import os
import torch
import torch.optim as optim
from torch.nn import CrossEntropyLoss
from torch.nn import functional as F
from torch.optim import Adam
from torch.utils.data import DataLoader
os.environ["WANDB_API_KEY"] = "KEY"
os.environ["WANDB_MODE"] = 'offline'
from itertools import combinations
import clip
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torchvision.transforms as transforms
import tqdm
from eegdatasets_leaveone import EEGDataset
from einops.layers.torch import Rearrange, Reduce
from loss import ClipLoss
from sklearn.metrics import confusion_matrix
from torch.utils.data import DataLoader, Dataset
import random
from utils import wandb_logger
import csv
from braindecode.models import EEGNetv4, ATCNet, EEGConformer, EEGITNet, ShallowFBCSPNet
import argparse
#--------------------------------NICE-----------------------------------#
class PatchEmbedding(nn.Module):
def __init__(self, emb_size=40):
super().__init__()
# revised from shallownet
self.tsconv = nn.Sequential(
nn.Conv2d(1, 40, (1, 25), (1, 1)),
nn.AvgPool2d((1, 51), (1, 5)),
nn.BatchNorm2d(40),
nn.ELU(),
nn.Conv2d(40, 40, (63, 1), (1, 1)),
nn.BatchNorm2d(40),
nn.ELU(),
nn.Dropout(0.5),
)
self.projection = nn.Sequential(
nn.Conv2d(40, emb_size, (1, 1), stride=(1, 1)),
Rearrange('b e (h) (w) -> b (h w) e'),
)
def forward(self, x: Tensor) -> Tensor:
# b, _, _, _ = x.shape
x = x.unsqueeze(1)
# print("x", x.shape)
x = self.tsconv(x)
# print("tsconv", x.shape)
x = self.projection(x)
# print("projection", x.shape)
return x
class ResidualAdd(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
res = x
x = self.fn(x, **kwargs)
x += res
return x
class FlattenHead(nn.Sequential):
def __init__(self):
super().__init__()
def forward(self, x):
x = x.contiguous().view(x.size(0), -1)
return x
class Enc_eeg(nn.Sequential):
def __init__(self, emb_size=40, **kwargs):
super().__init__(
PatchEmbedding(emb_size),
FlattenHead()
)
class Proj_eeg(nn.Sequential):
def __init__(self, embedding_dim=1440, proj_dim=1024, drop_proj=0.5):
super().__init__(
nn.Linear(embedding_dim, proj_dim),
ResidualAdd(nn.Sequential(
nn.GELU(),
nn.Linear(proj_dim, proj_dim),
nn.Dropout(drop_proj),
)),
nn.LayerNorm(proj_dim),
)
class NICE(nn.Module):
def __init__(self):
super().__init__()
self.enc_eeg = Enc_eeg()
self.proj_eeg = Proj_eeg()
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.loss_func = ClipLoss()
def forward(self, data):
eeg_embedding = self.enc_eeg(data)
out = self.proj_eeg(eeg_embedding)
return out
#########################################################################
#-------------------------------EEGNetv4--------------------------------#
class EEGNetv4_Encoder(nn.Module):
def __init__(self):
super().__init__()
self.device = device
self.shape = (63, 250)
self.eegnet = EEGNetv4(
in_chans=self.shape[0],
n_classes=1024,
input_window_samples=self.shape[1],
final_conv_length='auto',
pool_mode='mean',
F1=8,
D=20,
F2=160,
kernel_length=4,
third_kernel_size=(4, 2),
drop_prob=0.25
)
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.loss_func = ClipLoss()
def forward(self, data):
data = data.unsqueeze(0)
data = data.reshape(data.shape[1], data.shape[2], data.shape[3], data.shape[0])
# print(data.shape)
prediction = self.eegnet(data)
return prediction
#########################################################################
#--------------------------EEGConformer_Encoder-------------------------#
class EEGConformer_Encoder(nn.Module):
def __init__(self):
super().__init__()
self.device = device
self.shape = (63, 250)
self.eegConformer = EEGConformer(n_outputs=None,
n_chans=self.shape[0],
n_filters_time=40,
filter_time_length=10,
pool_time_length=25,
pool_time_stride=5,
drop_prob=0.25,
att_depth=2,
att_heads=1,
att_drop_prob=0.5,
final_fc_length=1760,
return_features=False,
n_times=None,
chs_info=None,
input_window_seconds=None,
n_classes=1024,
input_window_samples=self.shape[1],
add_log_softmax=True)
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.loss_func = ClipLoss()
def forward(self, data):
# data = data.unsqueeze(0)
# data = data.reshape(data.shape[1], data.shape[2], data.shape[3], data.shape[0])
# print(data.shape)
prediction = self.eegConformer(data)
return prediction
#########################################################################
#-----------------------------EEGITNet_Encoder--------------------------#
class EEGITNet_Encoder(nn.Module):
def __init__(self):
super().__init__()
self.device = device
self.shape = (63, 250)
self.eegEEGITNet = EEGITNet(n_outputs=1024,
n_chans=self.shape[0],
n_times=None,
drop_prob=0.4,
chs_info=None,
input_window_seconds=1.0,
sfreq=250,
input_window_samples=self.shape[1],
add_log_softmax=True)
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.loss_func = ClipLoss()
def forward(self, data):
prediction = self.eegEEGITNet(data)
return prediction
#########################################################################
#--------------------------------MLP------------------------------------#
def make_block(h_c, h_l,dropout_rate=0.25):
block = nn.Sequential(
nn.LayerNorm(h_l),
nn.Linear(h_l, h_l),
nn.GELU(),
nn.Dropout(dropout_rate),
Rearrange('B C L->B L C'),
nn.LayerNorm(h_c),
nn.Linear(h_c, h_c),
nn.GELU(),
nn.Dropout(dropout_rate),
Rearrange('B L C->B C L'),
)
return block
class Projector(nn.Module):
def __init__(self, in_features, h_dim=(64, 1024), n_hidden_layer=2,dropout_rate=0.25):
# in_features: (c, l)
super().__init__()
c, l = in_features
h_c, h_l = h_dim
c_o, l_o = 1, 1024
self.input_layer = nn.Sequential(
nn.LayerNorm(l),
nn.Linear(l, h_l),
nn.GELU(),
nn.Dropout(dropout_rate),
Rearrange('B C L->B L C'),
nn.LayerNorm(c),
nn.Linear(c, h_c),
nn.GELU(),
nn.Dropout(dropout_rate),
Rearrange('B L C->B C L'),
)
self.output_layer = nn.Sequential(
nn.LayerNorm(h_l),
nn.Linear(h_l, l_o),
nn.GELU(),
nn.Dropout(dropout_rate),
Rearrange('B C L->B L C'),
nn.LayerNorm(h_c),
nn.Linear(h_c, c_o),
nn.GELU(),
nn.Dropout(dropout_rate),
Rearrange('B L C->B (C L)'),
)
self.blocks = nn.Sequential(*[
make_block(h_c, h_l) for _ in range(n_hidden_layer)
])
self.projector = nn.Sequential(*[
self.input_layer,
self.blocks,
self.output_layer,
])
# self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1/0.01))
self.loss_func = ClipLoss()
def forward(self, eeg_embeds):
eeg_embeds = self.projector(eeg_embeds)
# print("eeg_embeds")
# print(eeg_embeds.shape)
eeg_features = F.normalize(eeg_embeds, dim=-1)
return eeg_features
#########################################################################
#-------------------------ShallowFBCSPNet_Encoder-----------------------#
class ShallowFBCSPNet_Encoder(nn.Module):
def __init__(self):
super().__init__()
self.device = device
self.shape = (63, 250)
self.ShallowFBCSPNet = ShallowFBCSPNet(n_chans=self.shape[0],
n_outputs=1024,
n_times=self.shape[1],
n_filters_time=20,
filter_time_length=20,
n_filters_spat=20,
pool_time_length=25,
pool_time_stride=5,
final_conv_length='auto',
pool_mode='mean',
split_first_layer=True,
batch_norm=True,
batch_norm_alpha=0.1,
drop_prob=0.5,
chs_info=None,
input_window_seconds=1.0,
sfreq=250,
add_log_softmax=True)
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.loss_func = ClipLoss()
def forward(self, data):
prediction = self.ShallowFBCSPNet(data)
return prediction
#########################################################################
#---------------------------ATCNet_Encoder------------------------------#
class ATCNet_Encoder(nn.Module):
def __init__(self):
super().__init__()
self.device = device
self.shape = (63, 250)
self.eegATCNet = ATCNet(n_chans=self.shape[0],
n_outputs=1024,
input_window_seconds=1.0,
sfreq=250.,
conv_block_n_filters=8,
conv_block_kernel_length_1=32,
conv_block_kernel_length_2=8,
conv_block_pool_size_1=4,
conv_block_pool_size_2=3,
conv_block_depth_mult=2,
conv_block_dropout=0.3,
n_windows=5,
att_head_dim=4,
att_num_heads=2,
att_dropout=0.5,
tcn_depth=2,
tcn_kernel_size=4,
tcn_n_filters=16,
tcn_dropout=0.3,
tcn_activation=nn.ELU(),
concat=False,
max_norm_const=0.25,
chs_info=None,
n_times=None,
n_channels=None,
n_classes=None,
input_size_s=None,
add_log_softmax=True)
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.loss_func = ClipLoss()
def forward(self, data):
# print("data", data.shape)
prediction = self.eegATCNet(data)
return prediction
#########################################################################
#-------------------------------Meta------------------------------------#
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model + 1, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term[:d_model // 2 + 1])
pe[:, 1::2] = torch.cos(position * div_term[:d_model // 2])
self.register_buffer('pe', pe)
def forward(self, x):
pe = self.pe[:x.size(0), :].unsqueeze(1).repeat(1, x.size(1), 1)
x = x + pe
return x
class EEGAttention(nn.Module):
def __init__(self, channel, d_model, nhead):
super(EEGAttention, self).__init__()
self.pos_encoder = PositionalEncoding(d_model)
self.encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead)
self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=1)
self.channel = channel
self.d_model = d_model
def forward(self, src):
src = src.permute(2, 0, 1) # Change shape to [time_length, batch_size, channel]
src = self.pos_encoder(src)
output = self.transformer_encoder(src)
return output.permute(1, 2, 0) # Change shape back to [batch_size, channel, time_length]
class MetaEEG(nn.Module):
def __init__(self, num_channels, sequence_length, num_subjects=1, num_features=64, num_latents=1024, num_blocks=1):
super(MetaEEG, self).__init__()
self.attention_model = EEGAttention(num_channels, num_channels, nhead=1)
self.subject_wise_linear = nn.ModuleList([nn.Linear(sequence_length, sequence_length) for _ in range(num_subjects)])
self.conv_blocks = nn.Sequential(*[ConvBlock(num_channels, sequence_length) for _ in range(num_blocks)],
Rearrange('B C L->B L C'))
self.linear_projection = nn.Sequential(
Rearrange('B L C->B C L'),
nn.Linear(sequence_length, num_latents),
Rearrange('B C L->B L C'))
self.temporal_aggregation = nn.Linear(sequence_length, 1)
self.clip_head = MLPHead(num_latents, num_latents)
self.mse_head = MLPHead(num_latents, num_latents)
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1/0.01))
self.loss_func = ClipLoss()
def forward(self, x, subject_id):
# print(f'Input shape: {x.shape}')
# attn_output, _ = self.attention(x, x, x)
x = self.attention_model(x)
# print(f'After attention shape: {x.shape}')
x = self.subject_wise_linear[subject_id](x)
# print(f'After subject-specific linear transformation shape: {x.shape}')
x = self.conv_blocks(x)
# print(f'After convolutional blocks shape: {x.shape}')
# x = self.conv_blocks(x)
# print(f'After convolutional blocks shape: {x.shape}')
x = self.linear_projection(x)
# print(f'After linear projection shape: {x.shape}')
x = self.temporal_aggregation(x)
# print(f'After temporal aggregation shape: {x.shape}')
clip_out = self.clip_head(x)
# print(f'Clip head output shape: {clip_out.shape}')
mse_out = self.mse_head(x)
# print(f'MSE head output shape: {mse_out.shape}')
return clip_out, mse_out
class ConvBlock(nn.Module):
def __init__(self, num_channels, num_features):
super(ConvBlock, self).__init__()
self.conv1 = nn.Conv1d(num_channels, num_features, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv1d(num_features, num_features, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv1d(num_features, num_features, kernel_size=3, stride=1, padding=1)
self.norm1 = nn.LayerNorm(num_features)
self.norm2 = nn.LayerNorm(num_features)
self.norm3 = nn.LayerNorm(num_features)
self.residual_conv = nn.Conv1d(num_channels, num_features, kernel_size=1)
def forward(self, x):
# print(f'ConvBlock input shape: {x.shape}')
residual = self.residual_conv(x)
# residual = x
# print(f'residual shape: {residual.shape}')
x = F.gelu(self.conv1(x))
x = self.norm1(x)
# print(f'After first convolution shape: {x.shape}')
x = F.gelu(self.conv2(x))
x = self.norm2(x)
# print(f'After second convolution shape: {x.shape}')
x = F.gelu(self.conv3(x))
x = self.norm3(x)
# print(f'After third convolution shape: {x.shape}')
x += residual
# print(f'ConvBlock output shape: {x.shape}')
return x
class MLPHead(nn.Module):
def __init__(self, in_features, num_latents, dropout_rate=0.25):
super(MLPHead, self).__init__()
self.layer1 = nn.Sequential(
Rearrange('B C L->B L C'),
nn.LayerNorm(in_features),
nn.Linear(in_features, num_latents),
nn.GELU(),
nn.Dropout(dropout_rate),
Rearrange('B L C->B (C L)'),
)
def forward(self, x):
# print(f'MLPHead input shape: {x.shape}')
x = self.layer1(x)
# print(f'After first layer of MLPHead shape: {x.shape}')
return x
#########################################################################
def train_model(model, dataloader, optimizer, device, text_features_all, img_features_all):
model.train()
text_features_all = text_features_all.to(device).float() # (n_cls, d)
img_features_all = (img_features_all[::10]).to(device).float()
total_loss = 0
correct = 0
total = 0
alpha=0.99
features_list = [] # List to store features
save_features= True
for batch_idx, (eeg_data, labels, text, text_features, img, img_features) in enumerate(dataloader):
eeg_data = eeg_data.to(device)
text_features = text_features.to(device).float()
img_features = img_features.to(device).float()
labels = labels.to(device)
optimizer.zero_grad()
eeg_features = model(eeg_data).float()
features_list.append(eeg_features)
logit_scale = model.logit_scale
img_loss = model.loss_func(eeg_features, img_features, logit_scale)
text_loss = model.loss_func(eeg_features, text_features, logit_scale)
# loss = img_loss + text_loss
# print("text_loss", text_loss)
# print("img_loss", img_loss)
loss = alpha * img_loss + (1 - alpha) * text_loss
loss.backward()
optimizer.step()
total_loss += loss.item()
# logits = logit_scale * eeg_features @ text_features_all.T # (n_batch, n_cls)
logits_img = logit_scale * eeg_features @ img_features_all.T
# logits_text = logit_scale * eeg_features @ text_features_all.T
# logits_single = (logits_text + logits_img) / 2.0
# logits_text = logit_scale * eeg_features @ text_features_all.T
logits_single = logits_img
predicted = torch.argmax(logits_single, dim=1) # (n_batch, ) \in {0, 1, ..., n_cls-1}
batch_size = predicted.shape[0]
total += batch_size
correct += (predicted == labels).sum().item()
average_loss = total_loss / (batch_idx+1)
accuracy = correct / total
return average_loss, accuracy
def evaluate_model(model, dataloader, device, text_features_all, img_features_all, k):
model.eval()
text_features_all = text_features_all.to(device).float()
img_features_all = img_features_all.to(device).float()
total_loss = 0
correct = 0
total = 0
alpha = 0.99
top5_correct = 0
top5_correct_count = 0
all_labels = set(range(text_features_all.size(0)))
top5_acc = 0
with torch.no_grad():
for batch_idx, (eeg_data, labels, text, text_features, img, img_features) in enumerate(dataloader):
eeg_data = eeg_data.to(device)
text_features = text_features.to(device).float()
labels = labels.to(device)
img_features = img_features.to(device).float()
eeg_features = model(eeg_data).float()
logit_scale = model.logit_scale
# print(eeg_features.type, text_features.type, img_features.type)
img_loss = model.loss_func(eeg_features, img_features, logit_scale)
text_loss = model.loss_func(eeg_features, text_features, logit_scale)
loss = img_loss*alpha + text_loss*(1-alpha)
total_loss += loss.item()
for idx, label in enumerate(labels):
possible_classes = list(all_labels - {label.item()})
selected_classes = random.sample(possible_classes, k-1) + [label.item()]
# selected_text_features = text_features_all[selected_classes]
selected_img_features = img_features_all[selected_classes]
if k==200:
logits_img = logit_scale * eeg_features[idx] @ selected_img_features.T
# logits_text = logit_scale * eeg_features[idx] @ selected_text_features.T
# logits_single = (logits_text + logits_img) / 2.0
logits_single = logits_img
# print("logits_single", logits_single.shape)
# predicted_label = selected_classes[torch.argmax(logits_single).item()]
predicted_label = selected_classes[torch.argmax(logits_single).item()] # (n_batch, ) \in {0, 1, ..., n_cls-1}
if predicted_label == label.item():
# print("predicted_label", predicted_label)
correct += 1
# print("logits_single", logits_single)
_, top5_indices = torch.topk(logits_single, 5, largest =True)
if label.item() in [selected_classes[i] for i in top5_indices.tolist()]:
# print("top5_indices", top5_indices)
# print("Yes")
top5_correct_count+=1
# print("*"*50)
total += 1
elif k==2 or k==4 or k==10:
logits_img = logit_scale * eeg_features[idx] @ selected_img_features.T
# logits_text = logit_scale * eeg_features[idx] @ selected_text_features.T
# logits_single = (logits_text + logits_img) / 2.0
logits_single = logits_img
# print("logits_single", logits_single.shape)
# predicted_label = selected_classes[torch.argmax(logits_single).item()]
predicted_label = selected_classes[torch.argmax(logits_single).item()] # (n_batch, ) \in {0, 1, ..., n_cls-1}
if predicted_label == label.item():
correct += 1
total += 1
else:
print("Error.")
average_loss = total_loss / (batch_idx+1)
accuracy = correct / total
top5_acc = top5_correct_count / total
return average_loss, accuracy, top5_acc
def main_train_loop(sub, model, train_dataloader, test_dataloader, optimizer, device,
text_features_train_all, text_features_test_all, img_features_train_all, img_features_test_all, config, logger=None):
logger = wandb_logger(config) if logger else None
logger.watch(model,logger)
train_losses, train_accuracies = [], []
test_losses, test_accuracies = [], []
v2_accs = []
v4_accs = []
v10_accs = []
best_accuracy = 0.0
best_model_weights = None
best_epoch_info = {}
results = []
for epoch in range(config['epochs']):
train_loss, train_accuracy = train_model(model, train_dataloader, optimizer, device, text_features_train_all, img_features_train_all)
if epoch%5 == 0:
if config['insubject']==True:
torch.save(model.state_dict(), f"./models/{sub}_{epoch}.pth")
else:
torch.save(model.state_dict(), f"./models/across_{epoch}.pth")
train_losses.append(train_loss)
train_accuracies.append(train_accuracy)
test_loss, test_accuracy, top5_acc = evaluate_model(model, test_dataloader, device, text_features_test_all, img_features_test_all,k=200)
_, v2_acc, _ = evaluate_model(model, test_dataloader, device, text_features_test_all, img_features_test_all, k = 2)
_, v4_acc, _ = evaluate_model(model, test_dataloader, device, text_features_test_all, img_features_test_all, k = 4)
_, v10_acc, _ = evaluate_model(model, test_dataloader, device, text_features_test_all, img_features_test_all, k = 10)
test_losses.append(test_loss)
test_accuracies.append(test_accuracy)
v2_accs.append(v2_acc)
v4_accs.append(v4_acc)
v10_accs.append(v10_acc)
# Append results for this epoch
epoch_results = {
"epoch": epoch + 1,
"train_loss": train_loss,
"train_accuracy": train_accuracy,
"test_loss": test_loss,
"test_accuracy": test_accuracy,
"v2_acc": v2_acc,
"v4_acc": v4_acc,
"v10_acc": v10_acc,
"top5_acc":top5_acc
}
results.append(epoch_results)
if test_accuracy > best_accuracy:
best_accuracy = test_accuracy
best_model_weights = model.state_dict().copy()
best_epoch_info = {
"epoch": epoch + 1,
"train_loss": train_loss,
"train_accuracy": train_accuracy,
"test_loss": test_loss,
"test_accuracy": test_accuracy,
"v2_acc":v2_acc,
"v4_acc":v4_acc,
"v10_acc":v10_acc
}
logger.log({
"Train Loss": train_loss,
"Train Accuracy": train_accuracy,
"Test Loss": test_loss,
"Test Accuracy": test_accuracy,
"v2 Accuracy": v2_acc,
"v4 Accuracy": v4_acc,
"v10 Accuracy": v10_acc,
"Epoch": epoch
})
print(f"Epoch {epoch + 1}/{config['epochs']} - Train Loss: {train_loss:.4f}, Train Accuracy: {train_accuracy:.4f}, Test Loss: {test_loss:.4f}, Test Accuracy: {test_accuracy:.4f}, Top5 Accuracy: {top5_acc:.4f}")
print(f"Epoch {epoch + 1}/{config['epochs']} - v2 Accuracy:{v2_acc} - v4 Accuracy:{v4_acc} - v10 Accuracy:{v10_acc}")
# model.load_state_dict(best_model_weights)
# torch.save(model.state_dict(), '{train_pos_img_text}.pth')
fig, axs = plt.subplots(3, 2, figsize=(10, 15))
axs[0, 0].plot(train_losses, label='Train Loss')
axs[0, 0].plot(test_losses, label='Test Loss')
axs[0, 0].legend()
axs[0, 0].set_title("Loss Curve")
axs[0, 1].plot(train_accuracies, label='Train Accuracy')
axs[0, 1].plot(test_accuracies, label='Test Accuracy')
axs[0, 1].legend()
axs[0, 1].set_title("Accuracy Curve")
axs[1, 0].plot(v2_accs, label='2-class Accuracy')
axs[1, 0].legend()
axs[1, 0].set_title("2-Class Accuracy Curve")
axs[1, 1].plot(v4_accs, label='4-class Accuracy')
axs[1, 1].legend()
axs[1, 1].set_title("4-Class Accuracy Curve")
axs[2, 0].plot(v10_accs, label='10-class Accuracy')
axs[2, 0].legend()
axs[2, 0].set_title("10-Class Accuracy Curve")
info_text = (f"Best Model Info (from Epoch {best_epoch_info['epoch']}):\n"
f"Train Loss: {best_epoch_info['train_loss']:.4f}\n"
f"Train Accuracy: {best_epoch_info['train_accuracy']:.4f}\n"
f"Test Loss: {best_epoch_info['test_loss']:.4f}\n"
f"Test Accuracy: {best_epoch_info['test_accuracy']:.4f}\n"
f"v2_acc:{best_epoch_info['v2_acc']:.4f}\n"
f"v4_acc:{best_epoch_info['v4_acc']:.4f}\n"
f"v10_acc:{best_epoch_info['v10_acc']:.4f}")
axs[2, 1].axis('off')
axs[2, 1].text(0.5, 0.5, info_text, fontsize=10, ha='center', va='center', transform=axs[2, 1].transAxes)
plt.tight_layout()
plt.suptitle('pos_img_text', fontsize=16, y=1.05)
plt.savefig('pos_img_text')
logger.finish()
return results
def main():
parser = argparse.ArgumentParser(description='Train EEG-Image/Text Model')
parser.add_argument('--data_path', type=str, default="/home/ldy/Workspace/THINGS/Preprocessed_data_250Hz", help='Path to the preprocessed data')
parser.add_argument('--project', type=str, default="train_pos_img_text_rep", help='Project name')
parser.add_argument('--entity', type=str, default="sustech_rethinkingbci", help='Entity name')
parser.add_argument('--name', type=str, default="lr=3e-4_img_pos_pro_eeg", help='Experiment name')
parser.add_argument('--lr', type=float, default=3e-4, help='Learning rate')
parser.add_argument('--epochs', type=int, default=40, help='Number of training epochs')
parser.add_argument('--batch_size', type=int, default=1024, help='Batch size')
parser.add_argument('--logger', default=True, help='Enable logging')
parser.add_argument('--insubject', default=True, help='Train within subject')
parser.add_argument('--encoder_type', type=str, default='Projector', help='EEG encoder model type, you can choose from these options: Projector, EEGConformer_Encoder, MetaEEG, EEGNetv4_Encoder, ShallowFBCSPNet_Encoder, NICE, ATCNet_Encoder, EEGITNet_Encoder')
parser.add_argument('--device', type=str, default='cuda:0', help='Device to use for training (e.g., "cuda:0" or "cpu")')
args = parser.parse_args()
device = torch.device(args.device if torch.cuda.is_available() else 'cpu')
data_path = args.data_path
subjects = ['sub-01', 'sub-02', 'sub-03', 'sub-04', 'sub-05', 'sub-06', 'sub-07', 'sub-08', 'sub-09', 'sub-10']
for sub in subjects:
# Re-initialize the model for each subject
model = globals()[args.encoder_type]((63, 250))
model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr)
print(f'Processing {sub}: number of parameters:', sum(p.numel() for p in model.parameters()))
train_dataset = EEGDataset(
data_path,
subjects=[sub] if args.insubject else [],
exclude_subject=sub if not args.insubject else None,
train=True
)
test_dataset = EEGDataset(
data_path,
subjects=[sub] if args.insubject else [],
exclude_subject=sub if not args.insubject else None,
train=False
)
train_loader = DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=0,
drop_last=True
)
test_loader = DataLoader(
test_dataset,
batch_size=1,
shuffle=True,
num_workers=0,
drop_last=True
)
text_features_train_all = train_dataset.text_features
text_features_test_all = test_dataset.text_features
img_features_train_all = train_dataset.img_features
img_features_test_all = test_dataset.img_features
config = vars(args)
results = main_train_loop(
sub,
model,
train_loader,
test_loader,
optimizer,
device,
text_features_train_all,
text_features_test_all,
img_features_train_all,
img_features_test_all,
config,
logger=args.logger
)
# Save results to a CSV file
current_time = datetime.datetime.now().strftime("%m-%d_%H-%M")
results_dir = f"./outputs/{args.encoder_type}/{sub}/{current_time}"
os.makedirs(results_dir, exist_ok=True)
results_file = f"{results_dir}/{args.encoder_type}_{'cross_exclude_' if not args.insubject else ''}{sub}.csv"
with open(results_file, 'w', newline='') as file:
writer = csv.DictWriter(file, fieldnames=results[0].keys())
writer.writeheader()
writer.writerows(results)
print(f'Results saved to {results_file}')
if __name__ == '__main__':
main()