735 lines (727 with data), 53.2 kB
[1, 50] loss: 1.401 Accuracy : 0.279 val-loss: 1.393 val-Accuracy : 0.226
[6, 50] loss: 0.803 Accuracy : 0.707 val-loss: 1.124 val-Accuracy : 0.420
[11, 50] loss: 0.342 Accuracy : 0.921 val-loss: 0.639 val-Accuracy : 0.731
[16, 50] loss: 0.115 Accuracy : 0.948 val-loss: 0.485 val-Accuracy : 0.821
[21, 50] loss: 0.068 Accuracy : 0.979 val-loss: 0.596 val-Accuracy : 0.764
[26, 50] loss: 0.038 Accuracy : 0.985 val-loss: 1.095 val-Accuracy : 0.717
[31, 50] loss: 0.044 Accuracy : 0.987 val-loss: 0.825 val-Accuracy : 0.778
[36, 50] loss: 0.028 Accuracy : 0.983 val-loss: 1.194 val-Accuracy : 0.764
[41, 50] loss: 0.005 Accuracy : 0.999 val-loss: 0.899 val-Accuracy : 0.778
[46, 50] loss: 0.003 Accuracy : 0.999 val-loss: 0.928 val-Accuracy : 0.788
Begin Training rep 2/5 of Patient 2
[1, 50] loss: 1.399 Accuracy : 0.341 val-loss: 1.342 val-Accuracy : 0.344
[6, 50] loss: 0.807 Accuracy : 0.703 val-loss: 1.274 val-Accuracy : 0.368
[11, 50] loss: 0.485 Accuracy : 0.865 val-loss: 0.812 val-Accuracy : 0.632
[16, 50] loss: 0.224 Accuracy : 0.940 val-loss: 0.953 val-Accuracy : 0.618
[21, 50] loss: 0.104 Accuracy : 0.963 val-loss: 0.588 val-Accuracy : 0.774
[26, 50] loss: 0.067 Accuracy : 0.970 val-loss: 1.366 val-Accuracy : 0.660
[31, 50] loss: 0.026 Accuracy : 0.990 val-loss: 0.632 val-Accuracy : 0.807
[36, 50] loss: 0.008 Accuracy : 0.996 val-loss: 0.726 val-Accuracy : 0.797
[41, 50] loss: 0.002 Accuracy : 1.000 val-loss: 0.912 val-Accuracy : 0.759
[46, 50] loss: 0.001 Accuracy : 1.000 val-loss: 0.941 val-Accuracy : 0.755
Begin Training rep 3/5 of Patient 2
[1, 50] loss: 1.402 Accuracy : 0.294 val-loss: 1.390 val-Accuracy : 0.307
[6, 50] loss: 0.774 Accuracy : 0.728 val-loss: 1.050 val-Accuracy : 0.467
[11, 50] loss: 0.235 Accuracy : 0.918 val-loss: 0.598 val-Accuracy : 0.731
[16, 50] loss: 0.094 Accuracy : 0.974 val-loss: 0.372 val-Accuracy : 0.844
[21, 50] loss: 0.055 Accuracy : 0.985 val-loss: 0.354 val-Accuracy : 0.835
[26, 50] loss: 0.033 Accuracy : 0.992 val-loss: 0.461 val-Accuracy : 0.825
[31, 50] loss: 0.016 Accuracy : 0.994 val-loss: 0.656 val-Accuracy : 0.811
[36, 50] loss: 0.037 Accuracy : 0.971 val-loss: 1.514 val-Accuracy : 0.665
[41, 50] loss: 0.014 Accuracy : 0.996 val-loss: 0.841 val-Accuracy : 0.783
[46, 50] loss: 0.004 Accuracy : 0.999 val-loss: 1.147 val-Accuracy : 0.750
Begin Training rep 4/5 of Patient 2
[1, 50] loss: 1.398 Accuracy : 0.442 val-loss: 1.371 val-Accuracy : 0.491
[6, 50] loss: 0.770 Accuracy : 0.721 val-loss: 1.423 val-Accuracy : 0.458
[11, 50] loss: 0.276 Accuracy : 0.899 val-loss: 1.078 val-Accuracy : 0.642
[16, 50] loss: 0.116 Accuracy : 0.959 val-loss: 0.586 val-Accuracy : 0.741
[21, 50] loss: 0.066 Accuracy : 0.975 val-loss: 0.903 val-Accuracy : 0.726
[26, 50] loss: 0.033 Accuracy : 0.989 val-loss: 1.056 val-Accuracy : 0.745
[31, 50] loss: 0.039 Accuracy : 0.986 val-loss: 0.955 val-Accuracy : 0.759
[36, 50] loss: 0.019 Accuracy : 0.987 val-loss: 0.939 val-Accuracy : 0.759
[41, 50] loss: 0.006 Accuracy : 0.989 val-loss: 1.543 val-Accuracy : 0.750
[46, 50] loss: 0.049 Accuracy : 0.945 val-loss: 1.165 val-Accuracy : 0.708
Begin Training rep 5/5 of Patient 2
[1, 50] loss: 1.401 Accuracy : 0.277 val-loss: 1.388 val-Accuracy : 0.212
[6, 50] loss: 0.754 Accuracy : 0.734 val-loss: 1.204 val-Accuracy : 0.462
[11, 50] loss: 0.341 Accuracy : 0.912 val-loss: 0.793 val-Accuracy : 0.651
[16, 50] loss: 0.116 Accuracy : 0.959 val-loss: 0.905 val-Accuracy : 0.679
[21, 50] loss: 0.052 Accuracy : 0.980 val-loss: 1.022 val-Accuracy : 0.684
[26, 50] loss: 0.035 Accuracy : 0.982 val-loss: 0.874 val-Accuracy : 0.741
[31, 50] loss: 0.051 Accuracy : 0.981 val-loss: 0.755 val-Accuracy : 0.778
[36, 50] loss: 0.026 Accuracy : 0.987 val-loss: 1.158 val-Accuracy : 0.741
[41, 50] loss: 0.024 Accuracy : 0.986 val-loss: 1.185 val-Accuracy : 0.750
[46, 50] loss: 0.018 Accuracy : 0.991 val-loss: 1.197 val-Accuracy : 0.717
loss: 0.005 Accuracy : 0.987 val-loss: 1.076 val-Accuracy : 0.743
Begin Training rep 1/5 of Patient 9
[1, 50] loss: 1.402 Accuracy : 0.345 val-loss: 1.373 val-Accuracy : 0.376
[6, 50] loss: 0.681 Accuracy : 0.787 val-loss: 0.394 val-Accuracy : 0.881
[11, 50] loss: 0.246 Accuracy : 0.926 val-loss: 0.092 val-Accuracy : 0.990
[16, 50] loss: 0.146 Accuracy : 0.936 val-loss: 0.082 val-Accuracy : 0.970
[21, 50] loss: 0.076 Accuracy : 0.977 val-loss: 0.032 val-Accuracy : 0.990
[26, 50] loss: 0.051 Accuracy : 0.981 val-loss: 0.084 val-Accuracy : 0.970
[31, 50] loss: 0.048 Accuracy : 0.985 val-loss: 0.098 val-Accuracy : 0.975
[36, 50] loss: 0.032 Accuracy : 0.984 val-loss: 0.105 val-Accuracy : 0.975
[41, 50] loss: 0.016 Accuracy : 0.996 val-loss: 0.070 val-Accuracy : 0.990
[46, 50] loss: 0.007 Accuracy : 0.998 val-loss: 0.039 val-Accuracy : 0.990
Begin Training rep 2/5 of Patient 9
[1, 50] loss: 1.396 Accuracy : 0.368 val-loss: 1.336 val-Accuracy : 0.351
[6, 50] loss: 0.794 Accuracy : 0.729 val-loss: 0.570 val-Accuracy : 0.738
[11, 50] loss: 0.299 Accuracy : 0.928 val-loss: 0.130 val-Accuracy : 0.960
[16, 50] loss: 0.134 Accuracy : 0.964 val-loss: 0.084 val-Accuracy : 0.980
[21, 50] loss: 0.073 Accuracy : 0.974 val-loss: 0.159 val-Accuracy : 0.965
[26, 50] loss: 0.048 Accuracy : 0.977 val-loss: 0.088 val-Accuracy : 0.970
[31, 50] loss: 0.021 Accuracy : 0.995 val-loss: 0.108 val-Accuracy : 0.970
[36, 50] loss: 0.029 Accuracy : 0.989 val-loss: 0.208 val-Accuracy : 0.960
[41, 50] loss: 0.026 Accuracy : 0.989 val-loss: 0.091 val-Accuracy : 0.970
[46, 50] loss: 0.012 Accuracy : 0.993 val-loss: 0.093 val-Accuracy : 0.975
Begin Training rep 3/5 of Patient 9
[1, 50] loss: 1.400 Accuracy : 0.342 val-loss: 1.350 val-Accuracy : 0.317
[6, 50] loss: 0.816 Accuracy : 0.706 val-loss: 0.662 val-Accuracy : 0.738
[11, 50] loss: 0.465 Accuracy : 0.857 val-loss: 0.399 val-Accuracy : 0.851
[16, 50] loss: 0.184 Accuracy : 0.936 val-loss: 0.140 val-Accuracy : 0.955
[21, 50] loss: 0.114 Accuracy : 0.958 val-loss: 0.051 val-Accuracy : 0.985
[26, 50] loss: 0.046 Accuracy : 0.987 val-loss: 0.034 val-Accuracy : 0.990
[31, 50] loss: 0.026 Accuracy : 0.994 val-loss: 0.021 val-Accuracy : 0.995
[36, 50] loss: 0.048 Accuracy : 0.977 val-loss: 0.013 val-Accuracy : 1.000
[41, 50] loss: 0.017 Accuracy : 0.988 val-loss: 0.026 val-Accuracy : 0.995
[46, 50] loss: 0.003 Accuracy : 1.000 val-loss: 0.025 val-Accuracy : 0.995
Begin Training rep 4/5 of Patient 9
[1, 50] loss: 1.400 Accuracy : 0.288 val-loss: 1.366 val-Accuracy : 0.292
[6, 50] loss: 0.802 Accuracy : 0.706 val-loss: 0.706 val-Accuracy : 0.688
[11, 50] loss: 0.277 Accuracy : 0.918 val-loss: 0.121 val-Accuracy : 0.970
[16, 50] loss: 0.135 Accuracy : 0.958 val-loss: 0.075 val-Accuracy : 0.975
[21, 50] loss: 0.053 Accuracy : 0.972 val-loss: 0.068 val-Accuracy : 0.990
[26, 50] loss: 0.069 Accuracy : 0.974 val-loss: 0.117 val-Accuracy : 0.980
[31, 50] loss: 0.023 Accuracy : 0.994 val-loss: 0.129 val-Accuracy : 0.985
[36, 50] loss: 0.013 Accuracy : 0.986 val-loss: 0.148 val-Accuracy : 0.975
[41, 50] loss: 0.005 Accuracy : 0.998 val-loss: 0.124 val-Accuracy : 0.980
[46, 50] loss: 0.002 Accuracy : 0.999 val-loss: 0.129 val-Accuracy : 0.985
Begin Training rep 5/5 of Patient 9
[1, 50] loss: 1.401 Accuracy : 0.269 val-loss: 1.372 val-Accuracy : 0.287
[6, 50] loss: 0.738 Accuracy : 0.737 val-loss: 0.548 val-Accuracy : 0.802
[11, 50] loss: 0.251 Accuracy : 0.936 val-loss: 0.128 val-Accuracy : 0.975
[16, 50] loss: 0.140 Accuracy : 0.958 val-loss: 0.077 val-Accuracy : 0.965
[21, 50] loss: 0.083 Accuracy : 0.971 val-loss: 0.035 val-Accuracy : 0.990
[26, 50] loss: 0.034 Accuracy : 0.984 val-loss: 0.046 val-Accuracy : 0.985
[31, 50] loss: 0.021 Accuracy : 0.996 val-loss: 0.056 val-Accuracy : 0.975
[36, 50] loss: 0.042 Accuracy : 0.961 val-loss: 0.080 val-Accuracy : 0.965
[41, 50] loss: 0.010 Accuracy : 1.000 val-loss: 0.025 val-Accuracy : 1.000
[46, 50] loss: 0.004 Accuracy : 0.998 val-loss: 0.019 val-Accuracy : 0.995
loss: 0.003 Accuracy : 0.998 val-loss: 0.061 val-Accuracy : 0.988
Begin Training rep 1/5 of Patient 11
[1, 50] loss: 1.399 Accuracy : 0.302 val-loss: 1.364 val-Accuracy : 0.280
[6, 50] loss: 0.857 Accuracy : 0.689 val-loss: 0.941 val-Accuracy : 0.596
[11, 50] loss: 0.468 Accuracy : 0.868 val-loss: 0.522 val-Accuracy : 0.804
[16, 50] loss: 0.148 Accuracy : 0.932 val-loss: 0.254 val-Accuracy : 0.907
[21, 50] loss: 0.136 Accuracy : 0.950 val-loss: 0.187 val-Accuracy : 0.916
[26, 50] loss: 0.047 Accuracy : 0.987 val-loss: 0.059 val-Accuracy : 0.978
[31, 50] loss: 0.019 Accuracy : 0.987 val-loss: 0.074 val-Accuracy : 0.964
[36, 50] loss: 0.070 Accuracy : 0.985 val-loss: 0.147 val-Accuracy : 0.956
[41, 50] loss: 0.016 Accuracy : 0.994 val-loss: 0.104 val-Accuracy : 0.969
[46, 50] loss: 0.002 Accuracy : 0.998 val-loss: 0.112 val-Accuracy : 0.960
Begin Training rep 2/5 of Patient 11
[1, 50] loss: 1.400 Accuracy : 0.274 val-loss: 1.402 val-Accuracy : 0.271
[6, 50] loss: 0.786 Accuracy : 0.716 val-loss: 0.875 val-Accuracy : 0.636
[11, 50] loss: 0.340 Accuracy : 0.895 val-loss: 0.326 val-Accuracy : 0.880
[16, 50] loss: 0.133 Accuracy : 0.963 val-loss: 0.246 val-Accuracy : 0.907
[21, 50] loss: 0.108 Accuracy : 0.953 val-loss: 0.305 val-Accuracy : 0.876
[26, 50] loss: 0.053 Accuracy : 0.977 val-loss: 0.217 val-Accuracy : 0.929
[31, 50] loss: 0.023 Accuracy : 0.991 val-loss: 0.278 val-Accuracy : 0.920
[36, 50] loss: 0.011 Accuracy : 0.991 val-loss: 0.250 val-Accuracy : 0.924
[41, 50] loss: 0.009 Accuracy : 0.991 val-loss: 0.282 val-Accuracy : 0.929
[46, 50] loss: 0.023 Accuracy : 0.992 val-loss: 0.200 val-Accuracy : 0.942
Begin Training rep 3/5 of Patient 11
[1, 50] loss: 1.401 Accuracy : 0.286 val-loss: 1.386 val-Accuracy : 0.258
[6, 50] loss: 0.817 Accuracy : 0.698 val-loss: 1.014 val-Accuracy : 0.582
[11, 50] loss: 0.315 Accuracy : 0.904 val-loss: 0.401 val-Accuracy : 0.822
[16, 50] loss: 0.151 Accuracy : 0.935 val-loss: 0.224 val-Accuracy : 0.911
[21, 50] loss: 0.072 Accuracy : 0.974 val-loss: 0.101 val-Accuracy : 0.960
[26, 50] loss: 0.062 Accuracy : 0.973 val-loss: 0.112 val-Accuracy : 0.951
[31, 50] loss: 0.064 Accuracy : 0.972 val-loss: 0.083 val-Accuracy : 0.956
[36, 50] loss: 0.028 Accuracy : 0.993 val-loss: 0.046 val-Accuracy : 0.973
[41, 50] loss: 0.007 Accuracy : 0.998 val-loss: 0.039 val-Accuracy : 0.982
[46, 50] loss: 0.004 Accuracy : 0.998 val-loss: 0.034 val-Accuracy : 0.987
Begin Training rep 4/5 of Patient 11
[1, 50] loss: 1.399 Accuracy : 0.297 val-loss: 1.377 val-Accuracy : 0.271
[6, 50] loss: 0.783 Accuracy : 0.724 val-loss: 0.786 val-Accuracy : 0.689
[11, 50] loss: 0.279 Accuracy : 0.914 val-loss: 0.221 val-Accuracy : 0.911
[16, 50] loss: 0.142 Accuracy : 0.938 val-loss: 0.141 val-Accuracy : 0.951
[21, 50] loss: 0.068 Accuracy : 0.969 val-loss: 0.136 val-Accuracy : 0.951
[26, 50] loss: 0.036 Accuracy : 0.976 val-loss: 0.121 val-Accuracy : 0.969
[31, 50] loss: 0.058 Accuracy : 0.982 val-loss: 0.130 val-Accuracy : 0.951
[36, 50] loss: 0.029 Accuracy : 0.987 val-loss: 0.114 val-Accuracy : 0.973
[41, 50] loss: 0.017 Accuracy : 0.994 val-loss: 0.130 val-Accuracy : 0.960
[46, 50] loss: 0.006 Accuracy : 0.996 val-loss: 0.112 val-Accuracy : 0.956
Begin Training rep 5/5 of Patient 11
[1, 50] loss: 1.399 Accuracy : 0.381 val-loss: 1.374 val-Accuracy : 0.387
[6, 50] loss: 0.754 Accuracy : 0.723 val-loss: 0.759 val-Accuracy : 0.640
[11, 50] loss: 0.246 Accuracy : 0.926 val-loss: 0.314 val-Accuracy : 0.889
[16, 50] loss: 0.117 Accuracy : 0.966 val-loss: 0.252 val-Accuracy : 0.902
[21, 50] loss: 0.057 Accuracy : 0.981 val-loss: 0.263 val-Accuracy : 0.916
[26, 50] loss: 0.070 Accuracy : 0.972 val-loss: 0.303 val-Accuracy : 0.893
[31, 50] loss: 0.055 Accuracy : 0.964 val-loss: 0.282 val-Accuracy : 0.911
[36, 50] loss: 0.030 Accuracy : 0.969 val-loss: 0.183 val-Accuracy : 0.929
[41, 50] loss: 0.006 Accuracy : 0.996 val-loss: 0.284 val-Accuracy : 0.924
[46, 50] loss: 0.004 Accuracy : 0.998 val-loss: 0.325 val-Accuracy : 0.911
loss: 0.003 Accuracy : 0.996 val-loss: 0.157 val-Accuracy : 0.951
Begin Training rep 1/5 of Patient 12
[1, 50] loss: 1.399 Accuracy : 0.301 val-loss: 1.369 val-Accuracy : 0.276
[6, 50] loss: 0.805 Accuracy : 0.708 val-loss: 1.047 val-Accuracy : 0.516
[11, 50] loss: 0.344 Accuracy : 0.895 val-loss: 0.685 val-Accuracy : 0.742
[16, 50] loss: 0.139 Accuracy : 0.958 val-loss: 0.540 val-Accuracy : 0.783
[21, 50] loss: 0.071 Accuracy : 0.986 val-loss: 0.259 val-Accuracy : 0.912
[26, 50] loss: 0.059 Accuracy : 0.975 val-loss: 0.475 val-Accuracy : 0.885
[31, 50] loss: 0.035 Accuracy : 0.972 val-loss: 0.403 val-Accuracy : 0.885
[36, 50] loss: 0.040 Accuracy : 0.987 val-loss: 0.312 val-Accuracy : 0.922
[41, 50] loss: 0.005 Accuracy : 0.998 val-loss: 0.418 val-Accuracy : 0.894
[46, 50] loss: 0.003 Accuracy : 0.998 val-loss: 0.361 val-Accuracy : 0.903
Begin Training rep 2/5 of Patient 12
[1, 50] loss: 1.401 Accuracy : 0.277 val-loss: 1.385 val-Accuracy : 0.290
[6, 50] loss: 0.759 Accuracy : 0.735 val-loss: 0.897 val-Accuracy : 0.645
[11, 50] loss: 0.303 Accuracy : 0.904 val-loss: 0.564 val-Accuracy : 0.793
[16, 50] loss: 0.136 Accuracy : 0.934 val-loss: 0.444 val-Accuracy : 0.834
[21, 50] loss: 0.097 Accuracy : 0.974 val-loss: 0.359 val-Accuracy : 0.876
[26, 50] loss: 0.078 Accuracy : 0.970 val-loss: 0.329 val-Accuracy : 0.912
[31, 50] loss: 0.040 Accuracy : 0.987 val-loss: 0.387 val-Accuracy : 0.876
[36, 50] loss: 0.011 Accuracy : 0.989 val-loss: 0.442 val-Accuracy : 0.866
[41, 50] loss: 0.010 Accuracy : 0.984 val-loss: 0.449 val-Accuracy : 0.871
[46, 50] loss: 0.150 Accuracy : 0.964 val-loss: 0.588 val-Accuracy : 0.853
Begin Training rep 3/5 of Patient 12
[1, 50] loss: 1.403 Accuracy : 0.290 val-loss: 1.388 val-Accuracy : 0.272
[6, 50] loss: 0.817 Accuracy : 0.684 val-loss: 1.003 val-Accuracy : 0.507
[11, 50] loss: 0.283 Accuracy : 0.910 val-loss: 0.407 val-Accuracy : 0.871
[16, 50] loss: 0.183 Accuracy : 0.938 val-loss: 0.261 val-Accuracy : 0.908
[21, 50] loss: 0.100 Accuracy : 0.971 val-loss: 0.228 val-Accuracy : 0.926
[26, 50] loss: 0.045 Accuracy : 0.980 val-loss: 0.232 val-Accuracy : 0.935
[31, 50] loss: 0.025 Accuracy : 0.988 val-loss: 0.265 val-Accuracy : 0.926
[36, 50] loss: 0.047 Accuracy : 0.965 val-loss: 0.327 val-Accuracy : 0.912
[41, 50] loss: 0.040 Accuracy : 0.979 val-loss: 0.378 val-Accuracy : 0.866
[46, 50] loss: 0.012 Accuracy : 0.983 val-loss: 0.357 val-Accuracy : 0.912
Begin Training rep 4/5 of Patient 12
[1, 50] loss: 1.402 Accuracy : 0.292 val-loss: 1.383 val-Accuracy : 0.263
[6, 50] loss: 0.790 Accuracy : 0.733 val-loss: 0.962 val-Accuracy : 0.590
[11, 50] loss: 0.234 Accuracy : 0.932 val-loss: 0.239 val-Accuracy : 0.926
[16, 50] loss: 0.104 Accuracy : 0.967 val-loss: 0.190 val-Accuracy : 0.917
[21, 50] loss: 0.053 Accuracy : 0.987 val-loss: 0.183 val-Accuracy : 0.949
[26, 50] loss: 0.038 Accuracy : 0.988 val-loss: 0.161 val-Accuracy : 0.949
[31, 50] loss: 0.033 Accuracy : 0.985 val-loss: 0.196 val-Accuracy : 0.926
[36, 50] loss: 0.015 Accuracy : 0.986 val-loss: 0.196 val-Accuracy : 0.935
[41, 50] loss: 0.053 Accuracy : 0.985 val-loss: 0.162 val-Accuracy : 0.949
[46, 50] loss: 0.008 Accuracy : 0.999 val-loss: 0.113 val-Accuracy : 0.949
Begin Training rep 5/5 of Patient 12
[1, 50] loss: 1.399 Accuracy : 0.270 val-loss: 1.386 val-Accuracy : 0.267
[6, 50] loss: 0.836 Accuracy : 0.654 val-loss: 0.998 val-Accuracy : 0.562
[11, 50] loss: 0.371 Accuracy : 0.905 val-loss: 0.288 val-Accuracy : 0.894
[16, 50] loss: 0.157 Accuracy : 0.945 val-loss: 0.187 val-Accuracy : 0.935
[21, 50] loss: 0.084 Accuracy : 0.980 val-loss: 0.142 val-Accuracy : 0.954
[26, 50] loss: 0.048 Accuracy : 0.987 val-loss: 0.148 val-Accuracy : 0.954
[31, 50] loss: 0.053 Accuracy : 0.982 val-loss: 0.193 val-Accuracy : 0.931
[36, 50] loss: 0.014 Accuracy : 0.993 val-loss: 0.172 val-Accuracy : 0.954
[41, 50] loss: 0.010 Accuracy : 0.996 val-loss: 0.228 val-Accuracy : 0.949
[46, 50] loss: 0.071 Accuracy : 0.985 val-loss: 0.267 val-Accuracy : 0.922
loss: 0.006 Accuracy : 0.986 val-loss: 0.337 val-Accuracy : 0.908
Begin Training rep 1/5 of Patient 8
[1, 50] loss: 1.400 Accuracy : 0.354 val-loss: 1.343 val-Accuracy : 0.306
[6, 50] loss: 0.880 Accuracy : 0.656 val-loss: 0.675 val-Accuracy : 0.637
[11, 50] loss: 0.474 Accuracy : 0.862 val-loss: 0.281 val-Accuracy : 0.896
[16, 50] loss: 0.124 Accuracy : 0.960 val-loss: 0.055 val-Accuracy : 0.974
[21, 50] loss: 0.073 Accuracy : 0.968 val-loss: 0.045 val-Accuracy : 0.990
[26, 50] loss: 0.037 Accuracy : 0.972 val-loss: 0.021 val-Accuracy : 0.995
[31, 50] loss: 0.032 Accuracy : 0.979 val-loss: 0.022 val-Accuracy : 0.984
[36, 50] loss: 0.046 Accuracy : 0.979 val-loss: 0.025 val-Accuracy : 0.995
[41, 50] loss: 0.007 Accuracy : 0.998 val-loss: 0.027 val-Accuracy : 0.990
[46, 50] loss: 0.003 Accuracy : 0.999 val-loss: 0.019 val-Accuracy : 0.984
Begin Training rep 2/5 of Patient 8
[1, 50] loss: 1.399 Accuracy : 0.316 val-loss: 1.368 val-Accuracy : 0.326
[6, 50] loss: 0.794 Accuracy : 0.708 val-loss: 0.581 val-Accuracy : 0.777
[11, 50] loss: 0.327 Accuracy : 0.906 val-loss: 0.227 val-Accuracy : 0.912
[16, 50] loss: 0.160 Accuracy : 0.939 val-loss: 0.122 val-Accuracy : 0.964
[21, 50] loss: 0.105 Accuracy : 0.960 val-loss: 0.089 val-Accuracy : 0.959
[26, 50] loss: 0.061 Accuracy : 0.977 val-loss: 0.072 val-Accuracy : 0.969
[31, 50] loss: 0.029 Accuracy : 0.985 val-loss: 0.108 val-Accuracy : 0.959
[36, 50] loss: 0.014 Accuracy : 0.991 val-loss: 0.106 val-Accuracy : 0.959
[41, 50] loss: 0.005 Accuracy : 0.998 val-loss: 0.035 val-Accuracy : 0.979
[46, 50] loss: 0.003 Accuracy : 0.999 val-loss: 0.032 val-Accuracy : 0.984
Begin Training rep 3/5 of Patient 8
[1, 50] loss: 1.398 Accuracy : 0.417 val-loss: 1.329 val-Accuracy : 0.404
[6, 50] loss: 0.828 Accuracy : 0.693 val-loss: 0.618 val-Accuracy : 0.705
[11, 50] loss: 0.322 Accuracy : 0.887 val-loss: 0.188 val-Accuracy : 0.917
[16, 50] loss: 0.142 Accuracy : 0.948 val-loss: 0.056 val-Accuracy : 0.979
[21, 50] loss: 0.064 Accuracy : 0.964 val-loss: 0.063 val-Accuracy : 0.974
[26, 50] loss: 0.055 Accuracy : 0.977 val-loss: 0.042 val-Accuracy : 0.984
[31, 50] loss: 0.032 Accuracy : 0.994 val-loss: 0.019 val-Accuracy : 0.990
[36, 50] loss: 0.012 Accuracy : 0.991 val-loss: 0.034 val-Accuracy : 0.984
[41, 50] loss: 0.007 Accuracy : 0.999 val-loss: 0.029 val-Accuracy : 0.984
[46, 50] loss: 0.010 Accuracy : 0.998 val-loss: 0.030 val-Accuracy : 0.990
Begin Training rep 4/5 of Patient 8
[1, 50] loss: 1.403 Accuracy : 0.286 val-loss: 1.380 val-Accuracy : 0.290
[6, 50] loss: 0.820 Accuracy : 0.710 val-loss: 0.990 val-Accuracy : 0.746
[11, 50] loss: 0.428 Accuracy : 0.836 val-loss: 0.351 val-Accuracy : 0.881
[16, 50] loss: 0.160 Accuracy : 0.952 val-loss: 0.147 val-Accuracy : 0.927
[21, 50] loss: 0.078 Accuracy : 0.969 val-loss: 0.120 val-Accuracy : 0.964
[26, 50] loss: 0.043 Accuracy : 0.984 val-loss: 0.125 val-Accuracy : 0.959
[31, 50] loss: 0.044 Accuracy : 0.971 val-loss: 0.124 val-Accuracy : 0.948
[36, 50] loss: 0.017 Accuracy : 0.995 val-loss: 0.062 val-Accuracy : 0.984
[41, 50] loss: 0.007 Accuracy : 0.997 val-loss: 0.081 val-Accuracy : 0.969
[46, 50] loss: 0.004 Accuracy : 0.998 val-loss: 0.087 val-Accuracy : 0.969
Begin Training rep 5/5 of Patient 8
[1, 50] loss: 1.403 Accuracy : 0.283 val-loss: 1.376 val-Accuracy : 0.290
[6, 50] loss: 0.798 Accuracy : 0.725 val-loss: 0.657 val-Accuracy : 0.699
[11, 50] loss: 0.252 Accuracy : 0.924 val-loss: 0.120 val-Accuracy : 0.959
[16, 50] loss: 0.118 Accuracy : 0.945 val-loss: 0.103 val-Accuracy : 0.969
[21, 50] loss: 0.070 Accuracy : 0.963 val-loss: 0.079 val-Accuracy : 0.974
[26, 50] loss: 0.038 Accuracy : 0.974 val-loss: 0.047 val-Accuracy : 0.990
[31, 50] loss: 0.026 Accuracy : 0.987 val-loss: 0.019 val-Accuracy : 0.995
[36, 50] loss: 0.013 Accuracy : 0.987 val-loss: 0.024 val-Accuracy : 0.984
[41, 50] loss: 0.030 Accuracy : 0.977 val-loss: 0.086 val-Accuracy : 0.969
[46, 50] loss: 0.017 Accuracy : 0.995 val-loss: 0.038 val-Accuracy : 0.984
loss: 0.003 Accuracy : 0.998 val-loss: 0.041 val-Accuracy : 0.982
Begin Training rep 1/5 of Patient 10
[1, 50] loss: 1.402 Accuracy : 0.285 val-loss: 1.381 val-Accuracy : 0.271
[6, 50] loss: 0.798 Accuracy : 0.710 val-loss: 0.730 val-Accuracy : 0.700
[11, 50] loss: 0.261 Accuracy : 0.940 val-loss: 0.145 val-Accuracy : 0.957
[16, 50] loss: 0.103 Accuracy : 0.964 val-loss: 0.138 val-Accuracy : 0.948
[21, 50] loss: 0.042 Accuracy : 0.990 val-loss: 0.080 val-Accuracy : 0.971
[26, 50] loss: 0.044 Accuracy : 0.974 val-loss: 0.116 val-Accuracy : 0.962
[31, 50] loss: 0.033 Accuracy : 0.986 val-loss: 0.132 val-Accuracy : 0.962
[36, 50] loss: 0.014 Accuracy : 0.992 val-loss: 0.111 val-Accuracy : 0.971
[41, 50] loss: 0.004 Accuracy : 0.993 val-loss: 0.061 val-Accuracy : 0.967
[46, 50] loss: 0.065 Accuracy : 0.991 val-loss: 0.212 val-Accuracy : 0.938
Begin Training rep 2/5 of Patient 10
[1, 50] loss: 1.397 Accuracy : 0.415 val-loss: 1.335 val-Accuracy : 0.448
[6, 50] loss: 0.760 Accuracy : 0.728 val-loss: 0.597 val-Accuracy : 0.790
[11, 50] loss: 0.287 Accuracy : 0.896 val-loss: 0.184 val-Accuracy : 0.929
[16, 50] loss: 0.129 Accuracy : 0.950 val-loss: 0.063 val-Accuracy : 0.967
[21, 50] loss: 0.122 Accuracy : 0.957 val-loss: 0.049 val-Accuracy : 0.990
[26, 50] loss: 0.086 Accuracy : 0.974 val-loss: 0.058 val-Accuracy : 0.981
[31, 50] loss: 0.035 Accuracy : 0.995 val-loss: 0.042 val-Accuracy : 0.986
[36, 50] loss: 0.011 Accuracy : 0.996 val-loss: 0.064 val-Accuracy : 0.976
[41, 50] loss: 0.015 Accuracy : 0.994 val-loss: 0.053 val-Accuracy : 0.976
[46, 50] loss: 0.018 Accuracy : 0.998 val-loss: 0.073 val-Accuracy : 0.971
Begin Training rep 3/5 of Patient 10
[1, 50] loss: 1.402 Accuracy : 0.285 val-loss: 1.380 val-Accuracy : 0.271
[6, 50] loss: 0.783 Accuracy : 0.720 val-loss: 0.704 val-Accuracy : 0.752
[11, 50] loss: 0.316 Accuracy : 0.922 val-loss: 0.230 val-Accuracy : 0.933
[16, 50] loss: 0.139 Accuracy : 0.953 val-loss: 0.097 val-Accuracy : 0.976
[21, 50] loss: 0.088 Accuracy : 0.972 val-loss: 0.080 val-Accuracy : 0.981
[26, 50] loss: 0.048 Accuracy : 0.981 val-loss: 0.072 val-Accuracy : 0.986
[31, 50] loss: 0.054 Accuracy : 0.966 val-loss: 0.182 val-Accuracy : 0.952
[36, 50] loss: 0.038 Accuracy : 0.988 val-loss: 0.062 val-Accuracy : 0.986
[41, 50] loss: 0.020 Accuracy : 0.991 val-loss: 0.040 val-Accuracy : 0.986
[46, 50] loss: 0.021 Accuracy : 0.993 val-loss: 0.077 val-Accuracy : 0.981
Begin Training rep 4/5 of Patient 10
[1, 50] loss: 1.401 Accuracy : 0.295 val-loss: 1.379 val-Accuracy : 0.276
[6, 50] loss: 0.855 Accuracy : 0.677 val-loss: 0.778 val-Accuracy : 0.648
[11, 50] loss: 0.476 Accuracy : 0.840 val-loss: 0.386 val-Accuracy : 0.848
[16, 50] loss: 0.233 Accuracy : 0.929 val-loss: 0.189 val-Accuracy : 0.933
[21, 50] loss: 0.173 Accuracy : 0.949 val-loss: 0.132 val-Accuracy : 0.952
[26, 50] loss: 0.050 Accuracy : 0.993 val-loss: 0.092 val-Accuracy : 0.967
[31, 50] loss: 0.042 Accuracy : 0.981 val-loss: 0.118 val-Accuracy : 0.952
[36, 50] loss: 0.020 Accuracy : 0.987 val-loss: 0.068 val-Accuracy : 0.971
[41, 50] loss: 0.030 Accuracy : 0.991 val-loss: 0.104 val-Accuracy : 0.962
[46, 50] loss: 0.031 Accuracy : 0.994 val-loss: 0.114 val-Accuracy : 0.957
Begin Training rep 5/5 of Patient 10
[1, 50] loss: 1.400 Accuracy : 0.340 val-loss: 1.376 val-Accuracy : 0.371
[6, 50] loss: 0.792 Accuracy : 0.695 val-loss: 0.679 val-Accuracy : 0.700
[11, 50] loss: 0.327 Accuracy : 0.881 val-loss: 0.243 val-Accuracy : 0.910
[16, 50] loss: 0.163 Accuracy : 0.930 val-loss: 0.169 val-Accuracy : 0.938
[21, 50] loss: 0.091 Accuracy : 0.968 val-loss: 0.134 val-Accuracy : 0.967
[26, 50] loss: 0.084 Accuracy : 0.981 val-loss: 0.141 val-Accuracy : 0.952
[31, 50] loss: 0.063 Accuracy : 0.978 val-loss: 0.104 val-Accuracy : 0.962
[36, 50] loss: 0.037 Accuracy : 0.988 val-loss: 0.130 val-Accuracy : 0.952
[41, 50] loss: 0.014 Accuracy : 0.997 val-loss: 0.053 val-Accuracy : 0.981
[46, 50] loss: 0.007 Accuracy : 0.998 val-loss: 0.069 val-Accuracy : 0.962
loss: 0.017 Accuracy : 0.995 val-loss: 0.109 val-Accuracy : 0.962
Begin Training rep 1/5 of Patient 1
[1, 50] loss: 1.402 Accuracy : 0.365 val-loss: 1.358 val-Accuracy : 0.432
[6, 50] loss: 0.796 Accuracy : 0.726 val-loss: 1.280 val-Accuracy : 0.443
[11, 50] loss: 0.226 Accuracy : 0.938 val-loss: 0.828 val-Accuracy : 0.681
[16, 50] loss: 0.073 Accuracy : 0.972 val-loss: 1.741 val-Accuracy : 0.503
[21, 50] loss: 0.045 Accuracy : 0.979 val-loss: 2.089 val-Accuracy : 0.546
[26, 50] loss: 0.027 Accuracy : 0.995 val-loss: 1.566 val-Accuracy : 0.643
[31, 50] loss: 0.004 Accuracy : 0.999 val-loss: 2.119 val-Accuracy : 0.568
[36, 50] loss: 0.004 Accuracy : 0.994 val-loss: 2.852 val-Accuracy : 0.573
[41, 50] loss: 0.004 Accuracy : 0.996 val-loss: 2.941 val-Accuracy : 0.589
[46, 50] loss: 0.003 Accuracy : 0.998 val-loss: 2.758 val-Accuracy : 0.584
Begin Training rep 2/5 of Patient 1
[1, 50] loss: 1.400 Accuracy : 0.287 val-loss: 1.362 val-Accuracy : 0.319
[6, 50] loss: 0.723 Accuracy : 0.772 val-loss: 1.129 val-Accuracy : 0.427
[11, 50] loss: 0.203 Accuracy : 0.947 val-loss: 1.093 val-Accuracy : 0.611
[16, 50] loss: 0.077 Accuracy : 0.957 val-loss: 0.827 val-Accuracy : 0.800
[21, 50] loss: 0.040 Accuracy : 0.970 val-loss: 0.891 val-Accuracy : 0.843
[26, 50] loss: 0.023 Accuracy : 0.991 val-loss: 1.159 val-Accuracy : 0.741
[31, 50] loss: 0.015 Accuracy : 0.995 val-loss: 1.912 val-Accuracy : 0.622
[36, 50] loss: 0.006 Accuracy : 0.999 val-loss: 1.908 val-Accuracy : 0.622
[41, 50] loss: 0.001 Accuracy : 1.000 val-loss: 2.011 val-Accuracy : 0.649
[46, 50] loss: 0.001 Accuracy : 0.999 val-loss: 2.229 val-Accuracy : 0.649
Begin Training rep 3/5 of Patient 1
[1, 50] loss: 1.390 Accuracy : 0.458 val-loss: 1.224 val-Accuracy : 0.524
[6, 50] loss: 0.839 Accuracy : 0.683 val-loss: 1.134 val-Accuracy : 0.422
[11, 50] loss: 0.353 Accuracy : 0.903 val-loss: 1.331 val-Accuracy : 0.454
[16, 50] loss: 0.097 Accuracy : 0.967 val-loss: 1.203 val-Accuracy : 0.627
[21, 50] loss: 0.050 Accuracy : 0.983 val-loss: 1.330 val-Accuracy : 0.562
[26, 50] loss: 0.018 Accuracy : 0.992 val-loss: 1.308 val-Accuracy : 0.670
[31, 50] loss: 0.029 Accuracy : 0.990 val-loss: 1.228 val-Accuracy : 0.757
[36, 50] loss: 0.016 Accuracy : 0.996 val-loss: 1.672 val-Accuracy : 0.632
[41, 50] loss: 0.008 Accuracy : 0.998 val-loss: 2.226 val-Accuracy : 0.616
[46, 50] loss: 0.003 Accuracy : 0.999 val-loss: 2.460 val-Accuracy : 0.600
Begin Training rep 4/5 of Patient 1
[1, 50] loss: 1.401 Accuracy : 0.282 val-loss: 1.370 val-Accuracy : 0.308
[6, 50] loss: 0.768 Accuracy : 0.695 val-loss: 1.289 val-Accuracy : 0.378
[11, 50] loss: 0.295 Accuracy : 0.911 val-loss: 0.944 val-Accuracy : 0.600
[16, 50] loss: 0.070 Accuracy : 0.981 val-loss: 1.123 val-Accuracy : 0.632
[21, 50] loss: 0.061 Accuracy : 0.981 val-loss: 1.487 val-Accuracy : 0.616
[26, 50] loss: 0.016 Accuracy : 0.992 val-loss: 2.146 val-Accuracy : 0.589
[31, 50] loss: 0.014 Accuracy : 0.987 val-loss: 1.620 val-Accuracy : 0.670
[36, 50] loss: 0.013 Accuracy : 0.985 val-loss: 1.792 val-Accuracy : 0.681
[41, 50] loss: 0.030 Accuracy : 0.993 val-loss: 1.618 val-Accuracy : 0.676
[46, 50] loss: 0.003 Accuracy : 0.999 val-loss: 2.375 val-Accuracy : 0.638
Begin Training rep 5/5 of Patient 1
[1, 50] loss: 1.403 Accuracy : 0.268 val-loss: 1.377 val-Accuracy : 0.259
[6, 50] loss: 0.773 Accuracy : 0.725 val-loss: 1.144 val-Accuracy : 0.405
[11, 50] loss: 0.292 Accuracy : 0.923 val-loss: 1.453 val-Accuracy : 0.497
[16, 50] loss: 0.086 Accuracy : 0.974 val-loss: 1.682 val-Accuracy : 0.605
[21, 50] loss: 0.052 Accuracy : 0.982 val-loss: 2.055 val-Accuracy : 0.600
[26, 50] loss: 0.034 Accuracy : 0.988 val-loss: 2.239 val-Accuracy : 0.632
[31, 50] loss: 0.034 Accuracy : 0.992 val-loss: 2.413 val-Accuracy : 0.627
[36, 50] loss: 0.015 Accuracy : 0.992 val-loss: 2.757 val-Accuracy : 0.670
[41, 50] loss: 0.010 Accuracy : 0.999 val-loss: 2.642 val-Accuracy : 0.665
[46, 50] loss: 0.001 Accuracy : 1.000 val-loss: 3.148 val-Accuracy : 0.654
loss: 0.002 Accuracy : 0.999 val-loss: 2.594 val-Accuracy : 0.625
Begin Training rep 1/5 of Patient 7
[1, 50] loss: 1.395 Accuracy : 0.448 val-loss: 1.352 val-Accuracy : 0.383
[6, 50] loss: 0.841 Accuracy : 0.670 val-loss: 0.754 val-Accuracy : 0.662
[11, 50] loss: 0.349 Accuracy : 0.900 val-loss: 0.164 val-Accuracy : 0.960
[16, 50] loss: 0.182 Accuracy : 0.943 val-loss: 0.096 val-Accuracy : 0.985
[21, 50] loss: 0.073 Accuracy : 0.965 val-loss: 0.179 val-Accuracy : 0.955
[26, 50] loss: 0.051 Accuracy : 0.974 val-loss: 0.174 val-Accuracy : 0.960
[31, 50] loss: 0.047 Accuracy : 0.963 val-loss: 0.163 val-Accuracy : 0.970
[36, 50] loss: 0.049 Accuracy : 0.981 val-loss: 0.181 val-Accuracy : 0.965
[41, 50] loss: 0.020 Accuracy : 0.995 val-loss: 0.055 val-Accuracy : 0.985
[46, 50] loss: 0.014 Accuracy : 0.991 val-loss: 0.088 val-Accuracy : 0.970
Begin Training rep 2/5 of Patient 7
[1, 50] loss: 1.398 Accuracy : 0.378 val-loss: 1.363 val-Accuracy : 0.333
[6, 50] loss: 0.816 Accuracy : 0.709 val-loss: 0.694 val-Accuracy : 0.711
[11, 50] loss: 0.320 Accuracy : 0.921 val-loss: 0.190 val-Accuracy : 0.930
[16, 50] loss: 0.166 Accuracy : 0.924 val-loss: 0.147 val-Accuracy : 0.945
[21, 50] loss: 0.089 Accuracy : 0.974 val-loss: 0.109 val-Accuracy : 0.965
[26, 50] loss: 0.069 Accuracy : 0.987 val-loss: 0.082 val-Accuracy : 0.975
[31, 50] loss: 0.022 Accuracy : 0.987 val-loss: 0.107 val-Accuracy : 0.965
[36, 50] loss: 0.010 Accuracy : 0.994 val-loss: 0.092 val-Accuracy : 0.970
[41, 50] loss: 0.005 Accuracy : 0.999 val-loss: 0.070 val-Accuracy : 0.985
[46, 50] loss: 0.004 Accuracy : 0.999 val-loss: 0.072 val-Accuracy : 0.980
Begin Training rep 3/5 of Patient 7
[1, 50] loss: 1.399 Accuracy : 0.433 val-loss: 1.371 val-Accuracy : 0.323
[6, 50] loss: 0.803 Accuracy : 0.722 val-loss: 0.641 val-Accuracy : 0.766
[11, 50] loss: 0.331 Accuracy : 0.897 val-loss: 0.252 val-Accuracy : 0.940
[16, 50] loss: 0.138 Accuracy : 0.945 val-loss: 0.110 val-Accuracy : 0.960
[21, 50] loss: 0.128 Accuracy : 0.960 val-loss: 0.093 val-Accuracy : 0.975
[26, 50] loss: 0.052 Accuracy : 0.979 val-loss: 0.050 val-Accuracy : 0.975
[31, 50] loss: 0.026 Accuracy : 0.982 val-loss: 0.033 val-Accuracy : 0.985
[36, 50] loss: 0.021 Accuracy : 0.991 val-loss: 0.070 val-Accuracy : 0.980
[41, 50] loss: 0.044 Accuracy : 0.985 val-loss: 0.051 val-Accuracy : 0.975
[46, 50] loss: 0.011 Accuracy : 0.995 val-loss: 0.065 val-Accuracy : 0.975
Begin Training rep 4/5 of Patient 7
[1, 50] loss: 1.396 Accuracy : 0.431 val-loss: 1.357 val-Accuracy : 0.348
[6, 50] loss: 0.740 Accuracy : 0.772 val-loss: 0.515 val-Accuracy : 0.831
[11, 50] loss: 0.212 Accuracy : 0.943 val-loss: 0.096 val-Accuracy : 0.970
[16, 50] loss: 0.108 Accuracy : 0.966 val-loss: 0.052 val-Accuracy : 0.980
[21, 50] loss: 0.083 Accuracy : 0.951 val-loss: 0.117 val-Accuracy : 0.945
[26, 50] loss: 0.058 Accuracy : 0.976 val-loss: 0.101 val-Accuracy : 0.965
[31, 50] loss: 0.022 Accuracy : 0.999 val-loss: 0.064 val-Accuracy : 0.975
[36, 50] loss: 0.006 Accuracy : 0.999 val-loss: 0.069 val-Accuracy : 0.980
[41, 50] loss: 0.004 Accuracy : 0.999 val-loss: 0.088 val-Accuracy : 0.980
[46, 50] loss: 0.004 Accuracy : 0.998 val-loss: 0.098 val-Accuracy : 0.980
Begin Training rep 5/5 of Patient 7
[1, 50] loss: 1.400 Accuracy : 0.290 val-loss: 1.368 val-Accuracy : 0.289
[6, 50] loss: 0.812 Accuracy : 0.703 val-loss: 0.662 val-Accuracy : 0.761
[11, 50] loss: 0.331 Accuracy : 0.887 val-loss: 0.243 val-Accuracy : 0.935
[16, 50] loss: 0.138 Accuracy : 0.963 val-loss: 0.062 val-Accuracy : 0.990
[21, 50] loss: 0.074 Accuracy : 0.975 val-loss: 0.084 val-Accuracy : 0.985
[26, 50] loss: 0.049 Accuracy : 0.985 val-loss: 0.058 val-Accuracy : 0.985
[31, 50] loss: 0.021 Accuracy : 0.989 val-loss: 0.080 val-Accuracy : 0.985
[36, 50] loss: 0.013 Accuracy : 0.990 val-loss: 0.077 val-Accuracy : 0.980
[41, 50] loss: 0.006 Accuracy : 0.998 val-loss: 0.079 val-Accuracy : 0.970
[46, 50] loss: 0.004 Accuracy : 0.999 val-loss: 0.077 val-Accuracy : 0.975
loss: 0.006 Accuracy : 0.996 val-loss: 0.080 val-Accuracy : 0.976
Begin Training rep 1/5 of Patient 4
[1, 50] loss: 1.402 Accuracy : 0.355 val-loss: 1.373 val-Accuracy : 0.358
[6, 50] loss: 0.735 Accuracy : 0.755 val-loss: 0.635 val-Accuracy : 0.816
[11, 50] loss: 0.261 Accuracy : 0.910 val-loss: 0.373 val-Accuracy : 0.900
[16, 50] loss: 0.115 Accuracy : 0.959 val-loss: 0.104 val-Accuracy : 0.975
[21, 50] loss: 0.058 Accuracy : 0.985 val-loss: 0.047 val-Accuracy : 0.980
[26, 50] loss: 0.043 Accuracy : 0.979 val-loss: 0.062 val-Accuracy : 0.980
[31, 50] loss: 0.042 Accuracy : 0.987 val-loss: 0.023 val-Accuracy : 0.990
[36, 50] loss: 0.015 Accuracy : 0.994 val-loss: 0.034 val-Accuracy : 0.995
[41, 50] loss: 0.005 Accuracy : 0.999 val-loss: 0.037 val-Accuracy : 0.995
[46, 50] loss: 0.004 Accuracy : 0.999 val-loss: 0.029 val-Accuracy : 0.995
Begin Training rep 2/5 of Patient 4
[1, 50] loss: 1.399 Accuracy : 0.282 val-loss: 1.373 val-Accuracy : 0.299
[6, 50] loss: 0.707 Accuracy : 0.814 val-loss: 0.357 val-Accuracy : 0.915
[11, 50] loss: 0.207 Accuracy : 0.938 val-loss: 0.075 val-Accuracy : 0.985
[16, 50] loss: 0.110 Accuracy : 0.962 val-loss: 0.036 val-Accuracy : 0.990
[21, 50] loss: 0.066 Accuracy : 0.977 val-loss: 0.017 val-Accuracy : 0.995
[26, 50] loss: 0.059 Accuracy : 0.957 val-loss: 0.042 val-Accuracy : 0.990
[31, 50] loss: 0.022 Accuracy : 0.989 val-loss: 0.030 val-Accuracy : 0.995
[36, 50] loss: 0.010 Accuracy : 0.995 val-loss: 0.014 val-Accuracy : 0.990
[41, 50] loss: 0.004 Accuracy : 0.999 val-loss: 0.007 val-Accuracy : 1.000
[46, 50] loss: 0.004 Accuracy : 0.999 val-loss: 0.005 val-Accuracy : 1.000
Begin Training rep 3/5 of Patient 4
[1, 50] loss: 1.402 Accuracy : 0.282 val-loss: 1.375 val-Accuracy : 0.299
[6, 50] loss: 0.808 Accuracy : 0.686 val-loss: 0.638 val-Accuracy : 0.791
[11, 50] loss: 0.257 Accuracy : 0.920 val-loss: 0.102 val-Accuracy : 0.985
[16, 50] loss: 0.144 Accuracy : 0.959 val-loss: 0.052 val-Accuracy : 0.990
[21, 50] loss: 0.084 Accuracy : 0.972 val-loss: 0.017 val-Accuracy : 1.000
[26, 50] loss: 0.084 Accuracy : 0.972 val-loss: 0.057 val-Accuracy : 0.990
[31, 50] loss: 0.035 Accuracy : 0.991 val-loss: 0.041 val-Accuracy : 0.990
[36, 50] loss: 0.031 Accuracy : 0.981 val-loss: 0.007 val-Accuracy : 1.000
[41, 50] loss: 0.020 Accuracy : 0.990 val-loss: 0.021 val-Accuracy : 0.990
[46, 50] loss: 0.023 Accuracy : 0.981 val-loss: 0.118 val-Accuracy : 0.960
Begin Training rep 4/5 of Patient 4
[1, 50] loss: 1.402 Accuracy : 0.267 val-loss: 1.374 val-Accuracy : 0.284
[6, 50] loss: 0.762 Accuracy : 0.689 val-loss: 0.660 val-Accuracy : 0.741
[11, 50] loss: 0.231 Accuracy : 0.929 val-loss: 0.064 val-Accuracy : 0.985
[16, 50] loss: 0.117 Accuracy : 0.963 val-loss: 0.051 val-Accuracy : 0.980
[21, 50] loss: 0.075 Accuracy : 0.975 val-loss: 0.051 val-Accuracy : 0.980
[26, 50] loss: 0.042 Accuracy : 0.986 val-loss: 0.044 val-Accuracy : 0.980
[31, 50] loss: 0.032 Accuracy : 0.988 val-loss: 0.079 val-Accuracy : 0.975
[36, 50] loss: 0.024 Accuracy : 0.983 val-loss: 0.053 val-Accuracy : 0.975
[41, 50] loss: 0.022 Accuracy : 0.972 val-loss: 0.032 val-Accuracy : 0.980
[46, 50] loss: 0.024 Accuracy : 0.979 val-loss: 0.078 val-Accuracy : 0.965
Begin Training rep 5/5 of Patient 4
[1, 50] loss: 1.401 Accuracy : 0.282 val-loss: 1.367 val-Accuracy : 0.299
[6, 50] loss: 0.823 Accuracy : 0.688 val-loss: 0.598 val-Accuracy : 0.781
[11, 50] loss: 0.332 Accuracy : 0.921 val-loss: 0.131 val-Accuracy : 0.970
[16, 50] loss: 0.183 Accuracy : 0.951 val-loss: 0.086 val-Accuracy : 0.960
[21, 50] loss: 0.150 Accuracy : 0.966 val-loss: 0.047 val-Accuracy : 0.980
[26, 50] loss: 0.088 Accuracy : 0.977 val-loss: 0.045 val-Accuracy : 0.985
[31, 50] loss: 0.069 Accuracy : 0.980 val-loss: 0.031 val-Accuracy : 0.980
[36, 50] loss: 0.039 Accuracy : 0.982 val-loss: 0.050 val-Accuracy : 0.980
[41, 50] loss: 0.013 Accuracy : 0.997 val-loss: 0.012 val-Accuracy : 1.000
[46, 50] loss: 0.053 Accuracy : 0.993 val-loss: 0.015 val-Accuracy : 0.995
loss: 0.007 Accuracy : 0.990 val-loss: 0.049 val-Accuracy : 0.983
Begin Training rep 1/5 of Patient 14
[1, 50] loss: 1.401 Accuracy : 0.427 val-loss: 1.382 val-Accuracy : 0.421
[6, 50] loss: 0.650 Accuracy : 0.820 val-loss: 1.000 val-Accuracy : 0.617
[11, 50] loss: 0.186 Accuracy : 0.937 val-loss: 0.564 val-Accuracy : 0.746
[16, 50] loss: 0.109 Accuracy : 0.953 val-loss: 0.863 val-Accuracy : 0.656
[21, 50] loss: 0.064 Accuracy : 0.966 val-loss: 1.238 val-Accuracy : 0.641
[26, 50] loss: 0.025 Accuracy : 0.990 val-loss: 1.275 val-Accuracy : 0.684
[31, 50] loss: 0.038 Accuracy : 0.977 val-loss: 1.365 val-Accuracy : 0.708
[36, 50] loss: 0.008 Accuracy : 0.993 val-loss: 1.589 val-Accuracy : 0.694
[41, 50] loss: 0.011 Accuracy : 0.988 val-loss: 2.099 val-Accuracy : 0.660
[46, 50] loss: 0.019 Accuracy : 0.993 val-loss: 1.663 val-Accuracy : 0.694
Begin Training rep 2/5 of Patient 14
[1, 50] loss: 1.402 Accuracy : 0.289 val-loss: 1.374 val-Accuracy : 0.282
[6, 50] loss: 0.765 Accuracy : 0.719 val-loss: 0.978 val-Accuracy : 0.641
[11, 50] loss: 0.269 Accuracy : 0.918 val-loss: 0.798 val-Accuracy : 0.660
[16, 50] loss: 0.128 Accuracy : 0.955 val-loss: 0.661 val-Accuracy : 0.675
[21, 50] loss: 0.073 Accuracy : 0.976 val-loss: 0.733 val-Accuracy : 0.703
[26, 50] loss: 0.042 Accuracy : 0.991 val-loss: 0.824 val-Accuracy : 0.737
[31, 50] loss: 0.034 Accuracy : 0.985 val-loss: 0.474 val-Accuracy : 0.876
[36, 50] loss: 0.019 Accuracy : 0.991 val-loss: 0.636 val-Accuracy : 0.813
[41, 50] loss: 0.011 Accuracy : 0.993 val-loss: 0.651 val-Accuracy : 0.813
[46, 50] loss: 0.018 Accuracy : 0.984 val-loss: 0.730 val-Accuracy : 0.861
Begin Training rep 3/5 of Patient 14
[1, 50] loss: 1.400 Accuracy : 0.438 val-loss: 1.370 val-Accuracy : 0.416
[6, 50] loss: 0.771 Accuracy : 0.755 val-loss: 1.148 val-Accuracy : 0.469
[11, 50] loss: 0.268 Accuracy : 0.929 val-loss: 0.950 val-Accuracy : 0.646
[16, 50] loss: 0.110 Accuracy : 0.961 val-loss: 0.636 val-Accuracy : 0.780
[21, 50] loss: 0.068 Accuracy : 0.974 val-loss: 0.676 val-Accuracy : 0.785
[26, 50] loss: 0.074 Accuracy : 0.974 val-loss: 0.935 val-Accuracy : 0.718
[31, 50] loss: 0.020 Accuracy : 0.989 val-loss: 0.637 val-Accuracy : 0.837
[36, 50] loss: 0.015 Accuracy : 0.991 val-loss: 0.839 val-Accuracy : 0.818
[41, 50] loss: 0.044 Accuracy : 0.985 val-loss: 1.509 val-Accuracy : 0.718
[46, 50] loss: 0.009 Accuracy : 0.989 val-loss: 1.688 val-Accuracy : 0.713
Begin Training rep 4/5 of Patient 14
[1, 50] loss: 1.403 Accuracy : 0.285 val-loss: 1.383 val-Accuracy : 0.263
[6, 50] loss: 0.764 Accuracy : 0.679 val-loss: 0.959 val-Accuracy : 0.617
[11, 50] loss: 0.386 Accuracy : 0.874 val-loss: 0.602 val-Accuracy : 0.751
[16, 50] loss: 0.121 Accuracy : 0.960 val-loss: 0.443 val-Accuracy : 0.785
[21, 50] loss: 0.063 Accuracy : 0.963 val-loss: 0.456 val-Accuracy : 0.813
[26, 50] loss: 0.069 Accuracy : 0.968 val-loss: 0.286 val-Accuracy : 0.880
[31, 50] loss: 0.029 Accuracy : 0.960 val-loss: 0.229 val-Accuracy : 0.928
[36, 50] loss: 0.010 Accuracy : 0.986 val-loss: 0.506 val-Accuracy : 0.809
[41, 50] loss: 0.005 Accuracy : 0.996 val-loss: 0.551 val-Accuracy : 0.823
[46, 50] loss: 0.004 Accuracy : 0.996 val-loss: 0.562 val-Accuracy : 0.809
Begin Training rep 5/5 of Patient 14
[1, 50] loss: 1.399 Accuracy : 0.413 val-loss: 1.364 val-Accuracy : 0.426
[6, 50] loss: 0.706 Accuracy : 0.806 val-loss: 1.033 val-Accuracy : 0.517
[11, 50] loss: 0.266 Accuracy : 0.927 val-loss: 0.725 val-Accuracy : 0.689
[16, 50] loss: 0.179 Accuracy : 0.946 val-loss: 0.362 val-Accuracy : 0.847
[21, 50] loss: 0.070 Accuracy : 0.982 val-loss: 0.538 val-Accuracy : 0.761
[26, 50] loss: 0.055 Accuracy : 0.990 val-loss: 0.610 val-Accuracy : 0.785
[31, 50] loss: 0.017 Accuracy : 0.991 val-loss: 0.975 val-Accuracy : 0.694
[36, 50] loss: 0.010 Accuracy : 0.996 val-loss: 1.122 val-Accuracy : 0.713
[41, 50] loss: 0.006 Accuracy : 0.996 val-loss: 1.106 val-Accuracy : 0.727
[46, 50] loss: 0.006 Accuracy : 0.998 val-loss: 0.968 val-Accuracy : 0.751
loss: 0.012 Accuracy : 0.992 val-loss: 1.122 val-Accuracy : 0.766
Begin Training rep 1/5 of Patient 6
[1, 50] loss: 1.402 Accuracy : 0.415 val-loss: 1.365 val-Accuracy : 0.408
[6, 50] loss: 0.865 Accuracy : 0.663 val-loss: 0.614 val-Accuracy : 0.776
[11, 50] loss: 0.277 Accuracy : 0.924 val-loss: 0.084 val-Accuracy : 0.990
[16, 50] loss: 0.136 Accuracy : 0.941 val-loss: 0.025 val-Accuracy : 1.000
[21, 50] loss: 0.086 Accuracy : 0.940 val-loss: 0.026 val-Accuracy : 1.000
[26, 50] loss: 0.042 Accuracy : 0.962 val-loss: 0.012 val-Accuracy : 1.000
[31, 50] loss: 0.040 Accuracy : 0.959 val-loss: 0.057 val-Accuracy : 0.969
[36, 50] loss: 0.072 Accuracy : 0.975 val-loss: 0.030 val-Accuracy : 0.995
[41, 50] loss: 0.020 Accuracy : 0.994 val-loss: 0.056 val-Accuracy : 0.969
[46, 50] loss: 0.004 Accuracy : 1.000 val-loss: 0.021 val-Accuracy : 0.985
Begin Training rep 2/5 of Patient 6
[1, 50] loss: 1.395 Accuracy : 0.433 val-loss: 1.328 val-Accuracy : 0.500
[6, 50] loss: 0.766 Accuracy : 0.748 val-loss: 0.501 val-Accuracy : 0.827
[11, 50] loss: 0.189 Accuracy : 0.949 val-loss: 0.053 val-Accuracy : 0.990
[16, 50] loss: 0.100 Accuracy : 0.977 val-loss: 0.016 val-Accuracy : 1.000
[21, 50] loss: 0.095 Accuracy : 0.980 val-loss: 0.016 val-Accuracy : 1.000
[26, 50] loss: 0.026 Accuracy : 0.996 val-loss: 0.012 val-Accuracy : 0.995
[31, 50] loss: 0.018 Accuracy : 0.994 val-loss: 0.029 val-Accuracy : 0.990
[36, 50] loss: 0.011 Accuracy : 0.998 val-loss: 0.027 val-Accuracy : 0.990
[41, 50] loss: 0.006 Accuracy : 0.998 val-loss: 0.013 val-Accuracy : 0.990
[46, 50] loss: 0.005 Accuracy : 0.998 val-loss: 0.014 val-Accuracy : 0.990
Begin Training rep 3/5 of Patient 6
[1, 50] loss: 1.400 Accuracy : 0.314 val-loss: 1.364 val-Accuracy : 0.311
[6, 50] loss: 0.870 Accuracy : 0.662 val-loss: 0.622 val-Accuracy : 0.770
[11, 50] loss: 0.337 Accuracy : 0.895 val-loss: 0.126 val-Accuracy : 0.974
[16, 50] loss: 0.141 Accuracy : 0.955 val-loss: 0.041 val-Accuracy : 0.985
[21, 50] loss: 0.081 Accuracy : 0.972 val-loss: 0.029 val-Accuracy : 0.995
[26, 50] loss: 0.040 Accuracy : 0.985 val-loss: 0.045 val-Accuracy : 0.980
[31, 50] loss: 0.040 Accuracy : 0.981 val-loss: 0.089 val-Accuracy : 0.964
[36, 50] loss: 0.032 Accuracy : 0.988 val-loss: 0.018 val-Accuracy : 0.990
[41, 50] loss: 0.014 Accuracy : 0.991 val-loss: 0.036 val-Accuracy : 0.990
[46, 50] loss: 0.006 Accuracy : 0.997 val-loss: 0.045 val-Accuracy : 0.980
Begin Training rep 4/5 of Patient 6
[1, 50] loss: 1.403 Accuracy : 0.282 val-loss: 1.371 val-Accuracy : 0.301
[6, 50] loss: 0.587 Accuracy : 0.838 val-loss: 0.170 val-Accuracy : 0.959
[11, 50] loss: 0.236 Accuracy : 0.943 val-loss: 0.063 val-Accuracy : 0.985
[16, 50] loss: 0.121 Accuracy : 0.943 val-loss: 0.037 val-Accuracy : 0.990
[21, 50] loss: 0.082 Accuracy : 0.946 val-loss: 0.017 val-Accuracy : 1.000
[26, 50] loss: 0.058 Accuracy : 0.959 val-loss: 0.014 val-Accuracy : 1.000
[31, 50] loss: 0.028 Accuracy : 0.994 val-loss: 0.030 val-Accuracy : 0.985
[36, 50] loss: 0.019 Accuracy : 0.996 val-loss: 0.034 val-Accuracy : 0.980
[41, 50] loss: 0.002 Accuracy : 0.999 val-loss: 0.024 val-Accuracy : 0.990
[46, 50] loss: 0.001 Accuracy : 0.999 val-loss: 0.021 val-Accuracy : 0.990
Begin Training rep 5/5 of Patient 6
[1, 50] loss: 1.402 Accuracy : 0.284 val-loss: 1.371 val-Accuracy : 0.327
[6, 50] loss: 0.782 Accuracy : 0.755 val-loss: 0.491 val-Accuracy : 0.842
[11, 50] loss: 0.222 Accuracy : 0.943 val-loss: 0.040 val-Accuracy : 1.000
[16, 50] loss: 0.116 Accuracy : 0.964 val-loss: 0.030 val-Accuracy : 0.990
[21, 50] loss: 0.067 Accuracy : 0.957 val-loss: 0.018 val-Accuracy : 1.000
[26, 50] loss: 0.042 Accuracy : 0.981 val-loss: 0.014 val-Accuracy : 0.995
[31, 50] loss: 0.034 Accuracy : 0.982 val-loss: 0.039 val-Accuracy : 0.990
[36, 50] loss: 0.015 Accuracy : 0.996 val-loss: 0.032 val-Accuracy : 0.990
[41, 50] loss: 0.006 Accuracy : 0.999 val-loss: 0.018 val-Accuracy : 0.995
[46, 50] loss: 0.005 Accuracy : 0.999 val-loss: 0.022 val-Accuracy : 0.990
loss: 0.003 Accuracy : 0.999 val-loss: 0.025 val-Accuracy : 0.987
Begin Training rep 1/5 of Patient 15
[1, 50] loss: 1.401 Accuracy : 0.284 val-loss: 1.383 val-Accuracy : 0.273
[6, 50] loss: 0.677 Accuracy : 0.782 val-loss: 2.424 val-Accuracy : 0.305
[11, 50] loss: 0.271 Accuracy : 0.940 val-loss: 2.158 val-Accuracy : 0.441
[16, 50] loss: 0.117 Accuracy : 0.960 val-loss: 2.233 val-Accuracy : 0.505
[21, 50] loss: 0.051 Accuracy : 0.987 val-loss: 2.226 val-Accuracy : 0.541
[26, 50] loss: 0.051 Accuracy : 0.977 val-loss: 3.498 val-Accuracy : 0.495
[31, 50] loss: 0.030 Accuracy : 0.989 val-loss: 2.501 val-Accuracy : 0.568
[36, 50] loss: 0.022 Accuracy : 0.997 val-loss: 2.593 val-Accuracy : 0.550
[41, 50] loss: 0.004 Accuracy : 0.998 val-loss: 2.774 val-Accuracy : 0.577
[46, 50] loss: 0.003 Accuracy : 0.998 val-loss: 2.695 val-Accuracy : 0.605
Begin Training rep 2/5 of Patient 15
[1, 50] loss: 1.401 Accuracy : 0.282 val-loss: 1.383 val-Accuracy : 0.264
[6, 50] loss: 0.693 Accuracy : 0.793 val-loss: 2.646 val-Accuracy : 0.300
[11, 50] loss: 0.366 Accuracy : 0.904 val-loss: 3.340 val-Accuracy : 0.364
[16, 50] loss: 0.131 Accuracy : 0.954 val-loss: 3.028 val-Accuracy : 0.418
[21, 50] loss: 0.094 Accuracy : 0.975 val-loss: 2.635 val-Accuracy : 0.418
[26, 50] loss: 0.025 Accuracy : 0.982 val-loss: 3.894 val-Accuracy : 0.455
[31, 50] loss: 0.016 Accuracy : 0.983 val-loss: 4.360 val-Accuracy : 0.450
[36, 50] loss: 0.006 Accuracy : 0.995 val-loss: 2.564 val-Accuracy : 0.595
[41, 50] loss: 0.010 Accuracy : 0.996 val-loss: 3.500 val-Accuracy : 0.577
[46, 50] loss: 0.018 Accuracy : 0.986 val-loss: 3.957 val-Accuracy : 0.505
Begin Training rep 3/5 of Patient 15
[1, 50] loss: 1.401 Accuracy : 0.284 val-loss: 1.383 val-Accuracy : 0.273
[6, 50] loss: 0.696 Accuracy : 0.824 val-loss: 2.163 val-Accuracy : 0.364
[11, 50] loss: 0.175 Accuracy : 0.950 val-loss: 3.074 val-Accuracy : 0.432
[16, 50] loss: 0.104 Accuracy : 0.980 val-loss: 2.200 val-Accuracy : 0.500
[21, 50] loss: 0.038 Accuracy : 0.990 val-loss: 2.741 val-Accuracy : 0.555
[26, 50] loss: 0.023 Accuracy : 0.986 val-loss: 3.487 val-Accuracy : 0.495
[31, 50] loss: 0.005 Accuracy : 0.998 val-loss: 3.353 val-Accuracy : 0.545
[36, 50] loss: 0.076 Accuracy : 0.983 val-loss: 3.441 val-Accuracy : 0.541
[41, 50] loss: 0.011 Accuracy : 0.999 val-loss: 3.202 val-Accuracy : 0.545
[46, 50] loss: 0.001 Accuracy : 1.000 val-loss: 3.430 val-Accuracy : 0.541
Begin Training rep 4/5 of Patient 15
[1, 50] loss: 1.401 Accuracy : 0.284 val-loss: 1.381 val-Accuracy : 0.273
[6, 50] loss: 0.655 Accuracy : 0.807 val-loss: 2.674 val-Accuracy : 0.318
[11, 50] loss: 0.205 Accuracy : 0.951 val-loss: 2.700 val-Accuracy : 0.518
[16, 50] loss: 0.065 Accuracy : 0.977 val-loss: 2.650 val-Accuracy : 0.432
[21, 50] loss: 0.043 Accuracy : 0.984 val-loss: 2.806 val-Accuracy : 0.491
[26, 50] loss: 0.038 Accuracy : 0.987 val-loss: 3.662 val-Accuracy : 0.477
[31, 50] loss: 0.016 Accuracy : 0.997 val-loss: 2.894 val-Accuracy : 0.550
[36, 50] loss: 0.030 Accuracy : 0.993 val-loss: 3.337 val-Accuracy : 0.541
[41, 50] loss: 0.009 Accuracy : 0.996 val-loss: 3.796 val-Accuracy : 0.509
[46, 50] loss: 0.011 Accuracy : 0.999 val-loss: 3.385 val-Accuracy : 0.568
Begin Training rep 5/5 of Patient 15
[1, 50] loss: 1.394 Accuracy : 0.354 val-loss: 1.400 val-Accuracy : 0.282
[6, 50] loss: 0.701 Accuracy : 0.768 val-loss: 2.484 val-Accuracy : 0.391
[11, 50] loss: 0.202 Accuracy : 0.936 val-loss: 2.913 val-Accuracy : 0.459
[16, 50] loss: 0.078 Accuracy : 0.985 val-loss: 2.123 val-Accuracy : 0.541
[21, 50] loss: 0.040 Accuracy : 0.980 val-loss: 2.497 val-Accuracy : 0.505
[26, 50] loss: 0.036 Accuracy : 0.982 val-loss: 2.616 val-Accuracy : 0.491
[31, 50] loss: 0.018 Accuracy : 0.998 val-loss: 2.318 val-Accuracy : 0.609
[36, 50] loss: 0.005 Accuracy : 0.991 val-loss: 2.003 val-Accuracy : 0.695
[41, 50] loss: 0.009 Accuracy : 0.998 val-loss: 2.683 val-Accuracy : 0.545
[46, 50] loss: 0.200 Accuracy : 0.984 val-loss: 2.412 val-Accuracy : 0.591
loss: 0.007 Accuracy : 0.993 val-loss: 3.176 val-Accuracy : 0.562
Begin Training rep 1/5 of Patient 3
[1, 50] loss: 1.397 Accuracy : 0.412 val-loss: 1.333 val-Accuracy : 0.437
[6, 50] loss: 0.776 Accuracy : 0.726 val-loss: 1.221 val-Accuracy : 0.518
[11, 50] loss: 0.285 Accuracy : 0.913 val-loss: 0.603 val-Accuracy : 0.784
[16, 50] loss: 0.133 Accuracy : 0.947 val-loss: 0.356 val-Accuracy : 0.884
[21, 50] loss: 0.071 Accuracy : 0.974 val-loss: 0.219 val-Accuracy : 0.930
[26, 50] loss: 0.036 Accuracy : 0.982 val-loss: 0.473 val-Accuracy : 0.899
[31, 50] loss: 0.064 Accuracy : 0.969 val-loss: 0.477 val-Accuracy : 0.889
[36, 50] loss: 0.018 Accuracy : 0.989 val-loss: 0.320 val-Accuracy : 0.915
[41, 50] loss: 0.011 Accuracy : 0.992 val-loss: 0.450 val-Accuracy : 0.889
[46, 50] loss: 0.008 Accuracy : 0.998 val-loss: 0.335 val-Accuracy : 0.935
Begin Training rep 2/5 of Patient 3
[1, 50] loss: 1.401 Accuracy : 0.288 val-loss: 1.379 val-Accuracy : 0.281
[6, 50] loss: 0.774 Accuracy : 0.724 val-loss: 1.166 val-Accuracy : 0.513
[11, 50] loss: 0.310 Accuracy : 0.920 val-loss: 0.515 val-Accuracy : 0.809
[16, 50] loss: 0.156 Accuracy : 0.955 val-loss: 0.459 val-Accuracy : 0.859
[21, 50] loss: 0.102 Accuracy : 0.979 val-loss: 0.348 val-Accuracy : 0.899
[26, 50] loss: 0.071 Accuracy : 0.978 val-loss: 0.338 val-Accuracy : 0.905
[31, 50] loss: 0.049 Accuracy : 0.990 val-loss: 0.322 val-Accuracy : 0.905
[36, 50] loss: 0.013 Accuracy : 0.997 val-loss: 0.394 val-Accuracy : 0.905
[41, 50] loss: 0.008 Accuracy : 0.998 val-loss: 0.407 val-Accuracy : 0.905
[46, 50] loss: 0.008 Accuracy : 0.999 val-loss: 0.394 val-Accuracy : 0.905
Begin Training rep 3/5 of Patient 3
[1, 50] loss: 1.401 Accuracy : 0.287 val-loss: 1.392 val-Accuracy : 0.276
[6, 50] loss: 0.832 Accuracy : 0.666 val-loss: 1.253 val-Accuracy : 0.503
[11, 50] loss: 0.329 Accuracy : 0.921 val-loss: 0.625 val-Accuracy : 0.799
[16, 50] loss: 0.133 Accuracy : 0.959 val-loss: 0.333 val-Accuracy : 0.874
[21, 50] loss: 0.066 Accuracy : 0.963 val-loss: 0.338 val-Accuracy : 0.910
[26, 50] loss: 0.052 Accuracy : 0.981 val-loss: 0.304 val-Accuracy : 0.915
[31, 50] loss: 0.029 Accuracy : 0.981 val-loss: 0.436 val-Accuracy : 0.874
[36, 50] loss: 0.015 Accuracy : 0.989 val-loss: 0.379 val-Accuracy : 0.884
[41, 50] loss: 0.015 Accuracy : 0.989 val-loss: 0.479 val-Accuracy : 0.869
[46, 50] loss: 0.017 Accuracy : 0.994 val-loss: 0.532 val-Accuracy : 0.874
Begin Training rep 4/5 of Patient 3
[1, 50] loss: 1.400 Accuracy : 0.283 val-loss: 1.379 val-Accuracy : 0.281
[6, 50] loss: 0.702 Accuracy : 0.722 val-loss: 1.131 val-Accuracy : 0.573
[11, 50] loss: 0.256 Accuracy : 0.904 val-loss: 0.564 val-Accuracy : 0.809
[16, 50] loss: 0.118 Accuracy : 0.965 val-loss: 0.412 val-Accuracy : 0.905
[21, 50] loss: 0.048 Accuracy : 0.986 val-loss: 0.382 val-Accuracy : 0.910
[26, 50] loss: 0.045 Accuracy : 0.983 val-loss: 0.396 val-Accuracy : 0.899
[31, 50] loss: 0.053 Accuracy : 0.987 val-loss: 0.482 val-Accuracy : 0.905
[36, 50] loss: 0.011 Accuracy : 0.996 val-loss: 0.317 val-Accuracy : 0.930
[41, 50] loss: 0.004 Accuracy : 0.999 val-loss: 0.380 val-Accuracy : 0.920
[46, 50] loss: 0.004 Accuracy : 0.999 val-loss: 0.424 val-Accuracy : 0.915
Begin Training rep 5/5 of Patient 3
[1, 50] loss: 1.401 Accuracy : 0.284 val-loss: 1.383 val-Accuracy : 0.276
[6, 50] loss: 0.785 Accuracy : 0.709 val-loss: 1.066 val-Accuracy : 0.538
[11, 50] loss: 0.354 Accuracy : 0.890 val-loss: 0.777 val-Accuracy : 0.739
[16, 50] loss: 0.207 Accuracy : 0.948 val-loss: 0.584 val-Accuracy : 0.864
[21, 50] loss: 0.145 Accuracy : 0.962 val-loss: 0.791 val-Accuracy : 0.874
[26, 50] loss: 0.100 Accuracy : 0.964 val-loss: 0.805 val-Accuracy : 0.869
[31, 50] loss: 0.030 Accuracy : 0.993 val-loss: 0.834 val-Accuracy : 0.859
[36, 50] loss: 0.045 Accuracy : 0.988 val-loss: 0.882 val-Accuracy : 0.849
[41, 50] loss: 0.019 Accuracy : 0.998 val-loss: 0.936 val-Accuracy : 0.874
[46, 50] loss: 0.006 Accuracy : 0.998 val-loss: 0.969 val-Accuracy : 0.844
loss: 0.017 Accuracy : 0.997 val-loss: 0.531 val-Accuracy : 0.894