Diff of /README.md [000000] .. [a4067e]

Switch to unified view

a b/README.md
1
<div align="center">
2
3
<h2 style="border-bottom: 1px solid lightgray;">Visual Decoding and Reconstruction via EEG Embeddings with Guided Diffusion</h2>
4
5
<!-- Badges and Links Section -->
6
<div style="display: flex; align-items: center; justify-content: center;">
7
8
<p align="center">
9
  <a href="#">
10
  <p align="center">
11
    <a href='https://arxiv.org/pdf/2403.07721'><img src='http://img.shields.io/badge/Paper-arxiv.2403.07721-B31B1B.svg'></a>
12
    <a href='https://huggingface.co/datasets/LidongYang/EEG_Image_decode/tree/main'><img src='https://img.shields.io/badge/EEG Image decode-%F0%9F%A4%97%20Hugging%20Face-blue'></a>
13
  </p>
14
</p>
15
16
17
</div>
18
19
<br/>
20
21
</div>
22
23
<!-- 
24
<img src="bs=16_test_acc.png" alt="Framework" style="max-width: 90%; height: auto;"/> -->
25
<!-- 
26
<img src="test_acc.png" alt="Framework" style="max-width: 90%; height: auto;"/> -->
27
28
<!-- As the training epochs increases, the test set accuracy of different methods. (Top: batchsize is 16. Bottom: batchsize is 1024) -->
29
30
<!-- 
31
<img src="temporal_analysis.png" alt="Framework" style="max-width: 90%; height: auto;"/>
32
Examples of growing window image reconstruction with 5 different random seeds. -->
33
34
35
<img src="fig-framework.png" alt="Framework" style="max-width: 100%; height: auto;"/>
36
Framework of our proposed method.
37
38
39
40
41
<!--  -->
42
<img src="fig-genexample.png" alt="fig-genexample" style="max-width: 90%; height: auto;"/>  
43
44
Some examples of using EEG to reconstruct stimulus images.
45
46
47
## News:
48
- [2024/09/26] Our paper is accepted to **NeurIPS 2024**.
49
- [2024/09/25] We have updated the [arxiv](https://arxiv.org/abs/2403.07721) paper.
50
- [2024/08/01] Update scripts for training and inference in different tasks.
51
- [2024/05/19] Update the dataset loading scripts.
52
- [2024/03/12] The [arxiv](https://arxiv.org/abs/2403.07721) paper is available.
53
54
55
<!-- ## Environment setup -->
56
<h2 style="border-bottom: 1px solid lightgray; margin-bottom: 5px;">Environment setup</h2>
57
58
Run ``setup.sh`` to quickly create a conda environment that contains the packages necessary to run our scripts; activate the environment with conda activate BCI.
59
60
61
62
63
```
64
. setup.sh
65
```
66
You can also create a new conda environment and install the required dependencies by running
67
```
68
conda env create -f environment.yml
69
conda activate BCI
70
71
pip install wandb
72
pip install einops
73
```
74
Additional environments needed to run all the code:
75
```
76
pip install open_clip_torch
77
78
pip install transformers==4.28.0.dev0
79
pip install diffusers==0.24.0
80
81
#Below are the braindecode installation commands for the most common use cases.
82
pip install braindecode==0.8.1
83
```
84
<!-- ## Quick training and test  -->
85
<h2 style="border-bottom: 1px solid lightgray; margin-bottom: 5px;">Quick training and test</h2>
86
87
If you want to quickly reproduce the results in the paper, please download the relevant ``preprocessed data`` and ``model weights`` from [Hugging Face](https://huggingface.co/datasets/LidongYang/EEG_Image_decode) first.
88
#### 1.Image Retrieval
89
We provide the script to learn the training strategy of EEG Encoder and verify it during training. Please modify your data set path and run:
90
```
91
cd Retrieval/
92
python ATMS_retrieval.py --logger True --gpu cuda:0  --output_dir ./outputs/contrast
93
```
94
We also provide the script for ``joint subject training``, which aims to train all subjects jointly and test on a specific subject:
95
```
96
cd Retrieval/
97
python ATMS_retrieval_joint_train.py --joint_train --sub sub-01 True --logger True --gpu cuda:0  --output_dir ./outputs/contrast
98
```
99
100
Additionally, replicating the results of other methods (e.g. EEGNetV4) by run
101
```
102
cd Retrieval/
103
contrast_retrieval.py --encoder_type EEGNetv4_Encoder --epochs 30 --batch_size 1024
104
```
105
106
#### 2.Image Reconstruction
107
We provide quick training and inference scripts for ``clip pipeline`` of visual reconstruction. Please modify your data set path and run zero-shot on 200 classes test dataset:
108
```
109
# Train and generate eeg features in Subject 8
110
cd Generation/
111
python ATMS_reconstruction.py --insubject True --subjects sub-08 --logger True \
112
--gpu cuda:0  --output_dir ./outputs/contrast
113
```
114
115
```
116
# Reconstruct images in Subject 8
117
Generation_metrics_sub8.ipynb
118
```
119
120
We also provide scripts for image reconstruction combined ``with the low level pipeline``.
121
```
122
cd Generation/
123
124
# step 1: train vae encoder and then generate low level images
125
train_vae_latent_512_low_level_no_average.py
126
127
# step 2: load low level images and then reconstruct them
128
1x1024_reconstruct_sdxl.ipynb
129
```
130
131
132
We provide scripts for caption generation combined ``with the semantic level pipeline``.
133
```
134
cd Generation/
135
136
# step 1: train feature adapter
137
image_adapter.ipynb
138
139
# step 2: get caption from eeg latent
140
GIT_caption_batch.ipynb
141
142
# step 3: load text prompt and then reconstruct images
143
1x1024_reconstruct_sdxl.ipynb
144
```
145
146
To evaluate the quality of the reconstructed images, modify the paths of the reconstructed images and the original stimulus images in the notebook and run:
147
```
148
#compute metrics, cited from MindEye
149
Reconstruction_Metrics_ATM.ipynb
150
```
151
152
<!-- ## Data availability -->
153
<h2 style="border-bottom: 1px solid lightgray; margin-bottom: 5px;">Data availability</h2>
154
155
We provide you with the ``preprocessed EEG`` and ``preprocessed MEG`` data used in our paper at [Hugging Face](https://huggingface.co/datasets/LidongYang/EEG_Image_decode), as well as the raw image data.
156
157
158
Note that the experimental paradigms of the THINGS-EEG and THINGS-MEG datasets themselves are different, so we will provide images and data for the two datasets separately.
159
160
You can also download the relevant THINGS-EEG data set and THINGS-MEG data set at osf.io.
161
162
The raw and preprocessed EEG dataset, the training and test images are available on [osf](https://osf.io/3jk45/).
163
- ``Raw EEG data:`` `../project_directory/eeg_dataset/raw_data/`.
164
- ``Preprocessed EEG data:`` `../project_directory/eeg_dataset/preprocessed_data/`.
165
- ``Training and test images:`` `../project_directory/image_set/`.
166
167
168
The raw and preprocessed MEG dataset, the training and test images are available on [OpenNEURO](https://openneuro.org/datasets/ds004212/versions/2.0.0).
169
170
171
172
173
174
<!-- ## EEG/MEG preprocessing -->
175
<h2 style="border-bottom: 1px solid lightgray; margin-bottom: 5px;">EEG/MEG preprocessing</h2>
176
177
178
Modify your path and execute the following code to perform the same preprocessing on the raw data as in our experiment:
179
```
180
cd EEG-preprocessing/
181
python EEG-preprocessing/preprocessing.py
182
```
183
184
```
185
cd MEG-preprocessing/
186
MEG-preprocessing/pre_possess.ipynb
187
```
188
Also You can get the data set used in this project through the BaiduNetDisk [link](https://pan.baidu.com/s/1-1hgpoi4nereLVqE4ylE_g?pwd=nid5) to run the code.
189
190
## TODO
191
- [√] Release retrieval and reconstruction scripts.
192
- [√] Update training scripts of reconstruction pipeline.
193
- [ ] Adding validation sets improves performance evaluation accuracy.
194
195
196
197
<!-- ## Acknowledge -->
198
<h2 style="border-bottom: 1px solid lightgray; margin-bottom: 5px;">Acknowledge</h2>
199
200
1.Thanks to Y Song et al. for their contribution in data set preprocessing and neural network structure, we refer to their work:</br>"[Decoding Natural Images from EEG for Object Recognition](https://arxiv.org/pdf/2308.13234.pdf)".</br> Yonghao Song, Bingchuan Liu, Xiang Li, Nanlin Shi, Yijun Wang, and Xiaorong Gao. 
201
202
2.We also thank the authors of [SDRecon](https://github.com/yu-takagi/StableDiffusionReconstruction) for providing the codes and the results. Some parts of the training script are based on [MindEye](https://medarc-ai.github.io/mindeye/) and [MindEye2](https://github.com/MedARC-AI/MindEyeV2). Thanks for the awesome research works.
203
204
3.Here we provide our THING-EEG dataset cited in the paper:</br>"[A large and rich EEG dataset for modeling human visual object recognition](https://www.sciencedirect.com/science/article/pii/S1053811922008758?via%3Dihub)".</br>
205
Alessandro T. Gifford, Kshitij Dwivedi, Gemma Roig, Radoslaw M. Cichy.
206
207
208
4.Another used THINGS-MEG data set provides a reference:</br>"[THINGS-data, a multimodal collection of large-scale datasets for investigating object representations in human brain and behavior.](https://elifesciences.org/articles/82580.pdf)".</br> Hebart, Martin N., Oliver Contier, Lina Teichmann, Adam H. Rockter, Charles Y. Zheng, Alexis Kidder, Anna Corriveau, Maryam Vaziri-Pashkam, and Chris I. Baker.
209
210
211
212
<!-- ## Citation -->
213
<h2 style="border-bottom: 1px solid lightgray; margin-bottom: 5px;">Citation</h2>
214
215
```bibtex
216
@inproceedings{
217
li2024visual,
218
title={Visual Decoding and Reconstruction via {EEG} Embeddings with Guided Diffusion},
219
author={Dongyang Li and Chen Wei and Shiying Li and Jiachen Zou and Quanying Liu},
220
booktitle={The Thirty-eighth Annual Conference on Neural Information Processing Systems},
221
year={2024},
222
url={https://openreview.net/forum?id=RxkcroC8qP}
223
}
224
225
@article{li2024visual,
226
  title={Visual Decoding and Reconstruction via EEG Embeddings with Guided Diffusion},
227
  author={Li, Dongyang and Wei, Chen and Li, Shiying and Zou, Jiachen and Liu, Quanying},
228
  journal={arXiv preprint arXiv:2403.07721},
229
  year={2024}
230
}
231
```