a b/Generation/utils/tools.py
1
import os
2
3
import numpy as np
4
import torch
5
import matplotlib.pyplot as plt
6
import pandas as pd
7
8
plt.switch_backend('agg')
9
10
11
def adjust_learning_rate(optimizer, epoch, args):
12
    # lr = args.learning_rate * (0.2 ** (epoch // 2))
13
    if args.lradj == 'type1':
14
        lr_adjust = {epoch: args.learning_rate * (0.5 ** ((epoch - 1) // 1))}
15
    elif args.lradj == 'type2':
16
        lr_adjust = {
17
            2: 5e-5, 4: 1e-5, 6: 5e-6, 8: 1e-6,
18
            10: 5e-7, 15: 1e-7, 20: 5e-8
19
        }
20
    if epoch in lr_adjust.keys():
21
        lr = lr_adjust[epoch]
22
        for param_group in optimizer.param_groups:
23
            param_group['lr'] = lr
24
        print('Updating learning rate to {}'.format(lr))
25
26
27
class EarlyStopping:
28
    def __init__(self, patience=7, verbose=False, delta=0):
29
        self.patience = patience
30
        self.verbose = verbose
31
        self.counter = 0
32
        self.best_score = None
33
        self.early_stop = False
34
        self.val_loss_min = np.Inf
35
        self.delta = delta
36
37
    def __call__(self, val_loss, model, path):
38
        score = -val_loss
39
        if self.best_score is None:
40
            self.best_score = score
41
            self.save_checkpoint(val_loss, model, path)
42
        elif score < self.best_score + self.delta:
43
            self.counter += 1
44
            print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
45
            if self.counter >= self.patience:
46
                self.early_stop = True
47
        else:
48
            self.best_score = score
49
            self.save_checkpoint(val_loss, model, path)
50
            self.counter = 0
51
52
    def save_checkpoint(self, val_loss, model, path):
53
        if self.verbose:
54
            print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}).  Saving model ...')
55
        torch.save(model.state_dict(), path + '/' + 'checkpoint.pth')
56
        self.val_loss_min = val_loss
57
58
59
class dotdict(dict):
60
    """dot.notation access to dictionary attributes"""
61
    __getattr__ = dict.get
62
    __setattr__ = dict.__setitem__
63
    __delattr__ = dict.__delitem__
64
65
66
class StandardScaler():
67
    def __init__(self, mean, std):
68
        self.mean = mean
69
        self.std = std
70
71
    def transform(self, data):
72
        return (data - self.mean) / self.std
73
74
    def inverse_transform(self, data):
75
        return (data * self.std) + self.mean
76
77
78
def visual(true, preds=None, name='./pic/test.pdf'):
79
    """
80
    Results visualization
81
    """
82
    plt.figure()
83
    plt.plot(true, label='GroundTruth', linewidth=2)
84
    if preds is not None:
85
        plt.plot(preds, label='Prediction', linewidth=2)
86
    plt.legend()
87
    plt.savefig(name, bbox_inches='tight')
88
89
90
def adjustment(gt, pred):
91
    anomaly_state = False
92
    for i in range(len(gt)):
93
        if gt[i] == 1 and pred[i] == 1 and not anomaly_state:
94
            anomaly_state = True
95
            for j in range(i, 0, -1):
96
                if gt[j] == 0:
97
                    break
98
                else:
99
                    if pred[j] == 0:
100
                        pred[j] = 1
101
            for j in range(i, len(gt)):
102
                if gt[j] == 0:
103
                    break
104
                else:
105
                    if pred[j] == 0:
106
                        pred[j] = 1
107
        elif gt[i] == 0:
108
            anomaly_state = False
109
        if anomaly_state:
110
            pred[i] = 1
111
    return gt, pred
112
113
114
def cal_accuracy(y_pred, y_true):
115
    return np.mean(y_pred == y_true)