--- a +++ b/Results.py @@ -0,0 +1,41 @@ +import scipy.io as sio +import matplotlib.pyplot as plt + +import os +import glob + +import numpy as np + +Patient_id = np.unique(sio.loadmat("Sample Data/trials_subNums.mat")['subjectNum'][0]) #corresponding to the patient id +dir = "Results/" +models = ["Basic", "LSTM", "MaxCNN", "Mix", "TempCNN"] + +Results = np.zeros((len(Patient_id), len(models),20)) + +inc = 0 +for model in models: + inc_patient = 0 + for patient in Patient_id: + doc = glob.glob(dir+"*"+model+"*"+"t"+str(patient)+".mat")[0] + file = sio.loadmat(doc)['res'] + Results[inc_patient,inc, :] = file[:,3] + inc_patient += 1 + inc += 1 + +fig = plt.figure() + +for i in range(len(models)): + a = 5 + plt.plot(np.max(Results[:,i,:],axis=1), '.-', label = models[i]) + +plt.legend() +#plt.boxplot(Results[:,0,:]) +#plt.boxplot(Results[:,1,:]) + + + +lstm = sio.loadmat("Results/result_LSTM.mat")['vacc'] +plt.plot(np.mean(lstm, axis=0)) + + +plt.show()