|
a |
|
b/Models.py |
|
|
1 |
''' |
|
|
2 |
Created by Victor Delvigne |
|
|
3 |
ISIA Lab, Faculty of Engineering University of Mons, Mons (Belgium) |
|
|
4 |
victor.delvigne@umons.ac.be |
|
|
5 |
|
|
|
6 |
Source: Bashivan, et al."Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks." International conference on learning representations (2016). |
|
|
7 |
|
|
|
8 |
Copyright (C) 2019 - UMons |
|
|
9 |
|
|
|
10 |
This library is free software; you can redistribute it and/or |
|
|
11 |
modify it under the terms of the GNU Lesser General Public |
|
|
12 |
License as published by the Free Software Foundation; either |
|
|
13 |
version 2.1 of the License, or (at your option) any later version. |
|
|
14 |
|
|
|
15 |
This library is distributed in the hope that it will be useful, |
|
|
16 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
|
17 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
|
18 |
Lesser General Public License for more details. |
|
|
19 |
|
|
|
20 |
You should have received a copy of the GNU Lesser General Public |
|
|
21 |
License along with this library; if not, write to the Free Software |
|
|
22 |
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
|
23 |
''' |
|
|
24 |
|
|
|
25 |
import torch |
|
|
26 |
|
|
|
27 |
import torch.optim as optim |
|
|
28 |
import torch.nn as nn |
|
|
29 |
import torch.nn.functional as F |
|
|
30 |
|
|
|
31 |
|
|
|
32 |
class BasicCNN(nn.Module): |
|
|
33 |
''' |
|
|
34 |
Build the Mean Basic model performing a classification with CNN |
|
|
35 |
|
|
|
36 |
param input_image: list of EEG image [batch_size, n_window, n_channel, h, w] |
|
|
37 |
param kernel: kernel size used for the convolutional layers |
|
|
38 |
param stride: stride apply during the convolutions |
|
|
39 |
param padding: padding used during the convolutions |
|
|
40 |
param max_kernel: kernel used for the maxpooling steps |
|
|
41 |
param n_classes: number of classes |
|
|
42 |
return x: output of the last layers after the log softmax |
|
|
43 |
''' |
|
|
44 |
def __init__(self, input_image=torch.zeros(1, 3, 32, 32), kernel=(3,3), stride=1, padding=1,max_kernel=(2,2), n_classes=4): |
|
|
45 |
super(BasicCNN, self).__init__() |
|
|
46 |
|
|
|
47 |
n_channel = input_image.shape[1] |
|
|
48 |
|
|
|
49 |
self.conv1 = nn.Conv2d(n_channel,32,kernel,stride=stride, padding=padding) |
|
|
50 |
self.conv2 = nn.Conv2d(32,32,kernel,stride=stride, padding=padding) |
|
|
51 |
self.conv3 = nn.Conv2d(32,32,kernel,stride=stride, padding=padding) |
|
|
52 |
self.conv4 = nn.Conv2d(32,32,kernel,stride=stride, padding=padding) |
|
|
53 |
self.pool1 = nn.MaxPool2d(max_kernel) |
|
|
54 |
self.conv5 = nn.Conv2d(32,64,kernel,stride=stride,padding=padding) |
|
|
55 |
self.conv6 = nn.Conv2d(64,64,kernel,stride=stride,padding=padding) |
|
|
56 |
self.conv7 = nn.Conv2d(64,128,kernel,stride=stride,padding=padding) |
|
|
57 |
|
|
|
58 |
self.pool = nn.MaxPool2d((1,1)) |
|
|
59 |
self.drop = nn.Dropout(p=0.5) |
|
|
60 |
|
|
|
61 |
self.fc1 = nn.Linear(2048,512) |
|
|
62 |
self.fc2 = nn.Linear(512,n_classes) |
|
|
63 |
self.max = nn.LogSoftmax() |
|
|
64 |
|
|
|
65 |
def forward(self, x): |
|
|
66 |
batch_size = x.shape[0] |
|
|
67 |
x = F.relu(self.conv1(x)) |
|
|
68 |
x = F.relu(self.conv2(x)) |
|
|
69 |
x = F.relu(self.conv3(x)) |
|
|
70 |
x = F.relu(self.conv4(x)) |
|
|
71 |
x = self.pool1(x) |
|
|
72 |
x = F.relu(self.conv5(x)) |
|
|
73 |
x = F.relu(self.conv6(x)) |
|
|
74 |
x = self.pool1(x) |
|
|
75 |
x = F.relu(self.conv7(x)) |
|
|
76 |
x = self.pool1(x) |
|
|
77 |
x = x.reshape(x.shape[0],x.shape[1], -1) |
|
|
78 |
x = self.pool(x) |
|
|
79 |
x = x.reshape(x.shape[0],-1) |
|
|
80 |
x = self.fc1(x) |
|
|
81 |
x = self.fc2(x) |
|
|
82 |
x = self.max(x) |
|
|
83 |
return x |
|
|
84 |
|
|
|
85 |
|
|
|
86 |
class MaxCNN(nn.Module): |
|
|
87 |
''' |
|
|
88 |
Build the Max-pooling model performing a maxpool over the 7 parallel convnets |
|
|
89 |
|
|
|
90 |
param input_image: list of EEG image [batch_size, n_window, n_channel, h, w] |
|
|
91 |
param kernel: kernel size used for the convolutional layers |
|
|
92 |
param stride: stride apply during the convolutions |
|
|
93 |
param padding: padding used during the convolutions |
|
|
94 |
param max_kernel: kernel used for the maxpooling steps |
|
|
95 |
param n_classes: number of classes |
|
|
96 |
return x: output of the last layers after the log softmax |
|
|
97 |
''' |
|
|
98 |
def __init__(self, input_image=torch.zeros(1, 7, 3, 32, 32), kernel=(3,3), stride=1, padding=1,max_kernel=(2,2), n_classes=4): |
|
|
99 |
super(MaxCNN, self).__init__() |
|
|
100 |
|
|
|
101 |
n_window = input_image.shape[1] |
|
|
102 |
n_channel = input_image.shape[2] |
|
|
103 |
|
|
|
104 |
self.conv1 = nn.Conv2d(n_channel,32,kernel,stride=stride, padding=padding) |
|
|
105 |
self.conv2 = nn.Conv2d(32,32,kernel,stride=stride, padding=padding) |
|
|
106 |
self.conv3 = nn.Conv2d(32,32,kernel,stride=stride, padding=padding) |
|
|
107 |
self.conv4 = nn.Conv2d(32,32,kernel,stride=stride, padding=padding) |
|
|
108 |
self.pool1 = nn.MaxPool2d(max_kernel) |
|
|
109 |
self.conv5 = nn.Conv2d(32,64,kernel,stride=stride,padding=padding) |
|
|
110 |
self.conv6 = nn.Conv2d(64,64,kernel,stride=stride,padding=padding) |
|
|
111 |
self.conv7 = nn.Conv2d(64,128,kernel,stride=stride,padding=padding) |
|
|
112 |
|
|
|
113 |
self.pool = nn.MaxPool2d((n_window,1)) |
|
|
114 |
self.drop = nn.Dropout(p=0.5) |
|
|
115 |
|
|
|
116 |
self.fc = nn.Linear(n_window*int(4*4*128/n_window),512) |
|
|
117 |
self.fc2 = nn.Linear(512,n_classes) |
|
|
118 |
self.max = nn.LogSoftmax() |
|
|
119 |
|
|
|
120 |
def forward(self, x): |
|
|
121 |
if x.get_device() == 0: |
|
|
122 |
tmp = torch.zeros(x.shape[0],x.shape[1],128,4,4).cuda() |
|
|
123 |
else: |
|
|
124 |
tmp = torch.zeros(x.shape[0],x.shape[1],128,4,4).cpu() |
|
|
125 |
for i in range(7): |
|
|
126 |
tmp[:,i] = self.pool1( F.relu(self.conv7(self.pool1(F.relu(self.conv6(F.relu(self.conv5(self.pool1( F.relu(self.conv4(F.relu(self.conv3( F.relu(self.conv2(F.relu(self.conv1(x[:,i]))))))))))))))))) |
|
|
127 |
x = tmp.reshape(x.shape[0], x.shape[1],4*128*4,1) |
|
|
128 |
x = self.pool(x) |
|
|
129 |
x = x.view(x.shape[0],-1) |
|
|
130 |
x = self.fc2(self.fc(x)) |
|
|
131 |
x = self.max(x) |
|
|
132 |
return x |
|
|
133 |
|
|
|
134 |
|
|
|
135 |
class TempCNN(nn.Module): |
|
|
136 |
''' |
|
|
137 |
Build the Conv1D model performing a convolution1D over the 7 parallel convnets |
|
|
138 |
|
|
|
139 |
param input_image: list of EEG image [batch_size, n_window, n_channel, h, w] |
|
|
140 |
param kernel: kernel size used for the convolutional layers |
|
|
141 |
param stride: stride apply during the convolutions |
|
|
142 |
param padding: padding used during the convolutions |
|
|
143 |
param max_kernel: kernel used for the maxpooling steps |
|
|
144 |
param n_classes: number of classes |
|
|
145 |
return x: output of the last layers after the log softmax |
|
|
146 |
''' |
|
|
147 |
def __init__(self, input_image=torch.zeros(1, 7, 3, 32, 32), kernel=(3,3), stride=1, padding=1,max_kernel=(2,2), n_classes=4): |
|
|
148 |
super(TempCNN, self).__init__() |
|
|
149 |
|
|
|
150 |
n_window = input_image.shape[1] |
|
|
151 |
n_channel = input_image.shape[2] |
|
|
152 |
|
|
|
153 |
self.conv1 = nn.Conv2d(n_channel,32,kernel,stride=stride, padding=padding) |
|
|
154 |
self.conv2 = nn.Conv2d(32,32,kernel,stride=stride, padding=padding) |
|
|
155 |
self.conv3 = nn.Conv2d(32,32,kernel,stride=stride, padding=padding) |
|
|
156 |
self.conv4 = nn.Conv2d(32,32,kernel,stride=stride, padding=padding) |
|
|
157 |
self.pool1 = nn.MaxPool2d(max_kernel) |
|
|
158 |
self.conv5 = nn.Conv2d(32,64,kernel,stride=stride,padding=padding) |
|
|
159 |
self.conv6 = nn.Conv2d(64,64,kernel,stride=stride,padding=padding) |
|
|
160 |
self.conv7 = nn.Conv2d(64,128,kernel,stride=stride,padding=padding) |
|
|
161 |
|
|
|
162 |
#Temporal CNN Layer |
|
|
163 |
self.conv8 = nn.Conv1d(n_window,64,(4*4*128,3),stride=stride,padding=padding) |
|
|
164 |
|
|
|
165 |
self.pool = nn.MaxPool2d((n_window,1)) |
|
|
166 |
self.drop = nn.Dropout(p=0.5) |
|
|
167 |
self.fc = nn.Linear(64*3,n_classes) |
|
|
168 |
self.max = nn.LogSoftmax() |
|
|
169 |
|
|
|
170 |
def forward(self, x): |
|
|
171 |
if x.get_device() == 0: |
|
|
172 |
tmp = torch.zeros(x.shape[0],x.shape[1],128,4,4).cuda() |
|
|
173 |
else: |
|
|
174 |
tmp = torch.zeros(x.shape[0],x.shape[1],128,4,4).cpu() |
|
|
175 |
for i in range(7): |
|
|
176 |
tmp[:,i] = self.pool1( F.relu(self.conv7(self.pool1(F.relu(self.conv6(F.relu(self.conv5(self.pool1( F.relu(self.conv4(F.relu(self.conv3( F.relu(self.conv2(F.relu(self.conv1(x[:,i]))))))))))))))))) |
|
|
177 |
x = tmp.reshape(x.shape[0], x.shape[1],4*128*4,1) |
|
|
178 |
x = F.relu(self.conv8(x)) |
|
|
179 |
x = x.view(x.shape[0],-1) |
|
|
180 |
x = self.fc(x) |
|
|
181 |
x = self.max(x) |
|
|
182 |
return x |
|
|
183 |
|
|
|
184 |
|
|
|
185 |
class LSTM(nn.Module): |
|
|
186 |
''' |
|
|
187 |
Build the LSTM model applying a RNN over the 7 parallel convnets outputs |
|
|
188 |
|
|
|
189 |
param input_image: list of EEG image [batch_size, n_window, n_channel, h, w] |
|
|
190 |
param kernel: kernel size used for the convolutional layers |
|
|
191 |
param stride: stride apply during the convolutions |
|
|
192 |
param padding: padding used during the convolutions |
|
|
193 |
param max_kernel: kernel used for the maxpooling steps |
|
|
194 |
param n_classes: number of classes |
|
|
195 |
param n_units: number of units |
|
|
196 |
return x: output of the last layers after the log softmax |
|
|
197 |
''' |
|
|
198 |
def __init__(self, input_image=torch.zeros(1, 7, 3, 32, 32), kernel=(3,3), stride=1, padding=1,max_kernel=(2,2), n_classes=4, n_units=128): |
|
|
199 |
super(LSTM, self).__init__() |
|
|
200 |
|
|
|
201 |
n_window = input_image.shape[1] |
|
|
202 |
n_channel = input_image.shape[2] |
|
|
203 |
|
|
|
204 |
self.conv1 = nn.Conv2d(n_channel,32,kernel,stride=stride, padding=padding) |
|
|
205 |
self.conv2 = nn.Conv2d(32,32,kernel,stride=stride, padding=padding) |
|
|
206 |
self.conv3 = nn.Conv2d(32,32,kernel,stride=stride, padding=padding) |
|
|
207 |
self.conv4 = nn.Conv2d(32,32,kernel,stride=stride, padding=padding) |
|
|
208 |
self.pool1 = nn.MaxPool2d(max_kernel) |
|
|
209 |
self.conv5 = nn.Conv2d(32,64,kernel,stride=stride,padding=padding) |
|
|
210 |
self.conv6 = nn.Conv2d(64,64,kernel,stride=stride,padding=padding) |
|
|
211 |
self.conv7 = nn.Conv2d(64,128,kernel,stride=stride,padding=padding) |
|
|
212 |
|
|
|
213 |
# LSTM Layer |
|
|
214 |
self.rnn = nn.RNN(4*4*128, n_units, n_window) |
|
|
215 |
self.rnn_out = torch.zeros(2, 7, 128) |
|
|
216 |
|
|
|
217 |
self.pool = nn.MaxPool2d((n_window,1)) |
|
|
218 |
self.drop = nn.Dropout(p=0.5) |
|
|
219 |
self.fc = nn.Linear(896, n_classes) |
|
|
220 |
self.max = nn.LogSoftmax() |
|
|
221 |
|
|
|
222 |
def forward(self, x): |
|
|
223 |
if x.get_device() == 0: |
|
|
224 |
tmp = torch.zeros(x.shape[0], x.shape[1], 128, 4, 4).cuda() |
|
|
225 |
else: |
|
|
226 |
tmp = torch.zeros(x.shape[0], x.shape[1], 128, 4, 4).cpu() |
|
|
227 |
for i in range(7): |
|
|
228 |
img = x[:, i] |
|
|
229 |
img = F.relu(self.conv1(img)) |
|
|
230 |
img = F.relu(self.conv2(img)) |
|
|
231 |
img = F.relu(self.conv3(img)) |
|
|
232 |
img = F.relu(self.conv4(img)) |
|
|
233 |
img = self.pool1(img) |
|
|
234 |
img = F.relu(self.conv5(img)) |
|
|
235 |
img = F.relu(self.conv6(img)) |
|
|
236 |
img = self.pool1(img) |
|
|
237 |
img = F.relu(self.conv7(img)) |
|
|
238 |
tmp[:, i] = self.pool1(img) |
|
|
239 |
del img |
|
|
240 |
x = tmp.reshape(x.shape[0], x.shape[1], 4 * 128 * 4) |
|
|
241 |
del tmp |
|
|
242 |
self.rnn_out, _ = self.rnn(x) |
|
|
243 |
x = self.rnn_out.view(x.shape[0], -1) |
|
|
244 |
x = self.fc(x) |
|
|
245 |
x = self.max(x) |
|
|
246 |
return x |
|
|
247 |
|
|
|
248 |
|
|
|
249 |
class Mix(nn.Module): |
|
|
250 |
''' |
|
|
251 |
Build the LSTM model applying a RNN and a CNN over the 7 parallel convnets outputs |
|
|
252 |
|
|
|
253 |
param input_image: list of EEG image [batch_size, n_window, n_channel, h, w] |
|
|
254 |
param kernel: kernel size used for the convolutional layers |
|
|
255 |
param stride: stride apply during the convolutions |
|
|
256 |
param padding: padding used during the convolutions |
|
|
257 |
param max_kernel: kernel used for the maxpooling steps |
|
|
258 |
param n_classes: number of classes |
|
|
259 |
param n_units: number of units |
|
|
260 |
return x: output of the last layers after the log softmax |
|
|
261 |
''' |
|
|
262 |
def __init__(self, input_image=torch.zeros(1, 7, 3, 32, 32), kernel=(3,3), stride=1, padding=1,max_kernel=(2,2), n_classes=4, n_units=128): |
|
|
263 |
super(Mix, self).__init__() |
|
|
264 |
|
|
|
265 |
n_window = input_image.shape[1] |
|
|
266 |
n_channel = input_image.shape[2] |
|
|
267 |
|
|
|
268 |
self.conv1 = nn.Conv2d(n_channel,32,kernel,stride=stride, padding=padding) |
|
|
269 |
self.conv2 = nn.Conv2d(32,32,kernel,stride=stride, padding=padding) |
|
|
270 |
self.conv3 = nn.Conv2d(32,32,kernel,stride=stride, padding=padding) |
|
|
271 |
self.conv4 = nn.Conv2d(32,32,kernel,stride=stride, padding=padding) |
|
|
272 |
self.pool1 = nn.MaxPool2d(max_kernel) |
|
|
273 |
self.conv5 = nn.Conv2d(32,64,kernel,stride=stride,padding=padding) |
|
|
274 |
self.conv6 = nn.Conv2d(64,64,kernel,stride=stride,padding=padding) |
|
|
275 |
self.conv7 = nn.Conv2d(64,128,kernel,stride=stride,padding=padding) |
|
|
276 |
|
|
|
277 |
# LSTM Layer |
|
|
278 |
self.rnn = nn.RNN(4*4*128, n_units, n_window) |
|
|
279 |
self.rnn_out = torch.zeros(2, 7, 128) |
|
|
280 |
|
|
|
281 |
# Temporal CNN Layer |
|
|
282 |
self.conv8 = nn.Conv1d(n_window, 64, (4 * 4 * 128, 3), stride=stride, padding=padding) |
|
|
283 |
|
|
|
284 |
self.pool = nn.MaxPool2d((n_window, 1)) |
|
|
285 |
self.drop = nn.Dropout(p=0.5) |
|
|
286 |
self.fc1 = nn.Linear(1088,512) |
|
|
287 |
self.fc2 = nn.Linear(512, n_classes) |
|
|
288 |
self.max = nn.LogSoftmax() |
|
|
289 |
|
|
|
290 |
|
|
|
291 |
def forward(self, x): |
|
|
292 |
if x.get_device() == 0: |
|
|
293 |
tmp = torch.zeros(x.shape[0], x.shape[1], 128, 4, 4).cuda() |
|
|
294 |
else: |
|
|
295 |
tmp = torch.zeros(x.shape[0], x.shape[1], 128, 4, 4).cpu() |
|
|
296 |
for i in range(7): |
|
|
297 |
img = x[:, i] |
|
|
298 |
img = F.relu(self.conv1(img)) |
|
|
299 |
img = F.relu(self.conv2(img)) |
|
|
300 |
img = F.relu(self.conv3(img)) |
|
|
301 |
img = F.relu(self.conv4(img)) |
|
|
302 |
img = self.pool1(img) |
|
|
303 |
img = F.relu(self.conv5(img)) |
|
|
304 |
img = F.relu(self.conv6(img)) |
|
|
305 |
img = self.pool1(img) |
|
|
306 |
img = F.relu(self.conv7(img)) |
|
|
307 |
tmp[:, i] = self.pool1(img) |
|
|
308 |
del img |
|
|
309 |
|
|
|
310 |
temp_conv = F.relu(self.conv8(tmp.reshape(x.shape[0], x.shape[1], 4 * 128 * 4, 1))) |
|
|
311 |
temp_conv = temp_conv.reshape(temp_conv.shape[0], -1) |
|
|
312 |
|
|
|
313 |
self.lstm_out, _ = self.rnn(tmp.reshape(x.shape[0], x.shape[1], 4 * 128 * 4)) |
|
|
314 |
del tmp |
|
|
315 |
lstm = self.lstm_out.view(x.shape[0], -1) |
|
|
316 |
|
|
|
317 |
x = torch.cat((temp_conv, lstm), 1) |
|
|
318 |
|
|
|
319 |
x = self.fc1(x) |
|
|
320 |
x = self.fc2(x) |
|
|
321 |
x = self.max(x) |
|
|
322 |
return x |
|
|
323 |
|