|
a |
|
b/Retrieval/utils/masking.py |
|
|
1 |
import torch |
|
|
2 |
|
|
|
3 |
|
|
|
4 |
class TriangularCausalMask(): |
|
|
5 |
def __init__(self, B, L, device="cpu"): |
|
|
6 |
mask_shape = [B, 1, L, L] |
|
|
7 |
with torch.no_grad(): |
|
|
8 |
self._mask = torch.triu(torch.ones(mask_shape, dtype=torch.bool), diagonal=1).to(device) |
|
|
9 |
|
|
|
10 |
@property |
|
|
11 |
def mask(self): |
|
|
12 |
return self._mask |
|
|
13 |
|
|
|
14 |
|
|
|
15 |
class ProbMask(): |
|
|
16 |
def __init__(self, B, H, L, index, scores, device="cpu"): |
|
|
17 |
_mask = torch.ones(L, scores.shape[-1], dtype=torch.bool).to(device).triu(1) |
|
|
18 |
_mask_ex = _mask[None, None, :].expand(B, H, L, scores.shape[-1]) |
|
|
19 |
indicator = _mask_ex[torch.arange(B)[:, None, None], |
|
|
20 |
torch.arange(H)[None, :, None], |
|
|
21 |
index, :].to(device) |
|
|
22 |
self._mask = indicator.view(scores.shape).to(device) |
|
|
23 |
|
|
|
24 |
@property |
|
|
25 |
def mask(self): |
|
|
26 |
return self._mask |