[a4067e]: / Retrieval / subject_layers / SelfAttention_Family.py

Download this file

303 lines (243 with data), 12.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import torch
import torch.nn as nn
import numpy as np
from math import sqrt
from utils.masking import TriangularCausalMask, ProbMask
from reformer_pytorch import LSHSelfAttention
from einops import rearrange, repeat
class DSAttention(nn.Module):
'''De-stationary Attention'''
def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
super(DSAttention, self).__init__()
self.scale = scale
self.mask_flag = mask_flag
self.output_attention = output_attention
self.dropout = nn.Dropout(attention_dropout)
def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
B, L, H, E = queries.shape
_, S, _, D = values.shape
scale = self.scale or 1. / sqrt(E)
tau = 1.0 if tau is None else tau.unsqueeze(
1).unsqueeze(1) # B x 1 x 1 x 1
delta = 0.0 if delta is None else delta.unsqueeze(
1).unsqueeze(1) # B x 1 x 1 x S
# De-stationary Attention, rescaling pre-softmax score with learned de-stationary factors
scores = torch.einsum("blhe,bshe->bhls", queries, keys) * tau + delta
if self.mask_flag:
if attn_mask is None:
attn_mask = TriangularCausalMask(B, L, device=queries.device)
scores.masked_fill_(attn_mask.mask, -np.inf)
A = self.dropout(torch.softmax(scale * scores, dim=-1))
V = torch.einsum("bhls,bshd->blhd", A, values)
if self.output_attention:
return V.contiguous(), A
else:
return V.contiguous(), None
class FullAttention(nn.Module):
def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
super(FullAttention, self).__init__()
self.scale = scale
self.mask_flag = mask_flag
self.output_attention = output_attention
self.dropout = nn.Dropout(attention_dropout)
def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
B, L, H, E = queries.shape
_, S, _, D = values.shape
scale = self.scale or 1. / sqrt(E)
scores = torch.einsum("blhe,bshe->bhls", queries, keys)
if self.mask_flag:
if attn_mask is None:
attn_mask = TriangularCausalMask(B, L, device=queries.device)
scores.masked_fill_(attn_mask.mask, -np.inf)
A = self.dropout(torch.softmax(scale * scores, dim=-1))
V = torch.einsum("bhls,bshd->blhd", A, values)
if self.output_attention:
return V.contiguous(), A
else:
return V.contiguous(), None
class ProbAttention(nn.Module):
def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
super(ProbAttention, self).__init__()
self.factor = factor
self.scale = scale
self.mask_flag = mask_flag
self.output_attention = output_attention
self.dropout = nn.Dropout(attention_dropout)
def _prob_QK(self, Q, K, sample_k, n_top): # n_top: c*ln(L_q)
# Q [B, H, L, D]
B, H, L_K, E = K.shape
_, _, L_Q, _ = Q.shape
# calculate the sampled Q_K
K_expand = K.unsqueeze(-3).expand(B, H, L_Q, L_K, E)
# real U = U_part(factor*ln(L_k))*L_q
index_sample = torch.randint(L_K, (L_Q, sample_k))
K_sample = K_expand[:, :, torch.arange(
L_Q).unsqueeze(1), index_sample, :]
Q_K_sample = torch.matmul(
Q.unsqueeze(-2), K_sample.transpose(-2, -1)).squeeze()
# find the Top_k query with sparisty measurement
M = Q_K_sample.max(-1)[0] - torch.div(Q_K_sample.sum(-1), L_K)
M_top = M.topk(n_top, sorted=False)[1]
# use the reduced Q to calculate Q_K
Q_reduce = Q[torch.arange(B)[:, None, None],
torch.arange(H)[None, :, None],
M_top, :] # factor*ln(L_q)
Q_K = torch.matmul(Q_reduce, K.transpose(-2, -1)) # factor*ln(L_q)*L_k
return Q_K, M_top
def _get_initial_context(self, V, L_Q):
B, H, L_V, D = V.shape
if not self.mask_flag:
# V_sum = V.sum(dim=-2)
V_sum = V.mean(dim=-2)
contex = V_sum.unsqueeze(-2).expand(B, H,
L_Q, V_sum.shape[-1]).clone()
else: # use mask
# requires that L_Q == L_V, i.e. for self-attention only
assert (L_Q == L_V)
contex = V.cumsum(dim=-2)
return contex
def _update_context(self, context_in, V, scores, index, L_Q, attn_mask):
B, H, L_V, D = V.shape
if self.mask_flag:
attn_mask = ProbMask(B, H, L_Q, index, scores, device=V.device)
scores.masked_fill_(attn_mask.mask, -np.inf)
attn = torch.softmax(scores, dim=-1) # nn.Softmax(dim=-1)(scores)
context_in[torch.arange(B)[:, None, None],
torch.arange(H)[None, :, None],
index, :] = torch.matmul(attn, V).type_as(context_in)
if self.output_attention:
attns = (torch.ones([B, H, L_V, L_V]) /
L_V).type_as(attn).to(attn.device)
attns[torch.arange(B)[:, None, None], torch.arange(H)[
None, :, None], index, :] = attn
return context_in, attns
else:
return context_in, None
def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
B, L_Q, H, D = queries.shape
_, L_K, _, _ = keys.shape
queries = queries.transpose(2, 1)
keys = keys.transpose(2, 1)
values = values.transpose(2, 1)
U_part = self.factor * \
np.ceil(np.log(L_K)).astype('int').item() # c*ln(L_k)
u = self.factor * \
np.ceil(np.log(L_Q)).astype('int').item() # c*ln(L_q)
U_part = U_part if U_part < L_K else L_K
u = u if u < L_Q else L_Q
scores_top, index = self._prob_QK(
queries, keys, sample_k=U_part, n_top=u)
# add scale factor
scale = self.scale or 1. / sqrt(D)
if scale is not None:
scores_top = scores_top * scale
# get the context
context = self._get_initial_context(values, L_Q)
# update the context with selected top_k queries
context, attn = self._update_context(
context, values, scores_top, index, L_Q, attn_mask)
return context.contiguous(), attn
class AttentionLayer(nn.Module):
def __init__(self, attention, d_model, n_heads, d_keys=None,
d_values=None):
super(AttentionLayer, self).__init__()
d_keys = d_keys or (d_model // n_heads)
d_values = d_values or (d_model // n_heads)
self.inner_attention = attention
self.query_projection = nn.Linear(d_model, d_keys * n_heads)
self.key_projection = nn.Linear(d_model, d_keys * n_heads)
self.value_projection = nn.Linear(d_model, d_values * n_heads)
self.out_projection = nn.Linear(d_values * n_heads, d_model)
self.n_heads = n_heads
def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
B, L, _ = queries.shape
_, S, _ = keys.shape
H = self.n_heads
queries = self.query_projection(queries).view(B, L, H, -1)
keys = self.key_projection(keys).view(B, S, H, -1)
values = self.value_projection(values).view(B, S, H, -1)
out, attn = self.inner_attention(
queries,
keys,
values,
attn_mask,
tau=tau,
delta=delta
)
out = out.view(B, L, -1)
return self.out_projection(out), attn
class ReformerLayer(nn.Module):
def __init__(self, attention, d_model, n_heads, d_keys=None,
d_values=None, causal=False, bucket_size=4, n_hashes=4):
super().__init__()
self.bucket_size = bucket_size
self.attn = LSHSelfAttention(
dim=d_model,
heads=n_heads,
bucket_size=bucket_size,
n_hashes=n_hashes,
causal=causal
)
def fit_length(self, queries):
# inside reformer: assert N % (bucket_size * 2) == 0
B, N, C = queries.shape
if N % (self.bucket_size * 2) == 0:
return queries
else:
# fill the time series
fill_len = (self.bucket_size * 2) - (N % (self.bucket_size * 2))
return torch.cat([queries, torch.zeros([B, fill_len, C]).to(queries.device)], dim=1)
def forward(self, queries, keys, values, attn_mask, tau, delta):
# in Reformer: defalut queries=keys
B, N, C = queries.shape
queries = self.attn(self.fit_length(queries))[:, :N, :]
return queries, None
class TwoStageAttentionLayer(nn.Module):
'''
The Two Stage Attention (TSA) Layer
input/output shape: [batch_size, Data_dim(D), Seg_num(L), d_model]
'''
def __init__(self, configs,
seg_num, factor, d_model, n_heads, d_ff=None, dropout=0.1):
super(TwoStageAttentionLayer, self).__init__()
d_ff = d_ff or 4 * d_model
self.time_attention = AttentionLayer(FullAttention(False, configs.factor, attention_dropout=configs.dropout,
output_attention=configs.output_attention), d_model, n_heads)
self.dim_sender = AttentionLayer(FullAttention(False, configs.factor, attention_dropout=configs.dropout,
output_attention=configs.output_attention), d_model, n_heads)
self.dim_receiver = AttentionLayer(FullAttention(False, configs.factor, attention_dropout=configs.dropout,
output_attention=configs.output_attention), d_model, n_heads)
self.router = nn.Parameter(torch.randn(seg_num, factor, d_model))
self.dropout = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.norm4 = nn.LayerNorm(d_model)
self.MLP1 = nn.Sequential(nn.Linear(d_model, d_ff),
nn.GELU(),
nn.Linear(d_ff, d_model))
self.MLP2 = nn.Sequential(nn.Linear(d_model, d_ff),
nn.GELU(),
nn.Linear(d_ff, d_model))
def forward(self, x, attn_mask=None, tau=None, delta=None):
# Cross Time Stage: Directly apply MSA to each dimension
batch = x.shape[0]
time_in = rearrange(x, 'b ts_d seg_num d_model -> (b ts_d) seg_num d_model')
time_enc, attn = self.time_attention(
time_in, time_in, time_in, attn_mask=None, tau=None, delta=None
)
dim_in = time_in + self.dropout(time_enc)
dim_in = self.norm1(dim_in)
dim_in = dim_in + self.dropout(self.MLP1(dim_in))
dim_in = self.norm2(dim_in)
# Cross Dimension Stage: use a small set of learnable vectors to aggregate and distribute messages to build the D-to-D connection
dim_send = rearrange(dim_in, '(b ts_d) seg_num d_model -> (b seg_num) ts_d d_model', b=batch)
batch_router = repeat(self.router, 'seg_num factor d_model -> (repeat seg_num) factor d_model', repeat=batch)
dim_buffer, attn = self.dim_sender(batch_router, dim_send, dim_send, attn_mask=None, tau=None, delta=None)
dim_receive, attn = self.dim_receiver(dim_send, dim_buffer, dim_buffer, attn_mask=None, tau=None, delta=None)
dim_enc = dim_send + self.dropout(dim_receive)
dim_enc = self.norm3(dim_enc)
dim_enc = dim_enc + self.dropout(self.MLP2(dim_enc))
dim_enc = self.norm4(dim_enc)
final_out = rearrange(dim_enc, '(b seg_num) ts_d d_model -> b ts_d seg_num d_model', b=batch)
return final_out