+5cluagQRtoc9mu6BZpg/1RNm5xMqHpkyQEPXSU9NDdkiyoBriE0NGdy8ypzYKymJhfL8NPbDG2IDp6AdaP37j33yiuvlOJBI2PMSbGZC7EQuLZ41iHloEAQVXUggt8Bdxh/qSwyNRwzEWzGnGkIGAN3PIPRL/NZEEHNBWh5PtcibT2a0qWr4UrDIlCsTE+knTJlS5XKxQyGQYU3F41NJaYnA9O3vGfa9QeDKhOXe65DNp+Z0iDAsHFYG8oqyoHnMsxQZJh2RqVs/GsBV+a+nIkSe6uWCywS8WwNiMs6gX28wlqibpI5UM4CIYkiPFskbeYBVMBIboZkn2ZpnxbiEUnJHWnfgJmlwveePvj4uVvX2Ymcp0NXmG5U93onToe3JEFm4jhPj49malPChXmPARY8I6pzhFdOg3q8sStkYKKySz/RY3gyNOnAD3E/07UG835iRDlIj45FsZgBypnMJdAvE2oGWWjlrRGlVKI/M+VR1aSCOEFevgAxkQa2XkU5zCgNOSNNeOLfvQooAoLhpRRKSa+8m4SAOFfztbzK3WGR3ElTf/uQy6WmMjG+XT6qQKjPLwWCdkVN9HBhMMGtnNKSiYFHpg4mlOZ1OGNJ9aaAIupekem5VppWYykTlEjeLeYd4T1qDDOJCR7kpE8VNMABICgsWN4/FpAlDTjtnylFmg9P9JwCBccAzFPwA4aaS1iWTpboHSQSZAdTLBZXUF02wIocRdzBsTLAIhN0FtiVDSkam99hqIzUxT+UjuldYV3BZLe95XGQLP32vQw7n2XwGX8p4l0XLiaurV3ptXb2tnf6HVHJ9YzE5gtoYf69K0RtYCZgkhaclD1OHMfRBFQYkSdyJ19TreFkCnWCfEIAaSn9HoJ+2G551wFNM+9nDktJP0OQLvhG+mkgIyjTW+a6DLUMTrXKqDQYWZhdAUHBxag2ETN5xATnrlcay/jzUBi678LC0oL7mZciooJ8l+xel6g8rpuc9MG4Cp6luogrPyCZrxrIYzpQuGi+uyLB6de+8o0/+0//UYSA+HSjgooCZmGkJ0CYWs8LnBwmHAX2JsU3NHrQPowEnqrW52Z6B4ccAoGJIZdXWglwEr+hCYMJ3IAoLXr93RjNRvoRAORemHWZFgRRm5n5zd/8zaSoDXbkOUic+Ajj8dM/o061epxep/LhIH0J0POeYQeyAClcAX2hJW0Ghi7JLK/tPFya53/RV3dpte4jFMeCR2k2+0k1k0ZLM+mxQamvxAKU3mcVoR2VBdzuaED/ynTlJ2ETJIMwKo+MAucwNQ9Tnj1c8CcjKtSYWSv/iiowHF0eD0eJnST0n6t6rm/JxVeVNmLSPBgoKobeuTw6VqsnqQN3H4GrZWlzsnRmBchyIezJGIJ60f+L3Zf1pWSwcYdb30an49OKMH6pfT9468fXFmtz8zP2Odn2uTA/t9s+6LWOTJmqCj/psSZ9crB30O0vX5G9RY9EKAKdoBIn3zY//qi1vvXxmSQQuoBHVSfsBWVCOqtO2BOcrQDRY1A0jKFZleUUJxuXQKZgQmgTWOmYK5lNLzCITB3CE2TKXAS0AJiXEuUFEsE0fymRqgv48pHX5cfwx/D98kE/Lr8Fx/4X5Ya4/VkLBTUU1kp5pHwUTDNXmXjVFErUBT91Nb0PGOQmjwU+A1EkQ4I1w34OxwAVzsLj0pHS9eCvAZWGCgrS6e2l4hcKs9ZLSCH1Kz+JtXtJymKqwVtgGKrVRZtkndtETXAMkoqBt/TZc3oRbExP0uXSEhmACIK/KWbNIHZS+gADgO8hL0hU4nk8UR4fQgBSYLOJH4sJQ3XmzohTswJ/Cx9XspjKM0PJkdsBUcqU0ZSe5JGJvd0nS3Nz1cllJRAVxsgk4UY51KCsRK0kLWNHxbFBFmsdVehSGCQUgOL661taKzwR9MrX8lYQYwhATQ5BHcxzc9jlXEXMOhXNzmfqwjXc96NUaiRFNpcKFSrFLgeSOD18IXyfKBq2G0VJl7zKUN0qjZSfAX9oWDyYF0D7kbtB5syZjSDhEWklVGHW0isKZmYrV/TIdw+m7jyIKaWmwj1Sp5owmHv37j164cVfvPW2knaU2IyThqJHOONbDsgdgINLjbpYdCGV4kxOK1LMH5+0tmW1pFwMzZqXkibAKIMpXdKIhjU+7IP2Q6SXrzIUPzOKKNlmR7PhaKz5X/jCF1948QWy3OMBUEHJUnOezjiGD5aP4RXPq2tYJgVi9MCcbEIk2GQhicdYbcOjVuF0elN4PoYMbmb1kqVzbNAxA/EMLd7RHLIXAkjvgwUqChgB2/C1YTOEOuhUmevRCQlz8CCUrXXFRI6bd6gWDEzHM1IEHXpSSQEAeAebYJb7sd1nxvM4QjeuTL137epjAJaODGEQbMRjBQmOkXLSMsbhYb/Z+SmdfOxIxyds0hMUSFlEunDVnh5okSZSZ8SJe7R1aGVanQYIP5nvxZxyBRqbNNhw4PHT9f1Wx06vhO9fjC/41h08fbBNFYDDnU4H35Z55dmTp9OyFuTYSFu9xoVbWMmQGPYKHxx2t7cOOBPE+diJ65CTU9sGk6GF7REOMFPHbCwglZiCBkBArjiuQNQ8WIOYpR/mhSwMPxwRQKIVeKwAD3jADOAKGgQDy5W8FYRwwcXhBOZeAHj5KpP62Y+/+0wDw1/5yOSrIkiUy0HqXL0sUX78bfnwBLad4IP7Wo0aX4prKuTpahmBWlLR3/0r4TjB99K097AFOAEPw42CEJAG5RoVBdcterkz4YDEP4o6n/r8DAcOzLJsddqBdBU5q9nAWXhF9YohUBce7oC4+ISzpE09OqkCeOEvfYqWkCUEhENKoUURhpw3jjfLvrDSFW/Z8hAshk0wSveGLGcIbEv5kLexFDgoVoYVAGhUhQWb03hGXMCldAqltfJQ6ZnKHRyxtbO7K6HJ9atXl2bnQ0+jEolAV/preIVRBUoc3JVqQloS+RqNRx9xEHwxrQcDgu4MnBJRwR83oZdeXpJVulFGAwihQ6SeYZUupdCw6yqAg/oQ+ix8zTNlUB5iiCzQyvgygT6sNMomZU1Fl8VfcI0CqvQn3bocsq+BZn5rk+wMJHI70+JemMTllUgIh0aoC2q4kcI2hhQrSLiHTnhlve/BTG75SG8MNQY+MU4YxOivf/kbjx48WRfDMzpx3O2jKLtBO4ddAIRHhhM1E5mpD0JJnsW63D9CuHI/sASlrtLFdEuX0nN9wmsKGhcwBqYZIEAq8BlYMhC/AyRdy1v04tE79+58+7d+i8m/hHuTnKahgCPWxoBDZaHztJp60yswN6jUZnBlmlSGbJL8VpZjc2TbAathZhO9gA57ooJ+JhAYLnkzLTa6mBqSw9rLUhcrlYcwyagjDNSr8bwjRZ+Wlee4bdrVF91Si7TRPV5y59wm+FTlif5OZ4GDE8sI8y8epEwIG31ESzANEAovToGwY09nMBlyAHY56UYXRoJtm75SNLFM4zkVrifpiiNquX3JPpm9ixeWLzc6eKff1gJhFUQqzfFcIXCzidDZ3rFr/ROOafbL4WBSV0rBm73yCAn4z3onDx98euf2FRGGRIz9k4L64R/FnK2fD8hgO51Do712fbnTPZQyBNBopg6LBt4vfOn1Dz76+N13HwK8JF3nMm+mMzkJAPgYFAVkn8I4ZxPZoR95YLVEfxQVOuFUOr9jagocMvtwCCBQkjKZ4nCxIYgywMAX0LxnZi6v59tnr4JMSg5/l8KZzCBgLhVYf1a2VOGyz4KmgX1mJNcvK/is6PCzlM1bqDGVectMlp+qMH1lttWQe2Yywt7dy24bWmkqdARnIJ50Tzm3zmW1qJn+yICG9Vj6RSRQZvr9GCj1n7+nNi27NLj0RRSLnu+3bQq2gSdpe8xE1lHZiIBB5vw5YWJZ+upVNNQgR7oeIEed0rGkO0duai87Dbq9U9vAhwwRp4FpxFzRaMNmQU7hwmwCy/yIhTTjSOc/e4VVZZj+BQS+KJOXzwx6+D3cI18L2FUQfQL2q/7Z1sb+wS6mwBY5I+MijUseOgfTwGUrlCQZPHNFN7VofUDiiVtPS3kFQTQcA+WRRB91LaKAUGnaS2+98u6n38izVJQeB0kKG41LukItBPoUHHazcLY8DUHLwirEmpvpRkZT+ie/eTqQ1V+2bhSYG/gQWgVry/CHvdAxz2fxArolYFingkx6odLMkJlLRzOBQ8wKhyj39ENPwmAymUOsMyDfSC4vFCVZob7PLNR/75/9V/+ff/Ev97Z33cMA4RhcgU7hf07my5GhTjMMWLDNI7t+sj7oYA1a0tpljb6XUbp4Ca4AVD2KhNcEvQpH03oAczm/Bgj91YEYxlZWrvze7/++k3yzpM16M8lk4bWeFvQftqcfZXZVoVeBAREeaV0qLiP3Pb8S3Svxi1MX9cNhKLpCaYjsLrq01WzhLCrQV+8BmDZUz78JcyAGhpW+R/gVpqKrQedEL6SHcRckOYFBkSDo8kgiN0q0Y28nxrqDM8ouO3XxybHH5kQRtQhwpPkGTxjdx0cFwwMZvI2QhRU6hxGTvEEMo8ups1F1A4uIKp9p0BiDk6J6+vVxGSHtzhxL3n5zNZBpdFr+b7ziqGvUzg6MC50OyK+rHqxTRYFUkZ0xFFsQYbuOxzzp27IvMtiJT+K95Ift9Zy3Xr3/3odf++qXJY6VgezsoLvWuH6//sgZQEUxcFYtld7pHzOdrnzLR5K6m7BEjtlUMDHqlBhqA0ljo6zazJ8xwqtA+YyYrACXuS590CHADV8zOnV6FwFSiCzIVhAOGIJEZjyIEHIov11TwgUzmTVx4bYFYkkjERIJMAPS4GRKX8I3X8qlUm8hk8vbgVD5mtK+Db+HNwxf/0WxXNLnIJKhl9vpgHaHvXO/xJiEk7jrpw/Km4bzaJnoKJzBdD8z18Hp5EUAp1K5pxIbnHWpfB8j0sjG3RkWJVgOdlc5cKbpJQlaSZbN+rQo7rOWE9v1JBYBAV5y8AAcga9dW5sBKgmICvfG2NJuMNmtoZrjIUw8f7JcSBgFuujDys+0hsjcNp5MS6E4PUzZfGQmylCGdQZnEVIEeUSAejypoJePDNYj+Tp8+aLSsM9QBB6QqbbnkT7g0xmUFyN9CdFzBJXImsmaLV51J3iwVNuiGJ0LVyeaWEinJqdGGjJWx5Zd1Iqs5eMhYR9g74Zn+uOHYafrhROVAaGWgmKRgYoM+8WhpK+ol0TMVrxCpJe45V5cuHmFlxhSSNWHeSpzWoan7qAm4MBbPLpQoCugNnwAr/FYGG7mKMHSpflhn4tALlqsrnp8KPmxUEULwIKDrhe4xcWUNocT4iO9GRaMbNBAERAj12/d/K/+4A/+n/+3/0HwRlh/qYMfaRJCyVspP9cx4kwDzGsOhXOseniVRgqvz3hVq8swTCnamcEPh5fm3I+nMSX0V/W54qXTAZJh0uZ0e/Xq8j/5vd+7cXuNmMQZ43Yqw+CzwpKGj5Qms9qLdyQIWMZIABR+CMf/tvYycJtaTrpH/ai1ehaJKD4BDD1bJsv5lPQKD0WIBlBlIBGzXkkUFVYCxmCdFXjqDIPKrGX1WXQjvQwRsI6JkjlNngMBf5OjFUIkm2sRgsw8pycTSFE9GsLOL87ZM4BIHazA1BZSN9TCYRAHKQvnAPfXvvUII7FGh4YmQ2B/1QDoAtrM9Ohhr+10cuYdKSLAI8E79voz4UgSgJtbioUMI2VBlOLCkJIljlb14JRsy6qRLDdvuKQTQ0tq6FE6k6FKXVZPvs6ulcz+4f5/+NM/XliojLQPR8emjo9Hp6vNuN0oWEVoyQyuA84psHsLrTG7WYQTuHbf8yi0nJt2mXDdleiohkeGokQdOB1J9q+Kc5thVMYbhM5cBJ/yHwGBJQQrMA+WcjGmsKJDBpuiKegx10JQeT4/C/FmjlO2XPAl2Pi/eBWkzP3hy/18T/nPLn12Y/jpzt8WHhYs18Py0nkvX9O/8jas+O9qLCQ9LBekKI9m8PnCPBAhgUmoB68HqkxguBQ8y4CwvPMT50dGNdGaBTr0BZEcURrrmYMNrP14X3xaxg2kbg0qO6fI8d5O/snCyV9ZSTJaTtRhCgDDqUAz3QIzKjVyZiyCkhP8NSR3JIgN4jWnXNQwUcfVRbDI6Nnp24QYnIz6VLI2ZSRGERj5lwEaD+rPqjfcWzOx14TpZ0ReZSwGU7pQlvXBDf9xKQSsMiOEApY5ngcPKJ5WxsY6RyctJw5sbztgUy57m1DsbAwIqB/xowKhjTFy1k5B/YxHynSW0WMEE5aFifsYTrjxEDcFCKpOK0HTgCMiEtmbg3Q6rxAW5mEKUKRvYSteaggD90RkjC+FQYRD5GbcbkoCSmoLZPIXHphL+V5Ys5lORWnZ9ZQzfZouXcmN0oXUFyaiSv0PMFJbepY/V/JUehPUCV3lMSv/lM9kx5joegxZLz5/9x//k3/0H/71HwoWtiT3SA4WTy6y+NyMvuQNl+Fx0HX2AziGa6aPXhnQ8C/tZ+zDi2VQhYwyrIAr4AAQBTKoAoaMbIQkvvnczX/yT/759Ws3HP0HP3FJ0lrDkeI8hzhUcCXSLSyAmfuIs7oQehiDSVE2J50FCgEwaZTWzDDWMjnmQFOiPs0S2cHF9CHYrEBqzvwH9YKGUbzjR81oSJbI+MD0ssepJl7pyBDPKFtMENaoLKsTE1MFMPKRW4BbXzsy77Q2g9+JtrTqPpdKTA+Az7pAg6omxPBHMSFsHmaDh00aelkUoBEMUSYh3UHDgIJGXEhiYlLKLZjf6TXr1drSXKt91uehuWBcQa7IA0rHDy+MB9OfSMRJjusOqlvhJfYBHKFKhgIY1gc0wbJdqBy8juX3uH5PLZFrjWl7z5SfHJt2COjW05Pp0Uqnc3DY386u8/O+3ov6R3onIyeHEtwIKa7KdSwx0RT7owDRen3y4GBbGjgmIWho7nD8QgTBXhCw7Mjo4jO0icuII+LSM3QRhTF0VNDarKW7hSyYtqBuGUqZ7+Cc/6GuTFDQLHDwMVTLggylSN5T1Gfo7RJxy2euffYqoEk9LqRMKV9+/933z8r6LE+mulJx4fm56PH0N4A20WmytGiKsD83wyZSOYRKgEauF0pWEjpdEkoo1BiNK1ABMaZZJ2yCFbdTfFfIQs4OqjDcCOZaPTqhN0u6EbtGLkamQRH/sTvXdjzp7XQGYLAAjgCrQhyuCk9lBkxHhBLg05oLygERRmu/R7fdhyQmrumglmZcDIpNaYgDyZeGJWZYDUdYuy1mN8SS2jJun+ARGPgKrcNsDSUzk2GlL6G90pz2Eq2T+CHKPDFfjmaTsX7I9MmyRB4zPGLNqksTPrM1iGaEPMLfjw5abfzOsrrhXLp6g53RBmjQ060kp5Z56eJ8fqbBl2FJ05fdSmB5st4YciYkK56CSOr3XTcJoQypgD+FoB7Pnn7gpJHJJEO4SaCfIfmXgEjIneG7RdB6PDXkfYiew/FHgiSlmlk0joAjkCtvJnWInUNtOht2AKb8SKlSk7qCI0OJlYo1UQCpkykxygPkQpCsNByt3xhtSPFgQiGjsPP+Gqn4l8+/+cbB5u4f/bs/ilRz+K0Dmqdl7s0WEczJ7l+CRpeS26s0H0ke3lsGHJiV/wFYuqH19MLIU6Aw09K3jC69DqwLTkQLvnfv7j/+p7+/srqmco9riJimUicyfOS8JvE9VSj27TQCZOGn/IER5TFoZgaiLZRlYiz4qUG77qvQXNAGyM8EfQFgwl7C49VFhbDMS1dNIT0q9KONuJXS92JmjdcmG+DGEuhJBcn8cIQolX+ZTU+p2YnK1Uptaga/TT2RC5kvIMKF8e4oHnbbOmAKqWN1Ryfi69kK9DWynaISV9t5I8k8Rxkoe4edZGjQnLk5tX9q3PGORq2YvXvI1fQ5leHu7ZszzbGD7jkbDMO92A4y0OJF8kOZd6Zm5ox5CheI6iIjJGvKhDM9KhP1ibOx+x++3zrYO7tgrYIARRaSY+ytYjcvxmZKUlhJrcDfGZDtXpcp2gpc/iFMIy7iUe7fLky2/hY0vLN3qIPAWICPSk+liT0ddK3Jj04U402ZzFIH/NAOzpUdyBkyCDs92Lv5jfwKksdggVWclJw0sYeBQ0SbsQ0tgknrmwUYJCo0mOksWppPc6ckRmMW8jMkkm//xSuTXkql4uG9/6JEuTdE4xBhXp/dLb+Glzz/d9fTigtwxnypHcbDwbBZKY4xhuiRYROJzim/S+6lEIKB4vrpK6tysCGdh2kK4i9l6GYnyMYWYHYwcaxx3PadEUemFUybmGyK2HYEQLhi9vFF3JhyOtDZ+VTSNg31vIteScJJfSlUmL4Grp/lCwl9a0g3MxYKYvoGxIedLh6l546gZ3E3Z06nydDP5S2vSlIrLZVJy0p5ovrs8aY94ZmpQGcItsDrEsoBWrStdKBwAAOLxWwY8ej8D6ED0gTSk5xZZSU9Jc9hRc3ZWZDFRohFj71YRUNhgJTOxiORKuNdozGRByenO9vOmNtVSJbaRr0p103MRWCXo/ISiSxWtlmrkRzYhCSpR4LdY+AmXWLdMX6Yo8MaK53NFPld3jM3BTfKQKOyxKKau0RIEQbplqksjxuuYRMJl0Dx04Xyw7tn0UxAompdD6yinqepImIgTwg3ERfKMGxTi3ApVJgZjBmVsyaHgkTtj3O5ANsvkJajTZdEgF0whJeFVaGT8f4EnVoBDjygwmqFfowsr66+/MrnPrr/3skZ/TQhNIburEMwYxBiSycukWj6AMWybNJ+wJ7ZKQMunS6zXsRS+ZmxZ7Apa5Rkop+glzHK6HDnzovf+q1vm439vT1dVQ22UKjbzrQovd1Oz7Ew2gUcnWdgcV6EWcFD8dXseMI08HLYUcBVgKuxKInDucOk08+s9gJjnDISDnkEzZPuKqY7oeYxKhD4mTiT4hJDjHHgTWGL9sezveLEBY2yBE0sslKEh34FX0pBTB87VXHpa2Y9W6YDIjl8MiDJIAXZJJuFhTyQpKiRy9xiMTTicJHB9MSk8+L5kBFbiKMgtnh59cAAfj1nlDCqyBxdt8Vz7OzF176aEDib/oWEJvTS4UuTJ70jZyn07N+y/QAL4PUhysxD0EXu7pG9lj3eh9J4a0IfkpjTEDheqZ9HE+vr/dn5KXmnHToyUa3aGb67u7u3d+yErxkp3Sdlf+vW6jMEx8HuzpP1rf7xQIfLspwpyZkrDBBWA7MYt2yjWMfJ2Xi3n9SwnCsUL8KIAOcimbRh9Sy7TMDLGsBgCfiYsMxZVLAAP19IX1A0gexvETIxDeejoJSnzH75XmgQKYR/2fiKWDLokEpBTD9N2mcvs5KXS/k2/BjeD0YPb+b9slwpW+4Hjnkgj2SG0kIqKjTBYieSKr7aMYf/wAUMim4gK3N1vMIIw8iTnM1drvozZjrYF4atoiGCYqSUX1pv0TcutUNsu+orr5VQziN0T9ay0Mj5LXb25KQDGMHPrEHDJcDQagz2oiVoCYPs6tcQtM8gylgBaain0k4AG0Rx/IwVSBEpU6IsniW9NOiHidZxS2YATMPgzcnZN37rN3/t175sfBUILZDsZPCzn/7o3/zrf2958rfNDMH5WaPDSfBLI+Ua1Cyjd0M3LuBoHEcQcRLVqpBgKQIggwkuxLAYOpIDMRoftCg6poGgWNcNnsbkLGnZuWMj4kPv9JDMwfhYG4lPV8VEyWXLdUzApBswctIpBU6soTQYW7a1DuKUstIo5Bf/eJCnDKTwNddDMboZyIafFYEYDCBbUzI2lqAdLSV8LwMqcs6UZroLvhSU8Y1jh8Ow1OZRSxAFUkkewdujIUadzcErGV0WKxiIS7LxhMnb8MGwZflDkovSoWhmTRPfowMFGVQ6B11x+2HmTrlrLo6P1/qdPZzvXKYWkV2sEQ7FsA46PW3t74veXl2b39ra6h72nCYuaM+2T/2lszogzNyH2QXXMntBtHwJNrhYxpWJzdeIeXMDD1LSBf8DoLB496PgOSf6xt3nXn3jdUm6uXMUxCfxKURvOEauk2ZH8UlHoGQBF02VQ9I8gQU+bt+Qw6zhdwSwtsLS3eGrTmuedQNaQywNe2U/ecqYpnQ/ciZTiQxSMpF7pAg0wICQXzbNZlhZU4+O0qenYYmD8tRJlaOXRlMooMhDtlVgtCRxpAaK1ChJRipjA+qN+gqMLhKcTok1O4icW9ijgvKQQSFH0wF14GAgECOVDgfA+gdhzauexEimY1b0dczTdo2x1bVbMYNl9EYd/c7bVHNW+9Wp1B0k9GQBQhHd51NzlWpzlnBTPejgVg5uJ5NYAxxwKPvSLm8t37KMgEc97DhJjO0wGsOaBZg7CeWoMj7NIbSxuXP/w+2kBzSjeMaYc8nHZlDa5MTifK06KTqoPTZbXZxf/PDBblLCaVES6LwwnVGUGDQxG9h6DF8yrBSLn66XYASIFQqPWorAC5cKTDKa8AOzGxo0cEMoxKJQhlPos7wDY2lAI5n6Mg8ulGfUUa4UpEglw1/pzhBRgrIeKbB1O7/KI6VA2ih1pt7ypL7ClbRU9Ghre8s/j4F++zBebqqplKGwDAf7rFqDyOTpGNqi6EMql2AMDHFgispjHoxiCXPCHJzYiixgSFSOYBtkoDTie2gq+69DftZx1amjjigEE56lFXUJJkN2daNa1UFt2pzFaTqQgWWAfkFRQJXVGpU69F1haw4nfZpkHBnqArbPldWVb3/z266jRUMmuqdHxu/ceY7Cvbt3EIgEuJewGUIwF/MqIBp+LeDF9EwFMHUFC8gDVuPrvWh1jnTX8te1EFFCJ8FXYIakBGg4i9bwmiTZMILIf6yjkH0QI7/pGpEnpUmyARsdCGCRh6R1AEWnHOuDphNrFpiNR6YqbrtTKtRc2rYFNo419BzOQA1M96FeGUPhftkUZ6geKUDNoDO1QdsMP/iCOuU+DbuRFCX5DmFzWH6RfTgvzSfCBwEpgtciceZs3U0SxHGnxMJyBCrgurEwI0azKLxpSFAmjRUTIydwB9/VhqHACtqxWYFGNOjKeIXbg0V6e29nYqyaHSK6BlXFDtgVkozw9nwOGB6kn+y2ezV26zGpu2Q/7561DaesuopRXquGWWghPL4ML6MMabgawGTo8CoX873gQYqmO5mXDH/MiVdXr15D/48fPmXjC/CwPJNm7oSqIJ2Uz7PIPGgehh6JG8WKGOZNGrLgcC4jMQhu1VCRkjh2BCc8LYZRAwdYEAxrdzKi1zECVASA4RtGbIGbqssY0kvy1kCyynSDSUp7RxdOFqV/kCNRXI+dmxHUiiiLwYIGguk5rclRvZFyZpIWkeHaFEUE6NrkaK/vGkZAJqkp6rCIeP3MrkKV+KPwBFLZtatlgAyB6wrErmblmlEZYrsNFfUTEAIKUX9Kl2KApUgBSqJ4QyPAlflONcbmU43Um+W1pZFfksXhDppGUVFck8E+07h30FpbuNLpoEwZ7WPYJdIoSqxW3SNebUbO08dbDx8/2zAo3aMxUXQaTTno7afrTNn7OztbmVDPwcPHG0dn2PokwZ0OYEKO3HKabuAbNh61Ksq+5ey5pXhg6EjCSLsELWk6Pc9CXMeMCAxcyoo3pAdelyMrCFegUMg/Cpr2FM7jgUApmUuqApsCaNIxF1Jhbrs6ZIT5VZrxlpKBWwFi6suqrRRIFS6X72w2vvvBQYRnWq/kcsgs/NX/wvTRRSmkd4qqmj5n+CmYQkkJizGHg+mUrXDHscolTQt9jLUN07K0kk8Jcyz2ocymCjBDR3dI1WXrRj+TqobzI2vBZIIKiYOviGEQMdS4Yg0Uyyg/EpSlTwHlZy8jpFJiScWkmiOsHTfq7FhiuwxXpadf//JXFxbnj4+lDBFsjXBTycrqleWV5SIACmyAOePN22cQ/ux3Pssr0E0RhQw6dhhSKzE1rBYBPv0NrucuCFJSwDfqhokLVgynNRVhdlBAmeFwSmFizEIGYCM5ANQcgbZJIdeOqDmtDsKh505VKrUsXBOcl3kxHoc5TVRlQgFeOCdKIeJAjEWy7oJU0AAzAjcSQm+CjoX2Iik0V9SUVGTyIWVI8XRrY/P+R5/u7x2GlmzXJq0dH8FKOMYPZgRJqA13cH6kgSuFVCoY3yiFEqE4CPTsaVxlU7VpzjwjSYdj0Q7JepMIn0gIfvI0CiARKx0RyMQ0oGueDLrYMgpn8dEnOIHMtGYTk0UPVLNaIpJomvJAZzziydgXSoCiUeAsGXOhw8vxhyBcGk4yqBTI+Z3ZGk6pXvmVMv6DBgQzIxOV2uLSNTt+yTrpjs97IVFMMPPkm5DHwD/qf3TsTBboqDJ6kwpyHbqR13FcGiXIa0MX04PAJUsWbMSoiQCrSgpL5A7k8KdSLqZsYkrHCJb0P1QIKGotz6eXdIsiEpjfpmN2ZR0xXxE/qLSQR0JlYtxJo2NBjay8yPKQFV5KTtBsYvF3VHKYeTIyatK7ksZgCJBW1d71igLMHhmYw28rJHntqclBapQ7OipzGg0yDA5GOoytgNQPEMJHdTuSLAoKMOul0h5K39zMYFwPFONnQ/y+g0l2AARvzbYHoUQGIwB05Lw/tA0OTpAFNYCIqM/UbHRQwtrE+TXbe3KBc+5STuPlJmLVujA798ILLxy22ouLy5F6cfCf7u8fds9G5+ZWSgZiVpFhxv9de1wFcvNk6DlQwz+t6CCyArsy++FXGU8RAzqRYYXpBw8LlWXKAZDKNES7yyEbcJnI8myGFh07kAmP9mWIaUCL2Pxwwb00k6/+l7K5mleAWIBdrqfmIVzLh0lT2KVL/Cs/BC54Dr34lRV8aTwV+53qw53TSvqUZ83o5Q8fOsLfhbGtLq90Jdy218F+lqCI4kNVgkkmDAZnM/t6p43oXMjDzJ2SIuplN6YbjucAMOhUmjV3xSNZNGH0FXsDFp8FqH5QljQbMghPjfZJpluUo7IowYxWMcHhN3H+Xbt69Vvf+i3tmSbPei/juRDDvXb1yv37H+lbGS24GpMiw1+ffUnpfE+/fPcRcanhLM6D9nlGdH7wASCBM+XQTKgrAIxsx4+V01EoBYPCZYCNIC4yAOqx9qsRPnmG9g15NOMrFHZdF0JKuGO3L+HlxEQLhC0ISAIv4EBC4KsTkK4aGSHetFZ0OzYiR3FT8TxMeaNUZqJp4RmUDuu9ThSwW84X9hq9b6pe/fybn+sfAqV9CDJhtVv7rd3tfZ7CYiLA6LGMi6rNbM4UXV5qNOsjSdbI4prl2OLygiGjupnZGZxFB8Fd/0tsKoQQyjF67ASI2DaIEJElCd/UHx4Og2aOjPUgZ6QEbcJ2sEkVASwDnG6HCYYTYnRlzpCYGMUyPe4U0AU/guthFMr45adRl/I+QoYq+bs5RwSFm6akKS1zAP13Nx73WvXGrD1DDefsKWTFko0GUNDaThWQINXCzYL2mbbhv9IPdYWjxpoNJ6ylTFRYBoTI+7jjkMABV9X6/4+zP3/2dc8O+r49z3uf6Y59e1B3a2gkYSEM2AYbO04qPySp/A/5IflTUqkyICSMBKFwuYJTDik7LpeTIobElUphrEKAiMAgJHVLV913PvcMe55PXu/17G5kOzZV+e5z9n6+z/MZ1rzWZ32GR6y0E9BtLFhl3myS2R4Wd+yt23RgVtQlWTkZIo5ChJ4KuOXtfl6TysjaUWU2hG8GGJOnYRon8uWSwTLGXWPCiw6xYYsxPoSigCF5NrpRCJUTRg21CSXZaI3+ipe9WE6Jqbw4M4h1d+sX5vAje+kmCRpH68xJyDBEiFojnqMIiwuBl6ghgk3KSAFQ1dF4blKEm76WEGpIhxpXe4fW+Z+ATzsa0S3i6VoG1oLO45MjjQjxNGOoIT0K2ecvX7w8ffGD5y9tddgGUS93RChbIzF38+jgyLBnc/ugcfsb+wBMId6+Pru9vF15/MwIpjQIQnh9ok08rzmGhp5kMDcYbFYunV035iqaQ8v0HwxplA8MQzIj4LrMmsosP+XLAEYt/FIQoslK4tidmOKrjh8e1GSXiJt49YkISz9TK8Il5uR9nmsiY4QSdGdu1e7USMcwOQ+kgnRIO+DWytTZRTMtT8+upn/9ADMV1FEaFi/ArGVMODg6evbs6c/87B/65o//xDe+9sEv/vlfvjz5otyDLY3VKu0x3nbBeG2GvSqXvxRBLQJZQUvg7QC7mLF+PSFAss7OBH3mhu5AJ5INXB4pPDfGiBp9iWwZpKQsDA1VmH5dVOFP/al/4/DoAOwpd+0ZRghTjJJ3vva1r8vWyh0NUg+WoJYfPrFiaPrDGw9/UXOA9KcmISG0iUxsfYNZVgpnaRQ9nzIiRa7Op/glwzH5H2xLJhBsvAJlqqXYM5jWhP71hPdtCB0uQLIZD8MlU2GOu9GVOzvbzqO0jMjhetvj0xPMYjB5dNlNVFkjr45M8CZUMVIjD3xt8Uqj/2Ifkpqc4IdQHkA+u9sHe9vrG4/aiNVk9e3r1+fJLxOsddCNp489jK9lFS2W4GsKGx3ysXd4qMGyRcNkouACqClIg3SLIwPDP8Pt0v7IYTi6tcUYLdqRldSz4ULLwHO4wwysvVvd2zFdzNmjpww7s+gcAf5G11Jhvae5LiKonyF5WuNnWFozcSMLMyjnON0covhDJAcw4TMMri+9u+L89JgD3D988uSt9957+s5T3K2815qTVFbVUkjfgJpFbOyJTvCCbRtrdTL59Px0KXEuO+YyVZ2Gtb0dqOgvGlDeQE2ks8bFsi94AUZMMuWwiZ5sipDZv0iTwTUDZ9iRWOmZ+QaUYrXVi30L7YtGvTLFZFGAtTmHQAn2e6+6IYsja8L9zaxQKy/XVzKnOeUmvNKCC0O01JBpaTaiDjwnBhoMlgmFBMNDyNU3VzXSbG4UtN2LeqQzSAzyoXS4IsLyW62SlhBI5/yPdf7GIyNgSx7QaGZBbPUT8+R8+2xcv7Fe8FxAob7jhApsetek2GD94uTm7NXd2uUOg43UOtWxcsG9sfLh9z+xPPTJ48fOJjrYN/S8+/y115C3vKrVxQpGky0SfXB4ZGHRydkJ8RaiedR4uiyryRRCGMhBS0kyeTkJfaXy7mupZ/BoQyzUMQt0cz9i9lO9tO+hMKrUHmjz3zXuQyyKeXxJcvHo4VECjkqeZJq71iKiol06BQtf68h/ImmZ9N7W6qOnu+9+Vdrsa+9+8GOWzb/67LN/+Pd/4+TEPqyHkgNU18mBpSLeLbyx+8gpqk+kQ7/y1a9+8N77H7zz3tuSKLKLAm4l/9V/60//rf/sP2ambCOhuMRDbJy5Hb12mezga/LHEVON9psMKg0usbJbowZgnaWiVtawP3bh0bYUpCobNpHRGfmSNYt6TMS0dHJ/30lNv/mPf/d3/vHvWJwdSSSW0erN6h/743/03/i3/m1SOsyPCoIisCEnTn7jG1/zSsGLyxc9gMPQscs/+OnmQpZ/frcu+jw8I1c6WMS7nEDc1GGaFK8pVdLgGl2mZgxPXZkAJpFBZz7ESmlb1diRwoSadBON4n0a5E7QT7zeJGQFGig7UYWInq+8gN66KUCZIiujvbOpuTuL+TJLdqsfWQr16KhJ1wvvUrv2OjXvS7LJ4I69xgDtszJIM9bF61jlfItu762uabgD2tsWgi8Z5MnOLRASbCxnamC01fIoPqCcclbJOQ3OVW/iN7c3ABfNAyhmT33fKL8VHtBeMQvcWhdv47bsV4XmRRk93JJPY86Q3DJhwsJQWfClFaEgVhzu6cyHL1hsRUYTn/VS3JsYpxIIBti+ybERxuAiHp6wccVr6Jl6jbaBDu2TJnct47k6/fKz86urs5vLd7ifyGBHkFRLAFnO3JlFtTC6DE7QBx5F6DItjZvjAHSY1rer9t4bp6bP+A8eqSaH1eSTb292t3sB4fnFad5hRI6B1XFev2kg80AZcdj0HhPrG0bgKtDCDA02x9golTu5tGwnMqCQWgYWWrRzU0OcpjKFxfwBhpUD0lvCh+DpRZ/Jvy++TYMS3yl406HYSbyXMa73zA7b0Q0tZritKZmBXsjMvY1otVEATfJjygT/cGekvI4G12wYEiEawZmNYqaLMrg1Yvjr9NBGjQDZkhn0kq9HB4zUhiW3VspZU0T6v/LVt7/72x/+03/20fHNxbYgppPjCBWtAcbqxeXtl6+u36xdbq9fbK3ueo8xRA2eL05Ohk4po+QnvXNQDUd7cnqGmGXxkvxO+1mojcplJACK3JpIJV1DKjUdgYejzvsg5Wz6icDLrSRyPlScLSAAxFWOwAfBsFif5CTpzbYnVfOpQ/+kdeo4K+G51MsAws9gvWA026+Hhv+b22vP3nn3O9/88T/8s3/k69/+9pNnT1PU5iX1eLm3/x//zf/8b6KdQHlYn6BZT/XVb3z1537+5959751vffPrB5a47c2baWt3jiNsb0RL7+D7weO3nafN44vymP1Yh1bBJvvT2x3AqCQ5NcrNyGDH1c3p6YX1ReY3eczrs5v3v/7Vb/3UT37lg689Ojr44P2vsEngI2BEvMXVTbox3LjRyEXsw4wTYD5nfXv95n959t3f/N3f++5vf/HFp4R9e3/30cGTP/Yn/ujRowMJDxQf2hWCU29gIdh7Pu++/flnz4E2ZIzAf/DTdyT8b99+KPIHbqfdJBm7wQRYEeVYsUrGvJH4KV/409CfJqowNikhoUh+E0wKlRQNsPUeW3E5g4FkvtZkv1Mb6jCOrlsZKcrDpp16MeqrNGUjZ7C/650Ke9axFLaIfEQ1G3tHh0/F/hdNlpiJOZ1Ue2COoaZy+lp2GHVNAxcDiqVmZ7gauDpqbfF6+h4FZlYksbkNUfnUJc2OTNncZBp0DW/FzDeytIJAkpovS9wb3tHKdKt9N8bvVnFIXzRnqEI14TvRrSFeWPveCLN4IZfZ1Hpi7pmJz4yJluur6R5jENzO8HUr24J2/BV6m8PJUS1UTVTJahW7QIskNjOVxCR7FcC4tfuLV587j0jESQJt/bCJr3GeC+H6OEdDOgufq8gKaEEAoyH14+Ak/avuCy0obEw0gyxlBUHU23Pa8fr+iFTCMAVHuTOI5YuMNpXsDSdApW1n51b3s6gozRkkJNnPsPaY+J2fn2MipGRaQd60MEoQyTpHOaobguw/b524kbUGeS6GHBIGpYmIXN9npZdSmlgcW0FIdb2bgVQ3lMn3Ml+KKGRcodaD6Zomw4n01n6P+hdBRlmYaZxWoh4GC9NF5rqTl+vdDTaIU78164XEt7fnXqV9dbf2h771k6dnry6vT72Y8533n+w9eswpO+8ONj948eL89ETrZCdrsbiRdctdXtsJ/ehw77MvT/H229/6yZfP/96NMGfw03uBCC9ox3K6Sz1uNte20LD7Ag/CNXtNIleygp+48pBrdo1BIRaHCP3skZ6G8Hdu+9VfZIF6T+7v33r85NlbB5u7DrJp4djpS+dZsLHWmyW3ffqDwOM/pnpy2t3IOmNyLC/aouDE/GBz7e0nz771kz/xre/8zE/+7M+9/fipnKkBpvin93PCjtCtb/4r//b/eP/9dz77+FMiJKI52H/y9pN33n///a9+7T1pzyJcE0LMRIZcxJUAMvThB65Jtvzsz/30/+p/87/+tV/7O7/1m/9MtrDV2GJUto4myxcd7m7v77/68vjCma+dw01XNg+ePnvvGxJsBz/2jW89Onz89rNHj589OnxygGU0NN1hJJP6zIMJt4YALeHJOhnloLk5AXdKNNysmGT8uZ//qX/5j/+MTqlUhtHJU+dS1jiWMsSJRQhxKhfbGOJrH7z7T//r35RzSA2UipghG8P/RR+VBrql3FQ2alRduIpJNdPqDqO+uKWwG/RHF8HD0/IYWPDPP/jWqrngZCmyC8mHa5rbZaaqGzpmPpKJ0RAFtMTJR5JkkefH1WZG/Hf0FesjPNxtysB2s0MTycnb2trhms0RHag72wusnbzc5AKuL2Oy/KjVJSNryasVin1MH0ZYC9utwzE7ybJzyLjFSQm8QbazvmUzNqEY45AFUb2ZNzmiwh/hjHv5qaTI0N3iMUX1BNiS/oUJkaf5aqEWjGDSEhPx0QwiLAmIPA3lePIhCdJoA422nOCY0WCtkKeBI1ts0kfo53eCYLoJNhHxftW8K0c87AC5/nkMmhXrkurUzNOImm8ePiFbU/EN3MBc5r1dDoXb3jZ/ezGP19fOlWqLI/GwDhavGJNYBRERjbwPLmubCSTYrlWjtcqDgPZmGjO02FhYmJjF/n6mndKBaEjQGWVjhcylZcFXV0Yj3IBHlU8gcwDj1UvU6H1+x41Ik6jArF8evNnZlkaTPI+4amW92JSELhWT91MGWaglAg01lmu9LLBpEyoqYH64Bytfm+tE2lwCncvjVR7KOXFcqIOKhi1oauLho4KC4MDq3d0db+yCIK643wx3Ftpbw1tn/vrsubmA97+yfXa79eJzNu3mvbff/+3v/taXz1+99+7jZ88e/eZv/87HL09NJhslxfIxCVTw5OTCyuuXb24fPzm6/OT3bB1Y29wtdl275SklrwpW1BHxWKDlEzlzjZPmxZdMoKc/IjhoY2fAjUPIqmN1N1VxGb0XF4KoUzEzWX1V7n/8O9/+X/zP/2f7+8YdRrC3H3704f/tP/lbH3/6Usg8NTM4C61ikzq+tVIrG6wniri7s/7kne0nb689fvvpo2dP3j344Me/9nNPnn19ZWtPKCT90stjl4lQe5gSAU2umQn/H/3p/2m7wahUYU9jfuhih0SiPkXckATnoJYkpxxQ1ECQrWzu7fxrf/Jf/2P/8p/8rX/2j58fv/gv/tb/85MPvy/hlbFf2Xl8+LX93Xff/o75wsff/IlvvPu2IZr0Zft+wkje2IJ4edEOFKo9tmAQHr9GoNLJoZ0i+bmIFTSo0L8kqBjaAv+b6zQnxhDfGdayIlqGfNTXTNrhUqvCtR/75re2t37VngGdhsdwIsoun/n6wy//7b8L2+buUi3etFXET2ANYwLDp7JcZnNxYIhxYeIqS5O7C7hMwJgdZfqgdXRWsxvQblwpTtZe7aSduUpUY1MVaJRQRqicrJuNRfwKMdJ0c3lx/OrVZ6nx/cpbb7/79Om7Mnu2a0tfIATTYTsuT3rxxtt2zfIhVF5HuzUfW9Ia47ftdinvXt52hq+mlJNxz4hlrCQc2CNwlmVmnmDkUwZndofVOxTaX8TDj7nv7NyCxxkVZu+ppXZMYCqcvZBq4EQBkTRa+JERIX8kEXb8grw/u2WIL1GFsHS0o+fth7258qaOTrxx1/vIAdbJ741N0arlIDdyX732D9WRWaocjo1eR3Uj7zIeiDELD2GSLUAwk/NqJVi0JU+kyQg1WsIieSh3liX31kI+MnaU4PbLf4ksvNH6jLjVH/vo6QKeCEsTCclIgwoopoOI4K6mm4EoJp8MfxIywDYnXP5vx9HEEhr1Nma8eDx9kNBj+TFF6GS3BZ3J58Vqmb7zE+/bI0cttPAglAMMN3LhyiCUbsZJaxhbhlCQDhSgKTL2Iw1lGFJYj/RVyJBNSQOjTJioo/kuY2WoVVQNd9wPpaWdYc3ohQokX8iwZl/dnk0A61t3N1eMGHjN/nzy2fFXv/Luzt7RyfXLz89WXv1TaxYuPnlx8s7TgyeHB9df+/rJ3Reff/KZt8hAp6mqiG0pn21OhSNfvD57/OTxztYj/EVuo1lZA7nSnPVD/rY3MxgvoyEMGS5xLjDB/aC8efGy/1EDl5OaEPGUPIcV5icjVZqrqDQUprX+5Tu5GUMxK+5WV7et7vjWzsG3/9D3P/r4v8pgJDrReczX/HYVEuvbewfvOPXmzfp7j4/+pX/tj7z19XeOHh9teL3BjveXlTj54aqS9n/Q6Nhb/B7VQRakHQpAqBh9UJBb0/2xqmT9JEwoweKtl6Alw+UDmLAMtoyfufSt1T/88z+Ljz/3h3/u048++eh7nz5758n15f1PfOebDobfP9xWKIeX9vRhDvpDlbaNKSJeCC5td5s7KpZPooQhyAndCjXESWpAB7zsT/ROPZipKK2IZrTV9F4Alk5KwDQ5NqBu4fS1r3/96dNH5598Od+1XUM9UWvAWO7/i34rOvCwEK9fvyZBjlHMPvFt4hfJEHtgiulCMgQIH0tzwzhJZd6KZsUVHkC+Yhx1Rw9a3u5sk+Umqd0oKR8NeltvFnNSb5lRwlVeBTUWFzIqFM1yIQXmWZIGH1q26/L49Pj47PiTzz82nn3r2TtHBl2Hhzt7ZiO3LB49fHTUsQVWujkZ4OzMqtLL3qeYNXd8IlzGZVu22Ir1zLS8fDa2BeJ8HENKLH2VppMR0i87KziNPC3lKyfgktzH6vyYr+V5mm1AlzhsdpqJRJU4ZgDJVlcr8zrMX7svozvaVcfOa3R6khmIGRNhs4bRejmaxk2mX6vWK7E1Jho5AH3reHunDXpyjGPnjYNl7TRBY3PJLghB5SlNMoS2BbPhwdLlw5rwTwFHDzHKI5yj1S6mAbsemh93UlHi0YNWvzSxQrFgnuPG8RjFTISlFkYMpse5ToRK4yQerKHf4POEFVJ0LDuJQk5uQyfmqy/PiyfIjZs/knWNEwtGXFSLeDoGS/lTTQ0cRPHS/ntyEvgMAWJE8Ax5JYza0j0PfRnRdi9gR0QRJcDCMquRq2gg53bBzQRcfRsEQ1wtiNf2Q4RTU6Glw4BPoUeJKwJLfxwjw5GWKUQqj0VCl3dXZh0M5OxO+d4Pjr/xwU+cvb6ws3f/6O3j1y/Pjl85gpf9tphXfuHHEFla5fi4dXMOm9Q1oWXOJ0zJbPOLg0JSsbn25O1Hn31i+vlalADaQtRBiVO3Vs0wJKEdqAEMt4S3OUa6iT6w8zRK9QmZEfT2Q4CffCJLpLNy0RNYQ1lG8enb765v7FzdiDTIsXDGghUot2tyyutGa16wtXZwuP7u+4/fe3JkHuTdH/+Zn/q5f3P9qhSktJehg5dS++/EDevSNTSL09VLAVsuhnzDVd1m/336Cokkqj/UWCQGmcYKfpqKU0rEkwRUbhjtSe57fjCONCMgOyC7YJXVo5/46T/8h8KjLEwhBbGHxXQ/v+KsrpJnnxkdLm37rk3EHbIVEMCCnjxUnT8DxtRMJBOoCvdvZMnFAmk+JtXTV7Z1DJTFEp43RyUU/uCrH3z86XPwPbQYOtqq96D5H/j8EBXwVHRqGAF0+tEY+DdsqtlZHZ+fX1hvAAvQidFQAbHkYY3dfCS8mVfFpMtOT06cDgeEJUBmht1f2tdH/nvILVSXybFXi3vHsdSsAUA81GwkVQxZ2KNBHUsdleyxXNCzZ2+hkTda2Kj1xYuPX77+AiH27XDfPnjy+Nmm47sYQ4dbbB3sbu51SvDu6e2NYcGdrfGyRScnZ2zmjmWmppcFjCm8UTEOlSpYJJ4JkBMazqZXJo/4EdGlUUH2VZ1UpXRQ4wSb7JOsJajMTg3vYiXx90DjlItl94T+9FU3TID1tVJVCYsYK9z1pRzjNfqU+apgCZk1odVYFr43LbdNhc/Ap7VteS/sAlb+aCSjOqR2Pog7wtICGxIW7BgCjH6nwDMCS8CCcyzXAGyMILa1dAezEy5WyAIBIyPiyOsUgqUSHVOoVVUL6hVLlBeUycqIB2LmorSnrbxjCRwczCzi8CJDUtuzyX0Iy00n7kOPmg9ivTZDNPjlbHJrAPjRB85ujnA15RMkwAB8lA5A3fmLQp5qDUl7Dki6XZHCswE9I14LaX7kH6s+XM1aRMNaqt1k2YWb/Q7S6gYq8+xPl5lVpkEvaC6fAABrk89UOj7j1Im/faS6k6z58sRBDpuyyLuPv/b8079vmQOv5gxh/t80oiUr73/l7dcvzr746Pfv705tvXhx7BjsbLH8mSO57Ny2NGJj0/mReayjo53Dx/snr49bkDy+1CYHoKG41XFumd8i0JEoMBcuNk5CBMT3G6gL9VxEz/lAKi5S5AcGNWpf6lN/Q21rWi0MC9fm5O++/o1v/9E/cecII7psltvs2O7R4eMnT+AicDvY3rdSbO3o0d3GjhdhY6HZEvbX7ntEBlVpER+05LH4nuBMk7AOQOBoNmCYoLTvfEdkx90aAatCqfYiT55kZtwpRcRkdx1X/SG9C18rVMs6kkQLuUJUalu7Jd8HgkRnSFJNouOnBkdoMyaarCE913afyBel69SjKvck2Rm1SYYqo4TGGrpCvvKJLtCK1VpH1OsJxu+pfX9w9OQ7P/2d3/iNf2QFWWyp5SDUxdBjgaF7/8OfAKnsqumOoyhiLsWKxnZjxsld6+odT8XJp5vevZcOgZdYlNBxnu2uV1yVZ3/05NEMJKHn790cyN5+TiYq+UgULdhg0TYs6txpoLDp1I7GPe2iqk0800ciOPrrr2ZLOczqi+mtuXWrAmfSVeRuaGFoe7ay8vknn35ysP/2s2fvHuztOYtis1DjymL769t9evjI2V93lycO1np9ZshSDFRzVMIsn4FIGQACBCvwmaXXr/wMeI5fHyslgrOfFgXchE4TsPSKNWylVyO1xvfsCKFM+josCDskeGLUbaerOjHTgpUC3cz9cpBGbp0SOniwscggvlEI0p7lojYjv9KQjoS92txtkZ8Nxb6yqLSMLSUNckAsiJ+xvQwZPUKu2POgwzmS4PIz4BkZODDSJBclDppiDGF1HM0R65IgClPR44BjtYPbwN4wChHdKj8GIR/juLjcdU4UMWsPKK7zckkJVJq3KHYRvN3fO02RKkf3sePibPoCWoMKMy2JTZKIEqMhynU5A8HaDKmsMzmM4gmMbkEbTaJB1nyxGOlCQKhSX4ovDfiKVEX5Hk3zfk1heqcIhfNreZgwKFOVkPG8r/Bzuy/zdHqolO5Qcm6CaO6o2c3Op9I00//oyaEjNkhaS7CcOWENe+tw1r2s8eT85K2nb69urXzx6sM7h9CvvDk62GMzrQ/++lc/2H/s4JDvf+O9t16/u/8b/+DvvTq7hCdZkrCUAH321jPZjphgQ6E5hk2h2Km6ZMd+T8sFiBnrrjw9inZt2qOwC+rdAicuRdtBCr5jjBZXiQPzKJw8D7sfYjgWKpHBE2K5enxysW9+SvBoT83a5re+/VPf+omfRnDKZoUJu+ZE7mbbTOwVzmtYrsAOdUClMFQSw1JMfcxoty4zGWKkWKj70R4AE28nb+F2pj7ARij8rjZ72AC+m2E0UqJMHPwDLbtWPVGihsPQGK1AWFYpxi+EUHlAIdC1u6RihlbUtWbGKFZxjPvSZ9jUWsZ7acA3/0bepn0PB9cBq4cD69i+JMeN8EuJfHM8iBfkQaxOcE0WZesP/cwffvLob3zy2SusAuA0OqAuv5Y7gf7f+fyBmz+6lBXe2NnbZvtKSqzYyOO8rI03ksCJtjRmB4XGEBiFBW0X2lib3OgIRGwBCB4YRTiteuer1zuh0JUHRBLcVN7CnrBKYcdkjHrVYuuPs2FUTON6SS4CkKTIwTFCSqkk8d8awTE3GFBobG/Pycmnpycfy8N7lZKdBU/NoD0+vF85PDu7Ojk7XV8/ePTO4zfvrFzdXTlw7fzVyeWZk30Z8ZmXtv/ZlqXyNg78ygqTOgOi/ff3O4r36urFi+diNanvXbsMrLnb2z07PR12l57G4kWGqBmszZ7KOxSI8qY7zsO8m+2juckhXjZrahC4COYrtLQG29TCfMWWwVZBmZu1kGE1LdysNZOrsCAeiTLPlpF5/4eGRtyZFXRCECUHJNYXffAtBrELLXlCfDKfjU7GInCKxRI3lAG/CE5z5p+vTzvrnEZ3HOymY9A0kFFXmXE5Oz+XmDFG1AJUOS36NBFnUWLewk8eotCMTntULyXc+sA8YTZ8dPYWb8tCeJ7h9jydHPYDJzVYEOwRmiBsxJ0y5XxaEptuLWpc4Tg4z1128l02ps8QCrD+zn+I1JIH/WJXcEDZElOVnl4CftpMwR8aHVB9GXb77aNBQNRUn1x79d2Sc7+6chwKUwhyh6ab8LeyoKObHQm+sy0Eccjz/e0jccLW2vnr159ZL04VXr58+e1vfP1nfuybz199+fXvfPvTTz/ZOtp//913zs8/mjBbqH336NH+7v7Bd3/wfGf3QDtksZCBOe5VnfzCilMfbIT3FZ0B2whs5Y3178y9OK/7gzhpIfKwGBqhAeqgDeokIQoTG08XTqjiWnvRM77eHz5+9O7Xv2bYa6mFNOycBEg0kyO0EJ5Y+uxKKk5//IHjmJJ1uwizvoblZFaeNL5k8Utnih/wRBfGfKoVnETO2iEcS8hSTKM/4wMFtKCqRtXDrrHVdRI3QnMqgmHZhKgCkW0uMPPtaSU13IgnLg6jExH5WSV7ml0a4ehpZZavi8Akq27VUXpVjcr4hF3tP3ydtupj9K9+/NSU0gnxkD3RqwrlTSi7h7tNyRRNMqRm6WjhB1/56nd+8ltffPZrc4zR1KjnP/D5b35bHtTXH/z88JuWTRsJy7w0bgsu1gvfXM2S9gWnlrOiWS5zSNRa38UYDXZDIzm79jSbUXGsZunU0UyywsCUl2tGgRObI4G1pDp0DBLAg9RMBea5T8tVGQGIQGI+jHHlnujb+5l6qjoaiK/5xhyTrLWdFBHr0pt2T28/+qwJYt09Onxq98fuwZPRynvrRw92rleOHluHIviyT/jyRHROF5xruAwOS5F4w+vF7cntebuCWzgk0b61u3G0iZ2XsmNnJ9wZfjWafmNM3RAnLJKS8rOlGcbGu1dJYjybwogoKrah0LS7BaMCo0Sz5A9hYF9RtzmB4RJrG4k0lYcXBnW2BF8SyzZRL/ElG04MI4UtgykA5McJHEJkzJHNgid8JVBvHIYZiAYBedp6QFc6Hm07+5hp11jrllQHhKbfWKruxNKGg8ZepbtqOx55JiZAcC+BoEi0lH+CC2PBVWO+mUaZeZk8YwUEKQBoxQdr4P/YV6wCRgP60W9UGJ6nMKOCfDwtCYckzy//0iXRRWIx1f1VoOJh0z0FfdAtSCvfV4h4knTnWqrdo/724zMXPYD0MmegsVgzFT2dGjUeANNLnVZDm4vpr5Wg7PkCcOWV5Vnxggp7u57nzr6Stdna9vKMTiAzJvry1avXZ0+eePPA3cpPfvDt06uLV6++PHx08MEH7/7Od3/r8bPHY9DWXzz/4ts/9q2L89vj0wtzyWdnpz/+Y1+9vFv97Q+/EDbgDi3Qm7hfd4KzZRxJ5Bw0xO/Dwn1ADo/QLRFRJSCLYXEo8PuPuSVo+8BnQedHtMUm11k8/9mDtfWnz97a3T9cnw16mXDBB31kAtr32txbbrblAIHnfsYyf0mY9e+r5e5EAmO1rKhi9etHa6q40VAxK1DIqEtt4OjE/el8sJYqadXAQAXoQWzBLk+hm5rURXVjP84M7sP7oUnS8kCADjWo6yBZlhVlx4logwvEgctCKAlScJFVB0Ry56wcaG979cC0Tv2RlQkdIBOGhx7mz8gY2Ad8fQ9R1fd3OlgqAlDFLGo8K/uQF5gp9J/5Iz//q7/2/zF+DpNaiVrL5X/fbxhF3yn1B4tSbtp+lTJP9L2oO7sTphFZ15bUoWu909JQSuAG7gkylXOfg4IcSiH4kKtrPFOwLL96Zeo6X23KzwRp6Xhv0M1AGR9cXpxqHKu070LYonypBvYv+4lQffzVKtqLSfEPTmIFHqjwhV1dd7z7DVP9gx98/vHzT95++t47b7/z7Mmjo6eHQpR4Jie9e/SVp+9eX9w6WeXk5NSxl6deztVBLKB0QLyE6e3Kzor33+hy8QRkx1HJdvT1cm0eElc6wf8K6OSKPwBP6OezCkOgPvkibow8dQxhdFtmqJSLzTFNRVAT7kKxoQy6MBCsAzfAuLuva3SAtnpxEFklNGlPrDBQ6Bhx3Ar2SYz4Ld5JlspLJZCLafcSz5kRL9gCzSLVM8db1WF3dhxqRjwxfxiBzVZN+cZJFq9nSy6nr1DQpeZUx7PAY+u5rji+LiFgPXjGnE1eERl0II/6CqvlZrxwnQfEUe2kkZ7Bzn3yFKfnP6oiWX25E+SRwbiydqI34CNmhYewo0S+9T24psdanzvTZmIzrc+th37UDu0aWtochfRtqbmUjxRLpFxDCldHH/GelsTXIWYoOTH30h42A0Bz8K0/9jIvXF7btArIsOr47PL5q4vDw0eE6u2tJ7cfP3d+hKS5s9bBwGFLRVrcaS7Z6sNvfeP9L1+c/u4PPvnWt99/+mzvH/zj70t70i/Dww2blTrm/d6WFyKqVuM9gZoAZUnxN/EDSsvtwi18gJ7M+ERrMrxYN+yFgU+eYIgwxEzI1aLMNVP96lqWDiNiTaUbmJRQ8kCYGs0y2HiZHGaF/UNxlCMqBtk3Kza1ZV9mbikqYglxVasu9FBnjU7F1kPpWVoW5QNm4EzkRGhoHieUCpdAzItpLlwFXRab2cOri0RFGWWzS/nvjJKLBWvaAeIpU++EEMaA14rraWpCIodkmc93FATCiU1tFLhf+fDD35I7fWyBztFjPlfPjFIoJxLTSQ2ML9HhQtNsdmdDeRxpoi9bMR91HuiuGkqiC/YaMbcezyrfb33zJ995+9n3P/mSHVIlfg5Pl9r/P3//gTJL0fktbsxqCjNnQIQEdRfo/pWbjVLQiIUEd4gcSPM0fjelSzrjkNvd7zdMERrT66TSg9fE/tpgHZiZ2MpYNAbNZ1jDoxdim1Wost79aRQPlqjQHUWWqBaM0bUQhmA4nGPyUTghBa++lxTsiavubl+8/OzFl5+ZH3hi08aT9x8fPXMMM2JZsLSze/v4YHdl7T1HMziZ9eXJy2Pzxa+PWzLBj3RkvInoXIqBNm9kV2EH+J5dcEjUw86yZMN1wXTznBMA0cS26Ycy62wWRF/t3oJrg92cm7jA9YibAR7jHtknchAYoaTQvR1ivTUFPVAhyQUPxwB/FG1ET1ZXm0XQDln2i+4ZFBdrr/R6rEV8sQz8xCeHJSObr10ka9Z+4HUa1XmTiFiih+WgM1ZkZJcXzUpwcStXm/biZnzoJsnxn7cZ9ZYGEM+FHX4lstmMhL56NQU7ZmbugbhGcYoIQTnN76LYoY5Hk7VVUwC05q/5uAzL8j1Dm8hXVtsD6+DlOsFK8BZrpaWl6EPhxLFqAaa7Ks2NgbObA5/2webBAnoVHipN6SHFAACtpb1gGzyW1gJJI8w9yTB9tb5phfGGiNeQSpaw9UGtt7r/5IuXTxxZ0Js6Nn/62z/xX3/v2CLPy8szCx9mA+Pd2en1/sFjUxiPHz/Cyjebtz/xrXd++3uffvH56e7RU++pqV8H3ZHh8zPLE2CUaPU24I78Bd2MirB5HjyMA4rhlnyz8egQcGEX5LPXUTBXH6drfyFLA7P4S/h97G61f//TT76YnA9ZFR+a15dhotAdsVchCweNjTFRm0No8lciQMJAU+O0zKMFTTZbiSG5PtVJtQPaf09B87CAovBK4aHvD8OCNHGMZvzzEx6qJ354ZQILiVK05rpCTgPD+aVHpZSmscR6hKLmBhxNTVAVDbthdCW6tPFTsiMOgndnf9dQ/w//9M99/3s/+Ce//uHd3W+99dbh2++9v/t4b3tvJ7XRI2EK4mSjLpPS4mCdJmbBizAjPgupp2yx1QBS1aV+0szWrBwdPfnJn/rOR5/87WlzKQ38uaj0v+hTSZ8aZRW4nVa34Bd3ghdwjUrpJFNSKJCZqHk0ai0QciRALdGxXsvdDIS4Dz7ZzYwNYjdHN2QWqYUtvvWTzmOKAMXice0w4vWV2OpCVMCs6K4qjEtsHH573n4xQBpTd6cBmuxNZnohE10bUbHJi4qRe0ZzW/As2ji/uTv9/PnHz19R66MjB74dmSp4/PgQkKyWzTYGcDtbj99/+/Du/h27je3KssnI+ODi7Pr05LX9q0yuc/0tYDh4JKtrHf+VVzyC2Lmj7GZce2On+BVyuYJ87iobWOrD6zSJb6OidCq3CvmoaUrcy0by67cWw6+ZLA/3fqw/UtvaJiLLhERNKHdWYKZNibHvhk1zIvebXI5sFTvseGpJmBEpBZfwA32K7/CCSUohFoYm5TM3sLlxeNh8G3iaaWc9ZyCf/iKxqW3eGn+BxYRx1qRgZfXiwhqtLrQ53fVWrF6Q4h4Y42RRRRAnZmBRr/C/6wKFbsX2NC77QICgmT+4XwZ2PYRL/IV61YjaYtE8SkDTpUVhGnv1qPa7hkTqU08DkJsJmF7Qoj7mkrbX6mhOirkgVLNVWj5daaQvc1kT3fFZHgVLz6dKf7tRU1lLCcCGi5ZTtKzbkhhvHtk6uzprutTbB9+8+ezV+TdW79568uj4+ZenF58fPN45/ezUyYinF+dFDzc3fPnu3vbVvZTp7ebu7tcPvnV3fveP/8nnFkzuwXPl1puEyl5JLXpD2c6uyAZ4VMzBKpY0DCiEFzzR2u8hVBh1K7AbMCqP3SE1uLGVk74LTWUyWP3NAMBEt9T83fffZwbtY2pMT7xrvV9EO0Iz6W2byiGIK0SttWNXDGMeMbI5ZBt3swEGlyrSZWUIRE8mH0t6uMksBsORnAG2jW2wcl200V1wARhK3VQVzO298z1hj9msAc0yDTBMgoB2Ish8hgQRooxdMNKEIo/BaERz+K8K1CEkw5YnrvMUDF5Ndazev/etr37lm980XLap5ezu4svjUy/8depKS6SEZpGnPqnEiFdA6CrJL5pKYIfIg8+DBC5gJm3zTInuUOaNzcM/8sf+1K//+q+/eOWdYhEzpZ64Z/gUr/6bn6g0vPznt0fO37RdMFwMpDIBFGis75x5ibPSlcoxRIqJNsDL9iVD00+kxCI1Ei1PGX3U15K+iFQzluDqe2Fy2LrUG1ujypSrAX1qSkFMVcbasrCJKIguHeKqFf2+S9QAtVh4cC4Fn5q1WTsxbhVpTqKPFZnWDl3OzEFN6DEL9OrYqy1fffzFR51TvbvzyOlK/TukP+Y/gPT0sQMuzTrcPX28L8S+uXr7/PLq1fGp8ypMHjhq1BEiBO3IW0GY89541u6H3V3ecKMX6kqqGRSE5VY+qTMgWfPwbqpMQJGFRIpk1J/mIJx7Yv1lqGX7VGGYJ0Yo9lfFtS5yAlpzVBndamBWM9nHmkmIvOgNoga8WcokM8nxsR+axo4FbzIOJRTWf72bMDx31gLT5B2n94+eHEDH6vMM94w3G9Ygpc50pFawJEqjj8DTyGzVTMGZAs4+9gfzkCDY+5LYEa+OboqNiSPZQCks69GSDQC0r1kQzQUmOhvrKKCBaUdztL32hzLJbU0NqtAlvsnwwBCwKo6e6bU2PJmSESUZXgAb2dUKKBBkYPMgAVvULjqFd99rc0CrvMYKUzQKgLnhckp5Und1KzX/qAF0kSCYb+4cTIIChaWOwCIh3//9j99961DMYhmPbPLmzubnzz83+DNz8Pjo8Bs/+83f/If/5OTq3P58nHh1c/33f+0fffzi9GDvcdiJIdIL7RXxoJ7spVM0AAUXYMeyjJhB3g0iu4kiGZ2IkYvCXF8yZbx+gzmodKhJWE2ZIWbZtkWrEgzVO69v/fWrlxyV4Qbj4et0RRHogYhkyDVykrT6L0m0tmbhf77PK3f2HPy1IeAogjZ2cCvuGQG2uwXs/csNkHCa1O6A4RmQ862jQ8SgtbYYB6iQklIexgV95ohFDxMVkyjoqMoNAAVlYlzWZuF0NBhBijRVJZH+1o42YiTPpaOV9f3dg4JgcXhvqxqoEngwEIY7S53I5KHTuFc6vUpg7exXuoR6HYRMOfnFyXkAKw4Olad1wh5M3a3nIJweg6xvg/M8srDq9hvf+rE/9LM/9av/5d91OEGWObD/Bz4h5ee/+2mCzyetCRci5Ldl4+7yNEFg1nRouNSOYhNvVdoUl6jG4t9Ixxhl1xOUwoc0s+oAmxYbfA3rRoSiK7x6R64Wk7vi1MxKcOA+2zB2hGhplrMHJClpVlxNDBqw0VP8rKgeiZaI2CmStGJ23GxKlbS21fC41QfZGvAsaJADqX+fz754DtMjfsDnyWMugTtRSoPAcjaL9T8Hj/aevfP46ua9VpSenJ051PTFsQ10Zkr1uH2wowUDhdTgjcS9CRPIrPQ+5VJExLqdckjfQCMcNb9sy7K88sa0ghGBTqkM3chllluEF5/XbgkZNiRt3DP5FjKElxEspxhVSXcOgYS2sbnNzBUYe02H+EUxCE44P8NhYcO11PfB+ILTxgIvF7xoGeKL5xct5MqLdB7W0DiGJjcEniFjn0dMyzJH0pJIcXiGN5gp1BJnDUP1mRarivOg5eEwsYvhgiWNESLCVCoLmZGFUGOjegyzyjbUyy6oKwMKZeTUTEU1JkZBeTdJKazyMQYMY7BUiW4VrMGljj6TymRa28mnjnytw1E/XXZroKtiLU+ZUcMfFY/KmfK5MVUgPGLpt8/krwSwlxedwLOzn3K1+t+yT01n7eQ0rF3+6AdfeHPDj33wVVthz95cixyvT8/JidcNUY+d5zf7e88++vT3DjYem3H6td/47u9871PW05lZdb226TXxTtGRj7EkoeNzj0/wi8qgqd/EiS1j2dE2rpTHjSMhjlgLcvBDR5CZUSil3icWjM0ljJ6781Br0Ga7Wz6nzUYArVpTFzw6dOiRR6SUUV8It0YkCQ0H5M0LhMjAc33d7Nso+crmif3vlVeL/Mit4LVVy2Lnxn2+GnUmZ02hAT1dmKnaoIx9M9dqCQUIGHYiqiD9i8ZI3u8UfxQE3rgFTnxb5LJh9UKFFLP8JKTGdI2ZQiL4Zu/0m2cqSO1A2cJiWHnKVmkwkSqVUvTjjlaQC9aWQz7bto3JFKHR4K0csvcdWSGJfPaxNm9a+9OHGqAtUI6cQE3wgtJnzB8g3Jyy3NnO4fa//Cf++D/5R7/x+jX7z+L8//npRUtU3dQTrlARJyf0tlsOjWbqjlExp+EyjLM78Ev/cp5lV6xV956jlgIaNmbFDRqK+kXuNg1FAuXRQxZiTEWkWdJq8vvce6KJY8bsI576ahPjLaPHCqZc491mRp0tE8kyOvHd2nwNaXN7a8dkrP7io6xUxye0Rsj0bocILSEBnrRsXEeNyrNgxN36dFfZjhXZntPj0+///vdB++Tp40fevfb00KpT6Y+F5lIk0HxydPDUzPC77zhk9NxRFccnL59/eexQ9pWbx2/veAVB7Gf05T6NIC5us93xEi1JRqInOgILoIannYWAbw0U+q4rshMJAEhvEW9u5zeVzD/kZdF+bFSQe7dJuy4CEvL0ZdvxlhFocSTuG0AhuUpeuqhi4pVkFf+x4a4IQFyiaN6XYCWYDqYPJxZSZxvXoABgAxyN5LNnpsEyWt01/Qedxm30ILDpBHsN8VAcSLPVqRDzTMQ0VoJCQ64tNaKzcAT9kMiJecX+NDZsWiOQRFEX6LAIIKxJkNNxbdSh0X008SiLPkoEBV80okPmRHO+pttFpShTG+DVrxrB2X+Xfammv7VTYx4k+v/8E2+UqSzCsuOVahCP80uFKa1AVdVV1uqDvV0brL21Yh+cCqK+cTeOepsg2/3i+dnW/adH+1sfffaJIffBTvu2LVe+/fx4//DiyZN3v/qzP//8tz79u3/nb//epy+sbDa/tbVFqm68HD7qYvnlhTM1IAvr8aTZ7bG7XgJqnZh7ERys0WY+mAH/gGnBLnrEQBe1NiNOF8iKhjCKJpEmofQZPoZuJXXVJnMaHGPFGbGVSDHq9M1PNjJn4p+2ZHL5aHLiRJWMJVayKB3fThi8ZeVSbyrRE1bSsagm2zZ6nXknXaNLQ7zmL5I8smLKr/aHHcIvO4fnOuM8HIqbEUQPyjPgqiV9oRnK7mfxo4wABfqFJXAhrs3ljtxErukxFCaPoSktFCFFligZZbVaDrQOh8fwVUIldoaBpdqzfepRaYWLq5PTC5SCp81GJBwpCoOyAtVI9HItroIMSAEREfM1+KKHb//4T33nZ3/21/7OP2Buq+Jh5adO9f7FHzU6SrAIy/KyWTRmzoqtcWfIcH95KwvZS7EJLADBgP4KYLz0Hr5bfJmHKFUnOzfoAzFyhHvYrEludN9wwW20RjQw+o2cLig16mb5im0TI5vFOrmBfHgcUrGqZaM6St1DVTLOjjAd8V+se/bMiI8LSu3burW3K+aKK6VEJlwktc0qYE5ml51K7heSBw8QIX53/9nnX3z26eeHT/aJ48HR3tGjx458Fl2MHBPkPOKWbYxbW97l/AFncH3/+YuXn3726fbaVm/h4AGdTWSiy760RdNjZf4Js8kKDBcfUI/ZutYEoqptAO2fUyz8sHkWw6AR0pBNS3GW1TiCXPSfhBfdQgFYwAN3Uu0M8kP8GzGB0VQblcq2ERP1osOIaI9VX2xVVVHWH61gb0lhH2lca3BBDn5ClkLH34dhQWbUTbJNk5zZEDyr2w2D89Bo5mtGW9NjUyAeoybXr6IRCR9DEDI0oQyixkFG9kmMnYZiOVWa9UkZpCIzShNngJMxRR0QtwXiYUzgDuEMHr5mkCkcHKRSRXCLBHKx9QWusIIw6FyGV+Y0oro38qN2QuKG/8lTFFMiImjW70Unu3K5tFKZh48Lx5TcHNw46FZJjIDsbPNuwQIZt+AX6z/78uTm+uC9Zx+8+uL5nWPd1rzpa+3+5NXR1rd+4if+zd/65L3/09//9168Wru48lLR7cN9qxJgLZq58i7JG+ekMyVr69YoCKMpLz9Mq+E17lTsVc+++jOOj2/IiDPYaXqkLraDT46gkQD4uyRmiR/9FzIPrx+Iv+rcyjM8kqtUcE6daGE3q2+7P14MyYfAFgpMAJ6tz+Dee1f7+rW1o1tAymLokJO2lnvljZtkg3jbsABy6xP3DvbOvRzq5HxSRPeiPULFYZRGET9P7khv/WysSt0alSQXxI+HKX4SUTOPMAgJeQ1ACDWg7ALaNFS/VY+bPnVrv3sUSZWGap5jaK2RjfGSGiSow/jAhCg5pSIjOgmMSJSmjzBAPCiaBXRfv0Y5TGcvtJFrNWGAAK9eHtM1isvuSceKTLUYJn4R/9mjk7LXcpsBE2KnxRw+/hP/+v/ke7/z4eefv5AfCYEkvV40/gc/ie5/z8deHwc0yB2vbu5xunlUhbl0kImjAa5jMYJrjFQMgwy6DdFeHL/MUc9LwYAmiZEyzRSoNfQoa2Qn3GRNkJFt9UjMwnqBEU/l0UwnoDPEG9wjkglb5+guUa3FVYs4KlFiRDS95ShuhLGdxVwS8UUFz1StCJmNYWEeJf2Xierk90JRJV2XLyFvY0pGKJkIr2vYcXgQiorZMYh9HJxWjo/Pz47PCiBX199+27sk3nFmWaeqNScaH1Qx48ruwfKDvbe/9s33jZyOXxmFn7189eXzL770qnfbpEg6ML3yycwxHK27R0CqltNFExpDPGig7A0aONOqQYmBNc3QdlHb7B7IsWXYiaIHY52L6JNaSyoMJJE2k20wQZjhCMJFpBI7ZGkRvqE49cGIBEUZkTHCkSq/MhbdmaE0YmohaopuGmSVEGN/Z9TvgZdp0na0XSAHOEraTsjoaG1E14DDqx2Ik07K+ZvWqTtky4VS80RbraLz1IZUZHQM/gAseuWJFdMFsRnxCExXmAmzMTG5I6rcHNaMl7RD3pgDFak02CIljWF2eIj6zgjCicx4VFRaa1ml7E2yQ0HRRk++pNAqLTf7jfoIBQ5ccFtHYRuls61T0P3+Bmw1qjSrFXrzYPvCeyOQQSA0iYG6ADaJe/Xm1vDq/NXpzjff+86/9K27S0Pq14/ffvfZsw9+8pvf2dh69F/83//9F69/QHR2Do/2nhh0b954u5ngTJCBFpa4rG14eZIDGMTd+/v7lNfoPJVcmBGF45FvrqKk1FmDkdZWEbbFhYNZU4khwkaixIvt9xmB8kVdidZt59J7gwcrgR0T6pcM8VqIO8e3vLljUYRLYpls1kKKfG5uJfFO2vPpicIYQaZc07qIrSku8WBXDGFuN994fUKWgWSqWRVyQ6TzRw2m0/Rsug0Hhorm0rZLAXveqisKTs4CG6v0kh+TL5taYbQMWjUYgrWTgfCN+xnYuIppPsDCEBETKK1HGjQMngXsYr2+gie+j0LpQKm+Jh4+bisPtjk0IDO7ebC7IzO6+cyxGCxbp3h4YwS7ID9U5Fw4aZAHe866OE5TBYm2B5Of1ZVvfvM7f/JP/2t/4z/9v14qlSgGnd7qdPnSxdyf7/+dX70pIz5pP1sDBfikOylwKMnAZrk40dEllOZ+W3Di8DKLG4jiplSm23J4ulLVT+ktW72uSr/Gd+8aa1x/KwJGUC/IRSg5MT321GCCd9GiAoZwa+xaUXzqQY/l+zA6L9pYL5NpFem6vSTOe+h9sCnp2DxUStrY97FHZnThzo0gv8IUQ4GaHTWITGxmoeNsV2yAjDOZSWLB/Gp0p3MgMkCvT15fXZ3Lsh7QrX1vj+4+wJXVIZedWNp8fGDnwL7x3ddu3zMTcHV29fLF88+//EwXlDM7la2fBBYocyVYpQXCXbDGLpRDm21T3EPSItvYMDl2ogtyGR1AgFlssM0VNVBDgFrOOsvgEYsHHct8A4+FxfXoPvG46yiAxOg5ioeJwKIAGkRg1VDJ4KuhVc4SnfiGFERDoyeFJ5Y2aaqrYcAULjQJ2oQ8oVdxa6+V79DTl5JFrQNBApW0WGbWfFpSQH7Vz4eVZWqdJLChKbarK2DDBYS9KLFe+zciUTAUm7MxSanvIlfy5TnqZe3hx7TofoTKt9rDA78MBBGn/FfmAfnrCAYaHbGqqPbd1ZyHviZ11a9oNNbpjz6DeE8r0K9Qsw7t/ES+fG3LCzMPEzMHGshHoBZ0msDEBGOtze998sXq0f7P//wf+8b7H+wdPnX6+ennx3/9r/3Vf/QP//aB95Lf3z956/HWAV/S3LK1EqaRW7glSFlfZf/1W/9CIlD5BaHhfpwDKn7FRNC2jRZp4c1JDBiQSLSU8VhhzZC/bnSJmfmPvoiZ5JpwP0nxNSmt+MqK1UoYVCbfbqVx83UaNQvXDHNrLiXtNtjQFQxzWlKQ6JZMsopJj9TwpFYuvSRAA9y3RmLWpeh8+iWq8U22wKMOjVtZu3hz5XTjAK6nLAgCw8MFvZDHMFLVGFx03JHA6XxCGIxLvD4UdDMGx/ceDu6ImTPogcXMJZhsNe+zXGsBQhWdYu7nfcI3blcREacEIcp2Z73bNBcdxg27klHZPjo4Pz77ze9+95PPP3r65Oj9974m6jRBKRAlvY2s0MFw3OtP4pbO3vzJf/Vf+eL3fvtX/8FvemNmpNFRnSWBca6L5ZvLbvb54Q3wrv7yX/nFYeGcHFKSIg1UQIrDG8wVBvzYCBxBx216xe54RxMUaALtjlAjMQvZ9AF/JNVs3jCiDJLMltnYVp0vgX8Gi6tQpCBRGesPWk7cYtvOIVhzvGgnWEnxg5jgKNFRhM7MIcFFo60xZg9jKMuyUeRiDBGS4EnzWkCJygkPXliqTxYWMzcnTQIyYCi6OoyUKoTX638vJTFV8XwWd8qMW1fn0DlO2FBpc9Prdr10e2d3b2vTmUja1HzajFQ6hbGxdaaerdjYOLs6/+wHVnY8v7g8fvn85d3dldf8iZ4SIoJOFk34XntdWGkuAptHcWCkiYFpLDyyw/jv6RA6mtqC29KIRmBZaoKXUvnEPvQu8I88HiEcVFjERViRHbJwQ/Tao9P9mx/fsm9N33FRqaXApC3BUsl3xqcuQB07aQRdSzayjFKE1ddOj2PlpOYy6AjOAMARhbzKQV+qgEShIr6xrm4gWzEONRnhQRaIQymjAPcOX2rGgRRGldGchCbXG6WNlppG4NJXVoy2YkpYZvb5izpJheoD5GlSKaLWPStUn+gX2J2vmTD7+Fs30Y4OsyUFB35GVMK84tEijJPeqV/VmvT5UUHYyv88evLUGy62d/dtCMPyBDQVGS/TDKiANTRu16+46n/px3/mKx88ff7i9a/+v3/1448+lSBj7RzS5CywSbKLJla8IEkoEGsM7m7uPv/8i4XF+XXeBimGG2N8FkwQO5ibLC0FWo4OWydmjYpkfgGeIA/9tY1IYRqjPYubKwePTI+JqQzDs6sksJUv1cWHrB7EyuATY0dzcTX0KoYTnoyW5mq0XjMuLZJuPg89ukH/s8t4wGfMlB5jCZ7o3dyeBuu3oXEeQPdbRn3EQAED4QcFJ/wMWSG/+463cV4lUGqmrgMiqiw3CgqHV8gIoQD0iYkZGWWIYHer5hM0fvtynXPirmpunjE1rUrSHsyjNaEAQF3VXvIc+fsKFCgnx4liwCrmEBbKq00LQxxcYzJle2/z9PX5DN1bSqsitspVTJcOXjNBYqvd7Rcf/u5/+Nf/+nd/91NaQmJ1QPwUHtmsz4H8h30PCA9oguov/u9/0Z1YbvyOAeX3G8gHFvN3a52Pz1iZolatM9zaDoOwam/vbR6fgDTOnpusbZnuyqTAXQ08lCpqB5jMsrKyYZ5oENxoh03LMscUL7HDQnLcWxqKSXtrijF/hodKRmiJ8XIpTFVrH1FRS0QZXETI2Fb7OEB0ymZif2aRJKXvNd6llsIKAtkqkGGMULGoGeo8hOX/WZH5PQI1A2Tksmhvf3/v8OjI2Xkt5G+QoZ3x77EgHTONSlzdYgUvrq9PX17be3zWyxo/P/7i5Y1VpNfn9FbtKEc4TUk9vFzMsS3Monsli8aaSVQgH4LAoplPItsC/uSpctBCmb6HfX+U8Ugji+6545M5DE/GBlA6RD0LLUZighqBSHBT7v5N+N6Yw20UmGrBiaXRLRfrPAwc6Xy9iDcitJhAwh0UeJ0UCXU1RkKICce/DQfZNKDOOCYBUEZTS3okb41oMKwJZVQ0QmrkQJhs0Ite4xRLFhkUxuPcBZhmUzdnMMzkwuoT1uXHQp+gIlTBycRUyZmqPsFJRMokJ0RDchiGgb4iWoWy9glnn7zgSJ07Q+K6j9pLhSB0xZjq9JmT5p+9lWlAXFNcV1682qLeEt+NtApW0JkIcFrWMJ8evzg5lke8XAav5kH3dvaGtWsy/n4YteFRMbW509PTc08BNuEz+pUsbm4DopDOl3sUP3QxYyOKF3wjEtjfSEg1nHUTBahqyje6m9r4xxJY9mZ/k1ZpX1oPmVKCFlV7KJ6hViZ551FSSGgglR1FnyaH/KnHzHOGPTPOirsASuXK/OQy1reLNmy58iLwJk7I2AADfAiMlHIzTRG39UD0ZEeO8qEZgzSAXfDTkc7QxTSr4C41zz9NlJXaJNuA8EynwKD8QAz+rL5+IZ2OuAMeYlT5dhfNG7AtwRSaggamfixzupKsXtAdkYLVYvvIX85aByO56SoZs4o3HU883V96YN+mLaIUpnTIOKnpfSmTBkjEqVeS2KV6YVEV4V9zitQnH378H/z7f/X7H/1ApraKSeD81BakfRnjgLU98wvEyXEOwOBs4TcSV7BfSjA2kUJCz9pw1gDo0i/JkI0bxjjhjNBpT+Y+K2k3UKoob1ULLR1pdiHVYYlwOY2VD8iUgDLDQTUm7iAGbiQNmFhTUcX5ngSCpxWSN/JaMUnQqRWJ06yIR0slta4j1kTbCxkbUgynY2CYBkwsIh6wGvIkUmNBAoZ8kBhUBS6WWFXmEWnuTNryLXpEIt2SLfdbWBnSeWPdczPm903POe/26ODQWu561FlUTgGrxL6glA3wJiSsebi8PnvpLICzSxN43qp75pS6U2tJ799ctdWFOVi69rLQzpkAWIYGg+QGtWj1SKY6DiydoGNcxbvQjbfdCOHqsq1JOUZ5MBQIZRW0MsRx2TXyu2D16aw0Mj4iZGEXHztrJHSI42gbSnPMHPIPRZMVzlKnrLznS8sxaOYPPdYfW590jijW8QA7FrPhMP1PL/yg7eQcwK4iuUJ8j4gKT1Dn7sy0BCxDas5lAaxsZMCMsUMunKJmJITeNLc1GAMbC3StRUVb3lA4kV5hvd8IhHKJQlTUuiBm9rNm3dwKs55pcLJtvkXFCF6b87Byyvg2T0LY1N87731F6rykkzdPqK57KLWEoegEXuSquSj7V5zzvLZutbGENbG2/6TMIyHn13Dl+nbX+UKa8BLBU+sO3liQNgQjWMbAl2iuvegc0sGAa4lD0k3Rsu9EGln7DVXjsZnZWJBSsyHXRO7VGn6BEDW9qM9i/owl8LWXkJe1KbzPWlE4C9OL5Bj+HFor4TpuTNyuRBaYHWSXGxnkbDPQHqgciJ3bHEmiRqOQoBalJBiRtukuRY05pA6taQ4x4SEI3KwaOVfXqILdQPschQLYJKVhzWzoR7ZG+uI/UY5ZKoc6TOC4ve6Qvh1wt7ql8Q0ZYAOBH5t1G9PLcZlLHs5BDjHpHCLrTATD/IHDanX79GgYLNxFo0mrhKJPUlwMgmtoh4zxB+my85VukKWqzihRwEYuJYtOCv6iOxdG/oTFihEn8rOxvvN7v/tf/7W/+hc+/eSFocu0Mahqp89QIjIM06Z1v6LfX/zLv1D3aWFNK7uIRTizNRVyWdcBrViwBYMm25uqiZnjLjTLyVkIpVRRSbhGhkK2ccYBT9+ArykjgFg4JMLQGX90YmhBoh4yttVjDjUFEl/sqmRnOzXZq++CzK8mQ5I6xOsfsCYbogcPh6AA0alTThNq4jmBRiuWyj8moupRG3wDMfUdi1CLoF2AR81BPMsJjHxPo6U3Tpkmmt4QbXIPOG7u7Hqb9/qRA70OOpqUlhKS6Jr0hJaNm69fvdrc2eUPTcMxL6ZHqIS69No7zr784tOL16fnNp2dvTw9OwWxrIHq4GSXDdgZVAI0ohYZLSQRmgSYlFILYHw6Rsaaq2IWVDCzDLjxH9Ap7oCXqyFPT8ZyqRh8KMAc4Nx4u1TSF1Iads2njPBlpj0AfVVcINkMHzUK1DTxIcM2j3XNnjZuy8j6KBIZTbk79cgcuk/Wp1tmvLgbhXlXLSsTjZxUEc35Y844I0N7wWOyWDzB7/cSaPI5yVY0eais/gh80S7n5ClwJn6hg56QIr3DtXjFH+hoP29DrMwr8nlMBW9tTFJAQ/lrwCeB7M1IboI9fzFqq3GPATyf5bJ63Q6W+50d00RefdWhcGb8mAviUeDSnIoF2Ky/4eaSGrw+Oz73gJzqT/ggG3C4v9NBz2l8J0LHaAlSkcR5E8CZ8dERk3ZxOR8wDio6poNYMwh1mLkPMzoUiyRDjyQDidRUNrzUe/jpMlslj2KL4pjtcMYwFBnpQ4PIMNiqCV9sAjmTLZiQomdQ/W1NRPOD1pTMiytnKDDWX0vM94SYwatxcdjEFjkAFRiWyB6SkCmjVOKMP0jp02TbxRpB6GSEebVoIL7mAAyVvDxTQJlSWJO5ube7JUqzMBNtGZLNjd3emeal48cvj01SwvvpW0+tQdUwfwBPXc+v6ZunYeVnQEmEqB4U0DaaIAr0B3A4DBfciDDQUq6IYsYlunCRcfB/UbScPe2L/iNlABwnnx8qv1TZUSJP8xxxxcdESA5SwuC3/vGv/3t/+Ze/fHFsvmOJRBTBiim6eKSA7Ov0q53Vv/hX/rw/OdshbLdCIXFHd3BfXpc7xhLGjqEEbPdzRbxjQUHmvjQC0EITM7Kh9V9DpEAAkESxuONmupjBQVYjEbEc6NZZyzDEaHTUvqGx6Z0Zh6uFrCKm5j2M43VMIwNRF5af9k7H3H7ESgc6F0hMh9ijsQq2wJSeqA5gH6YkaDvP4BwdAYAknD7LgQ4GpDbmuBJydSZPKxCCMyaFU62JsnQuGEuTlpmMcJ04azJUusAV8ygHVpLu7ttrTL2BKaru5Ws2FWwYR2dujWmotKNHde1tNmSXFnD4nMHz4+cvnj8/f/XlyWsjgyUr1c6JrZ3G2qAtNC+KamWR39nM9JQ0sJhRg06OsSOHGUHSz9aggsIewDHOxuwgZ3VBFF0nfQeFaoMR7ssn/JEqB6CMaAsNNKodd4cpqLV8bVyou0RYhREDQKiYgCXg2q5jDSuCp4ydusrojDj6DUGPFnhwE53UhvfUKqgjsO2x4jYsJpmBc2gVskcH9NQ0AgHVtZ7IZOhNz2WNVGk4SseSVmoILUJezqFc6jQ24b+pNlZX02PTwilpAA2ga80fspGID6IKhKgHsAlhn6gK8rUtO7i82HqotOeEcbk/ww7adnd3fnZusQLtcsxIMYtDnqV9swYWuJhitUHnip9ITdfXjo+PGVTugHl69eLVuf2Pxca9EA84C71D1S2dZ1Oq5bd7Us3Dz/jozqCzcEMLMSmmRDDdYla/Ehj5+t0dCsaceIZexEiL4xUr5Z/v0THyaza0F51xL473LGlQK4NN23MKrScHnE8G3Gdc4NBMMVDMaHUaynwXZPa7X0Da6Ky8In/rGTkEI47OJM4cFSrgkDBr1avVzjbu1hyPQY2cq9rU9/0V7+Hl71j08uTUkV5feetdPuTzzz7/8sXrg6PDt99+53B/Fzm83hnowAQhLDiFRjf6n+kPCI/cIonL1fZAlOHbhgd0Na5KBBkTxfWGJwShQxGisWmnGZKCWZvDh4XiGAELtRnMJJO3S6YSVlQBks/y1a0o4wz59c1f/7t/+6/9+3/11Ym3ItKmOKHQ8j/6P3yq718Q/NKv/DkKAqtkOJPaHBEm9AXpZBuIPs7ShNLZG45Og3ymdHjhaeTmf7xCZGQ8ug8yhBrD9dEYgVSWWAjzEKs9sCUV2pEGzY6vrRv5Iq95jsxKQwE23Koyp61uSQPplvQYv6qUfBROYu9YsaF+9/MBuVktIzTbrZCAERgg0CktJSMMLvTBmdzMy7agPk5h3EMzKxk1hAC2YgvpNIhyxYOljdvuRIglczWS6+b3BYZkq+S1uMSNol2nwOvCgJMbkMZ9+uzp1va+TGqirGHB76wUNCgh76TBKWBedsimMNGg7c3211evXn5pls/me+/C6bytkR1cIsp6B2c0R9D0UIvZ/kjBRGZCeksl4vc4fgAf8vn4rhmwMXzDjvQ/zzoCUmsl61J4hFRHC1pTJvHFHu6ksIWX6XcGcVonQi4TPk1UdkSCTkYQnwKLTEZmvRktVk/7+aeJgHBVswNkmtxyRmDqn083P2W23AtPLEVFpDcmqLM7SjSg0qdwr1xNsjVMzAcIXPxOwIn0GF89RqgWy8/CcLACKPnnNhT8ISTEC5Xyjtlv7ddJTtRLnF0SEqAhb1QjjaOZQV6tSKGKNmuYQbdfUoX2gFq9c3v71qO3cOLQ1sK1NSvNEmGLQW3JJpbMy84uOomEZBXRywEPdpywPUJqW4cs0HBObas937w5ffXa0Uys843kD9xD07qAYXFqNvNwHbi7hbAIZIDFVKIn5gyR08HIizZWBTbSasTv0TAwDKHZi/+2LLKJ/lFZ6WpHLcTO2kE2FeqqO7FwSLZcB1Yy0z1F0GXU31fiRaAXMQ69PoU2fqsKkf7zYXqW9Cg+WnwAF7S6bZOY6QeqaAuCVzj5JOdJTyo/LOBAxje/2fIG+tWtg/0nR0f7DJIGdze8ytiK9i/Pb8/Mu3iDiDXcFnFLM1iTeXhountnzzvvAWPl/qAMzt4NIgVXfEPSW79F8UeKGZymXtgFKAIJ+GSMwQQ5JNDfIlrUIUKZzchO1FOo6JByDQGRCQJRJtVxE3OGdDU9er3QL9IrkmRHTlVgfvf3/u6v/of/wf/B5lYmsGanpYc/NfrPL9PsX/qVP1vlhlbt7RQGgilwh9wpJMBBQqGLy0ybJF9ADbIMVgGd9SgMuyrE3kJ0FwazWMHEGAvgjnkLJCLNUFQRm2AV6LK6y5IpQrHofzyzpGe9tQGpqyOudsTv+CrjTs3Iri1g4k2NMxnyQUKIZCoNZ3fAS55gXTCjhdR1UF6oHG3N4JusmXGAL4AhMYrQYjwrGYWzMgbLEv2kuUeSq9oJWbYDMgxf5iP0w8iqpLE7bC+k0zEz57Z1Ms1V4wTzQIKdebcMoTJ5/MgyvjK761YBhzR0FytrPYAEBYLbKsEZXF5cRP86tGnh7LNPPz49OXYwUWNT4zvuLcubMHh92Oaa6IM1nOV94/nQEEBUxO+ij+xMRB5FJDoJSDY/hqBZAaBbUCZXRL9Hkxyf54u+Q1o74mJzM66LhmGQ+ObqE1Z3HppCSxNIS4gSntXQkZt0KShyPxIauWfSpwU1lfcbDLjpj9ZTLR2QQLMpvfGqt0SMbM5kuxZRufVSSS8xVhEX4n5EUin68z0EmHM34AsB/QE1yZhoi7knFYg200O1R+RbauCvwQc+N0ABT1bSuCBXq+OMYKHGw1I1HebqPKhCdKgUeTOI4bMYNplM7zS1dIdZ0RqZ8MIhL5DxUmuZaisLrOs5P79kWQSb2jCgZfr1ChV4GlnabzKxQkcLdGdvx1G25cPa1z14xVLUxe2xDsieMWqcEBG7lluJY3B6+KDFmCTyP1HWVCQWZU1N/65bJ6dRDUyroanxfmNpTZT5UNj/eeaqEvM//Vo+6el8+lrd5TNXUzpRwd0is/YoMSNGQP2QRo/8ezColHVmAwqIHKfqVQvbLM8kguBXLwIBfZiScE0O4MdXSPQbfdB5qbj4dIlVtxs7NU3Cmu9pP/OlM1/k1hzIgWt0DZHTe1ZKusgaxZmeZAwI0v6Rl75t3XkFua3+eMPc4Y1XZez0UkWYE3fDlBwVef2haiwQmjHWRHstU9JklZbNr0xNpFnG5TPKT8Qn8PZAX64jSgyGaBT2FQfw/9f+/n/5H/0f/9qLL8/cw7EHElci/szXqWpkwyKwC+S0DdpkgUVHk4ubMjADkFQ14HQidIIX8ktfzh770rLacpAwBWG5BDUNx/JWo4zkQWya9mizKJFGgH/ezEgjYDpWJv9cuoAapnDjrgsymObOTxdw+8WWMl4s+4b3esEbkOxDAts1xUZkN0oTqweqqMdGWNEEYzEgHIvKCyJor9m2nZ1qF5UVgBTxkYBWxZVMj2jAcxF9WlpqmOLMHO6npRcgzuFLWM1xVIJBmGRQ8m2bEgtlWVrQ2XpKOqMLLJNNRK8Ta8JPzp5/8QXJZgicQ3dod88urd+386DQ3U6rzZ17+6jq5cBQA2IiZft8iKQFuLsHh1C7uDx79eLLVy9eXp1fslFxyB4ce5ahEwLIW1yRMNU98qbfKXCEcRvKDAqiLgXSdlrTmB6w0T/88/f9sI9+1ZqHURsxp/ERpoBOfMO6foe5LdNyiU/sWEjAbd5Zn++IJ0XhCgw5M0JaMIznequvIYwQS1D7OsIiBytbuWjag8u3XkizcR997FlhkxWSugtlUYJERcyu/UGpmIP9V1gK2oFl408dzdZh8XZt6mRE1GWLqbPtI7n4jwoqNjfZ5qW2KHsm4EES5MlhrBV/mM0QNuqcndd1XiSEyQX7HU6ZKzUoidmUu16ZZ/bfAKY46f7mzDnQdzbfSBc+u7g4vbu6P9w7QCTIXJ2fOoCs5Qa9z8urf1ZfvTpmhiROxQcu5I5uvTO49GwSiNmxbBwbpsbTeOdewjwyQX7pghuLgOBkbAYt5Gok0V943Rf3pfDjJAIog9KJBtjGslS70FDFulWv5mpPIVKSzDz8nec6rZiHlVBxuZ5iWcWswL1VDvcXhQplaNki5LLnuVEb7syJRiS3x3BgPYWATPdVL1wDMZHWTpqIicUASBJUAnURxx2XydY3BZU1xUoB283xBbOVR2wMwbzvHj32poaEHJyIa+UVb2CzJ0bcXHp3iZMTpGlt43POk3Pfes3Z08dPbSzd3S+tx7Xf3JxlIuxDkhS6s4C+nSlZjd6zlrthfK38gCDSNvgalUNwzr7wSHDQJNlodhwZ0S6kFlyOYA99EGrYIOubgY3Pq3c//0d+fv324j/5j/4zCa3haUVyLA9E79v8f7P6F/7Sn/NluFU+AcKZ72G6a2rne0aVjiQYoqoGCTpDiBx1RnNJL2TvPCr4oqzNPBSyonnZzHIk7nQ0prr1OLl+kqBRCOsanxPVRLMgSzu6NHEjVMF3Ky1PXp90/831zu6mlwIz4lwRzmqKKJCPAhwr6ADfmL39jYANxHFyrAUGTMwHXSxLN0dKVr3/Ec/dJWztkfS/9dEqzti/IVFB6wRYN/YoBKHUv9Mcr+1RmAiwFm1V3zQYz0ujW3KeMQ28vCYitIAPioUE0NQf8aNdzemvGOg8enTEvD9+8sw0sklBSCHa0AHvmTSVZDPtjb899dLtmb3kHK+uL89evzo9fn16euq4qRmpkoM7IRsWWMFFzliHtHXiCBxFtDRNodFGqIEBPdxk2SuHjiWoCiMF5RMtpkIux+Xms8dMZ23G9iY0yY0qAU3Qge9bQlM9xLdamK2L5XovO1d3iddoA03NaOeatBwBKR6vP0lSxCxEwgCFEuJS/PgrhO9FPS32zWyMrK5ZbovCVxfGoBxPyRCsdKbhMiG/WC7OZnK6so4OkoJWhnKMpHZyP7g9S+50xm14/oAdaigBBud95ADCrqEGAH5EzGkBkHEfUPxm44MWLnUEIQDeevftLz59waQxTZwZT0DwSixs73/56tjb1po6leK/vT0798r1XSNBuOe92j2S59bpixcv5IKc3UoLRjjTO8JLIWJVhPcJBneIPaiQnSYjN0HKPccuqCoQ8xDf/dQkPkcn9bHDYhcygdPKKVjb1Rhz1a8o4LvPcuWyhv1aSs3frn0UnAu/dTT9Lw+mSXXms9SvDK60ncBJ2Ba9N1KHwoY3cM2no1OJhQcbm9ZizHjAojkWNp8hRV9fkL0iRzSA/bVLMDxLk4lFsMYytzmzpPMZzCbIvDVXJwgspZOxlngg68JcrZdqbVc/RhKINqJy6GafGq9dtnd3Y+P8/PrJk0OpOefy4Qx6q7znVDKtO/gEgsmt9N4+YrDjrBaV0I/pP/YTbPicV8qFSNPhVsFGFmSipdSqyXjgIRIIC+zwEKqjOo6xkIfEQPsEz3/rH/3G3/hb/4/f+Z0P6ZPCMSCdHObEDFccwK/8mcwV7cr6FyAXsrOBSxLDgChOzXSfSWAGPX2SQpkZdn1qZhRmkvVsPaqGj/ogIlWpJbtjOejK6vnpJc2cU8k6lFUZWPIouki4rb7asOT0Agw4545e2OXXL18eH7/+xje+aRxQkLu7eXF+akQFGB/GPWVpc3IKaGkwkQFMYGfqmPzCNBbcl2k2EfdVXYTLQ5SqQplcUdhpJdEcc8vZihwnkwAv2PU1N275CGNm10aGI551jKLsavShRQTvwQqgKdQf7Ee2tbHIaFZ8XR5QOV5z7OXiGHYsK93ef/SYL3h6cHjI1ZFFysx9prQSMnAiZTc3tD8cO5Fi3bZJgcmrj184E/L07Nj9pN4MRO+uwe3ep50jCVudZTIXUzECVonwvpdVw0HTxeXNS2wkxSiHOkjI+OAXrIqtAtkfqZCcXC0MrvnWKaMLTQXfYjZH5UHlDLutSNwKKVRXgI9nWUqhaqMQQdGie09R2/wTncVTEPZ2p+xVNmn6EycYgC1ZmwxWaUxribXHD42favKJBUhKenepHW3NOWGdpIaVVaVuxq2k6PyNzThwIU76JwslUoX8ZYcoUekoyImEmrCfcSWFyeXxKewCMLGiXSluB2CbkEFbxO2WvL1h9JMnz169PDGx2JCi41p3CGECf31nFEhBEJnNupjzybV27fV1nR/Aaq/JTBgvHp8cUwFC6/jPaDSWGtCkXZfxJ7FbniSBiqQRXdA5CoKGS4nIiHfTgqfVy6LEFuR4Y0ITpeHi/sM/ReJzBaew6+URlnanb/NnSiUIStZmDc+3ynTZXdo4j9HQ1+5Wvv+uPQSb8RfGeUjvJqjITjEWgMapLWN5+jwus0lgomWZXCmrVDIJcAhH4bpPM+SIpacEPX/YEtUBrEFek7e0peHGppP7vFXKKwBN2tfZ7LRXzXQeCJljVOnu+o7T9mZ+1LBx9fDg8MnerqG63YjPP39BW4zaiTNZ4X+4BFaOGAz4gWpQ68TQx289tcQxI28pyr1Xh3rp94Y8p+6igIDSPnBntXnDya6RBNKsmfxu5oMQ0/10pWF92gTZi9Mc/pvejGi/0d/8m/+v3/ydf0Z21ELTwtVFRCK3OYBf/jN86sKWaD/aGBfMdvKcxdGMcEkVxmTYQ3baYwWyGDi8wiQr0bSPZBQBDd0fV9aIoUKzfpljZrnY0YgdPw24aEvr3DXGnOVxR3WpE63Gemoj+/G97/32++991aYr7EKgGFaI2iuxEhBYTe4YoJryMKFiVVF6JCnliVIZG+KA/wBwKeISPQkx9MVWULxC3VpvHKOkFQVeBTzrCkouaS0TzxZLIhcgs/4kuPgodIZ05LAuQjltYoCzPpPjq2MUn2FpCj+jEwY6vigN2oGOsEBiotImPEQih0f7Dij14RLMGXp3PAHqrHEzE/4LRi5a/o0G1oBLYthsfHl//fr41Jo2S0gcjHry5Rccoz4aVBTddcIaChTmg153WfzueAhstlJw5IpxZB3HOWXpUbZjXMaKFCUYKpFxiTawTJbcI7bVdd5aw07VKHzWIx/fHS7coOTo0UGLpCxnAkNTKm929xpKEmkQJfOxNTD1PzJgLCxM8XTTC3twn+bNkIjZ7Fo3kvK9JVU9MpJPLXeUbwpMPwSjhFdShUT8sJGrFserLXkmQ6sOGolLehAfgA6DuYQAX5gszQO8TAi70rwAKviDiB3upm2y0e9c+yAQ8rCPvwigjukrjoix+fjjzze3mJgSyrS9acb7lQNrhFY7LoXJ2t7p2M/Xr1/qTkTgvlPIeQsaYcEYKB2/42biglKQTo5+6HYS9vrLmxbWjPENLDVSEE/BlawPnINg9HrAlPCKpKTSNJieezDWod+q1ZUOlou+PVxry2eKaLqyvk2X0+7ybGpH0KVvYCq4FI0heO8DTHQsCp/riQZArRiv23yMD8SDwk1ffoj4FHc/u0CNyCzxqsACG2EGl19qhdfSSQCMNxIkkA+DnoYEOxZr7BpKuNw9PJR6ldaXphCuIB7d5CnaGpU7YqVLSnUmhY1LRGu35+SNRcN7I3UzCoIGI1FvJDEFiS5nJ+eOoH/y7NmXX7501Bgzv7u3J8Vt9ZHeGdLot+6E1GsRfrPHdPb+7uOPPudMDp8+4j8O9kxlJd6sosWMhhfUUVzjLSVx2BjFerbrlV/91b/93e/+ADF/xJ5o3z/LQP/Sn2PiJ5iZpEeWMSHKcKf/ySviEIVEhbpCOB40CEqM0haLiJowSF3W1mZFYxtVGHTtM3+Tcs7tkFrLgK1V2Nzjx66MbTWumDcZgRsYRfStxS4L5MPEX5ydyv9pE8c6d4GxLhhxXFqbS9F73EyeLW4qlLi6dsM14wIw6tkYusEXDpU5ziHja2cozqvdXIi8IAXTRiHnl1Zlc1J26oJhYCs4PZd3ahFn2mz4NlFuvharcRjuPgCj0hJBppq4zCULAaoeTRIQIxktAOaQ2AOwxiv6mEx40io9DJ9bugJVNjGE+kUCn739tpfYPHn25PDxgXSlIIZxKwQVNlrBenmFHKYRvAeNYFzfX3304YfPP/5kx8plo4bbC3SiU0WbOciUE+8mysdAwJTcM6skNa6/mzdX4yyzX0q3ZNXr1Y7NkF1cXc4AAwtZX7YNBotJoc8tCsrNTCVwZ020RpyTA1LRNgi4dNQ7lWEQoQ8G2pfxXF3f3d7o7Sj0Z8yALe9y99eXtyQN8BOaF1iMLQY8q8sAcGKtAjArJeHS3BWZyNHHbvxCDoEbkFg2Zjs7UFAOBCM5/NEYRwKHTBaNAg92uL/gglGh0zhIL7klDZNfYCT6s4CiGaWcnTYm+xxNhr+BNaOH6a4gYF066Hb/6H34fvr5p+jHy0sBIJ7MvrjEfIDXl56evXYUCuGkR5l7wre+8fLlC8tQzFBiQFo5Q7EsGI1t/nkQAFCePmwWGIb+cC6ZO3wP0/l4om4j4+V7yGBVmR/6DX7fwqJfSwkVquLeFO2rz/yqchcV8Hd5ML+nhcr7thRaKgPbp3x8HPBJj6raDZ/K+8dNOoCFRzg+tmXyfBG6HpMnkU0hU+0kbMBa4KufmIErOCHEBoO284MLkg+BsyLLp3rIVr7FI38mJlUrZyy7bwbZAqAjq4OMqsXcdU+HDaqsMR3ZlBnAoo5Lt3RFWFbwSTszp90hbIBrYF72okEAI8DVjJhFDznJJrSL9EvbjmLZ8NGJCbn6+6sXX37BdIggOw+qKSjpTWOLy0x1UR0BSAohaLCfsq2uf/nll2cnTalEqz/wv8t/91f+DCQpMdsYjUIqayIyT3g1Z3Sd1ttLZXjSUB+JSr8aytrM1WFe+WOaeXbcK42yZPfepX7hndGUQaS1ueOowhP+UC+GcrIglpRdn1+bPKGZusDyAsXY1/A/FZ30ke+lXApVHBXLFMx8w7xooj6MajZ7czpz4hpXp/1GQmBGy2VqgY11kUSlhMbgzVRXF3M1HgQN5fgAvDdAszPQsNdXk0tO2+A8Iggu9Zq92CDy5dgpaiJTqn3bsR1OBtX+zd2ltKzBmoUeDoUWOlxenBs+oioCZvNJZPLZSKL6aNU0cnMnyVI40We5i/amIYgbTBiS25MiIkAcL9dTCHeCtn05W0+fvbVrSdHhUW9Z2t0RSHJ1Zkpfn5x98oPPTy5Ojl+ZKD5TVrfR2PRT3oL8XAimtO99BtnsRkKl5sDGpnjTMt0Zi1zGz/61Tz/7vLcie0GaJfkMpzho0IFGF2kp9coMddktnMTK6NQNPIJjhXqqcqLUY8JcDsQombTUd7O4xRyF39GZdpnny/kpllKu3FuUmDHknaRobInaktsBB7t8v7qVA7AxmPaQhtnfrbkMCuFGUUJlVYGEXie26A4NwNR/4BR/BHpk7grjyQ7zBAlMSoMKiYc1jcCsBi27ouyQIKWDYgoDj1ygohRqkXT1WnItFVAPK2tMei7H6UsN552DUmhvJNGhg7t7L+wEvr3aP2gc8PLlK4PL3d29zz773G+iLs8Q5LJSM3kzBC+eHReWaEV0MhfN3VQSS4CEy+4vfHEnAvdnSodf9SI+qOPrYuL9DvkffobDqrkzD2rih5+F+wuT5/c03a+lgcSjMtWtFiS00dOkBXjJSBzpVlypF/5bFp1JgZBtz+a9q1pDwbfI3NLk0mh1Pa6PKedKDqDfDeu6+wB3/mDaCRD/lh6nTlk7irYEB/42R7MtEjHN0PxReu2/vyWIrBHpjLzKz6wnDPBlVDoe0HGtW+hF050ZgINeKEIyzGuqweIXUjRudgZzZzkAw2/i58MEXZycnrx6zeCWOzHULQzQqEVNKjVT2mg3nUyFCaTM0un5mQOFzs68w0p+oND2geYPFImjcF79xV/+s9JjmqNZRbIlQBtKMBM2oOvHtHYiLuBNkC2cMHa2ibdV//Ue3ShDOQR9O6lNjr6ZrgS8PDW7T/eGFSyy/Je9KhcoqAtVOJEkUsvtsJC7aEzHu5pe5wOIIjVFrBq/68VkBmNaiDoldWhivoE1ywrMKxUZbp2x+FnOsR6jqSxi6fsoVEw5xG02xuTz2F/rgkpbvWGvRV5e4059dwxr9C/JwkO0OqVBDjpOsjEtcp/w8OkZJRtuO553zZxQclN00OFFxijgEdHhucb5usJJkBubd+ZPsXNi2RwsVqeHkdnBJ62w4vlLDesox4nTiVQ70Xx4uUaYKpCccrgsS/Zw72Bn9+hga3/38y9f/uB7HzVIcrx8R6KWNaJQdKa9TiL98gNCFUlENNT2ndMq8qx5mrKuJg14rWV5dduUz66EEp98+plF6KBdAn/gDkcSrwQho9CPp4sOuq3NRZdTukVkEIXoMD5g53oWprD0IVTMnEhhn+ZE1p1DV7xtJgkx7BSxyU5IjMzW0ZoyzREOUZCBeKGG+CsGUarpgHiONnoc9XkWyS/Ellc2qwpUvYxdCHRdJnuDSRpITnA0t4Q8gCJWzfr6S+mwJEUqTsrIEy3USCMm4YOVCeG99KkIh6zqS+Tgua9FVSL4poT62CRoNwO4mBYHmJUCprwHeyWgX716rRFPnPkjwtCqU8dh5x/7hVYBOI4H/CgXCsmdxGaDGyOqhKciCXBP5mm8cjvWVXjUZeqKbyLIPI5HCyOWOn2ttE/mclqYLz/61UUtgkr2Kamoz/y938PRxGBpbZ7UEX4tjwJgSv2wn7rvphLUgfbJljC52g3rQJuHlp6Xkuv/RGs1GC/i5tAEGPQX69NiKqY65jDUWZK4WkMxL/bLXKQpkavlmw1KSNiGFHerUx1h8GD3pSyZfVJojtrE3a6daUAocCJYWmpC1Gl0VhxuxgtbQbMnjOt6s/cXZolXDp4cXpzI2VxIuhqZk+fCoGv/CZQV76Fk0aAZjJ09ix3WjUOQdLBkYQrlINSCNufLeJPEpRBCGuLqXPvmPGCNcsP0ofhQ8uEKqiaB//IvoFfjpHsHvW5bXeOrga0dEEgnIcOvIHQ0GedpXoAGUhPcpK0F4MpM5ldoNhPC8DZP3WsOVdI7B5PDshLmyupS8w0srxlggN5ubHsFI20SMmfV8EzXRlnUB3TwQNaUioEW4uUk+dLZ6TfCGefNxk0WgiEsHKSy9Zm9ox5KjQx0WrJi2TtqrF98arpcY1vWgI2QewKPvAuaox4RIBJkDZkyjoUhMM2WZSAEy1nwRB1pvCrYYAgP8vWWiiI9gUqpEjVYWL8vLcaF8C7olpz5LIvWS6YnywDWE753ymcjIes6UgbXQMvtt02hV2C6WxOzKa8TFwEp/cGWsdhrK0YkWC4sJkQjxIqGmbZlS9hIiGNqcpOIsoLt56iQISRF4ALAASC2meCTShTzKdViqL5+ek5gL18+f+5FFkTtqhwlNPtJTtoYVWbcJRuVBZ1UBB3LEkQRVJs55JFGYCd+ekdKQlVUWxgOIl2irUZmxLPeWxIwOKqmtvhsjLC9vX5gxvxgD3lbADCL5II8KQ+pbIC5Y0XrIr9FD414wrS1xU10gzz8EteZT0oblmSJ+hNwNAyGPNAsl34wFzWNVu1xaak6w9MNvxh4L/rQIyMyhNQEzfcc6vXWHH6h1FVnPt7SVN+8HWN9i26T1bXLO+8Du7f6k9Vpyb/wJaFy7EeMk4oMBGE9kGBHGHjD0B2L3IpIbALJMq7MsoUYfP1UDLCRp7rz90eXSYmG0ZyIxY38oXqV7Bv6xaV5tjzv0UMbA4Bffa9lf/tf+ak89fuilbnx8EcXCyhTp8LanJ+HYgExDWFcka+fvi/tQhnfiENGyj2Ij7km4pUEHXpTeYHUCKL9wG3F27Psmtysru3vU+rVmzcskm6vz+QumFEJGpGdOSxTdJMaNwIl/wUfEtFtPbM/tWWl8tL2im3ualPWeMuUsYafPH569Hi/FaEcxsywZmHWuHUv7bn+6NNPPvvsM/1kPJuw6lMQM4vZiARUQE712X9jAnMKOE0MnbpnQhbLBQcCH+MGJal4Gnh24cSol8+/+MGHv/fii+fnp+clg/ApKvX7ge59m5/I7PNm9Vf+yi+NaJfH94TbMcRJsBgp3d7ccXDuq0ghCnxaKI0fyHmN5AgBSEaCJog/mZeL6wtYme0AK4aQOWRCXKzAvkbckwUDNiRnICpfdO7EG+pEm6zAlcdGaxxLnYfTOMqO6G3sYEtE4Ibc1M0iSIzjNjKZzaGDnK2MdprjVhAXUqUNyNVIKxNdoq21RiY/shBb69uZRVkcQbJMuVWhE55z7Oxb6MPEZGDvMFCr5a2b2zsUePxF8klBKbWlZTyUHhXSYR7cgSQZAiDPCGmyDQQRPAWMC0wiOlkgI5zSYKk0xJWfqHOMNJ7FwCaUXDbcE2VE0kR/nFPRu+kZqLnL0CilfV4BHG0vSvyiQK2MboO0EVbXGCRAjjSSD5gIH9mU1tWMvVXRHpEanYgkndZrg557h5ki+JmhjWUPtwYJBTU0R/iSBx+V0r4wBYlEwSM3RKCxl54fwEl2JEajsgLGekTXlxgziemcShruV7QlhBEh8c24IBMCuxAXHjmQzyEvVt2ZXsggxPExex32V4+tZZDtLMLtcSFFH+SNPlrPdGZHULABr3aRArUHXPrXNAUKEGzQDRA5AbyodK1OG+Gr7lic6WEWF3k1GBFliwpNkBNdLGO9vjo7v/AqIaOBYtgONjKNJC1g6LXTfAC7PwfotOqcXLebEsL6jkIgCf4FlMFjHnQbqYK0x36y7NErc94ft31+9DhrkTQXrHjWnEoPFx4tZaPI0GN6eLhX11FD3aXNabGW52f5O18fHv8wQgu0Wo+GI93L84daD3jVSag9tP2AJkGYW/MkYBIQEpL/Lpboj++hWySfdTJSm+Eg1IlTS4b8MoJe2SQpjPrW7uHGBpMqHWnsazeNyNvKzGsZT5sd0WVZpdfLW1ovrl3lOsGCH6ALcWtz05nAT540rWuzJ+3qkB4OQnoHcYTV9OWS0dsUQ5cLSpAzccXEgdO4v4btSmkG8M4WZcMKy77RCJLsmsUVk8yxjZFiW1PuKOFzGmc4eHF+fPLi8w+/+7u//73f4zQi1DDgR6RCkyHiAwmH6pzm6upf+iu/FEvY5t4OIbc7UY7Dc5brGfyMYEddOkUXiKDoXDDNMGiP5NfNBLO8gjsTstnB2CAr6BkiVRdtku7ErFtWh51buzTRQQxK6ZL1C8oTC91avbdC9vLMqo6RQqpfiimAfXShV+Zu2QgDbPYy3bWuUH/esjfv/i1YbXmr4xVbL8R2M0mqI73xAWvepJBC2oUDwLZWTaxhJ81s9h5YcAZS9q5EhBYop3tCbiQARcIV/EV/omjCIXJrhhMP2lTWMLCpiHaugnGRy2Qx/kT3SOTdNdpx/oV8MkYXTmaPcgKIFsrZGBTEIyOYkKfbgkEEZuRH1gHpMhGSy1FjDJaj9ORDSktOSF7qMMpCOOfhvCgG8mrVG+P1M0cqmNxIkVMVg+BWSRuttfLA3raZjnbMofgAKDJdRURBa+oFPFzInWMgLV1k5lCbi9Vpk6LL2nSrS9/ct6vZ+acTcRBl5q9ttg00qa1vRKaxhFQQtJC1BBrsWxk9ghQ7DOCa4yrYaDKWTNBp1EQj+NA5yrixt7vj3A0hmkkpA3MiyWdnpbzxdBZW6aN/s0tAVOe67+NvwIH4GU/hlUYz9LGOl2pvjqAk/1qH7EiKlKVNUpJ0AqYVwHfhkJ8GEjWkhTRcKDIiDlg+snMNzeMZ6N5I94sNHUR2u9JLrQWUXI0xArkS6O3vHVj3aRsxq4S5BDKBGCWvf9jXuV9wcI23oPArw1p5GFTKr0p2NXB7lGz5RDy7WCeRltvUevRXM4EZ+6w/X6esZxFs6ROmmldl6UCRehy01f9hB10uTU47QTSgTINVmQI/vNXfuX7oJDhruK8+6lbP15oPBX/RZLobLDNWvuql/2GDCUoG2fJxCwQlhKtHumvlh2jJwdkT1EynubfiTnrDyuO3fw0zizYF5P6wJN1qNZBRpuaEpzGn76aOzQvLGfUSCCWsOJVx8Ep4QmrIPofhS/7qDPi8gCAyWQpok5FGwUapNIOHQmJTgpQQlaUAHB8sSyBQtu779Zeff/bFFx/97nc//vB35W8o0XAuDEAynwzmA+rR5IEwU6CXaM7CngathvmbFieoj6l0EiJNOSS9kZERT6xbA5ttzMjyaXcXmytcHBxoZcCT6cWEFeeSHbatmKqFGigsxHEri5uYzX5j5CpQtn9SX6BqQhiQp8cXJlic9MGU6JTu2KVhxGFTHqxKMd1e2/1BeZLmlrrRMKBSOd6SnsZStdC6SY4yKvpxFtsy37hILUuXuyIDQL8+s4B1l+v3FurkExfh3mtIDIx6jWlBxAz2JdzCkWTZTDszybJP5OH06koajXt3QndGaw4CYnxQLGfREvW2dqhL1Fo03nwsU276AY3KdGPwWP7kGQDVSeAF6ck5M5YwJu+NW1uJRQHCv0JRoJIok3tgf9Gr4Jqz5Ee6bi5H0fxdOMPmiJMQ6ofWRCDkhwE1HkJzMoukEpp5u069tvh4YLBWcs0bbDZNbqAqGckw0Qajgs03pNUBwNveXbvlrErLGQ3SMOTWJPTt3tb9kXXTzXA3flp5Y2/l6fmFzqGx6aQWGSAMbeefRVPJEzipjMIDVZkJoZYgmob0SLikaiM+DaJC4yGRlY1yp6dnVukdHRw8fkRatANpWDRqo6WTW6oe4LPF+ktF8hT53YxB94kqqaWv2IBawx28ItfY0PhCLdzQe1R1V2tLNNAsAooiHwitS3JkPSCM2Y1MwTivGMTLFhp1pOXTZ08srfJiv9dnXprL1YjJQLGyvycQ3Hz56uUMG0pp9kmfMxoAIMe+dwtzF6lJ0xK+xKT7niqtSuUrnHBPjX77XzmxiypwkEVUWpmlRNZ/Si9lk0ISscBRPYQj226GpovKup1XQPCl3255qPgUqMuoPfd6lClaWvR37JNn/g1Zu7F8jbzBRc79rnq/plgtp+9V779w2d957ldWxWcpMuh3R4ms2QQf0xAR5CTqJOBbnnG/cj5zikhnDCaeo/9XVAuxiOPGNpEwAdgkgbdXs8gt8GcWtIKexf52rFnSaSmpQwAt3GqWuGWHEhsAIL9QKVtukYobiDOCJiNbXMnzkCCjDOs6DHqdUMH60hkbFLf3tl69enF1evrJ73/46Se//4Mf/P7rL5+X8V8Im+tBEbQpbIJncjHUgWeUQ4kfXqUIBTkC/2aA2+PjYSF8sMlP5Y+gxD5haga2iPkNPAT7HZrLE4xw1U9xoDyXAVTGpXWE+TAtiBMpXrk0xbLOwk8jAROilNKMk6g6QUOB0hGJoeqR0usZV7bW9wpQBLasVBk1q/XNTSLxtmkEkmSkhJFyZSAYqEurwRzLA9v0sgMqlEB4dtksd86AUbYGJKXlqxvTDJ4uIluxdtiXyBiR6ksGJm/hLlsHKaAy5rJPJV56WfHVAYd0dWn5ogA4yeR+mHNLlW7YL5uEL7w4l6+zwcKL5hnWrJGwNZq0Ah0JvfUgsVcXMkBSnbACF0cSw3TYx2UYqjByjS/xETqTP8GQm84qA6s2Kgz35IDFNBjiX9sSTAyyei0ymmfJvpNoLCz2Gmq9d8TmRWt416QEO0rsJiCNQTZkeyyTJYkb62bDzF5a0bstPNV5iyL2HICh54jLExxt7a0eQFCGe+Xk1anV9QLNmH3bUqudzd13nuwjL6DOz52Vw0M7KmevU596H9H17Xkb9gloXEM7CmlWDUysp5wYEwrAvBrr7G5O92FAB4SZZj15dcJXakEytz2jW2uWcRDzRu4GMTXUrLiBeevMiHd8QLsIN8QbYxFFECqDMREDijbSwgUfAumicYA7Ko3QkJ38fSt8LPxF3Z4SII2ngcNiyo/TtIMzZVNsAmPjSTIkrNHKx1s7/sqoWicBgxQZVl/T0/7EVBdTwu8RiQBXvK+BUoEBs6++LJ94X82aQkNUjGtJXPU03IMpPd1MyeknAJYHNeRWfwaSuVIlwdVG+P6wayJYmT7T3GAPtArAYX7X0vL0oc2oHyYea+/BjD+U7tHSImVdoJhiiyFd8J3Op7shAHs7jSzirvqQIJpkH6fdgAQ+E7V0K7CdD7ZdlnlsVpOMyI/4y0JN9kj2meiRJuBLGpsSZvqJJh0TW52ceHuLNR5rW9f3273syyowjsByFuuaJKGaTzXWpnosEelaWIo5yKcrwHnB/RsCK23MoWZZnVR3enH64rOPvQ7+o48/+fDk1QtzSnVvPM7mh4x6/gF+aZCgLhSLMpFuIT2Xg0j+6U8wCws1RFDpQbSPkULUuUyfW3A5BDLzYLQzeXZdJj4Z8KRdrTZJ6pdPVKWLMlwtyPOIG0B33tNIgEZBnnb3ta4sThf1FTaFp9W47vmrZRdso5Yt2HhTup8+l0Ezu1ACopfbldYz1S6nNAAACV8zixPgx+vsYHQwn85PFLIMl0spmANkFFJSs74tuESGOlZdNC1+z9DLHbdbqsnCscslCWlvPsnh4Nfmri1wSn9YI5aIsba+kq8afLQjM3jt3cK7jNCOFJo8a34dJGyEWfHwyMwtOppaeFQwM6vUzW/HB0QoDFwEk/nyFOUwtJtRaUwSkcpnts4KvhQWoSe/IrrLK3Bc0gtIYKkAWjt24vLmMks6C+FZSWBoyQouS+/lMWs1WnYOEpsFRtE+Y12uaFZtJVNohUkM6MyG7u5uN+C6tr5NzVLbSH/0aJtTLPNh/aT1uNZy4nAiyZvvrG9Lgl3fnV8ATJ4b2ienp5+++BzEefdIhduyqGiBd9EqvPvAN/m3+EdfQVuiETYNWy+urLfrXCnB1I1TgM/vztfuLE22GqBGVlfNBjZONwVn+fL5FVe+sys6KXhYIGyj3KSmSKkxZQzWf+ZSX21lGHdRFEWRwgbjENlfoBgrNW6pfEBnHXEAr3PE6lA3k4GSYxjbHmBOtB0zFiXXPA9ILgSGioZ/3I/TtZdeIHl4z38cCDAFqjldBUvgVrsnVVyKFEkkNixErJsQAbhZwtp3vzb8GYT6u/xfSrqeG5XIcvqjC9SoWi1rFHNq66FALKtkbFFofmrFZ6B4+L18C5NgAJDnA3od1dpYJR3VUoWn74dHvjT+HxBqIKjmi1+6JcDEg+ePQdB6aM9DPYGK5I4kATHWpoGEs26UCCvldOk+2wRfOTysu7iYMETwEB2vLssIjQKt7jrQZXffmxwYCJ3Kla7tOTKIz99evd9gsdkEB4Q5rG7CLIcBs3Yu10VSmgdkqSLA6rBwbVT6zcrl7cWLLz7/7KMPn3/2+59/9OH5iy+tK5APhyLkQRGpgJ1D77JbjVq5kRAYNLpCIUYqB6CAj2iceZ1QgCVoWCfhQFZdL1/FoqYomAAODvbWPdISk4YWUqQV+qRMLb9jBpKowlKddG5ub8Eu0BkZ4eRuVlrQui5boPt58wZBZ0nF+NiCflxI+kLTxbW5nEBlgPo6r/9g8VntRTgZo5qRrJkXv5gZMUFPxdLQZKggOpVD7YhQ6k0QJxGBQt7aMsxujV3LSUUTKINirYQzAChnYh4ODfDVBADsWHSO27GclvNK3+LM5Wk9yk0hNOcuC17Qqv5N7z4kI14Oc+m0d4cPyrfIm5lXvhKKChMGPWLm9AWGbVP6q7gp8sHa7Hpswv6MRm6vfR+Bl06MSpEXFjWOJzKNaecX18uHLTMEleUl+Rh8HNEo5pdmwW7j1xyxlZHWvObs7k2KFdDyo8jfIjdrH9u3IYTVhwCG7Mhrsmkz+9VprDYt9DK1fCFGpFyIRuJLzukq7gQtXGJEImMEGdUhT2/k5O3gtUfGCMBpRsRF2P/6tdyR/JKN7X61hQI8ilmcNl4mXjsqJ5fVrN3IOIaj2WIc4Dmn/bNCcLSLDAUtxj09Z8tzVG9eTxJsViFsHHsthIG2g4J7h8+jDuM0ul3MGSHvxUGLa9N+4wWUSLnyrEmLpzPcgaHkDtVSE/lBtmXCCX1jFb6gnKql+Av0NntPcty6W7eg4+aa6QeXJKF91UaT1+d22nlJxGy+wxhDDDrCPeRiZ4w+iKbJoS0M8GcAiwUp91gwX+rWTxpSzSTKnWFn95vORL+xgJExgfPp12DZFzUBWjvLQ7/d6G5s6fZSPtjmkxQgi14GFO5F/axz5QlCNQeMqftQfRrKTGR8QDRQ92yQhM5gVWQ88u9JOuKhJ4EQ9IOZziLLQvNFvQvoWBfmLYOogOxoCqRPVaNLf+a6m3qPGRoh6O62Kioau+oOq9YybDLO6gCAsLgry+29XWZBOyJXt6vPT1VgODLGVvaKcUR/+/tbO0fb+zt7B48ESVsHO9uHZtMMCARgdJSSkg450XySBWe7Mhy2rKZ863eGzPd3r06//PLTT16+/vzs5vxGWASn3BV842Eww3yIF7EnGgiDVN63XuczmEG4ql4K/+c91sB4ioJ6g+IhOY4XcEn8ekTCkxH/dWTCoEC4Fa8WTEU7PQnZ0DjtWJvFJAy0vWPiajFZKtf8sjEEnrFiY/gaLmB2APeTtrdgHPUGbpvR6CUnU6yu4IYBGOwCof32DbrnyOjWL+mXEwKHgCqH1QJ/y7ialSVPFnbJArmQpQna0MW/wlekMwIoppWVkuUv9dCLj/Rqwi65QLOWOTWNDMgo6A02GpwQ0zRMi2Jr894kgSkRC2CEjYwOq4im+jGcasK5HEVTlyQk41wyP7TFsfm3WIDGo2Vo6M5QGlEAkDsxkTCEGWLjdWcK4Wo6rXIYuWj0RhYhzlnLn4wkoAwE864ND8XnM8k5wg5wb18w+jGxSah9bSmXBno6Q3hGCdtVb79T+TCiH63kOVWxgQz9BMDGKdZOlNDL8BgetinLNkf0BHkmr5X3m0XKlVE1YUQJmiJ7973f/X0HHlhsuiyM0zzi4zqtZWiXAXkGIOvQwQwGpTptPjVPnV8Bb96KsG4VDQDTP8E3eMY4agh0NetW/IpmHvZ3pBqJtYDq63sHe/uPnAHAza3YkCyP6REnq1FzNwbBEkvpGgbVhp7RfQhWV4u9ET0pvkTiSkQxnY1bVxQRcijoohCCqIxCqiILesVAox7N9iJASpYLhLXFaQaTCg4V64kXhIsalg/QXH1OYXMwSAXbRX7zEBQkWoREXwNnfoXxRB4h05oI1Mh1ZMi1EI8XMVYhOJFrfmUulsKQGhLoogi20RkgVeLXBxHiE/oRK/WvYwBEuGBxB8rDEfTpA7E6IYmlh5Nw9PKdcTGdNTDkWWqCcsWxbEjESPjdaKrG32r1gE7UYEP1pmTxwog4tJXoL3MD4ULsqKSn5RM33PcTxOWO5J8RBpRwnxxJbPVllmkRPq+aMU4l0gll5mkOLEmM4qD7a5cs9pqVipTs3jIg7z32ojcrVyQg7leueAgbyQTGJM6sABclImRBbXxYc+7kZWS9fmOH18nxF19enNrfdcEImHEEpE/mFzWjVrKG330LVrdjAJZm10LWrxD1KJb3XGnBdzJQsAxjhGG2GE2FaKH6eCBuRlQoYVnr6Jv2K9TNCdVbBMV0u/aRK+X2SfxNKsrSxBVFelgYX59jA4NeX8ZNnOjUULvd2DpdwBzfYaQRJINsBkv0DTVbtABmVlEOx/JY0b1IljNoUW1h7KqlV8JwQmYyWYg6WtNZQDIbLfJt23eDVeVBBHHbtx0ERZoEDAwGBhspaAQphnqdTTT+WkBqq/DOy5evvf5xrCt/ebN1uGcRkX9sX0s5ZP+aZu9dr8yoTLMZ0SIRLhAqWf9mREbGhlUoQgcQAIvmiALFmNQUg7xHM5qlrnXrk3xAqZSjHxeaqPyqHQKdclYGw4hqy3ZzncVT6pCDX0yIHu6vrFFYjqxAbNkIOsJUs63aTTaQONsRgJ2fPiMbZgZjsHDVQtzVjauTCyLIbxCAUFs1XAjaJE1nXOm8zAearKc5F9I2SyQsrUMlLFh7/533nx0eXVyevHbirskEO41nesTh7WQMjZx5d1Gub9XpnbCwc81vNn7mHhETMeaUdiojagrabLEKlJ8tzW4SrPZDEnGA5eZHkcOyAhoijLz06t2xY38vz30zhbd/0AEsjUxXN+0/2j3YyQQ1IBgNIhwoWySIYSOc9Z1x8ne8aZJemJGMxx98SB+XANPFjKqpTGGiZVmZ/UyvSaO8tZM/GqjxokYLzh22uDDPom0eIai7TC3DQrkkGF6Ulkh0rj2WZgyyiZrNGOpBmWQkOMANFp9lvfV0rpICAO2/ymEaEoimcP/CxVftDhlCOTBIX8FaDmkpBByjzAxp7jXaJ+3TiFvAActIehRDVQ3XeR9/vMI3HwsGKEc/w4soHwNVJgJ0Of6NsBWjVtVji6+WrnrmTrockiKKZCODNKTJeKs8kDNzoRVukaNereqJKxn93e09w/O4hirElpkLXZWL3kKkVN31utmv5uqWLrgunplH7F0F41tX3n73QEc1LAfLgiGUFjdseyK1knu6omRNCst3ClgMDMTXOugFgSfnsyng8urszNphkO14eaoZrEbuWfawSSBwYGSo1zcECjb2J2zDMH9MXtOgNLGEFS7lJeLqsDlyJ9jmLR8kWSsCEQMhUmhZkh2nEdX/ZTEiCng4gerU4pdEwjosqUEc72UMtIlDq3oSI+9iLn8wXmu41Kln5vcWIOR/EFiuWZ+F+vbf4AQriFjhoSfEvfcGoPRibDTuMdxj3+FbaIVXiJIn47frChx+GacApUzukkAANJIhsXayCI4snZWg3tNycXFGXoBBhrRMmDvhlIOeseO4fdnataPHR3JWQlfncppkRjcwG/1TOrIR5WHNPzkJo5MznPoBLwEdY4RteUps03YyhdyjewQskpJ+3J9NvFl4l0RzpoTRoLaXOYB2e2qoHI6LpmdsF9xtC7HTxi1GyNwHxVAv827HKW6q37scwJI85q1nt90sM4+XxD3S8xmyKN4ELqvG5fPfjEuT7YYOBaO2TG9a2NO8pSX4DjFjRNUul9ViXBMnAh3UQPOJk2nhhGyIQD9QyvfHzx6x2AaOz9iytY2L45NPvv/75iM+/8Jk161TlbxJbe9o9fjkat9yih3C04gQL9CTBEeofHdHK9esjOP1FS6LwoQpMj9v7BVpCQJS5AgoQWyZEDeTOZTmh+mkURUpQZak++L+7Pwy0ziGQ1D26Mnhvre6dU4US5Tf9Uj9zMKQWB+0J1Cyje7rlWYmCtQNx3W9UE8htiAJMV9hrSH+0C8KFmvsc2b98JP8E3QTNibhyYcpH+ydyZDbjkXhsAqMW6noECrjqWwI3AoDrOdLZO4EkhCK9+CRgszqUEWg+xVHil3jSF6NyRqfkTU0hg4Fwjnao7ICGhna6Sjz0p3okPQiKJ400Fp906aoDSopdkqIZRFJQw4EuMx+F/kCXYd4UaMMsKEbgiRaRNc4m9FBxQlss+598hB5hXzA/Br6aSoPhYJB628oT3kUaJ1VY9T4uph840vuqGZ8NBATlvK6Jvb4knkxU2c9y+aKRI2jnQ1OiyUGnyIRDrblyJla7VN/MBg1lvKgMvMqmnQ72bo36bh63eRbueEMmNx2FY14M8qtafCSq9v9J/sHTyxa3upYAbxmLDd2bJW1yKXsd8p2dfb65NVnn99eXPIgF+cnZ4WwhXqQRloUiLJQ1SqDW8bYXx1mH3AXkCQKst0CCmX+i3/5zzfMIgcNjqJDrFFu3i0ON5RClOYMk91kmihogwnLtmOGUXL8IFZECin9lTyKUVLLdLy3TfofE1cF7SjAONVNsGZSIC+iiSMCmTI5amYUDWGFkGFG6uJV4qM6SKCCtsJVVml0ScYDqPkJjcAlSQWeTPGF4D2iL5QItDmlboiVdIcCiYkq98ZoDp8G7/auc+gunjLubRjLhbDZqiAZgvMC0SkLXnyRFA1fO7fO8cubhyb1oMMCms1jOhE4e98y0M5kZmon6yJGQ1JYi7CyG0jXnz4YSZCok7IOpdixJL+1kh7kfhpc4aBSucjccKC5y/iJNQjoF588d4aolfDaKfJtwEHHYg2S5/Uci3TtgFln5xZpkW386D46aL2Y1Dr0LBxlsuEjiZpdVFz1tAJwy4L0jzJSTAVHoztDmQl60dYEQY5ElJM6J0uLM9IXcowxEOY0t4zKCGDSye85hwZEpf9ffPbF1dX57s7W6+NjfHt09MSml8ODRxZgbO+VNzf9TjNpIDpwNEUPBkAGfxETAZmtZLbpm7v7swsLRC8Kp0frUW0oPmFpeoI0SWFCkaVBYc1UxH0zDUqTx7b89EqvvZkeZ/0yvGnOWKVsZqhkG6OqNollTZe2wjGXuDqNq8FAkQEiSy4ISBxGsXQDhOBu+w+a+YKACYMPuRs1ykkVwY7TAUEmOitN9xplmkxw03YdBmIIm4yay5n1jRqfRkET28PRb/1DWo/47pav9Zk0+izDgARPOyBQoSaUfDDc5F2MmGVh/Yu35nxv+sFkLCJbJzP3RoU1rqH4E8FLmLaMHgCehK4uADz6QAw9HLfmQZIScQHgZmQBS1TTWp5tAQnAajVGYF1M5yMvqmozkAmpmiGskXkSDxDHfI/okqlqHTwwsIJF0qS+EH+hxIAG/IFySKcJBJdEIeeax3UNT3AHwfZvZ5X0h935l75E0ALRe8c+pQIN0CWCBJqpAFFikW0s5oY62+GN02ONhe9ttjx9/drRattWk97dNVFmXVxms8EWnCJZWout4eY6wiQvoIpk2cJRcGa4rMZf+qu/OAQo7TRWDADqy/NYkU280DrxE2pNrI3clLpFjSHZNnqVlErk65UXGQ8/UTy7x1Jii7Ab7Vp2YlyQv5mV3nGUW5uTWJAFI5MoBbW16NPKqvOMzk/O9/Yebe1ujX3g1XIemXgRh24FWbqAXceBWVONzOIRoDk5oGC4MCqR0LSj6MhBR0f0nZgyzevWsvfmd6k2r9ay3FcjDIRYBj54RcfiFhInIgHZsnRzhOuY3VkL8g+4EpHrQ6TmMHeRuG8l7AJnjk+YlfJDTA8mIwFOI2bAkwPta11fmYMomVQufivOATBKap558N/grJMt4iQGFRRytQZajsa7Pjk+/v4XH5+cnhti/dGf+SOWtyAx68+A4CC6RRN95FwlySyKLfyk6LIocM/aY9AAQ6h1x04X1YQRQSiKwKTxJZmmoS6ikq1YW1W/rJYS8eVAJt9Z0KpyIknxCn+a7MlsGjrTRoNk2pVK6cCwVAPePm0OA6qW/CP47f2r41fmDNhUEuE4MMg0Nd0xG5xcymk+P/gwiXwvse2E3yPzmVS4n19eeuX35188Z0YRBSkxA4Uxu2UcDV5AkSGPJrlqcxv4YPO/frx3TOyYCFN2LPB+d8dDDtpoGnuWTy1pRjslIxYNRPIHI1C3AdmjoJqVV2Q+nc88NYzz4RS1QRhrI8Ndk7fWFRYDTNwzltB37JkBZbNMmTfEHf9NrigUs8TK4L4nAkGeIKe9mL1a5kHoHrJnucjhyHjKrbaCbi58G+ymSDEkPoZtg2zIdJtpq4/smMcY8ubWia7Eu9dgEqeIMVYWhnzCiIL6OiB4qpvg1OjMxtWiO/DLERO2JUNVlWRGd+ECAvaU84IWdBbyoaJHCqRPfUZt0TWgSKmHQ4hikWQy1a6tkZl6VUzrvgJgaVmHycp4Qt0n3VnOikr0Mh1yg/bkEsXqllThc1E0WioOW7wmibXH7jUlsHTXfngEND3JAeB6GBT1EZ+SjnlCJAMw90ElHE55diZxYbRtqlFoQxXtcCr8alNUaxLrMvjHE8xerhjCP8IeMNOvPqDcL4Zbw4JZhpKMQxGQShYvJXAEq9WWFiNkEhy0iy/iF5aO4ctsUfPJyTXYT6/jcPENIRSjxrs6qV/8zuQkHQYTcpXOGhoSognSFEMNiHnHean3TC44NPVub3vv9jS9MwPWaHvCIIVIvJSRrUbGRwi3UNsqOhkQLaU8FBst4gFyW184cwwQkKRyrOkbo/vzMQLzlfxdMyi2jDIE5hW0mfYPNQgZDojehl7ej0GMF0KR4waYfGD+n0PeXNviEhBTMCGVjYDqFX0XO+Q/clFyStbVQN/OkctL2YahlHy9vEL4N7IsKcgOcJA2EV/tbLZS3k3safuYqLDI14tEyvOIAZxZbuTN+ttV5Uyc9568/+2vyFQMzzMHGgyMvCxXMCOYtAdpCAK2JIYyAIKAkR58zsoELbwQE2PxHccFt5kDfMZsmuRSlszegmHxImS6UHwyCkm1fzWnNw5VrgNXGizL1dSeM3SlBGe2o0QcWQCOnBGYpXgCb2PTZjIsePT4SS0ZVdzcPHu73X9OEDk57s18x69eGU1fXu3Tw1pvxVTnxAmpDg72yCPP11rf1TdSqbYqyzYYXRaWZz1IKFPgVxBqNkH1JQfcygOaztw30L61dG02omA3lZjggLLIFYy9qHIilxUhZpqhzvUxNzNntT9nkfqNm6PrCs1MXMTsuara7svY2UxBQDa2wzobNyeEUwoD5p02UnMTrjaFh5LMk7XdjdgaPgBSkywS3ucGirVzhMSRfPH6yLVgPfqXfg41wqLUep68MGv4nEKHHSmsdDQb+fHd/R4gFNQ8Bj1dUEpzQhOwg4S1r7NIU/nlU1xr05MRN+HkXmsRk8Ul1S7AmHAueBAUHn5aK9US56FtJAXedJUdkov1IH1xuz+ZFiFdYLs/MBWdx46q6mKQSflEYJ6bfqULybrS2ip9J4TNlxQMWFvM1aGtLPz2FuPJILsWGpWN5E9DQb0ggqN4R0czo0nCGg2P/1h3LqhziNDJ2QGbjAD6SQjQ+GFJRjzj0nkCIIQUbmU2SeCaAS6RtlgUuRLFLA+EejNVXJAXjCAMsvDFqAE7BpYFoKjGQI2sKrv6N/7z/8vVmd1LF2eXpzMzG8nRRTCP5mNtmiZN8wvaSEYPmb6EqoOLb2xPc3S5NBRPnpES9o57yAXTHsafLqkYrNacdBIL6EeYZMFaVR2TlziNe2WCf+gbXNvJL/51YNbu3sHF9Wnn25unNfu6a4m69/tY59OrlvlhOM+oxZrIoiWkIfQZmaQ8no1NTwIK8HvrZmkDvpntY3I7sqMdXqlTc935JKMZLWXiMZI0JMdcnutpPyKxWJMcIxzcE/8oVDTEhmMeQ2Z2jnkIGEm7jlQzTLGXkMeGeJGQ1pgq/tvCeCnEaM/vTL6nAbHw2+5aQXrbF8yrePfsqq3hJnnF4ICPuGQleWx2o9OnEWN798Vnz2WNHz069NDLR0QNN1an6c3/FeKyzSMCL61qT1yji2xCWXtynDgOv/J2QjlRZOYE4mXAslwTXWo7S0ECRYky+ORMHkpNt5O5VKxxBgcewXIe0bOg3sKt4Le2Siq7iFJklM6w1jnLqiek0ci/xIM4BUFCP20TeyOtgfz09Ul7O7wn2ZEor15zsXLQvVPFmbJOTaEupvEtY0p6i5KIA5YOV5NODRbgGYLEUI9Daj5sYCOAcv5sRg4aAaTiQs1pEx0OnCsIUbKh5QxEgSFzzZSMjRlNG0qkP25Gg6xa9Sz0n/SavEh5lyYLmHUZnMaokj/aRAoKbIxHOPGZLXCahRdGW5sghSbGMDJufpvWGwsiSLwxwMqUKA41Fj//MRJKThLfMcIeufSvYC3Ahv54iVy9lAJ4NQDdhRhuY2Dapkc3IxVJyLhXEnbztcNxlYyS2h5mjZ2NqBWQkDTLLXm92p4bMof0qLuQRTt1mRBVvNr9r2WfMoq1uDjaIg0c8cej8XbhEBnsD+34E16kp1jjLtVOnPp5EKFpJ3KQQROvek3gBi+P4LX0nFdjAthW2AccENmbrAHnVSEDl17oJusI7gAcTBOSHmoSek21siFBQMpcAHr30WP7P7zgqMkGPdpXO6YSiTM+uOBkLZtGpXsKuQQ9ECEADQrhGKNmbDJ9tOi8iRnuuqoYn/Iw9tNdoqiLRbpjNND6s7r6n/2n/2f8t46Sp7dDRzdOJ7xoO4xcYb3IIRCXFlcQRQQtpTbDKyndGHll5GlrWwNRGFJ46qPsosI6wDZzHd0vhGR5E0kqh2Ctv+y4f/riK7SRC90Bp3CaljaJCyyh3eWiOqA+hqKF19Z3PkTTBIYUzsbji+3kYQNQqJm89idrpgYXiSYlvrd0lQ9KdeicgKlFRJM6BNLCPs/VwNrJqS3yjaJkLUEswBcUj00BPMj1SzyyHNaNdFIFV1iwwuohvhgyiFUPZ7Nhzp2WTOuFmow+YcN/EyCszO7+rnOdoFZe6M0me7qxbSHK6LVjpVsSZqXL1unZFdQgDkLsOTk9NlHhVM5Hjx8Zcxzue8nc9fml8JlhSj0ak+UBWc5ZhJobSDgwYQg+Ui5C6fgHIJIZ8lOAbOkWnABvXYITCnMOmokG5VuKCZgdqoCnRXVZNFB5nIg3yaGRKFnHBDLLEUe6ALlxiUTWGkNW2GWBHhoy1gu5cA0Xsh/+j6ynEU2w+4aWpTsJkubc0WBioFhHBoUCB2ZoPN2q0OvS3GSU8UXCNE3r3BFGtjUE2hFZG0VhimRFKpGPbzU6rKxj3p1TA3cMNPuoVx+NUMWCjev13kpf4oogpNf/gFaSFRn4CB5euKlCckTO+paCwr34GlkZHrwiICsti9JN0XemUCMUC9VMwqV9jpRo3F/m08jU02ILnVp4WNpSVRY5RcRCVlHrqM5oMSHJcDYm+FqEmoowCsK0yqezfmc+KPyQOlRiOmQAOSD6LjBNpKqNF0xhMEzo5p5/vGARXtdQntWuNTzrAmIt9HxHNsHMTJkyjYUy9ZL8VS8XhbxCRuUwCloZhSxQ/jXvEkQg7leUTjSr7r6LPFfoxIHIXsml2cYWsckxWC2evbdCIR2IOWCQjJlBaCBWiVAl+GmwbmKbvmYspUFaScsa75t80nUU6hNsi5wElYa0C2LX9LF2qqS08lhksxhzzxipnemYJjTmzu6WMNdibshgpcArRnuEOPMpH6+4R9Mtr4KsGARM0hKJDSOK0JAvQ1pguoQFcW1Yv/rLv/ILYmGbVEWWe3veVrwml1p2emXVu0TOTq/tWBB0yAHxRfXUCVl4x0EgLXILaRlcE99NvMbdpLfNwA90z+4HL/qOlGTfgSPkiU7VYMsm5EyVOBf4elAhFSbPvmKdSXkdVsNHU6y2pE2naSck5MfNVnla8iig954ppww5wT8pSwl86lq78+F5sJny2MMg7hpGlt4Vf03UwJkX8ovWxe/BplbyGfG14dE0M0qKCpa9brfr1RNxE8vIY/cC0JTEIcDe8CB0bAGVO00YXF9JbhCsmRtz7lCrWRyrqeVO3cQYHBUkoU4xWf9IBabHwxycMWBi5D7dVde52lYolBBv1YRw70ELzIp3ZR2hFe5NTmU+7LZ1Pg8aY2CFdUeHUYcYp0bpgrNRSZlck44JLgDzhUvkM0wUtGuBP5JdQo6FwRwUqJp9ldzy0fK8PDKjo3rve+iUPcTzjyYQANYVeuIDb85JhAlXDAWJMOQaj6I5f15az1Be2SGGkrFguBAVQI0zhNscWga4lhJQ6NKZdfEBGIpwOq6jMCqVxnWSoWh+RPREhkvlJX1jDUXEApPG+0ULbOtCn2rpmbwRc5xVWZexptmv5FYX1QWQ78mK0VwUGvalIqaTBzwMtTIAK9E20oUjITe1DoOx+/4Mm3Hf4EIZ7uGNFQEKO0EdcyAOLK2EBzAGgsTb8L3XY7gHxYgWsgq0Pr0xUF1As/CoV00wtNgRjRYhmPmYKAFPdyZ8xB3FMj0VGy1OpRYGMLIGi0VBitWfejEL5BDP4PqmqToPko6+ABIvGp8AJlQBFtvapBRuWcgwBr8mI09MVq3BYqN5zVOFicEzaYhd+9kG3cO6cCQHF4KRNwL5EtdwoLUJytcwyS+VV26HTIdbbM1iTjqxZXqMQgSOWuXJE5JSVYYUsIOmJjPbJC0tG4AvvZQidLMhCxVHNzGESAej+KG6Bnm9RlTnDSsDm2QaF9Mlr2ODzy1QeSmwgzwPRRdAq3f2YwhpSNQiQ+07e/rLL17ubu17sbEoAEXpqS7AFfR6IySZjsiEh22fwr4/9+f/t/MKX/ol0hAZOX/Ku6UODw52vfbP8Qa2wlw7CKPd6sXMY0bAne1wlqesLuT1UvyFNHjUcS4d4o+XuiyKX6gO7pmbRYA0A/gokdBgQG1gDAbjPXFZeIxFiGpcY11CBttJZHge+kjf+kLK6Br9Mo3qtNhBy2kyhKMgb9HysjpIF2KXBsagNMVodZN2zDHSNQobd4GhIl4BJmPku3uCgEmVBDT1SIVclPoP/paQmv51SFmvypFNg4IXd0hPdxQlPl5botpThnB2UWQQmR7BTUrE+RRoEK8RJwZ+5hvIrgmiMGr4TwnQnKCUqEuBNeEb2UauRbAUjDw5nx5rv1ewOa9beZOW2y0GcbqkZR6MRGuorNFqKSGpS4uwIRfV24DNTFnORBMiqjO6TdJaShEPGgCGfixIKqHWumKAGBTLfW2sOf1tZJW0db5sQBk2kUnBn1UFYZK0MxmA9AHyxCmJOFrnsgKn1HNELh3cYXDJLADJrLg7iz/mdVRWBykiUvRWOGF9I/pcspa1P+o6IkGOcDqRG9+CcgatOs/kzJh77JvOqTr7wXP1dkxnzQ62edv0Vm/kUD3dKRot/Cbpua7Re1nRUi6Jn7GOw7xcKMdfh+wIez43USdLWWJoD86+oxgQtRrHYzCaBPEmhyoGwhGM0CGajFGWfGM4mlskRnopXWV8M0uADEddlxIYMaNBAZzIkN5YABuoq5WSqkcMcrfJfND3CbKqlQ3jywoNMQKCYiooZ98TCVwNLo+0MrhPe1XN+mi5yShziCDKS4heg20eZiUgnEFviRl5QEY5lqJGUEQp3VeHhiYewFKmUgMiwIcFI/7QmYc5gAEE8ZTCdb+zgLUUSkzQyF5RRusJY3Iz0v4BBvq+jpAtPaZVUy0vAgbAxNQaDo+sATVMgSzhR1V3+KEKBOPEUiDWfxRJaOp32ncTixTtK2Q1l+OKktIBqQ1olWGs1M5QlJZOdCRRtE4sAUoBZ9W1gFVKxvqOa3EAJNCcfC2RziBfC8qkMM0Mrqxfnt1Yb2o2dcR64/pu+5MPP96xNXlr3ZSZA6rAMBGzkTqLvN4OQy2sre7u7CFGsxROEh3KZgRvTEvySGITCSnTZuEVVpSsmAUtCDV0QgIlUE1VoyoFo6xsWoxDqj7KT0Rj0VPeZ6E4PGfFd6KGXSPMeQ8HGMtX0AaIYRXykoSlyvCBeBFW7leEHsEdwA6QUiNbRUCZ+3ldDJbGmixOgsXJiVJxbRGXJA8qMpgNNSidJYzlHgX75NVxx3LDmvLWOucKWMUECxvHemr6l4O86VWRkCFuiQZmmpCkW7Z1QHCGm1l2sMfncQyCQj4BKGQqCxIKi00CihAdlfzNLNBJr6g8t1sKGdkNNqyUseeNyr1BzqryDCvtdX4RZ9AS1VBN6X3pjZ7OIcygtFHRwCg5myF/uh3Iix5WocRrywiabhp9iWLr25sO72tkoKnF0pbmpvPpKw9hMX4BYwpJxrPAxHJ5SjiYEYwr3ZG5S/CdjGlewzriLDppQf8MCTAm7osdgc/8zPpxgC8GIOFrOE+MM2Ix2lb9xjTcNqFSHslQjwwgKzGN+uQid1YTgLG9Ga0H83xyKtmotL76ErhhlbSogjV5IZgxk6X/kKdhF5IqFY8Cu0vW+Z7x9byEVQQpiQzKMQ4jGV1RMoEIZ4NLeutIUdvy+Z4GqXPEoRegOfOVNtaofgGQu+U+0cESqXVDK3CbdTegyR4BBoQuGr6rOOO3oepAkwWsGZ0Othpsria08buA3cA9YpL5HHEsonBjqbNrHRfWc+fJL4kBBRTBBcplVr/ghkZnBcbxZkgjnTLwm1yWlqNr0y0etkY8ZY5UmW+4+6pAUHYEpHAnaRnCMiyKQs0vXQWwfgCOQfFBG82XrayXLLYb5tbJJORXczyacqDDGvTFi2n/gapwZ0AlHZldXQ+p285F9+E15Grxjwc0wLpkuDQ6nCGCxAjOjFSPIIx/pg1cbySEkDdUi9GKpghVKTUUY3hEcoJFvQHf6wa86xuppQLznnkGstGwg6Q2fg09pxmabKA4orrOEbJzhb1OcvIrRiyrjYbhkrIXAbhqpjeSasVW4zdrrZK4KFtxdnGzbRWmYwsEGkXE6uX+nQATmrizbob2gCCAJoGPkcV6XDw3IM1QgBl6MVe+u9VOM3zQFKupERQPDNqcbsRBRRmSB+0aZnpW24R1WKsn/DZt22KYjZWdjV3N4wlld1HyumXh8jrNZOZkMCflwmAqj8v+FcOOB0NtiBAI04SXGmBZlWvRtgCKO7HpX0lUMS6RkdSKGoxmp0DwvWKs4BZsasEd2SqremxFbsr+2puqHGR93S5cHd51ITENIjvL5EnaX5Zxn5Nhkl/em5kgTOmLqXWGMEjwv2A5BEl3sj6FkC03l+YnDeic/Ansbu/Ojs95/szjTGAu0YKJcjb9Mh107IzDKvYpgdyRUEeI1Xp7LJ73guEGStfuxsrlXacbGQRqlrHWgq6wD1wEluAwT/OGu2qkZx5bC4BHQkLaYvH1m5ntYLrvpIBUL5kpoqdP4/a2suWjCRCta03UkP6TW78vbk5gyPCNIWhbdgdLxY5ikWFQBlFRNis1zRmrIYQv2EdkLeMd0rlbsk7RzFrL+qEdSCxC83x0qyRSA5SZwrXMP3HRuLqYBWnouUE8EhTNW86g9/hHktxbdN2XnD0CQUWUYeJBBgtUqiBsLBOmzJKw7LsbGU1YU+1MOadncphnyj9iQFHp9bmVY4VTI3XZ5OTHGaI5eV+ZZjJRmpj6UP4Z99SaISmgKTufLN/obCVQ4YQUhlGVmi31zZUCTyAGx2QKGfMUbj1E4uoAsQ8lMHmDavhDNxUanDrVemAfn1gGNduE1J7SmkIZkGRz3ogsMBuQ016jUkCTXcSZoJVcJ/jLtUUesCgMiZnk9MHPpYsoXkdZSfBHQpHGiD7IK0kgXUX6SBRiqdW697ARaZbC6nYA6a0zuyafrjUo9rHegkp7VRTIx+wgBpGT/syYZrqtUCNmuqadGs/IYhj9GDGOAvBmjkVgzHo+iBTY5NURKibJ4ssMpDL3BbJWiM0BcG4CLqEd4SCiLTQaIWtXBx6VPetoslQf0QOFnu6YxKKj22UdGFjeceKwduGUr6IsCT1DV8DhUOnWTwfriIvQKDS4dkfuohQLxJdtzFo6r8WZ5Q/pTXtofGYxz+XlMT3kz3tlObvvKIsgwVivsNil81jCo45RcPwXY9f2nLSJv0oCKAkzMcNwSpg08SA5RhhKg+FWZykWvi0GAReBK2zJ1JkaOkhpC3WxEyakCojtWbVdR6jBEWS5xCxskXSKFfHc4wUrS7FhtLu+i9fXK8ZKyU/KLAqWql4yJ5wZ1kqkFr8Y99DvRL0/GcwYnKA0Yk32wbS7zWl2joKhhidlO4CfsWQTeZRYZQggG6MVZFGTSGcXvSp6u4PyR/YK85N37dou6NomB+/eKWLDI78065FqeQXCn+mc9DqR3d9zopEJVZmcBImn3t5dPz97DV3kubs+duYsGbJ8qRCQRxLqw6tlgpxAa3+ZGVfaFyKR3EXEMVPPOsIKzgVL4IXyjv1gQvmFnOHQxi9BnDfp4RFoCSijNZb3juEwxUDu2Sg9K/9AW8kuY5oRVzBradBsJL6z/ij7zjuPnV1iLsaXCMa04ohUC7vB5W5BfWYncIfyqrnHeilcrEOpRpjcNUNTvANaet54ofP+dJomZzsMOFZ3ZhKAqeR5cpSgbqA4HSBjpmVY4ddE/3rJ5FQmw3cz7wmn6qxXJgsraQGeAFMnvmaniO6Y3Y01Z/ORM2PKZryzWdrJENxk6LnVQNI+2bZGgL5kh0lVgdcGQYoUIJdrFPKjmfikNeNmZcRKW3teHLizt6uMOGlsodaBNi22jFjImcRqgQjyYfzC9VWjavt+HHUA1STYASCJCM+qIc4VQRqDxh9N9c8v24osuCA1Sa1sq7lrxN/uXcctmqSaTJVecp15L9rUPh7IFLXlkCPswjW9KlzPReijArWL3dkDH4FnC18RuaDELfLsS2GBxmMNHfNFVwWqrT6CJgtQJwUBbraaOXXOtqToI7pUsNB+vEcuVhYL7+JsGqKvWJApaPg+dsAd0qrBZmzK1yVUkEnDcnvAKGbOUTMKGRA8tbZTPDMeyjeDapIRU3q/usUvK53ACPe2/gjt1otBE4N8jYHd0nvcsItYv6AMMv4Tb6LZENILKbfbJglaATQOE2J1V3/xL/472Ki0G3wgtmYENrcunZrprYcGcu0nps2Ulk9qZgx+EIMfk0qUcmxsuPWmHGSz6EbNJkJ7zz0ZbaQzm6ottGAxNAIN5iqpZbOSI9RJ39lY7GxC0/zwWDrPJnbzOK42+6kAFgqWG7ytrPdayTU5S7EPks+cUjKEhUgGf0+LBL1WYF5NAq/aAT2CZkZR642F9iYtuspBl6UFjX4h7ocolCrhOpfBtTwD+qIp0zOmBoKA8FWrgmvpl4PDw/wab9ZaHW5PN543ZMnmq9D+AYFAC3GM7KTXaq30QPG6MJLOpEhaHtlFY/TQjBVECTULlTz0DnHosG66ACdKOkgE6hJWdDKzCA4/bHbB8i1KyRwRQnP6hGLLIEBouF5MSNUL8duyYL6B/IGoH70MDMxSegTxuUF7+TmAUrLCRuCkWmXYSWWHVAdQUhIKcEYqYrZxvy09aUEqe4xemWWrMwsGqFkZTMCjM+YV1uVSaPSKJZ6EWbxD/MgvK69t6F5cnzuexwoxzIRsKgOYuJ8J65umh8eYrU034wS+KCIasvxXjCS+y2fgONkgEg3/RRfIqo+YUH8Mt2G1qYU1vSZehcyekVBQLhdKh5NogVFmsLC1qVrCOYWQIbnL3CQAwQuYqhbUT0VFdMd9NepwH9CUWHvm30zFQUZRfXqAIJKWChn1CgaNsEvprLdnaMQtXcEKvW3tbRQI8bpwnV11lkU1t2Qe/tpOGu1EP0ChPA1tsBCvp2vjtnXJB9lLvkpvgtkkjjCDFdlQD1KRAtjAagaikUKGeMQgCdD6ZArxiCJ7xjuyREbkESSOKF6ZCA7+vgGnu+Qq++BTDkDDS0B2B4UEVfRh/RgmLDUBqN/BPKqWS2j+k+Dh+YxIqGSDaQykqpYNZiitZbjyKhfhj6CQoUG0QtKH0TnapD+AWbLNs3eyuGskCpt1HcxhCbwhSBShRB6IwUTf8lTcG5WEQvKYxaiMApjtNwAJFZoiaU51oWBamTtfCMOctrClFuJEborbQk74U2LeNS543qoNg3SrxtmxB3i4t17S7uigXgcCDB4RSNpc/YW/8O8QdT1K3IO1/D7cUgQ8SAhDK4CyBfpGINRpkUYmKA8MMcvo+CTYOg2myFEMIyFFX4fAVCFRH4QFE5mb3kyyb19zQ6Fa5FdkbmRQLvmF3ENvJmkCXR8JBIec30QNHlkwYHNsqoVaNMcknYUQLB9mqkCk4FBUwnJb5zd0oS3G0WBAPaTOHLfRqWRZtisGg6uoVUcxaaisHQohFIrHiDUFEY6YoIDuhpTVVsyYjnIaYTomiKqhDQ/KgesA5KxbK3aKITDSPD3r0EFoKjePWrwaE7PXwJjJ8BTOW0kvejOaM2iwE7CYLjiPw8OWuB6X+DleZQa5ouut9dgPwzdOyLgyZlrd3nGMiGFaJde3blr9ZGVL24XMLYEhB0DbtXp7zygwOew3+RrRolXYt3F1PuNQtgA5ADJxeAf/zd69oXrmm3TN8dBxwRdEYsV4fSTcfrNr1rshcnknPGIkOn2WmJ5fnJF8i3m9szv+CAYnhKcVKiqI+OnGKAdDDN8mFVu/UUoePLqbWml+ZIEa6WXqS0YXDcR9UGL0+HJfXaOq6i0PZTFzWbxCSxjhGHj5b+d8twWs5W/y0WQmvreilOjqMyM1g0U60oATA8veadkzT1tgHgHRg3yYiaHvwRqQ5A2XweBGUscQjLKlVuSQ52COCwftwxSvtQ+k/FCogZ3EenGMZjhL2z1sCmg7BkOystbphwZV3stZHFzUAP0lNcT7ZxecFSTmtRIWWPZsyQ7r07kprAxNmVyucw/vNgzF4dtQFamDlDpqfKG3a+oQtSCZueFIyu2gA4zghORZKiSaFbdzN8pw0irqZUwepbPogG/TUnwkX3m0GiR7uSVMHoy59iIwBTxlxfA6e1Uc3yPykO8FY6YD2CIqPM2+piikhH0fB5c4IRXaMGtG3q29ielANoNJqGU1orJ2y9BkptEFKgWF/FB9eJqB1r1+G2TE4+BsLVzTAA9HPNVvXQ946lr1N1NQIt3eJcyHZRaKBpSakVYM0k4YTkUlAWMcZtl9eFu11VuDkAJeQJnxiqsYgRThlfltx1XhqdQCjyvMdVTRJJ2SdXxRePWXfvnPqFHWwqog+PmnmvHL8DCjlhNPNonhwi1iibh4j17I0eBdvsmhN1ognJwYtS9SYNu0xsALa5u+U0sjJBdF8Cswl4FDR5+SeUs7b7019sWLLykp7A8PvRHSy8f45GsOlKJrhy9bsdpS39nDmE+iFaepjQB0PfNpGQWIsfbcAIrkWkt9It+IR50LQmK/YorOau542Le4C/4AjUgJhorYIHTK6hTgzoRk1B81176Z7BlhKYzWwDAP7LhQJGKEDI2wOdxrPk6LCRC5HlscZPtmYwK6asEVDpMIPTuQjmc0Yt1zZvwshEdAOZyiMErSsQRsUOBSMhS+8M5eH7tnvUn8YTP53SWjbrMlhmAzR6RmlTJKgmEhiPCnrWGSVAUm/EuzPgwPnPlyp9cln1gV8WQk9CR5Ii9p+rGFe2ZZE9xrakx2ViVYCV+KiuodfyTW3mEXzUOLW1c2nG3iNaJe3Nz2lrIMOgSXdnjIBl5WMRZjIjGBoQeG0h5gkNYJAG7ESwY6h8oqkog2RiFvxoMkeGBodXUVF0eezcAL92qR2I0k6JpYFJGzWaNRUUSk0aehU/37y90WxhA8L/u5SGSls7yNkhQBpcGlHmbAQXXCEW9bFsFBGZ2LY9ZN25KxDsMgTcU5ukFxQuEDo/QE8CUQHtxAQddiaI2kN+01vQ7UmqZNukAShDWAppLsYsFyMRS1sAkWqPkXHqi1yLp2DgvZgiX8HEtGrxgmzdt5brlahIUUNhoJSRiIrHiE9CoVlgDQMEvdQvB2AqFY1n9OSAQQ756NziKrEyaoCzrwpj6EHRyee6LFdKYoBcUmv6Tjhl/oEktDhBY2E8ZMhIX2UQinXIAHY/qF3Ikz9SpUp0SlojzXg4bI3ZQNWQ0EUfKMaOAbTU3kaXFy0/Ym+VJzg0rlOFLtvGpiQOZVHaSihvZpd8KQNUs+xphkyxTWePbyvkEqkjJNcgGsomgnQBsN6A16sUGJyJP6iQCK+sPgR67FYp5izTQgjahlMtOHGDt2ApDZIqu8McIu6xISWo9WQtMRX3hl2PLyFMFy+TnLpGEiA8Oe5zA4s8Be/YVf+t+hE/zBMJGI92ZcCMOETOqbN0j6iVDJQXT2aQA1sY++MAcCkx7prN3JwrfLX027PesDuBwX6Gmg9g3nhy3wi6sBUZggkGBa4hVbyNfcnjs0FAFu7edEKbZVULPXKzY5ikReDnImyYyP+W4kYF6SGBI4JsxVEcQwktDxRHXXbMcyFkHdxIHNbmAcChg89ILUGKOIj16xoTw4ZuB+iZTFNBMdMSDuIp0yKT6GRo+GiuIp7HEu0LJ8CIfGFfemhFpJFu1hjlA2ekAhULNHWUT4y4VwYDOqMPwwzCvgJS6K4XTxWAYB3cKYA84WySRmEFd21/e4Pkux0A9HvfLXWhZuEH14TP0YJ6hLOM2i6DSnPBrgV0SL0YYvTL+hHgNj9eGNr4YMXDFhX5HG55Ib5cUIHoW9A1HGm6/nG8xfjaK0OGGyveY8loEkI2lC1/ibMWARZ5zcaBMNiQyoQopUlMNJRbQNZHNoBnABSVHgAIFr3iKhXZQf14E+JMokYbqiGkyCotlEbfmCNGeeFsrUYbpE7SdHXCvoHCtBKRHJTOaY56y6lAdzwJSFSZO5GYtEUY8kcThUxX567ZKqlD1pNKUCsKSu9e3lA/CbOGl1NJrkhC+LRk+SH00BjDWHV9YBKCX0SqLqGbhmCJTXR64Wfyf2ZOj1JeZoeCHk7Rg4wArrjVw9dFMPxZJ2VgR+eAOwPJLscyFBK6xgTorScsoAQrItcmzmkA9DEu7B4vEmJPJbShBk3RUXW9ME1wWrJDGTLgAj85ASqyxWHBbMVnXp+TxI4JQf38hHDb2ZhAQ7bg6p08rWqgAhNPEo+ucmlHL0YebS0Cb6TE6p+vdNokA0XkyI5iJ5KfM6iVOXwgqbQjzIWxZJTOBkgUYzf7WZM0slbQaUBCM84AEaIMDu2Qz7uiZpVM9AltGjUyC34oPnGycNfIZIeT3LEIgZMBuwCZIpH0MBLdvCac9XiEcWVrEXSVlEHiGT20xZ/lFFT1feyBtLfepXH1CkxXMqfvZgkgeIo0r5jAx1vSXkHus/IkcVYtZWzdU//+/+GaWpE8BgaxGNiRqCGlsewnxKJUzIvrNfPBoDZ4CARoVaiCW8DZ9wpHL0LjB9HzFCIV46txNH2/AGR2oZ2AUOaLocfoK9aX7ToCjovCFhoy5J7P3alanbKynLS7QSmHh7oLduXZy9fvTo0f7RvrenCkns48nsNC8P4KHi0EV7iWv0ixB6QRgEYLrSL6xPf/zpZpQjC4UBI2ETp+cGiPIorWA+LuVsBSDzSRhHDprXas2Xr9lXah+K6WKP9cGMkpDmGWMVNaArvOPd5biuGTbd3FwiXdnd5KMAIUCCDPdmWKcZwyY16VvSK0ub7UV5osJ6eMMmLBHYDd2V6s0UitatpExCU1bAU6XSbZ2loeXInHxAlZkDPpe8xQ4JZrJdXIqd6xu7TN49d2uRn9M4Muvk2V7EpqeKfQrKclAqYrE2iZ2uLSguLMrCMEJkhT2cJAKDQqMkB2b0na0py6lW499BLp1I/Ahn2HpQD4hBViFLTmlY1GWPmjagilBLExVBpLEwxUH4JS2GPAoP29RoDIHaqIP7U7dIBdd0wBTWW0sVZqFNYxTYt/5YzazGcCU/Ib7rYyrPOFgqgAhIIrXp/aYJg+xpA6XirwSjvnxY6BSkqVdQ5ebJv1GXAL98tEl9u5SF3u0soU4CBQP4VgNTLwOKm7vG2yjWq0LmnCvCZkSb9TctSCI2ZdkilPDfEDD6Fd4DvtfT00rrwfjuAtdOC4FRuTihMqan1EZoURLf8yC5MUcNXlE0FKahLE50GDlEIv1kEZCF5MASgq1eSyORF20NZjzPHPbW1VLztHEU3DFwhheTWGRkqqwJLjkGtTc7tSVLQBh6yVbkLKkaP9jYQulGau7ltASaXuUjUDPasa++MbfFKVcWvAml2B9R/45XdjcLJTWfooyZpwigAxNhi2jNBEQvQIyPT0RSQiJHQNP3jIYbOs6aEZVhYvbaxFYrwoXQcEhWoR9OSUaVCW0difBGuwOgIaCFEk3gqQIUwlwn1UobQeeJBscw0+CMjJEo4RlCtmZ6GkTnwAtQvkHW0EIg8tSedvmoHAiCgJv8DGHXOYA/C0TtEhnwZTtG0xLwxqRN8S1KaHWQ9ey4SFTnUWJG/3kS2TZszhdhHZkp2qgVbepSx1mEAopZhdpDPAVKPo3c6mUBHBUK2XIEeWxUBxnzwdw2aoH2SAf8rd/43d/7HQ6JTJke9IoCpknK8ujpgYqiNm/329nbf/vtp4XoBn0cphRuoZVO8agxJmtorERpY2UmTiBUigDxYtIo6JAzi8Z+ZWfJr/tQIjIxFm1isRZcezIkiwGUM1XIyieb8LJXOWbz2YZHpdspuUw9FUlONJrBSk9rLWVioQgN6OceALTnjrN9GijhrlC9ULAsPIqhMGBcgBymuIAy2CK40y9yAzTRRMkJeahQmUaIQzJ9Kyxsw5Gd9xSAAntm4hZe1DNhdwNswVMsnVnjdYFEDKhKAspKag4MDMVoasQahcoy6EYgjEYlFIlpHbuLagk9iglYGv1G3ZaEMpaCMDVRzUeDcFGPjkyAFTOBF1Coh97wTNq6r81I7e4c7BH4GaxIkctPKPTO66s6eEU6mhlYkb6LGMxxwlSGMxKOFehB8a+yWJf7cdv01Y5XL2T5sBEZsD80wAYhN/QTheeHGY34UbtwD/UyxI2jEKNDzsdOlujwtGOcjAwwt3Fgi9dl6fXboDGDAdwoazFodlght9MrQW6Cc7fWCIDmiSp2epGBoogWlQkX9wBH12wECKNWi8QsqpFzaz86cw9FUiYSAFs1CwxjqaJpEuWHaCprc6ldhm94RGkr0XasIDwJfDIz0XqgMcSIJqrz/jat61MYrBQ6Kqbog9AUbjdFpDO7UNEKpvyiNq30C9MiHuMpw1NTOGlK8YYlG6hLMdrm2Skgwg980Pzl+cWOA1z3rM92kOBlpZqpLk9NPFRGfZ0gDe4hOJ3GJoxEIrcjlN+MtYRYFzxZSToWCN2Rk5Dw1g5sie/C+mxTFecoqUYq6LUYZq5UjN+wBL1S9uREgyUUJqyZRTQJUQKRo4xrWovKRtsOFBhnDwzkYgg4jEwW1RbN53eKjbzL0fENi/YssgdjPEF85RTIlvzSL/8COmNLSlM6L5sISRTxvz/Eq3ezZD5RynhxZ9ZL9QACS3sDX1Jo/d9lKyiQlazJYF5dXUr+ZLxGA6ky0Dv1DEKDGPmHFHVPX9M8Vr612HRiUQawMGMIgfnSSlqjw0JItGIfHFu0vrPpKMgcr/U8nQAhWlu5OD39nd/+8O76/CvfeGfv8NHpyd17773Dpe/aKZ0uIX1y1nICBN32xi5LTdLw4GL+QJPlWVhUX1BASsKLzOBkW5coqVffJLPuqein5Cy5yR0SHc9myE/OE+6IltlIdZKGlJgQM23oqQE18pQzdiZwWiMxQ5WSXQG0jANwcG310ryZIf8MR3oQBfWndT1wYEOJhnJu9YZFr3UBNBDzS/idqyxUlLBqbT+Q7lev6ScXwWtYA7q5dWsRmjtWMpSWaY9Vhha7YYijcOU04CvKCNrEmxDDJFNLThRujZmjjUor0SNQATLVI03ZGsMR8NFCPgFW9iGSnySPGQolp7VokODTZIYvR+wehQZ+sKFqpJ+wudV0lrEtt8TjxEqBZmsAhhzJuA9KJ+wzYmN+KHHLgaYYNrVAux1GJvlDxIwL1gm9pwF956jVh6nbUBZGI0TtT2f0VA/0BROzffgxw9osuJ6Bb4BQtIwjjaTxceIk4RoKKEsf3nQoVKFYM0IHe2ZQslEUJ7+ho9nsAtfc4vCBBZb0N0IxZhHDjv1CfY6EU+XO1c2QaN2P8KgYjUW3sFUgdNviEFOAaMJc9TsWWZtwu+v0VuCa52MvpPy2CmcISoHzktnJI2Q31UhrilWtJZ05EsQnmYRpBtvOfB1WlC6DMVmzUhBWrdJuWR/ClPMxGRj+I4yk1tzvBG1zQKzxAVnDIF6L4KuaGuUeYDEsNf5L/ZMJW5pa3WfqsNyGo570f/z61LbWluDOhCo3THlxlGLBcqEtbqIwu1fWMYYyjgka1iF9iVAboWBGYtHNLPq8r8kb65yngA6OadI5iU108imjMd4Cgl6lNC3PzR0gslDMmSs0KWPgu5786LEQhrduegM/yQb2jYRXSElUokou/aVWZMNX6OmPt43elekAc/ZQHf1C0qDfjA7pgzU2GdbqjZxsdBo+Em6DPk5v7ewYjTToThal/LI5oIF8FRgwZlaKrbTOigUqOzt79B8WY1xwx0sZmTMERFOn71rVU9hCJnwNMxmGZDgsaSB4K8ulxzNcpPVNEKFFpbOzIQXDaCC9s3J/fnneNJYVqF7Ovu8gYmNtNMxXH63vo0KFCerTnadvPbo8uXj+8sXrV6fHrx2lfXx+Lpy6YO+klQ8kj/aP3n7rbUbv7PSV5UvAogidKW2l8A5hT+jZJHDx5oDEH/rBW+uAFMqKIrVgLoMyMfW4aMNwK5rtsSra8vrzAmG4058O7PKe5AysRihvxijFj/1Q8naHsWlUidyuXl4Y/m/jN7tZcDpxfSmOCGXxfgurE4WkIRDK6LJOIqSGTZ0QgobIVrzVKgg80Q/ZTXANI9ifi5sLIsUsV4zlbK1F4wZBKQCk8CHufXgsqVVC7etSdHJHQwmO9sZR/m39iOidI4hlyviFMkUrMBsHlhQrAQbP0KM3LjWDILZEHzYTxqDHd8Zf/2w8YIEqu4poLvQgi+JSQxqjsdYaUcWtdWfjMDWMjfYR1PCWMGRD4Io4RXnFhTlurZPDvEnusLzZ0L/DDzA6IkREryK4sMiew2OnOUIbxEZaLbORoQpDqymK2GHJH2f7i7Gd8WPV1hiNhk2pADFmxe2AG7IDyBQID2EnKscNa++f0AhrTNCxEWRxwt6vQ1Rdvzi/7BVD2mLvrCywFHTbcp0L0rt2uKvlOycDAsNAATr8UbNs5NErxHifqDjSkdfUJt4wDFv7rdNj5vTD1XmtHkM/rj23JLETcfCeKti6IwMuE2jTMh4x1oMOgpIVQDVQWCSVMWIOqCRRxswCBUY6Sw+lbLTXJ7TvzOTkdmMNxMHBNCD/RUw2jRxma3xmt8ZYIOOZBh6Wj4u6tBNh4w4BsDfcYhBDnKAoHm2PRAkc0plkatrOh829bRa29QSOM2iN797uPrPbTNaI0+hd0ULRwaygA7KlpSlvN1qkVEiiz4xqptz0v5tpfkeZVk+XKHN4dOgkduMZby7ibrx3zUianIqObPvf29s9Pb0Mo421i+tLUkRmDo62Ls9be5Z8Ns1G8MFanMS1ZImouryZNUUXAt/WwIyiZoYaMYhRxLnk1THy4LZSERwdNdbCFiMM5Xh1KhKRR7VkDTa9RbEHSbvaIFz9hb/4Z/GIStIQxWiyGES040QhXGugQYuydw5HNLXdaxflAx3+wOjbI+oFiq2Xsiqu1GGWvYhiOVCsED4taJ1y01OaMTsK5xGw1Juc5OuwW9K/AY/RTFNes96mvDaRy/Cqji4aJi6Okodq0w+gH8EAJCQTS8YRGszfGAuc89W7GC1Q2UjC2IWt86szJ4l6GcDNFfN1v7u/9ejxgZ1uDUOpr6M579d2d7wY4M3x8Wu9E+K9o/3Dt57Yu2L8sRhb1BIA2C5hPIRvhEg56kW0aZvvxaviGIE0SZEkYaAyqneZS45LLX9nXBlVRD2FZhMi6dgmuNElhsNtDCNDYk1ia2rX+AeirEZdzosAZyVDuukracZMMqk5v2kD1RdkQV/3UzG129neZawTtjw9YJqSEbMaT4A0saDsCOFF9MxTuYSbziDIHFIUK3PsxijGmbFNWSm84zx4evNsrFnehI5RDb3JHVuQ04Q0fS6tvL1hZdRNi55aMCqYRLssc9FyXNJI41PCxPD1tWBDddN3KGC0kTSyNXJ+5Ms6RXJEpFpKBSFlm9RBN+JnCJKYqUDccAkxabKWU4M0fyYAct92rmWoLHob/yQ7LNhhZvwp3iNuTCaDOHFQTKkRmpOjy8wmpw4714ssPbAlM4t02lSIKZjbwHom5XSMEcSGluaYDH04raKzVozwN17+incOYCmn3+YYwSnQi0CdUFb8a1cEdby92WUWRNymCu7vz80l9GrJtvu3Hq9xY7iEZ54Q4fK4jLpRW9YVxfmIord8YekePZLMFDwSA/P28qZsDxD8aRzpvrewOdy3AVRBCR4hLzAsIWprQoc+UXiUSuabT2ppcmMBulDJTmHR4pxirQ15AsEFBbU8iVin2oSfCFpLTaKrqtPSZe1t5F5MFlBbQq1ZkBPThiNFQiS4SKr4rPGphQ+JA+oR28U8iEDi3CTJiBw20YVlySbTmRgWqDme3X7ASk77JDcbxYGx1NifnUz2cb75eesUveXby+lwW0baLBG3ivIko1iJsY6uoFtp4Xhmuuwcg7Z96L1SebBF/kOHdK07oCVl4UeNNtzzWm/VybAekwLozT6tLDO1HUKBgSuXUgNqsYaB1M6mDUmGU3zjlcHBD42Die52m/o0v9KM0eov/sqf84WaId+O5RYGHWubVjjf3F4mBkrcT8amFBBy27jT+5u851LysPNMihlZQ+afRy7xtGYLoqTIRTfk5kya0ROpMcRhAUGvSeYJvZAyi8Bq5PoCiqciJa6dmqBrLGGLyhAh37zRRWd0sp20lD33gkT5P6JMSzOM/gMMIWYFd5astIvBjrNCee5MgImRAnwmI88RcURL+0cdslgmxiKx3uR+JZd1/OLsyy9enN9dGEFdnV51ZOram529Jhj29na29ryyvHG3hH5D7ZbMOsIbWcHQRBD4RND4kRmxS5s8mmAv3YM4uUsos0xwyXUsaxgyiPKbwMrooJi5LMMDoufoIdaOEDMWOE6+kqWZJ5goUFh3nZcoj1WIy9LFsdpCMz6AAZiwuMb5aT5JYGFe98obBgrCs27iDeC1usAbIrbX9+uI5sqsREC2EK0KO8aZjFz3vrC2m461EcnnagCGBKwga8KUEI/AsCM0JnJm8cSTXgWToVm/vbw0VicBve9BZFqIwmgkqEJH3Llz4g0LOttYIEcXYcKYIc6GJA1X1EjZQFjLnE/yfH55cbh7GGVY1ehEeB8sPquh5SJfKpUUtURN6C7TyLHgMSKXtrYKjd1pc2XDbPWTNdk0EWLSyV509hyqCkcaGaId0mVxPRLENfIACyTIIeYnYONQuYkkCdjrGzt720/fe8sbUeyfx/vT169en16fvj5/+dFHzoHf3Vvd2VHy/uzskiAJBDngy/v1yzfn+s8pX19kRMJCeLNJuPCPTE/Eqo8kgh1wIAU/AyAYUDNMTAgSFUlKZiViSr3q7QAARUdJREFU+oVxpMogAmzwBTZSw2LULcwQzq8xC3cC2FRzFZDeuqOTLau4pQYY3DgSfRruh7M61qCWVStsbq9+K+isSrCgRZKRulprZKKe5WUP6E4BhkV0hIK2QoYYEdFhnOHCdq9/wCU4gIzAcM+sPKFp7SaUaZUPgVWnYVjiB521Fal/aoVcMnQS1PmVlnWWz+E08l7ig9Ei4QruQ28mwwusQM6PamfOdoylBArUglLCVpDOQ0yeRwfmXEClOuzlP/hfbiPKpFvYcm95XrFjBrupx+UK1ghAGol8Zu2N41paw0FapLMY2gWVkXFtY0ed2ivUSgGhVz6T5MKI0hoQ2telHXbcAjDaxwa3ebChCAs/E8jtBEYc1gpZymWQcC8GaN1VAS/CyBemqNrWqnEN4O4uDFoaw23Iw9AbLh/CvD024DnsbPfabnWmf9571YqRzqmnNvwtQiR2UQ8bjJXIoVZIYQfoI7gwJ1xKqHEDeNmwy4J6IU/TL1K096u72/tzqhoa5ZO1gRw+vmKzVc44aqBM+EgxnbWcVHzhzGSWgqwQCj6D9MiTYM+cpVxeCCAMOoUrpvDlbl1SD7m8Vxx5Ts9fnzs6wJto2J1SMU58s2gKBisHewfc0rqdTntbV6cmFO68w9KIYmPXy15Kp9hbkTPtFYZrtuNnqAE84Als9RZQBTwJhJwK0BoLoDtKMVTiCDFUblgWr0VmLbJkbxs/zlY1pieBaJkXUrNJMXvIkYtlt1KC0UmBAxYVSgNclnZD3h9xmFxjBWJ3+8agG/KGL1iDfNgpu6ERmWa8o1UADnruktlauyFwRWpoLzozNKbmSe2K4fCgySCLcy1maT1PkWNzXA2h1hgFoQ4zEeStgBb3dOR9mj0jXHCgBg+QuSqLMd0Ub3e0BqtTjaaIMJ1yFTFpWXdt9XRUFPBBiibIFTUYDP+8TK2d6tiCsG4QSD4EN4yDaspf8ZCT4HQp6LO7qkFPKud93IVvOySpsAuaeBr2mLhJ61yRHV1m+zXy+uz50d5jIfJyhgpDRuXz5wzkxsYH7/7413/spw6OHjV/W8relO8pIshzNtq5vWBVHMX76oUDG82mvTx58ftmm8/5gq1bhzTenzNbDShZKmkcCiKH0yH3yRHUC4oRgExkieyzm+mBMCyQIHIsUtY8shi2DhmJGh7ZF8K39WiCEw7FMNSIKntKBCYaYBAxs5hXrJecQo4IJmlYkeuRNzTqpY8pe7EXURYd4G8Skyi0T3PGanQOjPxPkscUQ8B3d0e78+7YRnQ0Tl3V5m8TwUyn8jEtRWusUJRJW5XxW9fRIw3MK/vewB+EcT0v2Wr1/OVyCwAPXxYHM6/f4d0xdZaiFdeQ6eTt0p4bytNGCtmvZmW1MfqqcKMMAT5rk/9xvmIHSFDXYLYkKQYI7wy/yjQicnTddtA38mkfllSzirBrXAhxBZhsVIZ5Vsz7xu3qAJZQpAAAzcMyIWdMxs3nCpj71hR0rlwHXKPV2uZZk+Hi9aAVC4DQnlXLZsWJQ8GcXGvaLGzGuOYZJhJgPsm3aVXake3Y2rqgLcVrkd7qKyuCGGIYhND91RxfY78JTdnyXl9DrGL5UCG1bfSnSPABhEaQTABjjIC+GQI0mCWSiEAahNioBms2tlOcaaO+FGt8rSIeNNPlYqqbgZ8RhuAhsyVYXhGua1N59A3t2QpPSYV8UOHoexswkSom1EwEvXamJqLYUNwCY/pyu73nUIv1xxt7yIqDV6zFpVZbyWd8cHdxf37u9cVbn3/y6vT0evfo4Pzy9LyMrdN4th4dHT56tHd0tH9nPZ9owYg5Qc8X4pnxC4GINvSYmy2S1WM5aBJDGLAWuVBPzw2SriLL3v4+j0hJZcOHiiMweUDpSxXzhGIiyNAWgtJy8gibaXeiC+dMvtrkSm5MT/HHa+sXsw2b4ggDjT7kAxwG0G6GSa/JszTyQxaspLqNDzgTaQX/UOXOyV3pZsM7mRz5sYyagu6x3uxwejjvo5/5uYzQKCjSG/mUYocL4Io5RRBOvyiGtCSJ1wddo0nhEz1plZ03aKst7iZMbWNW0JG5DWDQgMwm4H7TIzjnfvvLPIPI/IrIgRtQglHwr3kHqgW36gYO1poxUt/bDelbjoQv3N5xRkqGrwwC8pZHo/+t3EWKGa0zBUU1kF9bf+vx+wY06rb/gbg1kFdDOBn3HbZip9fN7XHGiJe5k8Nt77fuNnd27jf3aQGVf7K39qw3KfECP3Z6eXr54vju5OT+9vKT81ePdo3ary9XzB7VQBEVE2mNJhpKq9sZNGEGHcfmIlCpfVSgEiYVOiqcCrGifjUjray4UVjR7oEZMRoCGl8ndbfOgHvDM2uQrUJ9axAomOCp1oqYSFLmyhT1SEQziJbcOBAXjQlMuaFE+c3Gzm75l6tmJnMYGE6Jc0OMew6MU0eclLSJdICb6WhATJyHCSjYkl8yQjpE6IuhrGl01gVPYxS/vmnvujnfpj7xXZSKLd4D08GUwrLMXPvsrs7EGFl12h/4iq2Iu8N3GxMajvuiAQLTWCZs2Qh5/y1MB6QYvaxKXsjyXBJe9g0izZwn/PpE12IEROJq0JePp4sNUVjChq922wRPaUAuSj3KIjhjuxL1rATB7Lg3E3iEliCVr9wHWMJEcPg0UXh5eKYih4H9fsiehBAiobz1Lynhyv3ugXVK8lcSjOtWAf05yINYI6UkIMindeBCQQwjhJrEtxKGull5tka4rrwU1xuh/fW54Y9hQc5ZNwYaFvlgDGqm9QRRheTewluLn7aEMtn9SvMcOUiPWFk3qDaAiZKBQj6/LAKX0M697JakRTNCPk236cHjWAHjGbxowtkwXq6SNaSitx0XIYYjLg0IcnJ67FQQ/WbESX1DIWktwtcNUpOYUaXsiBCNJeLq7Y83X+8xw3FJasVlpdIKeFREqTgADMMFjGZtucedncPbN5eU4fknL46PT49PXn/54vn5xevdw50P3n//p7/zrYP9/RHpei9PCP8sF6EoCpKJIanxLSfvRlmj8eEpGS54oDwVNBODnlI0Y/ToSO2xTWdnJwXadrhsW/hMSMvV4rPhXwFtQbe++BgGLfcCAgz1qlJpONwVGWUX3jieoUUybW9bRmzRljnNxxgrkVqTxds5CSIspk6+mzFWiIcp9sTnTKFRJkmTBmXWmebWFyRWq2bMJIImPwCe3lJwdnrGrIyhnyQNASLuymRlG98SBUhurYkE3TLc4XUYOIs0DI+yeSyChfOSS1wvUAy8k3FX9GpG2UiqZ6FQYTwLbhWd55hoQDs+lWkA7RevPnm0+4Q1FoCxkS3e5VHkJQpliDZiL86lIWgMzEN7MjNDqRNM674tWBOBsoPxDc0nQbC3s3H0aG97a//o8dOdnSNhDIXZ3ZVi1U8WgNsTc1FFYqAvaKG4FIoo4eb64u7N5fnZpy9ffJSHZlRMmF4b6/inh0aQ2ZGcOxYgCU6s3zUAtvhY9qO1dgR38qIU3fiFmWuiB7/KgPlDPtKvrgRSqUiGKUVQVdrh4uwKRql6jKIP+WmmUq9D8IJLz9QCcpvgSDKHDjArJjEKfHwq4ke4SU+hZ132c3PZGezMDZ5urWx4d56WIjOTB944wSCQ5WzIkCuPb/KgZCG0SQ3BSrmIY8wl4fwe4WGyoQab2faVJ/YPIkiT2SEqWhd3sSrJr2qiAc4mRNBN4zBgB4gAcKCP0K6a0mhI2kGajJgOwEBQAyUxqZA1Jvb9VB6RM6ll29i5uC380JTorIxraHHkGkcKR3T0iBDKW8IJxnGlUQ5yjLHNgKWCejXg6dyBCjWYzpjFWSj5pxHs4qiYPi2v/uJf+DOQimFYtWySLq7njkAA3xRPq/7pD7Zhx57eXBUiIvf5uQWtSGdQnOfupP6SvAiKN50kLA5h2On/+YUapNQj5tgdraMOBNGOBvaFI2BYES5wH6DkpiCQ0SgGG5ULe2QtqiNYiALH1iyaoKeiaXKvBCFlozO1uWVelxPSWRMGTCHm5SRxmqyzpxnZvEZhiKgI63yJK3mXEiYecLAoi4gtb6yoQH6td1UW/WqZ4yRfqCasK7GEtf7IX7cuSI3b6+PXr//p737/N//p9378m29/48feO9jd32/1GCgMxeY0IRLqxcJsdAFdEjKEEtL0odak1i29Y0ZC7tCkTFXUSaqwqXdkdkCMuXNU8kG9mVcQmpf3HAqmrTxkTo2g8p9tSrja2hPUtG2oF2ERldxqNpHJzZMHZy0ht5V3+f+aZ2316QWSKKILYZ5A48pxFAVVneKSca8i0y3Ete4lmhpIdFYoc3J1nk8lkRDkcmivC0Ca8Sg0gzrohEnwKU3UQZKsDybYTIwcwikRk2nEWGAUQ+wF8nKQmCo+Eh4Cwh0H1uYaswpJNnPOvYU6VYUDpDNkhVMAy5tb8WzMwXTLvfYiVk4IARNCquj5qFMUwY8YUTPyh7wqmhAtOk9+uo6A2c6CZBkb4OBhoWpLIDgC5sJqn3wTcCwake7cOTx8fNiWpv9vT/faI1eSnHec3Wx2V/WNPRzP7ApYSdYKNvRCb/QlDQPWCrD3gpX9oQz4hW0YllZe7c54LmSTfauqvvr3j0OrOUNWnzonMzIuT0RGRuYR6pL4RJ31g2i5Bs6qkJnGpepsvNrEh8315fd//MPvzeOEB3e7G9UvLb/Xec8hRNdWbIKfJkxtTPVGcq1hnW8Foew2zWjbjU7LTceahqLoRa6ziSGYgTimPvg5iqN5XEeSr9KG9ASu5a46YCbboZXhLVYULYWsltocTukUNqjphiIDdRqYEjs94qoXxjVJNVc28CYQ5DBhsuFIa2WiuSuRNgLlJywI4bbOPDuhdkzik/UGaHENp829kZiPd3j7ZkuYuChlughenM0tJVq6umxLfL232d55udNgRl7E0OAKFpaB7E0iq+3mhiLphVbpWoBgPFgFCzCJAjchY0eWBFIDQAIALcSY/bYgQCtaVLDWy9TSKrYGeXqt6UoF8MT+gkBxavLXphxppaQd7Rmv4oPuAFo/4WKeh1cDmxjPK0+A3fpY6T6dYm9rMXSd1H/9m/8QVYsIGQiMS2GIvxeiCus8LpqgFTGxIwravsx1GB50aHrroB5vm1LW2pZ9xeNVTZXQUFjTwnfBuy2R5YjkxPOiXCi8CynZz+ARYyj0L99XzVxTJxpmUqgThLvEA3Eb8J2m+UmoxlFRszC6GWQACjfl3dCG3/nGTM1P+9eaUpC9O4tTJOmpTm2/erEJW5ubjTiWnr6yr3LAAs6YO1g3CDEphTsxFdyLvygIHpmr6jo2eFNrHJFrKpDCuvvtQC3MephTaEroPlSZQbGeVv/8+w//87/91729O4cQf3lxrhlbmlcnq7N3hxK7r5xBICoVa+aMGJJ+2xWBfj8h8YQ197f3AgIqYq2sKbOL2Vh2R6eF20TK0hjY6I01ZgxhXqlDvsuC4a6DLdmwChQup9D6AIetYWzkLMinSjv17+4+WLsVTmGoJoFbo1ZkhYkOj9s3o8wrojl0c7EZ7hywWvt0kLSasdEctTlvjtbhHxynbnuZJVGANeLLgP9lpEYSeNLFCpCwnFKJ7ZoHTBB90PlP3u8jSAk5Jh9ohU6KOXwxTM+gxefUO6OKmX7LzDTrWZNrK9zdH2DhX9nElxfvkwfC1IoC0sTtza2Jwry02YYJEyOspA7RMzSGGFBfj8yZluJNBpS9FZSlh1wZ71T8JTNWyEnzgSY+whHMxG1tUFprn5b/wbU8pOn1FxdfHJ99sTo6lulgzFrK2egsHdcN3uYmNaJosizdq/uLd89//Kf/9bt/+L03Q9DH3e42AI8KuBlwStU+7+yG0zdnUawf6jbbYPwG0c4Gpo2pftGNYRmNx9HssD54EPq8mOgzK9LQdGPJsEz+IsrioDN21FUNX8hvQnc8oZCZf5kfIr0/5h701EhgIY5hdzVgLIj5S512xSoIRCrQwajH3UYpXcamS/dZJ97YyqNRedR2ZTMy4WlHTOqbNeha86CVXGsTgORniK9+JvfVwkDXCrmKrppmCN3slB5NQxIAKQSL5abH7a8LdhNHEZ6GKO2jwkjgVq6VsnXaKBDTXQaJ01NA7E7P0U8zDzqgEfrJj7BrHxoqHW3rg6LKkth0DEU+xOR8jKaaxzMxkmVinnIzrctpuEVpNwkWeFWTggLaaEmZgnmNdLZPEEae+i/Sfr33t3/370rOgV2OKCepl1xuiBzr4U19wMTyG/g5vZb5elR3pIoLwmdFJnfkoQ9FlrrMdrC1zVkULCPuL0A5Hhh0+6ptK9XcWN+nFpqO+YJE6uVXs1mvAsbEQjv65yJA0IpubCNUJtQSTK6VGNxFWcNvWKHeIdHUsvEntaSV9mNSDMp4ZUIOoVHpkdachTxHsvyb7bVWsRKQuSGUEgYaDCraTVOE5FmCwuXi1lJYeamyk0jztRlc3qEDJovTMEiP5aZ3vVhzc786Obu5ftlcXp+v93Yv99/8/v8i3zr5Znd/dPrq7MLrHC4u3r3z2uPJUJexNrtqz/OEFXQo9QeaqT1RCYeyq1zghLbGm32mdS3eEHeVnrGuJ6mrrBG6iK9W4jme+kT1rXVbsSjeplftjCOt/DX0gD4TVMHvUX7sHYtgLMQMSMolCNkhuW4oiv4JihaN6dUDLnkHheA6XBgllaRwsIQ6bqtyTq8jTJq9FvcJkdrb2cSKRLWVEbu584j4i9CIChG4Yas8oYJiOiTVH0p80jvmLKJBseHJaRZAma21yMQzaA/tlhdaIM/VPFdkeeTcdL1OLJLG0h3J9t3jjuc7+PDh49c//QlOgD/fmOfxBQxxpoxPh21UOZBxzmeX+MyBlhF50xkqyOEH8XLQ1i0ukA9VirCm/A0WGcaau/IrPXRLUerewcX5l6KE03NRmWif3BZ97sSfwvKDvTVzFY5BxF5BtHvY7m6vP6kp+nj14/3D3d3V9u5qI4A2mTEbB02CUDH8Tk6J5Qj9O7qSP4DE8tBzxrIwWYss0QFt4IqUqROuC2WsARwcSI06ncsXywTX4w9bx1fQ+GhDExBkI03YuLUMTRBGJu3zUBGwkq2dl6fmD/CpiSOO0b2yQzbrChlFmPg4+O25VFlGGyAwS10EDjQIA1K5ciMUvANQJTBNYiq6FRcDJ3dj9XxfnGSIyQh3Xcyphp08aUtuQYl0dACY7tIx/4HBeTp5Kf30LBp6MYDF1WSXbZX7Chz8J+gB1SScy6Fcrbw698ehHVjJQ5r30pS2X1hdIHFpjBxDGf/kTtyFEakCTibqVrb9k2uZsKm7ivbynX5sOpaWzpgLOCq8EAyZSQ/x6Ak+aRGS0D8xn7iheXyt/OKX/57e7UxzVsfRiSOitsXaKxEpCgf0YreJb3iHqg7YIpBBqIiAqMIViaoKFlmF0A8ET0DBrcl+tIMRUu876VMpAfs0ZvrBrEEl6fjKYIAO7MF16lUeLYDJEigtR42b9sEsH6aMyRY20UdHR1AgOEuontUI2hv5uBAKETSoVFutWWn9Npkq2BzmSuAoxqLdnFDeGaMSb8dtwXpNE+u2GTEdSbYYFs+Jp6baPMmCqwSlg3lQfpuNUMxhueyq5KyxEzUmE3ntSJSp5KWGmzvVqO41Bfl0eSNo2j3cejfZx8v7D5fX+3t3//ov/uL87fnJyhvnI2viMS4yTaUj5EleiEVm8JruYaZx0Hs3NBYJfUL3Hk8YF2G4Gdq5VfCXXTHd7f2tBii8GFytQiYOp2TwRPGYEAixnmLzSd8Jr1Kkph3lpq0pHvZOlcAVzjKa5MtG2F6yiKcJFT/MA4p3msCory89haXEbmwlu1snBPggwBtjPFJoaFAIq6hJLD8LazI1JNs3HowZ4DTvpmaX2FBOZ1DFOEYlQi5dG3g0IIlxUg7EZmBhmnkcVGaBFiUFMXTV1xBLB1jVaGKuKIjlP7bIf36qpQk3pRkF3gUZpZkEtsInDx08miGqAgyivKDt7u7i+J1ZT+LqvKoy7+5GLo1JpRoPdhU/xQ/9TsYVzQEltgyOINvXJ6rNTk5Pj07OnZTr+De7tIxFHgDCObnT4cLeB+Sk9dO1APz64y13Ac/o7+Z2c3f7ced82ttvt/c3f/jnjxbILPM8vfKWupJpdN30nnI0N+YiBZ35cCNswaHyAyDe62B7l8Rmq0YcOb4LQ9jh8dEJL0Wf8NuoNSeSEPyZDIaxBhWzmdPkm1wq8VL4aNS69e0goQkCjZVFAHn4nYyoAHFgNVVX8dsGklxFS05LNKkx0hfQgzys1TNhN7FDGj4XKPDBJB0iTnY0MKzl8dzm5vZSpTGFHe15RhDV9ZSxBPfeqaBK2IKXjJ2awFan9pSCHakCJ6TBUTfTO6MrxifUJnwFtSEBRzj7YCKj4eibA2ih2K8wcEIFwX/6n54iC7HwgUyph+odaB5bU+9iiDxLQQwFY8bVsk8xUahbbkIvHts3iyU0d5pIkdEww+yEgQMoD2DCeGPvA2BPqmtYTRgnlp9MgUchDRIzrzAgwIm/ipNTDQlcXnsSUlL7+6+3aj0Pabll2iWFUgZJcMNmmPTmarM+Oy6Nx308P9pcahcMhSr8MhW8dy62tFYzqIK7YZKnOm2h992UXtAVmZ+dnJuCKUB2S8iv+rX115mx8l1V36tPTQa4aFy11MpEywF42Fpuk2g9qZjuzcUrO4DBDomR+5MilkNRTAlZGf/H7Us1R5P2xb+Allm0m0ObVD2Ai69dJ2x/korE+gjLFYtXKMDJNI5z6mXlfHhWgbRjb1Tee7y5vZNwNyL7PGkYUjx39fH6/Y9//O//+DvFv3/1l//2q6//5Gj95mCtHpFvDnEokDs5M6EM5ocZyxgaCDKwAoICmTRIX/CsdEQJiIycla1Lnfb1zPDc4mOFu0gw+2HfxWVeZlDqJl43Bmba9JNtyO/Lj/uypK/+stJCm5mtU1TMkUlnYC2VU7kejVWQrhKI1tMQMiTTL8F+kwBqKqtj4U5NlJp6uUT2y85HAUNu1agikbAIyzOCPC78R3qeT+tWFE3CSFq0Enk9GmtiixvRnD/wuF/poScPlHlxRhJvL1vQ0q5LAp4z6eautqHgnnsbJVi3swOIHbRPRNnvmxN7BklXgCJ6Zt7kU6Ysyyt48whFCj2VpfCijtqlcrrHEV+h3SK2jMz6zXE2T9lIgZFP0otHpf+GWcsBWVPPRMmvMWXFZUcnp2/P1qcn3AL1mRm/LInDcJo+eqGUwVo3thJeGDTY+vR0bZ7XO9keYf3tx6sPWMjT0MNr56k4/buDMZCh5PDlGs4xCreO76RaWE3rCpbpeTMOaznCXPFmmZCQI7WnMUkjHojfgkI80kZmYgQmx+YxKQ7zLzyvHCU9UYu12cwRxxWC6wsiYeXh4Zr95G+OqvLymTBjBUeLVDqciidbDr6ZMWMVupYY0UBJAJOAFh1cJbnq3Az0tVNMRhkkUpT4lnwTNhUbQNzOGD9wnNj2fqOH7B1PjYnisS9Bl/MQX9RAYAl6rHcGCDnrBE5YoYXZXkoZsRpI281LOnmMH7K5aqnrj7EMCOiO+nrY/EHon6cwq9Ba/WVDwVlabXB4hjGcTBnXwiwNBKT0DVtaLYAM4o8yU5khiYTewyS+eeYTixW87P2nX/9iWiYOcRijmc5ygNg6uBUsjZWRADfF+qWDHm6MK7FVLdrmY7CqtyB/MbBxtr51AWUyc3ypzd7rU/tyJ80HU0qqLFOVYAU3deUiEiOW3EbhuIwKMUUBkkUkOnXEmOHEZXwqeiAa/GHeRDRo5ddWSGrj0bJ7ll68COxEm/i197DNab4+ksQUs7Nsjtpl/7aVsXDYfi7dC+Gb+JCExB++Z4FeRKV+Tg4dh3XsKSODuYYHfUzAMN4YWD11FCnT/nSUKOvalD5pWhddoiStb242woj0i8DJqVwgHHlzfXXnjAobgzg6M7zTs5VGjtersYW9m6vbh7vHiy++dKSFPeiCH/Gg1rjDJFbV0CigSCh2qF9kHChQpdfqN0stss0wUzcqP1WUbY5zgW+R8BOtv3rqADsBjYGTI/oYEVFSKol+BsciRCqqnih74qaddI2+5GhjXQoXEqTlBSm5S9woVsI/KkSJaRqYc1GxBxHrmMBy6CPv2pUVpUXSmnmULH6A/s3OewpZCl9nltn+xFkbnMAFz7VIOvRK9yaJVoqJFi3YCD2okiTmkdjS4hNEtHdBlZciXYZVNir64a9buW0g5tDZythWvaLXcvTGneQiJmjRQsyYo7B5mIDxqq0D+Tmop+zRFzldaEezsSIvQY397aTbZ4U9ve8l/cjOzNXMPdIXUQ9fOoMouSBrh3RJMPm4mafGb/rHlZvuHK85gpO3F1+sVmu9PC2v9n7eu/jifCc+tgHPfW1Nggnl8SRkFHAqa7ZmZx50efndx7tPn95/enLu2v3Dzc2tPMq+HeO4dHN3u7Wpom3GgqVBWi6poYRsGQUilYaycl9aTC71PJs6RQ8djT6eQuWEZwmEvrXmHyeeVMWUZ6Izyv1KyQZVFrw8TpjPq+PjiRmbZ3MuZqVQwMzR9jEKkKrYWDNLYoEbTTe8OVmgtjuRcBCCDI/Ubth85TVWZC18zNDRTGSHhzYYhaHkMoqWA8txFBPBwYAnt1usD0yDWmkzT7mgOq6VCVbRsChXVUm4me7528xqylA4I4wSOozmYkH1uPaTQj8pu7GX4BhPMiRVEtAqxzV2YYTVyORESbFQQE+CBXeYOzSp4g6CfmMvRgln8hw6zEYy/WF0+4cVs7mLnrXmMverAvrV36KYrU2sxJ+FVX60kk/TcDbeVL6rFPzg+OFh0xlSHqD3rYZXZQgSGTCq53KKPFpsAbbSyQbZSfGPpydri4VleBBsODqyAmlVEPr5XCAWCMayxu8Sg4oX9DRln5pc6qUmAY/hJhNLPHjA4pxYsGJlBJljnqiDGj3RnfEL3lVip2JlyxrXYKXbJJyi+J7NPgnpTEiOzE2CUrxQ+WNSM+9f9RSZsm1BMTUqJ+/XBGG6YLSY5AmxxIpf2VXcqQvKjJEC4YJy9pMrwkNxcINqyNWDG4RVjS0PF9YYV+v7/M3UEvjHvEuB/dPzHedzd+ddLN9/++Hj1dUP37//8f0nqUiZWNHKxduLn3z90y/ffWkGc3jiCFWoKW9mA3EiN3MAHVgzboyAhH303NlEU+S+lOFiBzRi0qpjSUgg1PFQQK05dXzOLPwE7elZB0l1hDohuERP0kUDFx85Kz8jyLaN1xh9mzLnhntlUqURIukxhhyjG/wuRmh3CP0eNeRh8NcCIVqazObqcZuo9IeUZmf1wS6wMoIRyTnQzvJgDjKyMOpoFsW7hX6qbWTtynFxsW1wCWCbzSAyGzBqF50vdHSIxIC4MeAjrd5imHETwhGBylm13F/CACfNUVvpYt/hdWBGZBxi0JphGU7/UUx5MLTynaid9UO7LHeGSAu4TFEIAfk6BfZYntM/GZpbMmSprb5DF+3rDz0xnKyf23Wjn73XqoiO1xaPzzZ39xcX52R0diYFquDKbCBvNguDnEgpKaJkOcZhm8vmmqlun0UWt0+3lzfvP71nnzY/3u0q6xI62PciNiYfEjxctaeXv4t/uVp42kpJu3CkjbjwcqTYkW2nCwTvlpRCfDbVAbPKmFG4ieD6kbR5WNsDkQETSBrb+KXPsIASQcZ2FA+fMdQDU/4YI3xJkIkyrQPWLFFReO6csUtQ56voaXvp3YUPZXI1bd2ndBDukmATKeqoaVMKoO9eTZmy5OwoAlGRU48bNaKQnlc0hOIfjiTMBE0qZehNaOQWFlG2azhhXKQERrpxHBcFq4HFrrASf41YUE/tthLsRBYlAN4jkVw7rTT40RqqDDnTGwhayjxojmZdoYxYY1YRsNKdoZLpa9YVO4F/wTx9avCRGBP9ph+tJ5d0Dc7mewriJ4Zqjsxa44eBZ7xjciwcG9uoxhPiazot8WJ7keIZB1LPngRLahn7/v713e3J+iSlqCzajmNWtMSRCMl0Ym5dF033sSEJbNFVRTyWQjUsGXE2njBzJg6IQXajaBGr1CaxmOi9WascfxZxe3s7ASMeZwmDchj44Xpta0uC562o7IAX7c1zFs4PfzCw3Bd8QV+YV/xqlpP6lFN3v0EkplFol53eO1oromwjZc4slSvtm/426eIj8oX9FL/rueGX74YfvIrkJ+fgGZM0mZEWzfYUGt1tvD3t083t1dXHj5fvL99/+CBItVftJ1//7M9+/jMRkrzv+ZkKtmZQpSxXotxXp0dHxyfeSSmH2NlEzNWKHmlXaMQ3x2ca0+xHCs5svlk2kgpqItV4U01jhAPGPlBFAT2EeIQFzYt5GVro14RmWjWcUGw5b4uqaBMTjYxdZsulFPPneN10QTMQHms7JMPY+xhHmi5nCDqiXYyMv3SZXChQfBwjJFlu3B4JY7u+vrFlhVJozqCM1AEMSDVnzZo0UwFN8xFP8cSY0wDZcWtLBKqgmRHsLBUAqO2dlMWRMwXfvDkVWFOzoEDAgCxjzQu2EEUFhxepjW0uLBqRJk8EWYtZor5LFIxZJ3AqJDSj4KZqHmM9uR7x+QRMcZKS0zoapxhXxyGn59IfszrET27Nb4XYGOOCogJYc3H69vRYvujUkROtqj10lDGqocZqTf5W+/0h68ppLdQfvKwe5yRHKnb54f3NzYbFoYqf4w5M+tv/Ja6RMZMTZgXYbkhMgxtNKdgchdEFbV/AoYO5Wvy0JJeCj2GieHDGYMiX4mGZZTNYkR5WUdPhJ8SOugRMwVxODTKafsKIQKb0IThib3OzvrDSM8AnsTpZs/232GWmG8OSVbrkSSLGyZhG6OkhowvTLAwkQ4+z2WBEXyQ3L9O2es4PzkQOmRXQYiIgSqitpmjYfyZtOQopDMQixvCwhaKIOBFIaAIYYWYrc4YWG/dXqQeUaEuBPIEGe41u1a5iU12RcjeM1KMTk/0XbWgfeDcCj3vKJiTfabOVLTasu/GRPmkw/vn/l7/5u/Qod1eRnMHrJDuIWfGp+zTJ1DFDhF61pe/NX1SIViuNYSZN2sI9t9A2WtUsTypK0vZJPa+Ryva0rUlEmb8phwXLHBa9awVB+Qg3MEKwBFVmP+ef0J0GwWIxDnnozQmkWHKPFcZGYNMF4UZZYDsiHbYjY9h0y/QKwpYltO2l/BwJuCqF63784s1HgM3LfMkXMJlh94GKHIkjHKXWqJpS10IvvQjsTFkbi+bCa4BVEoNB8sTumMDFCmSxJH771sI/ZY93cbntERMxwBZsDPioglEZFBXJU2kXGAW4fUQdGyBGilabey+r9WSghPSKCpCFq0TO3iHh8rPFXhoL6TBJDLE1U/jH330jVeEYvK/env3sz//0iwsFqG/tShNZUBIWVcyxt++dc9C+VRPEmjBjLdUnTRpvuupySoJAy/vN5OitpJAll46utLCPT61njn6ineKoYpIHy6hoLUSAIf777CdktDyofW7NuUf/v76gQRU9VOo/zOFZM0LSLoRss6Hda7g6UQjK0c/B45dzOrEaetNE0a7XBtmVWHDEyJ7kXmFUs3gCApFN67Oo8AOPIzqCKXDxqW+VjfOePZ43Mt+XtNFJYQezneDLbERmoEQr5tQMYyzG73MC/LwxgnnTo3HnsZqHE0IlWDLnkjwXuozpjV7FOw2wFFqXacOpggNWCBHTd5f0KP2C5s9wiDLwViNai2/wEP/FDC6asypEcR7yiVqi9enpCaiBce7ngXxvvCbW+94ww3Win1YzW9k1bMEM1TXXVyoU3r9+tfMuyU/X76XbUc/tOa0ngh6ssS3cZV5ClYAVr8kd7wSFC4Mx0/KSS55xG/PHRvKeWI7+U6U3fLALxK1rd4bvemIEJeuzV6yQTnB2AsGjM8dDp6R1SmZOIbjFldbzw42RKnTKTwSFVikgjPYKQ2HRYsV0vRcjY3q4b52ZZmf9hNlsICboF8lJTRbOxkaFiG0jzZW05kCNlE74wVSdBjHYoDWdJv3ho+8EiZ7gqcofaN8FuPqws8zQWPOh+dPYZobuUpS2qJ63wDdNqtFnjHwuAat7lhufsMxjHNugPPQKvgo7SkgaC41qVZKoMUSLoh8t7/3m7//jdESTqA3fEtBrhD25LQrrsUSqbplgDO33Pap0c3VDj6fB0BKc8TzNffNoXtqwZ9rsqP2nCfnJx0uJCan1y2dlCVt+XtcaZomqdOicbmSgub8j69n5rvAGWctrLROkJMxBWyRKwY8CETkmKlnIYkvYKblnBku+JZCiXMYvrHF7JqZZGsNoJ9uCoR6nENaugy7vsthsHfTGe2GQ9AkdCY7lr+BH1pLnCPIMu7Av3DbqKWQVcNULIl3Wsn9RFecNUmjZXqdm8MCafMdWcTitkkbTXS4l8WcPHsBSN3sFIyeKF7VGywYBG15GHjhTDX2mrw1fVy8wye14625IJYTXws3147ffX/3v//EP77//fvu4d/6vvvrLf/PztycHIPj07ZH1Qiey4Vtpa4pJw5lQm2kbhXQNniFyMWMCppGNNIeuq3KLUBOvjDq/hiR6G83uqoQjcK/0aMVyKT/9o+C22Jiku8mKipS0hAIBwXhSF0bNTLxUD8iIoT6FlblVj5f4nCP1XQ5GFXZCoLI4Zi7WPLWp9IZYbfYJPbEXjBJctxoMzWwi1SR5IidDcTlWCxrV1DcQNks9vVFlIptB8zQQHPqioMKsktth9Flbxqq0EeUZ9aTszPNx1LJk0jInkEIH/TiKYgeiiTcsTZYu0y01KVqMkRCZK+Xdgz+LUoXUJmc4E9PRlKXIvWYPmDy2OVwJ7pDpAgWvRqsu/EJnUDybZjBxUUwMPTlWVPH2/OLs7ZnT3NpdL/qeGQl/Zo8T7adBBteaAVrlWl5JoD/eOV39YY8b2H33zfu726pEQ8yi+HAY/Us4gyW+aOikyWp8Dp4omOTIVMKMmytEFwGwwdn6W+I0OAFvIY+uQbChiGen9CHrotKiA9Y0loI9+bumqSjUsrLGndRlgQi3R6PpFf5rE4gWqzJPNiXkzcqG/FftHpArMHKqkrlmjCkMGB4sJQouBIMFyo3PKm5+SGYpo4tDJRizQx1MQA/ZqFPZothnQDTNnbaPDoKaoTYrymcsqILZ+q0EjxI0fem3Qh8SKG7OADqO32cLfspYKmogXX/7CktIHIH8DSJAhYQK7qcg9Y0S2hN8ZSO0cRB+7ze//SWkoOu0WHfuyDjTvLxfIkuPQjo9Iam2YhOtFRrU8Zg91pTe3FY8joO5r3yYmU5oTivBh7evOFMBiPD/ma8fj+tGLalNBfJD+anUgWVFq0yinAz+TqjmZnxHURUOj71di/d+tmQFt10xUsdlDcJGp3uLbRmJ+Z8CW7GfiVUyxvxqRXBVct9Gqngnq7gvzyPCUJo2w++lCHunZ8ccg+Z2MtrmHG2QyRCGS1SF4w5eDKG6zjxSw+6fphdpms8RM8qan8j9EFL7fjXra59D6jCFsjqYpxJ1bRb+dA2Pa1Eb/QNNUd922ak+RGLSb99mHctBCWw7Ub0FhroWhRF5g+KaeveZGZC80JUy08ODm+tPsjgfLjcWA7DuYP9UFvj0QonWaaHm09PZ6bFC1We2tP96fVxaloh5F/W36cTjy/pEXsW2D2fTh7aUdZE8U8/zFZm1Ss90KBj/JbJOISU9mitkDq7cK0icYjVuAGzROqM22IKJwp9ZSpkohNa5k6LOSpO/73XpTsZg7CMZO2C333777cfNp7/5q7/GAdwParl57EkP8+H4iD8FbMiDXAUGcC4bi5HEkbmm3cyp76RWTWc9Atrp8aRoKoDJA5EiZJ9sTYtJpMmr6JY2hMRW9ME1WxV8xYnyy4tcaYJb0YeVhBwmRprLzbM7kr6VUhIeeHtdwED4du1RSLkpOI6ybg8aBjmCDEtQq7VpHwdWtBsopmagGcMz1lEkd2bH+3sba/2v9s/OiPqLLy/e2WlgZkXBDLm6i+dXsoYmVYAdAwNMhqTfSnWZ2502L3+8tcrz/XffXF5+L0VmvpQ5iP7SIMt7h1XZQbjcjlaDDE3Jy+diwxfvKbPSm9XHFwpmtoZ72VXRHF0QNyjSfXS+Zm5mCfyEmcbewmZuq7fKKEXmb8IWjOIhxhz1na8MInEV5OmaO9SXiq9O7W8dHhtDL2cHPXh/CSY1+ZC3KRpKkiNPjMwpiWupNlC30ypxmr/mzQuLxZHSBgSEQUnWA8aMHmOrykN5FcYGCm3x46hworbdhK8JM90ZSMeZigxd0nYu3E0YgU2jO8uvNA/O6BrFHq96PlcB6PsVtwnC/0x/8UqGrAXEw1Vk2+nj095v//Mv+WSt62T64HADGmQumOJi6MN0EdMBxQ57qLTfkdM8fZk1Sqa3kjzt++USJ34IelhwGzn0r4pm31plP7e3N+L3qCnayd6YzVDcVIvWIYVMQkm8S42CATLO/l0KmsvWjf9QkL5CJ7st1CnsRCaGV7JC3VrmSta5CgtfRC4Mzwe1dYnLyauh0/MLxw3e0PToEChogRTcwEGXKv8bn6kj+uMRKjN8YorRGWdktwozE0A6oWGDMcLkF5fCPBiSRYU6fnhjN/hAiYBb0mw4Y7JpQ+zv8YA+ao0PIT6fHK+81ICI/SB0HpoWu1T5ZL0bQ3ym9KSgH2A6e5eCCVvyoLmIb887Enz/wzc3Hy8/sr6bO15VOCeNaHvQwacPn9QJf/X1T5nKevVGyeHBan99TGjO/yB74pMPrNfmB2CRIhUiZaD5HbAze4DbTgH7w4PRr5JdaSmuWsLwsg6DK+UiZwLRFhs28jm+gukuakj1bU9jt94JzavxBsmE+MR3Dy//559+9/7jj+/Ov/7zn/+ZFzQScdKf9b2UIRRkcVanku2igdLfbMpXCMN3JpU+I839LmeDM//bbYX6BS9OLMgnM5bCUjz0uJh3RpUl+8/KqBsMJAUSvtCnanbz0wRKvwbfimbc5lu3QZTihWnKbZHaH3nS3qNC4naZM11DzZjIDOAJRTNzQi5N3rwtBKmIpeOUeyil8G1+D2mNssg0cJphzT9NK/ui2KR4gnxVE5y+e+cFNIe9grgVuxIHIuleSmPtoFJAfHDaBLu034Y13N5cf7z8YXP78fLqes5yXjmpiM6ONuse6oisyoz5QYwZUrqBESD1wH5P4bObYwcdchs/O/fvYDaXiUviDOhvmYh4qAqnS4PMDTQxSpBIqTgnxFSaRolo3YrbLcm1rGe3tBLPQnihcUUebHOMB30iCeyr4UxbZkUnhOVrSMKkMx7fUkiH1worExbXK4cWQCWG3rdqgedo9HEx+R6F+4TiYUrqb5aojVYm6oiXsZWsw1GaijQT0K7h9DroujD0AGRwvx76ASxio9DEUylCl7VONQW4VEfbrqdDfW5STrzun2lE5jkPdgdO7f39f/l1RPUEBjZTM575pcFiqpGTxEzJQjEXp2lF2Y49kqFC0BCdb6EZnsKBoWkGQ1CUW/bVHku8c2tRZJMpBKWgQAZaLaETORhOrEFC/g2Q1GL2L5+fFnLofdXIq3il6H7xWLALYyMP9WTvDoT163Ax9PTrSJwkWB37jYmGM64VE7WbOWOXK5mfx/GI0mGRzbpxk+5IanckNdWPxcq20hv6UzwZxFCmqQ+T4ErFCv2mW60DYX4CFEbJSIg4PbdIRVWhjP0QkaTj34xNj0gaf5PwEpCwtzOXPkO/XhrL6IG+oOJwoS44Q/LyneEOq8pBPTvKqVSPUy7s2ocXtwXRj6+9RpvhFNuXQpXy5i0enWNnAfB4dWJTqbmUlm82N7K0doOenJ2oETLKMxvWzs/UxKQqdAX/J3ame6I2nNEpKpIOJsKrZkhdFqb21bAD+zHDwd1QChMsO0rj0snTkzNfjWZ7wr+LCrsy4GCife91DsdX19ePG6eav1ycf2UAnSCtPRDFnPB4Ag5cN0NikxUdDL/MRbIe0h5FI/66KIQPYPTOA5F1kbsLXAcUSXU84TEoHK5Zp3Zr3KYA4Q7aaCDU4VeilgShlbCSs6SX8Sfpu7mRgnbrh+m+cGcPQi3mFpc860C7VrfLI0cbqqFpOc9GZ74v3gJp+TSFqoru8scOezCIAKVw2A96MGGhGVXcyOBnUYsAMYWE71WWWy8z7S7xtL9evz0+U1p6cnF67E158hsm0PoVsU2l/+GRTdzFLbYyiAAQh0XGuL3e3by/+vTj9e393c3mQ8tmb1b7B8c7M03ZP3Z66HBf25JbOM2ntqqNdfiQhfKpYBVb6aHxYqa10AMv2lUy+9ByEYBceFVIbp45y+Ys1ejQ4GENjcmMLct4yG6R4D4ZpTqeGdVDaurkT5BqsoX7nm8UAGrSIax5xOSJ7DWmZXETeBBl83jPG0izsyC9JaLq3/STznsmjqSxIUPOuLtH4xHBHDxWh/U7PTWjBeVDP26WXw3xotBWg3TYLB/MRecsWVIGHUOKTlGkMAbuR5tE0xxau8bJx/O7UV5XKLHVxRXzpL1f//ZXrcmIKtgJ+mb88SVkTKGj3U9g1KzThThUGm5OuwZG0Zgpitkdo8rrunc6DgU02zpRZweWzBp7S4mrIh9t8zYurGxsFWDcV5EC9bjcSB9bMm9KbI3OaIl3+G7kMZffMiMZ9jVyCBQ+5id9YLSZCyhnA8jSjxzIgIG4Lm71wuimbAbVn7qYwg/P+U8kKkwwakJs+hYf3KUt9GMXjeXeQGk6jMDGTWxE2CQgTnevYeTPUOFSqTqUw1a3wUqLOWYlAUEG3aQyKWB6sFLoUqcT5bkHPxfmgzAXy5Jnc/GzD/WUniKX7GtnRt0NgFiL2uc/BFkGYCKsuE3uvzy+NIzEQnsOi7GQS+tAZ3sC4ozxwS9RyURPFeQhrK2ir/Zubq5vr70O74ZiWDtx6rUt5eHrlAByJjiELpTXe+QFkdMslsQDTRmaK5JICFHifXd9q15FYpCAejCDnLhqgYk4if50wnwOeexELQpqTfJ0BsMMw4CZouRLjlNIUIjkZ4HpFNjj2ksxfE02cRKqJj6/4rsFZlzgMcLlrKMuqz+25hyPEgWtSkKTHY86g/ksEeOEXvg4mtDNeZgGojnM1b5hzMM+RkAzhnnEadXqa6NqYqnxl0jvKULJtq0mF9ZASTchAk2tbmAkVMjnaHpmgVoJssppmZAxBkoV0XmpsEaTpM88VaX5lWQCC80aBfN85t1fe7OF6Hx9vL44Pz87ueCdpC2lEYoGeEZlzWokj1bMX+e29clZKCPg2p19e319WRLd/P3Vq6/+9Os//OGH7777dFcVZjoGzFl6fSWLsfqm1zEnZe2tEi2b4Rq+uFhv/sl9GiOsK5wYk5ERC95Sp0QSzxNi4gi1/ZI1BoP1Q246sZ5EdPP7EIBBmW9fdVnrKUXO20NdTFeLNnTq+zR6SlH8Uysl3DmSjtUBI3xTrMHZMMBzqSzKx5qW3AD8a/3JbVQ0cEifuNdRCkKqyRng2AgSaAQ5oh8leockaQVejVdq55OneHnKRhU05IEJEudz7eGZwN34tUyLDM0i8K9UFpYwyRwrDmcSueKY6ae/ZqYzZTyzQsIs2YMjH0we4aCGcVmjGG4irOc+pyXs0DIFASdUkZcdZAyT55CEIQ9et0fbSubFYQCR1M0Um2nqIhO0pgeyncRixd8jBIIBgFLAooMOfYxxNq/jMHVt5PEtHMcv48D1UQxi9GjLm7FBwjADilP+T1HwBM2dRyZv0Jh9KDhdetQHlMQcE9FBYd1xWr7MAgnYZ//Uc3qjTRqD1/hQ87gcQ2BZ6OO/CE1mqUWgFOrEbrxAdJuZAxs/o63Za9qXMuuAcBz3z2vNyPzaULTU/+E+HuKNQbhQhCQrDcJwA3XAaIxNh3qnHIwWVNueWjihS0fryHW1a6Gu+kEuPSRN6hqSphxldphlfaQm4ohGVacP7394r5rWj7CderjFPdHYNLpaHVdm4DpLFGXAGEvcc49QPa4SqzaNqB7QPHgfyZNOQYa6JqyjRVzRUDm2VGpFAJo5WRV6iA0tCY4bLvcVR5NRQB+rqYzRNAK9dEoEmho4SVlAEqCAzfBR+l4MwS5nNq2BXFJGV2M1Wpiin0lfJkkicFH3PV+VhG6n5zqf5S1sMew2DfW2XArnM10SR7qhNftl4BYz7zY93G5YSRP97ElcRnjvFdn1Upp0rCPdCEhurMct8SPuwAtDmgfkGHRLTxMXqRJ6DLrb3hqrDSlyU1ZTzJAMpzeET5hJuuQtqMRCpxfrhMwPvCHn2UuzD9enx73dYiUjKIIqpSpctLvA+m3rc7ZZ8sBUh4o2OWlvrSPCnEZk6cBWgrv72x9+/HB7v2PozqYnf7ejXNyAGrjGoyND7SYciNVYWe1/sR3lIOJ8WaqpU/MVsRmXgDsFGfn4IAjBDN6SQ3V3HInIEsIHAy2rFvWl4uVbxsoafiFsiDniGiGoaFeeXqheaBSqUJXlzyxxVRWGpsTKioOkgNSH/BD1m31eef0hteqXhtM+0B3NDyETHJIz/PxFXlml8v2B7eL6San4SV81yZREqYxuFK8CPFMKP5YDnaNlV0q0hZnROdbSAioedCpPP9CPXDAIFxZrQok1gF8z7zS5W6NOuywAxaMu2ZfPDXFso+sTZbtkuEik8W5RFGudNe3JPeiMaVDDUMT9zIF+a2iCSXNVb/ILuUhtgCxcQKKgD/Vp8RDuUrWkfF11CC5VDh+P9BnXX9WOt2rMecguci1RayBuo5H6WxJS4iPDZqCFh5Sns5Zalgh/q6XQtr6WGTKdNZ6oNxwUIqUFMWMaDpYcb2dAw4GMDhKZabC4KykO9zyi57jERcOsPLPfGkG8maOJW5hVWmPYjaMEsYeg3uLG8syuQ6OUSSOoLq8VW0r+Bhk51wDh8w/uZRSUNxq6kzb6sESLqbo/viq20lYy86/nUaA1HhAxc7Rji8ZI0tHSKf7DGiNyJl0VKUr3wE5a2J35hoxwqVIoSDN8F6mqxyOhGidaSuBiiCb1BkIcVKUucBPlMSwYRbASL9knzzoCk7KmPhkn8cK9AhMG19y2+8N4g8LcSkdapprqNS3qdcA0nI7FrCaV6fvWcdP0bLU5eA4GIa67GQBhH8ZDYbqDQ3XRB8Q60413KaJFki2pcV/WuvWJGC8i1kS2rh+FBtV694sv653gCR2kjmPTa5ZmWFV3aN5DtUU0+axeUV0IJUzKHPEBqTwQBlq4w3wsfu4AFcwPsUxQMuG82KIVWZtgq3hlMqKpUAeB1ktKLbYKKVyF36Mp2i7hhiaac1TR5osNdMZrMqKsbC3DMCBLs1kQRbJ5ykULyPJEZ6dnDnk1EVh3oklmr5eEjyMjKRc1CMK97sYBpVZcHlTnPUh5bm5bNiiLhJtW6WJYKJ0FGBoWBSqyWruAnKCVbChdwxwqSyrNJhAd5pBKYAeXgJ3+sEOGqSSRttJHLNdigsY9UvM8LRgNwmM4W+0N5rg/HUqqjYCqZJjFOnPOzWiSDka2vVUwCWaqPHp2llOxQjAnFwwPetb1BROXVj+rje4Id4o4aQlKaon2+Le5WLLqczzxHZbOO/taI4lae2wrvijEin49AobgvJ+lEoQvnLRBMgnFnBOMcuE7ZNBCNakF1AWPqW4q2/Dcs1hdaNafsROzS93MjUgqEIyJgnLmVPInKo3BPSP1vsUX7ZJWClrhTV4xv9pOuVaTPEJwVmqkFEsrGSwCGrH7G/3Y4eRMyDnaUnikotCUX3dQaLhjETL1LR7Xv/mWivtZM0FEUTD+aYtSFeNMbjqKxsyaeRlphhHBrIvyPimgBvQ2oJd6CsAaXIMeZ9ZkOb54ILT5/KEBaSWYKMHnEYf8pKAUIUEiMpzjuQtOB4x0pmEN5KXS1JChaQGeMx4PjRtyRx9CB0jHpY0P5cxbiIxfCB4DHj+hwdQmL+5r7Yy8l+kwBoT7MTG1rE02H4XFEJ5hqv7CTPmvGF6SOeYnTkMgAXePtEmBYEkwaE6/GwLVdxx/sOgSMlzhrpLakprza5lZXQi0UYs6NCLEHc1tZ2qeA4NuBKHq35wgpCOXVo+Qz51rvTF6n0z6KzmtkRGRZjBf41HKGuCWIre2XxgTZNDhpEMaytCYtqYycWzB79DSbaTacHIlFhXyuK7EMFwixBImbUkpg6qt6asxThCtzUh0tz/Y7XO2SkyFq5QmRRKLtTDWTLewo8hs0Vg8nIfzX0SVhwzOwkXDr2WPdHCwjQ5t8bNwOsEdhfWdmAMIIsxwfaaHaCIRfUlQNP5Zsbe1S9QjiCF8N1NrUsa2FiqKlSXW7H/rTA7WIPWBfXoRgXlR1hT7PTti7vru7uA9LOZIVl+8PffOuxPn5SHOKvwc3WHTpVEUN3XSwcHB+emrhzOrnyg+OcXNp70/wVvlfDt9bG1uvH+8vb7ToT1AxeyFTCWBWi1ysAQAef3GiR2Qn1yyCLkiAV/hdZGBIZcTprrJITMEhdhtWUTSKhXwlwShuT5Y58Vlj8pJuoUcZno6wm8+18QmqyCq7GICAuMYk6IsHqwGn8F8TmY028uwqNl0arSlg9gQWeM//UkBcN0NmjezXHa5mmDhezr3ORzRBf0Bmz0btvQSAnacPkVo7bNSL1zRh5sbbCsZLfmAN5bh/5H+FOnQiQ7HzOe1w4lqzYnx+Ff40eDLd7ca1qnuSAl9nJxXDiSujCobOR+b9bt9gqbUkOR1hkvTTpgSLXTMYLCsn1gLYoRULR9JV1oLpQ/BhT+6GwGEemMsDdIfduK6iIzSN815cC6bGxJ55l2YOSk8BsPvjVNqYP03ZL30flT3Q4Nac9lwfYNzKYe25r6YzrSYXqOP3By/MMvZY1M+OArkOzdmHvELR7B7mICTMXdpWBcLAW5oCLFuwnaoo89GbNj1opH4FHoaCyamNh6BleVwcw9DjJEGoCQQQoWkGqmFmFUHg3K1W49j2d3TCPyumx5ZiAOeOKAjfVcJEgn/cqf7y4il50EAuutzaMx/10YK70Ldzu8zmDqFaJGvKzfolyPrfkqa1ZTlJMAUQkQGg7RfUqJGAZKQZCxSawWk7I1letJPK1g5lHxr5ODLEOAvjfgh2pr1TuKi9XH8nGE/uZaERV3RoJLf5UU2tTND13QS8vOZRUlh1MUgxJgz4UuvtIawJFqCiBzTsoWNjSpuzGAVVRU6lKP2k5IgNFoXYZfkMmTmOcUgyX7h8IDCOMhYPJGSsMdGei14AoFN+1sAxIilu75pQManIEu2R2nWsQgsxiQt2xFEgq2l4Sjdm6ozBnivOjOw9yxA5AzeHHz59bvLHz5UlKJxg8XrsCmtxDQ9GDuZnZwctd3LvMTa+vZ5c3nrfiTFQmQRBnIe7j9tbg5+8GoW2SqZobaYgNbzk1P5K7gjW+HlUQK2NfdhAVl/JkW7DiM56QTTd+J8XgiB6owf57R5J+45H9fe4+32tpfCWhUIRl+8lgM7WFffOyNpa7uoV/7ZGdaK2tTYNPaEg3VVs6WVmBZDPGn2Y/3sc/lT4hvVjaXzaRaK0tL4waukg1kNZ1Ei0bhpQ5672h0WCg1KXWaZE4T4mApkQCGVzl2p6VGOJB5eQ6fE21zYHx5iAdXhf3dm6otdaGxBHheanRSQ8YmiWarALKZlzgpE9JxhJr/0J6NNVbCqdTLPZjkmEKarA5v/D3XyemTI1kxLAAAAAElFTkSuQmCC",
"text/plain": [
"<PIL.Image.Image image mode=RGB size=512x512>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# k = 0\n",
"eeg_embeds = emb_eeg_test[k:k+1]\n",
"print(\"image_embeds\", eeg_embeds.shape)\n",
"h = pipe.generate(c_embeds=eeg_embeds, num_inference_steps=50, guidance_scale=5.0)\n",
"image = generator.generate(h.to(dtype=torch.float16))\n",
"display(image)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "BCI",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 2
}